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Abstract

MIXTURE THEORY has been developed based on balance laws and con-
servation principles which is well known in continuum mechanics, and

has been widely applied to systems which can be characterized as a mixture of
interacting continua. In this thesis we present a general mathematical model
for the compressible and incompressible multiphase flows based on the theory of
mixtures and investigate the corresponding numerical schemes that are used to
solve different kinds of flow phenomena. Mathematical analysis, which essentially
boils down to deriving various estimates in appropriate functional spaces, is also
used as a tool to gain insight into the models that have been explored.

The first part (Paper I and II) of this thesis implements a novel two-phase
momentum-equation-approach to include the viscous coupling effect involved in
counter-current and co-current flows during spontaneous imbibition process for
oil recovery. The formulation can automatically capture the effective relative
permeabilities of the flowing phases and offers improvements over conventional
modelling. The model also accounts for the fact that oil must overcome the
so-called capillary backpressure when it is produced counter-currently. It is
shown that this parameter can influence the extent of counter-current production
and hence viscous coupling.

The second part (i.e., Paper III-V) of this thesis focuses on the development of
numerical schemes for solving the general multiphase flow model. We consider
two-phase and three-phase flow in porous media for both incompressible and
compressible cases. We also explore in Paper III and IV different estimates that
can deepen the insight into the system which is studied as well as ensure existence
of solutions subject to appropriate assumptions. Specifically, in Paper III, a
general two-phase model without source terms is solved and the investigations
indicate that interstitial velocity seems more natural to use in the viscous term
than Darcy velocity for the momentum balance equation. In Paper IV, source
terms are taken into account and different physical effects are highlighted such
as compressibility and viscous coupling. Various a priori estimates are derived
that give rise to an existence result for the general two-phase model with and
without source terms. In addition, we also extended the two-phase model to
the three-phase model in Paper V and illustrated the stability of the developed
numerical schemes by investigating several numerical examples, both for the
case with incompressible and compressible fluids.

In the last part of this thesis, represented by Paper VI, we explore a general
cell-fluid Navier-Stokes model to mimic an evolution process of the bacterial
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Abstract

plumes development. The generality of the mixture theory approach allows us
to incorporate a new migration effect, so-called chemotaxis, in the momentum
balance for the cell phase. Chemotaxis and gravity segregation are two main
driving forces that result in a complex flow pattern formation of bacterial. The
nonlinear dynamics is explored in a 2D setting by using an appropriate finite
difference scheme. This model can be interpreted as a generalization of the
well-known chemotaxis-Stokes model which has attracted much attention the
last decade.
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Chapter 1

Introduction
“I do not feel obliged to believe that the same God who has endowed us
with sense, reason, and intellect has intended us to forgo their use.”

— Galileo Galilei (1564 - 1642)

1.1 A generalized multiphase flow model based on mixture theory

The importance of multiphase flow in porous media has long been recognized in
many fields. Mathematical modelling of multiphase flow is essential in practical
applications like enhanced oil recovery and geological CO2 storage in depleted
oil and gas reservoirs (Juanes 2008; Wu 2015) as well as biological and medical-
related processes (Evje 2017; Evje et al. 2018; Lemon et al. 2006; Urdal et al.
2019; Waldeland et al. 2018).

Conventional modeling of two-phase flow in porous media is based on Darcy’s
extended law which was originally developed empirically for single-phase flow
(Darcy 1856; Rose 2000) and extended to multiphase flow by incorporation
of relative permeabilities (Muskat et al. 1937). The relative permeability is
commonly assumed to be a function of saturation only, implying that the
presence of another phase has a unique impact on the phase’s flux, i.e., no
coupling is accounted for through the velocity or pressure gradient of the other
phase. Generally, the conventional model takes the form of

(φsiρi)t +∇ · (ρiUi) = Qi, (i = w, o)

Ui = −Kkri

µi
∇(Pi − ρig), Ui = φsiui

(1.1)

where Ui,ui are Darcy and interstitial velocities respectively, Qi represents
source term, K is the absolute permeability, Pi is phase pressure, kri is the phase
relative permeability, φ is the porosity of the medium, ρi represents density and
si the volume fraction (saturation). The phase pressures are dependent due to
the capillary pressure function Pc(sw) = Po − Pw.

Several experimental observations, however, indicate that the flow mode (co- or
counter-current) can have a more or less strong impact on the phase mobilities.
Previous studies of counter-current flow settings (see below for more details)
support that relative permeability in a counter-current flow setting can be
significantly lower than in co-current flow settings. In conventional simulation
tools, the dependence of the saturation functions (i.e., relative permeability and
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1. Introduction

capillary pressure) on the flow direction (co-current or counter-current) and
phase velocities is commonly ignored. This indicates that the use of the extended
Darcy’s law may be questionable.

The starting point for developing our model that can account for more
detailed physical mechanisms for water-oil flow in porous media than conventional
modeling, is the theory of mixtures.

This is a theory based on balance laws and conservation principles which is
well known in continuum mechanics (Ambrosi et al. 2002; Bowen 1980; Byrne et
al. 2003; Preziosi et al. 2002; Rajagopal et al. 1995), and has been widely applied
to systems which can be characterized as a mixture of interacting continua.

Development of models within the framework of mixture theory has found
many applications within the study of multiphase flow in porous media relevant
for life science (biomechanics), see for instance, (Ambrosi et al. 2002; Byrne et al.
2003; Preziosi et al. 2002).

An instructive overview is given in (Rajagopal 2007) of how generalizations of
the standard Darcy’s law for single phase flow can be derived within the context
of mixture theory. Starting with more general momentum balance equations and
using different sets of assumptions leads to a hierarchy of mathematical models.

In this work, we apply mixture theory to derive a model that is appropriate
to a water-oil flow scenario in porous media and the formulation of the model
takes the following form:

(φn)t +∇ · (φnuo) = Qo, n = soρo

(φm)t +∇ · (φmuw) = Qw, m = swρw

so∇Po − ng = −k̂ouo + k̂ow(uw − uo) + εo∇ · (n∇uo)
sw∇Pw −mg = −k̂wuw − k̂ow(uw − uo) + εw∇ · (m∇uw)

Pc = Po − Pw = Pc(sw).

(1.2)

Herein, k̂w, k̂o, and k̂ow represent, respectively, the water-rock resistance force,
the oil-rock resistance force and the water-oil drag force effect. Furthermore,
εw, εo (assumed to be constant) characterize the magnitude of the viscous terms.
We explore (1.2) both for compressible flow and incompressible. For compressible
fluids we use simplified pressure laws of the form

ρw − ρ̃w0 = Pw

Cw
, ρo − ρ̃o0 = Po

Co
,

(
ρg = Pg

Cg

)
(1.3)

where Cw and Co (Cg) essentially represent the inverse of the compressibility
of water and oil (gas), respectively. This is often referred to as bulk modulus
which is a constant that describes how resistant a substance is to compression.
Hence, a weakly compressible fluid corresponds to a large Ci (i = w, o, g) value.

A natural extension of (1.2) to a three-phase model is also investigated in this
work (Paper V).
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A general model for cell-fluid flow

1.2 A general model for cell-fluid flow

In the real world, vast numbers of microorganisms are suspended in temperate
aqueous environments. Oceans and rivers, puddles and droplets, the fluid
interiors of animals, all host an array of splendidly varied creatures (Pedley
et al. 1992). Although their presence is usually not obvious, they constitute the
major part of the world’s biomass. Microorganisms interact with each other
and with the world, at length scales that vary upward from the size of an
individual, say 10−4 cm, to the dimensions of the entire body of fluid in which
they live. Various microorganisms respond to stimuli by swimming (in average)
in particular directions. Such phenomena are called taxes. Common examples
of taxes of importance are gravitaxis (or geotaxis), a response to gravity or
acceleration; phototaxis, a response to light; and chemotaxis, a response to
chemical gradients.

Bioconvection is the name given to the process of spontaneous pattern
formation in suspensions of upswimming microorganisms. Typically, the cells
are denser than the medium they swim in, nevertheless they tend to swim
upwards, on average, in still water, and the patterns die away if the cells stop
swimming. The cause of the upswimming orientation can be different (gravity-
sensing, bottom-heaviness, chemotaxis, phototaxis), but the patterns show great
similarities between different species and orientation mechanisms.

Complex bioconvection patterns form when a suspension of the bacterium
Bacillus subtilis is placed in a chamber with its upper surface open to the air
(Hillesdon et al. 1996; Hillesdon et al. 1995). These arise because the cells are
heavier (approximately 10%) than water, yet, they are able to swim up an
oxygen gradient and concentrate in a layer below the water surface, which will
undergo Rayleigh-Taylor type instabilities for sufficiently high concentrations.
The reason that the cells swim upwards is that they are aerotactic, i.e., they swim
up gradients of oxygen, and they consume oxygen. When the vertical density
gradient becomes large enough, an overturning instability occurs, analogous
to Rayleigh-Bénard convection in a layer of fluid heated from below, which
ultimately evolves into the observed patterns as illustrated in Fig. 1.1.

Several related coupled chemotaxis-fluid models have been proposed to de-
scribe the collective behaviour of a suspension of oxytactic bacteria in an in-
compressible fluid under the assumptions that the contribution of bacteria to
the bacteria-fluid suspension is suffciently small and that more detailed cell-cell
interactions (such as hydrodynamic interaction) are neglected (Chertock et al.
2012). The suspension is considered to be dilute, so that the volume fraction
vVb � 1 where v is the number density of cells (bacteria) and Vb is the average
volume of the cell. Assuming fluid and bacteria are incompressible, the following
model has been proposed (Tuval et al. 2005)

vt + u · ∇v + χ∇ · (vr(C)∇C) = Dv∆v
ρ(ut + u · ∇u) +∇p = v∇Φ + η∆u, ∇ · u = 0
Ct + u · ∇C = DC∆C − κvr(C).

(1.4)
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1. Introduction

Figure 1.1: A time sequence of photographs of a deep champer (h ≈ 7− 8mm)
containing a suspension of the aerobic bacteria Bacillus subtilis (Hillesdon et al.
1995).

The first equation of (1.4) describes the mass balance equation for the bacteria
v subject to an internal interplay between a fluid-driven advection effect through
u · ∇v, chemotaxis toward higher concentration of oxygen C via ∇ · (nr(C)∇C),
and diffusive spreading of bacteria in the fluid through Dv∆v. Herein, C is
the concentration of oxygen, u is the velocity field of a fluid which is governed
by the incompressible Navier-Stokes equations with density ρ, pressure p and
viscosity η, as expressed by (1.4)2. Moreover, in the fluid momentum balance
equation of (1.4)2, the term ∇Φ = Vbg(ρb − ρ)ey describes the gravitational
force exerted by a bacterium onto the fluid along the downwards unit vector
ey proportional to the volume of the bacterium Vb with density ρb where ρb

is slightly higher than the fluid density ρ. This formulation relies on the the
Boussinesq approximation in which the density variations caused by bacteria
appear only through the buoyant forcing ∇Φ. A dimensionless cut-off function
r(C) models an inactivity threshold of the bacteria due to low oxygen supply.
Experiments suggest that the cut-off function can be modelled by a step function

4



A general model for cell-fluid flow

Variable Description
αc,αw volume fraction of cell, fluid
ρc,ρw cell density, fluid density
uc,uw cell velocity, fluid velocity
C oxygen concentration
Pc, Pw cell pressure, fluid pressure
∆P , Λ cell-cell stress, chemotactic stress
εc,εw effective viscosity cell, fluid
ζ̂ cell-fluid interaction coefficient (drag force)
K consumption rate (oxygen)
DC diffusion coefficient (oxygen)

Table 1.1: Nomenclature description for model (1.5)

r(C) = H(C−C∗) (Tuval et al. 2005) where H(·) denotes the Heaviside function.
The parameters χ and κ control the magnitude of chemotaxis and consumption
of oxygen, respectively, whereas Dv and DC are diffusion constants.

In Paper VI we develop a general cell-fluid model which naturally can
represent the model (1.4) as a special case. Hence, we shall in the following
describe such a model by relying on a mixture theory multiphase formulation. In
the multiphase modeling framework, the cell-fluid environment is considered as
a mixture of two interacting continua (Bowen 1976; Drew et al. 2006; Qiao et al.
2018; Rajagopal 2007; Rajagopal et al. 1995). The cellular phase comprises cells
represented by a volume fraction αc moving with a velocity uc and the fluid
phase represented by the volume fraction αw moving with a velocity uw. The
model takes the following form (see Table 1.1 for the different variables):

nt +∇ · (nuc) = 0, n = αcρc

mt +∇ · (muw) = 0, m = αwρw

(nuc)t +∇ · (nuc ⊗ uc) + αc∇Pc = ζ̂(uw − uc) + ng + εc∇ · (n(∇uc +∇uT
c ))

(muw)t +∇ · (muw ⊗ uw) + αw∇Pw = ζ̂(uc − uw) +mg + εw∇ · (m(∇uw +∇uT
w))

Ct +∇ · (Cuw) = ∇ · (DC∇C)−KαcC.

(1.5)

The two first equations describe mass balance of the cell and fluid phase, respec-
tively. The entire volume is occupied by the two phases, i.e., αc + αw = 1. The
next two equations in (1.5) are the corresponding momentum balance equations.
The cell momentum equation (1.5)3 accounts for two migration mechanisms: (i)
diffusive migration towards a lower volume fraction of cells αc; (ii) chemotactic
migration towards a region with higher concentration of oxygen C. This is
achieved by letting the cell phase pressure Pc feel additional stress due to cell-cell
interaction through a term ∆P (αc) as well as a chemotaxis-related stress Λ(C)
through the relation Pc = Pw + ∆P (αc) + Λ(C).
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Chapter 2

Mathematical models and numerical
schemes

“I seem to have been only like a boy playing on the seashore, and diverting
myself in now and then finding a smoother pebble or a prettier shell than
ordinary, whilst the great ocean of truth lay all undiscovered before me.”

— Isaac Newton (1642 - 1727)

In this chapter, we summarize the generalized two-phase and three-phase models
together with a general cell-fluid Navier-Stokes model. The numerical schemes
are also presented based on a finite difference approach.

2.1 A two-phase model and its numerical scheme

The generalized 1-D two-phase model for porous media flow takes the following
form with (n,m, uw, uo) as the main variables

(n)t + (nuo)x = −nQp, n = soρo

(m)t + (muw)x = −mQp + ρwQI , m = swρw

so(Po)x = −k̂ouo + k̂(uw − uo) + ng + εo(nuox)x

sw(Pw)x = −k̂wuw − k̂(uw − uo) +mg + εw(muwx)x

Pc = Po − Pw = Pc(sw)

(2.1)

subject to the boundary condition

uw(x = 0, t) = uo(x = 0, t) = 0
uw(x = 1, t) = uo(x = 1, t) = 0, t > 0

(2.2)

and initial condition

n(x, t = 0) = n0(x), m(x, t = 0) = m0(x), x ∈ [0, 1]. (2.3)

Note that the gravity constant g can take both signs depending on the orientation
of the x-coordinate axis. Above we assume that positive direction of x-axis
points downward and g > 0. In addition, porosity φ is assumed to be 1 for
simplicity. For compressible fluids we use simplified pressure laws of the form

ρw − ρ̃w0 = Pw

Cw
, ρo − ρ̃o0 = Po

Co
. (2.4)
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2. Mathematical models and numerical schemes

2.1.1 Compressible model
We consider discrete schemes for both the compressible and incompressible
version of (2.1). For that purpose we introduce a reformulation that brings
the compressible model closer to the incompressible model. In particular, we
solve explicitly only for the mass transport of m = swρw whereas the mass n is
computed implicitly. This will be in the spirit of the incompressible approach
where we solve the mass balance equation for sw and compute so = 1−sw. Details
are given below. The starting point is the model (2.1) with (n,m, uw, uo) as the
main (unknown) variables. We rewrite the model in the following equivalent
form with (m,Pw, uw, uo) as the main variables:

(m)t + (muw)x = −mQp + ρwQI

Pwt + η̃ρw(nuo)x + η̃ρ̃o(muw)x = η̃ρwρo(QI −Qp)− η̃ soP
′
c

Co
(ρwQI −mQp)

sw(Pw)x = −(k̂w + k̂)uw + k̂uo +mg + εw(muwx)x

so(Pw + Pc)x = −(k̂o + k̂)uo + k̂uw + ng + εo(nuox)x

(2.5)

with
η̃ = CwCo

soρwCw + swρ̃oCo
, ρ̃o = ρo −

soP
′
c

Co
. (2.6)

We refer to Appendix C in Paper III which gives the pressure evolution equation
(2.5)2. Note that sw, so, n, Po are determined by

sw = m

ρw(Pw) , so = 1− sw

n = soρo(Po) =
(

1− m

ρw(Pw)

)
ρo(Po) = n(m,Pw)

Po = Pc(sw) + Pw = Po(m,Pw).

(2.7)

We solve (2.5) on our domain Ω with boundary conditions

uw|∂Ω = uo|∂Ω = 0 (2.8)

and initial condition

m(x, t = 0) = m0(x), Pw(x, t = 0) = Pw(m0(x), n0(x)). (2.9)

System of ODEs
We consider the domain Ω = [0, 1] and introduce a grid of Nx cells with nodes
xj placed at the center of the cells

x1 = 1
2∆x, x2 = (1+1

2)∆x, . . . , xj = (j−1
2)∆x, . . . , xNx = (Nx−

1
2)∆x

8



A two-phase model and its numerical scheme

and cell interfaces xj+1/2 at the cell interfaces

x1/2 = 0, x3/2 = ∆x, . . . , xj+1/2 = j∆x, . . . , xNx+1/2 = Nx∆x = 1

where ∆x = 1/Nx. We introduce the approximate mass and pressure {mj(t)}Nx
j=1

and {Pw,j(t)}Nx
j=1 associated with the nodes {xj}Nx

j=1 whereas the approximate
velocities {uw,j+1/2}Nx

j=0 and {uo,j+1/2}Nx
j=0 are associated with the cell interfaces

{xj+1/2}Nx
j=0. In the following we describe a fully discrete version of (2.5).

A fully discrete scheme for the compressible model

We assume that we have given (mk
j , P

k
w,j , u

k
w,j , u

k
o,j). We then compute the

approximate solution at time tk+1 expressed by (mk+1
j , P k+1

w,j , u
k+1
w,j , u

k+1
o,j ) as

follows:

Step 1: Mass transport

mk+1
j −mk

j

∆t + 1
∆x ([muw]kj+1/2 − [muw]kj−1/2) = −mk

jQp,j + ρk
wjQI,j

(2.10)

where

[muw]kj+1/2 =
{

mk
ju

k
w,j+1/2, if uk

w,j+1/2 ≥ 0;
mk

j+1u
k
w,j+1/2, if uk

w,j+1/2 < 0. (2.11)

Having computed mk+1
j we can compute an updated water saturation sk+1/2

w,j

given by

s
k+1/2
w,j =

mk+1
j

ρw(P k
w,j)

. (2.12)

Similarly, we compute updated mass nk+1/2
j = (1 − s

k+1/2
w,j )ρo(P k+1/2

o,j ) and
P

k+1/2
o,j = P k

w,j + Pc(sk+1/2
w,j ), according to (2.7), which are needed to evaluate

coefficients in the next step.

Step 2: Computation of velocities and pressure

Next, we solve simultaneously for P k+1
w,j and uk+1

w,j+1/2 and uk+1
o,j+1/2 by considering

the following algebraic system

P k+1
wj − P k

wj

∆t +[η̃ρw]k+1/2
j

1
∆x

(
[nk+1/2uk+1

o ]j+1/2 − [nk+1/2uk+1
o ]j−1/2

)
+[η̃ρ̃o]k+1/2

j

1
∆x

(
[mk+1uk+1

w ]j+1/2 − [mk+1uk+1
w ]j−1/2

)
= [η̃ρwρo]k+1/2

j (QI,j −Qp,j)−
[
η̃
soP

′
c

Co

]k+1/2

j
(ρk

wjQI,j −mk+1
j Qp,j)

(2.13)

9



2. Mathematical models and numerical schemes

which is combined with the momentum balance equations

s
k+1/2
w,j+1/2

1
∆x (P k+1

w,j+1 − P
k+1
w,j ) =

−k̂k+1/2
w,j+1/2u

k+1
w,j+1/2 − k̂

k+1/2
j+1/2

(
uk+1

w,j+1/2 − u
k+1
o,j+1/2

)
+mk+1

j+1/2g

+εw
1

∆x2

(
mk+1

j+1 [uw,j+3/2
k+1 − uk+1

w,j+1/2]−mk+1
j [uk+1

w,j+1/2 − u
k+1
w,j−1/2]

)
,

s
k+1/2
o,j+1/2

1
∆x (P k+1

w,j+1 − P
k+1
w,j ) = −sk+1/2

o,j+1/2
1

∆x (P k+1/2
c,j+1 − P

k+1/2
c,j )

−k̂k+1/2
o,j+1/2u

k+1
o,j+1/2 + k̂

k+1/2
j+1/2

(
uk+1

w,j+1/2 − u
k+1
o,j+1/2

)
+ n

k+1/2
j+1/2g

+εo
1

∆x2

(
n

k+1/2
j+1 [uo,j+3/2

k+1 − uk+1
o,j+1/2]− nk+1/2

j [uk+1
o,j+1/2 − u

k+1
o,j−1/2]

)
.

(2.14)

Equipped with (P k+1
w,j , u

k+1
w,j+1/2, u

k+1
o,j+1/2) we can now update the saturation sw,j

by

sk+1
w,j =

mk+1
j

ρw(P k+1
w,j )

(2.15)

from which we also compute the updated oil mass nk+1
j and pressure P k+1

o,j via
(2.7). If necessary, we may repeat step 2 to improve the accuracy before we
proceed to next time level.
Remark 2.1.1. The upwind discretization of [nk+1/2uk+1

o ]j+1/2 and [mk+1uk+1
w ]j+1/2

appearing in (2.13) are based on "old" velocities uk
o,j+1/2 and uk

w,j+1/2.

