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1 Motivation

The sign problem (see ref. [1] for a mini-review) remains one of the central open chal-
lenges in modern theoretical physics and hinders progress in various different subfields.
It underlies the challenges encountered in the study of transport properties of the quark-
gluon-plasma [2–9], it is the central hurdle in the exploration of the QCD phase diagram
at large Baryon density [10–15] and impacts the study of the thermodynamics of imbal-
anced Fermi gases [16–18], to name just three. The term sign problem refers to the fact
that many strongly correlated quantum systems of phenomenological relevance can only be
expressed through a path integral with complex valued Feynman weight. In turn, Monte-
Carlo sampling methods, successful in case that the Feynman weight is purely real, become
inapplicable and system-specific strategies must be developed. One of the most technically
challenging sign problems occurs in case of quantum systems formulated in Minkowski
spacetime, where the Feynman weight amounts to a pure phase.

The sign problem has been shown to be NP-hard [19], which implies that a one-size-
fits-all approach is unlikely to exist. Nevertheless, many examples are known in which
the sign problem has been successfully overcome or at least tamed. An active research
community (for a recent review see ref. [20]) is exploring multiple strategies. Among these
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are variants of reweighing, extrapolation from complex parameters and the reformulation
of the system of interest in new degrees of freedom unaffected by a sign problem.

The present study sets out to contribute to ongoing efforts to beat the sign problem by
considering the complexification of system degrees of freedom. This research field has a long
history, giving birth to two major promising currents: the Lefshets thimble approach [21]
and complex Langevin [22]. In the former, one identifies manifolds in the complex plane,
the so-called thimbles, on which the imaginary part of the classical action remains con-
stant and thus ordinary Monte-Carlo sampling may commence. A residual sign problem
persists as one has to average over different thimbles. Together with the computationally
demanding task of locating the thimbles, these challenges constitute two areas of active
research interest.

Complex Langevin on the other hand is based on the concept of stochastic quantiza-
tion [23, 24]. Quantum and statistical fluctuations of a system are represented by noise in
an additional (d + 1) + 1 temporal dimension, which reproduces the correlation functions
in (d+ 1) dimensions. In practice one is required to evolve the field degrees of freedom by
a stochastic partial differential equation (SDE) in an additional, so-called Langevin time,
generating representations of the quantum system along the way. Expectation values of
observables are estimated by taking the mean over these field configurations. Langevin
stochastic quantization has proven successful in systems in which naive Monte-Carlo meth-
ods are also applicable [25]. It has furthermore been shown to correctly simulate several
systems with complex weights and thus complexified field degrees of freedom [22]. Even
though straight forward in principle, it has been realized early on by the community that in
its standard formulation, the complex Langevin approach suffers from three major short-
comings, which have to be addressed, before the method can serve as a reliable tool in the
precision study of strongly correlated quantum systems.

The three main challenges affecting complex Langevin identified in the literature are
its stability, the ergodicity in the presence of non-holomorphic actions and most crucially
the convergence to incorrect results (for recent insight see e.g. [26, 27]), which is intimately
related to the appearance of tail structures in histograms of observables (see refs. [28, 29]).
We believe that it is paramount to disentangle each of these issues, in order to be able to
solve them one-by-one. Hence we focus in this study solely on the question of stability,
returning to the remaining two in future work. (I.e. in order to remain in the parameter
range where the complex Langevin method itself is known to converge to the correct results,
we limit ourselves to a short real-time extent in this study.)

The question of stability in complex Langevin is intimately connected to the well-known
phenomenon of runaway solutions. In general, such divergent behavior can arise from two
sources. Either the complex Langevin method itself does not converge to a finite result, or
the numerical methods used to implement the discrete Langevin time evolution introduce
artifacts, which in turn give rise to unphysical divergencies. In order to make progress on
understanding the former, we must disentangle numerical artifacts from methods artifacts.

Observed early on [30], runaways are now commonly treated by deploying adaptive
step-size prescriptions [31] in the solution of the stochastic Langevin dynamics. One moti-
vation for our work is the fact that even though adaptive step-size has proven to alleviate
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the problem of runaways in many systems in practice, it does not prevent their occurrence
in principle. I.e. runaway solutions may appear even if adaptive step-size is deployed (see
e.g. [32]), which in gauge theories has led to the introduction to the additional gauge-cooling
approach [33].

In this paper we set out to explore solvers that can prevent the occurrence of runaway
solutions by construction. To this end, we consider the stability of complex Langevin from
the point of view of the stiffness of the underlying SDEs. While no precise definition of
stiffness exists, we take the pragmatic view that it refers to systems in which naive explicit
time-stepping prescriptions fail to recover the correct solution. Surveying the landscape of
complex Langevin implementations, we find that a majority of studies relies on the simple
forward Euler discretization. Early on, improvements in the spirit of deterministic Runge-
Kutta methods have been proposed [34], but to our knowledge only two studies [35, 36]
have embraced a higher-order method that takes into account the stochastic character of
the Langevin evolution equation.

Our study aims at bringing to the table some of the progress made in the solution
of SDEs in other fields. In particular, we propose to deploy implicit solvers, which are
designed with stiff problems in mind. Besides the simple Euler-Maruyama scheme, which
we use extensively in this paper, we will discuss what ingredients are needed in order to set
up higher-order schemes for SDEs, compared to the case of purely deterministic equations.

Once stable solvers are available, we can proceed to investigate the stability and accu-
racy of the complex Langevin method itself. Our goal lies in simulating real-time physics,
which in the continuum requires a form of regularization. After exploring different ways
how a regularization may be incorporated in the Langevin evolution, we implement high ac-
curacy simulations of the (0+1) dimensional anharmonic oscillator in thermal equilibrium
and as a genuine initial value problem from a Gaussian density matrix.

The paper is organized in the following way: we start in section 2 with an introduction
of the equations underlying the complex Langevin approach and discuss some explicit
and implicit SDE solvers for their solution. In the following, we prepare the grounds for
numerical simulations by introducing and discretizing the anharmonic oscillator model in
section 3.1. We discuss different ways to regularize its path integral in section 3.2 and
will learn how to describe the errors made by a finite step size in the Langevin evolution.
Armed with this insight, we carry out benchmark complex Langevin simulations of the
quantum anharmonic oscillator on the canonical Schwinger-Keldysh contour at short real-
times both in thermal equilibrium and in a non-equilibrium setting in section 4. We close
with a summary and outlook in section 5.

2 Complex Langevin and SDE solvers

The task at hand is to compute quantum statistical expectation values of an observable O.
Conventionally such expectation values are formulated in terms of a Feynman path integral

〈O〉 = 1
Z

∫
Dφ O[φ]eiS[φ], S[φ] =

∫
ddxL[φ]. (2.1)

where Z =
∫
Dφ exp[iS[φ]] denotes the partition function.
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In Stochastic Quantization, we obtain the expectation values from the evolution of
the system in an artificial Langevin time τL (for an in-depth review of the approach, see
ref. [37]). The Langevin-like evolution equation for the field φ(x, τL) in its simplest form
consists of a drift term, derived from its classical action S[φ], as well as a Gaussian noise
term η(x, τL)

dφ

dτL
= i

δS[φ]
δφ(x) + η(x, τL)

with 〈η(x, τL)〉 = 0, 〈η(x, τL)η(x′, τ ′L)〉 = 2δ(x− x′)δ(τL − τ ′L).
(2.2)

The quantity x may e.g. refer to a four-vector x = (x0,x) with Minkowski (real-time) x0
and the 3 spatial dimensions x. It is important to keep in mind that the physical time
(x0) and the fictitious Langevin time τL are not related to each other. Note that the delta
function in the correlator of the noise encompasses all dimensions of x. This prescription
places an independent stochastic process at each space-time point.

Due to the complex drift term, the field degrees complexify and we can rewrite the
evolution equations instead in terms of the real and imaginary part of the field as

φ(x, τL) = φR(x, τL) + iφI(x, τL), (2.3)

such that eq. (2.2) turns into two coupled but real-valued equations for the real- and
imaginary part of the field degrees of freedom

dφR
dτL

= Re
[
i
δS[φ]
δφ(x)

∣∣∣∣
φ=φR+iφI

]
+ η(x, τL), dφI

dτL
= Im

[
i
δS[φ]
δφ(x)

∣∣∣∣
φ=φR+iφI

]
. (2.4)

We have here used the standard construction in which the noise term η(x, τL) is real. These
are the stochastic partial differential evolution equations we will solve in the subsequent
sections. The first central task is to find appropriate numerical solvers to accommodate
these equations.

2.1 Numerical schemes

Stochastic partial differential equations (SDE) are a central modern tool in the modeling of
various phenomena in science, technology and in particular finance. Most of the equations
arising in these research fields do not lend themselves to an analytic treatment and thus
require numerical solvers. To this end, the past two decades have seen vigorous research
activity in the development of accurate and efficient algorithms. One major impulse towards
these developments can be found in the by now classic book by Klöden and Platen [38],
which not only contains a comprehensive survey of both explicit and implicit SDE solvers
but also provides a pedagogic introduction into the underlying Ito and Stratonovic calculus.
One central message of the book states that the series expansions, commonly used to set
up deterministic discretization schemes, need to be amended by additional terms in the
stochastic case due to the different scaling properties of stochastic variables. In particular,
it is shown that standard algorithms may yield much lower convergence rates in an SDE
setting than for the deterministic PDEs they were originally designed for.
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The goal of this section is to introduce some of these numerical schemes and to explicitly
match the complex Langevin equations to the mathematical notation used in the literature,
preparing us for a straightforward implementation through standard libraries, such as the
SDE solver package found in the Julia language.

