

Implementing PBFT using Reactive programming

and asynchronous work�ows

Jørgen Melstveit

June 2021

Contents

1 Introduction 2

1.1 Contributions . 3

1.2 Outline . 3

2 Programming Models 5

2.1 Asynchronous Programming . 5

2.1.1 Async/Await . 6

2.2 Reactive Programming . 7

2.2.1 Reactive X . 8

3 Cleipnir 10

3.1 Cleipnir Overview . 10

3.2 Cleipnir Reactive Programming . 13

3.3 Cleipnir Persistent Programming . 14

4 Practical Byzantine Fault Tolerance 18

4.1 Introducing Practical Byzantine Fault Tolerance 18

4.2 System Model . 19

4.3 Detailed Protocol Operations . 20

4.4 Checkpointing . 22

i

CONTENTS

4.5 View-change . 23

5 Related Work 25

5.1 Cleipnir - Framework Support for Fault-tolerant Distributed Systems . . 25

5.2 Implementing a Distributed Key-Value Store Using Corums 26

6 Design 27

6.1 Network Architecture . 27

6.2 Overview of Work�ow . 29

6.3 Code structure . 30

6.3.1 Protocol Objects . 30

6.3.2 Other functionalities . 30

6.3.3 JSON Serialization Problem . 31

6.3.4 Notable Files . 32

6.4 Persistent vs Ephemeral . 34

7 Implementation 37

7.1 Design Choices . 37

7.2 Work�ow Details . 39

7.2.1 Protocol Work�ow Implementation 39

7.2.1.1 Starting protocol instance 39

7.2.1.2 Pre-Prepare phase . 40

7.2.1.3 Prepare phase . 43

7.2.1.4 Commit Phase . 44

7.2.1.5 Protocol Work�ow Evaluation 45

7.2.2 Checkpoint Implementation . 49

ii

CONTENTS

7.2.2.1 Initialize Checkpoint Certi�cate 49

7.2.2.2 Checkpoint Listener Work�ow 50

7.2.2.3 Initiate Garbage Collection 51

7.2.2.4 Checkpoint Work�ow Evaluation 52

7.2.3 View-change Implementation . 53

7.2.3.1 Starting a View-Change 54

7.2.3.2 View-Change functionality 56

7.2.3.2.1 View-Change Listener Work�ow 59

7.2.3.2.2 New-View Work�ow 60

7.2.3.3 View-Change Evaluation 64

7.3 Client . 65

8 Discussion 67

8.1 Protocol Abstraction . 67

8.2 Asynchronous work�ow . 68

8.3 Usage of Cleipnir . 69

8.3.1 Reactive Operators . 69

8.3.2 Persistency . 70

9 Conclusion 72

9.1 Lessons Learned . 72

9.1.1 Consensus algorithms . 72

9.1.2 Asynchronous Programming . 72

9.1.3 Reactive Programming . 73

9.1.4 Cleipnir . 73

9.2 Future Work . 74

iii

CONTENTS

9.3 Conclusion . 76

Appendix A Practical Byzantine Fault Tolerance (PBFT) Implementation
Source Code 79

Bibliography 80

iv

Abstract

Consensus algorithms are notorious for being both di�cult to understand and even harder
to implement. Several frameworks and programming paradigms have been introduced to
help make consensus algorithms easier to design and implement. One of these frameworks
is the .NET Cleipnir framework which primarily focuses on making it simpler to develop
a persistent consensus algorithm. In addition, Cleipnir supports functionality that makes
both asynchronous and reactive programming paradigms easier for a developer to util-
ize in their implementation. We want to determine if the Cleipnir framework and the
related programming paradigms can help design a simple and understandable consensus
algorithm. To accomplish this task, we create a Practical Byzantine Fault Tolerance im-
plementation that has its protocol work�ow run as orderly and synchronous as possible
using the Cleipnir framework and the aforementioned protocol paradigms. Furthermore,
we evaluate each of the previously mentioned tools to ascertain how they bene�t and
hinder our implementation. We discover that the bene�ts heavily outrank the disad-
vantages for both programming paradigms and works well together. We conclude that
the Cleipnir framework does provide helpful tools for the implementation of consensus
algorithms. We further learn that the algorithm's complexity can heavily a�ect the level
of simplicity that can be provided to the algorithm work�ow without the loss of func-
tionality.

CONTENTS

Acknowledgement

I want to thank my supervisor Professor Leander Nikolaus Jehl, for providing consistent
feedback and guidance throughout our thesis. I would also like to express my gratitude
forwards Thomas Stidsborg Sylvest, who helped us learn the basics of the Cleipnir frame-
work by sharing his expertise and answering any additional questions we had during our
thesis.

ii

CONTENTS

Acronyms

API Application Programming Interface

APM Asynchronous Programming Model

EAP Event-based Asynchronous Pattern

FCFS First Come First Serve

IP Internet Protocol

JSON JavaScript Object Notation

LINQ Language Integrated Query

MAC Message Authentication Code

PBFT Practical Byzantine Fault Tolerance

SQL Structured Query Language

TAP Task-based Asynchronous Pattern

TCP Transmission Control Protocol

1

Chapter 1

Introduction

Systems today are required to be both e�cient, secure, and reliable. Due to these factors,
most �rmware and software today are organized over multiple systems in what we call a
distributed system [1], [2, p. 16]. In distributed systems, network nodes are required to
share and collaborate so that the systems can agree on an overall state of the system.
This state must remain consistent for the systems even in the event of failure, or in some
cases, malicious intent. A distributed system must be able to act as if it is a single system,
even when in reality it is composed of multiple systems [2, p. 18]. Advanced and technical
consensus algorithms are currently being used to handle this functionality. However, most
consensus algorithms are known for being di�cult to comprehend and can be even more
demanding to implement due to the unreliable nature of distributed networks [2, p. 459],
[3, p. 13]. Because of this, alternative ways to describe and implement existing consensus
algorithms are being discussed.

The University of Stavanger has previously published work that implements popular
consensus algorithms, such as Paxos and Raft [4], in a simpli�ed manner using frameworks
that support reactive programming. In particular, "Cleipnir - Framework Support for
Fault-tolerant Distributed Systems" [5] and "Implementing a Distributed Key-Value Store
Using Corums" [3] uses the .NET framework now known as Cleipnir [6]. Cleipnir is a
.NET framework designed to help make implementations for consensus algorithms simpler
for the developer. These two previously mentioned works are predecessors for this thesis
which intends to use the Cleipnir framework to implement another popular consensus
algorithm to analyze Cleipnir ability further to simplify the implementation of consensus
algorithms.

The goal for this thesis is to use the Cleipnir framework to implement the Practical Byz-
antine Fault Tolerance consensus algorithm using functionality from both asynchronous
programming and reactive programming [7]. The desired PBFT implementation should
be devised using async/await functionality existing in the .NET framework [8] and react-
ive event handling, both which Cleipnir supports. The goal for the PBFT implementation
is to use these tools to create a work�ow that is simple so that the source code can both
be easily read but also easily recreated. To achieve these goals, we are looking into
Cleipnir current support for reactive programming. We also look at the current work�ow

2

1.1 Contributions

of modern asynchronous programming for .NET. We also examine the PBFT algorithm
and present a detailed summary of all of its processes. Additionally, Cleipnir hybrid per-
sistency functionality is reviewed. In the end, the question is whether Cleipnir and these
programming paradigms have the su�cient support required to accomplish these goals.
We will also see how advantageous reactive programming paradigm and asynchronous
programming are when designing a consensus algorithm.

1.1 Contributions

To tackle the problem, we implemented a simple PBFT implementation that primarily
uses async/await asynchronous programming and reactive event handlers provided by the
Cleipnir framework to design the normal work�ow of PBFT inside a single function. The
source for our PBFT implementation can be found at [7]. The normal work�ow function
is designed to follow the protocol description as closely as possible. To accomplish this
goal, the PBFT consensus algorithm was studied in great detail. In addition, we had
to implement the network layer for the PBFT implementation using .NET asynchronous
socket programming [9], [10]. In this thesis, we have also looked at how both asynchronous
programming and reactive programming have a�ected the simplicity of the protocol code
and can conclude both positive and negative aspects for the programming models. To the
best of our ability, we designed the PBFT application to utilize Cleipnirs tools as much
as possible. Although our current implementation does not fully support persistency,
we have taken steps to ensure at least that the protocol objects and protocol-related
functionality are designed with persistency in mind. We believe that the thesis does
present some helpful feedback for future development of the Cleipnir framework.

1.2 Outline

� In Chapter 2 we brie�y describe the background information in regards to this
thesis. This includes information in regards to asynchronous programming and
reactive programming

� In Chapter 3 we make an introduction to the Cleipnir framework. This includes
describing the intended use-case for Cleipnir and summarize its core functionalities
that are potentially helpful for implementing consensus algorithms.

� In Chapter 4 we describe the PBFT algorithm. This includes introducing the
main goals and processes of the consensus algorithm. We also brie�y describe
concepts used by or related to the algorithm. Finally, a detailed summary of all the
operations taking place in the algorithm is presented.

� In Chapter 5 we introduce previous work in regards to the Cleipnir framework
and other related work that are similar to this project.

� Chapter 6 introduces an overview of our application. We �rst give a short sum-
mary of how the network is set up for the PBFT implementation. Then we go more

3

1.2 Outline

in-depth about how we've structured the code for the implementation. Finally, we
describe how the application is divided into separate segments based on whether or
not the segment uses Cleipnir to persist its data.

� Chapter 7 gives a detailed explanation of our PBFT implementation. We start
by �rst presenting our choices in design to accomplish our main objectives. Then
the normal work�ow implementation is described in detail. In addition, we discuss
how the implementation handles view-changes and checkpoints. We describe for
each work�ow how asynchronous programming and Cleipnir reactive programming
have helped or hindered simplifying the code for our implementation. Finally, we
discuss some drawbacks to our design.

� Chapter 8 gives a summary of all of the bene�ts and disadvantages we encountered
for each of the tools and designs we used in our PBFT implementation.

� Chapter 9 is the last chapter and it contains a conclusion for the given PBFT
implementation based on the initial goals. Furthermore, we also summarize our
results, discuss the knowledge we accumulated during the thesis, and suggest future
work.

4

Chapter 2

Programming Models

Information about the asynchronous programming and reactive programming models are
introduced in this chapter. This includes their intended use cases and general work-
�ow. The asynchronous programming section mentions several design patterns used for
asynchronous operations. We will mainly concentrate on the async/await model [8].
The reactive programming section covers information about ReactiveX [11] which is the
cornerstone for all Rx-driven implementations.

2.1 Asynchronous Programming

Asynchronous programming is a programming technique designed to handle a common
problem that sometimes occurs in synchronous programming. Synchronous programming
always blocks the execution until the previous line of code is handled. A synchronous pro-
gram forces the program to �nish a single operation in the program before moving on to
the next operation. However, blocking the execution thread usually leads to scalability
issues, latency issues and generally results in an awful user experience. Meaning syn-
chronous programming is not optimal for operations that require a long execution time.
Especially if the operation itself spends most of its time waiting for a result, examples
of such actions would be database requests or I/O bound operations [12], [13]. Keep in
mind that asynchronous programming for di�erent programming languages usually has
similar work�ows. However, the naming conventions for identical operations may di�er.
In this thesis, the terminology used for asynchronous programming follows the ones used
in the .NET framework.

Asynchronous programming, as the name implies, is designed to run operations asyn-
chronously. In the asynchronous programming model, operations are divided into a set of
tasks. These tasks perform the assigned operations whenever the scheduler has resources
it can delegate to them. However, the task created does not block the main thread, in-
stead, the main thread continues with the next operations [8], [12], [13]. The task has a
reference to an awaiter that has information on the current state of the task. Eventually,
the asynchronous operation �nishes, and the result is available in the awaiter for the main

5

2.1 Asynchronous Programming

thread to collect. Not all tasks need to return a result necessarily. It is possible to run
non-returning asynchronous operations in tasks as well. Nevertheless, a task must always
return an awaiter so that the main thread has reference to all relevant information for
the asynchronous task [13].

Normally, the main thread needs to receive the result of the asynchronous operation
before reaching speci�c parts of the program that requires the result to function cor-
rectly. Asynchronous programming supports this functionality by allowing the designer
to specify to the awaiter that the program is to wait at this point until the asynchronous
operation is �nished. This still does not block the main thread, meaning other tasks
can be performed in the background, unlike synchronous programming. Additionally,
asynchronous programming has the bene�t that the operation can be initialized earlier
and be worked on by the main thread while going through the main thread operations
to the point where the result is expected. This means asynchronous programming could
avoid bottlenecks that occur in synchronous programming, thereby making asynchronous
programming more responsive of the two programming models [13], [14]. For this reason,
asynchronous programming has become the preferred programming model for designing
user interfaces since it is crucial to avoid potentially blocking user input when at the
same time, other primary tasks are performed [12], [15, p. 214]. Server design is another
example where asynchronous design is preferred as it handles many requests easier than
a server with synchronous design [8], [12].

Asynchronous programming usually follows one or more of these three design patterns:

� Asynchronous Programming Model (APM)

� Event-based Asynchronous Pattern (EAP)

� Task-based Asynchronous Pattern (TAP)

TAP is the most used design pattern and is the model used by the async/await work-
�ow [8], [13].

Asynchronous programming should not be confused with parallel programming, as asyn-
chronous methods do not create new threads. It instead runs on the current thread
whenever the scheduler has resources ready, and the operation itself is ready to progress.
Therefore, the work required to create new threads and a lot of the work to keep the
threads consistent can be omitted [14].

2.1.1 Async/Await

.NET has long had support for asynchronous programming [16]. However, before the
async/await work�ow became normalized, programming asynchronously was quite di�-
cult and even worse for others to read [14], [16]. The old work�ow consisted of a lot of
nested callback functions, which is a struggle to manage properly. Today managing this
kind of structure is referred to as callback hell [17, p. 1-2], [5, p .2].

6

2.2 Reactive Programming

As previously mentioned, the async/await work�ow follows the TAP abstraction [14]. The
async/await work�ow, therefore, consists of creating a task that performs the asynchron-
ous operation. Then the original process that created the asynchronous task marks where
the result of the task needs to be returned in the work�ow. If the task is not �nished when
it reaches the marked area in the work�ow, the process waits at this point until the result
is ready. The async/await work�ow consists of three steps for the programmer. The �rst
step is to assign the async modi�er to a function to mark it as an asynchronous function.
This allows asynchronous calls to be made inside the chosen function. The second step
is to make an asynchronous call. Lastly, specify the await operator for the awaiter for
the asynchronous task to determine where in the work�ow the result is obtained [8], [12],
[13]. It is important to remember that the await operator can only be used in a function
marked with the async modi�er. The traditional asynchronous operators have to be used
instead of the async/await work�ow when making asynchronous calls inside synchronous
functions [8], [14].

In Listing 2.1 we can see a practical example of the async/await work�ow. The code in
Listing 2.1 is the asynchronous process that is responsible for having a chosen Socket

object connect to a designated Internet Protocol (IP) address. The IPEndPoint object
being the reference to the chosen IP address. In order for the Connect function to be
marked as an asynchronous function it has a async modi�er. Connect returns a .NET
Task object of type boolean, meaning the function returns a reference to the active
Connect Task which returns a boolean value once the Task is completed. In this case
the Connect function returns true if the socket succeeds in connecting to the IP address,
otherwise it returns false. The asynchronous operation performed inside the Connect

function is the ConnectAsync function which is called by the socket object. As we want
to avoid the function returning the result before the asynchronous operation is �nished,
the await operator is used to have the Task wait for the ConnectAsync asynchronous
operation to �nish.

1 pub l i c s t a t i c async Task<bool> Connect (Socket sock , IPEndPoint endpoint)
2 {
3 try
4 {
5 await sock . ConnectAsync (endpoint) ;
6 re turn true ;
7 }
8 catch (Exception e)
9 {
10 Console . WriteLine (" Fa i l ed to connect to endpoint : " + endpoint . Address) ;
11 Console . WriteLine (e) ;
12 re turn f a l s e ;
13 }
14 }

Listing 2.1: Example of async/await work�ow

2.2 Reactive Programming

Reactive programming is a programming paradigm whose main focus is to change the
state of the program in response to some outward changes [6], [18]. Reactive program-
ming follows an event-driven work�ow. An event can be triggered from one part of the

7

2.2 Reactive Programming

system, and when the other part of the system receives this event, it alters the state of
the system in response. Reactive programming works hand in hand with asynchronous
event-based programming, which was previously mentioned brie�y in Section 2.1 [19,
p. 2-3]. Reactive programming is commonly used to handle a continuous stream of asyn-
chronous data [20]. Currently, there exists a lot of support for Reactive programming.
Speci�cally, the library Reactive X [11] has presented a general Application Programming
Interface (API) [21] for implementing the core concepts of reactive programming. As a
result, today, there exist a lot of reactive extensions for multiple programming languages.
Rx.NET [22] is the o�cial .NET reactive extension. Cleipnirs has implemented its own
reactive extension that closely resembles Rx.NET. The main di�erence between the two
is that Cleipnirs reactive layer supports persistency but lacks reactive operators that
Rx.NET does support [6]. Although Cleipnir and Rx.NET vary somewhat from the gen-
eral API, the general work�ow remains the same. Therefore we will introduce the main
concepts of Reactive X in this section. Details speci�c for Cleipnir are instead presented
in the upcoming Chapter 3.

2.2.1 Reactive X

ReactiveXs work�ow can be easily summarized with the following tasks [23]

1. Start an asynchronous operation that will perform some work and eventually return
it

2. Transform the asynchronous operation as an Observable object

3. Use reactive operators to transform/�lter the resulting data.

4. Observers subscribe to the Observable and waits for the Observable to return the
data

An observable object follows a similar structure to an enumerable object, where the main
di�erence between an enumerable and an observable object is their method of accessibility.
An enumerable object will give the next object in storage whenever asked for it. In other
words, the program will dictate when the next entry is collected. In an Observable
object, the next result is instead only pushed to its subscriber whenever the result is
ready. The program has no control over when the next entry will be ready as it is waiting
for an asynchronous operation to complete [20], [23], [24], [19, p. 15]. Observables, like
enumerable, support the use of Language Integrated Query (LINQ) queries on its resulting
data. LINQ add additional operators for �ltering and transforming the resulting data
into new enumerables [20], [19, p. 3-4], [15, p. 208].

Traditionally, the implementation is expected to incorporate the following functions for
its observer object.

� OnNext

8

2.2 Reactive Programming

� OnError

� OnCompleted

OnNext is the function that handles each new incoming event emitted by the Observable.
OnError is the function that is called if an error occurs within handling one of the emitted
events. OnCompleted is the function that is called when the observable is �nished and
will no longer emit any new events [23].

In some implementations, the Observable and observer functionality are merged together
into an object referred to as a subject. A subject object acts as a bridge of sorts between
the observer and the observable, where its primary usage is to simplify the work�ow for
reactive programming. A subject has the ability to subscribe to an observable, just like an
observer. However, unlike an observer, a subject can also re-emit events already processed
in the observable, and be used for emitting new events to the observable. Eventually,
all the items emitted by the subject is handled by the subject, making the programming
work�ow a lot simpler compared to its traditional style [25]. Cleipnir supports subject
object in its implementation, however, the objects are not called subject in Cleipnir`s
implementation but are instead called Source objects.

9

Chapter 3

Cleipnir

Cleipnir is a .NET framework primarily designed for aiding in implementing consensus
algorithms. Speci�cally, the framework`s main contribution is assisting developers with
creating persistent distributed systems. Prior to this thesis, Cleipnir and its predecessor
Corums, have been used to implement two consensus algorithms, namely Paxos [3, p. 32-
38] and Raft [5, p. 13-15]. Cleipnir is designed to support and work with the three
following programming paradigms [5, p. 5]:

� Reactive Programming

� The Async/Await Model

� Persistent Programming

Two of these programming paradigms were already presented in Chapter 2. Therefore,
only the Persistent Programming paradigm is introduced in this chapter. The async/await
model used in Cleipnir is the o�cial implementation from the .NET framework [8]. As
mentioned in Section 2.2, Cleipnir uses a custom-built reactive framework, and this frame-
work is discussed in detail in this chapter.

The information presented in this chapter is based on the Cleipnir paper [5], its cur-
rent documentation [6] and from informative conversations with the creator of Cleipnir,
Thomas Stidsborg Sylvest.

3.1 Cleipnir Overview

There are three main tools that Cleipnir provides developers to help design their applic-
ation. These three tools are:

� Persistent Synchronous Scheduler

10

3.1 Cleipnir Overview

� Storage Engine

� Object Store

� Reactive Programming Layer

Cleipnir uses an inbuilt event-driven scheduler that follows a single-threaded structure
similar to the JavaScript scheduler [26], [5, p. 7]. The scheduler schedules incoming tasks
in a queue structure, meaning the ordering follows a First Come First Serve (FCFS) [27]
approach. Each task in the queue is executed sequentially using only a single thread,
which in theory allows the program to avoid common threading issues [5, p. 7].

The storage engine is responsible for the actual storage procedure. It is responsible for
performing both the serialization and the deserialization process to each state object that
is to be persisted. The details regarding setting up object information for the serialization
and deserialization for a state object is presented in Section 3.3. Cleipnir uses di�erent
storage engines correlated to the kind of storage that is used to store the data. Cleipnir
currently supports these three storage engines:

� Memory Storage

� Simple File Storage

� Relational Database Storage

[5, p. 10, 12]

The memory storage stores the persisted data directly into memory. The simple �le
storage stores the persisted data in a single text �le. The relation database storage stores
the persisted data into a Microsoft SQL Server [28], [5, p 10-12].

The Cleipnir serialization process follows a graph-like structure. The original object graph
that is to be serialized is called a Roots object. In order to accomplish this, the Roots

graph object to the persisted object is connected to the graph object through pathways
leading to the references that are also to be persisted [5, p. 10].

The object store is responsible for accessing the storage engine. The object store uses
the storage engine whenever the application needs to restore some previously persisted
data, using the storage engine to persist a new object or updating existing object records
in the persisted memory. The object store is also responsible for detecting changes done
to any state variables that are registered to be persisted. The object store uses a statemap
to keep track of records for each of the state variables that are to be persisted and stored
by the storage engine [5, p. 11].

Listing 3.1 shows a short example of how to use the object store to cache an object into
the storage engine and then restore that object after the data is lost in the application.
First, both the storage engine and the object store are initialized, where the type of
storage engine used for this example is the simple �le storage. Then the object store uses

11

3.1 Cleipnir Overview

the Attach function to register the request object to the object store. The object store
now has a Roots entry for the request object. In this example, the Persist function is
used to serialize and store the objects currently registered in the object store. Object
store only persists objects that have either not been cached before or if any changes have
a�ected the object when Persist is called. In this example, only the request object
with its system references are registered by the object store. Therefore only the request
object is persisted. In the example, the object store is intentionally reset by assigning
it the value null to test that the request object is properly persisted. The object store
is then reloaded by attaching it with the previous storage engine that we know has the
request object in its statemap. Therefore, using the Resolve function, we restore the
request object and assign it to a new variable. Since the original request object was
never tampered with, we know that the initial request and the newly resolved request
should be equal. Most of the functionality shown in Listing 3.1 is performed behind the
scenes, and a developer rarely has to attach an object to the object store directly.

1 _storage = new SimpleFi l eStorageEng ine (" Pe r s i s t en tS t o r ag e . txt ") ;
2 _objectStore = ObjectStore .New(_storage) ;
3 (_pri , _pub) = Crypto . I n i t i a l i z eK e yPa i r s () ;
4 var currentTime = DateTime .Now. ToString () ;
5 Request req1 = new Request (1 , "He l lo World ! " , currentTime) ;
6 req . SignMessage (_pri) ;
7
8 _objectStore . Attach (req1) ;
9 _objectStore . P e r s i s t () ;
10 _objectStore = nu l l ;
11 _objectStore = ObjectStore . Load (_storage , f a l s e) ;
12 Request req2 = _objectStore . Resolve<Request >() ;

Listing 3.1: Object Store example

The scheduler and the object store operate independently from each other. In order for
an application to take advantage of both of these tools, Cleipnir has an execution engine
that utilizes both tools to the best of their abilities. The Cleipnir execution engine's
overall architecture is constructed so that the scheduler and the object store can be used
together and collaborates within a single mechanism. Using the execution engine, the
developer can specify the tasks that are to be executed by the scheduler and use the object
store to persist the state of the application during certain parts of the execution. The
execution engine uses what is known as Sync points to determine when to call the Persist
function in the object store. The developer has to manually add these points in areas
where the state can become corrupt if not crucial information is persisted when a system
crash occurs. This is important for persisted consensus algorithms as it needs a stable
state to reboot to even if an active process was cut mid-execution. This would otherwise
guarantee signi�cant consequences for the overall state of the distributed system. By
default, if the scheduler does not have any tasks in its queue and is not working on any
existing tasks, then it should also call the Persist function so that it can save changes
in the state during a silent period. Listing 3.2 shows an example of how to initialize the
execution engine and how to schedule an operation [5, p. 11].