2.1.2 Incompressible model
When fluids are incompressible the model (2.1) takes the following form with
unknown variables (sw, Pw, uw, uo)

(sw)t + (swuw)x = −swQp +QI

(so)t + (souo)x = −soQp

sw(Pw)x = −k̂wuw − k̂(uw − uo) + swρwg + εwρw(swuwx)x

so(Pw + Pc)x = −k̂ouo + k̂(uw − uo) + soρog + εoρo(souox)x

(2.16)

subject to the boundary condition

uw|∂Ω = uo|∂Ω = 0 (2.17)

and initial condition
sw(x, t = 0) = sw0(x). (2.18)

Note that we can only determine Pw up to a constant and a reference pressure
P ∗ at some point in the domain may be specified. An equivalent formulation of

10



A two-phase model and its numerical scheme

(2.16) is given by (after a summation of the two mass balance equation)

(sw)t + (swuw)x = −swQp +QI

(swuw + souo)x = −Qp +QI

sw(Pw)x = −k̂wuw − k̂(uw − uo) + swρwg + εwρw(swuwx)x

so(Pw + Pc)x = −k̂ouo + k̂(uw − uo) + soρog + εoρo(souox)x.

(2.19)

This formulation is consistent with and follows directly from (2.5) by letting
Cw, Co →∞ (i.e., the fluids become incompressible). This is a consequence of
the fact that η̃ →∞ and ρ̃o → ρo, see (2.6).

A fully discrete scheme for the incompressible model

We can now proceed with a description of a full discrete scheme for the incom-
pressible case which bears clear similarity to the scheme for the compressible
model.

Step 1: Mass transport

sk+1
w,j − sk

w,j

∆t + 1
∆x ([swuw]kj+1/2 − [swuw]kj−1/2) = −sk

w,jQp,j +QI,j
(2.20)

where

[swuw]kj+1/2 =
{

sk
w,ju

k
w,j+1/2, if uk

w,j+1/2 ≥ 0;
sk

w,j+1u
k
w,j+1/2, if uk

w,j+1/2 < 0. (2.21)

Having computed sk+1
w,j we can compute pressure and velocities simultaneously

at time level k + 1.

Step 2: Computation of velocities and pressure

We solve for P k+1
w,j and uk+1

w,j+1/2 and uk+1
o,j+1/2 by considering the following alge-

braic system

1
∆x ([sk+1

w uk+1
w ]j+1/2 − [sk+1

w uk+1
w ]j−1/2)+

1
∆x ([sk+1

o uk+1
o ]j+1/2 − [sk+1

o uk+1
o ]j−1/2) = QI,j −Qp,j

(2.22)

11



2. Mathematical models and numerical schemes

which is combined with the momentum balance equations

sk+1
w,j+1/2

1
∆x (P k+1

w,j+1 − P
k+1
w,j ) =

−k̂k+1
w,j+1/2u

k+1
w,j+1/2−k̂

k+1
j+1/2

(
uk+1

w,j+1/2 − u
k+1
o,j+1/2

)
+ sk+1

w,j+1/2ρwg

+εw
ρw

∆x2

(
sk+1

w,j+1[uw,j+3/2
k+1 − uk+1

w,j+1/2]− sk+1
w,j [uk+1

w,j+1/2 − u
k+1
w,j−1/2]

)
,

sk+1
o,j+1/2

1
∆x (P k+1

w,j+1 − P
k+1
w,j ) = −sk+1

o,j+1/2
1

∆x (P k+1
c,j+1 − P

k+1
c,j )

−k̂k+1
o,j+1/2u

k+1
o,j+1/2+k̂k+1

j+1/2

(
uk+1

w,j+1/2 − u
k+1
o,j+1/2

)
+ sk+1

o,j+1/2ρog

+εo
ρo

∆x2

(
sk+1

o,j+1[uo,j+3/2
k+1 − uk+1

o,j+1/2]− sk+1
o,j [uk+1

o,j+1/2 − u
k+1
o,j−1/2]

)
.

(2.23)

Remark 2.1.2. The upwind discretization of [sk+1
w uk+1

w ]j+1/2 and [sk+1
o uk+1

o ]j+1/2
appearing in (2.22) are based on "old" velocities uk

w,j+1/2 and uk
o,j+1/2.

2.2 A three-phase model and its numerical scheme

A generalized 1-D model is given for three immiscible fluids moving in a porous
media where porosity φ is assumed to be 1 for simplicity. The model takes the
form with (m,n, c, uw, uo, ug) as the main variables

(nw)t + (nwuw)x = −nwQp + ρwQIw, nw = swρw

(no)t + (nouo)x = −noQp, no = soρo

(ng)t + (ngug)x = −ngQp + ρgQIg, ng = sgρg

sw(Pw)x = −k̂wuw − k̂wo(uw − uo)− k̂wg(uw − ug) + nwg + εw(nwuwx)x

so(Po)x = −k̂ouo − k̂wo(uo − uw)− k̂og(uo − ug) + nog + εo(nouox)x

sg(Pg)x = −k̂gug − k̂wg(ug − uw)− k̂og(ug − uo) + ngg + εg(ngugx)x

∆Pow(sw) = Po − Pw, ∆Pgo(sg) = Pg − Po.

(2.24)

We may solve (2.24) on our domain Ω with boundary conditions

uw|∂Ω = uo|∂Ω = ug|∂Ω = 0 (2.25)

and initial condition
nw(x, t = 0) = nw0(x), no(x, t = 0) = no0(x), ng(x, t = 0) = ng0(x).

(2.26)
For compressible fluids, it must be combined with appropriate closure relations
for ρi = ρi(Pi). Here we represent the three phases by linear pressure-density
relations of the form

ρw − ρ̃w0 = Pw

Cw
, ρo − ρ̃o0 = Po

Co
, ρg = Pg

Cg
. (2.27)

12



A three-phase model and its numerical scheme

2.2.1 Compressible model
We consider a slight reformulation of the model (2.24) where we shall make use of
the pressure evolution equation (refer to Appendix A in Paper V). Then we may
rewrite the model in the following equivalent form with (nw, no, Pw, uw, uo, ug)
as the main variables

(nw)t + (nwuw)x = −nwQp + ρwQIw

(no)t + (nouo)x = −noQp

Pwt + η̃1(nwuw)x + η̃2(nouo)x + η̃3(ngug)x = η̃4Qp + η̃5QIw + η̃6QIg

sw(Pw)x = −k̂wuw − k̂wo(uw − uo)− k̂wg(uw − ug)− nwg + εw(nwuwx)x

so(Pw + ∆Pow)x = −k̂ouo − k̂wo(uo − uw)− k̂og(uo − ug)− nog + εo(nouox)x

sg(Pw + ∆Pow + ∆Pgo)x = −k̂gug − k̂wg(ug − uw)− k̂og(ug − uo)− ngg + εg(ngugx)x

∆Pow(sw) = Po − Pw ∆Pgo(sg) = Pg − Po.

(2.28)

Here ng is determined by

ng = sgρg(Pg) = (1− sw − so)ρg(Pg)

=
(

1− nw

ρw(Pw) −
no

ρo(Po)

)
ρg(Pg) = ng(nw, no, Pw) (2.29)

where Po = Po(sw, Pw) = Po(nw, Pw) and Pg = Pg(sw, so, Pw) = Pg(nw, no, Pw).

System of ODEs

We consider the domain Ω = [0, 1] and introduce a grid of Nx cells with nodes
xj placed at the center of the cells

x1 = 1
2∆x, x2 = (1+1

2)∆x, . . . , xj = (j−1
2)∆x, . . . , xNx = (Nx−

1
2)∆x

and cell interfaces xj+1/2 at the cell interfaces

x1/2 = 0, x3/2 = ∆x, . . . , xj+1/2 = j∆x, . . . , xNx+1/2 = Nx∆x = 1

where ∆x = 1/Nx. We introduce the approximate masses {nwj(t)}Nx
j=1, {noj(t)}Nx

j=1,
and {ngj(t)}Nx

j=1 associated with the nodes {xj}Nx
j=1 whereas the approximate

velocities {uw,j+1/2}Nx
j=0, {uo,j+1/2}Nx

j=0, and {ug,j+1/2}Nx
j=0 are associated with

the cell interfaces {xj+1/2}Nx
j=0.

We refer to Appendix B in Paper V for the discretization of the three-phase
compressible model since it is similar to the numerical scheme for the two-phase
compressible model in Section 2.1.1.

13



2. Mathematical models and numerical schemes

2.2.2 Incompressible model
When fluids are incompressible the model (2.24) takes the form

(sw)t + (swuw)x = −swQp +QIw

(so)t + (souo)x = −soQp

(swuw + souo + sgug)x = −Qp +QIw +QIg

sw(Pw)x = −k̂wuw−k̂wo(uw − uo)− k̂wg(uw − ug) + nwg + εwρw(swuwx)x

so(Po)x = −k̂ouo−k̂wo(uo − uw)− k̂og(uo − ug) + nog + εoρo(souox)x

sg(Pg)x = −k̂gug−k̂wg(ug − uw)− k̂og(ug − uo) + ngg + εgρg(sgugx)x

∆Pow(sw) = Po − Pw, ∆Pgo(sg) = Pg − Po.

(2.30)

The discrete scheme for the three-phase incompressible model (refer to Appendix
C in Paper V) is omitted here since it follows by analogy from what is done for
the two-phase incompressible model in Section 2.1.2.

2.3 A general cell-fluid Navier-Stokes model and its numerical
approximation

We write the general cell-fluid model (1.5) in component form for a 2D domain
with x = (x, y) ∈ Ω where y is the downward unit vector in vertical direction
and with velocity fields uc = (ux

c , u
y
c ) and uw = (ux

w, u
y
w). In the following we

focus on the incompressible version.

(αc)t + (αcu
x
c )x + (αcu

y
c )y = 0

Ct + (Cux
w)x + (Cuy

w)y = (DCC
x
x )x + (DCC

y
x)y −KαcC

(αcu
x
c )x + (αcu

y
c )y + (αwu

x
w)x + (αwu

y
w)y = 0

(mux
w)t + (mux

wu
x
w)x + (mux

wu
y
w)y + αwPwx

= −ζ̂(ux
w − ux

c ) +mgx + 2εw(mux
wx)x + εw(muy

wx)y + εw(mux
wy)y

(nux
c )t + (nux

cu
x
c )x + (nux

cu
y
c )y + αcPcx

= +ζ̂(ux
w − ux

c ) + ngx + 2εc(nux
cx)x + εc(nuy

cx)y + εc(nux
cy)y

(muy
w)t + (muy

wu
y
w)y + (mux

wu
y
w)x + αwPwy

= −ζ̂(uy
w − uy

c ) +mgy + 2εw(muy
wy)y + εw(mux

wy)x + εw(muy
wx)x

(nuy
c )t + (nuy

cu
y
c )y + (nux

cu
y
c )x + αcPcy

= +ζ̂(uy
w − uy

c ) + ngy + 2εc(nuy
cy)y + εc(nux

cy)x + εc(nuy
cx)x

(2.31)

with phase pressure relation

Pc = Pw + ∆P (αc) + Λ(C). (2.32)
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A general cell-fluid Navier-Stokes model and its numerical approximation

The model may be combined with the boundary conditions

uc|∂Ω = 0, uw|∂Ω = 0, ∂

∂ν
C|∂Ω = 0, t > 0 (2.33)

where ν is the outward normal on ∂ν. Corresponding initial data are

αc(x, t = 0) = αc0(x), C(x, t = 0) = C0(x). (2.34)

We refer to Appendix A in Paper VI for the discretization of (2.31). The main
principles are similar to the techniques used for the two-phase incompressible
model in Section 2.1.2.
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Chapter 3

Paper contributions
“Nothing in life is to be feared, it is only to be understood. Now is the
time to understand more, so that we may fear less.”

— Marie Curie (1867 - 1934)

The main contribution of this work is six articles where five of them have been
published or is in the process of being published in peer-reviewed journals whereas
one of them is currently under review. In this chapter, a brief summary of each
paper is given.

Paper I - A mixture theory approach to model co- and counter-current
two-phase flow in porous media accounting for viscous coupling.

This paper presents a model where momentum equations based on a general
mixture theory replace Darcy’s law in order to account for viscous coupling
between the fluid phases and between fluid and rock. We carry out a systematic
comparison of the generalized model and the conventional model (Darcy-based
approach) for a specific flow case relevant for naturally fractured reservoirs. The
inclusion of the fluid-fluid interaction term implies that this term contains a
modification that automatically accounts for counter-current effects not captured
by the conventional model. Fig. 3.1 illustrates the geometry of the flow system
we study and Fig. 3.2 demonstrates the difference between the generalized and
conventional models with inclusion of both gravity and capillary terms, which
will give rise to mixed co-current and counter-current driven flow.

Figure 3.1: Geometry of the system. A water-wet matrix block of height H is
exposed to water both at the top (x = 0) and bottom (x = H). Spontaneous
imbibition and gravity drainage mechanisms displace the oil by water in 1-D
flow.
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3. Paper contributions

Figure 3.2: Comparison between the generalized and conventional models
for the case with two open-boundaries. Profiles of uw(x), uo(x) (top) and
normalized water saturation Sw(x) (bottom) are shown after 4.8, 43.9 and 126
hours. Counter-current flow is present mainly in the upper and lower parts of
the block, while co-current flow dominates the central part.
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Paper II - Co-current spontaneous imbibition in porous media with
the dynamics of viscous coupling and capillary back pressure.

In this paper we consider a water-wet matrix block in one dimension that is
exposed to oil on one side and water on the other side. This setup favors co-
current spontaneous imbibition. We also account for the fact that oil produced
counter-currently into water must overcome the so-called capillary back pressure,
which represents a resistance for oil to be produced as droplets. This parameter
can thus influence the extent of counter-current production and hence, viscous
coupling. Fig. 3.3 shows the geometry of the flow system we study and in Fig.
3.4 it is seen that due to viscous coupling, the saturation front is steeper in
the generalized model compared to the conventional and the distributions are
strongly affected by the introduction of the capillary back pressure.

Figure 3.3: Geometry of the system. A water-wet matrix block of height H is
exposed to water at the bottom (x = H) and oil at the top (x = 0). Co- and
counter-current spontaneous imbibition displaces oil by water in 1-D flow.
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3. Paper contributions

Figure 3.4: Distribution of saturation and capillary pressure along the core at
20 equal time intervals with total time 500 hours. The first row and second row
represent, respectively, conventional model and generalized model. µo=10µref

o

corresponds to mobility ratio M=1 and capillary back pressure Pcb=2.5 kPa.
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Paper III - Compressible and viscous two-phase flow in porous media
based on mixture theory formulation.

This paper investigates a generalized two-phase model for porous media flow. The
momentum balance equations account for fluid-rock resistance forces as well as
fluid-fluid drag force effects, in addition to internal viscosity through a Brinkmann
type viscous term. We rely on the energy method and use compressibility in
combination with the structure of the viscous term to obtain H1-estimates as
well upper and lower uniform bounds of mass variables. These a priori estimates
imply existence of solutions in a suitable functional space for a global time T > 0.
Discrete schemes are also derived both for the incompressible and compressible
case to explore the role of the viscosity term (Brinkmann type) as well as the
incompressible versus the compressible case. We demonstrate similarities and
differences between a formulation that is based, respectively, on interstitial
velocity and Darcy velocity in the viscous term. The numerical test is a 10-day
flooding process in a horizontal reservoir layer with a constant interstitial water
injection rate and a constrained water saturation (0.8) at left boundary. It is
observed in Fig. 3.5 that there is a delay in the solution of the compressible
model compared with the incompressible model and the numerical scheme tends
to give more oscillatory behavior by using Darcy velocity in the viscous term.

Figure 3.5: Comparison between the compressible model and the incompressible
model for water-oil flow with εw = εo = 107, 106. After the same period of
10 days, water flow in the compressible model is delayed compared with water
profiles in the incompressible model, for both situations with interstitial velocity
and Darcy velocity in viscous terms.
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Paper IV - Viscous two-phase flow in porous media driven by source
terms: analysis and numerics.

This paper explores a one-dimensional version of a generalized compressible model
where we account for two-phase dynamics driven by injection and production
of fluids through realistic source terms and where physically relevant capillary
pressure is accounted for. Firstly, various a priori estimates are derived that
give rise to an existence result subject to a constraint on the magnitude of the
viscous terms and the strength of the injection and production rate. Secondly, a
numerical finite difference scheme, designed for dealing effectively with the strong
nonlinear coupling between the mass and momentum equations, is then used to
demonstrate a variety of two-phase injection-production scenarios for a realistic
reservoir setting. Different physical effects are highlighted such as the difference
between compressible and incompressible flow, balance between gravity and
pressure-driven flow, and effect of viscous coupling. Fig. 3.6 shows a 1D reservoir
layer with one injection well at the center of the layer and two production
wells at the left and right side. A comparison between the compressible and
incompressible vertical (θ = 900) water-gas models is illustrated in Fig. 3.7.

Figure 3.6: 1D inclined reservoir. Water is pumped into the injection well to
displace reservoir fluids (90% gas and 10% water, initially) and its injection rate
is double times of the production rate at two sides of the reservoir layer.
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Figure 3.7: Comparison between the compressible and incompressible vertical
water-gas models at 20 and 100 days. (a,d) Interstitial velocity uw, ug. (b,e)
Phase pressure Pw, Pg. (c,f) Water saturation sw. After a time T = 100 days
we see that there is a steady flow of gas from the lower region to the upper
for the incompressible model (panel d). In particular, water will not block this
migration (panel f). For the compressible model, on the other hand, water will
block for this upward migration of gas (compare gas velocities in panel d).
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Paper V - A compressible viscous three-phase model for porous media
flow based on the theory of mixtures.

A main objective of this paper is to explore a three-phase model, which appears
to be more realistic than standard formulation, in the context of petroleum
related applications. We first provide development of stable numerical schemes
in a one-dimensional setting which can be used to explore the generalized water-
oil-gas model, both for the compressible and incompressible case. Then, several
numerical examples with water flooding in a gas reservoir and water alternating
gas (WAG) experiments in an oil reservoir are investigated. Fig. 3.8 demonstrates
the case for water flooding in a 1D inclined (θ = 900) gas-oil reservoir as shown
in Fig. 3.6 with the initial condition: 90% gas and 10% oil.

Figure 3.8: Comparison between the compressible and incompressible model
with vertical three-phase flow. (A,D) Phase velocity uw and ug for water and
gas, respectively. (B,E) Pressure Pw and Pg for water and gas, respectively.
Almost incompressible water is injected whereas the compressible model senses
that compressed gas is removed through the producers. This gives rise to a lower
pressure level for the compressible model as compared to the incompressible.
(C,F) Saturation sw and sg for water and gas, respectively.
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Paper VI - A general cell-fluid Navier-Stokes model with inclusion of
chemotaxis.

The main purpose of this work is to explore a general cell-fluid model which is
based on a mixture theory formulation that accounts for the interplay between
oxytactically (chemotaxis toward gradient in oxygen) moving bacteria cells in
water and the bouyance forces caused by the difference in density between cells
and fluid. The model involves two mass balance and two general momentum
balance equations, respectively, for the cell and fluid phase, combined with a
convection-diffusion-reaction equation for oxygen. In particular, the momentum
balance equations include interaction terms which describe the cell-fluid drag
force effect. Hence, the model is an extension of the classical Navier-Stokes
equation. The model can be understood as a natural generalization of the much
studied chemotaxis-Stokes model explored by Tuval et al. (2005). Assuming that
cells and water are incompressible, we explore the nonlinear dynamics inherent
in the model in a 2D setting by using an appropriate finite difference scheme.
The general cell-fluid model provides new insight into the role played by the
cell-fluid interaction term. Formation of falling plumes requires a sufficiently
strong cell-fluid interaction such that the difference between cell and water
velocity becomes small. Fig. 3.9 describes the investigated system with high
concentration cells in the upper part, initially. The formation of falling plumes
is illustrated in Fig. 3.10.

Figure 3.9: Boundary conditions for the system. The air–water interface, where
the oxygen concentration is equal to that of air, is not crossed by bacteria; the
fluid and cell vertical velocity components equal zero and the fluid and cells are
assumed to be free of tangential stress. The container walls are impermeable to
bacteria and oxygen.
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Figure 3.10: Initially, a high cell volume fraction region dominates in the upper
part of the domain (left column, top). We see that oxygen is consumed faster at
the beginning in this region (right column, top). Since the whole system is open
to the air at top side oxygen can constantly diffuse into the box whereas in the
lower part oxygen is consumed by the cells such that the oxygen concentration
reaches the lower limit C = C∗ = 0.3. Beyond this limit the chemotaxis effect
vanishes and gravity becomes the dominating force and the plumes will develop
as cells sink towards the bottom. Clearly, cells are kept coherent in the upper
region of the domain reflecting that the gravity and chemotaxis driven transport
work together such that the developing plumes are maintained.

26



Chapter 4

Conclusions and further works
“The most beautiful experience we can have is the mysterious. It is the
fundamental emotion that stands at the cradle of true art and true science.”

— Albert Einstein (1879 - 1955)

The generalized two-phase model apparently can automatically capture fluid-
fluid interaction effects and better represent mobility functions for mixed flow
regimes in the context of multiphase flow in porous media relevant for reservoir
simulation. Directly implementing co-currently measured relative permeability
curves, as is standard, into reservoir simulation, may yield too optimistic results
since viscous coupling can be enhanced at more general flow regimes (Paper I).
The simulations indicate that the viscous coupling effects could become more
significant with time in the case where both gravity and capillary pressure forces
are present as counter-current flow dominates a larger portion of the core at late
times.

The role of viscous coupling in the context of co-current spontaneous imbibition
of water that displaces oil in porous media was discussed (Paper II). The model
predicts that when oil or water viscosity is increased, viscous coupling effects
increase. At low water/oil-mobility ratios, the spontaneous imbibition process is
dominated by co-current production with sharp saturation fronts. The role of
viscous coupling then does not have much impact. At high water/oil-mobility
ratios, countercurrent production becomes more dominant and the saturation
profile becomes smoother along the core, rather than acting as a shock. Because
of viscous coupling, the generalized model displays more resistance to countercur-
rent flow and thus results in less countercurrent production than the conventional
model. In addition, the capillary backpressure can reduce the countercurrent
production by lowering the capillary pressure gradient at the water side.

An existence result for the generalized two-phase model was obtained where
the source terms were set to zero by exploiting the fact that the viscous term
depends on the interstitial fluid flow velocity (Paper III). The finite difference
schemes we formulated allow us to systematically gain some insight into the
effect of compressibility as well as the effect from the viscous terms that account
for the frictional resistance within the fluid. It is also observed that by using
Darcy velocity in the viscous term, the resulting scheme tends to give more
oscillatory behavior.

We have derived estimates and obtained an existence result where the role of
source terms related to injection and production wells are accounted for (Paper
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IV). We have found that a consequence of having the source terms as a driver
for the dynamics is that the energy can no longer be controlled without taking
into account higher order regularity terms. The developed numerical scheme
works well for the simulations with source terms as well. The simulation results
demonstrate that differences between the compressible and incompressible mod-
els can be significant for the case involved gas.