Let us formulate a general stochastic differential equation for N stochastic variables
φi in Langevin time τL, enumerated by the superscript j.

dφj(τL) = aj(φ, τL)dτL +
∑
j

bjk(φ, τL)dW k. (2.5)

Its evolution is governed by a diffusion term conventionally denoted by aj(φ, τL), which
may depend on all other stochastic variables, as well as the Langevin time explicitly. We
incorporate N independent Wiener processes dW j which obey the standard relations〈∫ τL

0
dW j

〉
= 0 and

〈∫ τL

0
dW j

∫ τL

0
dW k

〉
= δjk

∫ τL

0
dτ ′L. (2.6)

They affect the dynamical degrees of freedom φj via the mixing matrix b(φ, τL). This gen-
eral non-constant noise coefficient matrix may have a non-trivial dependence on Langevin
time and the stochastic variables.

In the concrete case of stochastic quantization, we replace the discrete parameter j
with the combination of a discrete index for field degrees per spacetime point and the
continuous parameter x. Hence the sum over j turns into a combined sum and integral∑
j →

∑
j

∫
dx. Kronecker deltas remain for discrete indices, while we have to introduce

Delta functions for spacetime δjk → δjkδ(x− x′). This leads us to the expression

dφj(x, τL) = aj(φ, x, τL)dτL +
∫
dx′

∑
k

bjk(φ, x, x′, τL)dW k(x′, τL), (2.7)

which can be matched to our complex Langevin eq. (2.2) using

aj(φ, x, τL) = i
δS[φ]
δφj(x) , bjk(φ, x, τL) =

√
2δjkδ(x− x′). (2.8)

Note that in its standard form, the CL noise coefficients are constant in φ and τL.
As a first step, we need to take care of the drift term, which originates from a discretized

action. To this end, one discretizes physical spacetime on which the field degrees live,
turning continuous x into a discrete set of coordinates xm. The integral in the classical
action may be approximated using a Newton-Cotes formula with the weights ωm = ω(xm),
which yields the following drift and noise terms for the continuous Langevin time SDE

aj,m(φ, τL) = i

ωm

∂S[φ]
∂φj(xm) , bjk,ml(φ, τL) =

√
2
ωm

δjkδml. (2.9)

This expression for the diffusion term a and the noise coefficient matrix b can be used
straightforwardly in numerical schemes for stochastic differential equations. In the remain-
der of this section, we discuss some of these schemes in more detail.
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The most common implementation of the CL dynamics deploys the simple, i.e. lowest
order, Euler-Maruyama (EM) scheme. Discretizing Langevin time in equidistant steps of
size ∆τL we introduce the discrete Wiener process increment ∆W j

λ = W j
λ+1 −W

j
λ . The

subscript λ denotes at which Langevin time step the random variables are evaluated. The
update step is then given by the following expression, where summation over repeated
indices is implied

φj,nλ+1 = φj,nλ + ∆τL
[
θaj,n (φλ+1) + (1− θ)aj,n (φλ)

]
+ bjk,nm(φλ) ∆W k,m

λ

with 〈∆W j,n
λ 〉 = 0, 〈∆W j,n

λ ∆W k,m
λ 〉 = ∆τLδjkδnm. (2.10)

Here we actually refer to a whole class of EM schemes, which differ by the choice of a single
real-valued parameter θ. It controls the level of implicitness. For θ = 0 one recovers the
fully explicit forward EM scheme, while for θ = 1 the implicit variant ensues. The choice
of θ = 1/2 is special, as it refers to a semi-implicit Crank-Nicholson-like implementation of
the EM scheme.

In contrast to the deterministic Euler schemes, the different variants of the EM scheme
for a non-trivial noise term share a numerical accuracy of strong order O(

√
∆τL). I.e. in

general they perform worse than in the deterministic case, which is a common ailment
afflicting the direct application of deterministic schemes to SDEs. In the case of simple CL
dynamics we are fortunate however, in that the noise term remains trivial and thus the
simple EM scheme can be shown to be of strong order O(∆τL).

While the same numerical accuracy is shared among the different members of the EM
family of schemes, their numerical stability varies significantly. It is well known that the
forward EM scheme is at best conditionally stable, while the fully implicit scheme θ = 1 is
robust against instabilities, being what is called in the literature L-stable. Similarly, it can
be shown (cf. Crank-Nicolson) that the semi-implicit scheme θ = 1/2 is also unconditionally
asymptotically stable [39].

We stress that stability and accuracy are two separate qualities of a scheme, where
stability only refers to the ability of the numerical solver to follow the true solution within
the limitations placed by the accuracy of the scheme. Unconditional stability however
also guarantees that as long as the true solution remains bounded, the scheme will not
produce divergent runaway solutions. This property is what leads us to propose the de-
ployment of (semi-)implicit solvers for complex Langevin, as it allows us to disentangle a
possible breakdown of the stochastic quantization prescription from a breakdown of the
numerical solver.

In general, an implicit scheme is more costly than its explicit cousin at each individual
update step. We need to solve a non-linear system of equations arising from the drift term
aj,n(φλ+1) in eq. (2.10), which is commonly implemented by a variant of Newton’s method.
As we will see, the favorable stability properties may however allow one to choose larger
step sizes in Langevin time, leading to an overall reduction in computation cost.

Similarly as for deterministic differential equations, one may improve on the simple
Euler schemes by developing Runge-Kutta solvers for SDEs, usually referred to as SRK
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schemes. They offer a straightforward way to increase the accuracy of the solver by com-
bining approximations of the stochastic variables at intermediate steps within one update
interval. The simplest of these is the Runge-Kutta Milstein scheme [38, 40] of strong order
O(∆τL) for diagonal noise

φj,nλ+1 =φj,nλ + ∆τL
[
θaj,n (φλ+1) + (1− θ)aj,n (φλ)

]
+ bj,n (φλ) ∆W j,n

λ

+ 1
2
√

∆τL

(
bj,n(Υλ)− bj,n(φλ)

){
(∆W j,n

λ )2 −∆τL
}

with

Υj,n
λ =φj,nλ + aj,n (φλ) ∆τL + bj,n (φλ)

√
∆τL.

(2.11)

Again we have indicated a whole family of schemes, whose implicitness is governed by the
θ parameter. Note that these schemes differ from a naive application of the deterministic
second-order Runge-Kutta (RK2) prescription through the presence of a term quadratic
in the Wiener process in the second line of eq. (2.11). In case of simple CL eq. (2.2) with
constant real noise coefficients, the Milstein scheme reduces to the EM scheme, reaffirming
that for trivial noise the simplest algorithm already offers order 1.0 accuracy.

Let us also touch on higher-order schemes. The next order one can reach is 1.5 [38],
at which the SRK prescription for constant additive noise reads

φλ+1 =φλ + ∆τL
1
2 [a (φλ+1) + a (φλ)] (2.12)

+ b ∆Wλ + 1
2
√

∆τL

{
a(Υλ

+)− a(Υλ
−)
}{

∆Zλ −
1
2∆WλdτL

}
with Υλ

± =φλ + a (φλ) ∆τL ± b
√

∆τL.

Here we use vector notation and we have explicitly chosen θ = 1/2 for simplicity of the
presentation. In this equation, we find that a genuinely new contribution arises even for
trivial noise. It consists of a combination of the drift term together with Wiener processes
∆W and ∆Z. The latter one refers to additional independent processes with the same
mean and variance as the ∆W as well as 〈∆W j∆Zj〉 = 0. By incorporating the proper
contributions arising from Ito’s lemma in the series expansions underlying these Runge-
Kutta schemes one may thus construct consecutive improvements to the naive EM scheme.

In our study, we will draw upon the implementation of the above-mentioned schemes
through the SDE module in the DifferentialEquations.jl [41, 42] library provided in the
Julia language. The concrete implementations of eqs. (2.10) to (2.12) differ slightly due
to performance improvements outlined in the literature (see the documentation of [41]),
which however has no effect on their stability and accuracy properties.

All the methods listed above can be implemented with an adaptive step-size prescrip-
tion. This offers two concrete benefits. On the one hand, the stability properties of a sim-
ulation can be improved, as the step size is adapted to fulfill the Courant-Friedrichs-Lewy
stability condition at each update. For stiff problems and explicit solvers, this approach
is limited in practice by the step size becoming so small that the number of steps along
Langevin time grows beyond available computational power. On the other hand adap-
tive step size also allows us to increase the step size at intermediate times to reduce the
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computational burden while staying within a predefined accuracy tolerance for the update
step. One drawback of adaptive step size is the fact that an analytic investigation of the
properties of the solver becomes more involved. We will thus deploy adaptive step size in
all simulations except those where we study the finite time discretization artifacts and look
at the corrections from the discretized Fokker-Planck equation.

Many different adaptive step prescriptions are deployed in the literature. One of the
more sophisticated approaches implemented e.g. in the Julia library compares updates of
solvers of different order and takes the difference as an error estimate [43]. The step size
then is chosen to keep this error estimate below a pre-defined threshold. More simply we
may monitor the size of the drift term in the Langevin equation and adjust the time step
such that the change induced by the drift term remains below a certain threshold. We
have found that some adaptive step-size algorithms implemented in the literature do not
contain a limit on the maximum step size, which may spoil the accuracy of the outcome
and required us to implement such an upper limit by hand.