12

3.2 Cleipnir Reactive Programming

1 var storageEngine = new SimpleFi l eStorageEng ine (" . PBFTStorage"+paramid+" . txt " , f a l s e) ;
2 s chedu l e r = ExecutionEngineFactory . StartNew (storageEngine) ;
3 s chedu l e r . Schedule (() =>
4 {
5 . . .
6 }) ;

Listing 3.2: Execution engine example

3.2 Cleipnir Reactive Programming

The Cleipnir framework has a custom-made reactive layer that follows most of the func-
tionality provided by the Reactive X API. However, the basic functionality introduced
in Section 2.2 is mostly hidden, and the overall work�ow is simpli�ed to make it easier
for developers to use the reactive framework. This implementation uses a Stream object
to replicate the data returned by the respective observers and operators. The Stream is
similar to an observable object. Cleipnir reactive layer supports less reactive operators
compared to most other current reactive implementations. However, the current oper-
ators that exist also support persistent programming, meaning the data stream and the
scheduled operations are not lost if the system crashes during an operation. Traditional
LINQ commands do not work on the Stream object. Instead inbuilt LINQ statements are
available for the reactive Stream object to use. Cleipnir reactive operators can by design
be chained together just like the majority of reactive operators in other frameworks. The
main di�erence being that Cleipnir`s reactive operators and LINQ operators result in a
new Stream object instead of a new observable or a new enumerable. It is possible to
create and handle a lot of the consensus algorithm work�ow within a few lines of code
by simply chaining reactive operators together. Listing 3.3 shows an example of chaining
reactive operators using Cleipnir's reactive framework. The objective here is to get the
�rst valid pre-prepare message emitted to the observable. For a pre-prepare message to
be considered valid, it must pass all Where clauses. The Next operator at the end of the
chain returns the resulting prepare message [5, p. 6, 8, 13], [29] The Merge operator is
used to listen for incoming items from the ShutdownBridgePhase Source object. More
information in regards to the Merge operator is discussed in Chapter 7

1 var preprepared = await MesBridge
2 .Where (pm => pm. PhaseType == PMessageType . PrePrepare)
3 .Where (pm => pm. Digest != nu l l &&

pm. Digest . SequenceEqual (d i g e s t))
4 .Where (pm => pm. Val idate (
5 Serv . ServPubKeyRegister [pm. ServID] ,
6 Serv . CurView ,
7 Serv . CurSeqRange)
8)
9 . Merge (ShutdownBridgePhase)
10 . Next () ;

Listing 3.3: Example of chaining Cleipnir reactive operators

Cleipnir supports reactive subject functionality. However, subject objects are instead
referred to as Source. The user can emit items to the Source object, and any observer

13

3.3 Cleipnir Persistent Programming

linked to the Source object receives the response item. The Source objects are required
to be used for the developer to access and interact with the reactive layer in Cleipnir.
Listing 3.4 shows an example of how to initialize, emit and wait for incoming events
in regards to the Source object. The await reqbridge.Next() makes sure that the
resulting variable req receives the Request emitted to the Source object [5, p. 8].

1 Source<Request> reqbr idge = new Source<Request >() ;
2 r eqbr idge . Emit (new Request (1 , "He l lo World ! " , DateTime .Now. ToString ()) ;
3
4 Request req = await r eqbr idge . Next () ;

Listing 3.4: Source object example

3.3 Cleipnir Persistent Programming

A system that follows the persistent programming paradigm will regularly save the in-
formation for the program state while the program is running. Persistent programming
makes it possible to design systems that can quickly restore their program state in the
case of a system reboot [6], [5, p. 6]. Consensus algorithms can take great advantage
of this programming paradigm as systems in the network are likely to crash eventually.
With persistent programming, it is theoretically simple for a system to recover its data
and rejoin the distributed network. Unfortunately, the state of the system is likely to
still be somewhat behind the other systems when compared directly to the other working
systems, even if all of the previous data is recovered.

Cleipnir supports easy to use hybrid persistent programming. Hybrid persistent program-
ming allows the developer to freely choose which data is to be persistable. In this way,
it is possible to avoid storing unnecessary information that would slow down the process
immensely [5, p. 9-10]. Listing 3.5 and Listing 3.6 show an example of the work�ow
needed for an object to be serialized and deserialized to and from persistent memory. For
an object to become visible to the storage engine, the object needs �rst to inherit either
the IPersistable or the IPropertyPersistable interface. IPersistable is usually the
common choice as it can support hybrid persistency programming. The IPersistable

allows the user to choose which data in the object is to be serialized and which con-
structor to use for the deserialization operation. The IPropertyPersistable can only
use the default inbuilt constructor for a .NET object, which is why it does not support
hybrid persistency and is therefore not the recommended interface. When inheriting the
IPersistable interface the program will inherit the Serialize function as shown in
Listing 3.6. In this function, the information that is desired to be persistable for the
object is added to statemap from the object store. The object information added to the
statemap is set to a designated key, like a normal map or dictionary work�ow. The stor-
age engine internally references di�erent graph objects for each object stored. Therefore,
a key in the statemap can have the same value for multiple objects because the objects
are treated as di�erent graph objects in the storage engine. Meaning a developer does
not need to worry about duplicate keys over di�erent objects.

However, the storage engine cannot store all types of data. The storage engine can handle

14

3.3 Cleipnir Persistent Programming

the basic data types like int, string, boolean, etc. Unfortunately, the storage engine does
not support inbuilt data structures like arrays, dictionaries, etc. The storage engine also
not compatible with any newly created objects or data types outside of the basic ones. To
make a custom object be serializable for Cleipnir, they need to inherit the IPersistable
interface and have assigned their serializer and deserializer functions properly. This means
data types like enum are not supported. However, Cleipnir supports inbuilt versions of
common data structures like arrays, dictionaries, and lists that the storage engine can
in fact persist. Therefore, an easy workaround is to substitute typical data structures
for the inbuilt Cleipnir versions of the data structure. For instance, a dictionary object
can be substituted for Cleipnirs Cdictionary object. For objects with a data type that
Cleipnir does not support, a common workaround is to type cast it into another format
that Cleipnir can persist. An example of this can be seen in Listing 3.6 where the object
Phasetype is of enum type, and Cleipnir cannot persist enum type objects. Therefore, it is
type cast to int while stored in memory. Then, in the deserialize process, the correct enum
type can be chosen based on the stored int value. For the deserializing process, a private
static function called Deserialize is needed, which uses the state map as a parameter.
Even if the content of the function must be unique for each object's constructor, the
format of the function follows the same structure shown in Listing 3.6. The deserialize
function initializes the object through a constructor and then returns the new instance
of the speci�ed object based on the information currently stored in the statemap.

1 pub l i c c l a s s PhaseMessage : I P e r s i s t a b l e %i n h e r i t i n t e r f a c e
2
3 %Construtor to D e s e r i a l i z e p roce s s
4 pub l i c PhaseMessage (i n t id , i n t seq , i n t view , byte [] dig , PMessageType phase , byte []

s i gn)
5 {
6 ServID = id ;
7 SeqNr = seq ;
8 ViewNr = view ;
9 Digest = dig ;
10 PhaseType = phase ;
11 S ignature = s i gn ;
12 }

Listing 3.5: Object persistentcy initializer

15

3.3 Cleipnir Persistent Programming

1 pub l i c void S e r i a l i z e (StateMap s t a t eToSe r i a l i z e , S e r i a l i z a t i o nHe l p e r he lpe r)
2 {
3 s t a t eToS e r i a l i z e . Set (nameof (ServID) , ServID) ;
4 s t a t eToS e r i a l i z e . Set (nameof (SeqNr) , SeqNr) ;
5 s t a t eToS e r i a l i z e . Set (nameof (ViewNr) , ViewNr) ;
6 s t a t eToS e r i a l i z e . Set (nameof (Digest) , S e r i a l i z e r . S e r i a l i z eHa sh (Digest)) ;
7 s t a t eToS e r i a l i z e . Set (nameof (PhaseType) , (i n t) PhaseType) ;
8 s t a t eToS e r i a l i z e . Set (nameof (S ignature) , S e r i a l i z e r . S e r i a l i z eHa sh (S ignature)) ;
9 }
10
11 p r i va t e s t a t i c PhaseMessage D e s e r i a l i z e (IReadOnlyDictionary<s t r i ng , ob ject> sd)
12 {
13 re turn new PhaseMessage (
14 sd . Get<int >(nameof (ServID)) ,
15 sd . Get<int >(nameof (SeqNr)) ,
16 sd . Get<int >(nameof (ViewNr)) ,
17 D e s e r i a l i z e r . Des e r i a l i z eHash (sd . Get<s t r i ng >(nameof (Digest))) ,
18 Enums . ToEnumPMessageType(sd . Get<int >(nameof (PhaseType))) ,
19 D e s e r i a l i z e r . Des e r i a l i z eHash (sd . Get<s t r i ng >(nameof (S ignature)))
20) ;
21 }

Listing 3.6: Serialize/Deserialize code example

Finally, Cleipnir`s CTask class needs to be introduced. As the name suggests CTask

shares similar traits with the Task object mentioned in Section 2.1. An asynchronous
function that returns a CTask is an asynchronous operation that is to be run by the
Cleipnir execution engine. In a sense using CTask for an asynchronous function means
the operation performed inside the asynchronous function is meant to be persistable. For
an object to be persisted during execution it needs to be run synchronously or in an
asynchronous CTask operation. An example of this would be if the user wanted to persist
one of the reactive Cleipnir Source objects, then the function waiting for emitted items
need to return a CTask rather than a Task. Otherwise, the Cleipnir storage engine will
crash upon attempting to persist it.

Keep in mind CTask should not be used when the asynchronous function has any asyn-
chronous operations unless you intend to use Cleipnir to persist the data. Using asyn-
chronous operations inside a CTask causes Cleipnir to create a new thread to handle
the asynchronous operation while continuing with the rest of the operations inside the
function. This also applies when the await operator is used for a traditional asynchron-
ous operation, meaning the await becomes redundant and will not work as intended in
this case. This also applies when scheduling new operations for Cleipnir inside a CTask

function since the schedule function for the Cleipnir execution engine is treated as an
asynchronous operation. A user of Cleipnir must avoid creating potential race conditions
within their implementation due to running traditional asynchronous operations inside
a CTask function. Normally it is best to try and avoid this situation entirely, thereby
restricting a CTask function to only operate with synchronous operations. In contrast,
any asynchronous operations required should be performed inside other Task operators
using the TAP work�ow discussed in Section 2.1. In short, although it is possible to call
asynchronous Task inside CTask functions, the scheduler runs this operation separately
in another thread. Therefore, it is recommended to keep asynchronous Task away from
CTask. Instead, CTask should only use the TAP work�ow when working with other asyn-
chronous operations from Cleipnir, which is together with other CTask or when listening
for events in Source objects. An example of a CTask function can be seen in Listing 3.7,

16

3.3 Cleipnir Persistent Programming

where we have to use CTask to listen for new items in the shutemit Source object which
is to be persisted. The code here would result in an error in the Cleipnir object store if
the CTask assignment were instead a traditional Task.

1 pub l i c async CTask<bool> ListenForShutdown (Source<bool> shutemit)
2 {
3 var shut = await shutemit . Next () ;
4 Console . WriteLine ("View Change Received Shutdown") ;
5 re turn shut ;
6 }

Listing 3.7: Example of a CTask function

17

Chapter 4

Practical Byzantine Fault Tolerance

This chapter presents the Practical Byzantine Fault Tolerance consensus algorithm in
detail. We start by �rst introducing the system model commonly used for the PBFT
algorithm. Then, a detailed explanation is given for how the protocol normally operates.
This includes mechanisms such as checkpoint and leader changes.

4.1 Introducing Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance is a consensus algorithm speci�cally designed to
handle Byzantine faults in an asynchronous distributed network. The algorithm was
�rst published in 1999 by Miguel Castro and Barbara Liskov [30]. Notably, the Linux
foundation's open-source blockchain named Hyperledger [31]�[33] uses PBFT.

The problems derived from byzantine faults originally came to light through a well-
known problem known as the Byzantine Generals Problem [34], [33], [35], [36, p. 382],
[37, p. 240-253]. The Byzantine Generals Problem can be summarized as a couple of
army generals who are each leading their own armies, and they need to reach a decision
together. The most common scenario used is that the armies try to coordinate an attack
on a surrounded city. The armies can only survive if the majority of the generals agree
to attack the city together or the majority agree to retreat to �ght another day. There
are also traitor generals that actively attempt to sabotage the order. The decision is
also irreversible regardless of the action performed by the other armies. A Byzantine
Fault Tolerant system is a system that can handle the issue introduced by the byzantine
generals' problem and is the main goal for consensus algorithms to achieve this state.
This includes the PBFT algorithm [34], [33], [36, p. 382-384].

The PBFT algorithm focuses on creating a state machine network that can withstand
Byzantine failures [2, p. 456]. The protocol achieves this by providing the network with
two main properties. These properties are referred to as safety and liveness. To summar-
ize these properties:

18

4.2 System Model

Safety is the property that ensures that the total ordering of requests is equal for all
the non-faulty participating servers. In other words, the system state should be similar
to a synchronous system, operating one operation at a time, even though the system is
operated over multiple remote machines.
Liveness is the property that ensures that the correct result is eventually agreed upon
and returned by the system [35], [2, p. 456], [4], [30, p. 2], [32], [38, p. 403], [37, p. 257].

4.2 System Model

The PBFT consensus algorithm is implemented using R number of servers referred to as
replicas. When a replica is down or behaving maliciously, then we say that the replica is
faulty. The number of faulty replicas is represented as f. Quorum is a term used to refer
to the limit of messages required to verify that the replicas in the system agreed upon a
decision[38, p. 408-409], [39, p. 2]. A single replica is chosen as the leader called primary
and is represented as p. The other replicas are referred to as backups. The responsibility
of the primary is to order the request sent to the system by numerous clients [2, p. 456],
[38, p. 405]. The replica chosen as the primary replica for the PBFT network is based on
the replica's identi�er value [37, p. 258].

According to [30, p. 3], [38, p. 405], replicas in the distributed network move through
�successions of con�gurations known as views.� A simpler de�nition for a view is the
number that de�nes the set of non-faulty replicas which are participating in the current
PBFT protocol round set up by the current primary. The current view number is denoted
by the letter v. As previously mentioned, the primary is chosen based on an identi�er
value i. That identi�er value is determined by the formula p = v mod R [32], [37, p. 258],
[30, p. 3]. We decided to set the initial view number to zero, which results in the formula
setting replica zero as the initial primary.

The protocol can only guarantee the safety and liveness properties of a system if the
number of faulty replicas does not exceed a speci�ed margin of the total replicas in the
network. The total number of replicas required to be in the system should be derived
by the formula R > 3f + 1. From the formula, it can be determined that for each new
faulty replica participating in the PBFT network, three additional replicas are required
to keep the safety and liveness properties for the PBFT network. As an example, the
lowest number of replicas a system can have is four. In this situation, the system can
only handle up to one faulty replica. In order to handle more faulty replicas, the system
has to scale up by adding three additional servers for each faulty server that exists in the
system [32], [35], [37, p. 257], [38, p. 403], [30, p. 3].

All the messages sent between replicas are expected to be digitally signed by their sender.
The signature process uses public-key cryptography [37, p. 257, p.267]. A hidden private
key is used to sign the messages, while the other parties can use the replica's public key
to verify this signature [38, p. 417]. The signature procedure is used to verify that the
sender is whom they claim to be [30, p. 3]. In some cases, the digital signatures are
replaced with a Message Authentication Code (MAC). This is done to remove potential

19

4.3 Detailed Protocol Operations

bottlenecks in performance and to detect tampering in messages [40], [37, p. 257], [30,
p. 3, 8]. In this PBFT implementation, digital signatures are used for all message types.

4.3 Detailed Protocol Operations

The PBFT consensus protocol is divided into three phases. The Pre-Prepare, Prepare,
and the Commit phase. If the PBFT protocol operations are properly executed, a con-
sensus has been achieved for an operation once all three phases have transpired on 2f +1
replicas [35], [37, p. 257-259]. The roles of the pre-prepare phase and prepare phase are
to propose an ordering for requests delivered to the system. On the other hand, the
combination of prepare phase and the commit phase establishes the execution order for
the replicas in the system [30, p. 4]. Figure 4.3.1 shows an illustration of the PBFT
work�ow. The illustration shows the messages sent from the di�erent replicas during the
di�erent protocol phases in PBFT.

The PBFT protocol starts once a client sends a request containing their desired operation
to the primary [30, p. 4]. Sometimes the client also multicasts their request to the other
replicas in the system, which is the model that we followed in our implementation [39,
p. 2], [38, p. 406], [37, p. 258]. Regardless of which of these models is used for the
requested message, the primary is the replica responsible for starting the iteration of
the PBFT algorithm to process the client's request. The primary creates a Pre-Prepare
message and assigns the request with a sequence number which is then multicasted to the
other replicas in the network with the same view number as the primary. Once a replica
receives the Pre-Prepare message, it validates the Pre-Prepare message. The validation
process consists of the following [32], [30, p. 4], [37, p. 259]

- Validating the Signature in the message.

- Checking that the view number in the message matches the current view number.

- The message sequence number is not out of bounds of the current sequence number
interval [32], [30, p. 4].

- Make sure the replica has not already received another Pre-Prepare message with
the same sequence number but with a di�erent request.

Once the validation process is �nished, the replica o�cially starts the prepare phase by
creating a prepare message and multicasting it over the network. The prepare phase
ends for a replica once it has stored up to 2f +1 validated pre-prepare/prepare messages
from di�erent replicas. After this condition is met, the replica enters the state known
as prepared. In this state, the replica logs the message data thus far in what is called a
prepare certi�cate. A prepare certi�cate is essentially a record showing that the prepared
phase is �nished and properly executed for that given request. The proof provided in
a prepare certi�cate is a list of the valid prepare messages, basically con�rming that
quorum has been reached for the certi�cate when the number of messages stored in the

20

4.3 Detailed Protocol Operations

list is higher than the desired limit of 2f + 1 [38, p. 408], [2, p. 457]. The last phase
is the commit phase, which functions very similarly to the prepare phase. Each replica
that is �nished with the prepare phase starts the commit phase by multicasting commit
messages to the other replicas in the system [30, p. 4]. In this phase, the primary functions
exactly the same as every other replica. The validation process is also the same as it was
for prepare messages. The goal for the commit phase is also the same as in the prepare
phase, which is for a replica to receive 2f+1 commit messages, which includes the replica's
own commit message [30, p. 5]. Once a replica has received enough commit messages,
the protocol reaches the committed phase for the replica. This essentially means that a
commit certi�cate is created and logged similarly to a prepare certi�cate [38, p. 409], [2,
p. 457]. When a replica has �nished both a prepare certi�cate and a commit certi�cate,
then consensus has been achieved, and each replica performs the operation requested by
the client [38, p. 409], [30, p. 5]. After the operation is executed, each replica sends
back a reply message containing the appropriate identi�cation values and the result of
processing the given request. The last requests sent by the clients are also stored in
memory to account for the situation where the client does not receive the reply messages.
In this case, the client will re-transmit the same request to the system, and the replicas
will re-transmit their reply for that following request [38, p. 409]. A client will accept the
result if it gets f + 1 replies back from the replicas.

The replicas can only handle a certain amount of requests before the system is required
to save its state. As mentioned in the validation process, a replica can only process new
protocol messages as long as the replica can exhaust a sequence number within a given
sequence number interval. Once the replica no longer can exhaust any sequence number
within the sequence number interval, the replica can no longer process incoming requests
until the interval is updated. This sequence interval length is always constant and is
adjusted based on the systems checkpoint period, which is discussed in the next section,
Section 4.4 [37, p. 262], [30, p. 4-5].

Figure 4.3.1: Practical Byzantine Fault Tolerance Normal Work�ow

21

4.4 Checkpointing

4.4 Checkpointing

PBFT also incorporates checkpointing, which is a mechanism used for garbage collecting
the logs. Checkpointing is required so that the replica does not use up all of its memory
for logging messages [37, p. 261]. Therefore, the replicas must agree upon a point where
the system is stable for all the replicas. Afterwards, the replicas can delete any records
in the logs prior to the consented state [30, p. 5], [38, p. 410].

Checkpoints are essentially the state records of the system after progressing a speci�c
interval of requests. The checkpoint has information regarding the last sequence number
that was performed for the system. This sequence number is used on the garbage collector
to put an upper bound on the records that are to be removed. For instance, if the stable
sequence number was set to 50, then the garbage collector would remove a set of logged
data up to 50. The checkpoint also has a digest of the system for that stable sequence
number. This digest is used to con�rm that the replicas have the same system state for
the given sequence number [30, p. 5], [38, p. 410].

For replicas to validate checkpoints, they each must multicast a checkpoint message over
the network containing the information mentioned above together with the replicas id.
Like the rest of the PBFT protocol messages, a checkpoint is considered to be valid for a
replica if it has stored 2f+1 checkpoint messages with di�erent replica ids with the same
stable sequence number and system digest [37, p. 261-262], [30, p. 5], [38, p. 410]. Once
a checkpoint has been validated successfully, it is referred to as a stable checkpoint [39,
p. 3], [37, p. 261]. The replica usually stores checkpoint messages for di�erent sequence
numbers in memory and has only a single record for a stable checkpoint. Once a new
stable checkpoint is determined, any checkpoint records with lower sequence numbers are
removed from memory. If there exists a previous stable checkpoint in memory with a
lower sequence number, then it is replaced by the new one [37, p. 261-262].

In PBFT, checkpointing is usually performed periodically after a constant number of
requests have been processed. This interval length is constant and is referred to as a
checkpoint period [37, p. 261], [38, p. 410]. As mentioned earlier, in Section 4.3, PBFT
normally only processes a sequence number in the set of currently available sequence
numbers. The length of the sequence number interval is designed to follow the format
[checkpointinterval + 1 − 2 ∗ checkpointinterval]. This means the system attempts to
calculate two checkpoints during a single sequence number interval. Once a stable check-
point is obtained, the system extends the sequence number interval where the new interval
starts at the last stable sequence for the current stable checkpoint [30, p. 5], [38, p. 410].
Unless a replica has exceeded the upper bound of the sequence number interval, the replica
usually performs the checkpoint functionality concurrently with the protocol work�ow.

22

4.5 View-change

4.5 View-change

In the scenario in which the primary is the faulty replica, a view-change eventually occurs.
The purpose of the view-change is to reassign the responsibility for a primary away from
the current primary replica that is deemed faulty, which is then given to another replica
that is not faulty [41], [37, p.262]. As mentioned in Section 4.2, the replica that is chosen
as the next primary is based on the replica id and the next view number. Therefore,
the view-change updates the view number for the system to change the system's primary
replica. Some operations have to be performed for a view-change process to be deemed
successful. The �rst operation is to update the view number to set another replica as the
primary [30, p. 6], [38, p. 411], [42]. This step includes multicasting view-change messages
between replicas to start the new view session. The other more demanding operation is
that the primary needs to make sure that the system is stable and that replicas start the
new view with the exact same system state. Therefore, all requests performed after the
last stable sequence number need to be reprocessed between the replicas. This is done
so that the system can guarantee that the replicas are not missing any of the previous
operations performed to the system. [2, p. 458], [37, p. 263-265].