The generalized two-phase flow model was also extended to the three-phase
version based on the theory of mixtures (Paper V). It was demonstrated that the
corresponding developed numerical scheme is also stable for both incompressible
and compressible models which involve a combination of co-current and counter-
current flow.

Finally, a general full two-phase cell-fluid Navier-Stokes model was explored
and linked to the widely studied model (Paper VI). Our general model provides
new insight into the role played by the cell-fluid interaction term. Formation
of falling plumes requires a sufficiently strong cell-fluid interaction such that
the difference between cell and water velocity becomes small. A weakening of
this term typically implies that the falling plumes will detach from the upper
layer. Hence, this term controls the competition between gravity segregation
and chemotaxis effect on the formation of cell plumes.

The generalized model seems to offer a nice framework for various new and
interesting further investigations like:

a) Consider complex systems that involve a combination of porous media based
flow and Navier-Stokes based flow. The general model formulation naturally
contains both of them.

b) Consider porous media multiphase flow where the effects of chemical com-
ponents are included. For example, the effect of "smart water" in IOR or CO2
storage related problems. The mixture model formulation opens for a more
precise description of how chemical effects will affect the creeping flow.

c) Explore the generalized models in the context of aggressive tumor cell behavior.
This can be done by an appropriate extension/modification of the cell-fluid model
presented in this thesis combined with recent approaches as studied in (Urdal
et al. 2019; Waldeland et al. 2018).

d) Explore various improved versions of the numerical schemes presented in this
work. Explore finite volume or finite element based methods, various techniques
for improved accuracy, and techniques for more efficient solvers of the implicit
part of the numerical approach.

e) Explore the model in the context of wellbore-reservoir flow scenarios.
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A B S T R A C T

It is well known that relative permeabilities can depend on the flow configuration and they are commonly lower
during counter-current flow as compared to co-current flow. Conventional models must deal with this by
manually changing the relative permeability curves depending on the observed flow regime. In this paper we use
a novel two-phase momentum-equation-approach based on general mixture theory to generate effective relative
permeabilities where this dependence (and others) is automatically captured. In particular, this formulation
includes two viscous coupling effects: (i) Viscous drag between the flowing phases and the stagnant porous rock;
(ii) viscous drag caused by momentum transfer between the flowing phases. The resulting generalized model will
predict that during co-current flow the faster moving fluid accelerates the slow fluid, but is itself decelerated,
while for counter-current flow they are both decelerated. The implications of these mechanisms are demon-
strated by investigating recovery of oil from a matrix block surrounded by water due to a combination of gravity
drainage and spontaneous imbibition, a situation highly relevant for naturally fractured reservoirs. We imple-
ment relative permeability data obtained experimentally through co-current flooding experiments and then
explore the model behavior for different flow cases ranging from counter-current dominated to co-current
dominated. In particular, it is demonstrated how the proposed model seems to offer some possible interesting
improvements over conventional modeling by providing generalized mobility functions that automatically are
able to capture more correctly different flow regimes for one and the same parameter set.

1. Introduction

Conventional modeling of two-phase flow in porous media is based on
Darcy’s extended law which was originally developed empirically for
single-phase flow (Darcy, 1856; Rose, 2000) and extended to multiphase
flow by incorporation of relative permeabilities (Muskat et al., 2013). The
relative permeability is commonly assumed to be a function of saturation
only, implying that the presence of another phase has a unique impact on
the phase’s flux, i.e. no coupling is accounted for through the velocity or
pressure gradient of the other phase. Several experimental observations,
however, indicate that the flow mode (co- or counter-current) can have a
more or less strong impact on the phase mobilities. Previous studies of
counter-current flow settings (see below for more details) support that
relative permeability in a counter-current flow setting can be significantly
lower than in co-current flow settings. In conventional simulation tools,
the dependence of the saturation functions (i.e., relative permeability and
capillary pressure) on the flow direction (co-current or counter-current)
and phase velocities is commonly ignored. This indicates that the use of
the extended Darcy’s law may be questionable.

1.1. Previous works on coupled multiphase flow

Fluid-fluid interactions, referred to herein as viscous coupling, can
play a significant role related to two-phase flow in porous media.
Yuster (1951) was the first to mention such phenomena by theoretical
analysis of two-phase flow in capillary tubes where he derived that
relative permeability should not only be a function of saturation, but
also of viscosity ratio. Researchers have proposed that relative perme-
abilities depend on saturations, capillary number and viscosity ratio
between two fluids (Avraam and Payatakes, 1995a; Ehrlich, 1993) and
on how the fluids flow relative to each other (Bentsen and Manai, 1992;
Bourbiaux and Kalaydjian, 1990). Momentum transfer due to differ-
ences in interstitial velocities induces acceleration of the slower and
deceleration of the faster moving fluid if the fluids are moving co-cur-
rently. Deceleration of both fluid velocities will occur if they are
moving counter-currently (Ayodele, 2006; Babchin et al., 2006; Bentsen
and Manai, 1993; Dullien and Dong, 1996; Li et al., 2004). Hence, the
extent of fluid-fluid interaction and the flow mode is significantly im-
pacting fluid mobilities and relative permeabilities. There are several
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theoretical approaches aiming at developing generalized models that
account for viscous coupling effects. An effort to extend the single-
phase Darcy’s law to multiphase flow was made by de la Cruz and
Spanos (1983) who derived theoretically Darcy’s empirical extended
law by applying the method of volume averaging to Stokes equation.
Kalaydjian (1987, 1990) developed flow equations using the concepts
of irreversible thermodynamics from a macroscopic understanding of
two-phase flow in porous media. Moreover, a number of researchers
tried to gain insight into how two immiscible phases flow through a
porous medium by using simple analogous models such as tubular flow
(Bacri et al., 1990; Yuster, 1951). Common for such generalized models,
the flux of each phase is a function of both phases’ pressure gradients
and it therefore contains four generalized coefficients (diagonal and
cross-term mobilities) which are referred to as generalized mobilities.
Avraam and Payatakes (1995b) measured such cross-terms experi-
mentally in 2-D micro models vs. wetting phase saturation in steady-
state co-current flow of water and oil. They concluded that coupling is
important over broad ranges of wetting phase saturation, capillary
number and viscosity ratio. Dullien and Dong (1996) likewise measured
cross-terms in two-phase flow in sand packs using a fluid system with
viscosity ratio of unity. The value of the cross terms ranged from 10 to
35 % of the value of the effective permeability to water and from 5 to
15 % of the effective permeability to oil, respectively. Langaas and
Papatzacos (2001) used the Lattice Boltzmann (LB) approach to in-
vestigate viscous coupling and concluded that co-current relative per-
meabilities always are larger than the corresponding counter-current
curves caused partly by viscous coupling and different levels of capil-
lary forces. Li et al. (2005) also used LB to investigate viscous coupling
and they concluded that their model was able to capture main experi-
mental effects normally interpreted as caused by this effect. They also
concluded that the interfacial area between the fluids is a key variable

for understanding of multiphase flow and hence relative permeability
functions when two immiscible fluids are flowing through porous
media.

1.2. Objectives of this work

The main objective of this work is to explore how to develop a
model that naturally can account for viscous coupling effects (i.e., fluid-
fluid interaction) by applying the theory of mixtures (Lemon et al.,
2006; Rajagopal, 2007; Rajagopal and Tao, 1995; Schuff et al., 2013).
In this formulation each phase momentum balance equation is a func-
tion of both fluid velocities. More precisely, based on a two-fluid Stokes
type of formulation for creeping flow we derive generalized mobility
functions that are sensitive to both solid-fluid interaction as well as
fluid-fluid interaction. In other words, the obtained mobility functions
automatically include terms that sense contributions from the counter-
current flow and other terms that sense contributions from the co-
current flow. In particular, the mobility functions ensure that for co-
current flow the fluid with highest speed decelerates whereas the
slower fluid is accelerated. For counter-current flow both fluids will
experience a reduced velocity depending on the strength of the fluid-
fluid interaction. A first presentation of this idea was given in
Standnes et al. (2017). The model studied in that work was simplified in
the sense that no impact of gravity forces and capillary pressure was
accounted for in the final expressions. It was also used for steady state
investigations only.

The potential usefulness of the proposed generalized model is illu-
strated by studying a specific example with an oil-saturated matrix
block submerged in water where the resulting flow involves a rather
delicate balance between counter-current and co-current flow de-
pending on the relative strength of capillary pressure driven flow

List of symbols

Roman

a1, a2, k1, k2, c: dimensionless capillary pressure correlation para-
meters, -

b external force term in Brinkman’s equation, m/s2

fij interphase force on phase i exerted by phase j, Pa/m
fw water fractional flow function, –
g acceleration of gravity, 9.8m/s2

gi external body force of phase i, Pa/m
H height of block, m
Iw water-solid interaction coefficient, –
Io oil-solid interaction coefficient, –
I water-oil interaction coefficient, (Pa · s)−1

I identity tensor, –
J scaled capillary pressure function, –
K absolute permeability, mD
kro, krw relative permeability of oil/water, –
k k,ro rw

max max end point relative permeability values of oil/water, –
no, nw Corey exponents for oil and water, –
Pc capillary pressure, Pa
po, pw oil/water phase pressure, Pa
Ro oil-solid interaction term, Pa · s/m2

Rw water-solid interaction term, Pa · s/m2

R oil-water interaction term, Pa · s/m2

RF recovery factor of mobile oil, –
s front speed determined by Rankine–Hugoniot criterion,

m/d
so, sw oil/water saturation, –
So, Sw normalized oil/water saturation, –
sor, swr residual oil/water saturation, –

Sw
e effective saturation in Barenblatt non-equilibrium model,

–
t time, hour
uT total Darcy velocity, m/d
uT

0 initial total Darcy velocity, m/d
uo, uw oil/water phase Darcy velocity, m/d
vo, vw interstitial oil/water average velocity over a re-

presentative elementary volume, m/s
̂ ̂v v,o w intrinsic velocity on microscopic scale, m/s

W generalized mobility term for capillary diffusion, m2/
(Pa · s)

x block depth, m

Greek

α0 drag force coefficient in Brinkman’s equation, Pa · s/m2

α exponent for water phase, –
β exponent for oil phase, –
β12, β21 mixture interaction coefficients, Pa · s/m2

Δρ density difference, g/cm3

θi volume fraction of phase i, –
κi bulk viscosity i, Pa · s

̂ ̂λ λ,oo ww generalized diagonal mobilities, m2/(Pa · s)
̂ ̂λ λ,ow wo generalized cross term mobilities, m2/(Pa · s)

λo, λw phase mobilities, m2/(Pa · s)
̂ ̂λ λ,o w generalized phase mobilities, m2/(Pa · s)

μo, μw oil/water viscosity, cP
σ oil-water interfacial tension, mN/m
ρo, ρw density of oil/water, g/cm3

ϕ porosity, –
ϕe effective porosity, –
Ψi macroscopic stress tensor of phase i, Pa
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(spontaneous imbibition) and gravity driven. Spontaneous imbibition is
regarded as a key driving mechanism for oil production in naturally
fractured water-wet reservoirs (Andersen et al., 2014; Mason and
Morrow, 2013). This process is featured by water imbibing sponta-
neously into the matrix blocks by capillary forces simultaneously ex-
pelling oil to the surrounding fracture system, either counter-currently
if the matrix blocks are totally submerged in water, or in a co-current
flow mode if parts of the blocks are covered by oil (Andersen et al.,
2017a). Hence, the rate of imbibition is determined by the capillary
forces and the corresponding fluid mobilities which are strong functions
of the flow mode (co- versus counter-current flow).

An important aspect of the imbibition process is the fact that ca-
pillary forces decrease rapidly when the water saturation increases,
implying that gravity forces under such conditions no longer can be
ignored and will have significant impact on fluid saturation distribution
and flow of oil and water. Viscous coupling effects can thus potentially
have important implications and modeling advantages for the under-
standing of two-phase flow in this context, both since (i) relative per-
meabilities are always measured co-currently in the laboratory and
counter-current flow can thus behave differently than predicted from
those measurements, and (ii) since a dynamic variation can occur re-
garding the magnitude of co- versus counter-current flow. In a con-
ventional model this case would be challenging to deal with because
regions with different flow behavior (co-current and counter-current)
must be identified and then corresponding relative permeability func-
tions assigned manually. As an example of such implementation, an
interesting recent study of viscous coupling effects in a three-phase
setting is found in Sherafati and Jessen (2017). The authors investigated
the impact of mobility changes due to flow reversals from co-current to
counter-current flow on the displacement performance of water alter-
nating gas (WAG) injection processes. Their method consists of
switching between using co-current relative permeability functions and
counter-current depending on a criterion that classifies flow either as
co- or counter-current. With the proposed generalized model of this
paper, one set of parameters could potentially describe all such flow
combinations dynamically. The presented generalized model further
has the advantage of accounting for the effect of fluid viscosities on
relative permeabilites and imbibition rates (Standnes and Andersen,
2017; Standnes et al., 2017).

It seems appropriate to mention here another related direction
where researchers have proposed alternatives to Darcy-type formula-
tions in order to remedy some of the shortcomings of classical multi-
phase extension of Darcy’s law. The Hassanizadeh–Gray model
(Hassanizadeh and Gray, 1993) and the Barenblatt model
(Barenblatt and Vinnichenko, 1980) both suggest to include non-equi-
librium effects in capillary pressure and/or relative permeability func-
tions. We refer to (Juanes, 2008; Silin and Patzek, 2004) for a com-
prehensive overview of different works where these ideas have been
implemented and tested. There is a similarity between the Barenblatt
approach and the use of the more general momentum balance equations
we suggest in the sense that experimentally obtained flow functions
(like relative permeability) are process-dependent. In order to account
for this non-equilibrium effect, the Barenblatt approach consists of in-
troducing an additional variable Sw

e (effective water saturation) and an
additional equation which describes the difference between the actual
water saturation Sw and the effective Sw

e in terms of a time-dependent,
but non-specific process. Capillary pressure and relative permeability
curves are then expressed in terms of the effective saturation Sw

e . The
current manuscript focuses more on one specific effect that will make
relative permeability functions process-dependent, namely the fluid-
fluid interaction effect (drag-force effect) between the flowing phases.

For a proper demonstration of properties of the generalized model
proposed in this manuscript, the behavior of the model is compared
against results obtained from a conventional two-phase modeling which
relies on standard Darcy’s extended law. The model is parameterized
using experimental results from the literature where viscous coupling

could be quantified. In particular, co-currently measured relative per-
meability curves from the literature are implemented and experimental
data of counter-current spontaneous imbibition from the same rock-
fluid system is history matched. We demonstrate the model for three
different cases: (1) A co-current dominated flow mode where oil is
mainly displaced upwards by water in the water-surrounded system,
due to dominant gravity forces, i.e. buoyancy; (2) a counter-current
dominated flow mode where dominant capillary forces induce counter-
current spontaneous imbibition symmetrically from all sides (which are
open to water phase); and (3) a case where gravity and capillary forces
have similar magnitude.

The paper is organized in the following way: In Section 2 we derive
the relevant mathematical models used to represent the gravity drai-
nage/spontaneous imbibition controlled flow system we are interested
in: (i) First using the conventional Darcy law approach; (ii) then, with
momentum balance equations that account for viscous coupling. In
Section 3 we give a compact summary of these two models for the
readers convenience together with a brief description of the solution
algorithm. In Section 4, using representative input data, we carefully
consider the model behavior at different degrees of capillary- and
gravity-dominated flow regimes. The two modeling approaches are
compared and discussed. Conclusions are given in Section 5.

2. Theory

2.1. Geometry

The system we consider is a matrix block surrounded by water
(Fig. 1), representative of the state below the water level in a naturally
fractured reservoir during water injection, or an Amott test in the la-
boratory. For simplicity, only 1-D flow is considered along the vertical
axis. The mechanisms at work are spontaneous imbibition and gravity
drainage. No forced displacement is considered.

2.2. Conventional 1-D model based on Darcy’s law

Transport equations for incompressible and immiscible phases oil
(o) and water (w) in a 1-D porous media are given by:

∂ = −∂ =ϕs u i w o( ) , ( , ),t i x i (1)

where ϕ is porosity, si is phase saturation, and ui is the flux (Darcy
velocity) of each phase =i o w, . A 1-D system is considered along the
vertical axis (denoted x, positive direction downwards). Darcy’s law in
such a 1-D vertical system is given by:

= − ∂ − =u Kk
μ

p ρ g i w o( ), ( , ),i
ri

i
x i i (2)

where K is the absolute permeability, pi is phase pressure, =g 9.8 m/s2

is the acceleration of gravity and kri, ρi and μi are phase relative per-
meability, density and viscosity, respectively. The phase pressures are
dependent due to the capillary pressure function − =p p Po w c. Also, we
introduce the total Darcy velocity uT as follows:

= + = − ∂ − ∂ + +u u u λ P λ p λ ρ λ ρ g( ) ,T w o o x c T x w o o w w (3)

where the mobilities λi, λT are defined as:

= = = +λ K k
μ

i w o λ λ λ: , ( , ), .i
ri

i
T w o

(4)

It follows from adding the conservation laws (1) that:

∂ =u 0.x T (5)

Solving (3) with respect to ∂xpw and inserting this into (2), the water
velocity can be expressed in the following form:

= + − ∂u f u f λ ρg f λ PΔ .w w T w o w o x c (6)

Therefore, the water transport equation becomes:
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∂ = −∂ + − ∂ ∂ ∈ϕs f u f λ ρg f λ P x H( ) ( Δ ) ( ), [0, ],t w x w T w o x w o x c (7)

where =fw
λ
λ

w
T
is the water fractional flow function and = −ρ ρ ρΔ w o.

Note that the RHS of (7) is expressed in terms of an advective/grav-
itational term and a capillary diffusion term, respectively.

Remark 2.1. Note that uT represents co-current flow through the
system. Its numerical value depends on an interplay of pressure
gradients, gravity and boundary conditions, see (3). In this work uT
results from buoyancy (i.e. gravity effects) as no applied pressure
driving force is considered. If different phases are simultaneously
present at the matrix boundaries, uT can also result from spontaneous
imbibition (Andersen et al., 2017a). uT is one of the unknowns in the
system but is found from (3) after applying ∂x and combining with (5).
This gives an elliptic equation for pw which can be solved when
combined with the boundary conditions. The resulting water pressure
pw and available water saturation sw can be inserted in (3) to compute
uT. We refer to Section 3 for details.

2.3. A generalized multiphase flow model based on mixture theory

The starting point for developing our model that can account for
more detailed physical mechanisms for water-oil flow in porous media
than conventional modeling, is the theory of mixtures. This is a theory
based on balance laws and conservation principles which is well known
in continuum mechanics (Ambrosi and Preziosi, 2002; Bowen, 1976;
1980; Byrne and Preziosi, 2003; Preziosi and Farina, 2002; Rajagopal
and Tao, 1995), and has been widely applied to systems which can be
characterized as a mixture of interacting continua. A theoretical outline
of the general components of mixture theory is presented in Appendix A
together with a description of various applications. In the following
Section 2.3.1 we apply this theory to derive a model that is appropriate
to a water-oil flow scenario in porous media. The presentation, of the
general theory in Appendix A and of the adapted model in this section,
closely follows the description in Lemon et al. (2006);
Rajagopal (2007); Schuff et al. (2013) which in turn builds on
Bowen (1980); Drew and Passman (1999).

Compared to the general theory, we make some minor modifica-
tions to ensure that the formulation is consistent with conventional
two-phase modeling based on Darcy’s law, as described in Section 2.2.
We will here deal with three phases: Solid matrix, water, and oil. Since
matrix does not move or change, mass and momentum balance equa-
tions are only formulated for water and oil. However, the momentum
balance equations for the fluids will, motivated by the general mixture
theory approach, account for frictional resistance both at the porous
boundaries of the solid as well as at the moving water-oil boundaries.
Moreover, we will follow the conventional assumption that these re-
sistance forces are far greater than internal frictional resistance due to
viscosity and therefore ignore viscous stress tensor terms (see details in
Section A.3). Finally, the model must account for the fact that a limited
range of volume fractions are available for flow as denoted by residual
saturations, and that the flow takes place inside the porous space of the
rock as defined by introducing the rock porosity. In Section 2.3.2 we
formulate a 1-D version of the generalized multiphase model that is
comparable to the conventional model described in Section 2.2.

2.3.1. Formulation in 3-D
Hence, mass balance equations without any source terms are in the

case of incompressible water-oil transport given by:

∂ + ∇ =ϕs u( ) ·( ) 0,t i i (8)

= − =ϕ s s i w ou v( ) , ( , ),i i ir i (9)

where the second equation expresses the relation between the Darcy
velocity ui and the interstitial velocity vi of phase i in the mobile do-
main. We also introduce normalized saturations Si for the further

derivations such that:

= −
− −

= −S s s
s s

S S
1

, 1 .w
w wr

wr or
o w

(10)

sir ( =i w o, ) denote residual saturations. Moreover, introducing an ef-
fective porosity ϕe:

= − −ϕ ϕ s s(1 ),e or wr (11)

allows us to write:

= =ϕ S i w ou v , ( , ).i e i i (12)

Neglecting inertial effects (acceleration effects), as is usual when
dealing with creeping flow in porous materials, the mechanical stress
balance is given by (Ambrosi and Preziosi, 2002):

= ∇ + + =S i w oΨ m g0 ·( ) , ( , ),i i i i (13)

where Ψi refers to the Cauchy stress tensor, mi represents the interac-
tion forces exerted on the constituents by other constituents of the
mixture, and = S ρg gi i i is the external body force due to gravity. Fol-
lowing the conventional approximation that the viscous stress tensor
can be ignored and the dominating effects is due to the fluid-matrix and
fluid-fluid interaction forces we have

= − =p i w oΨ I, ( , ).i i (14)

The difference in water pressure pw and oil pressure po is expressed by
the capillary pressure = −P p pc o w. According to general principles of
the theory of mixtures, the interaction forces mi between the con-
stituents appearing in (13) may be described as (Ambrosi and Preziosi,
2002; Preziosi and Farina, 2002):

= ∇ + +
= ∇ − +

p S
p S

m F M
m F M

,
,

o o o ow om

w w w ow wm (15)

where Fow denotes the force (drag) that the water phase exerts on the
oil. The oil exerts an equal and opposite force − Fow. Similarly, Mom and
Mwm represent interaction forces (drag forces) between fluid and pore
walls (solid matrix), respectively, for oil and water. The terms po∇So
and pw∇Sw are interfacial forces that arise from an averaging process.
To close the system we must specify the drag force term Fow and in-
teraction force terms Mim between fluid ( =i w o, ) and matrix. Drag
force represents the interaction between the oil and water phase and is
modeled as (Ambrosi and Preziosi, 2002; Preziosi and Farina, 2002;
Rajagopal, 2007):

= −RF v v( ),ow w o (16)

where R (dimension Pa · s/m2) remains to be determined. Typically,
R∼ SoSw to reflect that this force term will vanish when one of the
phases vanishes. Similarly, the interaction force between fluid and pore
wall (matrix, which is stagnant) is naturally expressed then as (Ambrosi
and Preziosi, 2002; Preziosi and Farina, 2002; Rajagopal, 2007;
Rajagopal and Tao, 1995)

= − =R i w oM v , ( , ).im i i (17)

The coefficients R and Ri (dimension Pa · s/m2), that characterize the
magnitude of interaction terms, can be chosen such that the model
recovers the classical porous media model based on Darcy’s law. At the
same time the approach used here will open for development of re-
servoir models where more detailed physics can be taken into account.