2.2 On the issue of large excursions

Having reviewed different explicit and implicit prescriptions for the solution of the complex
Langevin SDE, we may now explore how these methods fare in addressing the issue of
stability. A common challenge that plagues complex Langevin simulations is the occurrence
of large excursions. While the overwhelming majority of trajectories contributing to the
final expectation value are located in a well-contained area around the origin, some paths
are found to venture significantly further out into the complex plane. A simple example
of this behavior can be found in the system of a single degree of freedom, evolving in the
potential V (φ) = iφ4. On average it leads to paths that stay within around 2 dimensionless
units from the origin, however excursions up to |φ| ∼ 10 sporadically occur.

These excursions can be understood by inspecting the flow field −4iφ3, as shown in
figure 1 along the line where φR = φI . As φI & φR the flow lines tilt upward, while for
φI . φR they tilt downwards. As one moves exactly on top of the line, the field lines will
keep going straight out towards infinity. This is a property of the continuum theory and
not an artifact of the numerical solution.

In principle, this is not a problem, since the noise term makes sure that one never
stays on this line indefinitely. However, as the size of φ increases, the size of the flow 4iφ3

also increases significantly compared to the noise term. In turn, after the noise kicks the
system away from the diverging path, it now follows a path dominated by the drift term
with only a small contribution of the noise term. Such a path tends to go out to even
larger values of |φ| until it eventually returns to the dominating region. A representative
example is shown in figure 1 as the green solid line.

It has been understood that such excursions constitute one of the reasons for the
stability issues of numerical implementations of complex Langevin. Let us have a look
at how well the true path is recovered by the simple EM schemes for different settings of
implicitness at a fixed step size. In general, the explicit method is prone to overshooting
the correct trajectory (red solid line), while the fully implicit method also fails to stay close
to it but does so by undershooting the correct result (violet solid line). The overshooting
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Figure 1. Example of complex Langevin paths for a single degree of freedom in the potential
V (φ) = iφ4 based on different solvers: (red) explicit EM, (violet) implicit EM, (dashed) unitary
θ = 1/2 EM and the exact solution given as green line. Each path is initiated at (1.5, 1.47) close
to the divergent flow line. The Langevin time step size is kept constant at ∆τL = 10−4. Note the
characteristic over and undershooting of the explicit and implicit method respectively.

of the explicit method easily leads to divergent behavior as the errors accumulate. For the
implicit method on the other hand the simulation remains stable. Note however that its
accuracy still suffers due to the deviation from the true trajectory. The semi-implicit EM
scheme on the other hand combines the best of both worlds, as it offers the unconditional
stability of the implicit scheme and limits the undershooting to a minimum, as can be seen
in the dashed black line in figure 1. Note that due to the large flow the actual Langevin
time spend in one of these excursions is very small compared to the total length of the
trajectories needed to accumulate reasonable statistical uncertainties.

We can understand the behavior seen in figure 1 already from an inspection of the
discretization prescription in the free theory. There the drift term is linear (a(φ) = iMφ)
and we can rewrite the EM scheme of eq. (2.10) as

φλ+1 = (1− i∆τLθM)−1
{

(1 + i∆τL(1− θ)M)φλ +
√

∆τLη
λ
}
. (2.13)

Taking the expectation value of the field at τL = (λ+ 1)∆τL we get

|〈φλ+1〉| =
∣∣∣∣1 + i∆τL(1− θ)M

1− i∆τLθM

∣∣∣∣ |〈φλ〉|. (2.14)

For θ = 0 the fraction simplifies to |1 + i∆τLM | > 1, which induces an increase
in the magnitude of the field value for each step. On the other hand for θ = 1
one finds |1− i∆τLM |−1 < 1, which represents shrinkage of the magnitude. For
the special case of (θ = 1

2) we obtain a semi-implicit scheme with |〈φλ+1〉| =
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|(1− i∆τLM/2)/(1 + i∆τLM/2)| |〈φλ〉| = |〈φλ〉|,which in the free case exactly preserves
the magnitude of the expectation value of the field.

We chose the above example to illustrate a key qualitative difference between solvers
of varying degrees of implicitness. It should be mentioned that for the specific scenario
shown here, the differences are only sizeable since we do not use an adaptive step size. A
∆τL = 10−4 allows for stable dynamics close to the origin where the drift is small. However
at |φ| ∼ 10 we have a relatively large drift term of around ∆τL4φ3 = 0.4. In practice, using
adaptive step size one would reduce ∆τL along the excursion, keeping the deviation from
the exact solution small. The conclusion that explicit schemes accumulate errors according
to overshooting of the true trajectory and implicit schemes according to undershooting it
remains unchanged.

3 Towards stable real-time simulations of the quantum anharmonic os-
cillator

3.1 Formulating and discretizing the model

Our main goal in this study is to implement stable simulations of the early real-time
dynamics of a strongly coupled quantum anharmonic oscillator. This system amounts to
a (0+1)d field theory prototype and has been studied in the literature in detail [44, 45],
establishing itself as a benchmark for the success of different real-time approaches. Real-
time expectation values for an observable O arising in a system that evolves from a mixed
initial state ρ can be described via the Schwinger-Keldysh closed time-path formalism. In
its canonical implementation, it deals with field degrees of freedom placed on a time contour,
with both a forward-facing branch along the time axis (housing φ+) and a backward branch
(housing φ−), both of which are attached at the initial time to the density matrix ρ(φ1, φ2)

〈O(φ)〉 = 1
Z

∫
dφ1

∫
dφ2 ρ(φ1, φ2)

∫ φ1

φ2
Dφ+Dφ− O(φ) eiS[φ+]−iS[φ−]. (3.1)

Let us consider the case of thermal equilibrium with inverse temperature β = 1/T . The
density matrix takes on the standard Boltzmann form ρ ∝ exp[−βH] and we may conve-
niently absorb the sampling over initial conditions into a path integral along the imaginary
time axis, compactified to a length of β

〈O(φ)〉 = 1
Z

∫
DφEe

−SE [φE ]
∫ φE(0)

φE(β)
Dφ+Dφ− O(φ) eiS[φ+]−iS[φ−]. (3.2)

The corresponding Schwinger Keldysh contour now contains three parts: the forward and
backward real-time branch, as well as the Euclidean contour all of which contribute with
their own action and which we will summarize as iS[φ+]− iS[φ−]− SE → iS[φ].

The real-time action for the anharmonic oscillator explicitly reads

S =
∫
dx0

{
1
2

(
∂φ

∂x0

)2
− V (φ)

}
, V (φ) = 1

2mφ
2 + λ

4!φ
4, (3.3)
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where λ refers to the coupling constant. We give all of our results in units of m, which is the
same as setting m = 1. The first step to take is to discretize the time coordinate x0 ∈ C
along the Schwinger-Keldysh contour. To this end, we introduce a contour parameter
ξ ∈ R which on the forward and backward branch refers to a real-valued time, while on
the Euclidean branch refers to a negative imaginary time. The time integral in the action
becomes a line integral over the contour parameter, discretized into NC steps aj . The fields,
evaluated at the discrete real-time steps, are denoted by φ(

∑
j aj) = φj . We deploy the

trapezoidal rule for the action integral, which amounts to averaging over the left and right
Riemann sums. Consistently we approximate the derivative by finite differences choosing
forward difference at the point j and backward differences at the point j+ 1, leading us to
the standard expression

S = 1
2
∑
j

{
(φj+1 − φj)2

aj
− aj [V (φj+1) + V (φj)]

}
. (3.4)

To implement the complex Langevin equations of motion, we need to calculate the drift
term i δSδφj . Using the discretization scheme above we obtain

i
δS[φ]
δφj

= i
1
2 (|aj |+ |aj−1|)

{
φj − φj−1
aj−1

− φj+1 − φj
aj

− 1
2 [aj−1 + aj ]

∂V (φj)
∂φj

}
. (3.5)

The factor 1
1
2 (|aj |+|aj−1|)

, which we have included here explicitly in the drift term must then

also be consistently included in the noise term bjk =
√

2
1
2 (|ak|+|ak−1|)

δjk. Note however that

via a rescaling of the drift term, one may drop the factors of a if one consistently drops
them also from all the Kronecker deltas associate with functional derivatives. At this stage
we have only discretized the physical coordinates, leaving us with a continuous Langevin
time prescription to stochastically quantize the anharmonic oscillator.

The discretization of the action already introduces numerical artifacts in the solution
of the continuous-time complex Langevin equation. In order to make sure that we do not
misinterpret such errors as arising from the finite Langevin time discretization in an actual
simulation, we take a closer look at them here.