There are several ways for a replica to deem its primary to be faulty. The most common
way is to have a timeout functionality for the protocol execution. It is most common to
start a timeout once a replica has received a request from the client. Suppose the replica
does not accept any pre-prepare messages for that request before the timeout expires. In
that case, the replica goes into view-change mode and no longer participates in any of
the protocol operations [32], [30, p. 5-6], [37, p. 263].

The view-change process starts by having the replica increment its view number. Then
the replica creates, signs and multicasts a view-change message over the network. The
replica then waits for 2f + 1 view-change messages [32], [30, p. 6], [38, p. 411], [42]. A
timeout is also used here. If the replica does not receive enough view-change messages in
time, the process repeats with the next incremental view number. In some cases, a replica
can also be designed to go into view-change mode if a replica has already received two
view-change messages from other replicas, as it now only requires its own view-change
message for the system to agree that a view-change is necessary [37]. Once the appropriate
number of view-change messages are received, the new primary is responsible for creating,
signing, and multicasting a new-view message to the other replicas [37, p. 264]. Before the
new-view message can be multicast to the other replicas, a new primary must go through
its log and each of the protocol certi�cates received from the view-change messages.
This process is done so that the new primary can create new pre-prepare messages for
all sequence numbers that have occurred after the last stable sequence number. If the
new primary lacks information for any of the sequence numbers, the new pre-prepare
message has its request digest set to the value null. This information is included in the
new-view message, which is then sent to the other backup replicas. The backup replicas
then validate and reprocess each of the sequence numbers that have a valid pre-prepare
message. This essentially means that the other replicas have to multicast a new prepare
message and then participate in a commit phase together with the new primary for each
of the pre-prepare messages in the new-view message [30, p. 6], [2, p. 458], [37, p. 265].
A timeout is once again being used to handle the situation where the reprocessing takes

23

4.5 View-change

too long. This process can also fail if the pre-prepares in the new-view message fails
the validation process. If either the timeout occurs or the validation fails, it is back
to the start of the view-change process. Once all pre-prepares have been reprocessed,
the view-change procedure is over, and the replica returns to normal protocol operations
with the new chosen primary. Keep in mind that any new requests received during the
view-change process are ignored by the system [37, p. 263].

Figure 4.5.1 shows an example of a view-change process. The �gure shows the timeline for
each of the processes needed for the view-change to be successfully completed. Starting
with the timeout occurring on the backup replicas when the primary is no longer working
correctly. Then the replicas each multicast a view-change message to the other replicas
in the system, including the faulty primary. After the new primary has received a su�-
cient number of view-change messages, it creates pre-prepares messages that need to be
reprocessed in the network. Afterwards, the new primary multicast new-view messages
to the other replicas to start the reprocessing phase. Finally, the system multicasts both
prepare and commit messages to validate pre-prepare messages. The system then moves
on to normal work�ow, with the �rst backup replica now serving as the primary for the
system.

Figure 4.5.1: Practical Byzantine Fault Tolerance View-Change

24

Chapter 5

Related Work

The University of Stavanger has previously supported the development of Cleipnir. There-
fore, there exist previous papers and thesis on Cleipnir usage for implementing consensus
algorithms. Two contributions, in particular, have been used as building blocks for this
project. We now discuss these two works in detail and explain how they contributed to
our work.

5.1 Cleipnir - Framework Support for Fault-tolerant

Distributed Systems

This paper is the original paper describing the Cleipnir framework. It was written by
its creator Thomas Stidsborg Sylvest with the help of two professors at the University
of Stavanger, Leander Jehl and Hein Meling. The paper describes, in detail, the in-
ternal functionality and tools available in the Cleipnir framework. The paper describes
Cleipnir`s use cases and why Cleipnir priorities these functionalities. The paper has de-
tailed explanations for how the tools work together with practical demonstrations. The
demonstrations are presented using an existing implementation of the Paxos consensus
algorithm. The paper also presents a Raft implementation using the Cleipnir framework.
This includes the overall architecture of the implementation and detailed examples of how
Cleipnir is used to simplify tasks performed in the Raft algorithm. Finally, experiments
are performed to evaluate the performance of the Raft implementation. The results of the
experiments are compared directly to an earlier Paxos implementation. The evaluation
performed focuses both on latency and code structure. Our thesis is a direct continuation
of this paper with relatively similar goals. The largest di�erence between our thesis and
this paper is the chosen consensus algorithm to be implemented using Cleipnir. Addition-
ally, we do not evaluate our PBFT implementation in terms of latency. Our contribution
is to provide additional experiences on how well Cleipnir can be utilized in implementing
complex consensus algorithms. This also implies discovering potentially di�cult problems
that the current Cleipnir framework cannot handle, speci�cally, whether or not Cleipnir
can handle all of the complex issues within the PBFT algorithm while still having a

25

5.2 Implementing a Distributed Key-Value Store Using Corums

simple-to-read code structure [5].

5.2 Implementing a Distributed Key-Value Store Using

Corums

In 2010, Eivind Bakkevig wrote a master thesis about Corums. In his thesis, Bakkevig
used a .NET framework called Corums to implement a dictionary-based distributed sys-
tem. This Corums based implementation implemented the Paxos consensus algorithm to
make decisions for the dictionary-based distributed system.

The Corums framework is the predecessor to the Cleipnir framework. It follows the same
programming models as Cleipnir does. These models would be the ones described in
Chapter 3; built-in persistency, reactive programming, and a single-threaded scheduler.
The main di�erence between Corums and Cleipnir is that Corums focus more on sim-
plifying abstraction for developers to handle communication using incoming/outgoing
communication buses. Cleipnir instead focuses more on giving the developer the tools
necessary to develop consensus algorithms that follow the persistent program paradigm
in an easy-to-use and customizable manner. As an example, a major di�erence between
Cleipnir and Corums frameworks lies in Corums support in reliable message delivery
between distributed systems. Corums has support for bus abstraction that can simplify
the process of handling incoming/outgoing messages between the nodes in the system.
Cleipnir does unfortunately not support this functionality. Instead, Cleipnir prioritized
evolving the persistence functionality previously provided by Corums [5, p. 6-7], [6].

Corums is very similar to Gorums [43], [3, p. 22], which is intended based on how close
the names are, the main di�erence being the supporting language. Bakkevig succeeded
in creating a distributed dictionary storage using the Corums framework. Additionally,
Bakkevig built the client-side for the implementation using ASP.NET Core Web API [44].

According to Bakkevig, he had no prior experience with the C# language before writing
his thesis. Bakkevig did, however, have previous experience with the Paxos consensus
algorithm. This made most of his work during the thesis about learning C# and the
Corums framework rather than extensively researching Paxos. As for our thesis, the
exact opposite is true. We have some background knowledge regarding the C# language
but had little to no background knowledge of the PBFT algorithm. Therefore, much work
for this thesis revolved around learning and making our own PBFT algorithm based on
its description. Although we had experience with the C# language, we had no previous
experience with the Cleipnir framework. Therefore, similarly to Bakkevig, our thesis also
required us to study the Cleipnir framework. [3, p. 8].

26

Chapter 6

Design

This chapter presents an overall summary of our PBFT application implementation. This
includes a description of the system architecture used for the PBFT network. Addition-
ally, to better understand the application's work�ow, a summary of our code structure
is given. Finally, a description is provided for the current application design. Primarily
specifying which parts of the program take advantage of the Cleipnir framework and how
the server-side interacts with the protocol work�ow.

6.1 Network Architecture

Figure 6.1.1 shows the system architecture used for PBFT implementation. Generally,
our network architecture follows the same structure as the system model introduced in
Section 4.2. The system consists of four server implementations called replicas, where
the replica with the lowest identi�er value is chosen as the primary. These four replicas
are communicating over a mesh network using socket connections. This means that
each replica shares a unique network socket with each of the other replicas in the PBFT
network. To avoid creating multiple socket connections between two replicas, the replica
with the highest identi�er is tasked with being the initiator when creating the socket
connection. Because of this, the primary replica is not required to actively establish any
of its connections to its fellow replicas. Instead, the primary establishes all its socket
connections by listening for any connection attempts on its local network address. The
opposite scenario occurs for the replica with the highest identi�er value. Although the
other non-primary replicas also listen for connections on their local network address, this
is done to connect to replicas with higher ids in the network. The non-primary replica
is also responsible for initiating the socket connections with all the other replicas in the
network with lower identi�er values.

When the replicas have established connections, the replicas can still not fully commu-
nicate until they have exchanged public keys. This is required so that messages between
replicas can be veri�ed using a digital signature. Public keys are exchanged in session
messages, which are messages that are automatically sent between replicas once a socket

27

6.1 Network Architecture

Figure 6.1.1: Overall architecture of the PBFT implementation network

28

6.2 Overview of Work�ow

connection has been established. If the public keys are for some reason not exchanged,
then the replica discards any message received from that host. If the message received
from the unknown host happens to be a request or a protocol-related message, the replica
also terminates the connection. This also applies to clients. This current public key model
is unfortunately not very secure. This is due to public keys being ephemeral. Therefore,
it needs to be updated and replaced if the replica's execution is interrupted or stopped.
In this implementation, the private and public key pair for a replica is created at the sys-
tem start-up. Currently, there is no way for the replicas to authenticate another replica
after it has rebooted. Therefore, a replica must replace the key-value pair representing
a replica's public key in its register if it receives a new session message with the equal
replica identi�er value. This, in turn, means the system is susceptible to impersonation
and spoo�ng attacks [45]. Because the main goal of this thesis focuses more on the as-
pects behind implementing a simple PBFT work�ow, the current cryptographic system
was deemed su�cient for simulating a network using digital signatures. However, it is
important to be aware of this major security �aw of the system to be potentially �xed
and avoided in the future.

6.2 Overview of Work�ow

The system performs the PBFT protocol by exchanging protocol messages over the
mesh network until at least three replica implementations have �nished all three pro-
tocol phases. The PBFT protocol is triggered when the server receives a request from
one of the connected client nodes. The primary is responsible for o�cially starting an
instance of the PBFT protocol by multicasting a protocol message of type pre-prepare.
There are two important goals for the pre-prepare phase. The �rst is to make sure that
the replicas have an agreement upon the ordering of the request. In other words, the
replicas perform the requests in the same order as the primary, which means a request
processed over several replicas should all be using the same sequence number for pro-
cessing that request. The second important goal is to determine whether or not the
primary is �t to be the leader. As mentioned in section Section 4.5, a view-change occurs
when a leader no longer is eligible. The view-changes are triggered by timeout func-
tionality in our application, which is set once a replica receives a client request. If the
primary takes too long in the pre-prepare phase, then the timeout occurs, and the other
replicas perform a view-change to change the primary replica. The rest of the replicas
are the responsible parties during the prepare phase by sending protocol messages of type
prepare, while every replica participates in the commit phase using commit type protocol
messages. The last step of the current PBFT implementation is to create a reply message
and send it back to the client responsible for the request. The details in regards to the
PBFT work�ow implementation is discussed in Chapter 7.

29

6.3 Code structure

6.3 Code structure

In Figure 6.3.1 shows a �gure that illustrates a short summary of the code structure used
for our PBFT replica implementation. The summary shows folders containing our source
code used to implement the necessary items for the PBFT algorithm. The summary also
highlights some of the more important �les, meaning �les that contain the most relevant
code segments for the application.

6.3.1 Protocol Objects

To start o�, the PBFT algorithm uses many di�erent types of messages for the replicas
to collaborate. For simplicity, we stored all of the classes revolving messages within the
Message folder. Since the protocol messages share traits and functionality, we introduced
two interfaces to reduce redundancy. The �rst interface regards the serialization process
for transforming the messages into byte streams so that to allow the message objects to
be exchanged over the Transmission Control Protocol (TCP) [46]. The other interface
is for the digital signature process. Session messages are not signed; therefore, they do
not inherit this interface. In addition, to reduce complexity, we set the normal work�ow
protocol messages such as pre-prepare, prepare and commit messages, to use a single class
object known as Phase Messages. A single value within the Phase Message object des-
ignates which protocol type the Phase Message represents. View-change and checkpoint
messages are instead represented with their own unique class object.

To store the proof of an PBFT iteration, we implemented class objects known as certi�c-
ates found in the Certi�cates folder. The implemented certi�cate objects essentially have
the same functionality as the di�erent certi�cates described in Chapter 4 for the PBFT al-
gorithm. Certi�cates act as records showing the state of protocol iteration, where a single
iteration requires two valid certi�cates before the iteration is deemed �nished. Just like
the protocol messages, we implement both protocol certi�cate types by an object class
known as Protocol certificate where a single variable determines the protocol types.
Checkpoints and view-changes once again have their own class object for their certi�cate
proof. There are also interfaces used to avoid redundant code for the certi�cate objects.
The interfaces used for certi�cates are primarily used to add the mandatory functions for
a given certi�cate object.

6.3.2 Other functionalities

The static functionalities that are not tied to any object classes are placed in the Helper
folder. This includes functionality for serializing and deserializing messages objects with
JavaScript Object Notation (JSON) [47], cryptographic functions related to creating and
validating digital signatures, and �les containing all the enum types used for this imple-
mentation. An enum is essentially a prede�ned .NET class with only constant values.
The enum's constant values are de�ned upon initialization and are helpful for classifying

30

6.3 Code structure

other objects [48]. For instance, our PBFT implementation has used enums to categorize
the protocol phase a phase message belongs to. This allows the program to easily distin-
guish between pre-prepare, prepare and commit phase messages even when they all use
the same object type.

The JSONFiles folder contains the JSON �les, which have information about the net-
work addresses for the replicas in the system designated to their receptive identi�er
values. There exist two JSON �les in this folder. The �rst �le is used when running
the implementation over multiple systems or over docker containers. The second �le uses
localhost addresses with di�erent port numbers that are meant to be used when testing
the application on a local device.

The PBFT replica implementation uses Cleipnir to persist important parts of the code for
servers to be able to reconnect to the system easily. As discussed in Chapter 3, Cleipnir
has several di�erent engine types, which can be used to serialize and store the application's
data. In our PBFT replica implementation, we have decided to use the Simple File Storage
engine. The Storage folder will contain the .txt �les in which Cleipnir stores its data.
Since there are several instances of replicas in the PBFT network, the name of the .txt
�le used to store the application data will follow the structure �PBFTStorage� with the
replicas identi�er value at the end of the name.

The Replica folder contains code that is directly related to the server or the protocol
work�ow. The Replica folder has two subfolders in order to distinguish code based on
their functionality easier. All the networking code that is not directly connected to the
server-side network handling is placed inside the subfolder Network. This includes the
code for creating sockets and functions for properly handling the data received from
the socket by the TCP network protocol. The Protocol subfolder contains code that is
directly related to the protocol execution. This includes code related to the execution of
the main work�ow of the PBFT algorithm. In addition, code for handling the reactive
execution for view-change and checkpointing is also placed here. The other �les in the
Replica folder contain code that helps the replica run properly, including code used to
help communication between server-side and protocol work�ow run inside Cleipnir.

6.3.3 JSON Serialization Problem

As mentioned in Section 3.3 Cleipnir requires a designated serializer and deserializer func-
tion to persist an object. In addition, Cleipnir cannot persist traditional data structures
directly. Instead, Cleipnir intends for the developer to substitute traditional data struc-
tures with Cleipnir respective inbuilt data structures. This means that whenever Cleipnir
persists objects that have a reference to a data structure, then the persisted object must
also substitute the data structure for the correct inbuilt Cleipnir data structure. For our
implementation, this is present in our Certificate objects as they all require a list of
proofs. Therefore to persist the proof list, we need to replace a traditional List class ob-
ject with an inbuilt CList class object. However, Cleipnir inbuilt data structures cannot
be serialized or deserialized properly using JSON formatting. As we were not completely
aware of this issue when we began designing our application, we, unfortunately, made an

31

6.3 Code structure

oversight for our network layer. The application currently uses JSON [47] to serialize and
deserialize messages when sent over the PBFT network. Since JSON formatting does
not support inbuilt Cleipnir data structures, which in retrospect was not all that sur-
prising, attempting to deserialize any protocol message that includes an inbuilt Cleipnir
data structure, causes the application to crash. Currently, we solve this issue by convert-
ing between traditional data structures and inbuilt Cleipnir data structures whenever a
message with said data structure is to be serialized with JSON. The conversion itself is
rather primitive. A copy of the data storage in the traditional data structure format is
created, then the content is copied from the source data storage to the newly created
data storage. The process is then reversed on the receiver end after the message has
been properly deserialized. To further simplify the conversion between the data structure
types, we added temporary JSON class objects that act as substitutes for the persisted
objects that have issues with JSON when they are to be sent over the PBFT network.
Transforming between a persisted object to their respective temporary JSON object is
as simple as making a function call with the opposite transformation also available as a
function tied to the temporary object. These JSON objects are all placed in the sub-
folder JsonObjects inside the Helper folder. All implemented JSON class objects follow
the naming convention JSON + Objectname. Having now learned about this issue, it
would have probably been more bene�cial if the serialization and deserialization for the
networking used the same formatting that Cleipnir supports to avoid this issue in future
projects.

6.3.4 Notable Files

The App.cs �le contains the code which starts all the processes needed in the PBFT
replica. This includes code for starting Cleipnir, creating a server instance, and starting
the protocol handlers. This �le also includes the main application state, which in this
implementation is simply a list of operations theoretically performed by the system.

The Server.cs �le is by far the largest, and this is due to the server implementation acts
as the bridge between the network layer and the protocol work�ow. This is necessary
as the network layer is responsible for formatting protocol messages being sent to and
received from the PBFT network. On the other hand, the protocol work�ows require
the protocol messages to �nish all of their jobs. The protocol work�ows receive the
messages from the network layer by having the server implementation schedule emits
to the respective work�ows Source object. The server is also responsible for the other
server-side operations.

The Work�ow.cs �le is where the code for normal protocol work�ow and view-change
work�ow occurs. Chapter 7 introduces in detail how the work�ows are implemented.

32

6.3 Code structure

Figure 6.3.1: Summary of the �le architecture for the PBFT implementation

33

6.4 Persistent vs Ephemeral

6.4 Persistent vs Ephemeral

An important detail when using the Cleipnir framework is to have a general idea for which
parts of the system are desired to be persistent. As mentioned in Section 3.3, Cleipnir
allows for hybrid persistent programming allowing the developer the freedom to choose
which parts of the application to persist while keeping the rest of the data ephemeral. In
our case, it was essential to �gure out which data is needed to be persisted for the PBFT
algorithm to be easily reinstated should the system shutdown. In addition, when taking
advantage of hybrid persistent programming, it is important to avoid storing a lot of
unnecessary data as it generally slows down the synchronization period. Another reason
why making a distinct divide between persistent and ephemeral parts of the code is im-
portant is due to the di�culties encountered when using CTask together with traditional
asynchronous operations, as mentioned in Section 3.3. In our case, because our goal is to
evaluate both async/await and Cleipnir for implementation of consensus algorithms, it is
crucial to not interchange these tools as it would, in most cases, lead to race conditions.

Figure 6.4.1 shows parts of our PBFT implementation that are divided into persistent
parts and ephemeral parts. In addition, the �gure shows an illustration of how ephemeral
parts and persistent parts collaborate using arrows to dictate the program �ow. In
general, for our application, static functions and objects unrelated to the PBFT work�ow
are treated as ephemeral. Meanwhile, objects related to the PBFT implementations,
Source objects and functions that handle work�ow related to the PBFT protocol are
persisted. The server is an exception as some parts are persistent while others parts are
not. For example, the protocol logger is stored in the server and is persisted; on the other
hand, any code related to networking in the server is not persisted. We can view certain
operations occurring in the server as being treated as a bridge between the persistent part
and the ephemeral parts. By this, we mean that the server is responsible for handling
any messages received from the ephemeral socket connections and delivering them to the
appropriate protocol work�ow that is persistent.

These messages are then emitted to their respective reactive operators, which are run in
the persistent part and are waiting for changes to occur. There are a couple of exceptions
to this rule. For instance, if the message received is needed for the server-side, the message
is used directly by the server. A primary example of this being session messages. However,
for the server's non-persistent network handler to perform operations that a�ect the
persistent part run by Cleipnir, the operation must be scheduled by Cleipnir's execution
engine. There are two reasons for this syntax.

Firstly, code run by Cleipnir is not supposed to be a�ected by code outside of Cleipnir.
However, since the protocol work�ow relies on messages from the non-persistent network
layer, our application cannot avoid it. Therefore, a way for the persistent and non-
persistent areas to work together must be coordinated. To start, attempting to emit a
message to a Source object or perform an operation that changes the state of a per-
sisted object outside of a CTask function can cause the same scenario discussed earlier
in Chapter 3. That is, new threads are created, and Cleipnir attempts to perform the
operation concurrently. However, this scenario is not always thread-safe and sooner or
later causes issues for the system state.

34

6.4 Persistent vs Ephemeral

It is intended to avoid this problem by using the Cleipnir execution engine directly to
schedule the desired operation to be run with Cleipnir support. The Cleipnir execution
engine runs its scheduled operations using a FCFS approach, as mentioned in Section 3.1.
Scheduling operations desired for the protocol using the execution engine makes it easier
to keep track of operations, as they most likely run in a synchronous order with the other
operations happening in the protocol work�ow. However, this does not mean the system
is synchronous, as Cleipnir only gives an illusion of a synchronous system. The execution
engine can change the order of execution while another scheduled operation is idle or
stuck. In which case, the next scheduled operation is run. Listing 6.1 shows an example
of how to schedule an operation to the Cleipnir execution engine. In this example, the
server schedules a Phase message to be emitted to the ProtocolSource Source object.

To summarize, the relationship between the server, network layer, and the persistent
protocol work�ows is that the server is responsible for emitting any relevant messages
received from the network layer to the protocol work�ow. In addition, the server is also
responsible for preparing and sending any protocol messages it gets from the protocol
work�ow to the network layer so that the protocol messages are correctly sent to the other
replicas in the network. To accomplish this functionality, the protocol work�ows have an
object reference to the server. This means the protocol work�ow calls the appropriate
send function in the server object whenever a protocol work�ow needs a protocol message
to be sent over the network. Since both the normal protocol work�ow and view-change
work�ow are required to multicast protocol messages to move on in their respective
work�ows, the work�ows must directly reference the server object's multicast function.
All protocol work�ows that require the server reference are all a part of the class known
as Workflow

This design is unfortunately not perfect. Ultimately, since the server is responsible for
scheduling the operations revolving around protocol messages, the protocol work�ows
can become stuck if something happens to the scheduled emit. We have encountered
some situations where the scheduled operations to the Cleipnir execution engine never
�nishes its execution. This would not be considered a big issue most of the time as the
application is run asynchronously. However, there are some instances where this situation
can become a big problem. Usually, when scheduling an operation that requires emitting
an item to a Source object that currently does not have any receivers, the operation
never �nishes. When the server attempts to schedule an additional operation afterwards,
the operation is never scheduled, leading to the application getting stuck. This situation
seems to be similar to sending messages to a channel without any receivers in Golang [49],
despite that this is an issue that rarely occurs, but when it does, it is detrimental to the
system. Therefore, to counteract this issue, strict conditions are placed in the server to
avoid sending messages to reactive subjects in situations where there are no listeners.

35

6.4 Persistent vs Ephemeral

Figure 6.4.1: Application divided into persistent parts and ephermeral parts and how they
interact

1 pub l i c void EmitPhaseMessageLocally (PhaseMessage mes)
2 {
3 Console . WriteLine ("Emitting Phase Loca l l y ! ") ;
4 i f (Protoco lAct ive)
5 {
6 _scheduler . Schedule (() =>
7 {
8 Sub jec t s . Protoco lSub jec t . Emit (mes) ;
9 }) ;
10 }
11 }

Listing 6.1: Example of server and protocol interaction using Cleipnir scheduler

36

Chapter 7

Implementation

In this chapter we introduce our PBFT implementation. We will introduce the imple-
mentation for the request handler, normal protocol work�ow, view-changes, and �nally
checkpointing. We will also discuss how the Cleipnir framework is used to create the
working PBFT implementation, as well as discuss some bene�ts and limitations within
the current implementation design.