2.3.2. Formulation in 1-D
Assuming a 1-D domain (along the downward vertical axis, x) the

combination of (13)–(17) gives us:

∂ = − + − +
∂ = − − − +

S p R v R v v S ρ g
S p R v R v v S ρ g

( ) ,
( ) ,

w x w w w o w w w

o x o o o o w o o (18)

where the terms on the right hand side represent, respectively, rock-
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fluid interaction, fluid-fluid interaction and gravity. Ri≥ 0 and R≥ 0
are solid-fluid interaction and fluid-fluid interaction terms, respec-
tively. Solving (18) with respect to interstitial velocities vi and inserting
into (12) results in:

̂ ̂
̂ ̂

= = − ∂ − − ∂ −

= = − ∂ − − ∂ −

u ϕ S v λ p ρ g λ p ρ g

u ϕ S v λ p ρ g λ p ρ g

( ) ( ),

( ) ( ),
w e w w ww x w w wo x o o

o e o o ow x w w oo x o o (19)

or equivalently (using = −P p pc o w):

̂ ̂ ̂ ̂ ̂
̂ ̂ ̂ ̂ ̂

= − + ∂ − ∂ + +

= − + ∂ − ∂ + +

u λ λ p λ P λ ρ λ ρ g

u λ λ p λ P λ ρ λ ρ g

( ) ( ) ,

( ) ( ) ,
w ww wo x w wo x c ww w wo o

o ow oo x w oo x c ow w oo o (20)

with the following defined generalized diagonal mobilities ̂λii and
crossterm mobilities ̂λij:

̂ ̂

̂ ̂

=
+

+ +
=

+
+ +

= =
+ +

λ
S R R

R R R R R
ϕ λ

S R R
R R R R R

ϕ

λ λ RS S
R R R R R

ϕ

:
( )

( )
, :

( )
( )

,

:
( )

.

ww
w o

o w o w
e oo

o w

o w o w
e

wo ow
w o

o w o w
e

2 2

(21)

Further, we define the following notation for generalized phase mobi-
lities λi and total mobility λT :

̂ ̂ ̂

̂ ̂ ̂

̂ ̂ ̂

= + =
+

+ +

= + =
+

+ +

= + =
+ +

+ +

λ λ λ
S R S R

R R R R R
ϕ

λ λ λ
S R S R

R R R R R
ϕ

λ λ λ
S R S R R

R R R R R
ϕ

:
( )

,

:
( )

,

:
( )

.

w ww wo
w o w

o w o w
e

o ow oo
o w o

o w o w
e

T o w
w o o w

o w o w
e

2

2

2 2

(22)

By summing uw and uo in (20) and using the notation introduced in
(22), it follows that the total Darcy velocity can be expressed as:

̂ ̂ ̂ ̂= + = − ∂ − ∂ + +u u u λ p λ P g λ ρ λ ρ( ).T w o T x w o x c w w o o (23)

The water pressure gradient ∂xpw can, as seen from (23), be expressed
as:

  ̂∂ = − − − ∂ + + −p
λ

u f P g f ρ f ρ1 (1 ) ( (1 ) ),x w
T

T w x c w w w o
(24)

with generalized water fractional flow function  ̂ ̂=f λ λ/w w T . Inserting
(24) into (20) (and using the notation introduced in (22)) we get:




= + + ∂

= − − ∂

u u f W ρg W P

u u f W ρg W P

Δ ,

Δ ,
w T w x c

o T o x c (25)

with = −ρ ρ ρΔ w o where we have defined:





̂
̂

̂
̂ ̂

̂

= =
+

=
+

+ − +

= −
+ +

=
−

+ − +

f s λ
λ

λ
λ λ

S R S R
S R S R R

W s f λ
S S Rϕ

R R R R R
S S ϕ

S R S R R

( ) :
(1 )

( ) :
( )

(1 )
(1 )

.

w w
w

T

w

w o

w o w

w o w w

w w o
o w e

o w o w

w w e

w o w w

2

2 2

2 2

2 2

(26)

Inserting the water flux (25) into the 1-D version of the water con-
servation Eq. (8) we obtain:

∂ = −∂ + − ∂ ∂ < <ϕs u f W ρg W P x H( ) ( Δ ) ( ), (0 ).t w x T w x x c (27)

The generalized model (27) can be solved once we have computed uT.
As mentioned before, we can apply ∂x to (23) and make use of

∂ =u 0,x T (28)

to obtain a second order elliptic equation for pw. This is combined with
appropriate boundary conditions and the available saturation sw.
Having computed pw we can obtain uT which is defined by (23). We
refer to Section 3 for details. Note that (27) takes the same form as the

conventional model (7), except that the term W has an additional term
compared to the product ̂λ f ,o w as in the conventional model, see (26).

Remark 2.2. A closer inspection of the momentum force balance
Eqs. (18) shows that we can extract information about the role played
by the fluid-fluid interaction term ± −R v w( )o w for the two different
flow regimes of co-current and counter-current flow.

(a) For co-current flow it follows that vw and vo have the same sign.
Let us assume that vw, vo>0. If vw> vo, then − <R v v( ) 0o w .
Consequently, it follows from (18)1 (holding Sw∂xpw and Swρwg fixed)
that there is a reduction in the magnitude of vw compared to the case
with =R 0. On the other hand, since − − >R v v( ) 0o w it is clear from
(18)2 that vo must increase in order to maintain the force balance.
Consequently, the influence from the fluid-fluid interaction term is that
is generates a deceleration of the fluid with highest velocity (vw) and an
acceleration of the slowest fluid (vo).

(b) For counter-current flow it follows that vw and vo have the
opposite sign. Let us assume that vw<0 and vo>0. Then

− >R v v( ) 0,o w and in view of the balance law (18)1, it is clear that this
must generate a reduced vw compared to the case with =R 0. Similarly,
(18)2 combined with the fact that − − <R v v( ) 0o w allows us to con-
clude that vo must also decrease. Consequently, the influence from the
fluid-fluid interaction term is that is generates a deceleration of both
fluids.

Remark 2.3. Co-current flow is accounted for by the u fT i term in (25)
whereas counter-current flow is represented by the capillary pressure
and gravity related terms with coefficient W. The precise role of the
fluid-rock interaction force term and the fluid-fluid interaction term is
expressed by Ri and R, respectively, in the expression for fw and W in
(26). The occurrence of the fluid-fluid interaction coefficient R in the
co-current term fi as well as the counter-current term W, expresses
exactly the behavior more loosely observed in Remark 2.2. For
example, for counter-current flow it follows from the expression for
W that R>0 will give rise to a deceleration effect for both fluids. For
co-current flow a decrease in uw due to a decrease in fw (caused by the
presence of R) corresponds to an increase in uo since  = −f f1o w. This is
in accordance with several experimental observations as mentioned in
the introduction, see for example, Bentsen and Manai (1992, 1993);
Bourbiaux and Kalaydjian (1990); Sherafati and Jessen (2017) and
references therein.

Remark 2.4. The essential difference between the conventional model
and the generalized comes to the surface in the expression for the
counter-current related coefficient W in (26)2. Conventional modeling
amounts to using  ̂f λw o whereas the generalized model includes a
correction term that depends on the strength R of the fluid-fluid
interaction.

Hence, it is clear that the generalized mobility functions (22) have a
built-in capacity to compensate for a change in flow regime (counter-
current versus co-current or a mixture of these two). In Section 4 we
will test how the generalized model can account for both flow regimes
(co- and counter-current flow) in a relevant manner with one and the
same set of parameters in contrast to a conventional model that must
use different mobility functions depending on the flow regime under
consideration. Before we are ready for that, we will need to specify
expressions for the interactions coefficients Ri =i w o( , ) and R.

2.3.3. Interaction terms
The frictional interaction terms must be specified for computing fw

and W in (27). It is clear that the solid-fluid interaction terms
=R i w o( , )i should obey the relationship Ri∝μi/K in order to be con-

sistent with standard porous media flow formulation based on Darcy’s
law (2). The following interaction terms were suggested to be included
in the generalized model (21) in order to capture the interaction effects
between two movable fluids when they are flowing simultaneously
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through a porous medium (Standnes et al., 2017):

= = =R I S
μ
K

ϕ R I S
μ
K

ϕ R IS S
μ μ

K
ϕ: , : , : .w w w

α w
e o o o

β o
e w o

w o
e (29)

All the interaction terms have dimension Pa · s/m2, α and β are di-
mensionless exponents, Iw and Io are dimensionless friction coefficients
characterizing the strength of fluid-solid interaction and I is a coeffi-
cient characterizing the strength of the fluid-fluid drag force with di-
mension (Pa · s)−1. Using (29) in combination with (26) we obtain full
expressions for the generalized fraction flow functions fw and W given
by:

 =
− +

− + − +

= −
− + − +

−

− −

− −

f s
S S μ I S μ μ I

S S μ I S S μ I μ μ I

W s S S K
S S μ I S S μ I μ μ I

( )
(1 )

(1 ) (1 )
,

( ) (1 )
(1 ) (1 )

.

w w
w w

β
o o w w o

w w
β

o o w w
α

w w w o

w
w w

w w
β

o o w w
α

w w w o

1

1 1

1 1 (30)

2.3.4. Generalized relative permeabilities
We see from (25) that the terms responsible for co-current flow are

represented by fw and fo . The corresponding generalized mobility
functions are given by ̂λw and ̂λo as expressed in (22). This gives rise to
generalized relative permeabilities ̂kri for =i w o( , ) defined as:

̂

̂

̂

̂

= =
+

+ +

= =
+

+ +

−

− −

−

− −

k
μ
K

λ
I S S Iμ S

I I S S I I S μ I S μ

k
μ
K

λ
I S S Iμ S

I I S S I I S μ I S μ

( )
,

( )
.

rw
w

w
o w o

β
w w

w o w
α

o
β

w w
α

w o o
β

o

ro
o

o
w o w

α
o o

w o w
α

o
β

w w
α

w o o
β

o

1

1 1

1

1 1 (31)

It can be seen that the generalized relative permeabilities are viscosity-
dependent if I≠ 0. Viscosity dependent relative permeabilities has been
suggested by several authors (Odeh, 2013; du Prey, 1973; Yuster,
1951). If the interaction coefficient I is 0 the corresponding expressions
for generalized relative permeability reduce to traditional Corey-type
expressions:

̂ ̂= =
− −

k
S

I
k

S
I

: , : ,ro
o

β

o
rw

w
α

w

2 2

(32)

where Corey exponents nw and no are related to the exponents α and β
by:

= − = −α n β n2 , 2 ,w o (33)

under the condition of no viscous coupling between water and oil
( =I 0).

Remark 2.5. We may refer to (31) as co-current generalized relative
permeability curves ̂krw

coc
and ̂kro

coc
as we see that, by applying the co-

current related assumption ∂ = ∂p p ,x w x o it follows from (19) that the
generalized mobilities ̂ ̂ ̂ ̂ ̂ ̂= + = +λ λ λ λ λ λ: , :w ww wo o ow oo given in (22)
represent mobility in the ”conventional” sense. That is, in the sense
of Darcy’s law (2) with =λi

Kk
μ

ri

i
. Later, in Section 4 when we explore

properties of the generalized model (27), we apply (31) to identify the
parameters Iw, Io, I, α and β such that a good fit is obtained when
compared with relative permeability curves obtained from co-current
type of flow experiments.

2.4. Capillary pressure

In the examples it will be assumed that the capillary pressure fol-
lows Leverett J-function scaling (Bear, 1988):

=P σ
ϕ
K

J S( ),c w (34)

where σ is oil-water interfacial tension and the dimensionless capillary
pressure function J(Sw) takes the form (Andersen et al., 2014):

=
+

−
+ −

+J S a
k S

a
k S

c( )
1 1 (1 )

.w
w w

1

1

2

2 (35)

a1, a2, k1, k2> 0 and c are curve fitting parameters.

2.5. Initial and boundary conditions

We assume the matrix block initially is filled with oil at irreducible
water saturation swr:

= =s x t s( , 0) .w wr (36)

The water pressure pw is defined to be zero at the top (T) located at
position =x 0 and increases hydrostatically outside the block to its
maximum value at bottom (B) located at position =x H (see Fig. 1):

= = = = = =p p x t p p x H t ρ gH( 0, ) 0, ( , ) .w T w w B w w, , (37)

The oil pressure po is taken equal to the water pressure at the top and
also increases hydrostatically outside the block, resulting in a net phase
pressure difference:

= = = = = = −− +P P x t P P x H t ρgH( 0 , ) 0, ( , ) Δ .c T c c B c, , (38)

2.6. Equilibrium

At equilibrium, when no phases are flowing in the system =u 0,i we
can set ∂ =s 0t w and =u 0T in (7) for the conventional model and in
(27) for the generalized model. The water flux being zero allows us to
express the following relation for the capillary pressure gradient in both
models:

∂ = −∞P S ρg( ) Δ ,x c w, (39)

where Sw, ∞(x) represents the equilibrium water saturation. Combined
with (38) it follows that Pc(Sw, ∞(x)) is distributed linearly from 0 at the
top to − ρgHΔ at the bottom. Hence, the equilibrium water saturation
distribution Sw, ∞(x) can be calculated from the given Pc(Sw) correla-
tion.

2.7. Oil recovery factor

Oil recovery factor RF(t) is calculated as the fraction of produced oil
divided by mobile oil initially in place (and not total oil initially in
place):

∫
=

−
− −

=RF t
s x t s dx

H s s
S t( )

( ( , ) )
(1 )

( ),
H

w wr

wr or
w

0

(40)

which is equivalent to the average normalized saturation S t( )w . If all
mobile oil is displaced we obtain =RF 1, while initially =RF 0.

3. Summary of the mathematical models

The conventional model (7) and generalized model (26) take the
same form of mathematical description for the problem shown in Fig. 1:





̂ ̂ ̂ ̂
∂ = − ∂ + − ∂ ∂

= − ∂ − ∂ + + ∂ =

= + + ∂ = −

= = −
− −

ϕs u f V ρg V P

u λ p λ P g λ ρ λ ρ u

u u f V ρg V P u u u

P σ
ϕ
K

J S S s s
s s

( ) ( Δ ) ( ),

( ), 0,

Δ , ,

with ( ),
1

,

t w x T w x x c

T T x w o x c w w o o x T

w T w x c o T w

c w w
w wr

wr or

(41)

where =V f λw o and  ̂f λ,w i are replaced by fw, λi as described in
Section 2.2 for the conventional model, whereas =V W for the gen-
eralized model. The initial condition is a uniform distribution of irre-
ducible water saturation

= =s x t s( , 0) ,w wr (42)
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and boundary conditions are given by

= = = =
= = = = −− +

p x t p x H t ρ gH
P x t P x H t ρgH

( 0, ) 0, ( , ) ,
( 0 , ) 0, ( , ) Δ .

w w w

c c (43)

The reader interesting in the relevant discretized scheme of this model
is referred to Appendix B. Here we just note that, after writing the
model on dimensionless form, the main steps are:

1) At a given time, use (41)2 together with boundary conditions (43) to
calculate the pressure distribution pw(x) and the constant (in space)
total velocity uT.

2) Calculate sw(x, t) a local time step forward (assuming uT is held
fixed) using the transport Eq. (41)1.

3) Iterate until full simulation time has been obtained.

Based on the variables pw, uT, sw, output variables such as Pc, uo, uw
and oil recovery can be calculated. The model was discretized into 300
cells in the x-direction with sufficiently small time steps to achieve
acceptable resolution and convergence.

3.1. Buoyancy

For a simple interpretation of uT a special case can be considered: At
initial state we have a uniform saturation profile with thus a fixed ca-
pillary pressure in the block, which yields from (41)2:

̂ ̂ ̂= − ∂ + +u λ p g λ ρ λ ρ( ),T T x w w w o o
0 0 0 0 0

(44)

where uT
0 is the initial total Darcy velocity and all mobilities are eval-

uated at swr as denoted by the index 0. Since the water pressure is
continuous with the hydrostatic pressure at both boundaries we can set
∂ =p ρ gx w w

0 to obtain:

̂= −u λ ρgΔ ,T o
0 0

(45)

demonstrating that gravity, controlled by the density difference of
water and oil and by the mobility of oil in particular, initiate a co-
current flow of the phases in upwards direction (negative uT). As seen
from the general Eq. (41)2, further changes in uT depend on the dis-
tribution of pressure and saturations along the block.

4. Results and discussion

A possible challenge for reservoir simulation is that conventional
mobility functions based on relative permeability functions obtained
through co-current flow experiments, do not represent well other flow
regimes where strong counter-current effects are involved (Bentsen and
Manai, 1992; 1993; Bourbiaux and Kalaydjian, 1990; Sherafati and
Jessen, 2017). The root of this problem is the ignorance of fluid-fluid
interaction in conventional modeling (based on Darcy’s law). Conse-
quently, the drag force effect between two moving fluids for which co-
current flow leads to a deceleration effect for the fluid with highest

speed and an acceleration effect for the slower moving fluid and for
counter-current flow leads to a deceleration of both fluids, is ignored.
We refer to Remarks 2.2 and 2.3 for details. Normally this problem is
fixed by manually reducing the mobility functions (relative perme-
ability functions) when used for flow scenarios that involve counter-
current flow. However, realistic flow systems will often involve a more
or less complicated mixture of these two flow regimes.

The main purpose of this section is to explore how the generalized
model seems to offer some improvements (compared to conventional
modeling) by providing generalized mobility functions that auto-
matically are able to capture several flow regimes for one and the same
parameter set. Careful investigations are carried out for the flow system
in Fig. 1 where we compare the behavior predicted by the conventional
model and the generalized. See Remark 2.4 for a precise description of
the difference between the generalized and conventional model.

First, motivated by experimental data from Bourbiaux and
Kalaydjian (1990) where co-currently measured relative permeability
curves were obtained, and counter-current spontaneous imbibition for
the same rock-fluid system was measured, we provide a set of para-
meters (in Section 4.1) needed in the generalized model that lead to a
good match, see also Remark 2.5. These data are then used in all further
simulations to define fw and W in (26). For reference, it is demonstrated
that the conventional and generalized models produce equivalent re-
sults in strictly co-current flow in Section 4.2.1. The ability of the model
to capture reduced mobility effects seen in experimental data during
counter-current flow is demonstrated in Section 4.2.2. Next in
Section 4.3, we carefully test the two models (generalized and con-
ventional) for our flow system. We discuss three cases: (i) A gravity
dominated case (with well defined co-current vertical flow); (ii) a ca-
pillary pressure flow dominated case (i.e., counter-current dominated
when all open phases are exposed to water); (iii) a combination where
gravity and capillary pressure forces have similar strength (mixed flow
regimes). This allows us to obtain precise insight into differences and
similarities between the conventional and the generalized model. The
numerical scheme was validated by comparison of the conventional
model simulations of these cases with results obtained from the com-
mercial simulator Eclipse 100. We refer to Appendix C for this de-
monstration.

4.1. Input data

The input parameters (Table 1) used in the simulations are mainly
collected from Bourbiaux and Kalaydjian (1990). To put more emphasis
on gravity we use a block of 0.5m height which is 70% higher than in
their experiments. Their measured relative permeability data from co-
current flow were matched as described in the following. The end-
points are related by:

= =I k I k1/ , 1/ ,w rw
max

o ro
max (46)

as found by setting =S 1o or =S 1w in (31). The expression (31) was
further matched to the shape of the data by varying the parameters I, α
and β. We recall that the interaction term I reflects the strength of the
fluid-fluid interaction term R, see (29). By assigning a certain value
I>0 to this term, it follows that we account for viscous coupling in-
formation that will be important when we consider other flow
regimes that involve counter-current type of flow due to gravity
and/or capillary pressure. In particular, the magnitude of I is also
quality checked by assessing the simulated rate of counter-current
spontaneous imbibition against experimental measurements performed
by Bourbiaux and Kalaydjian (1990) on the same rock-fluid system (as
where co-current relative permeabilities were measured). This role
played by I is explicitly reflected by the expression for W, see (26)2 or
(30)2, and contains effects not accounted for in the conventional

Fig. 1. Geometry of the system. A water-wet matrix block of height H is exposed to water
both at the top ( =x 0) and bottom ( =x H ). Spontaneous imbibition and gravity drainage
mechanisms displace the oil by water in 1-D flow.
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modeling which amounts to using the coefficient  ̂f λw o. In Fig. 3 we
show a plot of W and the conventional part  ̂f λw o which illustrates the
effect from fluid-fluid interaction term R.

The co-current relative permeability curves shown in Fig. 2 and
represented by (31) are given as direct input in the conventional model.
The viscous coupling effects which occur during co-current flow is thus
integrated in these curves, but are (implicitly) assumed not to change in
the conventional model when we consider other flow scenarios invol-
ving counter-current effects due to gravity and/or capillary pressure. By
using the generalized model, this assumption (of fixed curves) is put to
a test since generalized mobilities are related to both phase pressure
gradients, see (19) and (21). Hence, this representation of the relative
permeabilities is more general and it is expected that it is capable of
capturing effects due to flow direction and/or interaction between the
fluids and solids. We refer to Section 4.2.2 for an example that illus-
trates this clearly. Note that the same parameterization, given in
Table 1, is applied to both models in the following.