Analogous to constructing the transfer matrix operator we can go backward from the
discretized path integral to the corresponding operator expressions while leaving the real-
time step size aj finite. In that case, we have to deal with the fact that the Campbell-Baker-
Hausdorff formula gives non-trivial contributions when decomposing the action integral into
individual exponentials. Let us define the exponentiated Hamiltonian of the system via
the following matrix elements

〈φj+1| exp(iajH)|φj〉 = exp
[1

2
(φj+1 − φj)2

aj
− 1

2ajV (φj)−
1
2ajV (φj)

]
. (3.6)

According to our eq. (3.4) the r.h.s. contains the potential evaluated at neighboring values
of the field φj+1 and φj , which requires that the potential operator acts on both the
left and right state. Since only one complete set of momentum eigenstates is involved in
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Figure 2. Visualization of real-time discretization artifacts in the unequal-time correlation function
〈φ(x0)φ(0)〉. True values (solid lines) are obtained from matrix mechanics in the truncated Hilbert
space spanned by 32 energy eigenstates of the harmonic oscillator. Note the shift in the imaginary
part when using the first order discretization of eq. (3.8) (open squares) for a lattice spacing of
am = 0.08. The symmetric discretization of eq. (3.7) significantly improves the agreement with the
continuum results as seen in the open circles.

transforming the kinetic term back to its operator form we end up with the expression

exp(iajĤs) = exp
[
aj
2 V (φ̂)

]
exp

[
aj π̂

2

2

]
exp

[
aj
2 V (φ̂)

]
+O(a2). (3.7)

Had we considered just one single potential term in eq. (3.4) the corresponding operator
expressions would have turned out to be

exp(iajĤr) = exp
[
aj π̂

2

2

]
exp

[
ajV (φ̂)

]
+O(a) or (3.8)

exp(iajĤl) = exp
[
ajV (φ̂)

]
exp

[
aj π̂

2

2

]
+O(a). (3.9)

Using as parameters λ = 24 and m = 1, similar to what we will deploy in the actual
complex Langevin simulations in the following sections, we can now study the effects of
the finite real-time spacing explicitly. To this end we compute the forward correlator
〈φ(x0)φ(0)〉 using matrix mechanics in the truncated Hilbert space spanned by the 32
lowest-lying energy eigenstates of the harmonic oscillator, according to the different effective
Hamilton operators Ĥ defined above.

As can be seen in figure 2, we find a characteristic artifact introduced by the finite real-
time steps. Its main manifestation is the appearance of a non-zero value of the imaginary
part of the correlator at the origin. Neighboring values of the imaginary part are corre-
spondingly also shifted away from their true values. When using the O(a) discretization
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of eq. (3.8) this effect is of the order of 12% for a = 0.08 (with respect to the maximum
value the imaginary part of the correlator takes on.) The strength of the effect scales as
expected linearly with a so that we obtain 6% deviation for a = 0.04 and 4% deviation for
a = 0.08/3. Switching from eq. (3.8) to (3.9) changes the sign in the shift of the imaginary
part, indicating that the discretization amounts to a complex phase factor. Combining the
opposing phase factors in the symmetric formulation of eq. (3.7) cancels out the effect to
a significant extent, reducing the deviation from the continuum results to 0.2% already for
a = 0.08. We will make sure to keep these discretization artifacts below the percent level
in the Complex Langevin simulations in the following.

3.2 Regularizing the model

To make the continuum theory well-defined on the canonical Schwinger-Keldysh real-time
contour, we need to introduce an infinitesimal damping term into the otherwise purely oscil-
latory behavior of the Feynman path integral weight. Otherwise, the continuous Langevin-
time evolution will not be able to converge to a finite result. In an analytic setting, this
is conventionally achieved by introducing by hand an additional term R > 0 in the action
such that the new effective action reads S̄ = S + iR(φ, ε). A simple example of such a
regulator is R = 1

2εφ
2, which is e.g. discussed in [46].

It is long known that such a regulator also controls the rate of convergence in a com-
plex Langevin simulation [44, 47]. Similar to an analytic computation where the correct
result is obtained by setting ε → 0 only a posteriori, a simulation operates at finite ε,
which, depending on its chosen value may significantly distort the computed expectation
values. Only after an extrapolation over several different simulations do we recover the true
solution. It goes without saying that the closer we can simulate to the correct solution, the
less troubled the extrapolation procedure will be. Therefore we will attempt to deploy as
small a regulator as possible.

In this section, we will briefly discuss the classic approach to introduce a tilt in the
Schwinger-Keldysh contour [44] and report on our observation that the implicit scheme
itself offers a regularization by construction.

3.2.1 Tilted Schwinger-Keldysh contour

One way to regularize our model is to introduce an imaginary tilt in the Schwinger-Keldysh
contour, as deployed e.g. in ref. [44] and shown in the leftmost panel of figure 3. Since in
the thermal setting we are interested in correlators on the forward contour (the values of
the mixed correlators are related via the KMS relation) one tries to keep the tilt on the
forward branch small. The backward branch on the other hand may tilt downward more
steeply, as long as it reaches the negative imaginary axis before −iβ. To be more concrete,
the tilted Schwinger-Keldysh contour (figure 3 a) has two distinct parts. Part one (C1)
is tilted under an angle α from 0 to tmax − sin(α)βi. Part two (C2) is tilted such that it
arrives at the imaginary axis at the point −iβ, which due to periodic boundary conditions
coincides with the starting point of the first part of the contour.

The information about the shape of the real-time contour is fully contained in the
choice of the, in general complex, time step aj . It denotes the distance between point j
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Re
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C2

−iβ

a

Re

Im

S1

S2

−iβ

b

Re

Im

S1

S2

−iβ

SE

c
Figure 3. Three different realizations of the thermal Schwinger-Keldysh contour for a system
with temperature T = 1

β . The leftmost setting (a) corresponds to the contour adopted e.g. in
ref. [44]. Our first goal is to be able to remove the tilt on the forward contour (b) and ultimately
in preparation for the non-equilibrium setting to move both the forward and backward branch very
close to the real-time axis (c). We find that the inherent regularization of the implicit solver allows
us to realize scenarios (b) and (c) in practice.

and j + 1 on the contour and appears explicitly in the complex Langevin drift term in
eq. (3.5). A tilt of the real-time contour manifests itself as a non-zero imaginary part in aj
such that

S̄ = 1
2
∑
j

{
(φj+1 − φj)2

aRj + iaIj
− (aRj + iaIj ) [V (φj+1) + V (φj)]

}

= 1
2
∑
j

{
(φj+1 − φj)2

|aj |
(aRj − iaIj )− (aRj + iaIj ) [V (φj+1) + V (φj)]

}

=S + 1
2
∑
j

{
(φj+1 − φj)2

|aj |
(−iaIj )− (iaIj ) [V (φj+1) + V (φj)]

}

=S + 1
2
∑
j

{
(φj+1 − φj)2

|aj |
+ [V (φj+1) + V (φj)]

}
(−iaIj )

=S + i
∑
j

R(φ, aIj ).

(3.10)

We see that if ai has a negative imaginary part, the overall prefactor becomes (−iaIj ) =
+i|Im(ai)|, turning the corresponding R > 0 into a positive quantity. Coming to the
conclusion that such a positive term R successfully acts as a regulator however is not as
straightforward as it appears at first sight. In the case of a complex Feynman weight, the
field themselves becomes complexified and R exhibits both a real- and imaginary part.
In the free theory ref. [46] has shown that a positive R = 1

2εφ
2 allows us to take a well

defined late Langevin-time limit of the complex Langevin dynamics with a regularization
of the two-point function that amounts to 〈φ(k)φ(−k)〉 = i/(k2 −m2 + iε) supporting the
downward tilt of the Schwinger-Keldysh contour as an appropriate regulator.

Reducing the tilt of C1 reduces the strength of the regularization. It is well known
and we have reconfirmed in our numerical experiments that concurrently the stochastic
dynamics become more and more stiff. I.e. when deploying an explicit scheme the proba-
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bility to encounter runaway solutions increases significantly as the tilt is reduced. In the
classic work of [44], an explicit solver was combined with a 0.01β tilt of the contour. While
this tilt is small at the early times considered in previous and also this study, it already
introduces a deviation from the true solution in the unequal-time correlation functions,
which goes beyond the statistical errorbars of the simulation. With the goal of extend-
ing CL simulations to later real-times in the future, we will be urged to reduce the tilt
even further.

As an example let us carry out a simulation using a similar setup as in [44], with a
tilt of 0.01β in the anharmonic oscillator action (eq. (3.4)). In order to remain in the
region where complex Langevin converges to the correct result, we select as maximum
real-time extent xmax

0 = 0.5. As a solver the general Euler-Maruyama scheme (eq. (2.10))
with adaptive step-size1 is chosen. The θ value in 2.10 is set to θ = 1

2 corresponding to
a semi-implicit scheme, which, as we have seen in section 2.2, preserves the magnitude
of the expectation value throughout the simulation well. We average over a total of 500
trajectories, each of which reaches a total Langevin time of τLm = 100. Observables are
read out every δτLm = 0.1 in Langevin time.

We plot the real- and imaginary part of the unequal time correlation function
G++(x0) = 〈φ(0)φ(x0)〉 − 〈φ(0)〉〈φ(x0)〉 on the forward branch vs. the contour parame-
ter ξ in the top panel of figure 4. While a small effect, we can already distinguish between
the analytic solution on the real-time axis (black solid) and the solution on the tilted con-
tour ( green solid ) within the precision of our simulation. The analytic solution here is
obtained again using matrix mechanics in the truncated Hilbert space spanned by the 32
energy eigenstates of the harmonic oscillator.

As shown in the magnified insets, close to x0 = 0.5 the tilt leads to a visible deviation
from the true solution. I.e. such a tilt does affect the solution at early times and will
become sizeable once the simulation can be extended to a phenomenologically relevant
real-time extent.

In the lower panel of figure 4 the field expectation value 〈φ〉 and the equal time cor-
relation function 〈φ2〉 are plotted vs. the contour parameter along both branches of the
contour. We find that they agree with the constant value predicted by the true solu-
tion. I.e. as is known, these quantities are less susceptible to the tilt as the unequal-time
correlation function.