7.1 Design Choices

With the goal of the thesis in mind, the PBFT protocol work�ows were designed to be
as close de�ned to the protocol description as possible. To accomplish this, we believed
the best approach would be to design protocol-related work�ow as orderly as possible,
meaning we generally want to use synchronous programming work�ow whenever it is
possible. Several factors persuaded us to focus on keeping the majority of the protocol
operations synchronous. The �rst reason was that it is generally easier for developers to
keep track of the program's progress, making it easier to debug. Modern async/await
work�ow can generally achieve a similar program work�ow to that of synchronous work-
�ow. However, unless you are worried about blocking the main thread, there are no
added bene�ts in terms of complexity or e�ciency in using asynchronous programming
over synchronous programming. The second reason is in regards to using Cleipnir for
our protocol work�ows. We previously discussed in Section 6.4 and Section 3.3 that us-
ing normal asynchronous operations inside a function that uses Cleipnir is not a good
idea. Because we wanted to take advantage of reactive programming to handle protocol-
related messages in our protocol work�ow, we needed to use Cleipnir reactive framework.
In addition, since persistency is a core part of the Cleipnir framework, we decided it
was also best to keep persistency in mind while designing our application. Therefore we
decided to keep our protocol implementations inside CTask functions. Because of this,
the only form of asynchronous operations that are performed inside any of the protocol
work�ows are restricted to other CTask asynchronous operations. The await operator
still works the same as it does for traditional asynchronous operations. Allowing us to
take advantage of the await to set waiting points for CTask operations as well as on-

37

7.1 Design Choices

going reactive streams; Thereby giving the protocol work�ows an abstraction to that of
synchronous work�ows, even though, in reality, it is an asynchronous process. To enable
Cleipnir to persist in our protocol work�ow, we also had to make sure that objects we
wanted to persist in the protocol were persistable. To accomplish this, we initialized
both a serializer and deserializer functions for Cleipnir that follows the format speci�ed
in Section 3.3 to use for each of our de�ned protocol objects. Finally, to take advantage
of the Cleipnir persistency functionality, we have done our best to avoid creating circular
dependencies. Circular dependencies would essentially cause the serialization process to
fail, as it would lead to two references that depend on one another. We believe there are
no circular dependencies in our current implementation because the Cleipnir serialization
process does not crash during Cleipnir's synchronization process. However, if there does
exist a circular dependency in our application, the server's relationship with the protocol
work�ows would be our primary suspect. This is because the server emits messages to
the protocol work�ow while the protocol work�ow has an object reference to the server.
We believe they do not have a circular dependency because the server interacts with the
protocol work�ow through the Cleipnir execution engine and does not directly reference
the protocol work�ow. However, if our assumption is wrong, then this design would have
to be changed in the future.

To make it easier to understand the protocol work�ow, we believed the best approach
was to keep only the protocol processes described in the descriptions centred inside a
single function or class whenever it was possible. We chose this design primarily because
we wanted to make the code as readable as possible. It was deemed especially important
when designing the standard PBFT work�ow. This design was not entirely possible to
replicate for checkpoint and view-change work�ows. We also attempted to keep operations
unrelated to the protocol outside the protocol work�ow. Although in some cases, we
cannot avoid this issue. In these cases, a simple function call with a good function name
must su�ce to avoid increasing the complexity of the overall work�ow. An example of
this is using the server to send protocol messages to PBFT. It is a fundamental part of the
PBFT consensus algorithm to interchange protocol messages. However, the operations
performed in the sending operation itself do not a�ect the protocol work�ow. Therefore,
a simple call to the servers Multicast using the newly created protocol message as a
parameter should be decisive enough for readers of the work�ow.

Another important topic discussed in Section 6.4 was the need to use the Cleipnir exe-
cution engine to schedule operations when operations outside of Cleipnir are required to
a�ect persistent systems. To simplify this design in our application, we made practic-
ally all of the scheduled operations that use the Cleipnir execution engine be performed
within the server. This design is chosen to make it easier to keep track of where the
items are emitted to the protocol work�ows. The server has several emit functions ready
for scheduling the given message type to its desired Source object. In addition, all
functionality in regards to handling and sending incoming protocol messages from the
PBFT network to their respective protocol work�ow is centred in its own class called
MessageHandler. In order for the protocol work�ows to emit their protocol messages
and take advantage of this design, they are required to have a reference to the server ob-
ject; so they can easily call the correct emit functions. Alternatively, the work�ows need
to have access to and make a call to a given callback reference that calls the desired emit
function in the server. The second alternative here is quite useful when the operations

38

7.2 Work�ow Details

for the protocol work�ow are initialized in the server, making it easy to add a callback
reference as an initializer parameter. The reactive operations for the checkpoints and
view-change can potentially be initialized in the server, making it simple to assign the
correct callback function. An example of this is seen in Listing 7.9 and Listing 7.5 and
are discussed in more detail later in Section 7.2

Due to our goal of testing the Cleipnir reactive framework, we have deliberately chosen
to use the reactive framework every time our protocol work�ows needed to wait for
and handle protocol messages. This means the functionality for listening in for desired
protocol messages and the functionality used to make valid certi�cates are handled using
Cleipnir reactive framework. In addition, in certain areas, we have used Cleipnir reactive
framework to implement event-handlers that are set to activate certain processes once a
signal or item is sent to the desired process Source object.

Our PBFT implementation takes advantage of traditional asynchronous programming
for the network layer. We chose this design primarily due to asynchronous programming
being generally preferred for multi-client server design [8], [12]. Considering a replica
needed to handle multiple client requests and protocol messages from the other replicas,
this seemed like the best choice. The network layer does not take advantage of Cleipnir
reactive programming and persistency functionality. Therefore we do not have to worry
about CTask either, meaning the network functionality all uses traditional Task.

7.2 Work�ow Details

7.2.1 Protocol Work�ow Implementation

7.2.1.1 Starting protocol instance

A normal sequence for the PBFT implementation begins once the request handler receives
a request message from the server. The source code for the request handler can be seen in
Listing 7.1. The request handler listens for new requests messages emitted to the Source
object requestMessage as seen on line 3. As mentioned in Section 6.4, the server is tasked
with emitting messages received in the network layer to the appropriate Source object
for the protocol to access the message. The request handler is responsible for making
sure that the request received is valid. In addition, the request handler only starts a new
iteration of the PBFT protocol when the next sequence number is within the current
sequence number interval. This condition is handled by the if condition spanning lines
4-10. Finally, a new protocol instance is not initialized when the system is performing a
view-change. This is determined by the boolean value active which is tied to the protocol
execution object. Once all checks are passed, the request handler updates and collects the
current sequence number. Then it calls the asynchronous CTask function PerformProtocol
which initializes and starts the PBFT protocol for the given request. It is important
that the request handler is not forced to wait for the PerformProtocol function to �nish
because the application must have access to the requestMessage Source<Request> object.

39

7.2 Work�ow Details

This is because we desire an application that can process multiple requests from clients
at the same time. If the application does not have access to the requestMessage for a
long period, then it is likely that a request message emitted by the server gets lost.

1 whi l e (t rue)
2 {
3 var req = await requestMessage . Next () ;
4 i f (Crypto . Ver i f yS i gna tur e (
5 req . S ignature ,
6 req . CreateCopyTemplate () . S e r i a l i z eToBu f f e r () ,
7 s e rv . Cl ientPubKeyRegister [req . Cl ientID]
8)
9 && serv . CurSeqNr < serv . CurSeqRange . End . Value
10)
11 {
12 i f (execute . Act ive)
13 {
14 i n t seq = ++serv . CurSeqNr ;
15 Console . WriteLine ("Curseq : " + seq + " f o r r eque s t : " + req) ;
16 _ = PerformProtocol (execute , serv , schedule r , shutdownPhaseSource , req ,

seq) ;
17 }
18 }
19 }

Listing 7.1: Code section for the request handler

7.2.1.2 Pre-Prepare phase

The pre-prepare phase is the only part of the normal operation work�ow that has a
di�erent structure depending on whether or not the replica is the primary replica. The
source code for the primary replica's pre-prepare phase can be seen in Listing 7.2. If
the replica is the primary, it uses the sequence number that the protocol instance was
initialized with and creates a pre-prepare message for this sequence number. The pre-
prepare message also contains information regarding the primary's server id, current view,
and the request digest. The pre-prepare message dictates the other replicas sequence
number for the processing of the given request. The primary then initializes the protocol
certi�cate used for storing the proof of the prepare phase. Since the �rst received phase
message in the prepare phase is always supposed to be the pre-prepare message, the
protocol certi�cate used for the prepare phase always has the pre-prepare message as
its �rst entry in its proof list. The protocol instance then uses the server reference to
multicast the pre-prepare message to the other replicas in the network.

The source code for the pre-prepare phase for the non-primary replicas is shown in
Listing 7.3. The non-primary replica starts its protocol instance by subscribing to the
Source<PhaseMessage> MesBridge and listens for incoming phase messages. The sub-
scribe, listening, and handling process of the incoming items to the MesBridge is per-
formed on lines 3-12. Considering the replicas only want a pre-prepare message in this
reactive listener, it uses a WHERE clause to ignore any other phase message other than
ones that use the pre-prepare messages enum type. In addition, another WHERE clause is
assigned to avoid any pre-prepare messages designated for other requests by comparing
request digests. Therefore an incoming phase message can only pass the WHERE clause if
it involves the same request which the protocol instance is processing. The �nal WHERE

40

7.2 Work�ow Details

clause validates the phase message where the validation criteria are the same as the ones
mentioned in Section 4.3 for pre-prepare messages. Once the replica receives a pre-prepare
phase message which passes all the WHERE clauses, it creates a protocol certi�cate that
uses the same sequence number as the primary's pre-prepare phase message. The protocol
certi�cate for the prepare phase now has a matching sequence number for each replica.
The non-primary replica �nally ends the pre-prepare phase. The normal work�ow imple-
mentation starts the prepare phase by creating a prepare message and multicasting this
message using the same method the primary used for multicasting its pre-prepare phase.

The MERGE operator is used to ensure that the protocol execution is terminated if a
view-change occurs. If the timeout occurs, a unique phase message is emitted to the
Source<PhaseMessage> ShutdownBridgePhase. The MERGE operator binds Shutdown-
BridgePhase reactive stream together with the MesBridge stream. This means it is now
possible for theMesBridge to be unsubscribed without having to pass the previous operat-
ors in the reactive chain. This scenario only applies whenever a phase message is detected
in the ShutdownBridgePhase. As the Merge operator is the last reactive operator in the
chain, the stream returns the phase message received from the ShutdownBridgePhase as
the resulting phase message. This phase message is intentionally faulty and is not allowed
to be used in the prepare phase of the protocol. Therefore once this faulty phase message
is received, a timeout exception is instead called, which closes the instance of the protocol
execution.

The design chosen for the source code to the pre-prepare phase is simple and follows a
synchronous work�ow as we desired, making it easier for developers to write. Unfortu-
nately, there are two severe issues with our current implementation of the pre-prepare
phase. These issues are caused by a combination of splitting the code based on primary
versus non-primary and the importance of initializing instances of the reactive listeners
early. Both problems are theoretically very similar as they both are caused by improper
initialization of the reactive listeners used in the PBFT implementation. The �rst issue
occurs when the primary sends out its pre-prepare phase message before the non-primary
replicas have initialized the pre-prepare reactive listener. This results in the pre-prepare
phase message not being received by the non-replica, which means it fails the pre-prepare
phase. As the pre-prepare phase fails, the timeout will eventually occur, which puts the
replica into view-change mode as it believes that the primary replica is faulty. The second
issue is that a non-primary can receive a prepare message before it has received the initial
pre-prepare message from the primary. When this situation occurs, the prepare message
gets �ltered out by the pre-prepare reactive listener and is therefore not available once
this non-primary reaches the prepare phase. In the worst-case scenario, the replica loses
all of the prepare phase messages from the other replicas, meaning the protocol instance
is stuck in the prepare phase once it �nally receives its pre-prepare message.

These issues just discussed are caused primarily because the application struggles with
handling phase messages that are received out of intended order. There exist several
workarounds to handle messages that arrive out of order. However, most of the work-
arounds available would require adding a lot more complexity to the implementation. As
our goal for this thesis is to create an PBFT implementation that is very simple and
accurate to the protocol description, we decided not to redesign the protocol work�ow
to handle issues regarding pre-prepare messages out of order. As it is meant for the pre-

41

7.2 Work�ow Details

prepare message to get the other non-primary to start processing the request by providing
the correct sequence number, we feel it would not be faithful to the original algorithm
to change this design. Once the pre-prepare message is received, the reactive listener
for the prepare messages that did not have the same sequence number that matches the
received pre-prepare message would be �ltered out. Currently, to somewhat mitigate this
issue, the primary is forced to wait for at least a second before starting to multicast its
pre-prepare message. Performing this waiting period allows the other replicas to catch
up. Which makes it less likely that a replica is far enough behind to lose out on prepare
messages before completing handling their pre-prepare message. With this workaround,
the issues discussed here are, for the most part, stable. As an estimate, an average of 15
operations can be progressed without incident before a user encounters these issues.

1 P r o t o c o lC e r t i f i c a t e qce r tp r e ;
2 byte [] d i g e s t = Crypto . CreateDigest (c l i r e q) ;
3 i n t curSeq ;
4 i f (Serv . IsPrimary ()) //Primary
5 {
6 curSeq = l eade r s eq ;
7 Console . WriteLine ("CurSeq : " + curSeq) ;
8 Serv . I n i t i a l i z e L o g (curSeq) ;
9 PhaseMessage preprepare = new PhaseMessage (
10 Serv . ServID ,
11 curSeq ,
12 Serv . CurView ,
13 d ige s t ,
14 PMessageType . PrePrepare
15) ;
16 Serv . SignMessage (preprepare , MessageType . PhaseMessage) ;
17 qce r tp r e = new P r o t o c o lC e r t i f i c a t e (
18 preprepare . SeqNr ,
19 preprepare . ViewNr ,
20 d ige s t ,
21 CertType . Prepared ,
22 preprepare
23) ;
24 await S leep . Unt i l (1000) ;
25 Serv . Mul t i cas t (preprepare . S e r i a l i z eToBu f f e r () , MessageType . PhaseMessage) ;
26 }

Listing 7.2: Source code for pre-prepare phase for primary replica

42

7.2 Work�ow Details

1 e l s e //Not Primary
2 {
3 var preprepared = await MesBridge
4 .Where (pm => pm. PhaseType == PMessageType . PrePrepare)
5 .Where (pm => pm. Digest != nu l l && pm. Digest . SequenceEqual (d i g e s t))
6 .Where (pm => pm. Val idate (
7 Serv . ServPubKeyRegister [pm. ServID] ,
8 Serv . CurView ,
9 Serv . CurSeqRange)
10)
11 . Merge (ShutdownBridgePhase)
12 . Next () ;
13
14 i f (preprepared . ServID == =1 && preprepared . PhaseType == PMessageType . End)
15 throw new TimeoutException ("Timeout Occurred ! System i s no longe r a c t i v e ! ") ;
16 qce r tp r e = new P r o t o c o lC e r t i f i c a t e (
17 preprepared . SeqNr ,
18 Serv . CurView ,
19 d ige s t ,
20 CertType . Prepared ,
21 preprepared
22) ;
23 curSeq = qce r tp r e . SeqNr ;
24 Serv . I n i t i a l i z e L o g (curSeq) ;
25 PhaseMessage prepare = new PhaseMessage (
26 Serv . ServID ,
27 curSeq ,
28 Serv . CurView ,
29 d ige s t ,
30 PMessageType . Prepare
31) ;
32 Serv . SignMessage (prepare , MessageType . PhaseMessage) ;
33 qce r tp r e . Proo fL i s t .Add(prepare) ;
34 Serv . Mul t i cas t (prepare . S e r i a l i z eToBu f f e r () , MessageType . PhaseMessage) ;
35 }

Listing 7.3: Source code for Pre-prepare phase for non-primary replica

7.2.1.3 Prepare phase

In comparison to the Pre-prepare phase and the start of the prepare phase, the rest of the
work�ow in the implementation is relatively stable and straightforward. The prepare and
commit phase source code can be seen in Listing 7.4. The �rst step of the prepare phase
is to initialize the reactive listeners for prepare and commit phase messages. Due to the
listeners having several reactive operators connected to their stream, the code must span
several code lines to make it more readable. The prepare listener is initialized on lines
2 -18, and the commit listener is initialized on lines 25-42 in Listing 7.4. There are two
reasons why the reactive listeners for prepare and commit messages are initialized early.
The �rst reason is to reduce the time it takes for the work�ow to move from the pre-
prepare listener to the following reactive listeners. This time needs to be small to avoid
losing potential incoming phase messages to the reactive streams. The other reason is to
avoid ordering issues between prepare and commit messages. Since the sequence number
for the work�ow has already been determined during the pre-prepare phase, the prepare
and commit phase can initialize their reactive streams early and be active simultaneously.
Because of this, the prepare and commit phase does not su�er issues in regards to phase
messages being out of order. If the pre-prepare message did not dictate the sequence
number for non-primary replicas, this would have also been the ideal design for handling
phase messages during the pre-prepare phase.

43

7.2 Work�ow Details

The reactive listeners used for the prepare phase and the commit phase are almost prac-
tically identical. The only signi�cant di�erence between the two reactive listeners is that
they only accept phase messages in the stream with their respective protocol phase. For
example, the reactive listener for the prepare phase �lters away phase messages that do
not have protocol phase-type prepare. This operation is performed by the �rst WHERE

clause. In addition, the certi�cates for both protocol phases are also initialized early.
This is because the certi�cates are now actively updated through the operations in the
reactive listeners' stream instead of returning the emitted phase message.

During the prepare phase, the work�ow waits until the prepare certi�cate has added
2f + 1 unique prepare phase messages to its proof list. For a phase message to be added
to the prepare certi�cate, it must pass all of the WHERE clauses assigned for the reactive
listener. In actuality, the work�ow only waits for 2f prepare phase messages due to
the pre-prepare message already been added to the protocol certi�cate during the pre-
prepare phase. Once a valid phase message passes all of the �rst WHERE operators, it is
added to the designated protocol certi�cate using the SCAN operator. The SCAN operator
transforms the certi�cate's proof list to include the incoming phase message. The �nal
WHERE clause determines whether or not the certi�cate has reached a su�cient number
of valid phase messages in its proof list. The ValidateCertificate function essentially
calculates the number of phase messages inside the proof list when it excludes duplicates.
It also makes sure that the phase messages in the list are indeed valid. The asynchronous
await operator on line 45 is used to wait for the CAwaitable in the prepare phase reactive
listener to �nish all of the linked operators for the listener before moving on with the
protocol. Once the validation process has succeeded for the protocol certi�cate, the
work�ow can move past the await operator. The prepare phase �nishes after the prepare
protocol certi�cate is added to the protocol log in the server on line 47.

7.2.1.4 Commit Phase

As for the commit phase, like the other protocol phases, the �rst step is to have each
replica create a commit phase message and use the server to multicast the commit phase
over the PBFT network. Afterwards, the commit phase performs practically the same
operations as the prepare reactive listener. The commit reactive listener waits for the
proof list for the commit certi�cate to have at least 2f + 1 commit phase messages. The
reactive listener for the commit phase has an additional WHERE clause that makes sure that
the prepare phase has already �nished before exiting the commit reactive listener, which
is visible on line 41 in Listing 7.4. This extra WHERE clause is used to avoid the commit
certi�cate from being �nished before the prepare phase is complete. After the commit
certi�cate is successfully validated, the protocol work�ow is almost �nished processing
the given request. The protocol work�ow �rst adds the commit certi�cate to the protocol
logger as done prior to the prepare certi�cate before starting the remaining operations in
the protocol work�ow. The server now has two valid certi�cates for the given sequence
number assigned to the client request, meaning the replica has the necessary proof that
the replicas in the PBFT network agree to have the application perform the operation
for the given request. The application �nally performs the operation within the request.
The last remaining process is to create a reply message, digitally sign this reply message

44

7.2 Work�ow Details

and send the reply message to the client who initially sent the processed request. The
reply message includes information to the client in regards to whether the operation given
in the original request was completed successfully or not. In our PBFT implementation,
the only operation the application can do is to write the `operation' received from the
request to the console window and add the operation to a persistent list. The persistent
list representing the application state is discussed more in Section 7.2.2.

7.2.1.5 Protocol Work�ow Evaluation

We succeeded in our objective of creating an implementation that performs the standard
processes of the PBFT algorithm into a single function. We believe our resulting imple-
mentation is relatively faithful to the PBFT protocol when based only on the protocol
description. The majority of the operations performed in the normal protocol work�ow
are synchronous, making it easier to read the code. The reactive Source objects and
their chain of operators are the only operations that are performed asynchronously in
the normal protocol work�ow. The reactive operators still work well together with the
synchronous work�ow by completing the required checks and operations on the incoming
phase messages independently from the rest of the protocol work�ow. By taking advant-
age of the await command, we easily mark the areas in the protocol work�ow where we
know the protocol work�ow cannot function without the result from the reactive operat-
ors. We believe the most signi�cant bene�t for our design in the PBFT protocol work�ow
within a single function is that it became a lot easier to keep track of the protocol opera-
tions. For example, due to how the implementation handles the work�ow that creates the
protocol certi�cates, it is considerably straightforward to di�erentiate between the PBFT
protocol phases by looking at the source code. Basically, by looking for the await points
in the protocol work�ow, we can approximately determine where one of the three protocol
phases �nishes. It is an approximation since there are still a couple of operations required
to be performed, such as adding the certi�cate to the protocol log for the prepare and
commit phases. We would argue that it is a signi�cant challenge to simplify the code to
prepare and commit phases further without causing a severe issue for protocol work�ow.
Most of the complexity we currently have in our implementation comes from the fact
that the primary and non-primary replicas have di�erent operations in the pre-prepare
phase. In addition, our current stop functionality is not exactly straightforward, which
further hurts the simplicity of our implementation. We also believe that despite the func-
tionality of the reactive operators being convenient for handling protocol messages, they
may be di�cult for inexperienced programmers to read. The programmers should at the
very least have some fundamental knowledge in regards to chaining operators using query
languages such as SQL, preferably knowing the fundamentals of LINQ [50] statements,
to fully grasp most of the reactive operations available in the Cleipnir framework. The
normal work�ow implementation is around 135 lines of code when we exclude any ad-
ditional spaces used to make object initialization easier for others to read. In addition,
approximately 30% of the lines are used for the reactive operators. All in all, based on
these results, we would argue that the implementation is relatively short to be able to
handle all three protocol phases inside a single function. However, an apparent prob-
lem with keeping the functionality in this format was the di�culty of handling protocol
messages out of order, which forces the developer to deploy workarounds to avoid this

45

7.2 Work�ow Details

problem. We choose to initialize the Source objects as soon as possible to reduce the
number of phase messages dropped. Unfortunately, we cannot deal with the pre-prepare
phase messages due to only being used by non-primary replicas, which is a big downside
to using the desired format with reactive operators.

Due to us performing the protocol work�ow inside CTASK functions, we are not able
to use traditional asynchronous operations inside the protocol work�ow. This typically
means tasks regarding reading data from �les, server requests, networking, or any other
job that is preferred to be performed asynchronously should do so outside the protocol
work�ow. A developer would therefore need to keep this in mind when designing the
protocol-related work�ows. Still, regardless of whether or not the protocol work�ow is
performed inside a Task or a CTask, the work�ow is run asynchronously, allowing us to
e�ortless run instances of the protocol work�ow separately. Although, like when using
threads, we need to ensure that the separate asynchronous functions do not alter the
same properties if the execution order matters. Otherwise, the result of the application
state would become unpredictable. Although our PBFT implementation does add the
two resulting protocol certi�cates to a shared log, the sequence number assigned to the
protocol work�ow is unique for each iteration of the PBFT work�ow, allowing us to avoid
corrupting the protocol state. This is because all of the iterations will have a unique key
to store their protocol information. Despite being run in a CTask, the await operator
is still valuable for the protocol work�ow as it is used to wait for the certi�cates to
�nish. Without the ability to use the await operator, we would not have been able to
create the desired protocol work�ow. All in all, the asynchronous work�ow may hinder
the developer from performing certain operations directly inside the work�ow. It is still
bene�cial when looking at the bene�ts of running the protocol work�ow asynchronously.
The most signi�cant advantage of running the work�ow asynchronous is how simple it is
to start multiple iterations of the protocol work�ow. In addition, running the protocol
work�ow asynchronous should scale better for various clients in comparison to creating
separate threads.