Remark 4.1. Note that we have two equivalent formulations of fluid
velocity, for instance uw, in the generalized model: (i) The use of two
mobility functions ̂λww and ̂λ ,wo one associated with ∂xpw, the other with
∂xpo as in (19); (ii) the use of phase mobility functions ̂ ̂ ̂= +λ λ λw ww wo

and ̂ ̂ ̂= +λ λ λo ow oo associated with pure co-current flow, see (25)1 and
(26)1, combined with inclusion of capillary pressure driven counter-
current flow with a non-conventional coefficient W given by (26)2.

4.2. Basic validation

4.2.1. Model comparison during co-current flow
In this example the generalized and conventional models are, for

validation purposes, compared under conditions that should yield
identical results. A pure co-current flow test was considered. This was
realized by assuming =P s( ) 0c w and that the phase outside the block at
the top was oil instead of water, as assumed in Fig. 1. Then a stable
gravity displacement of the low density oil in the block by high density
water is achieved in co-current fashion due to buoyancy. All counter-
current terms are negligible in this situation. The comparison of the
conventional and generalized model revealed a perfect match, as shown
in Fig. 4. This may be explained as follows: As mentioned, the differ-
ence between the two models lies in the coefficient in front of the
gravity term appearing in (41)1: One uses ̂λ fo w (conventional), the other
uses W (generalized). In Fig. 5 we include plots of the corresponding
total advective / gravitational fluxes,  ̂= +F s u f λ f ρg( ) Δcon w T w o w and

= +F s u f W ρg( ) Δ ,gen w T w (see (41)) for a fixed time t where =u u /10,T T
0

Table 1
Reference input parameters in the simulations. 1Data from (Bourbiaux and
Kalaydjian, 1990); 2Input to both the interaction terms (29) and co-current relative
permeabilities (31) as matched to data from (Bourbiaux and Kalaydjian, 1990); 3Input to
the capillary pressure correlation (35) as matched to data from (Bourbiaux and
Kalaydjian, 1990).

Parameter Dimensional Value Parameter Dimensional Value

H 0.5 m 2 Iw 23.26
1 ϕ 0.233 2 Io 2.15
1 ρw 1.09 g/cm3 2 I 3500 (Pa · s)−1
1 ρo 0.76 g/cm3 2 α − 0.2
1 swr 0.4 2 β 1.5
1 sor 0.425 1 σ 15.8 mN/m
1 μo 1.5 cP 3 a1 0.6
1 μw 1.2 cP 3 a2 8
1 K 118 mD 3 k1 1.3

krw
1 max 0.043 3 k2 5000

kro
1 max 0.465 3 c − 0.1

Fig. 2. Left: Input capillary pressure from (Bourbiaux and Kalaydjian, 1990) matched to the correlation (35). The capillary pressure goes to large negative values when water saturation is
close to − s1 or . Right: Generalized co-current relative permeabilities ̂krw

coc
and ̂k ,ro

coc
see (31), parameterized to match measurements from (Bourbiaux and Kalaydjian, 1990). These

relative permeabilities are directly applied in the conventional model, but for the generalized model these curves are only representative in strictly co-current flow regimes.

Fig. 3. Comparison of the generalized counter-current coefficient W and the “conven-
tional part”  ̂f λw o appearing in (26)2 for the data set given in Table 1. The difference

between these two curves reflects the difference between the conventional and the gen-
eralized model.
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where uT
0 is the initial total Darcy velocity of the system. For this flow

case an upward moving front (increasing jump in scaled saturation from
0 to 1) is formed at the bottom. According to the theory of solutions of
Riemann problems for scalar nonlinear conservation laws (see Chapter
16 in Le Veque (2002)) the entropy satisfying solution is given in terms
of a shock solution that moves with the speed s determined by the
Rankine–Hugoniot condition = −s F F(1) (0)

1
i i for =i con gen( , ). Conse-

quently, it is only the endpoints of the two functions Fi that matter.
More precisely, the construction of the solution depends on the lower

convex hull of Fi(sw) in the interval [0, 1] and this is the same for both
=i con and =i gen. See Fig. 5 (right) where the lower convex hull is

indicated for this example and more explanation. Hence, there is not
room for any effects from the fluid-fluid interaction term, which makes
good sense due to the fact that R∼ SwSo, see (29), such that the dif-
ference between W and  ̂f λw o does not affect end points (see also Fig. 3).
Some rapid variations in the phase velocity curves is observed around

=x 0.075 m after 467.1 hours when uT is low. This is related to the slope
change of the advection / gravitational flux.

Fig. 4. Comparison between the generalized and conventional models for the pure co-current flow case. Profiles of uw(x), uo(x) (top) and normalized water saturation Sw(x) (bottom) are
shown after 12.2, 102.6 and 467.1 (hours). The comparison of the two models reveals a perfect match.

Fig. 5. Left: Plot of the total advective/gravitational flux  ̂= +F s u f λ f ρg( ) Δcon w T w o w and = +F s u f W ρg( ) Δgen w T w for a fixed time t where =u u /10T T
0 . Right: Same as left, where the

lower convex hull and upper convex hull of the flux functions are indicated by dashed lines. Note that the lower convex hull is the same for Fcon and Fgen (indicating that the upward
moving front from =S 0w to 1 is identical for both models, see examples in Sections 4.2.1 and 4.3.2), but their upper convex hull are not (and the downward moving fronts are thus
different both in front height and front speed, see example in Section 4.3.2).
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4.2.2. Comparison against experimental counter-current data
Secondly, the generalized and conventional models were used to

simulate a strictly counter-current spontaneous imbibition test where
the bottom boundary is closed in Fig. 1 and both capillary and gravity
effects are considered. This case was conducted experimentally in
Bourbiaux and Kalaydjian (1990) using the indicated data shown in
Table 1 except for a core of length 0.29m, thus also implemented in the
simulations here. The results in terms of oil recovery are shown in
Fig. 6. We observe that the generalized model produces an oil recovery
curve that largely matches the experimental results. This nice predic-
tion also justifies the value of the interaction coefficient I resulting from
matching the relative permeability curves. The conventional model,

which directly implements the co-currently measured relative perme-
abilities, yields higher recovery rates than the experimental data and
generalized model. In particular, the mobility associated with the
counter-current flow effect is too strong, which is expected since the
relative permeability curves used are based on co-current flow regime.
Motivated by these results, we now turn our attention to the flow
system depicted in Fig. 1 and represented by the model (41), (42) and
(43).

4.3. Investigation of flow regimes

4.3.1. Case I: Capillary-dominated system
For the capillary-dominated case we reduce all terms related to

gravity to negligible magnitude, both in the transport Eqs. (7) and (27)
and the velocity Eqs. (3) and (23). Also, the capillary pressure at =x H
goes to 0, see (38). The system can thus be regarded as a purely counter-
current spontaneous imbibition process. Fig. 7 shows the profiles of
water and oil Darcy velocities uw(x), uo(x) and normalized water sa-
turation Sw(x) at three given times: 1.5, 15.5 and 46.6 h (corresponding
to RF = 15, 50 and 85% in the conventional model, respectively). The
duration of the test is 150 hours. Due to the counter-current dominated
process and equal boundary conditions the profiles are symmetric.
During counter-current flow both phases decelerate, as is seen from the
form of the coefficient W in (26)2, which reflects the additional viscous
coupling effects through the R-dependent term. As a consequence, the
inflowing water fronts move slower compared to the conventional
model where the co-current relative permeabilities are applied, which
amounts to using  ̂f λw o as the capillary pressure coefficient. The sa-
turation profiles predicted by the generalized model are delayed and
the imbibition process is generally slower.

The saturation fronts almost converge after 15.5 h and the center
saturation is at 75% after 46.6 h in the conventional model, while in the
generalized model all saturations have travelled significantly shorter
distance from the boundaries. It is also observed that the discrepancy

Fig. 6. Results comparison of the generalized and conventional models with the experi-
mental work (Bourbiaux and Kalaydjian, 1990) for the pure counter-current spontaneous
imbibition test.

Fig. 7. Comparison between the generalized and conventional models for the capillary-dominated case I. Profiles of uw(x), uo(x) (top) and normalized water saturation Sw(x) (bottom) are
shown after 1.5, 15.5 and 46.6 h. The profiles are symmetric since there is no gravitational effect. In the generalized model: At 1.5 h and 15.5 h, the phase velocities are lower due to
viscous coupling, also reflected by delayed saturation fronts; at 46.6 hours phase velocities are higher but saturation front is still delayed. This is because viscous coupling delays the
imbibition process as accounted for by the R-dependent term in W, see (26)2.
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between the two model saturation profiles increases as time elapses.
Fig. 8 shows the total Darcy velocity uT from (3) and (23) and oil

recovery from (40) plotted vs. time. The total velocity is zero
throughout the process, indicative of counter-current flow. Recovery by
spontaneous imbibition from a linear system follows a square root of
time profile until significant boundary effects are encountered
(Andersen et al., 2014). The generalized model displays a slower im-
bibition process than the conventional model with lower recovery than
the conventional model at all times: At 90% recovery there is around
23 h delay in time between the models (55 vs 78 h) which means the
time scale has increased by roughly 42%. The conventional model re-
presents the ideal (but unrealistic) behavior of the reservoir in the sense
that the co-current relative permeabilities do not account for the change
in viscous coupling that reduce the phase velocities. Both models do
however produce the same end recovery, which is given by the

saturation where the capillary forces vanish, =P 0,c corresponding to
Sw≈ 1 as seen in Fig. 2 and RF≈ 1.

4.3.2. Case II: Gravity-dominated system
In this case we assume that capillary effects are ignored in the

system and Pc(sw) is equal to 0 everywhere (including the boundary
conditions). Thus, all terms related to capillary pressure are neglected
both in the transport Eqs. (7) and (27) and the velocity Eqs. (3) and
(23). This case is similar to the one studied in Section 4.2.2 except that
water is now available to enter the block also at the top. This will give
rise to interesting new behavior as water entering at the top will form a
downward going water front. Striking differences will be seen between
the upward going water front and the downward moving front that
elucidate the role of viscous coupling effects.

Fig. 9 shows the profiles of water and oil Darcy velocities uw(x),

Fig. 8. Comparison between the generalized and conventional model
in terms of total velocity uT(t) (left) and oil recovery RF(t) (right)
plotted against time for the capillary-dominated case I. uT is constant 0
since the process is purely counter-current. Oil recovery is delayed in
the generalized model due to increased viscous fluid-fluid interaction.

Fig. 9. Comparison between the generalized and conventional models for the gravity-dominated case II. Profiles of uw(x), uo(x) (top) and normalized water saturation Sw(x) (bottom) are
shown after 11.8, 89.1 and 258.1 h). Co-current flow upwards dominates the early phase, 89.1 h. Counter-current in the upper part of the block shows stronger effect in the later stage,
258.1 h.
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uo(x) and normalized water saturation Sw(x) at three given times: 11.8,
89.1 and 258.1 h (corresponding to 15%, 50% and 85% oil recovery in
the conventional model). The system is no longer symmetric, rather one
can see that the system is predominantly co-current: At 11.8 h we see
that near the bottom, water has a large negative velocity (moves up-
wards) while oil has been displaced and has negligible flux there. In the
upper part of the system mainly oil flows upwards, while water has a
negligible flux. Dense water, slowly migrating from the top converges
with the co-current water front travelling from the bottom of the block
at 258.1 h, resulting in a more complex flow pattern. At this time the
uppermost region (0< x<0.15 m in the conventional model and
0< x<0.07 m in the generalized model) displays significant velocities
for both phases in opposite directions, i.e. this region displays counter-
current flow.

This advanced flow pattern is a combination of co- and counter-
current flow initially dominated by co-current. It is thus seen that the
conventional and generalized models produce almost equivalent pro-
files in the lower part of the block even after 258.1 h (85% recovery),

while the counter-current wave travelling from the top results in sig-
nificantly different behavior between the two models due to viscous
coupling effects.

What is the precise explanation of the difference seen in the beha-
vior at the top? This can be explained as follows: As noted for the case
in Section 4.2.1, the behavior in the conventional model and the gen-
eralized is completely determined by the flux functions Fi for

=i con gen, (and their lower convex hull), as described and shown in
Fig. 5. This explains the alikeness in the behavior at the bottom, see
Section 4.2.2. However, at the top there is a decreasing jump formed.
The Riemann problem for a decreasing jump is dictated by the upper
convex hull of Fi which will be different for Fcon(sw) and Fgen(sw). We refer
to Fig 5 for illustrations. In particular, we see from the upper convex
hull of Fgen(sw) that for the generalized model, a slowly moving front
will be formed that jumps from =s 0w to approximately =s 0.45,w
followed by a rarefaction wave. The conventional model however will
produce, according to the upper convex hull of Fcon(sw), a fast moving
front that jumps from =s 0w to approximately =s 0.5w followed by a

Fig. 10. Comparison between the generalized and conventional
models in terms of total velocity uT(t) (left) and oil recovery factor RF
(t) (right) plotted against time for the gravity-dominated case II. There
is little difference between the models in terms of total velocity until
after 260 h, while RF differs already after 60 h.

Fig. 11. Time and space plot of uw, uo and Sw for the generalized (top) and conventional (bottom) models in the combined case III. The phase velocities are not symmetric but stronger in
the lower part of the block. Water imbibes more efficiently near the bottom. The difference between the generalized and the conventional model is not easily seen from these plot. We
refer to Figs. 12 and 13 for plots that show this in more details.
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rarefaction wave.
Fig. 10 illustrates the total Darcy velocity, (3) and (23), and oil

recovery (40) vs. time. All the mobile oil is recovered during the gravity
drainage process such that =RF 1 in the end. The delay in oil recovery
between the two models is significantly reduced compared to the pre-
vious example (Fig. 8). There is around 24.3% time delay when com-
paring the end states of the oil recovery processes (370 h for the con-
ventional model and 460 h for the generalized model). Since the flow is
mainly co-current, using the co-current relative permeabilities in the
conventional model gives a better description of the system in this case
with less deviation from the generalized model, compared to the
counter-current case.

It is further worth noticing that the rate uT displayed in Fig. 10 (left)
does not show distinct model behavior until after 260 h, corresponding
to the time when the co-current and counter-current waves in the
conventional model meet, see Fig. 9. The recovery factor seen in Fig. 10
(right), on the other hand, differs visible already after 60 h which is due
to the importance of counter-currently produced oil at this time.

4.3.3. Case III: Combined flow regimes
In this case we consider the situation with inclusion of both gravity

and capillary terms, which will give rise to mixed co-current and
counter-current driven flow, both in the conventional and generalized
model. In order to clearly see this mixed effect we reduce the interfacial
tension σ by five times since the magnitude of capillary pressure shown
in Fig. 2 is much higher than the gravity force. Variations of water and
oil Darcy velocities uw, uo, and normalized water saturation Sw in space
and time (logarithmic) are shown in Fig. 11. The highest Darcy velo-
cities are seen at the top and bottom faces of the block and the mag-
nitudes are similar at the top and bottom although there are some
differences. This can be explained by capillary forces being strong
compared to gravity.

Fig. 12 shows the profiles of water and oil Darcy velocities uw(x),
uo(x) and normalized water saturation Sw(x) at the given times 4.8, 43.9
and 126 h (corresponding to RF = 15, 50 and 85% in the conventional
model). Fig. 12 shows that there are strong phase velocities near the
bottom and top of the block, decreasing towards the center. However,

Fig. 12. Comparison between the generalized and conventional models for the combined case III. Profiles of uw(x), uo(x) (top) and normalized water saturation Sw(x) (bottom) are shown 
after 4.8, 43.9 and 126 h. Counter-current flow is present mainly in the upper and lower parts of the block, while co-current flow dominates the central part.

Fig. 13. Comparison between the generalized and conventional
models in terms of total velocity uT(t) (left) and oil recovery RF(t)
(right) plotted against time for the combined case III. The models start
to differ from the beginning. The differences increase with time which
can be related to counter-current flow dominating a larger part of the
system.
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there is also a net co-current flow upwards due to gravity that also
mobilizes the central oil (even before the imbibition front reaches the
center) as seen in the central region.

The velocity profiles in Fig. 12 are not symmetric at 4.8 h and
43.9 h, but shifted towards more negative values (due to co-current
flow upwards). It is thus seen that more water has entered the block
from the bottom, although a significant imbibition front has also en-
tered from the top. The generalized model velocities are lower in the
outer regions where counter-current flow dominates. At 126 h the two
models produce more asymmetric behavior at the upper part of the core
and the two phases travel in opposite directions over a larger part of the
core (0< x<0.2 m and 0.3< x<0.5 m). Only the central region
displays co-current flow (both uw and uo are negative, both phases
travel upwards). At earlier times larger fractions of the block display co-
current flow. In other words, it appears that counter-current flow be-
comes more dominant with time.

Comparing the saturation profiles in Fig. 12, especially after 43.9 h,
it is seen that the water fronts travelling from the top behave more
different between the conventional and generalized model compared to
the front travelling from the bottom of the block. This can be attributed
to the observation that gravity enhances counter-current flow at the
top, while it counter-acts capillary diffusion and works to keep the
phases separate at the bottom. For this reason the generalized model
exhibits more delay compared to the conventional model at the top
than it does at the bottom.

In similarity with the gravity-dominated case it appears thus that
also here the main delay in recovery occurs at late times, see Fig. 13
(right). The overall delay is situated in magnitude between the two
previously shown cases I and II.

5. Conclusions

This paper presents a model where momentum equations based on a
general mixture theory replace Darcy’s law in order to account for
viscous coupling between the fluid phases and between fluid and rock.
We carry out a systematic comparison of the generalized model and the
conventional model (Darcy-based approach) for a specific flow case
relevant for naturally fractured reservoirs. To parameterize the model
realistically we match experimental data from Bourbiaux and
Kalaydjian (1990) where co-current and counter-current data were able
to distinguish such effects quantitatively. In the conventional model we
directly apply co-current relative permeability curves, while in the
generalized model relative permeability curves are a result of using
more general momentum balance equations. The exact difference be-
tween the two models is manifested in the counter-current coefficientW
expressed in (26)2. The inclusion of the fluid-fluid interaction term R
implies that the term W contains a modification that automatically
accounts for counter-current effects not captured by the conventional
model.

As a demonstration of the model, we consider gravity-aided spon-
taneous imbibition into a matrix block fully surrounded by water on all
sides, representative of the conditions in a naturally fractured reservoir.
The geometry was 1-D with flow along the vertical axis only. It should
be noted that both initial state, boundary conditions and Bond number
contribute to the flow regimes for different situations. The choice of
having all open sides exposed to water allowed flow conditions where
co- and counter-current flow regimes were naturally involved. Based on
a systematic study of the model behavior we reach the following con-
clusions:

• Directly implementing co-currently measured relative permeability
curves, as is standard, into reservoir simulation, may yield too op-
timistic results since viscous coupling can be enhanced at more
general flow regimes.

• In the capillary-dominated case (all open faces exposed to water) the
flow is mainly counter-current. This results in significant viscous

coupling and increases the time scale of recovery.

• In the gravity-dominated case the flow is mainly co-current upwards
(buoyancy) although some counter-current flow at the top (dense
water sinking opposite way of light oil) produces viscous interaction
also in this case. Directly applying co-currently measured relative
permeabilities from the lab is a better assumption under such con-
ditions (than for strongly counter-current flow), and the conven-
tional and generalized models produced very similar behavior.

• Increasing the magnitude of capillary forces results in more counter-
current flow and thus more viscous coupling. Larger differences
were observed between the conventional and generalized models.

• Interestingly, the simulations indicate that the viscous coupling ef-
fects could become more significant with time in combined cases
(where both gravity and capillary pressure forces are present) as
counter-current flow dominates a larger portion of the core at late
times.

• The generalized model apparently can automatically capture fluid-
fluid interaction effects and better represent mobility functions for
mixed flow regimes.

The usefulness and validity of the proposed model has been de-
monstrated in this work by matching experimental data with evident
features of viscous coupling and by demonstrating the listed trends in
fluid transport with flow regime. Previous works have demonstrated the
model’s ability to capture experimental non-standard trends in relative
permeability functions with variations in viscosity ratio and flow di-
rection (Standnes et al., 2017) and also the ability to improve scaling of
counter-current spontaneous imbibition at conditions where viscous
coupling should be more pronounced (Standnes and Andersen, 2017).
The proposed model, equipped with generalized mobility functions,
should however be further tested regarding its ability to capture dif-
ferent flow behavior (using one and the same parameter set) for more
general cases and flow regimes. An interesting direction to explore
could be to combine or compare the proposed generalized model with
approaches like the Barenblatt model (where the saturation functions
only gradually approach unique relations with saturation). Two natural
questions in that context are:

• Which experimental features could be captured both by the
Barenblatt model and our generalized model and what would be
distinct? Obviously, both models would predict reduced mobility
during spontaneous imbibition (a transient process) as compared to
steady state measured relative permeability curves. The mechanisms
are different though, as the Barenblatt model would display visible
distinctions only during transient flow, while the generalized model
is sensitive also to variations in steady state flow regimes
(Standnes et al., 2017).

• What would be the effect of introducing the non-equilibrium effect
of the Barenblatt approach in our generalized model? And how
could this be distinguished from current mechanisms? One such
feature could lie in the transient nature, more apparent in the
Barenblatt model, while flow regime, and perhaps not so much time
changes affects the generalized model.

Further, tortuosity (Cai et al., 2014) could be a relevant parameter
to incorporate, as the actual travel length of the fluids should be more
closely related to the overall momentum transfer and pressure drop for
a given core sample, than the straight line path.

These questions and others, considered to be beyond the scope of
the current manuscript, will be addressed in future work.
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Appendix A. Mixture theory

In this section we give a general outline of mixture theory.

A.1. Continuity and momentum equations

For simplicity reason we consider a mixture of two phases =i 1, 2 and let θi, vi, and ρi denote volume fraction, velocity (intrinsic), and density of
phase i. We assume incompressible fluids and that there is no source terms.

∂ + ∇ = =θ θ iv·( ) 0, ( 1, 2).t i i i (47)

The intrinsic velocity, vi, is related to the superficial velocity (Darcy velocity), ui, by = θu vi i i. The no-voids constraint implies that the volume
fractions must sum to unity:

+ =θ θ 1.1 2 (48)

The dynamics of the phases at any point will be described using a flow model whereby the motion of each phase is in response to the stress within
that phase and the pressures exerted by the other component phases. Neglecting inertial effects, including the momentum change caused by in-
terchange of mass between the phases, the momentum balance equation for phase i is

∇ + + =
∇ + + =

θ
θ

Ψ f g
Ψ f g

·( ) 0,
·( ) 0,

1 1 12 1

2 2 21 2 (49)

where Ψi refers to the macroscopic (averaged) stress tensor associated with phase i whereas the quantity fij denotes the interphase force which is
exerted by the jth phase on the ith phase. Clearly, = −f fij ji by Newton’s third law. Finally, = θ ρg gi i i refers to the external body force on phase i due
to gravity and g refers to the gravity vector with the direction of gravitational pull and magnitude =g 9.8.