3.2.2 Regularization via an implicit scheme

Previous studies and the preceding subsection have shown that introducing a large enough
tilt in the Schwinger-Keldysh contour, as in section 3.2.1, allows us to regularize the oscil-
latory behavior of the path integral. Depending on the size of the tilt it does so effectively
enough for even an explicit solver to capture the ensuing complex Langevin dynamics. The

1All simulations based on the implicit scheme can be carried out without adaptive step-size. The
numerical cost in that case will simply be higher, as an overall smaller step-size is needed to reach the same
accuracy. Nevertheless, compared to simulating with an explicit scheme, we can deploy a much larger step
size. The implicit scheme already works well with ∆τL = 10−3, while the explicit scheme requires us to go
to ∆τL = 10−5.
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Figure 4. Simulation results for the anharmonic oscillator based on the semi-implicit Euler-
Maruyama scheme on a 0.01β tilted contour: (top) unequal-time correlation function G++(x0) =
〈φ(0)φ(x0)〉 − 〈φ(0)〉〈φ(x0)〉 plotted for real-time values along the forward branch of the tilted
Schwinger-Keldysh contour together with the true solution on the real-time axis (black solid) and
along the tilted contour (green solid). Close to x0 = 0.5 our simulation can already distinguish
between the two. (bottom) The field expectation value 〈φ〉 and the equal-time correlation function
〈φ2〉 evaluated on both branches. Agreement with the true solution is observed within uncertainty
(errors appear larger here only since the y-axis scale is reduced compared to the top panel).

price to pay is a systematic deviation of the correlation function from the result on the
real-time axis which grows with the maximum extent of the forward contour.

In this study, our goal is to explore the potential of implicit solvers for complex
Langevin. We have already seen how their simplest formulation, in form of the EM scheme,
avoids the occurrence of runaway solutions in section 2.2. We will return to the evolution
equations and show that the formulation of the general EM scheme harbors additional
terms, which play a role in the regularization of the path integral itself.

Let us focus on the simple but relevant case of the free theory here with V (φ) = 1
2m

2φ2.
The update step of the general EM scheme reads

φλ+1
j = φλj + iεj

[
θ
∂Sλ+1

∂φj
+ (1− θ)∂S

λ

∂φj

]
+√εjηλj , (3.11)

– 16 –



J
H
E
P
0
8
(
2
0
2
1
)
1
3
8

where εj = ∆τL
|ωj | . To simplify the derivation below, we assume without loss of generality

that the step size εi = ε is constant along the contour. In the free theory we may in
addition write the action in a simple matrix form as ∂Sλ

∂φj
= Mφλj . Substituting this into

eq. (3.11) yields

(I − iεθM)φλ+1 =
{

(I + iε(1− θ)M)φλ +
√
εηλ
}
. (3.12)

The explicit entries in Mij are obtained via eq. (3.5) as

Mjk =



1
aj−1

+ 1
aj
− 1

2 [aj−1 + aj ]m2, j = k

− 1
aj
, j = k − 1

− 1
aj−1

, j = k + 1.

(3.13)

In order to proceed, we bring the implicit part of the update over to the r.h.s. and as-
sume that ε is sufficiently small to expand the inverse matrix. The relevant quantitative
criterion here is that the magnitude of the eigenvalues of εθM are smaller than 1, i.e., the
max [|λ1|, |λ2|, . . .] < 1. In turn, we obtain

φλ+1 = (I − iεθM)−1
{

(I + iε(1− θ)M)φλ +
√
εηλ
}

(3.14)

=
∞∑
k=0

(iεθM)k
{

(I + iε(1− θ)M)φλ +
√
εηλ
}
. (3.15)

Let us truncate the expansion at second order in ε and focus on the contributions to the
drift term

φλ+1 =
{(

1 + iεM − ε2θM2
)
φλ +

√
εηλ
}

+O(ε3/2). (3.16)

The correction to the drift term of second order in ε may be absorbed into an effective
action for the general EM scheme

Sθ = 1
2φ
(
M + iεθM2

)
φ = Sexplicit + iε

2 θ
∑
j

S2
j . (3.17)

The expression for Sθ tells us that the difference between the EM scheme with finite θ and
the fully explicit one lies in the presence of one additional term. It is proportional to the
complex unit i and both depend on the time step and the implicitness parameter. Similar
to the regulator term from a tilted contour in eq. (3.10) it is positive and thus leads to a
damping of the oscillations of the path integral. Eq. (3.17) thus constitutes a new means
of regularization unavailable to explicit solvers.

The above argument is further supported by numerical tests, which show that the
regularization becomes weaker as the Langevin time step is reduced. Intuitively it also
agrees with the behavior of the numerical solvers we discussed in the context of large
excursions in section 2.2. The term proportional to ε2 in eq. (3.16) features a minus sign,
which leads to the stable undershooting of the true solution shown in figure 1. In turn,
it is this correction that will prevent the Langevin dynamics from diverging in the late
Langevin time limit, realizing the role of a regularizer in the underlying path integral.
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3.3 Finite Langevin time step errors

We have argued in the preceding section that implicit solvers provide a novel intrinsic
regularization of the underlying complex path integral. This regularization depends on the
implicitness parameter but more importantly depends on the finite Langevin time step ∆τL.
It tells us that for finite step size our system remains well defined but that when moving
towards continuous Langevin time, the dynamics will become more difficult to tame, as we
concurrently remove our regularization. This conundrum can be avoided if it is possible to
analytically correct for the finite Langevin step size corrections in our observables. Then
we may choose a small but not too small value of ∆τL (depending on the parameters of
the system) and carry out the simulation in a well-defined manner, accounting for the
difference to the continuous Langevin solution a posteriori. In this section, we set out to
derive such correction terms.

Our strategy is as follows: as a first step, we follow [34] and show that the effects of
an implicit solver scheme at finite Langevin step size ∆τL can be cast in the language of
an effective action for the Fokker-Planck equation. In order to exploit the well-established
methods underlying the derivation of the Fokker-Planck equation from Langevin dynamics,
we restrict ourselves to a scenario with purely real Feynman weights, i.e. the imaginary
time one. We continue in a second step to guess how the effective action obtained in the
real case generalizes to the complex case. This heuristic step is supported by numerical
evidence, which confirms that it allows us to correct numerical artifacts introduced by finite
∆τL in practice.

Let us again focus on the simple but relevant free theory with V (φ) = 1
2m

2φ2. The
update step of the general EM scheme, now for the Euclidean action reads

φλ+1
j = φλj − εj

[
θ
∂Sλ+1

∂φj
+ (1− θ)∂S

λ

∂φj

]
+√εjηλj , (3.18)

where εj = ∆τL
|ωj | and the negative sign in the drift term arises from the Wick rotation into

imaginary time. For θ = 0 these dynamics have been investigated in ref. [34].
To simplify the derivation below, we assume without loss of generality that the step

size εi = ε is constant along the contour. Remember that in the free theory can write the
action in a simple matrix form as ∂Sλ

∂φi
= Mijφ

λ
j . Substituting all into eq. (3.18) yields

(I + εθM)φλ+1 =
{

(I − ε(1− θ)M)φλ +
√
εηλ
}
. (3.19)

Let us bring the implicit part of the update over to the r.h.s. and take ε is small enough
to expand the first term in parentheses

φλ+1 = (I + εθM)−1
{

(I − ε(1− θ)M)φλ +
√
εηλ
}

(3.20)

=
∞∑
k=0

(−εθM)k
{

(I − ε(1− θ)M)φλ +
√
εηλ
}
. (3.21)

The above expression, up to order ε5/2, can be written in index notation, using Mjkφ
λ
k =

∂Sλ

∂φj
= Sλj as

φλ+1
j = φλj − εSλj + ε2θMjkS

λ
k +

(√
εδjk − ε3/2θMjk

)
ηλk +O(ε5/2) = φλj − fλj [φ]. (3.22)
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We will now derive the corresponding Fokker-Plank equation and the effective action
based on the above update prescription. The standard approach (see e.g. [48]) is to rewrite
the probability distribution for φ, denoted as P[φ] at discrete Langevin time step λ + 1
in terms of its values at step λ using a delta-distribution. The argument of the delta
distribution contains the Langevin update step from λ to λ + 1 and is averaged over
the ensemble

Pλ+1[φ] =
∫

[dφ′]
〈∏

j

δ
(
φj − φ′j + fj [φ′]

)〉
Pλ[φ′]. (3.23)

After expanding the delta function in powers of fj and integrating over φ′ one arrives
at the Kramers-Moyal expansion for the discretized stochastic process,

Pλ+1[φ] = Pλ[φ] +
∞∑
n=1

1
n!∇j1 . . .∇jn

(
〈fj1 . . . fjn〉Pλ[φ]

)
. (3.24)

A Fokker-Planck equation may be obtained by considering terms up to the order ε2, which
are encoded in the correlation functions of the update term f . To make these explicit
we use the following properties of the noise 〈ηj〉 = 0, 〈ηjηk〉 = 2δjk, 〈ηjηkηl〉 = 0 and
〈ηjηkηlηm〉 = 4 (δjkδlm + δjlδkm + δjmδkl), which leads to the following four expressions:

〈fj〉 = εSj − ε2θMjkSk +O(ε3),

〈fjfk〉 = ε2SjSk + 2εδjk − 2ε2θ(Mklδjl +Mjlδkl) +O(ε5/2),

〈fjfkfl〉 = 2ε2 (Sjδkl + Skδjl + Slδjk) ,

〈fjfkflfm〉 = 4ε2 (δjkδlm + δjlδkm + δjmδkl) .