Cleipnir reactive framework was handy for handling protocol work�ow received from
the server. Although we did have quite the big issue with the usage of Source objects
to create the protocol certi�cate before using the Cleipnir execution engine to schedule
the emits. Once we moved on to using universal formatting for emitting items to the
work�ows in Cleipnir, it has worked as intended. It was initially challenging to use
a couple of Cleipnir reactive operators such as Merge and Scan, but relatively simple
to learn the general approach of chaining reactive operations. Using Source objects
for sending the protocol messages to their appropriate code section is simple once the
Cleipnir execution engine was used to schedule the emits in order. From our experience
keeping the emit functionality centred to a designated object or class that has reference
to the execution engine is the recommended structure. Although, we must consider one
aspect when we use reactive programming to handle protocol messages. Each protocol
message, regardless of the owner, must all be sent to the protocol work�ow in the same
way. In our case, all phase messages had to be emitted to the Source object for the
phase message to be validated correctly. This includes its own phase message, meaning a
functionality must be available for the protocol work�ow to emit phase messages created
during protocol work�ow. The main advantage of using Cleipnir reactive framework to
handle protocol messages for the protocol work�ow is that we can structure all of the

46

7.2 Work�ow Details

code related to the phase message inside a single block of code. In addition, due to the
nature of chaining operators together in a reactive chain, it is easy to control the order
of the operations that need to be on the protocol message. Finally, combined with the
await operator, we can also easily dictate wherein the work�ow we want to wait for
the su�cient number of protocol messages to be received until the condition required
by the consensus algorithm is met. In our case, this would substitute for the process
of creating valid protocol certi�cates by submitting validated proofs until reaching the
quota. To summarize the main bene�ts, the Cleipnir reactive framework provided our
normal PBFT work�ow implementation was a simple way to validate and collect phase
messages to create valid protocol certi�cates. In addition, to making the collaboration
between the network layer and the protocol layer easier to develop. The downsides being
that they struggle with handling phase messages that are received out of order. Therefore,
as a consequence must be initialized as soon as possible to counteract this issue.

47

7.2 Work�ow Details

1 var prepared = MesBridge
2 .Where (pm => pm. PhaseType == PMessageType . Prepare)
3 .Where (pm => pm. SeqNr == qce r tp r e . SeqNr)
4 .Where (pm => pm. Val idate (
5 Serv . ServPubKeyRegister [pm. ServID] ,
6 Serv . CurView ,
7 Serv . CurSeqRange ,
8 qce r tp r e)
9)
10 .Where (pm => pm. Digest . SequenceEqual (qce r tp r e . CurReqDigest))
11 . Scan (qce r tp r e . Proo fL i s t , (p r o o f l i s t , message) =>
12 {
13 p r o o f l i s t .Add(message) ;
14 re turn p r o o f l i s t ;
15 })
16 .Where (_ => qce r tp r e . Va l i d a t eC e r t i f i c a t e (Fai lureNr))
17 . Next () ;
18 P r o t o c o lC e r t i f i c a t e qcertcom = new Pr o t o c o lC e r t i f i c a t e (
19 qce r tp r e . SeqNr ,
20 Serv . CurView ,
21 d ige s t ,
22 CertType . Committed
23) ;
24 var committed = MesBridge
25 .Where (pm => pm. PhaseType == PMessageType . Commit)
26 .Where (pm => pm. SeqNr == qcertcom . SeqNr)
27 .Where (pm => pm. Val idate (
28 Serv . ServPubKeyRegister [pm. ServID] ,
29 Serv . CurView ,
30 Serv . CurSeqRange ,
31 qcertcom)
32)
33 .Where (pm => pm. Digest . SequenceEqual (qcertcom . CurReqDigest))
34 . Scan (qcertcom . Proo fL i s t , (p r o o f l i s t , message) =>
35 {
36 p r o o f l i s t .Add(message) ;
37 re turn p r o o f l i s t ;
38 })
39 .Where (_ => qcertcom . Va l i d a t eC e r t i f i c a t e (Fai lureNr))
40 .Where (_ => qce r tp r e . Va l i d a t eC e r t i f i c a t e (Fai lureNr))
41 . Next () ;
42
43 Console . WriteLine ("Waiting f o r prepares ") ;
44 i f (Act ive) await prepared ;
45 e l s e throw new Constra intExcept ion ("System i s no l onge r a c t i v e ! ") ;
46 Serv . AddPro toco lCe r t i f i c a t e (qce r tp r e . SeqNr , qc e r tp r e) ; //add f i r s t c e r t i f i c a t e to Log
47
48 //Commit phase
49 PhaseMessage commitmes = new PhaseMessage (
50 Serv . ServID ,
51 curSeq ,
52 Serv . CurView ,
53 d ige s t ,
54 PMessageType . Commit
55) ;
56 Serv . SignMessage (commitmes , MessageType . PhaseMessage) ;
57 Serv . Mul t i cas t (commitmes . S e r i a l i z eToBu f f e r () , MessageType . PhaseMessage) ;
58 Serv . EmitPhaseMessageLocally (commitmes) ;
59 Console . WriteLine ("Waiting f o r commits") ;
60 i f (Act ive) await committed ;
61 e l s e throw new Constra intExcept ion ("System i s no l onge r a c t i v e ! ") ;
62 Serv . AddPro toco lCe r t i f i c a t e (qcertcom . SeqNr , qcertcom) ; //add second c e r t i f i c a t e to Log

Listing 7.4: Source code for Prepare and Commit phase

48

7.2 Work�ow Details

7.2.2 Checkpoint Implementation

The checkpointing process only occurs after a certain number of requests have been pro-
cessed by the PBFT implementation. The checkpoint interval determines the number of
requests. For our implementation, the checkpoint interval is set to �ve, meaning after
processing �ve requests, a new checkpoint is created for the system. Our implementa-
tion of the checkpoint work�ow is divided into three sections. The �rst section revolves
around creating a checkpoint certi�cate and starting an instance of the reactive checkpoint
work�ow. The reactive checkpoint work�ow performs the second part of the checkpoint
work�ow. In this part, a reactive Source object listens for incoming checkpoint mes-
sages, which are then validated and added to the checkpoint certi�cate's proof list. This
reactive process ends once a certi�cate has received su�cient checkpoint messages that
are deemed valid. The �nal part consists of emitting the �nished stable checkpoint to the
server to replace the last stable checkpoint in memory and start the garbage collection
process. We are now going to discuss each of these parts in more detail.

7.2.2.1 Initialize Checkpoint Certi�cate

The checkpoint certi�cate is initialized using the last sequence number used by the pro-
tocol work�ow. The checkpoint certi�cate also needs to create and store a digest of the
current state of the application. Our implementation makes the system digest based
on the persistent list that represents the application state. The persistent list contains
the operation messages from each of the fully processed requests by the PBFT protocol.
Therefore assuming no errors occur, then the checkpoint for sequence number �ve has
the digest of the list containing the operation from requests one to �ve.

The checkpoint work�ow starts by �rst initializing the checkpoint certi�cate. The certi-
�cate includes the information just described, such as the stable sequence number and
the digest of the application state. Once the initialization of the checkpoint certi�cate
is done, the checkpoint work�ow starts an instance of the checkpoint reactive work�ow
for the newly created checkpoint certi�cate. We refer to an instance of checkpoint react-
ive work�ow process as an Checkpoint Listener. Additionally, the checkpoint certi�cate
is added to the checkpoint logger using the stable sequence number as the key. The
process just described can be started in two separate ways. The �rst method is when
the replica itself actively starts the checkpoint process. This is when the replica has
processed enough requests in the PBFT work�ow to reach the checkpoint interval. The
other approach is when the replica receives a checkpoint message with a sequence number
currently not in the checkpoint logger. The checkpoint logger also needs to verify that
the checkpoint message has a higher sequence number than the last stable checkpoint
stored on the replica. Both methods perform the initialization of the checkpoint certi-
�cate and checkpoint listener. However, the sequence number used for the initialization
process di�er. The �rst method uses the last sequence number the protocol processed
that initially triggered the checkpoint process. The other way uses the sequence number
from the received checkpoint message. One thing to remember is that the replica only
performs this process only once for a sequence number. Meaning the protocol logger is
checked to determine whether or not the checkpoint certi�cate has already been initial-

49

7.2 Work�ow Details

ized or not. If the checkpoint certi�cate is already stored in the logger, the initialization
process is not performed again.

Regardless of the way the checkpoint certi�cate and listener are initialized, the replica is
still required to create and multicast its checkpoint message to the PBFT network once
the sequence number matches a checkpoint interval. The checkpoint message created
in the replica is also emitted to the checkpoint listener to allow it to be handled the
same way as the other checkpoint messages received from the PBFT network. The
checkpoint certi�cates initially stored in the checkpoint logger are not stable checkpoint
certi�cates, and our goal is to make at least one of these certi�cates stable. However, for
a checkpoint to be deemed stable, it needs to pass the certi�cate validation processes in
the checkpoint listener, which follow the same guidelines as the protocol certi�cate. A
replica can only store one stable checkpoint, meaning the previous stable checkpoint is
overwritten whenever a new stable checkpoint with a higher sequence is available. The
stable checkpoint certi�cate is used as de�nitive proof that the PBFT network agrees
on the state of the application up to the stable sequence, meaning the replicas in the
PBFT network now can garbage collect the protocol data from the logger up to the
stable sequence number. The garbage collection includes removing any stored checkpoint
certi�cates in the checkpoint logger with lower or equal sequence numbers to the stable
checkpoint certi�cate.

7.2.2.2 Checkpoint Listener Work�ow

The source code for an instance of a checkpoint listener is presented in Listing 7.5. The
checkpoint listener uses Source<Checkpoint> similar to how Source<PhaseMessage>

objects were used in the protocol work�ow. The server, once it receives a checkpoint
message from the network, emits the checkpoint message to the Source<Checkpoint>

shared by the server and the checkpoint listeners. The checkpoint listener listens for
checkpoint messages emitted by the server to the Source<Checkpoint> object. The
reactive operations performed on the Source<Checkpoint> object can be seen on lines 8-
17. The checkpoint message received on the stream is �rst validated before the checkpoint
certi�cate proof list is transformed to have the checkpoint message in its proof list. The
WHERE clauses on line 9 and 10 performs the validation for incoming checkpoint messages.
The SCAN operator is once again used to add the checkpoint to the certi�cate proof list.

Unlike the protocol work�ow, the iterations of the checkpoint listeners do not need to �n-
ish their execution. In addition, the checkpoint functionality is performed separately from
the protocol work�ow, meaning the protocol work�ow can process new requests while the
checkpoint work�ow tries to create a stable checkpoint certi�cate. Assuming the protocol
work�ow has not exceeded the sequence number interval otherwise, no additional requests
are processed by the protocol work�ow. If the protocol work�ow processes enough re-
quests, a new checkpoint listener is created for another checkpoint with a higher sequence
number than the preceding one. This means it is possible to have multiple checkpoint
listeners active at the same time. However, it then becomes a race for the checkpoint
listeners to see which one creates the next stable checkpoint certi�cate. Although it is
important to remember that the system does not process any new requests after it has

50

7.2 Work�ow Details

exceeded the current sequence number interval.

The reactive listener is �nished when all of the reactive operators for the Source<Checkpoint>
have ended, which requires the checkpoint certi�cate to be stable. A checkpoint certi�c-
ate is deemed stable once it has 2f +1 unique and valid checkpoint messages in its proof
list. The checkpoint messages in the proof list must match the checkpoint certi�cate
sequence number and digest, which are checked during the certi�cate validation in the
WHERE clause on line 16.

1 pub l i c async CTask L i s t en (
2 Checkpo in tCe r t i f i c a t e cpc ,
3 Dict ionary<int , RSAParameters> keys ,
4 Action<Checkpo in tCer t i f i c a t e> f inCa l l ba ck
5)
6 {
7 Console . WriteLine ("Checkpoint L i s t en e r : " + StableSeqNr) ;
8 await CheckpointBridge
9 .Where (check => check . StableSeqNr == StableSeqNr)
10 .Where (check => check . Va l idate (keys [check . ServID]))
11 . Scan (cpc . Proo fL i s t , (p r o o f l i s t , message) =>
12 {
13 p r o o f l i s t .Add(message) ;
14 re turn p r o o f l i s t ;
15 })
16 .Where (_ => cpc . Va l i d a t eC e r t i f i c a t e (Fai lureNr))
17 . Next () ;
18 f i nCa l l ba ck (cpc) ;
19 }

Listing 7.5: Source code for the Checkpoint Listener

7.2.2.3 Initiate Garbage Collection

The third part of the checkpoint functionality is rather simplistic. During startup, the
replica initializes its server functionality, including an asynchronous function that listens
on a reactive Source<CheckpointCertificate>. This reactive listener listens for a new
stable checkpoint certi�cate. Once the Source<CheckpointCertificate> object receives
a stable checkpoint certi�cate, the current stable checkpoint is overwritten by the one it
received. Afterwards, the operations in regards to garbage collection are performed. The
source code for listening for stable checkpoint certi�cate can be seen in Listing 7.6 The
Source<CheckpointCertificate> object connected to this function is persisted on the
server. The server has a prede�ned function that uses the Cleipnir scheduler to schedule
an emit to this Source object. Each checkpoint listener is initialized with the callback
reference to this function, which allows the checkpoint listener to immediately call the
callback address with the �nished stable checkpoint certi�cate whenever all reactive op-
erations are done. The call on the callback reference can be seen in Listing 7.5 on line
18. The Cleipnir execution engine then schedules the stable checkpoint to be emitted
to the reactive listener for stable checkpoint certi�cates. Once the Source object re-
ceives, the old stable checkpoint certi�cate is replaced by the new one, even in the case
where the replica does not have any existing stable checkpoint certi�cates. After the
new stable checkpoint certi�cate is assigned to the replica, the garbage collection pro-
cess begins. The garbage collection process consists of removing records with a lower or
equal sequence number to the new stable checkpoint certi�cate for the protocol, reply,

51

7.2 Work�ow Details

and checkpoint logger. After the garbage collection is completed, the sequence number
interval is extended, allowing the protocol work�ow to process more requests.

1 pub l i c async CTask ListenForStableCheckpoint ()
2 {
3 Console . WriteLine (" L i s t en f o r s t ab l e checkpo int s ") ;
4 whi l e (t rue)
5 {
6 var s tab l e check = await Sub jec t s . CheckpointFinSubject . Next () ;
7 Console . WriteLine ("Update Checkpoint State ") ;
8 Console . WriteLine (s tab l e check) ;
9 S t ab l eCheckpo in t sCe r t i f i c a t e = s tab l e check ;
10 GarbageCollectLog (S t ab l eCheckpo i n t sCe r t i f i c a t e . LastSeqNr) ;
11 GarbageCollectReplyLog (S t ab l eCheckpo in t sCe r t i f i c a t e . LastSeqNr) ;
12 GarbageCollectCheckpointLog (S t ab l eCheckpo in t sCe r t i f i c a t e . LastSeqNr) ;
13 UpdateRange (s tab l e check . LastSeqNr) ;
14 }
15 }

Listing 7.6: Reactive handler for new stable checkpoints

7.2.2.4 Checkpoint Work�ow Evaluation

Unfortunately, unlike the normal protocol work�ow, we could not keep the checkpoint
work�ow centred around a single function or class. The main challenge design-wise for
the checkpoint work�ow was the fact that the checkpoint process could be initialized
by any replica in the PBFT network. The checkpoint work�ow needed to handle both
initialization methods in addition to having the same work�ow regardless of whether or
not the process was initialized by a received checkpoint message or by the checkpoint
interval. Ultimately since the server network layer received the checkpoint messages, we
decided it was best to divide up the work�ow and instead initialize the certi�cate and
listener process only if no record existed for the stable sequence number. Regardless
we would argue that design-wise, we managed to divide up the program in such a way
that the process itself remains simple. It is not more complicated than summarizing the
checkpoint work�ow as initialization, listening, and initiate garbage collection. Of course,
it is a lot more di�cult when looking at individual operations in more detail.

Due to the checkpoint processes being performed wholly separate from the rest of the pro-
tocol work�ow, running most of the checkpoint work�ow asynchronously was important.
The checkpoint initialization process is only part of the checkpoint work�ow that was per-
formed synchronously. Both the checkpoint listener and the listen for stable checkpoint
certi�cate take advantage of both asynchronous programming and reactive programming.
Both parts of the work�ow are required to wait until the desired criteria are met. The
checkpoint listener is ideal for asynchronous work�ow because it is performed independ-
ently from the protocol work�ows. In addition, it is unclear when or if an instance of the
checkpoint listener would ever �nish. Therefore, it was crucial to make sure the check-
point listener does not block the thread or steal unnecessary resources. Regarding the
last part of the checkpoint functionality, it is required to be practically active all the time
as it is unclear when a new stable checkpoint is ready. However, since the garbage col-
lection process rarely occurs and most of the time, the checkpoint functionality is simply
waiting, thereby making it desirable to use asynchronous work�ow here.

52

7.2 Work�ow Details

Initially, we did not take much advantage of reactive programming when we designed
the process of making a checkpoint certi�cate stable by adding proofs to it. However,
changes were made to the design to accommodate for more reactive programming. The
result being the checkpoint listener work�ow we shown in Listing 7.5, which we described
in Section 7.2.2.2. The original implementation performed all checkpoint message val-
idations and certi�cate checks whenever a checkpoint message was being added to the
proof list. We managed this functionality by using a designated append function, which
performed the same operations that are now performed in the reactive chain in the check-
point listener. The original implementation was functional; however, it was also relatively
unstable, meaning we had many additional conditions to check based on where the ap-
pend function was called. The primary benefactor to the issues came with the usage of
the callback functionality. Not only did we have to assign a callback reference as part of
the checkpoint certi�cate, but the call process also became somewhat unpredictable. A
signi�cant contributor was that it was common to call the append function more times
than necessary due to receiving more checkpoint messages than was needed. Combine
this with the short time intervals between each checkpoint message, and you will get
unpredictable results. Not to mention, the Cleipnir execution engine had to schedule the
append function calls to avoid the state of the checkpoint certi�cate becoming unpre-
dictable. Safe to say, we generally preferred the second implementation, which is why
it is the presented work�ow. Generally, the design for the second implementation was a
lot more readable and easier to keep track of the work�ow. The second implementation
also was a lot more stable due to splitting up the processes in the append function into
separate reactive operators with more focus on completing a single task. It had better
performance due to only having to use the Cleipnir execution engine to schedule the emit
to the checkpoint listener rather than having to schedule all of the operations for each
checkpoint message as we were forced to with our original design. Finally, the checkpoint
certi�cate no longer needed to have a record of the callback address to the desired emit
function in the server. Instead, it was added as a parameter when the checkpoint listener
started listening. The garbage collector functionality has remained the same for both im-
plementations and uses Cleipnir reactive Source object similar to how channels are used
in Golang programming. Generally, this structure works well for the garbage collector
because emits only occurs whenever a new stable checkpoint certi�cate is ready.

7.2.3 View-change Implementation

As previously mentioned in Section 4.5 the goal of a view-change is to replace a faulty
primary replica with another non-faulty replica successfully. For a view-change to be
successful, the replicas in the PBFT network must agree upon a protocol state that
each replica can move on from after the leader change has occurred. Furthermore, the
view-change must ensure that the newly selected primary replica is not also faulty. The
implementation of the view-change functionality is a lot more complex in comparison
to the normal protocol work�ow. Several aspects make the view-change functionality
challenging to handle appropriately. The view-change must �rst have some functionality
to stop the normal protocol work�ow, even when the protocol is still processing a request.
Afterwards the view-change messages are exchanged over the PBFT network until 2f +
1 replicas agree that the system needs to change view. Finally, the replicas have to

53

7.2 Work�ow Details

reprocess any protocol certi�cates saved in the protocol logger. Our implementation of
the view-change can be better described by dividing the work�ow into three segments.
The �rst part consists of starting the view-change process. This includes the functionality
for stopping active protocol instances. In this section, the application is also set to
ignore future protocol messages received during the view-change process. The second
part consists of updating the replica's view information and creating and multicasting
a view-change message to the PBFT network. The second part is also responsible for
creating the view-change certi�cate. The last segment is the functionality in regards to
setting up the correct protocol state of the PBFT network for the new view. In the
following sections, we will describe the di�erent parts of our view-change implementation
in the order in which they are performed.

7.2.3.1 Starting a View-Change

A View-change is started whenever a replica deems the current primary to be faulty. In
our implementation, a replica can determine that a primary is defective in two separate
ways. The �rst is the more common approach. We use a timeout functionality to detect
irregular activity for the primary replica. The other condition that can start a view-
change for the replica is when the replica has received a total of 2f view-change messages
from the other replicas in the PBFT network. In this situation, the replica knows that
the view-change exchange only needs its own view-change message for it to be successful.

In our case, we only support timeout functionality in the protocol work�ow during the
period where a replica is waiting for a pre-prepare phase message from the primary for a
request the replica previously has received. Listing 7.7 shows the source code for where
the timeout functionality is initialized. Listing 7.7 also shows how we initialize and how
we stop the overall protocol work�ow. On line 9-12 we can initialize the AppOperation

within a WhenAny asynchronous function. The WhenAny creates a CTask for the two asyn-
chronous CTask operations AppOperation and ListenForShutdown. The CTask created
for WhenAny �nishes whenever either of the CTask has �nished its operation. In our case
the ListenForShutdown is simply waiting for the given Source object ShutdownSubject
to receive an item which constitutes as a shutdown signal. When a timeout occurs for
the protocol work�ow, the timeout emits an item to the ShutdownSubject, which in turn
results in ListenForShutdown �nishes �rst. Each iteration of the protocol work�ow is
given a CancellationToken to stop the timeout functionality after it has received a pre-
prepare message from the primary. The CTask<bool> result provided by the WhenAny is
used to tell the work�ow whether or not the AppOperation managed to �nish or if the
timeout occurred �rst. If the AppOperation �nishes �rst, then the return value is true.
Otherwise, a timeout has occurred, and the boolean value is false. If the boolean has false
value, we set the application to be in what we refer to as inactive mode. In inactive mode,
all requests and protocol-related messages such as phase messages and checkpoints are ig-
nored. The application remains in inactive mode until all of the segments of view-change
have been successfully completed.

After the application is set to be inactive, the application must also stop any active normal
protocol work�ows. Theoretically, it is possible to keep existing protocol iterations alive

54

7.2 Work�ow Details

during and after a view-change occurs. However, it would be rather wasteful because the
CTasks are never �nished. The CTasks are never stopped because the reactive streams
never �nish all of their reactive operators. This, in turn, would unnecessarily drain the
system of resources due to each time an item is emitted to the protocol Source objects,
the old iterations would receive these items as well. The old protocol work�ows would
drop them quite quickly because the view number of the received message never matches
the old protocols, which is one of the �rst Where clauses used for the reactive stream. All
in all, keeping the old protocol work�ows running is possible but would be unnecessary
and would waste resources. For this reason, we thought it is preferable to terminate any
active protocol process whenever a view-change occurred.

We accomplish this by having the application emit a clearly faulty phase message to a
Source<Phasemessage> called shutdownPhaseSource. This Source object corresponds
to the Source<Phasemessage> used in the Merge operator shown in Listing 7.3. As we
mentioned earlier in the Section 7.2.1.2, once the protocol work�ow iterations receive
the faulty pre-prepare message, it exits the function by throwing, as well as catching, a
TimeoutException. In the case where the system has already received 2f view-change
messages, the system emits the shutdown signal to the same ShutdownSubject Source

object we use in the ListenForShutdown CTask function. Meaning the initialization
for the view-change functionality does remain the same regardless of the method used
to initiate it. The details in regards to handling view-change messages are described in
detail in Paragraph 7.2.3.2.1. Line 29 in Listing 7.7 is where the view-change functionality
begins, and the await operator is used to make sure the view-change is completed before
the protocol can go back to being active.