A.2. Interphase forces fij

The interphase forces fij represent the forces acting at the interfaces between pairs of phases. Many works assume that a simplified approach can
be used whereby these forces are expressed in terms of interphase pressure and drag force components. The following expression is postulated:

= ∇ − ∇ + −
= ∇ − ∇ + −

p θ θ p θ θ β θ θ
p θ θ p θ θ β θ θ

f v v
f v v

( ),
( ).

12 12 2 1 21 1 2 12 1 2 2 1

21 21 1 2 12 2 1 21 1 2 1 2 (50)

We refer to Lemon et al. (2006) for more details regarding the interpretation of the different terms. Here we simply note that different relations have
been proposed by various authors motivated by the special flow system under consideration. We see that if =β β12 21 and =p p ,12 21 then (50)
simplifies to:

= ∇ + −
= ∇ + −

p θ β θ θ
p θ β θ θ

f v v
f v v

( ),
( ),

12 12 1 12 1 2 2 1

21 21 2 21 1 2 1 2 (51)

in view of (48), and it follows that = −f f12 21. Note that solid components like structural proteins that comprise the matrix in connective tissue in the
context of tissue engineering or rock in the context of multiphase flow in a reservoir, can also naturally be included within this modeling framework.
In this case the momentum balance (49) is not relevant since the velocity associated with this phase is zero if deformation of the matrix is ignored.
However, the volume fraction of this solid phase must of course be taken into account as well as interaction force terms (the last term on the right-
hand-side of (51)).

A.3. Constitutive relations

As described in Lemon et al. (2006), the partial stress tensor Ψi is decomposed into the following form:

= − + =p iΨ I Ψ , ( 1, 2),i i i d, (52)

where pi refers to the locally averaged (intraphase) pressure for phase i and Ψi, d is the deviatoric part of the partial stress tensor and I is the identity
tensor. At the microscopic scale Ψi, d is related to the intrinsic velocity on a local scale; ̂vi. For viscous fluids:

̂ ̂ ̂= ∇ + ∇ + ∇ =μ κ iΨ v v v I( ) ( · ) , ( 1, 2),i d i i i
T

i i, (53)

which includes both the effect of shear viscosity μi and bulk viscosity κi. On a macroscopic scale where velocities are averaged over a representative
elementary volume (REV), i.e. giving the intrinsic average velocities vi, the form of the stress term must be more carefully evaluated. Several works
account for the viscous stress term Ψi, d by directly implementing the average interstitial velocities vi into (53), see Lemon et al. (2006);
Schuff et al. (2013); Wu et al. (2017). On the other hand, when defining the partial stress of a fluid constituent, the viscous forces are also often
neglected such that =Ψ 0i d, in (52), see e.g. Ambrosi and Preziosi (2002); Lemon et al. (2006). For a porous media in which the fluid drag on the
porous matrix dominates this may be a valid assumption. As mentioned in Rajagopal (2007) the underlying assumptions imply that the viscosity of
the fluid and the roughness of the solid surface lead to far greater frictional resistance (and hence dissipation) at the porous boundaries of the solid in
comparison to the frictional resistance (and hence the dissipation) in the fluid.

Note that the above modeling framework is general enough to also account for elastic deformation of, for example, the solid matrix components
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in a reservoir. Modeling of deformation of solid components like matrix constituents in a reservoir or tissue growth involving elastic constituents is
significantly more complicated and implies that we cannot assume that =Ψ 0i d, (Schuff et al., 2013). An interesting example of this can be found in
Ambrosi and Preziosi (2009) which focuses on flow systems composed of cells (viscous fluid), extracellular matrix (solid constituent), and water
(inviscid fluid) where also elastic deformation is taken into consideration. In the mathematical formulation this gives rise to a stress tensor Ψi, d

where the extracellular matrix is treated as a compressible elastic body.

Remark A.1. An instructive overview is given in (Rajagopal, 2007) of how generalizations of the standard Darcy’s law for single phase flow can be
derived within the context of mixture theory. Starting with more general momentum balance equations and using different sets of assumptions leads
to a hierarchy of mathematical models. In particular, it can be shown that popular models due to Brinkman, Biot and many others can be obtained
via various approximations. For example, Brinkman’s equation (see (54)) accounts for frictional effects in the fluid by using a partial stress tensor
(53) where the first term is included. This may be relevant for porous media having large permeability and/or being dominated by a network of
fractures. The resulting momentum balance equation then takes the following form for a fluid-matrix system:

∇ = − + + ∇ ∇p α ρ μv b v· ,0 (54)

where the quantities refer to the fluid phase, i.e. p is fluid pressure and v is pore velocity, ρ phase density and μ phase viscosity. b denotes external
body forces (e.g. for gravity =b g), and α0 the magnitude of the fluid-matrix drag force. The final term, involving second order derivatives of
velocity, marks a clear distinction from Darcy’s law for single phase flow.

Further extension of the viscous stress tensor is necessary in order to account for non-Newtonian fluid properties corresponding to shear-
thickening or shear-thinning behavior (Rajagopal, 2007). We refer to the same work for more discussions related to weakly compressible fluids and
small deformations and appropriate extensions of Darcy’s equation.

Remark A.2. Water weakening effects and deformation of solid matrix constituents are currently subject to extensive experimental investigations
Andersen et al. (2017b). Various creep tests are carried out to detect detailed mechanisms related to deformation of matrix in chalk reservoirs.
However, this behavior cannot be separated from the flow of liquid phases which carry various chemicals that may react with the solid components
and thereby have an impact of the deformation behavior. At the same time these fluids and their chemical components may also have an impact on
the solid-fluid interaction terms as well as fluid-fluid interaction terms. The mixture theory formulation seems to offer a framework that is broad
enough to allow for mathematical models that can bring together systematic studies of all these different aspects of multiphase flow in a reservoir.

Remark A.3. Development of models within the framework of mixture theory has found many applications within the study of multiphase flow in
porous media relevant for life science (biomechanics), see for instance, (Ambrosi and Preziosi, 2002; Byrne and Preziosi, 2003; Preziosi and Farina,
2002). See also Evje (2017) for a recent work where a general compressible cell-fluid model, with interaction terms similar to (16) and (17), is
proposed to explore cancer cell migration dynamics. For mathematical results related to compressible versions of two-fluid models that involve
gravity driven segregation, see (Evje and Wen, 2015) and for models that discuss the role of capillary pressure and its stabilizing effect, we refer the
interesting reader to (Evje et al., 2016; Evje and Wen, 2016) and references therein.

Appendix B. Discretization of the generalized model

Two dimensionless variables tD and xD are introduced in addition to the normalized saturation Sw (see (10)).

= =x x H t u t ϕH/ , /( ),D D T
0 (55)

where uT
0 is a reference velocity (taken as the initial total Darcy velocity). Skipping the notations ‘w’ for Sw and ‘D’ for xD and tD, the dimensionless

form of (41), (42) and (43) becomes:
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with conditions of
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Consider a discretization of spatial domain [0,1] into M cells and one more extra cell is added to the top and the bottom cells outside the block. This
gives rise to grid points =

+x{ }j j
M

0
1 where xj is located in the center of the cell = − +I x x[ , ]j j j1/2 1/2 . The length of each cell is = −+ −x x xΔ j j1/2 1/2. All cells

are of equal length. We also consider a discretization of the time interval [0,T] into N steps (of the same length) represented by times =t{ }n
n
N

1 where
the length of each time step is = −+t t tΔ n n1 . In addition, the boundary conditions of capillary pressure are defined at the center of the boundary
extra cells 0 and +M 1, which means that, Pc, T, ST at x0 and Pc, B, SB at +xM 1 are referred as the boundary conditions of capillary pressures and
saturations at top and bottom of the block.
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Certainly, the boundary saturations should depend on the boundary capillary pressures:
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1

,
1
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However, the boundary conditions of water pressure are set with the top water pressure pw, T at x1/2 and the bottom water pressure pw, B at +xM 1/2.

= =+p p p p, .w w T w M w B,1/2 , , 1/2 , (60)

1) Calculate total velocity and pressure distributions of water/oil at current time step (tn) with a discretization of Eq. (56)2. There are M equations
and M unknowns including uT

n and +p( )w j
n

1/2 = … −j M( 1, , 1), and a matrix solver can be used to solve these unknowns simultaneously (see below).
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where Pc can be further approximated by =
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Importantly, one should notice the evaluation of the boundary conditions here, that is:
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After solving pw at the interface of neighbouring cells, water pressure at the center of each cell is approximated with:
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Then p( )o j
n can be easily solved by = +p P S p( ) ( ) ( )o j

n
c j

n
w j

n.
2) The velocity of water is calculated by using Eq. (56)3 where fw is approximated by using the upstream value based on the direction of total

velocity uT and the gravity segregation coefficient W needs to be evaluated locally.
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The corresponding oil velocity is:

= − = …u u u j M( ) ( ) , ( 1, , ).o j
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(65)

3) Update the saturations at new time step. Simplify Eq. (56)1 with the following form:

 ∂ = −∂ + ∂S F D( ) ,t x x (66)

with the advection term F and the diffusion term D :  = +
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A discrete version of (66) with an explicit discretization in time then takes the form of:
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Since the derivative of F n can take both positive and negative values due to the gravity effect, the local Lax–Friedrichs scheme can be implemented
to express the advection flux term, i.e.  +F j

n
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where F j
n
follows the same type of approximation as the one for updating water velocity, therefore


 =

+
− −

= …+F
u f S W S ρg

u s s
j M

( ) ( )Δ
(1 )

, ( 1, , ),j
n T

n
w j

n
j
n

T or wr

1
0 (69)

and the local parameter ≥+a 0j
n

1/2 is chosen such that
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For the boundary advection term, the physical flux is used as follows:
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In addition, stability condition for the advection term F must also be satisfied:
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(Δ )
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Denote variable = −
− −

d S( ) W S
u H s s

( )
(1 )T or wr0 and the diffusion term D can be expressed as follows:
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Corresponding to the advection term, physical approximation of the diffusion coefficient d(S) is implemented for the boundary diffusion terms:
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The stability condition for the diffusion term D should also meet the requirement:
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With the upper two stability conditions, a requirement of the time length Δt should satisfy that:
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at the time step tn.
4) Repeat step 1, 2 and 3 for the new time step +tn 1.

Appendix C. Numerical validation

Eclipse 100 was used to examine the validity of the numerical method. Direct comparison between Eclipse simulations and modeling results from
the conventional model and the generalized model is shown in Fig. 14 in terms of recovery factor vs time. The Eclipse results are in excellent
agreement with the conventional model (i.e. where co-current relative permeabilities are implemented to model flow regimes with varying extent of
counter-current flows), while naturally there is significant difference with the results from the generalized model.

References

Ambrosi, D., Preziosi, L., 2002. On the closure of mass balance models for tumor growth.
Math. Models Methods Appl. Sci. 12 (5), 737–754. http://dx.doi.org/10.1142/
S0218202502001878.

Ambrosi, D., Preziosi, L., 2009. Cell adhesion mechanisms and stress relaxation in the
mechanics of tumours. Biomech. Model Mechanobiol. 8, 397–413.

Andersen, P.Ø., Evje, S., Hiorth, A., 2017. Modeling of spontaneous-imbibition experi-
ments with porous disk - on the validity of exponential prediction. SPE J. 22 (5),
1326–1337. http://dx.doi.org/10.2118/186094-PA, SPE-186094-PA.

Andersen, P.Ø., Evje, S., Kleppe, H., 2014. A model for spontaneous imbibition as a
mechanism for oil recovery in fractured reservoirs. Transp. Porous Media 101 (2),
299–331. http://dx.doi.org/10.1007/s11242-013-0246-7.

Andersen, P.Ø., Wang, W., Madland, M.V., Zimmermann, U., Korsnes, R.I., Bertolino,
S.R.A., Minde, M., Schulz, B., Gilbricht, S., 2017. Comparative study of five outcrop
chalks flooded at reservoir conditions: chemo-mechanical behaviour and profiles of
compositional alteration. Transp. Porous Media, In press. http://dx.doi.org/10.1007/
s11242-017-0953-6.

Avraam, D.G., Payatakes, A.C., 1995. Flow regimes and relative permeabilities during
steady-state two-phase flow in porous media. J. Fluid Mech. 293, 207–236.

Avraam, D.G., Payatakes, A.C., 1995. Generalized relative permeability coefficients
during steady-state two-phase flow in porous media, and correlation with the flow

mechanisms. Transp. Porous Media 20 (1–2), 135–168.
Ayodele, O.R., 2006. Theoretical analysis of viscous coupling in two-phase flow through

porous media. Transp. Porous Media 64 (2), 171–184. http://dx.doi.org/10.1007/
s11242-005-2809-8.

Babchin, A., Yuan, J., Nasr, T., 2006. Generalized phase mobilities in gravity drainage
processes. In: 49th Annual Technical Meeting of the Petroleum Society of Canada,
Calgary, Alberta, Canada, June 8–10. http://dx.doi.org/10.2118/98-09, PETSOC-
98-09.

Bacri, J.C., Chaouche, M., Salin, D., 1990. Modele simple de permeabilities croisees. C.R.
Acad. Sci. 311, 591–596. Series II.

Barenblatt, G.I., Vinnichenko, A.P., 1980. Non-equilibrium seepage of immiscible fluids.
Adv. Mech. 3, 35–50.

Bear, J., 1988. Dynamics of Fluids in Porous Media. Dover Books on Physics and
Chemistry, New York, USA.

Bentsen, R.G., Manai, A.A., 1992. Measurement of concurrent and countercurrent relative
permeability curves using the steady-state method. AOSTRA J. Res. 7, 169–181.

Bentsen, R.G., Manai, A.A., 1993. On the use of conventional cocurrent and counter-
current effective permeabilities to estimate the four generalized permeability coef-
ficients which arise in coupled, two-phase flow. Transp. Porous Media 11, 243–262.

Bourbiaux, B.J., Kalaydjian, F.J., 1990. Experimental study of cocurrent and counter-
current flows in natural porous media. SPE Reservoir Eng. 5 (3), 361–368. http://dx.
doi.org/10.2118/18283-PA.

Bowen, R.M., 1976. Theory of Mixtures. In: Eringen, A.C. (Ed.), Continuum Physics.

Fig. 14. Comparison between Eclipse 100, conventional and generalized models for Case I, II and III in terms of recovery factor vs time.

Y. Qiao et al. Advances in Water Resources 112 (2018) 170–188

18754



Academic, New York.
Bowen, R.M., 1980. Incompressible porous media model by use of the theory of mixtures.

Int. J. Eng. Sci. 18 (9), 1129–1148.
Byrne, H.M., Preziosi, L., 2003. Modelling solid tumour growth using the theory of

mixtures. Math. Med. Biol. 20 (4), 341–366.
Cai, J., Perfect, E., Cheng, C., Hu, X., 2014. Generalized modeling of spontaneous im-

bibition based on hagen-poiseuille flow in tortuous capillaries with variably shaped
apertures. Langmuir 30, 5142–5151.

de la Cruz, V., Spanos, T.J.T., 1983. Mobilization of oil ganglia. AlChE J. 29 (5), 854–858.
Darcy, H., 1856. Les Fontaines Publiques de La Ville de Dijon, Dalmont, paris.
Drew, D.A., Passman, S.L., 1999. Theory of Multicomponent Fluids. Springer.
Dullien, F.A.L., Dong, M., 1996. Experimental determination of the flow transport coef-

ficients in the coupled equations of two-phase flow in porous media. Transp. Porous
Media 25, 97–120.

Ehrlich, R., 1993. Viscous coupling in two-phase flow in porous media and its effect on
relative permeabilities. Transp. Porous Media 11 (3), 201–218.

Evje, S., 2017. An integrative multiphase model for cancer cell migration under influence
of physical cues from the microenvironment. Chem. Eng. Sci. 165, 240–259.

Evje, S., Wang, W., Wen, H.Y., 2016. Global well-posedness and decay rates of strong
solutions to a non-conservative compressible two-fluid model. Arch. Ration. Mech.
Anal. 221 (3), 1285–1316.

Evje, S., Wen, H.Y., 2015. Analysis of a compressible two-fluid stokes system with con-
stant viscosity. J. Math. Fluid Mech. 17 (3), 423–436.

Evje, S., Wen, H.Y., 2016. Stability of a compressible two-fluid hyperbolic-elliptic system
arising in fluid mechanics. Nonlinear Anal. Real World Appl. 31, 610–629.

Hassanizadeh, S.M., Gray, W.G., 1993. Toward an improved description of the physics of
two-phase flow. Adv. Water. Resour. 16, 53–67.

Juanes, R., 2008. Nonequilibrium effects in models of three-phase flow in porous media.
Adv. Wat. Res. 31, 661–673.

Kalaydjian, F., 1987. A macroscopic description of multiphase flow in porous media in-
volving spacetime evolution of fluid/fluid interface. Transp. Porous Media 2,
537–552.

Kalaydjian, F., 1990. Origin and quantification of coupling between relative perme-
abilities for two-phase flows in porous media. Transp. Porous Media 5 (3), 215–229.

Langaas, K., Papatzacos, P., 2001. Numerical investigations of the steady state relative
permeability of a simplified porous medium. Transp. Porous Media 45, 241–266.

Le Veque, R., 2002. Finite Volume Methods for Hyperbolic Problems. In: Cambridge Texts
in Applied Mathematics. Cambridge University Press.

Lemon, G., King, J.R., Byrne, H.M., Jensen, O.E., Shakesheff, K.M., 2006. Mathematical
modelling of engineered tissue growth using a multiphase porous flow mixture
theory. J. Math. Biol. 52, 571–594.

Li, H., Pan, C., Miller, C.T., 2004. Viscous coupling effects for two-phase flow in porous
media. Dev. Water Sci. 55 (Part 1), 247–256.

Li, H., Pan, C., Miller, C.T., 2005. Pore-scale investigation of viscous coupling effects for
two-phase flow in porous media. Phys. Rev. E, 72.

Mason, G., Morrow, N.R., 2013. Developments in spontaneous imbibition and possibilities
for future work. J. Petrol. Sci. Eng. 110, 268–293. http://dx.doi.org/10.1016/j.
petrol.2013.08.018.

Muskat, M., Wyckoff, R.D., Botset, H.G., Meres, M.M., 2013. Flow of gas-liquid mixtures
through sands. SPE Trans. AIME 123 (1), 69–96. http://dx.doi.org/10.2118/
937069-G.

Odeh, A.S., 2013. Effect of viscosity ratio on relative permeability. J. Petrol. Technol. 11,
346–354.

du Prey, L., 1973. Factors affecting liquid-liquid relative permeabilities of a consolidated
porous medium. SPE J. 13 (1), 39–47.

Preziosi, L., Farina, A., 2002. On darcy’s law for growing porous media. Int. J. Non Linear
Mech. 37, 485–491.

Rajagopal, K.R., 2007. On a hierarchy of approximate models for flows of incompressible
fluids through porous solids. Math. Mod. Met. Appl. Sci. 17, 215–252.

Rajagopal, K.R., Tao, L., 1995. Mechanics of Mixtures. In: Series on Advances in
Mathematics for Applied Sciences. 35 World Scientific. 1995

Rose, W., 2000. Myths about later-day extensions of darcy’s law. J. Petrol. Sci. Eng. 26,
187–198.

Schuff, M.M., Gore, J.P., Nauman, E.A., 2013. A mixture theory model of fluid and solute
transport in the microvasculature of normal and malignant tissues. i. theory. J. Math.
Biol. 66, 1179–1207.

Sherafati, M., Jessen, K., 2017. Dynamic relative permeability and simulation of WAG
injection processes. Transp. Porous Media 117, 125–147. http://dx.doi.org/10.1007/
s11242-017-0825-0.

Silin, D., Patzek, T., 2004. On barenblatts model of spontaneous countercurrent imbibi-
tion. Transp. Porous Media 54, 297–322.

Standnes, D.C., Andersen, P.O., 2017. Analysis of the impact of fluid viscosities on the
rate of countercurrent spontaneous imbibition. Energy Fuels 31 (7), 6928–6940.
http://dx.doi.org/10.1021/acs.energyfuels.7b00863.

Standnes, D.C., Evje, S., Andersen, P.O., 2017. A novel relative permeability model based
on mixture theory approach accounting for solid-fluid and fluid-fluid interactions.
Transp. Porous Media 119, 707–738. http://dx.doi.org/10.1007/s11242-017-0907-z.

Wu, W., Aubry, N., Antaki, J.F., Massoudi, M., 2017. Flow of a fluid-solid mixture: normal
stress differences and slip boundary condition. Int. J. Non Linear Mech. 90, 39–49.
http://dx.doi.org/10.1016/j.ijnonlinmec.2017.01.004.

Yuster, S.T., 1951. Theoretical considerations of multiphase flow in idealized capillary
systems. World Petroleum Cong. Proc., Section II, The Hague. pp. 437–445.

Y. Qiao et al. Advances in Water Resources 112 (2018) 170–188

188 55





II





Paper II

Cocurrent Spontaneous Imbibition in
Porous Media with the Dynamics of
Viscous Coupling and Capillary
Backpressure

By:
Andersen, Pål Østebø
Qiao, Yangyang
Standnes, Dag Chun
Evje, Steinar

Printed in:
SPE Journal, 24: 158-177 (2019).

59



This paper is not available in Brage due to copyright .



III





Paper III

Compressible and Viscous Two-phase
Flow in Porous Media Based on
Mixture Theory Formulation

By:
Qiao, Yangyang
Wen, Huanyao
Evje, Steinar

Printed in:
Networks and Heterogeneous Media, 14 (3): 489-536 (2019).