(3.25)

To the lowest order in ε we obtain the following Fokker-Planck equation

∂

∂τL
P = ∇j [(Sj +∇j)P] +O(ε3/2), (3.26)

which by a change of variable, P = e−S/2Ψ, can be shown to converge to the correct equi-
librium distribution in the case of a real-valued action. Now the Kramer-Moyal expansion
up to corrections of order O(ε3) on the other hand contributes additional terms to the
Langevin time evolution of the probability distribution

∂tP =∇j (Sj +∇j)P + ε

{
−θMjk∇j(SkP) + 1

2∇j∇k(SjSkP)

−θ(Mkj +Mjk)∇j∇kP +∇j∇2(SjP) + 1
2∇

2∇2P
}

+O(ε5/2).
(3.27)

Since it is the equilibrium distribution, which is of main interest to us, let us set the l.h.s.
to zero. To be more concise we will rewrite Mjk = −∇jSk and use eq. (3.26) to make the
replacement ∇jP = −SjP + O(ε) within the curly brackets of eq. (3.27), consistent with
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the order of the approximation. The new terms at this order then give

∇j
{
θMjkSk + 1

2(SjkSk + SjSkk − SjS2
k)− θ(Mkj +Mjk)Sk

+∇k(Sjk − SjSk) + 1
2∇j(−Skk + S2

k)
}
P

=∇j
{
−θMkjSk + 1

2(SkjSk + SjSkk − SjS2
k)

+(Sjkk − SjkSk − SjkSk − SjSkk + SjS
2
k)

+1
2(−Skkj + SkkSj + 2SkjSk − S2

kSj)
}
P

=∇j
{
θSjkSk −

1
2SjkSk + 1

2Sjkk
}
P = ∇i

{
−
(1

2 − θ
)
SjkSk + 1

2Sjkk
}
P

=∇j
{1

2∇jSkk −
1
2

(1
2 − θ

)
∇jS2

k

}
P. (3.28)

Reexpressed as a modified action we arrive at the intermediate result

0 = ∇j
[(
S̄j +∇j

)
P
]
, S̄ = S + ε

2
∑
k

{
Skk −

(1
2 − θ

)
S2
k

}
. (3.29)

In the above expression, we see that the θ parameter governs the size and sign of a real-
valued addition to the action. For θ > 1

2 the contribution is positive and for θ < 1
2 it is

negative, distinguishing clearly between the implicit regime and the explicit regime. Note
that similar to our discussion of the large excursions, the semi-implicit case of θ = 1

2 is
special, as it cancels all corrections associated with the S2

k term.
The derivation outlined above cannot be translated one-to-one into the complex case.

We would need to instead express the complex Langevin evolution in terms of the real-
valued joint probability distribution of the real- and imaginary part of the complexified
fields. Doing so, we were unable to derive a similarly closed-form as eq. (3.28). The
structure of the correction terms obtained in the real case however invites a heuristic
generalization to the complex domain using the replacement −S → iS, which leads to

0 = ∇j
[(
−iS̄j +∇j

)
P
]
, S̄ = S + ε

2
∑
k

{
Skk + i

(1
2 − θ

)
S2
k

}
. (3.30)

Let us find out whether this expression describes the dynamics of the complex Langevin
simulation in practice. Similar to the discussion for the real-valued case in [34], we can
attempt to counteract the effects introduced by a finite Langevin step size ε in the action
by a redefinition of the fields. In our case the leading order change in fields according to
eq. (3.30) amounts to

φ̃j = φj −
iε

2

(1
2 − θ

)
Sj , (3.31)

where Sj is nothing but the drift term. Note that Sjj in the free theory is just a constant,
so that acting with one more derivative on it makes that term vanish. Thus the redefinition
of the fields changes the action to first order in ε such that it cancels the S2

j contribution
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in eq. (3.30)
S̄[φ̃] ∼ S̄[φ]− iε

2

(1
2 − θ

)∑
k

S2
k . (3.32)

I.e. if eq. (3.30) is the correct generalization then observables evaluated in terms of φ̃i
instead of φ should show reduced deviations from the continuous Langevin time result. For
the equal time two-point function we e.g. obtain the following corrected expression

〈
φ̃2
j

〉
=
〈
φ2
j

〉
−ε
(1

2 − θ
)
〈φj(iSj)〉

Σ

−ε
2

4

(1
2 − θ

)2 〈
S2
j

〉
. (3.33)

For later reference, we denote the correction term linear in ε as Σ. In order to assess the
validity of the above arguments, let us simulate the harmonic oscillator on the real-time
contour c) of figure 3, i.e. on a contour without tilt in the real-time branch, up to a maximum
extent of xmax

0 = 0.5. Deploying an equidistant real-time spacing on the forward and
backward branch of the contour and a Langevin time step of ∆τL = 10−2, we compute the
difference between the numerical result and the analytic solution ∆φ2 = 〈φ2〉CL − 〈φ2〉QM
as the colored boxes in the top panel of figure 5 vs. the contour parameter ξ. We find
characteristic features in both the real- and imaginary part of this quantity. The artifacts
introduced by the implicit solver at finite Langevin time show opposite sign in the imaginary
part and same sign in the real-part comparing the forward and backward branch. On the
Euclidean time interval, only the real-part receives significant modifications.

Interestingly, the correction term (φ− φ̃)2 taken from eq. (3.33), when plotted as the
colored triangles in figure 3 already follows the behavior of the deviations in a qualitative
fashion. At the same time, we observe that it appears to consistently over-predict those
artifacts. Limiting ourselves to the corrections linear in Langevin step size ε, shown in gray,
we find that they capture the artifacts even more accurately. This difference between the
linear and quadratic terms in ε to us hints at the need to include higher-order corrections in
the expansion of eq. (3.30) to arrive at a reliable correction term beyond leading order. To
conclude, we find that the linear correction terms derived from a heuristic generalization
of the robust result in eq. (3.29) capture the discrete dynamics of our complex Langevin
simulation in a qualitative fashion, lending numerical support to eq. (3.30).

The correction terms obtained in eq. (3.30) contain the first and second derivative of
the action Sk and Skk. We can gain additional insight into what role they play from the
following considerations based on the translation invariance of the integrals over the fields.
Let us start by stating the fact that

〈(φj + φ0)n〉 =
∫
Dφ(φj + φ0)n exp(iS(φj))

=
∫
Dφ(φj)n exp(iS(φj − φ0)) (3.34)

where we have shifted the integral in the second line, such that the constant φ0 has been
moved into the exponent. While the distribution obtained from CL is different, the expec-
tation values of the shifted system will still be the same. We can now exploit the presence of
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Figure 5. Comparison of the finite Langevin step-size artifacts in the equal-time correlator ∆φ2 =
〈φ2〉CL−〈φ2〉QM to the estimates of that error based on eq. (3.33). The filled triangles denote the full
estimate including the terms proportional to ε2, which provide the correct qualitative behavior but
systematically overestimate ∆φ2. On the other hand the leading order expression Σ, proportional
to ε, shown as filled circles captures the error even quantitatively within the statistical uncertainty.
The position along the contour is parametrized by ξ, which for ξ < 1 points to real-time values and
for 1 < ξ < 2 refers to imaginary times. (top) Estimation of the errors in the free theory (harmonic
oscillator) using ∆τL = 10−2, as well as (bottom) for the anharmonic oscillator at λ = 24 with
∆τL = 10−3. In both cases, the data is based on 1000 separate trajectories each of total length
τL = 200.

φ0 in the integrand and the weight to derive relations between different n-point correlation
functions. Using the first and second derivative with respect to φ0 we have

∇φ0〈(φj + φ0)n〉|φ0=0 =n〈(φj)n−1〉 = 〈(φj)n(−iSj)〉 (3.35)

∇2
φ0〈(φj + φ0)n〉|φ0=0 =n(n− 1)〈(φj)n−2〉 = 〈(φj)n(−iSjj − (Si)2)〉. (3.36)

Using the first derivative with n = 1 and the second derivative with n = 0 we obtain the
following two expressions respectively

〈1〉 = 〈φj(−iSj)〉, 0 = 〈−iSjj − (Si)2〉. (3.37)
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For the free case, Sjj is a constant. The first term is particularly interesting as it tells
us that for continuous Langevin time, the term 〈φj(−iSj)〉 should be constant and cor-
respond to the normalization of the system. In the presence of discrete Langevin time
steps, we found that it is a term proportional to 〈φj(−iSj)〉, which describes the correc-
tions and which are not constant as shown in figure 5. We thus interpret the corrections
in eq. (3.33) as counteracting in part the deviations from the correct normalization of the
continuum theory.

When we derived the modifications to the Fokker-Planck equation in the free theory, we
were able to express them in terms of the quantity Sj . We may ask whether this expression
also holds in the interacting theory. To this end, we carry out simulations of the anharmonic
oscillator at short real-times on the untilted Schwinger-Keldysh contour up to xmax

0 = 0.5,
where complex Langevin is known to converge to the correct solution (for more details see
section 4.1). The same solver as for the harmonic oscillator is deployed and we choose a
Langevin step-size of ∆τL = 10−3. In the lower panel of figure 5 we plot the resulting
deviations from the analytic solution (filled boxes), compared to the naive application of
eq. (3.33) to the interacting theory (filled triangles). Again we observe that the expression
up to second order in ε slightly overestimates the artifacts but that restricting us to the
linear term in ε allows us to capture the discretization errors within uncertainties.