55

7.2 Work�ow Details

1 Cance l lat ionTokenSource cance l = new Cancel lat ionTokenSource () ;
2 _ = TimeoutOps . AbortableProtocolTimeoutOperat ion (// s t a r t s t imeout
3 se rv . Sub jec t s . ShutdownSubject ,
4 10000 ,
5 cance l . Token ,
6 s chedu l e r
7) ;
8 execute . Serv . ChangeCl ientStatus (req . Cl ientID) ;
9 bool r e s = await WhenAny<bool >.Of (
10 AppOperation (req , execute , seq , cance l) ,
11 ListenForShutdown (se rv . Sub jec t s . ShutdownSubject)
12) ;
13 Console . WriteLine ("Result : " + r e s) ;
14 i f (r e s)
15 {
16 Console . WriteLine ($"APP OPERATION { seq } FINISHED") ;
17 . . .
18 }
19 e l s e
20 {
21 i f (execute . Act ive)
22 {
23 Console . WriteLine ("View=Change s t a r t i n g ") ;
24 execute . Act ive = f a l s e ;
25 se rv . Protoco lAct ive = f a l s e ;
26 await s chedu l e r . Schedule (() =>
27 shutdownPhaseSource . Emit (new PhaseMessage (=1 , =1, =1, nu l l , PMessageType . End)
28)) ;
29 await execute . HandlePrimaryChange2 () ;
30 Console . WriteLine ("View=Change completed") ;
31 se rv . UpdateSeqNr () ;
32 i f (s e rv . CurSeqNr % serv . CheckpointConstant == 0 && serv . CurSeqNr != 0
33 | | s e rv . S t ab l eCheckpo in t sCe r t i f i c a t e == nu l l && serv . CurSeqNr >

serv . CheckpointConstant
34 | | s e rv . S t ab l eCheckpo in t sCe r t i f i c a t e != nu l l &&
35 (se rv . S t ab l eCheckpo in t sCe r t i f i c a t e . LastSeqNr + serv . CheckpointConstant) <

serv . CurSeqNr)
36 se rv . CreateCheckpoint2 (execute . Serv . CurSeqNr , PseudoApp) ;
37 execute . Act ive = true ;
38 se rv . Protoco lAct ive = true ;
39 se rv . GarbageViewChangeRegistry (s e rv . CurView) ;
40 se rv . Rese tC l i en tSta tus () ;

Listing 7.7: Handling timeout for the normal protocol work�ow and initiate the View-Change
process

7.2.3.2 View-Change functionality

Listing 7.8 shows the overall work�ow for our implementation of the view-change func-
tionality. The work�ow shown in Listing 7.8 is responsible for initializing and keeping in
order the two last segments of our view-change implementation. Meaning it is responsible
for updating the view information for the replica. When the replica starts participating
in the view-change process, it needs to both create and multicast the replica's view-
change message to the PBFT network. In addition, the replica needs to start listening
in for and handle any incoming view-change messages received from the PBFT network.
Once a valid view-change certi�cate is made, the replica starts the new-view phase of the
view-change work�ow.

A view-change can pick a new non-faulty primary as its leader due to the next primary
being solely dependent on the p = v mod R formula. Therefore we needed to implement
a functionality that could restart the view-change process inde�nitely if the view-change

56

7.2 Work�ow Details

exchange or new-view process were to fail or take too long. To handle this functionality,
we currently use a mix of timeout operations and goto statements to reroute the program
�ow back to the beginning of the view-change process [51]. Speci�cally, by restarting the
view-change work�ow whenever a timeout occurs, we force the view-change functionality
to keep updating its view information. Therefore, the view number is incremented each
time the view-change protocol restarts, meaning the new primary chosen for the new
view is continuously being swapped until a non-faulty primary is �nally chosen. The
timeout operations are initialized and used the same as they were for stopping the normal
protocol work�ow. This includes initializing them with cancellation tokens so that they
can be stopped once the work�ow has succeeded in performing the desired operation.
Both the view-change exchange and the new-view process have their respective timeout
operation. The view-change exchange has a timeout set to 10 seconds, just like the
normal work�ow, while the new-view process has a timeout set to 15 seconds. Extra
time is added for the new-view process since it needs to reprocess at worst-case �ve
requests for our implementation. The worst-case scenario number is determined by the
checkpoint interval, which is set to �ve requests for our case. Therefore, the protocol
logger could only have up to four �nished requests where the last request is never fully
processed by the protocol work�ow. The WhenAny asynchronous function is once again
used together with the timeout operations. If the view-change process is successful, the
program moves on as intended. In the case where the timeout occurs �rst, then the goto
statement moves the program back to the ViewChange label we initialized at the very
�rst line of the view-change work�ow. Just like in the checkpoint work�ow, we refer
to the functionality that uses Source object to listen for view-change messages emitted
by the server to create a valid view-change certi�cate as an iteration of a View-change
Listener. Depending on whether or not the server has received any view-change for
the current next view number or not, the view-change work�ow may need to initialize
the view-change certi�cate and view-change listener. This initialization process occurs
on lines 8-17. After the view information is updated and the view-change certi�cate
and view-change listener is initialized, the replica creates a view-change message and
multicasts this over the PBFT network. Afterwards the view-change work�ow needs to
wait for the view-change listener to keep adding view-change messages until the view-
change certi�cate becomes valid by having 2f +1 unique and valid view-change messages
in its proof list. If this operation takes too long, then the timeout occurs, and the
view-change work�ow starts anew. This functionality is visible on lines 45-47, where
the listener refers to a function that listens on a Source<bool> that only returns true
whenever it receives an item on its reactive stream. The Source<bool> is only emitted
to, by the server, when the view-change listener is �nished making a valid view-change
certi�cate. Once the view-change exchange is complete, the view-change work�ow moves
on to the new-view phase. This functionality is performed in the ViewChangeProtocol

referred to in the next WhenAny function at line 56-58. If this operation takes too long,
then the timeout once again is triggered, and the program starts at the top of the view-
change work�ow. The ViewChangeProtocol is responsible for having the new primary
create a valid new-view message and multicast this message to the other replicas. The
other replicas are responsible for validating that the information in the new-view message
is valid. Finally, the work�ow reprocesses the request that needs to be processed again.
Once the view-change work�ow shown in Listing 7.8 is �nished, then the view-change is
completed, and the application can once again start processing new client requests.

57

7.2 Work�ow Details

1 ViewChange :
2 // I n i t i a l i z e
3 Serv . CurPrimary . NextPrimary () ;
4 Serv . CurView++;
5 ViewChangeCert i f i cate vcc ;
6 i f (! Serv . ViewMessageRegister . ContainsKey (Serv . CurView))
7 {
8 vcc = new ViewChangeCert i f i cate (Serv . CurPrimary , Serv . S tab l eCheckpo in t sCe r t i f i c a t e ,

nu l l , nu l l) ;
9 Serv . ViewMessageRegister [Serv . CurView] = vcc ;
10 ViewChangeListener v c l L i s t e n e r = new ViewChangeListener (
11 Serv . CurView ,
12 Quorum . Ca l cu l a t eFa i l u r eL im i t (Serv . Tota lRep l i ca s) ,
13 Serv . CurPrimary ,
14 Serv . Sub jec t s . ViewChangeSubject ,
15 f a l s e
16) ;
17 _ = vc lL i s t e n e r . L i s t en (vcc , Serv . ServPubKeyRegister , Serv . EmitViewChange , nu l l) ;
18 }
19 e l s e
20 {
21 vcc = Serv . ViewMessageRegister [Serv . CurView] ;
22 }
23 var l i s t e n e r = ListenForViewChange () ;
24 var shutdownsource = new Source<bool >() ;
25 ViewChange vc ;
26 CDictionary<int , P r o t o c o lCe r t i f i c a t e > preps ;
27 i f (Serv . S t ab l eCheckpo i n t sCe r t i f i c a t e == nu l l)
28 {
29 preps = Serv . Co l l e c tP r e p a r eC e r t i f i c a t e s (=1) ;
30 vc = new ViewChange (0 , Serv . ServID , Serv . CurView , nu l l , preps) ;
31 }
32 e l s e
33 {
34 i n t s t ab l e s e q = Serv . S t ab l eCheckpo in t sCe r t i f i c a t e . LastSeqNr ;
35 preps = Serv . Co l l e c tP r e p a r eC e r t i f i c a t e s (s t ab l e s e q) ;
36 vc = new ViewChange (s tab l e s eq , Serv . ServID , Serv . CurView ,

Serv . S tab l eCheckpo in t sCe r t i f i c a t e , preps) ;
37 }
38
39 //View=change
40 Serv . SignMessage (vc , MessageType . ViewChange) ;
41 Serv . EmitViewChangeLocally (vc) ;
42 Serv . Mul t i cas t (vc . S e r i a l i z eToBu f f e r () , MessageType . ViewChange) ;
43 Cance l lat ionTokenSource cance l = new Cancel lat ionTokenSource () ;
44 _= TimeoutOps . AbortableProtocolTimeoutOperationCTask (shutdownsource , 10000 ,

cance l . Token) ;
45 bool vcs = await WhenAny<bool >.Of (
46 l i s t e n e r ,
47 ListenForShutdown (shutdownsource)
48) ;
49 i f (! vcs) goto ViewChange ;
50 cance l . Cancel () ;
51
52 //New=view .
53 Source<bool> shutdownsource2 = new Source<bool >() ;
54 Cance l lat ionTokenSource cance l2 = new Cancel lat ionTokenSource () ;
55 _= TimeoutOps . AbortableProtocolTimeoutOperationCTask (shutdownsource2 , 15000 ,

cance l2 . Token) ;
56 bool va l = await WhenAny<bool >.Of (
57 ViewChangeProtocol (preps , vcc) ,
58 ListenForShutdown (shutdownsource2)
59) ;
60 i f (! va l) goto ViewChange ;
61 cance l2 . Cancel () ;

Listing 7.8: Overall source code for handling view-changes.

58

7.2 Work�ow Details

7.2.3.2.1 View-Change Listener Work�ow Listing 7.9 shows the source code for
our implementation of a view-change listener. Similar to the checkpoint listener, there are
two separate ways to initialize an instance of the view-change listener. The �rst and most
common method is for a timeout to occur in the protocol work�ow due to not receiving
the pre-prepare message. This, in turn, starts the view-change work�ow for the replica,
which initializes the view-change listener and view-change certi�cate for the following
view number. The alternative way to start a view-change listener is for the server to
receive a view-change message with a view number that it currently does not have in its
view-change log. The server has a view-change log for each view-change certi�cate that
the application is currently working on. This is for the case when the PBFT network
is very large, and the replicas may disagree upon the next view number. Therefore,
when the replica has been set to the inactive mode or participates for another next view
number, it needs to collect any view-change messages for other next view numbers.

The view-change listener deviates a bit from the protocol work�ow and checkpoint listener.
The main di�erence is that it requires the ability to call upon a shutdown emit in the
case where the system already has gotten 2f view-change messages. The reason for this
functionality is due to making the system more e�cient. The replica does not need to
wait for a timeout to occur if it already has received 2f view-change messages since the
PBFT network only requires that replica's view-change message to instantiate the new
view. Therefore the process is sped up by calling a shutdown emit if it already has 2f .
Of course, this functionality is only helpful if the replica is still in active mode. This
is the reason we added the option toggle on whether or not to use the shutdown emit
functionality. To utilize the shutdown functionality, the boolean parameter Shutdown

must be set to true, and the view-change listener must have a callback address to the
server shutdown emit function. The server function schedules an item to be sent to the
same Source<bool> ShutdownSubject that is used for the timeout functionality in the
protocol work�ow. This allows us to e�ectively stop the protocol work�ow and set the
application to be in inactive mode whenever the replica knows its vote can start a new
view process.

The reactive listener performs relatively the same operators for the reactive stream as
the normal protocol work�ow did for its reactive handlers in the prepare and commit
phase and like the checkpoint listener. Firstly, we want only to accept view-change
messages that belong to the same view number used for the view-change certi�cate that
the view-change listener is handling. Secondly, the view-change messages received are
validated to make sure that it is a valid view-change message. Assuming the validation
process is successful, the view-change message is added to the proof list of the view-
change certi�cate. The �nal reactive operator validates the view-change certi�cate to
see if it has received a su�cient number of unique and valid view-change messages in
its proof list. After the view-change reactive listener is �nished and a valid view-change
certi�cate is ready, the callback function �nCallback calls the server to emit a signal to
the view-change work�ow that the view-change certi�cate is �nished. Once it receives the
signal, the view-change work�ow moves on to the next-view process of the view-change
work�ow.

As can be seen in Listing 7.9, there are two reactive chains used in the view-change
listener. They both listen on the same Source object, but only one of them is active at

59

7.2 Work�ow Details

a time. The �rst reactive chain belongs to the shutdown functionality and can be seen
on lines 3-15. This one is used when the shutdown functionality is active for the view-
change listener. The other reactive chain is seen on lines 17-26. They both perform the
same initial Where clauses and the functionality for adding valid view-change messages
to the view-change certi�cate. The only part di�erentiating between the two is the last
Where clause. The shutdown reactive chain determines whether or not the view-change
certi�cate has received 2f unique view-change messages in its proof list, while the other
has the traditional check of 2f + 1 unique view-change messages. Regardless of whether
or not the shutdown functionality is used, the last reactive chain determines whether
or not the view-change certi�cate is valid or not. Therefore, whenever the shutdown
functionality has �nished all of its operations, the program work�ow naturally must wait
in the second reactive chain for the view-change certi�cate to receive its last view-change
message, which in likelihood should be replicas own view-change message.

1 i f (Shutdown && shutdownCallback != nu l l)
2 {
3 Console . WriteLine ("With shutdown") ;
4 await ViewBridge
5 .Where (vc => vc . NextViewNr == NewViewNr)
6 .Where (vc => vc . Va l idate (keys [vc . ServID] , ServerViewInfo . ViewNr))
7 . Scan (vcc . Proo fL i s t , (p r o o f l i s t , message) =>
8 {
9 p r o o f l i s t .Add(message) ;
10 re turn p r o o f l i s t ;
11 })
12 .Where (_ => vcc . ShutdownReached (Fai lureNr))
13 . Next () ;
14 Console . WriteLine (" Ca l l i ng shutdown") ;
15 shutdownCallback () ;
16 }
17 await ViewBridge
18 .Where (vc => vc . NextViewNr == NewViewNr)
19 .Where (vc => vc . Va l idate (keys [vc . ServID] , ServerViewInfo . ViewNr))
20 . Scan (vcc . Proo fL i s t , (p r o o f l i s t , message) =>
21 {
22 p r o o f l i s t .Add(message) ;
23 re turn p r o o f l i s t ;
24 })
25 .Where (_ => vcc . Va l i d a t eC e r t i f i c a t e (Fai lureNr))
26 . Next () ;
27 Console . WriteLine (" Fin i shed L i s t en view changes ") ;
28 f i nCa l l back () ;

Listing 7.9: Source code for View-Change Listener

7.2.3.2.2 New-View Work�ow The goal of this segment is to initialize the new
common PBFT protocol state of the system after the view-change process is completed.
The protocol state is determined by looking at the current stable checkpoint and the
di�erent protocol certi�cates obtained from the view-change messages. Thankfully the
stable checkpoint can choose the last sequence number in which the majority of the
replicas have agreed upon the application state. On the other hand, requests that are
processed with higher sequence numbers do not have that guarantee. Therefore, the
system is unsure whether or not the majority of replicas have actually managed to process
these requests appropriately. The only way to be sure none of the protocol certi�cates

60

7.2 Work�ow Details

are corrupted or incomplete is to redo their processing. Since each replica sends copies
of their protocol certi�cates stored and their last checkpoint proof in their view-change
message, it is possible to determine the requests that have to be reprocessed, including
vital information needed to reprocess the request. The new primary is given the task to
ready pre-prepare messages for each request that has to be reprocessed. In the unfortunate
situation where there does not exist a protocol certi�cate record for a request that does
need to be reprocessed, the digest of the request is set to null, indicating a missing
operation. The list of pre-prepare phase messages created by the new primary is added
to a new view message and multicasted to the other replicas in the PBFT. The new-view
message also contains the view-change certi�cate created from the view-change message
exchange. In this way, the new-view message is essentially a message to the other replicas
in the network, relaying that it is the new primary of the PBFT system, and here is the
proof to show it. The other replicas validate the new-view message they receive from the
new primary. If the information in the new-view message is incorrect, the replica treats
this as a failure of the new-view phase of the work�ow and restarts the view-change
process with the following view number. Otherwise, the replicas join the new primary in
reprocessing the requests anew.

The source code for the reprocessing functionality can be seen in Listing 7.10. The code
here is clearly very similar to the normal protocol work�ow shown earlier in Listing 7.4
as we are literally attempting to do the same operations. The most obvious di�erence
between the two work�ows is the lack of pre-prepare phase for the redo processing since
all pre-prepare phase messages have already been made and multicasted to the replicas.
Since we know that the reprocess functionality is repeated until all of the pre-prepare
phase messages for the protocol state are reprocessed, we decided it was best to iterate
the reprocess functionality over the list of pre-prepare messages. As the pre-prepare phase
messages have already been exchanged with the other replicas, the new primary only
needs to listen and wait for the prepare phase messages from the other replicas during the
prepare phase. Just like in the normal work�ow, every replica, including the new primary,
has to participate in the commit phase by creating a commit message and multicasting
it over the PBFT network. The reactive operators used for the reactive chain are the
same as those used in the prepare and commit phase in the normal protocol work�ow.
Although to avoid potentially cause issues with the Cleipnir execution engine, we decided
to use a di�erent Source<PhaseMessage> object for the reprocessing functionality. This
Source object is known as ReMesBridge as can be seen on line 16 and 27. The reason why
we decided to use di�erent Source objects to di�erentiate between the normal work�ow
and the reprocess work�ow is because we wanted to avoid potentially scheduling phase
messages for the wrong work�ow. From our experience scheduling for the same Source

object for two separate work�ows can, in the best case, be easily �ltered out by the Where
clauses. However, in the worst-case scenario, it can freeze the program due to scheduling
an emit without any listeners for said Source object, when the program still needs to
schedule other additional operations before the listeners are initialized. Therefore, to
avoid this issue, we instead use two Source<PhaseMessage>, where the server schedules
the phase message to be emitted to the appropriate Source object based on whether the
application is active or inactive.

Unfortunately, just like the protocol work�ow, the redo functionality can potentially fail
and get stuck. On the other hand, this is not a signi�cant issue as the view-change

61

7.2 Work�ow Details

work�ow can move on to the next view number and restart the view-change work�ow
if the reprocessing takes too long. This means the application never gets thoroughly
stuck, even in the case the redo functionality fails. The redo functionality can fail if
too many messages are received and emitted before the reactive listeners are ready. As
the redo functionality immediately moves on to reprocess the next pre-prepare message
whenever it is �nished with another, it is possible to lose the phase messages for the
next one if the other replicas are a lot faster. To mitigate the loss of phase messages, we
decided to add wait periods where we know it is possible to miss phase messages. The
�rst wait period is set to half a second and is performed right after the reactive listeners
are de�ned on line 38. The other wait period is set to three-quarters of a second and
is performed after the prepare phase is �nished on line 53. Once the redo functionality
has successfully reprocessed all of the pre-prepare phase messages for previous requests,
the protocol logger should now have the two valid prepare certi�cates for each sequence
number up to the point when the view-change was initiated. The view-change is then
completed, and the application is once again set to active mode. We also perform garbage
collection for the view-change log once the view-change is deemed successful, as seen in
Listing 7.7.

62

7.2 Work�ow Details

1 fo r each (var prepre in o l dp r eL i s t)
2 {
3 var p r e c e r t = new P r o t o c o lC e r t i f i c a t e (
4 prepre . SeqNr ,
5 prepre . ViewNr ,
6 prepre . Digest ,
7 CertType . Prepared , prepre
8) ;
9 var comcert = new P r o t o c o lC e r t i f i c a t e (
10 prepre . SeqNr ,
11 prepre . ViewNr ,
12 prepre . Digest ,
13 CertType . Committed
14) ;
15 Serv . I n i t i a l i z e L o g (prepre . SeqNr) ;
16 var preps = ReMesBridge
17 .Where (pm => pm. PhaseType == PMessageType . Prepare)
18 .Where (pm => pm. SeqNr == prepre . SeqNr)
19 .Where (pm => pm. ValidateRedo (Serv . ServPubKeyRegister [pm. ServID] ,

prepre . ViewNr))
20 . Scan (p r e c e r t . Proo fL i s t , (p r o o f l i s t , message) =>
21 {
22 p r o o f l i s t .Add(message) ;
23 re turn p r o o f l i s t ;
24 })
25 .Where (_ => pre c e r t . Va l i d a t eC e r t i f i c a t e (Fai lureNr))
26 . Next () ;
27 var coms = ReMesBridge
28 .Where (pm => pm. PhaseType == PMessageType . Commit)
29 .Where (pm => pm. SeqNr == comcert . SeqNr)
30 .Where (pm => pm. ValidateRedo (Serv . ServPubKeyRegister [pm. ServID] ,

prepre . ViewNr))
31 . Scan (comcert . Proo fL i s t , (p r o o f l i s t , message) =>
32 {
33 p r o o f l i s t .Add(message) ;
34 re turn p r o o f l i s t ;
35 })
36 .Where (_ => comcert . Va l i d a t eC e r t i f i c a t e (Fai lureNr))
37 . Next () ;
38 await S leep . Unt i l (500) ;
39 i f (! Serv . IsPrimary ())
40 {
41 var prepare = new PhaseMessage (
42 Serv . ServID ,
43 prepre . SeqNr ,
44 prepre . ViewNr ,
45 prepre . Digest ,
46 PMessageType . Prepare
47) ;
48 Serv . SignMessage (prepare , MessageType . PhaseMessage) ;
49 Serv . Mul t i cas t (prepare . S e r i a l i z eToBu f f e r () , MessageType . PhaseMessage) ;
50 Serv . EmitRedistPhaseMessageLocal ly (prepare) ;
51 }
52 await preps ;
53 await S leep . Unt i l (750) ;
54 Console . WriteLine ("Prepare c e r t i f i c a t e : " + pr e c e r t . SeqNr + " i s f i n i s h e d ") ;
55 Serv . AddPro toco lCe r t i f i c a t e (prepre . SeqNr , p r e c e r t) ;
56
57 var commes = new PhaseMessage (
58 Serv . ServID ,
59 prepre . SeqNr ,
60 prepre . ViewNr ,
61 prepre . Digest ,
62 PMessageType . Commit
63) ;
64 Serv . SignMessage (commes , MessageType . PhaseMessage) ;
65 Serv . Mul t i cas t (commes . S e r i a l i z eToBu f f e r () , MessageType . PhaseMessage) ;
66 Serv . EmitRedistPhaseMessageLocal ly (commes) ;
67 await coms ;
68
69 Console . WriteLine ("Commit c e r t i f i c a t e : " + comcert . SeqNr + " i s f i n i s h e d ") ;
70 Serv . AddPro toco lCe r t i f i c a t e (prepre . SeqNr , comcert) ;
71 }

Listing 7.10: Redo Protocol Functionality

63

7.2 Work�ow Details

7.2.3.3 View-Change Evaluation

It was impossible to center the entire view-change functionality in the same function,
just like with the checkpoint functionality. Although in the view-change functionality, a
couple more issues needed to be handled. Just like in the checkpoint work�ow, the view-
change work�ow could be initialized by any of the replicas. In addition, to managing
timeout functionality and reprocessing functionality, the view-change work�ow became
a lot more complex than initially intended. We have done our best to divide up the
jobs for the view-change work�ow into separate segments based on the objective of the
di�erent jobs. We would argue that the view-change initialization process, view-change
listener, and the redo protocol process all follow simple designs. On the other hand,
the overall view-change functionality is more cluttered. Generally, this is because it has
to both potentially initialize the view-change certi�cate and view-change listener. In
addition to handling timeout functionality and restart functionality. The view-change
functionality would be even more cluttered if the new-view process were not performed
in its own CTask, even though the motivation for doing so was to keep it separate due to
the timeout functionality.

Similar to the normal protocol work�ow, all of the processes in the view-change function-
ality are run in CTASK asynchronous functions. Therefore, we cannot perform traditional
asynchronous functionality inside the view-change functionality. However, we can still
perform other asynchronous CTASK functions within the view-change work�ow. The main
bene�t of asynchronous work�ow for view-change functionality is to handle the restart
functionality. By performing separate tasks in the view-change functionality in their indi-
vidual asynchronous functions, we could take advantage of the WhenAny function to enable
a timeout for each of the tasks. The await operator was used on the WhenAny function
to wait for the resulting CTask regardless of whether or not the view-change functionality
�nished its operation or the timeout occurs �rst. The view-change functionality still takes
advantage of the await operator to decide wait points for the asynchronous CTASK within
the view-change work�ow. However, combined with the timeout functionality, we know
the functionality does not wait inde�nitely for a result.