83





NETWORKS AND HETEROGENEOUS MEDIA doi:10.3934/nhm.2019020
c©American Institute of Mathematical Sciences
Volume 14, Number 3, September 2019 pp. 489–536

COMPRESSIBLE AND VISCOUS TWO-PHASE FLOW IN

POROUS MEDIA

BASED ON MIXTURE THEORY FORMULATION

Yangyang Qiao

Department of Energy and Petroleum Engineering, University of Stavanger

Stavanger, NO-4068, Norway

Huanyao Wen

School of Mathematics, South China University of Technology
Guangzhou, 510641, China

Steinar Evje∗

Department of Energy and Petroleum Engineering, University of Stavanger
Stavanger, NO-4068, Norway

(Communicated by Paola Goatin)

Abstract. The purpose of this work is to carry out investigations of a general-

ized two-phase model for porous media flow. The momentum balance equations

account for fluid-rock resistance forces as well as fluid-fluid drag force effects,
in addition, to internal viscosity through a Brinkmann type viscous term. We

carry out detailed investigations of a one-dimensional version of the general

model. Various a priori estimates are derived that give rise to an existence
result. More precisely, we rely on the energy method and use compressibility

in combination with the structure of the viscous term to obtain H1-estimates

as well upper and lower uniform bounds of mass variables. These a priori es-
timates imply existence of solutions in a suitable functional space for a global

time T > 0. We also derive discrete schemes both for the incompressible and

compressible case to explore the role of the viscosity term (Brinkmann type)
as well as the incompressible versus the compressible case. We demonstrate

similarities and differences between a formulation that is based, respectively,
on interstitial velocity and Darcy velocity in the viscous term. The investiga-

tions may suggest that interstitial velocity seems more natural to use in the

formulation of momentum balance than Darcy velocity.

1. Introduction. The importance of multiphase flow in porous media has long
been recognized in many fields. Mathematical modelling of multiphase flow is
essential in practical applications like enhanced oil recovery and geological CO2

storage in depleted oil and gas reservoirs [25, 42] as well as biological processes
[29, 14, 18, 39, 40, 37]. Traditional formulations of multiphase flow describe macro-
scopic fluid fluxes with a straightforward extension, first proposed by Muskat [30, 3],
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of Darcy’s equation for single-phase flow. Unlike in the single-phase case, this ex-
tension cannot be rigorously obtained from first principles [22, 23]. The multiphase
extension of Darcy’s equation may be described as a quasi-linear relation, because
the fluid flux depends linearly on the “driving force”, which includes viscous, cap-
illary, and gravity forces, and all the nonlinearity is agglutinated in the relative
permeability and capillary pressure functions [25]. An instructive overview is given
in [32] of how generalizations of the standard Darcy’s law for single phase flow can
be derived within the context of mixture theory. Starting with more general momen-
tum balance equations and using different sets of assumptions leads to a hierarchy
of mathematical models. In particular, it can be shown that popular models due
to Brinkman, Biot and many others can be obtained via various approximations.
Interesting extensions of the classical multiphase formulation are also discussed by
Wu [42].

1.1. A compressible and viscous two-fluid model for porous media flow.
The model we are interested in describes flow of two compressible immiscible fluids,
e.g., water (w), oil (o), or gas (g), moving in a porous media and takes the following
form (we use “w” and “o” in the following as index):

(φn)t +∇ · (φnuo) = Qo, n = soρo

(φm)t +∇ · (φmuw) = Qw, m = swρw

so∇Po + ng = −k̂ouo + k̂ow(uw − uo) + εo∇ · (n∇uo)

sw∇Pw +mg = −k̂wuw − k̂ow(uw − uo) + εw∇ · (m∇uw)

(1.1)

with capillary pressure Pc defined as the difference between the non-wetting fluid
(oil) pressure Po and wetting fluid (water) pressure Pw

Pc = Po − Pw = Pc(sw), P ′c(sw) < 0. (1.2)

Herein, φ is the porosity of the medium, ρi represents density and si the volume
fraction (saturation) where i = w, o. In addition, we have the fundamental relation
that expresses that the water and oil occupy the pore space

so + sw = 1. (1.3)

Furthermore, εw, εo (assumed to be constant) characterize the magnitude of the
viscous terms. The model can be derived (or at least motivated) from general
mixture theory [11, 32] where we study a continuum composed of matrix occupying
a volume fraction (1−φ) and a pore space of volume φ that is filled with a mixture
of water and oil represented, respectively, by φsw and φso such that (1−φ)+φsw+
φso = 1. The matrix is stagnant whereas the two fluids move with (locally) averaged
interstitial velocities uw and uo. We refer to the recent work [31] for more details
leading to (1.1). See also [1, 29, 34] and references therein for interesting examples
of similar models developed in the mixture theory framework.

Note that the viscous terms εo∇ · (n∇uo) and εw∇ · (m∇uw) (Brinkman type
of term) included in (1.1)3,4 involve a mass dependent coefficient whose magnitude
is governed by the parameter εi. This reflects that we have introduced kinematic
viscosity ε that is related to dynamic viscosity µ by ερ = µ for single-phase flow of
a fluid with density ρ [28]. Combined with the two-phase momentum balance for
water and oil this gives rise to mass dependent viscosity coefficients of the form εon
and εwm. We refer to [14] (and references) therein for more details. More generally,
we may think of εon and εwm as “effective” viscosities since the model (1.1) must

86



COMPRESSIBLE AND VISCOUS TWO-PHASE FLOW IN POROUS MEDIA 491

be understood as the result of a volume averaging process where variables have been
obtained through averaging over a small representative volume element, implying
that detailed information about complex interfaces between the two phases have
been lost and are represented only in an averaged sense [11, 32]. Some authors also
denote this viscosity as the “Brinkman viscosity” whereas the viscosity associated

with the rock-fluid friction term k̂i (i = o, w) is denoted the “Darcy viscosity” [27].
This issue is also discussed in [38] where it is observed by means of an up-scaling
procedure based on volume averaging methods, that the use of a slip boundary
condition gives rise to an effective viscosity different from the one corresponding to
the fluid phase.

In the following we will focus on nonlinear coupling mechanisms and we there-
fore assume physical parameters like porosity φ, absolute permeability K, Darcy
viscosity µi (will be introduced later), and Brinkman viscosity εi to be constant.

Generally, k̂o, k̂w, and k̂ow depend on the fluid composition through si and ρi.

1.1.1. Closure relations. The above model must be endowed with appropriate clo-
sure relations for densities ρi = ρi(Pi). The two phases will be treated as weakly
compressible fluids. More precisely, we represent the water and the oil by linear
pressure-density relations of the form

ρw − ρ̃w0 =
Pw
Cw

, ρo − ρ̃o0 =
Po
Co
, (1.4)

where Cw and Co reflect the compressibility of water and oil, respectively. An

essential role is played by the interaction coefficients k̂ow, k̂w, and k̂o. We will come
back with more details about the choice of these. In addition, a functional form of
the capillary pressure Pc(sw) must also be specified. Combining (1.2), (1.3), and
(1.4) it follows that ρw = ρw(m,n) and ρo = ρ(m,n) are well-defined as functions
of m and n for m,n ≥ 0, from which we also can compute sw = sw(m,n) and
so = so(m,n), see (2.17)-(2.21) for details.

1.1.2. Initial and boundary conditions. Boundary conditions are prescribed as no-
flux conditions:

ui · ν = 0, x ∈ ∂Ω, t > 0, i = w, o (1.5)

where ν is the outward normal on ∂Ω. The corresponding initial data is

n(x, t = 0) = n0(x), m(x, t = 0) = m0(x), x ∈ Ω. (1.6)

1.2. The model (1.1) as a generalization of Darcy’s equation based for-
mulation. We may ignore the effects from the viscous terms in (1.1)3,4 by setting
εo = εw = 0. In addition, we neglect the fluid-fluid interaction effect by setting

k̂ow = 0, combined with the assumption that fluid-pore resistance force coefficient

k̂i takes the form

k̂i
def
:= s2

iφ
µi
Kkri

, i = w, o (1.7)

where K is the absolute permeability (assumed here to be a scalar, i.e., we assume a
homogeneous media), kri is relative permeability, and µi viscosity. This gives from
(1.1)3,4 the following reduced momentum equations

Ui
def
:= φsiui = −Kkri

µi
(∇Pi + ρig) = −λi(∇Pi + ρig), λi := K

kri
µi
, (1.8)
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for i = w, o which is nothing but the classical Darcy law where Ui is the Darcy
velocity. When combined with (1.1)1,2 we arrive at the classical two-phase formula-
tion [42]. The model (1.1) involves two main extensions from classical formulation
based on two-phase Darcy’s equation, as elaborated upon in the following:

• The interaction forces on the RHS of (1.1)3,4 involve a fluid-fluid drag force

effect k̂ow(uw − uo) in addition to fluid-rock drag force −k̂ouo and −k̂wuw.
The only interaction force in Darcy’s equation is the latter one representing
friction between fluid and boundaries of the pores [32]. Moreover, while the
drag force depends on the velocity, it is by no means necessary that it in
general depends linearly on the relative velocity. See for example [42] for
extensions that include nonlinear dependence on fluid velocity (Forchheimer).
Moreover, it has been observed that inclusion of the fluid-fluid interaction

term k̂ow(uw − uo) can give improvements over standard Darcy’s equation
based formulation for water-oil flow in porous media. We refer to [35, 31] for
a first discussion of this in the context of core scale modelling and generalized
permeability functions and [36] for a discussion of this generalized two-phase
flow in the context of imbibition (i.e., capillary pressure driven counter-current
flow).
• The viscous terms εo∇ · (n∇uo) and εw∇ · (m∇uw) in (1.1)3,4 can account

for frictional forces within the fluid due to its viscosity. Ignoring these terms
essentially imply that the viscosity of the fluid and the roughness of the solid
surface lead to far greater frictional resistance (and hence dissipation) at the
porous boundaries of the solid in comparison to the frictional resistance in
the fluid [32]. Note that (1.1)3,4 can naturally be interpreted as a two-phase
version of Brinkman’s equation. Brinkman’s equation amounts to using a
momentum balance equation that takes the following form for a fluid-matrix
system [32]:

∇p+ ρg = −α0u + µ∇ · (∇u), (1.9)

where the quantities refer to the fluid phase, i.e., p is fluid pressure and u is
pore velocity, ρ phase density and µ phase viscosity. g denotes the external
gravity force and α0 the magnitude of the fluid-matrix drag force. The final
term, involving second order derivatives of velocity, marks a clear distinction
from Darcy’s law for single phase flow. This may be relevant for porous media
having large permeability and/or being dominated by a network of fractures
[27].

Some more precise remarks seem useful in order to set the model (1.1) into a
broader context.

Remark 1.1. We may replace the viscous term in (1.1)3,4 that accounts for the
fluid viscous shear effects that oppose the flow through the porous structure by a
more general term

∇ · (εi,eff∇ui),

where the effective viscosity coefficient εi,eff depends on other variables than the
mass. We refer to [38] for a discussion of this, both from theoretical and numer-
ical investigations. For example, from physical considerations and experimental
investigations it seems clear that it could depend on pressure [32]. It is concluded
that it might be reasonable to include dependence on pressure both in modelling
of fluid-pore friction force as well as frictional effects within the fluid itself [32].
More generally, one should also account for the possibility that the flow may not be
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steady implying that one should add a term ρut to (1.9) in the single-phase case or
(φsiρiui)t in the more general two-phase model (1.1). Moreover, nonlinear inertial
effects in the fluid cannot be ignored if the flow is not sufficiently slow.

Remark 1.2. An interesting study of a two-phase Brinkman type of model is found
in [9]. A two-phase formulation based on Darcy’s equations of the following form is
studied with s = sw

st +∇ · (Uw) = 0, Uw = f(s)UT = −λw(s)∇P
∇ ·UT = 0

UT = −λT (s)∇P,
(1.10)

where φ ≡ 1, Pw = Po = P (zero capillary pressure), λT (s) = λw(s) +λo(s) is total
mobility and f(s) = λw(s)/λT (s) is the fractional flow function for water phase.
UT is the total Darcy velocity UT = Uw + Uo. The following two-phase version of
Brinkman’s equation based on Darcy’s velocity Ui is proposed as a generalization
of Darcy’s equation:

− µ∆Ui + Ui = −λi∇P, i = w, o. (1.11)

Summing the two momentum equations in (1.11) gives rise to a Brinkman type of
momentum equation for the mixture of the two phases expressed in terms of the
total Darcy velocity UT = Uw + Uo:

− µ∆UT + UT = −λT (s)∇P. (1.12)

Taking the divergence of (1.12) gives in light of the total mass balance equation
(1.10)2 the following Brinkman based approximation of (1.10)

st +∇ · (Uw) = 0, Uw = f(s)UT

−∇ · (λT (s)∇P ) = 0

−µ∆Uw + Uw = −λw(s)∇P, λw(s) = f(s)λT (s).

(1.13)

In [9] a notion of weak solutions to the Brinkman model (1.13) is introduced and
convergence of an iterative approximation as well as full numerical scheme is demon-
strated. Numerical experiments show that the numerical approximation is quite
sensitive to the choice of µ and creates oscillatory behavior. Interestingly, numeri-
cal experiments also indicate that this solution may not converge to the solution of
the model (1.10) corresponding to µ = 0.

Remark 1.3. In the literature there seems to be an ongoing interesting discus-
sion of various formulations of two-phase versions of porous media flow based on
Brinkman’s equation. See for example the work [41] for a discussion of this. Tra-
ditionally, the superficial phase velocity (Darcy velocity) Ui has been used in two-
phase versions of Brinkman’s equation similar to (1.11). In [41] it is argued that the
most natural choice, at least for the flow system they consider with creeping flow
inside moving permeable particles, is to use interstitial (intrinsic) phase velocity ui
in the macroscopic equations. Their conclusion is based on numerical computations
and comparison of the model based on, respectively, phase velocity Ui = siui and
interstitial phase velocity ui.

1.3. Purpose of this work and brief review of related works. The aim of
this paper is three-fold: (i) Present an example of stability analysis motivated by
the study of compressible Navier-Stokes equation (and different from traditional
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two-phase porous media stability analysis) which exploits the structure of the vis-
cous term in the momentum balance and accounts for compressibility; (ii) Present
an example of a numerical scheme both for the compressible and incompressible
version of (1.1) in a one-dimensional setting and demonstrate similarities and dif-
ferences through some specific simulations; (iii) Gain some insight into the impact
the viscosity terms have on the solution.

We end this section by giving a brief review of other works on the two-phase
porous media model based on Darcy’s law. Most works focus on the incompress-
ible, immiscible two-phase flow case. For example, [2] studied the existence of weak
solutions for the incompressible two-phase model in fractured porous media based
on a dual-porosity formulation. Regularity and stability results were obtained in
[8] when analysing a coupled system involving a saturation and a global pressure.
In [6, 5] the authors showed existence of a solution for an incompressible two-phase
flow within a heterogeneous porous medium made of two rock types. Considering
dynamic capillary pressure [24] for the incompressible two-phase flow in porous me-
dia, [7] proved the existence of a weak solution to a degenerate elliptic parabolic
system whereas in [13, 12] existence conditions for the traveling wave solution were
derived. In particular, non-monotone weak solutions for the Buckley-Leverett equa-
tion were obtained. Interesting contributions have also been made concerning the
compressible immiscible two-phase flow in porous media where phase densities are
assumed to depend on their own pressure. Without using the feature of global pres-
sure, Khalil and Saad [26] established an existence result for a three-dimensional
model. In addition, the implicit finite volume scheme was studied in [33] to obtain
convergence to a weak solution.

2. Stability analysis and existence of solution in the one-dimensional set-
ting. The purpose of this section is to derive a priori estimates of the solution of
(1.1). The approach is quite different from the approach used for the incompressible
model and formulation based on Darcy velocity Ui where the first step is to derive
estimate for pressure [9]. It is also different from mathematical analysis of com-
pressible two-phase models that are based on global pressure [19, 20, 21]. We rely
on the energy method where we first derive an energy-type of estimate. In addi-
tion, the special structure of the viscous terms allows one to obtain estimate of m,n
in H1 along the lines of the Bresch-Desjardin method [4] for a two-phase Navier-
Stokes model. For analysis of related models we refer the interesting reader to
[15, 16, 17, 18], and references therein. In the following we consider the 1D version of
(1.1) where source terms have been set such that water is injected and possibly pro-
duced whereas oil is produced only, i.e., Qo = −nQp whereas Qw = −mQp + ρwQI
for constant Qp, QI . The model takes the following form with (n,m, uw, uo) as the
main variables

(n)t + (nuo)x = −nQp, n = soρo

(m)t + (muw)x = −mQp + ρwQI , m = swρw

so(Po)x = −k̂ouo + k̂(uw − uo) + ng + εo(nuox)x,

sw(Pw)x = −k̂wuw − k̂(uw − uo) +mg + εw(muwx)x,

Pc = Po − Pw = Pc(sw),

(2.14)

subject to the boundary condition

uw(x = 0, t) = uo(x = 0, t) = 0
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uw(x = 1, t) = uo(x = 1, t) = 0, t > 0 (2.15)

and initial condition

n(x, t = 0) = n0(x), m(x, t = 0) = m0(x), x ∈ [0, 1]. (2.16)

Note that the gravity constant g can take both signs depending on the orientation
of the x-coordinate axis. Above we assume that positive direction of x-axis points

downward and g > 0. We also use the notation k̂ = k̂ow in (2.14), for simplicity
reason only.

Definition of (ρo, ρw, so, sw). Let us first see how we can obtain ρw and ρo as a
function of masses m and n. We focus on the situation where m,n > 0. The cases
where m = 0 or n = 0 are treated separately. We rewrite so + sw = 1 as

mρo + nρw = ρwρo (i.e. ρo =
nρw

ρw −m
). (2.17)

On the other hand, from (1.2) we have

Pc(sw) = Po − Pw = Coρo − Cwρw + Cwρ̃w0 − Coρ̃o0. (2.18)

Combining (2.18) with (2.17), we get

Po−Pw−Pc(sw) = Co
( nρw
ρw −m

)
−Cwρw+Cwρ̃w0−Coρ̃o0−Pc(

m

ρw
)

def
:= F (ρw;m,n),

(2.19)
where we have introduced the function F (ρw;m,n) where m,n are thought of as
parameters. Clearly, for any choice of m,n > 0, we want to verify that F (u;m,n)
(where we use u as the main variable) has a unique zero point which we denote as
ρw(m,n). Let us check some basic properties of F (u;m,n) as a function of u.

By the definition of m, it is natural to look for ρw which belongs to (m,+∞).
Moreover, from (2.19) we observe that (i) F (u → m+;m,n) = +∞; (ii) F (u →
+∞;m,n) = −∞. Next, we check monotonicity properties of F (u;m,n) as a
function of u.

F ′u(u;m,n) = Co
−mn

(u−m)2
− Cw + P ′c(

m

u
)(
m

u2
). (2.20)

Since F ′u(u,m, n) < 0 in (m,+∞) for any given m,n > 0, and F : (m,+∞) 7→
(−∞,+∞) as observed above, it follows (from the intermediate value theorem)
that there is a unique ρw = ρw(m,n) ∈ (m,+∞) such that F (ρw;m,n) = 0. In
addition, since F ′u(ρw;m,n) 6= 0, it concludes that the function ρw is differentiable
with respect to m or n (from the implicit function theorem). Furthermore, ρo, so,
and sw are then obtained as follows:

ρo(m,n) =
nρw

ρw −m
, sw =

m

ρw
, so = 1− m

ρw
=

n

ρo
. (2.21)

For the limit case when m = 0, there are two options: (i) sw = 0, which implies
that ρo = n and ρw is found from (2.18); (ii) sw > 0, which implies that ρw = 0
and where ρo is found from (2.18). Similarly, we can compute ρw and ρo for the
case n = 0.

Notation. We first give some notation.

• Lp = Lp([0, 1]) for p ∈ [1,∞]
• We define

m̃(t) =

∫ 1

0

m(x, t) dx; ñ(t) =

∫ 1

0

n(x, t) dx. (2.22)
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Assumptions. The following assumptions are made:

• Capillary pressure Pc(sw):
We assume that for Φ(sw) such that Φ′(sw) = Pc(sw), the following property
holds:

Φ(sw) ≤ Pc(s̃w)sw, 0 ≤ sw ≤ 1 (2.23)

where s̃w = sw(m̃, ñ) and m̃ and ñ refer to the total masses given by (2.22),
which are constant due to Remark 2.1. Moreover, we assume that

sup
sw∈(0,1)

|Pc(sw)| <∞, inf
sw∈(0,1)

[−P ′c(sw)] ≥ 0 (2.24)

and that

Cwρ̃w0 − Coρ̃o0 − sup
sw∈(0,1)

Pc(sw) ≥ 0. (2.25)

Note that these constraints on the capillary pressure Pc(sw) are all mild and
physical reasonable conditions.
• Source terms in (2.14)1,2 are ignored by setting Qp = 0 = QI .

• Interaction term k̂w, k̂o, and k̂ are set as follows:

k̂w = Iw
m2

m+ n
, k̂o = Io

n2

m+ n
, k̂ = Iwo

mn

m+ n
. (2.26)

Remark 2.1. Clearly, in view of (2.14)1,2, the condition (2.15), and assumption
Qp = QI = 0, it follows from (2.22) that

m̃(t) =

∫ 1

0

m0(x) dx = m̃0, ñ(t) =

∫ 1

0

n0(x) dx = ñ0 (2.27)

where m̃0, ñ0 are constant.

Remark 2.2. As far as the condition on capillary pressure Pc(sw) as given by (2.23)
is concerned, we may observe that this appears to be a weak structural constraint.
Consider for example a capillary pressure curve of the form Pc(sw) = −P ∗c ln(δ+ sw

a ),
for some δ, a > 0 as a typical example of a physical relevant function. Clearly, from
the relation Φ′(sw) = Pc(sw) we can introduce two positive constants C1 and C2 to
be determined such that

Φ(sw) = −P ∗c
∫ sw

0

ln(
x

a
+ δ)dx− C1 − C2

= −P ∗c a
∫ sw/a+δ

δ

ln(u)du− C1 − C2 = P ∗c a(u− u ln(u))
∣∣∣
sw/a+δ

δ
− C1 − C2

= P ∗c sw + P ∗c a
[
δ ln(δ)− (sw/a+ δ) ln(sw/a+ δ)

]
− C1 − C2.

(2.28)

Since x ln(x) is an increasing function for x ≥ e−1 whereas for x ∈ [0, e−1) decreases
from zero for x = 0 and takes a minimum −e−1, it is clear that we can secure that

P ∗c a
[
δ ln(δ)− (sw/a+ δ) ln(sw/a+ δ)

]
− C1 ≤ 0, sw ∈ [0, 1]

for an appropriate choice of C1 such that we conclude from (2.28) that

Φ(sw) ≤ P ∗c sw − C2.

What remains to show then is that

P ∗c sw − C2 ≤ Pc(s̃w)sw, 0 ≤ sw ≤ 1.
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Clearly, (P ∗c − Pc(s̃w))sw ≤ C2 for an appropriate choice of the constant C2 =
C2(P ∗c , s̃w) since sw ∈ [0, 1].