With an expression at hand that allows us to correct the finite Langevin step size
corrections for small values of ε, we are able to exploit the regularization properties of the
implicit solvers in practice. What remains for each system is to choose a step-size and θ

parameter, keeping in mind the trade-off between regularization artifacts and numerical
cost. Having too small of a step size in the implicit scheme will reduce the effect of the
regulator, which in turn will lead to the appearance of large excursions. Even though
these excursions do not represent a problem in principle (the approach is inherently stable)
they may lead to high computational cost if a fixed accuracy goal is prescribed. Using
an intermediate step sizes ∼ 10−3 appears to give the best trade-off for the interacting
systems considered in this study. The finite step size provides an effective regulator to the
path integral and the finite step-size artifacts can be remedied by the correct procedure
discussed above.

We emphasize that the implicit EM scheme provides enough of an intrinsic regulariza-
tion that we may forego a tilting of the Schwinger-Keldysh contour all together. I.e. we
gain access to the fields very close to the actual forward and backward real-time branch
of the canonical Schwinger-Keldysh contour, which is particularly useful in the study of
non-equilibrium field theory, in which the forward and backward correlators are not related
via the KMS relation.

Armed with the insight laid out in the previous sections we are now ready to carry out
stable simulations of the quantum anharmonic oscillator at short real times.

4 Stable CL simulations at short real-times

In this section, we present numerical results of simulating real-time complex Langevin on
the canonical Schwinger-Keldysh contour with short time extent of xmax

0 = 0.5 using the
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implicit EM scheme. We will start out with a system in thermal equilibrium which is
formulated on contour c) of figure 3. As a second example, we take a look at a system with
Gaussian initial conditions, where only the forward and backward real-time branch of the
contour remains and a Euclidean branch is absent.

4.1 Dynamics in thermal equilibrium

Our simulation uses the same parameters as adopted in the classic work of ref. [44], i.e.
λ = 24 and m = 1. To discretize the real-time contour c) in figure 3 for a temperature
T = 1/β = 1 and real-time extent of xmax

0 = 0.5, we use 16 points for the forward and
backward branch each and an additional 32 points along the negative imaginary time axis.
This choice of an equidistant |a| = 0.031 guarantees that the finite time spacing artifacts
to the correlation functions remain at the permille level (see section 3.1).

To regularize the path integral we deploy the general EM scheme with its implicitness
parameter set to θ = 0.6. We use the adaptive step size prescription of the Julia stochastic
processes library with a maximum step size of ∆τL = 0.005. This choice provides an efficient
enough regularization to avoid costly excursions, while at the same time the deviation from
the continuous Langevin result remains smaller than our statistical uncertainty. For the
computation of the correlation functions of interest, field configurations are collected based
on 500 different trajectories. We read out observables on each of them in intervals of
δτL = 0.1 up to a total Langevin time of τL = 100.

In the top panel of figure 6 we show the unequal time correlation function G =
〈φ(0)φ(ξ)〉 − 〈φ(0)〉〈φ(ξ)〉, which for ξ < 1/2 amounts to G++(x0 = ξ) = 〈φ(0)φ(ξ)〉 −
〈φ(0)〉〈φ(ξ)〉 and for ξ > 1/2 to G+−(x0 = 1 − ξ) = 〈φ(0)φ(ξ)〉 − 〈φ(0)〉〈φ(ξ)〉. The
corresponding continuum Langevin time solution is plotted as solid black curve, which
is obtained from a matrix mechanics computation based on the truncated Hilbert space
spanned by the lowest 32 energy eigenstates of the harmonic oscillator. The magnified
insets confirm that our solution accurately reproduces the continuum solution on the for-
ward and backward branch of the canonical Schwinger-Keldysch contour up to these early
real-times.

In the lower panel of figure 6 we plot the Euclidean correlator GE(x0 = −i(ξ − 1)) =
〈φ(0)φ(ξ)〉. It features a vanishing imaginary part and a real part which correctly exhibits
a symmetry around x0 = −iβ/2, corresponding to the contour parameter ξ = 1.5 here.
Again the continuum solution from matrix mechanics is given as solid black line and we
find excellent agreement.

Let us take a look at another set of observables, which have been discussed in the
literature. The top panel of figure 7 we show the field expectation value 〈φ〉 (filled box and
triangle) and the equal time correlation function 〈φ2〉 (filled star and cross) along the whole
extent of the simulation contour parametrized by ξ. Within the statistical uncertainties of
our simulation, we find full agreement with the continuous-time Langevin solution. Should
one be interested in higher precision results, one will eventually find minute differences
from the continuum result, similar to those shown in the lower panel of figure 5.

We foresee that the new insight obtained in eq. (3.33) will help us in future studies to
distinguish artifacts arising from finite Langevin-time discretization from those connected
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Figure 6. (Top) Two unequal time correlation functions along the real-time branches of the
canonical Schwinger-Keldysh contour. For ξ < 1/2 the datapoints represent G++(x0 = ξ) =
〈φ(0)φ(ξ)〉 − 〈φ(0)〉〈φ(ξ)〉 and for ξ > 1/2 we have G+−(x0 = 1 − ξ) = 〈φ(0)φ(ξ)〉 − 〈φ(0)〉〈φ(ξ)〉.
Note the excellent accuracy in reproducing the continuous Langevin time result given as black
solid line. (bottom) The Euclidean correlator GE(x0 = −i(ξ − 1)) = 〈φ(0)φ(ξ)〉 evaluated on the
imaginary time branch of the canonical Schwinger-Keldysh contour together with the continuous
Langevin time solution (black solid)

to a convergence to the wrong result. One concrete example is the equal-time correlation
function, whose deviation from a constant value has previously been taken as an indication
for the arrival at an unphysical solution. Once the errors from a finite ∆τL are accounted
for, the remaining deviation can be unambiguously associated with wrong convergence.

In the last result of this section, we present the lower panel of figure 7. In preparation
for the simulation of genuine field theory in higher dimensions and for the simulation
out-of-equilibrium in the next section, we compute the forward G+−(x0) = G>(x0) and
backward correlator G−+(x0) = G<(x0) together with the analytic solution as solid lines.
In thermal equilibrium, the information of these two quantities is redundant due to the
KMS relation and because we are in a quantum mechanical setting their interrelation is
actually trivial. Their real parts agree, while their imaginary parts are the negative of
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Figure 7. (top) The field expectation value 〈φ〉 (box and triangle), as well as the equal-time
correlation function 〈φ2〉 (filled star and cross) evaluated in thermal equilibrium along the whole
simulation contour, parametrized by ξ. The continuous Langevin time solution from matrix me-
chanics is given as solid line. (bottom) The phenomenologically relevant forward G+− = G> and
backward G−+ = G< correlation functions. Note that only in the thermal setting the information
they contain is redundant with that of the G++ correlator.

each other. They nevertheless take on a central role in field theory, as their difference
ρ = G> − G< encodes the spectral function of the system, which harbors a wealth of
phenomenologically relevant pieces of information. Thus an accurate reproduction of these
correlation functions between fields on different branches of the contour is an important
benchmark for the complex Langevin procedure. In addition, only when we simulate close
enough to the real-time axis, do we have access to these quantities in an undistorted fashion
and in turn are able to compute the spectral function of the system.

4.2 Non-equilibrium dynamics

Having confirmed the efficacy of the implicit solver for the simulation of the early real-time
dynamics of the anharmonic oscillator in thermal equilibrium the next step is to move to
an out-of-equilibrium setting.

We follow ref. [44] and choose a Gaussian initial density matrix. Its form allows us
to incorporate the information about initial conditions into a modification of the action
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of the system on the first and last point on the Schwinger-Keldysh contour. Note that
here the contour consists only of a forward and backward real-time branch, which are
not connected via periodic boundary conditions. The most general form of the Gaussian
density matrix [49] leads to the following expression for the system action

SG[φ+, φ−] =S[φ+]− S[φ−]− iS0(φ+[t = 0], φ−[t = 0])

with S0[φ+, φ−] = iφ̇0(φ+ − φ−)− σ2 + 1
8ζ2

(
(φ+ − φ0)2 + (φ− − φ0)2

)
+ iη

2ζ
(
(φ+ − φ0)2 − (φ− − φ0)2

)
+ σ2 − 1

4ζ2 (φ+ − φ0) (φ− − φ0) .
(4.1)

The five independent parameters, which specify the Gaussian initial state, represent the
initial values of the field expectation value, the two-point correlation function and their
derivatives

φ0 =〈φ(t = 0)〉, φ̇0 = 〈φ̇(t = 0)〉,

ζ2 =〈φ(t = 0)φ(t = 0)〉c,

ηζ =1
2〈φ̇(t = 0)φ(t = 0) + φ(t = 0)φ̇(t = 0)〉c,

η2 + σ2

4ζ2 =〈φ̇(t = 0)φ̇(t = 0)〉c.

(4.2)

The subscript c refers to the connected correlator, in which the expectation value of the
field and its derivatives are subtracted.

The drift term of the discretized complex Langevin dynamics (eq. (3.5)) is affected by
the Gaussian initial density matrix only at the boundaries of the contour. Consistent with
the trapezoidal rule underlying the discretization of the action integral, we choose forward
derivatives at the starting point and backward derivatives when considering the endpoint
of the contour. No changes are needed at intermediate contour steps. Similar to [44] we
set η = 0 and φ̇0 = 0, which leads to the following two explicit terms to implement at the
boundary

δSG
δφ0

= 1
|a0|

{
− φ1 − φ0

a0
− 1

2a0
∂V (φ0)
∂φ0

+ 1
2 i
[
σ2 + 1

4ζ2 (φ0 − φ̄)− σ2 − 1
4ζ2 (φNC − φ̄)

]}
,

δSG
δφNC

= 1
|aNC−1|

{
φNC − φNC−1

aNC−1
− 1

2
∂V (φNC)
∂φNC

+ 1
2 i
[
σ2 + 1

4ζ2 (φNC − φ̄)− σ2 − 1
4ζ2 (φ0 − φ̄)

]}
.