The view-change listener has very similar functionality to the checkpoint listener. It is
run asynchronously and is not a�ected by normal protocol work�ow or the view-change
work�ow. The result is also emitted in almost the same way. Unlike the checkpoint
listener, the resulting view-change certi�cate is not directly emitted. Instead, a simple
boolean value is emitted. In addition, the used Source object emitted to is also di�erent.
Unlike the checkpoint functionality, there is a deadline for an instance of checkpoint
listener to �nish its operation due to the timeout operations. Finally, the redo protocol
process follows the same work�ow as the original normal protocol work�ow; therefore, it
also takes advantage of CTask.

The reactive programming paradigm used for the view-change functionality follows both
the normal protocol work�ow and the checkpoint work�ow. The reason being the parts
of view-change functionality that uses the Source objects has practically the same work-
�ow as either the normal protocol work�ow or checkpoint work�ow. The redo protocol
processing work�ow follows the normal protocol work�ow, while the view-change listener
functionality follows the checkpoint work�ow. Therefore, since we already established

64

7.3 Client

the bene�ts of reactive programming in the previous protocol segments, we will not do
so again. On the other hand, view-change also uses reactive programming to stop the
normal work�ow when a view-change process starts. Although our current way of stop-
ping iterations of the normal protocol work�ow is functional, it is not very simplistic.
This is mainly due to how challenging it is to interrupt a function with a waiting Source

object to �nish all of its operators. Our current solution is to use the Merge operator to
interrupt the Source object if it receive an item from a separate Source. Although this
workaround works for our pre-prepare reactive stream, it does have several problems. The
�rst is that since we use the Merge operator to merge reactive streams, the other Source
object used must listen for a matching object compared to the reactive stream. So in our
case, we need a separate Source<PhaseMessage> for our Merge operator. However, this
does cause issues in our prepare and commit reactive streams because of the changes in
stream type after the Scan operator. Not to mention, the work�ow must also account for
the faulty item which was received by the Source object from the Merge operator. Like
the checkpoint work�ow, an earlier version of the view-change work�ow existed that did
not take advantage of the view-change listener for adding proofs to the view-change cer-
ti�cate. This original implementation also handled the view-change message validation,
view-change certi�cate validation, and emit functionality inside a single append function.
It did su�er from all of the issues we discussed in Section 7.2.2.4. In most cases, more
problems occurred more frequently in the view-change certi�cate due to it requiring two
callback functions instead of one. One to emit to the view-change work�ow to move on
and the other to call the stop functionality for the normal protocol work�ow. Therefore,
the change to using view-change listeners became a welcome addition.

7.3 Client

The client implementation created for the PBFT implementation is a primitive console
application that is interactable by the user. The client uses interactivity to create unique
operations that are to be handled by the PBFT algorithm. In our current PBFT im-
plementation, we treat operations as simple string objects, meaning mostly any assigned
string value can be used as an operation value. However, an exception to this rule is that
the operation cannot contain a pipeline symbol. This is because the pipeline symbol is
used as an end delimiter for serialized messages to resolve a TCP issue that can occur,
which links two messages together. An operation is created by prompting the user for
a value representing the value of the operation in the request message. Just like the
replicas in the system, the client takes the network addresses stored in a JSON �le and
then establishes a socket connection to each of the network addresses. Unfortunately,
this means the client can not be initialized before the replicas since it expects all replicas
to be up and running when it attempts to establish socket connections.

In principle, the work�ow for the client implementation is straightforward. The client
starts by �rst initializing its connection to each of the replicas in the system based on
the addresses found in the chosen JSON �le. Then the user is prompted for the value
to be used in the operation. Once the operation is deemed valid, the client creates a
new request message using the operation provided by the user. The request is signed by

65

7.3 Client

the client's private key and then multicast to the replicas in the PBFT network. After
the client sends the request, it waits for the replicas to reply to the request the same
way the normal protocol work�ow does for a phase shift. A reply certi�cate is created,
and the client uses a Source<Reply> to listen for reply messages reactively. When the
Source<Reply> receives a new valid reply message, it is added to the reply certi�cate
until the certi�cate has received at least f + 1 valid replies from di�erent replicas. The
f +1 criteria is referred to as a weak certi�cate, which is a certi�cate that can guarantee
that at least f non-faulty replica stored the request in its protocol log [38, p. 9], [39, p. 2].
Because the client is not part of the PBFT system, it only requires f number of replies to
guarantee that the PBFT system properly processed the original request [30, p. 3], [38,
p. 9].

If the reply certi�cate receives f+1 replies from di�erent replicas, the certi�cate is stored
in the client's log. The client application restarts its work�ow by again prompting the
user for the next operation for the subsequent request. However, if the reply certi�cate
does not become valid within a speci�c time duration, a timeout will occur, and the
request is once again multicasted to the PBFT network. This process is repeated until
the f +1 criteria is met. Unfortunately, if the PBFT application gets stuck on one of the
client operations, the server does not accept the resent request as it believes it is already
working on another request from the same client. Unfortunately, this usually leads to
an endless loop. A way to get out of this loop would be for a view-change to occur on
the PBFT. This is because the client status information on the replica is reset after the
view-change is �nished. The resent request is then treated as a new one, and the entire
request processing starts anew.

The client shares a lot of the network-related code with the PBFT replicas. The main
di�erence between the two lies in the client always being responsible for initiating the
socket connection. The client also tries to reconnect to replicas it has previously been
connected to but now is lost. The reconnection attempt is made whenever the client is
about to multicast a request to the PBFT network. In the case where the reconnection
fails, the client moves onto the other replicas. The client does, however, retry to reconnect
to the lost replica whenever a new request is sent to the PBFT network.

We decided not to include persistency for the client implementation. Despite this, the
network portion of the client still uses the Cleipnir execution engine when it emits incom-
ing replies from the network layer to its reactive listener. The reason for this is because
scheduling the emit using the Cleipnir execution engine enforces synchrony. Enforcing
synchrony helps the client avoid a potential race condition that can potentially occur in
this section of the code. We are currently uncertain in regards to what is causing this
issue. We are running the reactive listener completely outside of Cleipnir's in�uence,
which means additional threads are not supposed to be created. Despite this, we still
have encountered race conditions in this section without using the Cleipnir execution
engine.

66

Chapter 8

Discussion

In this section, we will summarize the bene�ts and di�culties we encountered when
using the tools in our PBFT implementation. In addition to describing the bene�ts and
disadvantages in regards to our chosen design.

8.1 Protocol Abstraction

Going into this thesis, our goal was to create protocol work�ows that were both accurate
and faithful to the original protocol description. Our approach to accomplish this was to
keep all of the protocol work�ows as simplistic by keeping the overall protocol work�ow
within a single function. The overall work�ow should also perform each part of the
protocol as synchronous as possible to resemble the protocol description. We refer to
these principles as protocol abstraction. For our PBFT implementation, we only managed
to keep all of the protocol-related source code for the normal protocol work�ow within
a single function. Both the checkpoint and view-change work�ow had to be split into
several code segments based on the jobs they performed. We would say that we were
relatively successful for the normal protocol work�ow in terms of simplicity. This is
primarily due to the source code performs each protocol phase while still being decently
readable. Unfortunately, this came at the cost of not being able to handle pre-prepare
protocol messages out of order.

Both the checkpoint and view-change work�ows were separated into several code segments
primarily due to how both processes could be instantiated in by any of the replicas in
the PBFT, making it severely challenging to keep the work�ows orderly and somewhat
synchronous. It was generally more natural to segment the checkpoint work�ow because
it is entirely independent of the normal protocol iterations. This is especially notable
for the garbage collection section of the process. Keeping the garbage collection section
together with the checkpoint listener would have been relatively messier than having an
active checkpoint listener send the result to the server which is responsible for performing
the garbage collection process. As for the view-change work�ow, it follows a more orderly
work�ow similar to the normal protocol work�ow. However, the view-change work�ow

67

8.2 Asynchronous work�ow

required support for restarting processes should the new primary turn out to be faulty. By
splitting the operations in the work�ow, it would be a lot simpler to provide the timeout
functionality needed. Not to mention the view-change functionality itself is quite long,
requiring all of the code to be written in a single function would not have simpli�ed the
work�ow. The work�ow would instead be rather messy. In short, we can conclude that
there is a somewhat of a �ne balance between keeping code orderly and simplistic and
providing the functionality we desire. The more complicated the functionality is, the
more likely it is that the code also becomes somewhat harder to understand. Therefore,
consensus algorithms are very likely to become complicated because the functionality
they require is usually quite complex.

8.2 Asynchronous work�ow

Asynchronous programming has, in most situations, been bene�cial to our PBFT imple-
mentation. Note that when we refer to asynchronous programming in this section, we do
include both Task and CTask asynchronous operations. Both normal Task and Cleipnir
CTask operations have practically the same work�ow. They both take advantage of the
async/await work�ow, and they both follow the TAP abstraction. Because of this, it makes
it easy for a developer to create a CTask work�ow if they are familiar with the traditional
asynchronous work�ow. The await operator has been valuable for delegating wait points
for both the asynchronous work�ows and Cleipnir reactive work�ow. The use of the await
operator allowed us to create an abstraction for our asynchronous work�ow to be read
like a synchronous work�ow, which greatly helped readability for the work�ows. Since
the protocol work�ows needed to be run together with Cleipnir, we needed to use CTask
asynchronous programming. Except for not being able to use any other traditional asyn-
chronous operations within any of the protocol work�ows, there were no other signi�cant
disadvantages to running the protocol work�ow with Cleipnir asynchronous operations.
The CTask still allowed for the protocol work�ow to be run asynchronously, allowing for
an easy way to create both several instances of the protocol work�ows but also have them
run independently. We would argue this is a minor drawback in comparison to support
both persistency and the use of Cleipnir's reactive framework for our protocol work�ows.
Traditional asynchronous programming has not been helpful for the protocol work�ow.
On the other hand, traditional asynchronous programming has been a big cornerstone
to the application network layer. Meaning traditional asynchronous programming works
well with both server handling and with socket programming.

The problems in mixing the two types of asynchronous operations together have already
been mentioned numerous times throughout this thesis. As a result, to avoid causing
any race conditions or inconsistent states for the application, the application had to be
designed to separate the asynchronous operations from each other as much as possible.
However, this does create additional limitations for a developer if they were to design
a consensus algorithm with the Cleipnir framework. Although asynchronous operations
do seem quite handy, it is essential to avoid using them when it is not necessary, or the
application could be slowed down as a result. Combine this last issue with combining
both CTask and Task is rather disastrous.

68

8.3 Usage of Cleipnir

8.3 Usage of Cleipnir

In this section, we discuss the bene�ts provided by the Cleipnir framework. We are
primarily focusing on Cleipnir's reactive framework and Cleipnir persistency functionality

8.3.1 Reactive Operators

Cleipnir reactive framework has been bene�cial for dealing with operations related to
protocol messages. There are three contributions provided to the work�ow for using the
reactive work�ow to handle the protocol messages. The �rst is that all of the message-
related operations, such as validation steps, are performed in sequence, meaning the
ordering for the operations is clear and that operators are not called unless the previous
operator succeeds. The second reason is that it segments all of the code related to the
handling protocol messages away from the overall protocol work�ow, making the overall
work�ow easier to understand. The �nal reason is that the ideal design of the protocol
message handler is an event-based process due to the program not knowing when the
protocol message is received, meaning reactive programming is the best approach to use.
The overall work�ow for Cleipnir reactive work�ow is simple in design. We require only a
single Source object to be initialized with a speci�c object type and have this be shared
between two parts of the system. The �rst part of the system emits the item, while the
other part listens to the stream for any incoming items and performs the desired reactive
operators on the received item. The usage of reactive stream operators is generally
straightforward but may be di�cult for developers unfamiliar with query languaging. The
Cleipnir reactive framework has, for the majority of the time, had the reactive operators
we needed, despite having a low amount of reactive operators compared to other reactive
API. Regardless, Stidsborg has demonstrated that the process of adding other reactive
operators from the Reactive X library is not challenging. The Merge operator was added
to Cleipnir reactive framework during this project due to our need to stop the normal
protocol work�ow, which took less than a day. The source code for the reactive work�ow
has also shown to be quite reusable, considering we have used relatively the same work�ow
for all of our protocol work�ows. From our usage of the Cleipnir reactive framework for
our implementation of the PBFT work�ows, we would argue that it is well suited for
event-driven programming.

A major drawback we have encountered with the Cleipnir reactive framework is that the
Cleipnir execution engine is almost always is required to be used when performing an emit
to the protocol work�ow. This particular issue may only be relevant for our design. Still, it
is pretty clear that if any object is to be transformed by the reactive stream, the Cleipnir
execution engine is needed to schedule the emit of the protocol message. Otherwise,
the reactive stream attempts to handle multiple protocol messages concurrently, which
causes the object to become inconsistent. With the help of the Cleipnir execution engine,
we can enforce a FCFS ordering on the protocol messages, avoiding this issue entirely,
but that in itself may not always be bene�cial. The most notable issue is when an
emit takes place within a CTask asynchronous operation. Scheduling operations and
performing the desired operations using the Cleipnir execution is treated as a traditional

69

8.3 Usage of Cleipnir

asynchronous operation. Therefore the work�ow within the CTask cannot wait for the
scheduled operation to �nish as it is performed on another thread, which can cause
problems if the scheduled operations are vital for the rest of the work�ow.

We can also document that stopping an active work�ow that is waiting for the result of
a reactive stream is not very simple. We discussed in the Section 7.2.3.1 how we made a
workaround for this issue, but it is quite the situational solution. From our experience, it
is more bene�cial to design any work�ows with more restrictive Source operators early,
to keep the work�ow active but essentially �lter out any of the future protocol messages
as soon as possible. It does waste resources, but the overall design of work�ow will be a
lot more desirable.

The most detrimental disadvantage we encountered regarding the Cleipnir reactive work-
�ow lies in trouble dealing with protocol message messages being received out of order.
We already discussed how our current PBFT implementation struggles in certain parts
of the program to handle protocol messages being received out of order. This issue does
have two known workarounds, although both do limit the design of the work�ow. The
�rst workaround is to initialize and have each Source object start listening on the reactive
streams as early as possible in the work�ow. Otherwise, any protocol messages received
out of order or received too early are lost. This is the work�ow we primarily used in
our work�ows, unfortunately not always possible to use this workaround, as shown in
our pre-prepare phase implementation. The other known workaround would be to use
unique Source objects for each and every protocol message type to avoid any of the other
Source object �ltering out any messages received for that protocol type. However, this
workaround needs a lot of extra Source objects to be initialized and individual object
types for every type for every protocol message, which can become quite extensive.

To summarize, Cleipnir's reactive framework is well suited for segmenting operations in
a consensus algorithm that is reliant on event-based programming. In addition, it is
relatively easy for developers to use once the basics have been learned. It also helps
make the general work�ow more compact and readable thanks to its ability to use chain
operators on the reactive stream. However, the reactive framework can struggle with
handling several events types when they are all listening on the same Source object
when the ordering of the events matters. The reactive framework is also tricky to use
on a work�ow that requires handling forms of exceptions to normal work�ow. Since
consensus algorithms must be able to handle situations where parties in the network stop
responding, this can become a frequent issue. However, there do exist workarounds for
handling some of the issues discussed. We believe that better workarounds are also bound
to be discovered in the future.

8.3.2 Persistency

Persistency has not been the primary focus for our PBFT implementation. We have,
however, been attempting to take advantage of the Cleipnir persistency functionality to
persist relevant data for our implementation. Our main contributions here lie in making
sure all the protocol work�ows are run within CTask asynchronous operations. In ad-

70

8.3 Usage of Cleipnir

dition, we used Cleipnir hybrid persistency functionality to create appropriate serializer
and deserializer for our protocol objects. Unfortunately, the current PBFT implement-
ation does not support functional persistency. The reason why the persistency does not
work properly is uncertain. We have discovered at least two issues. The �rst issue is that
the protocol logger, for some reason, does not persist all the entries in the logger. As of
now, no distinguishable pattern has been found with the data that gets lost. Either way,
losing certi�cates in the logger does create big problems for our restarted application.
The other problem is that some of the Source objects which are linked to the server gets
duplicated when the system is rebooted. This means that in the persisted system, there
suddenly exist two Source objects with the exact same reference. This is a big problem
because each time the server emits a message to the duplicated Source object, it emits
the message to both the original and duplicate Source objects. This, in turn, can cause
two identical iterations of the protocol work�ow to occur, meaning they work on the same
sequence number. In the worst-case scenario, both protocol iterations store the resulting
protocol certi�cates on the same sequence number, leading to scenarios where the logger
suddenly has four certi�cates recorded for a single sequence number. The logger is only
meant to store a maximum of two protocol certi�cates for a protocol iteration, so this is
quite the issue for future protocol states.

However, we have tested the persistency functionality for our implementation by using
smaller practical examples and unit tests. We can verify that the persistency works well
for smaller segments of our application, such as testing the persistency for most of our
protocol objects. We can at least certify that the hybrid persistency functionality works
quite well for Cleipnir. It is both convenient and straightforward to choose segments of
an object to persist using the object-oriented design to the serializer and deserializer.
Although, a developer can potentially make mistakes if they unaware of the limitations
to Cleipnir ability to persist certain data types.

71

Chapter 9

Conclusion

This chapter concludes the thesis by �rst listing the lessons we learned while working on
the thesis. Then we list the potential future work which can be applied to the PBFT
implementation. Finally, a conclusion is drawn for the work performed for this thesis.

9.1 Lessons Learned

9.1.1 Consensus algorithms

At the start of this thesis, our knowledge in regards to consensus algorithms was limited
to having previously implemented the Paxos algorithm using Golang language [52]. We
had never encountered any information in regards to the PBFT consensus algorithm;
therefore, some time was spent on learning the inner workings of the PBFT algorithm.
In addition, Cleipnir had already been used to implement the Paxos and Raft consensus
algorithms. Therefore some time was also spent on understanding the basics of the Raft
consensus algorithm to help understand the source code used for the Raft implementation.
We realize that transition from one consensus algorithm to another when looking solely at
the protocol descriptions is not all that complicated. Many components for dealing with
speci�c issues regarding consensus algorithms are shared for many consensus algorithms.
As a result, it became simpler for someone familiar with one consensus algorithm to
understand another.

9.1.2 Asynchronous Programming

Asynchronous programming proved to be suitable for the network layer of the applica-
tion. In addition, asynchronous programming became an excellent boon for designing a
multi-client application when used on the protocol work�ows. Since the CTask also took
advantage of the async/await work�ow, implementing CTask functions was just as simple

72

9.1 Lessons Learned

as the .NET traditional asynchronous work�ow.

However, we acknowledge that our inexperience with the background operations occurring
in the async/await work�ow hurt our initial design for our application. This, combined
with our wrong assumption regarding CTask, delayed our thesis considerably.

9.1.3 Reactive Programming

At the beginning of this project, we had very little to no previous experience in regards
to reactive programming. Therefore it was challenging to learn the basics of reactive pro-
gramming. The most signi�cant complication became understanding Cleipnir's reactive
functionality knowing only the basics of reactive programming. Using the Cleipnir react-
ive functionality is straightforward once you learn the basics. However, making a direct
comparison to the o�cial reactive documentation [11] to Cleipnir.Rx was not simple.
This primarily due to the cornerstones having di�erent name schemes between the two.

Regardless, we have demonstrated in our application that we ascertained the knowledge
to use the reactive framework to handle the PBFT protocol messages and their resulting
operation. It was showed that the framework was appropriate for handling event-driven
scenarios in consensus algorithms. In addition, simply enough to have our reactive work-
�ow be reused for several parts of our reactive implementations.

9.1.4 Cleipnir

Starting the thesis, we had little to no prior experience with working with the Cleipnir
framework. The most challenging part of learning how to use Cleipnir functionality was
the lack of a detailed documentation. We only had access to its source code and a couple
of well written practical examples. Bakkevig previously also seemed to struggle in this
department in his thesis [3, p. 43-44]. This is somewhat our fault as we were not ac-
customed to learning about frameworks by reading their source code. During our study,
practically all tools and frameworks used had a form of written documentation. How-
ever, not all frameworks have well-written documentation. Although, most commonly
used frameworks usually have some form of community that uses which you can discuss
unexpected issues when the need arises. As Cleipnir is still in development, it does not
have a large community. We also understand that since Cleinir is constantly updated,
writing a detailed documentation could be seen as wasteful because the functionality
changes frequently. This means that the documentation would also need to be continu-
ously updated, leading to a lot of extra work for each update. However, we do share
Bakkevig's opinion that if Cleipnir is to become well liked by developers, time must be
invested into writing at least a small description for its unique components as well as a
guideline for how each tool available in the framework should be used and what users
should actively avoid. Stidsborg was available to answer any questions we had regard-
ing Cleipnir. Despite this, �awed assumptions were made, leading to problems for the
development of our implementation. Safe to say, we learned that making assumptions

73

9.2 Future Work

can be quite detrimental, and we should have perhaps queried Stidsborg earlier in the
development about the di�erence between Cleipnir implementation of commonly used
classes compared to their traditional counterparts.

9.2 Future Work

As mentioned in Chapter 6 our current cryptographic signature architecture is susceptible
to impersonation and spoo�ng attacks. Clearly, keeping public keys ephemeral and gen-
erating them uniquely before start-up was not a smart design when the system supports
persistency. Creating static private and public keys is also not recommended since this
design would make the system less secure. One solution would be to generate a couple
of unique key pairs for each replica and have these stored securely or given to the sys-
tem by a separate trusted system. This system could, for instance, be a database where
the cryptographic keys are stored encrypted. During system start-up or during certain
scenarios, such as view-changes and or system restarts, the replica reassigns its current
cryptographic key pairs and re-establishes its secret key with the other replicas in the
system. The other replicas only accept the renewed connection if the separate system
acknowledges that the public key given matches one of the unique public keys listed for
that replica.

We are currently using a digital signatures scheme for all message types, except for the ses-
sion messages. This is frankly unnecessary and only slows down the system. The desired
alternative is to follow the original PBFT system model and use MAC for authentication
instead, as this would be more e�cient. Although, we still recommend continuing to use
the digital signature structure for view-change and new-view messages. Otherwise, the
view-change work�ow would need to be redesigned to follow the more advanced work�ow
described in Castro's and Liskov's updated paper for PBFT [38, p. 410-414].

The protocol work�ow currently su�ers from the inability to handle pre-prepare and
prepare being received out of order. In addition, prepare messages can also be lost if the
message is received before the prepare listener is initialized. As described in Section 7.2
this issue can cause the work�ow to become stuck if too many prepare messages are lost
while the work�ow waits for a pre-prepare message. This is something that should be
corrected if the application is to be used in the future. A workaround to this problem
would be to have a timeout functionality active when the work�ow waits for the desired
number of prepare and commit messages. The timeout is stopped if both the reactive
listeners have successfully created both protocol certi�cates. Otherwise, the timeout
expires, and the reactive listeners are terminated using the same functionality used for
the pre-prepare listener. For this functionality to be possible, another Source object
would need to be added to the work�ow to work with the Merge operator. This is
because the reactive stream for reactive listeners to the prepare and commit message is
of type Stream<CList<PhaseMessage> > due to the stream being transformed by the
Scan operator.

Solving the actual message ordering issue is a lot more complicated. It is not as simple

74

9.2 Future Work

as initializing the prepare listener earlier, as the listener needs to �lter away any phase
message with a di�erent sequence number than its current iteration. Unfortunately,
non-primary replicas set the current sequence number based on the received pre-prepare
message, creating quite the conundrum. A solution to this problem is making the server
store copies of the phase messages received in the network layer. By having this logger
store a list of phase messages received for a sequence number within a dictionary, it would
be possible for the work�ow to easily search for missing phase messages. The phase mes-
sage records stored in this logger would have to be garbage collected once the protocol has
successfully created the two desired protocol certi�cates for the given sequence number.
However, this would cause additional complexity to the protocol work�ow as functionality
for looking up, and re-emitting lost phase messages would need to be added.