(4.3)

The Langevin equation remains in its standard form for the field degrees on the forward
and backward branch respectively

∂τLφ±(x) = i
δSG[φ+, φ−]
δφ±(x) + η(x, t), (4.4)

with no changes to the noise term.
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As in previous studies in the literature, we deploy here m = 1 and a relatively small
coupling of λ = 1. This choice leaves us safely in the regime where CLE converges to the
right solution. The field starts out at a finite expectation value φ0 = 〈φ(t = 0)〉 = 1 at rest
φ̇0 = 0. The spread in the values of the initial field, encoded in the correlation function is
set symmetrically σ = 1 to a value of ζ = 1. Mixing terms between field and derivatives
vanish via η = 0. We distribute 32 points along each of the two real-time branches to cover
the maximum time extent of xmax

0 = 0.5.
Similar to the thermal case we deploy the EM solver with θ = 0.6 implicitness param-

eter using the Julia adaptive step size prescription with a maximum Langevin step size
of ∆τL = 0.005. Statistics are collected on 500 different trajectories of length τL = 100,
reading out observables on intervals δτL = 0.1. Comparisons to matrix mechanics are also
available in this scenario, however, the energy eigenfunctions of the harmonic oscillator
are not well suited for truncating this particular Hilbert space. Instead, we discretize the
Hamiltonian in the coordinate basis using 1024 points in the distance range 〈x〉 ∈ [−10, 10],
the result of which will be shown as solid lines in the subsequent plots.

Our out-of-equilibrium simulation results are collected in figure 8. Now with time
translational invariance gone, we can follow the non-trivial behavior of the field expectation
value 〈φ〉, plotted as solid squares and triangles in the upper panel along the contour,
parameterized by ξ. The initial conditions of φ0 = 1 as well as unit variance manifest
themselves in the value 〈φ2〉(ξ = 0) = 2. Our results agree within statistical uncertainties
with the analytic solution on the real-time axis.

The most interesting unequal-time correlation functions in the out-of-equilibrium sce-
nario are the forward and backward quantities G+− = G> and G−+ = G<, which provide
access to the spectral function of the system. Plotted in the lower panel of figure 8, we find
that here the statistical error remains larger than in the thermal case at the same collected
statistics, indicating the presence of larger excursions in the Langevin dynamics as in the
more strongly coupled thermal case. Compared to the continuous Langevin time solution
from matrix mechanics, the numerical solution again shows excellent agreement.

5 Summary and outlook

In this study, we have explored and showcased the potential of implicit solvers in real-time
complex Langevin simulations. With the intention to disentangle the issue of numerical
artifacts, such as runaway trajectories, from foundational issues, such as the convergence
to wrong results, our focus in this paper remained restricted solely to early real-times.

Two central benefits of the implicit solvers were laid out in detail. On the one hand, the
implicit solvers can be shown to be unconditionally asymptotically stable, preventing the
occurrence of runaway trajectories, as long as the underlying complex Langevin dynamics
remain finite. Using the Langevin dynamics of the free theory as a simple but relevant
example, we showed in section 2 that the difference between implicit and explicit methods
lies in the accumulation of errors that either undershoot or overshoot the true trajectory.
While the undershoot in the implicit case also leads to a reduction in accuracy of the
solution, it manages to prevent the occurrence of runaways.
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Figure 8. (Top) The field expectation value 〈φ〉 (box and triangle), as well as the equal-time
correlation function 〈φ2〉 (filled star and cross) evaluated out-of equilibrium for a Gaussian density
matrix, along the whole simulation contour, parametrized by ξ. The continuous Langevin time
solution from matrix mechanics is given as solid line. (bottom) The phenomenologically relevant
non-equilibrium forward G+− = G> and backward G−+ = G< correlation functions.

In section 3 we carried out a comparison of the update prescription for the explicit and
implicit EM scheme, which revealed that the effect of the latter can be captured in one
additional term in an effective action. That term takes the form of a regulator +iR and
depends on the implicitness parameter θ, as well as Langevin step size ∆τL. Since R > 0,
it indeed dampens the oscillations in the underlying path integral. We conclude that this
additional term provides an intrinsic regularization of the path integral unavailable to the
explicit solvers.

Subsequently, we analyzed the finite Langevin time discretization artifacts in terms of
an effective action in the Fokker-Planck equation for the case of a purely real path integral.
We then heuristically generalized the result to the complex case and provided numerical
support that our educated guess indeed captures the numerical artifacts introduced due
to finite Langevin time steps in the free theory and even the strongly coupled interacting
case. This correction formula allows us to exploit the inherent regularization properties of
the implicit solvers in practice, as we may now simulate the system at a small but finite
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Langevin step size ∆τL in a well-defined manner and correct for the effect of the regulator
a posteriori.

The first three sections have provided us with insight into the regularization properties
of different numerical schemes, insight into the effects of finite real-time discretization and
we have derived the form of finite Langevin time steps artifacts that allow us to compensate
for the effect of the regulator. We thus proceeded in section 4 to carry out benchmark
numerical simulations of the anharmonic oscillator in (0 + 1)d on the canonical Schwinger-
Keldysh contour without tilt and maximum real-time extent of xmax

0 = 0.5 (Source code for
this simulation is written in Julia and is available at [50]). Both in the thermal case and in a
scenario with Gaussian non-thermal initial conditions, we find excellent agreement between
the complex Langevin simulation and the analytic solution from matrix mechanics. The
fact that the implicit solver gives access to the backward path on the real-time axis allows us
for the first time to compute the actual forward and backward correlators G+− = G> and
G−+ = G<, whose difference encodes the phenomenologically relevant spectral function of
the system.

We believe that the availability of implicit solvers and an improved understanding of
discretization artifacts will help to improve the reliability of the complex Langevin approach
and provides new momentum to attack the pressing open challenges associated with it.
The stability and regularization properties of the implicit schemes offer benefits in other
applications of complex Langevin beyond real-time simulations, such as the treatment of
strongly interacting systems at finite chemical potential (for a recent review on CL and the
QCD phase diagram see e.g. [15]).

Many different paths forward exist. One aspect we are following up on is the role of
regularization in the path integral for the success of complex Langevin convergence. When
we introduce a tilt in the Schwinger-Keldysh contour it led us in eq. (3.10) to a regulator
term that incorporates all terms of the action. We may instead ask how the system reacts
to introducing a regulator on individual terms in the action

S = i
∑
j

[(φj − φj−1)2

aj
− aj

σ

2φ
2
j − aj

λ

24φ
4
j

]
, (5.1)

by modifying in either the kinetic, mass or self-interaction term the lattice spacing from
aj → aj− iκ with κ > 0. In the following we will thus work with the contour b) of figure 3,
where the forward branch is located on the real-time axis and only the backward branch
tilts downwards to intersect with the imaginary time axis at β.

We have seen that for xmax
0 = 0.5 the complex Langevin approach in the strongly

coupled thermal scenario with λ = 24 converges to the correct solution given by matrix
mechanics. Extending the contour to later real-times, we encounter significant deviations
already at xmax

0 = 0.8. A prominent characteristic of the incorrect solution is an artificial
downward shift in the real-part of the unequal-time correlation function, as shown by
the red data points in figure 9. In addition, the curvature of the imaginary part of the
correlator, given as open squares also deviates from the true solution beyond statistical
uncertainty.

In the regime 0.75 < xmax
0 . 1 we observe that this incorrect convergence can be over-

come by a choice of regularization on the forward branch. Interestingly, when introducing
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Figure 9. Comparison of the unequal-time correlation function G++ in thermal equilibrium from
matrix mechanics (black crosses) with complex Langevin simulations carried out on a Schwinger-
Keldysh contour of intermediate real-time extent xmax

0 = 0.8. Here the forward branch of the
contour resides on the real-time axis and the backward contour tilts down to intersect with the
imaginary axis at β (cf. b) in figure 3). The direct simulation based on the explicit EM scheme
converges to an incorrect result given by the red data points. No improvement is observed for
regularizing the φ4 term (blue). The correct solution is recovered when regularizing the momentum
term (brown).

an imaginary part in the aj ’s associated with the interaction term (blue filled square and
open circle) the simulation outcome remains unchanged. On the other hand, modifying the
kinetic term with a small imaginary part aj − i× 10−3 leads to a significant improvement
as indicated by the brown-filled circle and open triangles, which agree with the analytic
solution from matrix mechanics. On the other hand, such a regularization based strategy
fails to achieve its purpose, once the real-time extent of the Schwinger-Keldysh contour
goes beyond unity in units of the mass. Our goal in future work is to gain a systematic
understanding of how the regularization achieves to recover the correct results, possibly by
studying the associated Fokker-Planck equation in low-dimensional models.

Furthermore, the availability of implicit and in particular higher-order solvers benefits
the systematic exploration of kernels for the Langevin dynamics (for a modern perspective
on CL kernels see e.g. [51]). In the real-valued case, kernels can be used to improve the con-
vergence properties of the stochastic quantization procedure. In complex Langevin, they
have been studied with mixed success as means to remedy the convergence to wrong solu-
tions. Robust numerical SDE solvers (cf. the Runge-Kutta Milstein scheme of eq. (2.11)),
which can accommodate non-trivial kernels with Langevin-time and field dependencies will
allow us to explore a much broader class of kernels than before in future studies.
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