Currently, our application does not fully support persistency. In the future, it would be
favorable for both Cleipnir and our application if the issues described in Chapter 7 can
be �xed to allow for our application to thoroughly test Cleipnir's capability in regards to
persistency. The groundwork has been laid for the application to work with persistency.
This includes assigning all protocol object types their proper serialization and deseri-
alization functions for Cleipnir to use, which have been tested on a smaller scale and
works as intended. In addition, the network functionality for replicas to reconnect to the
system has already been implemented and tested. The only thing left is for the system
to successfully read the data stored by Cleipnirs storage engine and successfully restore
its old state. There are at least two notable issues that must be �xed for the application
to become persistent. The �rst issue is that the original Source objects are duplicated
by having Cleipnir somehow restore the original Source while also creating the desired
new copy, which was supposed to replace the old. Currently, both Source objects react
whenever new items are emitted to them by the network layer, meaning that for the
protocol work�ow, two iterations are created for a single sequence number. This, in turn,
creates issues for the logger when multiple records for the same sequence number are
stored. The second issue is that the logger synchronization isn't working properly and as
a result, records in the logger disappear after the replica restarts. This issue likely due
to the synchronization not being fully �nished before moving with other operations, or
the synchronization is not done correctly, and as a result, some records are skipped. We
assume this issue is caused by incorrect usage of Sync points set for Cleipnir, resulting
in the state not being persisted correctly. As for the duplicate Source objects, we are
frankly not quite sure how this issue occurs. We theorize that it may occur due to some
records being persisted in multiple objects, and because of this, when the objects are
persisted, the objects are not treated as the same Source object, leading to the duplicate
Source object. If this is the case, the issue lies in the relationship between the server and
the protocol work�ow.

Generally, the application functionality could be a lot more advanced than it is now.
Currently, the only operation the application performs after a request is processed suc-
cessfully through the PBFT algorithm is simply printing the message attached to the
request to the console window. The message is then added to a CList representing the
state of the system. In the future, it would be bene�cial if the application functionality
was changed to be a bit more practical. For instance, changing the message content in
the request to be an operation that is to be performed by the application instead of a
string. The state list would then rather store a record of the operation performed and

75

9.3 Conclusion

whether or not the application successfully performed the requested operation. In order
to change the application functionality, the client functionality for creating requests must
also be adjusted.

9.3 Conclusion

In conclusion, we achieved our goal of creating a simplistic PBFT implementation using
Cleipnir with the intended focus of making it faithful to the protocol description, which
also is designed to take advantage of asynchronous and reactive programming paradigms.
The result is PBFT implementation that can perform the PBFT protocol over several
multiple clients and has functional checkpoint and view-change functionality. We man-
aged to design a normal work�ow that �t our original criteria, but unfortunately, the
protocol struggles with handling out-of-order protocol messages. The checkpoint and
view-change work�ow became too complex for the processes to be handled within a
single function. Persistency functionality was sadly not successful for our PBFT imple-
mentation. Asynchronous programming is shown to be helpful when designing consensus
algorithms. Asynchronous programming was notably useful in regards to networking
functionality and for designing multi-client protocol work�ows. Similarly, reactive pro-
gramming turns out to be fairly helpful for handling the operations regarding protocol
messages and other event-based processes. Reactive programming, however, did appear
to struggle with protocol message ordering when using synchronous design. These two
programming paradigms showed quite clearly that they work well together. We believe
implementation consensus algorithms can be further simpli�ed using these tools in the
future, despite the problems addressed in this thesis. In regards to the Cleipnir frame-
work, we acknowledge that the overall work�ow of the Cleipnir reactive framework is
user-friendly and has, for the most part, the functionality desired for designing a proper
event handler for a consensus algorithm. We were unsuccessful in evaluating Cleipnir's
persistency functionality on our application. However, based on our experience with us-
ing the hybrid persistency functionality on our implementation. In addition to testing
the persistency functionality for smaller parts of the program, we deem Cleipnir's per-
sistency functionality to be excellent. To conclude this thesis, we do believe that the
tools we have tested and evaluated during our PBFT implementation do make it easier
to design consensus algorithms. In the future, we believe that consensus algorithms can
be implemented simpler and more accurately to the protocol description. However, we
acknowledge that due to the complex nature of distributed systems, it will be challenging
to create accurate consensus algorithm implementations due to the numerous problems
that can occur.

76

List of Figures

4.3.1 Practical Byzantine Fault Tolerance Normal Work�ow 21

4.5.1 Practical Byzantine Fault Tolerance View-Change 24

6.1.1 Overall architecture of the PBFT implementation network 28

6.3.1 Summary of the �le architecture for the PBFT implementation 33

6.4.1 Application divided into persistent parts and ephermeral parts and how
they interact . 36

77

Listings

2.1 Example of async/await work�ow . 7
3.1 Object Store example . 12
3.2 Execution engine example . 13
3.3 Example of chaining Cleipnir reactive operators 13
3.4 Source object example . 14
3.5 Object persistentcy initializer . 15
3.6 Serialize/Deserialize code example . 16
3.7 Example of a CTask function . 17
6.1 Example of server and protocol interaction using Cleipnir scheduler . . . 36
7.1 Code section for the request handler . 40
7.2 Source code for pre-prepare phase for primary replica 42
7.3 Source code for Pre-prepare phase for non-primary replica 43
7.4 Source code for Prepare and Commit phase 48
7.5 Source code for the Checkpoint Listener 51
7.6 Reactive handler for new stable checkpoints 52
7.7 Handling timeout for the normal protocol work�ow and initiate the View-

Change process . 56
7.8 Overall source code for handling view-changes. 58
7.9 Source code for View-Change Listener 60
7.10 Redo Protocol Functionality . 63

78

Appendix A

PBFT Implementation Source Code

- The PBFT implementation can be found on this Github repository.

- The source code used for the replica implementation is found in this sub directory.

- The source code used for our client implementation is found in this sub directory.
The unit tests can unfortunately not be all run concurrently, due to some issue
with the network tests. We therefore recommend running each folder separately,
and re-run the test that fail uniquely once they fail.

- The Github repository provides a detailed explanation in regards to how to run the
PBFT implementation both locally and with docker containers.

79

https://github.com/Lupu2/PBFT-Master
https://github.com/Lupu2/PBFT-Master/tree/main/PBFT
https://github.com/Lupu2/PBFT-Master/tree/main/PBFTClient

Bibliography

[1] T. Inc. (2021). `Distributed system,' [Online]. Available: https://www.techopedia.
com/definition/18909/distributed-system (visited on 18/03/2021).

[2] M. van Steen and A. S. Tanenbaum, Distributed Systems Third edition Prelimin-
ary version 3.01pre. Maarten van Steen, Feb. 2017, pp. 456�458, NOTE:Book was
previously published by: Pearson Education, Inc, isbn: 978-90-815406-2-9.

[3] E. Bakkevig, `Implementing a distributed key-value store using corums,' Jun. 2020,
pp. 7�52. [Online]. Available: https://hdl.handle.net/11250/2679782.

[4] vic. (Aug. 2019). `From distributed consensus algorithms to the blockchain con-
sensus mechanism,' [Online]. Available: https://www.alibabacloud.com/blog/
from-distributed-consensus-algorithms-to-the-blockchain-consensus-

mechanism_595315 (visited on 03/03/2021).

[5] T. S. Sylvest, H. Meling and L. Jehl, `Cleipnir - framework support for fault-tolerant
distributed systems,' Nov. 2020, pp. 1�18.

[6] T. S. Sylvest. (2021). `Cleipnir = persistent programming in .net.' NOTE:Github
repository private for Stidsborg ask permission in order to get access., [Online].
Available: https://github.com/stidsborg/Cleipnir.PersistentProgramming
(visited on 21/03/2021).

[7] Lupu2 and stidsborg. (Jul. 2021). `Practical byzantine fault tolerance implementa-
tion,' [Online]. Available: https://github.com/Lupu2/PBFT-Master/tree/main
(visited on 12/07/2021).

[8] BillWagner, Varad25, n1c, mrlife, IEvangelist, Youssef1313, nschonni, dkreider, pku-
likov, Thraka, damabe, kendrahavens, nxtn, DennisLee-DennisLee, mikkelbu, nem-
rism, mairaw, mikeblome, mjho�man65, guardrex and tompratt-AQ. (Apr. 2020).
`Asynchronous programming with async and await,' [Online]. Available: https:
//docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/

async/ (visited on 31/01/2021).

[9] karelz, nschonni, kotx, TimShererWithAquent, nemrism, nxtn, mairaw, BillWag-
ner, Shivien, jzeferino, Mikejo5000, mjho�man65, PeterSmithRedmond, guardrex,
tompratt-AQ and yishengjin1413. (Mar. 2017). `Asynchronous server socket ex-
ample,' [Online]. Available: https: //docs .microsoft .com/ en- us/ dotnet/
framework/network-programming/asynchronous-server-socket-example (vis-
ited on 10/06/2021).

80

https://www.techopedia.com/definition/18909/distributed-system
https://www.techopedia.com/definition/18909/distributed-system
https://hdl.handle.net/11250/2679782
https://www.alibabacloud.com/blog/from-distributed-consensus-algorithms-to-the-blockchain-consensus-mechanism_595315
https://www.alibabacloud.com/blog/from-distributed-consensus-algorithms-to-the-blockchain-consensus-mechanism_595315
https://www.alibabacloud.com/blog/from-distributed-consensus-algorithms-to-the-blockchain-consensus-mechanism_595315
https://github.com/stidsborg/Cleipnir.PersistentProgramming
https://github.com/Lupu2/PBFT-Master/tree/main
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/asynchronous-server-socket-example
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/asynchronous-server-socket-example

BIBLIOGRAPHY

[10] R. Weeks. (May 2020). `C# sockets programming - ep01.' Youtube Video, [On-
line]. Available: https://www.youtube.com/watch?v=rrlRydqJbv0 (visited on
10/06/2021).

[11] ReactiveX. (2021). `Reactivex,' [Online]. Available: http://reactivex.io/ (visited
on 12/03/2021).

[12] R. Stropek. (Oct. 2020). `C# async programming - part 1: Conceptual background.'
Youtube Video, [Online]. Available: https : / / www . youtube . com / watch ? v =

FIZVKteEFyk (visited on 25/01/2021).

[13] AramT. (2018). `Your ultimate async / await tutorial in c#.' NOTE:Tutorial spans
7 webpages, the link will redirect to the introduction page., [Online]. Available:
https://www.codingame.com/playgrounds/4240/your- ultimate- async-

await-tutorial-in-c/ (visited on 09/03/2021).

[14] BillWagner, DCtheGeek, IEvangelist, TimShererWithAquent, gewarren, Thraka,
Youshef1313, nschonni, pkulikov, nemrism, sguitardude, ryanliang88, nxtn and mairaw.
(Aug. 2020). `Task asynchronous programming model,' [Online]. Available: https:
//docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/

async/task-asynchronous-programming-model (visited on 31/01/2021).

[15] E. Agafonov, Multithreading in C# 5.0 Cookbook. Packt Publishing, Limited, Nov.
2013, pp. 190�232, isbn: 978-1-84969-764-4. [Online]. Available: https://ebookcentral.
proquest.com/lib/uisbib/detail.action?docID=1572912.

[16] N. Parente. (Sep. 2020). `.net async programming in a nutshell,' [Online]. Avail-
able: https://nelsonparente.medium.com/net-async-programming-in-a-
nutshell-dc01c2e71a20 (visited on 04/07/2021).

[17] E. Zamora-Gómez, P. García-López and R. Mondéjar, `Continuation complexity: A
callback hell for distributed systems,' in Euro-Par 2015: Parallel Processing Work-
shops, S. Hunold, A. Costan, D. Giménez, A. Iosup, L. Ricci, M. E. Gómez Requena,
V. Scarano, A. L. Varbanescu, S. L. Scott, S. Lankes, J. Weidendorfer and M. Al-
exander, Eds., Cham: Springer International Publishing, 2015, pp. 286�298, isbn:
978-3-319-27308-2.

[18] K. Patel. (Dec. 2016). `What is reactive programming?' [Online]. Available: https:
//medium.com/@kevalpatel2106/what-is-reactive-programming-da37c1611382

(visited on 12/03/2021).

[19] J. Liberty, Programming Reactive Extensions and LINQ, eng, 1st ed. 2011., ser. Ex-
pert's voice in .NET. Berkeley, CA: Apress : Imprint: Apress, 2011, isbn: 1-280-
39231-2.

[20] dotnetshe�. (Aug. 2020). `The reactive extensions for .net.' Youtube Video, [Online].
Available: https://youtu.be/6yjl_h7-WYA (visited on 31/01/2021).

[21] MuleSoft. (2021). `What is an api? (application programming interface),' [Online].
Available: https://www.mulesoft.com/resources/api/what-is-an-api (visited
on 27/06/2021).

[22] . Foundation. (Nov. 2020). `Reactive extensions,' [Online]. Available: https://
github.com/dotnet/reactive (visited on 31/01/2021).

[23] ReactiveX. (2021). `Observable,' [Online]. Available: http : / / reactivex . io /

documentation/observable.html (visited on 12/03/2021).

81

https://www.youtube.com/watch?v=rrlRydqJbv0
http://reactivex.io/
https://www.youtube.com/watch?v=FIZVKteEFyk
https://www.youtube.com/watch?v=FIZVKteEFyk
https://www.codingame.com/playgrounds/4240/your-ultimate-async-await-tutorial-in-c/
https://www.codingame.com/playgrounds/4240/your-ultimate-async-await-tutorial-in-c/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/task-asynchronous-programming-model
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/task-asynchronous-programming-model
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/task-asynchronous-programming-model
https://ebookcentral.proquest.com/lib/uisbib/detail.action?docID=1572912
https://ebookcentral.proquest.com/lib/uisbib/detail.action?docID=1572912
https://nelsonparente.medium.com/net-async-programming-in-a-nutshell-dc01c2e71a20
https://nelsonparente.medium.com/net-async-programming-in-a-nutshell-dc01c2e71a20
https://medium.com/@kevalpatel2106/what-is-reactive-programming-da37c1611382
https://medium.com/@kevalpatel2106/what-is-reactive-programming-da37c1611382
https://youtu.be/6yjl_h7-WYA
https://www.mulesoft.com/resources/api/what-is-an-api
https://github.com/dotnet/reactive
https://github.com/dotnet/reactive
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html

BIBLIOGRAPHY

[24] M. Developer. (Nov. 2018). `Reactive extensions for .net developers.' Youtube Video,
[Online]. Available: https://youtu.be/c9Yq-XE58hA (visited on 31/01/2021).

[25] ReactiveX. (2021). `Subject,' [Online]. Available: http://reactivex.io/documentation/
subject.html (visited on 12/03/2021).

[26] Mozilla and individual contributors. (Mar. 2021). `Concurrency model and the event
loop,' [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/
JavaScript/EventLoop (visited on 22/03/2021).

[27] G. for Geeks, Shivi_Aggarwal, ukasp and29AjayKumar and Rajput-Ji. (Feb. 2021).
`Program for fcfs cpu scheduling set 1,' [Online]. Available: https://www.geeksforgeeks.
org/program-for-fcfs-cpu-scheduling-set-1/ (visited on 22/03/2021).

[28] Microsoft. (2021). `Ting du kommer til å like med sql server 2019,' [Online]. Avail-
able: https://www.microsoft.com/en- us/sql- server/sql- server- 2019
(visited on 22/03/2021).

[29] ReactiveX. (2021). `Introduction,' [Online]. Available: http://reactivex.io/
documentation/operators.html (visited on 16/03/2021).

[30] M. Castro and B. Liskov, `Practical byzantine fault tolerance,' 1999, pp. 1�14.
[Online]. Available: http://pmg.csail.mit.edu/papers/osdi99.pdf.

[31] P. Hooda. (Dec. 2019). `Practical byzantine fault tolerance(pbft),' [Online]. Avail-
able: https://www.geeksforgeeks.org/practical-byzantine-fault-tolerancepbft/
(visited on 12/01/2021).

[32] H. Dang, Z. Gao, I. J. amd L. Luu and D. Sivasankaran, `Practical byzantine fault
tolerance,' Slide Presentation, Mar. 2016. [Online]. Available: https://www.comp.
nus.edu.sg/~rahul/allfiles/cs6234-16-pbft.pdf.

[33] Xangle. (Oct. 2018). `What is practical byzantine fault tolerance (pbft)?' Youtube
Video, [Online]. Available: https://www.youtube.com/watch?v=M4RW6GAwryc
(visited on 12/01/2021).

[34] Binance.com. (Jan. 2021). `Byzantine fault tolerance explained,' [Online]. Available:
https://academy.binance.com/en/articles/byzantine-fault-tolerance-

explained (visited on 03/03/2021).

[35] K. Khullar. (Aug. 2019). `Implementing pbft in blockchain,' [Online]. Available:
https://medium.com/coinmonks/implementing-pbft-in-blockchain-12368c6c9548

(visited on 12/01/2021).

[36] L. Lamport, R. Shostak and M. Pease, `The byzantine generals problem,' ACM
Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382�401, Jul. 1982, issn: 0164-0925.
doi: 10.1145/357172.357176. [Online]. Available: https://doi.org/10.1145/
357172.357176.

[37] W. Zhao, Building Dependable Distributed Systems. John Wiley & Sons, Incorpor-
ated, Mar. 2014, pp. 239�284, isbn: 9781118912706.

[38] M. Castro and B. Liskov, `Practical byzantine fault tolerance and proactive re-
covery,' in ACM Transactions on Computer Systems, 2002, pp. 399�416. [Online].
Available: https://doi.org/10.1145/571637.571640.

[39] X. Hao, L. Yu, L. Zhiqiang, L. Zhen and G. Dawu, `Dynamic practical byzantine
fault tolerance,' in 2018 IEEE Conference on Communications and Network Secur-
ity (CNS), 2018, pp. 1�8. doi: 10.1109/CNS.2018.8433150.

82

https://youtu.be/c9Yq-XE58hA
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://www.geeksforgeeks.org/program-for-fcfs-cpu-scheduling-set-1/
https://www.geeksforgeeks.org/program-for-fcfs-cpu-scheduling-set-1/
https://www.microsoft.com/en-us/sql-server/sql-server-2019
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
http://pmg.csail.mit.edu/papers/osdi99.pdf
https://www.geeksforgeeks.org/practical-byzantine-fault-tolerancepbft/
https://www.comp.nus.edu.sg/~rahul/allfiles/cs6234-16-pbft.pdf
https://www.comp.nus.edu.sg/~rahul/allfiles/cs6234-16-pbft.pdf
https://www.youtube.com/watch?v=M4RW6GAwryc
https://academy.binance.com/en/articles/byzantine-fault-tolerance-explained
https://academy.binance.com/en/articles/byzantine-fault-tolerance-explained
https://medium.com/coinmonks/implementing-pbft-in-blockchain-12368c6c9548
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/571637.571640
https://doi.org/10.1109/CNS.2018.8433150

BIBLIOGRAPHY

[40] S. Nolan. (Nov. 2018). `Pbft � understanding the consensus algorithm,' [Online].
Available: https://medium.com/coinmonks/pbft-understanding-the-algorithm-
b7a7869650ae (visited on 08/01/2021).

[41] _kitchen. (Nov. 2019). `Consensus series: Pbft,' [Online]. Available: https : / /
medium.com/thundercore/consensus-series-pbft-3e011e7f3691 (visited on
08/01/2021).

[42] I. Bitwise IO. (2018). `Pbft architecture,' [Online]. Available: https://sawtooth.
hyperledger.org/docs/pbft/releases/latest/architecture.html#pbft-

operation (visited on 17/03/2021).

[43] H. Meling, J. I. Olsen, T. E. Lea and L. Jehl. (Apr. 2021). `Gorums,' [Online].
Available: https://github.com/relab/gorums (visited on 14/03/2021).

[44] R. Anderson, K. Larkin and M. Wasson. (Apr. 2021). `Tutorial: Create a web api
with asp.net core,' [Online]. Available: https://docs.microsoft.com/en-us/
aspnet/core/tutorials/first-web-api?view=aspnetcore-5.0&tabs=visual-

studio (visited on 14/03/2021).

[45] (2021). `What is a spoo�ng attack?' [Online]. Available: https://www.malwarebytes.
com/spoofing/ (visited on 24/05/2021).

[46] P. Fox. (2020). `Transmission control protocol (tcp),' [Online]. Available: https://
www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:

the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-

control-protocol--tcp (visited on 08/06/2021).

[47] Newtonsoft. (2021). `Json.net popular high-performance json framework for .net,'
[Online]. Available: https://www.newtonsoft.com/json (visited on 05/05/2021).

[48] w3Schools. (2021). `C# enum,' [Online]. Available: https://www.w3schools.com/
cs/cs_enums.asp (visited on 04/05/2021).

[49] Google. (2021). `Channels,' [Online]. Available: https : / / tour . golang . org /
concurrency/2 (visited on 06/05/2021).

[50] A. Stefanuk. (Mar. 2020). `What is sql? a beginner's guide to the sql language,'
[Online]. Available: https://learntocodewith.me/posts/sql-guide/ (visited
on 27/06/2021).

[51] BillWagner, MightyPen, mairaw, nxtn, nemrism, mjho�man65, mikeblome, guardrex
and tompratt-AQ. (2015). `Goto (c# reference),' [Online]. Available: https://
docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/

goto (visited on 11/05/2021).

[52] Google. (2021). `Go,' [Online]. Available: https://golang.org/ (visited on 03/06/2021).

83

https://medium.com/coinmonks/pbft-understanding-the-algorithm-b7a7869650ae
https://medium.com/coinmonks/pbft-understanding-the-algorithm-b7a7869650ae
https://medium.com/thundercore/consensus-series-pbft-3e011e7f3691
https://medium.com/thundercore/consensus-series-pbft-3e011e7f3691
https://sawtooth.hyperledger.org/docs/pbft/releases/latest/architecture.html#pbft-operation
https://sawtooth.hyperledger.org/docs/pbft/releases/latest/architecture.html#pbft-operation
https://sawtooth.hyperledger.org/docs/pbft/releases/latest/architecture.html#pbft-operation
https://github.com/relab/gorums
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=aspnetcore-5.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=aspnetcore-5.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=aspnetcore-5.0&tabs=visual-studio
https://www.malwarebytes.com/spoofing/
https://www.malwarebytes.com/spoofing/
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp
https://www.newtonsoft.com/json
https://www.w3schools.com/cs/cs_enums.asp
https://www.w3schools.com/cs/cs_enums.asp
https://tour.golang.org/concurrency/2
https://tour.golang.org/concurrency/2
https://learntocodewith.me/posts/sql-guide/
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/goto
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/goto
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/goto
https://golang.org/

	Introduction
	Contributions
	Outline

	Programming Models
	Asynchronous Programming
	Async/Await

	Reactive Programming
	Reactive X

	Cleipnir
	Cleipnir Overview
	Cleipnir Reactive Programming
	Cleipnir Persistent Programming

	Practical Byzantine Fault Tolerance
	Introducing Practical Byzantine Fault Tolerance
	System Model
	Detailed Protocol Operations
	Checkpointing
	View-change

	Related Work
	Cleipnir - Framework Support for Fault-tolerant Distributed Systems
	Implementing a Distributed Key-Value Store Using Corums

	Design
	Network Architecture
	Overview of Workflow
	Code structure
	Protocol Objects
	Other functionalities
	JSON Serialization Problem
	Notable Files

	Persistent vs Ephemeral

	Implementation
	Design Choices
	Workflow Details
	Protocol Workflow Implementation
	Starting protocol instance
	Pre-Prepare phase
	Prepare phase
	Commit Phase
	Protocol Workflow Evaluation

	Checkpoint Implementation
	Initialize Checkpoint Certificate
	Checkpoint Listener Workflow
	Initiate Garbage Collection
	Checkpoint Workflow Evaluation

	View-change Implementation
	Starting a View-Change
	View-Change functionality
	View-Change Listener Workflow
	New-View Workflow

	View-Change Evaluation

	Client

	Discussion
	Protocol Abstraction
	Asynchronous workflow
	Usage of Cleipnir
	Reactive Operators
	Persistency

	Conclusion
	Lessons Learned
	Consensus algorithms
	Asynchronous Programming
	Reactive Programming
	Cleipnir

	Future Work
	Conclusion

	Appendix PBFT Implementation Source Code
	Bibliography