2.1. Main results. First, we present a local (in time) existence result whose proof
is presented in Appendix A. Then, we state an (almost) global in time existence
result which relies on the local existence result combined with certain a priori esti-
mates, see (2.29). Section 2.2 is devoted to these estimates.

Theorem 2.1. (Local existence) Assume that m0 ∈ H1, n0 ∈ H1 and inf
x∈[0,1]

n0 > 0,

inf
x∈[0,1]

m0 > 0, and that





Iwok1
εwk0

+ Iwok1
εok0

≤ 1
4 ,

max
{
Iwok1
k0εo

+ Eεo,1,
Iwok1
k0εw

+ Eεw,1

}
≤ 1

2 ,

where Iwo refers to the coefficient in (2.26), k0 = min
{

inf n0

e , inf m0

e

}
and k1 =

max
{
e supm0, e supn0

}
, and





Eεw,1 = 1
εw

[
10C
(k0)2 (1 + 10C

k0
) Iwok1

2k0
+ 10IwIwok1

εwk0
+ 20IwIwok1

εwk0
+ 20IwIwok1

εwk0

]
,

Eεo,1 = 1
εo

[
10C
(k0)2 (1 + 10C

k0
) Iwok1

2k0
+ 20(Iwo)2k1

εok0
+ 10IoIwok1

εok0
+ 20(Iwo)2k1

εok0

]
,

where Iw, Io are coefficients given by (2.26) and C is a positive constant depending
on k0,k1 and some other known data but independent of εo and εw (see Step 2 in
Appendix A for more details). Then there exists a positive constant T0, such that
the system (2.14) with initial-boundary conditions (2.15) and (2.16) has a unique
solution (m,n, uw, uo) on [0, 1]× [0, T0] in the sense that

(m,n) ∈ C([0, T0];H1) ∩ C1([0, T0];L2), (uw, uo) ∈ C([0, T0];H2 ∩H1
0 ),

inf m > 0, inf n > 0.

Now we are in the position to state our second result on the almost global exis-
tence.

Theorem 2.2. (Almost global existence) In addition to the assumptions of Theorem

2.1, for any given T > 0, if K1 < min
{
εwm̃, εoñ

}
, then the system (2.14) with

initial-boundary conditions (2.15) and (2.16) has a unique solution (m,n, uw, uo)
on [0, 1]× [0, T ] in the sense that

(m,n) ∈ C([0, T ];H1) ∩ C1([0, T ];L2), (uw, uo) ∈ C([0, T ];H2 ∩H1
0 ),

where K1 is given by (2.45).
Moreover, we have the following estimates:

∫ 1

0

[
(sw)2

x + (so)
2
x + (ρw)2

x + (ρo)
2
x

]
dx ≤ C(T ),

∫ 1

0

[
(sw)2

t + (so)
2
t + (ρw)2

t + (ρo)
2
t

]
dx ≤ C(T ),

for any t ∈ [0, T ].
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Remark 2.3. The constraint K1 < min
{
εwm̃, εoñ

}
where K1 is given by (2.45),

implies smallness of initial data combined with assumption about sufficiently large
viscosity εw and εo. More precisely, from the definition of K1 for a fixed T > 0 we
may choose m0 and n0 such that K1 ≤ 2[g2(m̃+ ñ)T +K0] exp(T ) where εw, εo are
chosen sufficiently large to ensure that

(i) āmax{ 1
εw
, 1
εo
} ≤ 1; (ii) 2[g2(m̃ + ñ)T + K0] exp(T ) < min

{
εwm̃, εoñ

}
. Note

that this constraint is only used to get the positive lower bound of m and n. See
Corollary 2.3 for more details. Hence, the obtained estimates cannot be used to
investigate the limit when εw, εo → 0.

2.2. Proof of Theorem 2.2. Equipped with Theorem 2.1, we are going to prove
Theorem 2.2. More precisely, let T ∗ denote the maximum time for the existence of
solutions as in Theorem 2.11. Then Theorem 2.1 implies that T ∗ > 0. To prove
the almost global existence, it suffices to show that T ∗ is larger than the given T
which can be taken as large as possible. For otherwise, i.e., T ∗ ≤ T , it will lead to
a contradiction based on the following estimates uniformly for t, i.e.,





‖(m,n, sw, so, ρw, ρo)(t)‖H1 + ‖(uw, uo)(t)‖H2 ≤ C(T ),

‖
(
mt, nt, (sw)t, (so)t, (ρw)t, (ρo)t

)
(t)‖L2 ≤ C(T ),

inf
(x,t)∈QT∗

m(x, t) > 0, inf
(x,t)∈QT∗

n(x, t) > 0,

(2.29)

for any t ∈ [0, T ∗), where QT∗ = [0, 1] × [0, T ∗). In fact, (2.29) implies that T ∗ is
not the maximum time for the existence which is the desired contradiction.

To get (2.29), we need the following lemmas. To simplify the proof, we let C(T )
denote a generic positive constant depending on the initial data and T. Moreover,
for any given T > 0, C(T ) < ∞. We let t < T ∗ ≤ T throughout the rest of this
section, i.e., in Lemma 2.2–Corollary 2.5. Note that C(T ) ≥ C(T ∗) and K1 =
K1(T ) ≥ K1(T ∗) in Lemma 2.2.

(a) Energy estimate.

Lemma 2.1. For any t ∈ [0, T ∗), it holds that

E(t) +

∫ t

0

∫ 1

0

(εwmu
2
wx + εonu

2
ox) dxdt

+

∫ t

0

∫ 1

0

k̂(uw − uo)2 dxdt+

∫ t

0

∫ 1

0

k̂wu
2
w dxdt+

∫ t

0

∫ 1

0

k̂ou
2
o dxdt = E(0),

(2.30)

where E(t) is given by

E(t) =Cw

∫ 1

0

m

∫ ρw

ρ̃w

s− ρ̃w
s2

ds dx+ Co

∫ 1

0

n

∫ ρo

ρ̃o

s− ρ̃o
s2

ds dx

+

∫ 1

0

[
Pc(s̃w)sw − Φ(sw)

]
dx+

∫ 1

0

∫ x

0

g(n+m) dy dx,

(2.31)

where ρ̃w = ρw(m̃, ñ), ρ̃o = ρo(m̃, ñ), and s̃w = sw(m̃, ñ).

1It means that the solution exists on [0, T ∗) but not on [0, T ∗].
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Proof. From the two momentum equations of (2.14)3,4 we get after a multiplication,
respectively, by uo and uw, followed by integration over [0, 1], integration by parts
and use of (2.15)

∫ 1

0

(εwmu
2
wx + εonu

2
ox) dx+

∫ 1

0

k̂(uw − uo)2 dx+

∫ 1

0

k̂wu
2
w dx+

∫ 1

0

k̂ou
2
o dx

= (

∫ 1

0

nguo dx+

∫ 1

0

mguw dx)−
∫ 1

0

(soPoxuo + swPwxuw) dx := I0 + I1.

(2.32)

For I0, integrating the two mass equations (2.14)1,2 on (0, x) for any given x ∈
(0, 1), and using the boundary condition, we have





d

dt

∫ x

0

n(y, t) dy = −nuo(x, t),

d

dt

∫ x

0

m(y, t) dy = −muw(x, t).

Thus we have

I0 = − d

dt

∫ 1

0

∫ x

0

g(n+m) dy dx. (2.33)

As to I1, we observe that by using (1.4) and (2.14)1,2 we can compute as follows

∫ 1

0

souoPox dx = Co

∫ 1

0

souo(ρo)x dx = Co

∫ 1

0

nuo(ln(ρo))x dx

= −Co
∫ 1

0

(nuo)x ln(ρo) dx = Co

∫ 1

0

nt ln(ρo) dx

= Co
d

dt

∫ 1

0

n ln(ρo) dx− Co
∫ 1

0

so(ρo)t dx

= Co
d

dt

∫ 1

0

n ln(ρo) dx− Co
d

dt

∫ 1

0

ndx+ Co

∫ 1

0

(so)tρo dx

= Co
d

dt

∫ 1

0

n ln(ρo) dx+

∫ 1

0

(so)tPo dx+ Coρ̃o0

∫ 1

0

(so)t dx,

(2.34)

and, by similar calculations
∫ 1

0

swuwPwx dx = Cw

∫ 1

0

swuw(ρw)x dx = Cw

∫ 1

0

muw(ln(ρw))x dx

= −Cw
∫ 1

0

(muw)x ln(ρw) dx = Cw

∫ 1

0

mt ln(ρw) dx

= Cw
d

dt

∫ 1

0

m ln(ρw) dx− Cw
∫ 1

0

sw(ρw)t dx

= Cw
d

dt

∫ 1

0

m ln(ρw) dx− Cw
d

dt

∫ 1

0

mdx+ Cw

∫ 1

0

(sw)tρw dx

= Cw
d

dt

∫ 1

0

m ln(ρw) dx+

∫ 1

0

(sw)tPw dx+ Cwρ̃w0

∫ 1

0

(sw)t dx.

(2.35)
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Note that here we have also used (2.27). Consequently, using that Pw = Po − Pc
and (1.3), we find from summing (2.34) and (2.35)

−I1 = Co
d

dt

∫ 1

0

n ln(ρo) dx+ Cw
d

dt

∫ 1

0

m ln(ρw) dx−
∫ 1

0

swtPc(sw) dx

+ Coρ̃o0
d

dt

∫ 1

0

so dx+ Cwρ̃w0
d

dt

∫ 1

0

sw dx.

That is,

−I1 = Co
d

dt

∫ 1

0

n ln(ρo) dx+ Cw
d

dt

∫ 1

0

m ln(ρw) dx−
∫ 1

0

Φ(sw)t dx

+ Coρ̃o0
d

dt

∫ 1

0

so dx+ Cwρ̃w0
d

dt

∫ 1

0

sw dx, Φ′(sw) = Pc(sw).

Moreover, we see that
∫ 1

0

m

∫ ρw

ρ̃w

s− ρ̃w
s2

ds dx =

∫ 1

0

m
[
ln(s) +

ρ̃w
s

]∣∣∣
ρw

ρ̃w
dx

=

∫ 1

0

m
[
ln(ρw)− ln(ρ̃w) +

ρ̃w
ρw
− ρ̃w
ρ̃w

]
dx

=

∫ 1

0

m ln(ρw) dx− ln(ρ̃w)

∫ 1

0

mdx+ ρ̃w

∫ 1

0

sw dx−
∫ 1

0

mdx,

(2.36)

for some reference density ρ̃w > 0. Hence, again by using (2.27)

Cw
d

dt

∫ 1

0

m ln(ρw) dx = Cw
d

dt

∫ 1

0

m

∫ ρw

ρ̃w

s− ρ̃w
s2

ds dx−Cwρ̃w
d

dt

∫ 1

0

sw dx (2.37)

and

Co
d

dt

∫ 1

0

n ln(ρo) dx = Co
d

dt

∫ 1

0

n

∫ ρo

ρ̃o

s− ρ̃o
s2

ds dx− Coρ̃o
d

dt

∫ 1

0

so dx. (2.38)

Thus, it follows that

− I1 +
d

dt

∫ 1

0

Φ(sw) dx

= Co
d

dt

∫ 1

0

n ln(ρo) dx+ Cw
d

dt

∫ 1

0

m ln(ρw) dx

+ Coρ̃o0
d

dt

∫ 1

0

so dx+ Cwρ̃w0
d

dt

∫ 1

0

sw dx

= Cw
d

dt

∫ 1

0

m

∫ ρw

ρ̃w

s− ρ̃w
s2

ds dx+ Co
d

dt

∫ 1

0

n

∫ ρo

ρ̃o

s− ρ̃o
s2

ds dx

+ Co[ρ̃o0 − ρ̃o]
d

dt

∫ 1

0

so dx+ Cw[ρ̃w0 − ρ̃w]
d

dt

∫ 1

0

sw dx.

(2.39)

Note that in view of (1.4), the last line of (2.39) gives us

Co[ρ̃o0 − ρ̃o]
d

dt

∫ 1

0

so dx+ Cw[ρ̃w0 − ρ̃w]
d

dt

∫ 1

0

sw dx

= −Po(ρ̃o)
d

dt

∫ 1

0

so dx− Pw(ρ̃w)
d

dt

∫ 1

0

sw dx
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= −Po(ρ̃o)
d

dt

∫ 1

0

so dx− Po(ρ̃o)
d

dt

∫ 1

0

sw dx+ Pc(s̃w)
d

dt

∫ 1

0

sw dx

= Pc(s̃w)
d

dt

∫ 1

0

sw dx,

where ρ̃o, ρ̃w, and s̃w are related to each other by common masses m̃, ñ, i.e., we
have that
(i) ρ̃o = ρo(m̃, ñ), ρ̃w = ρw(m̃, ñ), and s̃w = sw(m̃, ñ);
(ii) Po(ρ̃o) = Pw(ρ̃w) + Pc(s̃w).
Hence, it follows from (2.39) that

−I1 = Cw
d

dt

∫ 1

0

m

∫ ρw

ρ̃w

s− ρ̃w
s2

ds dx+ Co
d

dt

∫ 1

0

n

∫ ρo

ρ̃o

s− ρ̃o
s2

ds dx

+
d

dt

∫ 1

0

[Pc(s̃w)sw − Φ(sw)] dx.

(2.40)

Inserting (2.40) and (2.33) in (2.32) we get

Cw
d

dt

∫ 1

0

m

∫ ρw

ρ̃w

s− ρ̃w
s2

ds dx+ Co
d

dt

∫ 1

0

n

∫ ρo

ρ̃o

s− ρ̃o
s2

ds dx

+
d

dt

∫ 1

0

[Pc(s̃w)sw − Φ(sw)] dx+
d

dt

∫ 1

0

∫ x

0

g(n+m) dy dx

+

∫ 1

0

(εwmu
2
wx + εonu

2
ox) dx+

∫ 1

0

k̂(uw − uo)2 dx+

∫ 1

0

k̂wu
2
w dx+

∫ 1

0

k̂ou
2
o dx

= 0.

(2.41)

We can rewrite (2.41) to be

d

dt
E(t) +

∫ 1

0

(εwmu
2
wx + εonu

2
ox) dx+

∫ 1

0

k̂(uw − uo)2 dx

+

∫ 1

0

k̂wu
2
w dx+

∫ 1

0

k̂ou
2
o dx = 0

(2.42)

with E(t) as given by (2.31). Hence, we conclude that (2.30) holds and where it is

also clear from (2.23) that
∫ 1

0
[Pc(s̃w)sw − Φ(sw)] dx ≥ 0.

Lemma 2.1 implies the following corollary.

Corollary 2.1. For any t ∈ [0, T ∗), it holds that
∫ t

0

∫ 1

0

(εwmu
2
wx + εonu

2
ox) dx ds+

∫ t

0

∫ 1

0

[
k̂(uw − uo)2 + k̂wu

2
w + k̂ou

2
o

]
dx ds ≤ K0

where

K0 =g(ñ0 + m̃0) + Cw

∫ 1

0

m0

∫ ρw0

ρ̃w

s− ρ̃w
s2

ds dx+ Co

∫ 1

0

n0

∫ ρo0

ρ̃o

s− ρ̃o
s2

ds dx

+

∫ 1

0

[
Pc(s̃w)sw0 − Φ(sw0)

]
dx,

where ρi0 and si0 refer to initial states.

97



502 YANGYANG QIAO, HUANYAO WEN AND STEINAR EVJE

Remark 2.4. The energy equality as expressed by (2.30) contains several dissipa-
tion terms on its left-hand-side. The three last terms reflect that there is a loss of
energy (i.e., an energy transformation) through the three different friction terms,

respectively, with coefficients k̂, k̂w, and k̂o and is a consequence of the viscous
property of the involved fluids leading to drag force effects. Similarly, the internal
viscosity of each fluid also creates resistance to move and is reflected by the two
viscous terms, respectively, with coefficients εw and εo.

Remark 2.5. The energy E(t) defined in (2.31) contains different terms each hav-
ing a specific physical meaning. The use of compressible fluids implies that energy
can be stored and released in the fluid due to pressure variations. An intuitive
example of this is when there is influx of gas (oil) in a low reservoir layer where
pressure is high. As this gas migrates towards a higher zone where pressure is lower,
the gas (oil) will expand. That is, ρo decreases according to (1.4) and so increases
since mass mo is conserved and mo = soρo and therfore typically will displace the
surrounding water phase represented by sw. This energy exchange is accounted for
through the two first terms of E(t). Capillary pressure Pc = Po − Pw, accounts
for the difference between the water and oil pressure Pw and Po, and also acts as
a driver (an additional pressure effect) for fluid motion. It naturally occurs in the
energy functional E(t) similar to the gravitational energy, see the last line of (2.31).

(b) More regularity estimates.

Lemma 2.2. For any t ∈ [0, T ∗), it holds that
∫ 1

0

[εw
m2
x

m
+ εo

n2
x

n
] dx ≤ K1, (2.43)

and
∫ t

0

∫ 1

0

so[(ρ
1/2
o )x]2 dx ds+

∫ t

0

∫ 1

0

sw[(ρ1/2
w )x]2 dx ds

−
∫ t

0

∫ 1

0

P ′c(sw)s2
wx dx ds ≤ C(T ),

(2.44)

where

K1 =
[ ∫ 1

0

[εw
(m0)2x
m0

+ εo
(n0)2x
n0

] dx+ g2(m̃+ ñ)T +K0

]
exp

{
amax{ 1

εw
,

1

εo
}T
}
,

(2.45)

and a = max{1 + Iwo + Iw, 1 + Iwo + Io}.
Proof. Note that from (2.14)2 we get the following reformulated equation after
expanding the advective term and taking a derivative in space:

(mx)t + (mxuw)x = −(muwx)x. (2.46)

Note the appearance of the viscosity term on the RHS of (2.46). Combining (2.46)
with (2.14)4 we arrive at

(εwmx)t + (εwmxuw)x = −εw(muwx)x = −swPwx − k̂wuw − k̂(uw − uc) +mg.

This is the same as
[
m(εw

mx

m
)
]
t

+
[
m(εw

mx

m
)uw

]
x

= −swPwx − k̂wuw − k̂(uw − uc) +mg
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or

[εwmw]t + [εwmwuw]x = −swPwx − k̂wuw − k̂(uw − uc) +mg

for

w =
mx

m

which clearly, by using (2.14)2, is the same as

εwmwt + εwmuwwx = −swPwx − k̂wuw − k̂(uw − uc) +mg. (2.47)

Now, we test (2.47) with w and combine it with (2.14)2 and (2.15) which leads us
to

εw
2

d

dt

∫ 1

0

mw2 dx = −
∫ 1

0

swPwxw dx−
∫ 1

0

k̂wuww dx

−
∫ 1

0

k̂(uw − uc)w dx+

∫ 1

0

mgw dx

(2.48)

Similarly, for the oil phase we obtain

εo
2

d

dt

∫ 1

0

nv2 dx = −
∫ 1

0

soPoxv dx−
∫ 1

0

k̂ouov dx

+

∫ 1

0

k̂(uw − uo)v dx+

∫ 1

0

ngv dx

(2.49)

with

v =
nx
n
.

Next, we focus on the terms appearing on the RHS of (2.48):

−
∫ 1

0

swPwxw dx = −
∫ 1

0

swPwx(
mx

m
) dx := Jw,1.

We note that

Jw,1 = −
∫ 1

0

swPwx
mx

m
dx = −

∫ 1

0

swxPwx dx−
∫ 1

0

swPwx
swρwx
m

dx

= −
∫ 1

0

swxPwx dx− 4Cw

∫ 1

0

sw[(ρ1/2
w )x]2 dx.

(2.50)

Similarly, for Jo,1 associated with (2.49)

Jo,1 = −
∫ 1

0

soPox
nx
n
dx = −

∫ 1

0

soxPox dx−
∫ 1

0

soPox
αoρox
n

dx

= −
∫ 1

0

soxPox dx− 4Co

∫ 1

0

so[(ρ
1/2
o )x]2 dx.

(2.51)

To conclude, we see that by summing (2.48) and (2.49), using (2.50), and (2.51),
we get

1

2

d

dt

∫ 1

0

[εwmw
2 + εonv

2] dx+ 4Co

∫ 1

0

so[(ρ
1/2
o )x]2 dx+ 4Cw

∫ 1

0

sw[(ρ1/2
w )x]2 dx

= −
∫ 1

0

swxPwx dx−
∫ 1

0

soxPox dx+

∫ 1

0

mgw dx+

∫ 1

0

ngv dx
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−
∫ 1

0

k̂(uw − uo)w dx+

∫ 1

0

k̂(uw − uo)v dx−
∫ 1

0

k̂wuww dx−
∫ 1

0

k̂ouov dx

=

∫ 1

0

s2
wxP

′
c(sw) dx+

∫ 1

0

mgw dx+

∫ 1

0

ngv dx

−
∫ 1

0

k̂(uw − uo)w dx+

∫ 1

0

k̂(uw − uo)v dx−
∫ 1

0

k̂wuww dx−
∫ 1

0

k̂ouov dx

(2.52)

where we again have used Pc(sw) = Po − Pw and sw + so = 1. That is,

1

2

d

dt

∫ 1

0

[εwmw
2 + εonv

2] dx

+ 4Co

∫ 1

0

so[(ρ
1/2
o )x]2 dx+ 4Cw

∫ 1

0

sw[(ρ1/2
w )x]2 dx−

∫ 1

0

s2
wxP

′
c(sw) dx

=

∫ 1

0

g(mx + nx) dx−
∫ 1

0

k̂(uw − uo)(
mx

m
) dx+

∫ 1

0

k̂(uw − uo)(
nx
n

) dx

−
∫ 1

0

k̂wuw(
mx

m
) dx−

∫ 1

0

k̂ouo(
nx
n

) dx

:= Kow0 +Kw1 +Ko1 +Kw2 +Ko2.

(2.53)

For Kow0, we use Cauchy inequality and the mass equations and have

Kow0 = g

∫ 1

0

mx√
m

√
mdx+ g

∫ 1

0

nx√
n

√
ndx

≤
∫ 1

0

(
m2
x

m
+
n2
x

n
)dx+

1

4
g2

∫ 1

0

(m+ n)dx =

∫ 1

0

(mw2 + nv2)dx+
1

4
g2(m̃+ ñ).

(2.54)

In the following we make use of the functional form of the interaction coefficients

k̂w, k̂o, and k̂ as expressed in (2.26).

Kw1 = −
∫ 1

0

k̂(uw − uo)(
mx

m
)dx

≤ 1

4

∫ 1

0

k̂(uw − uo)2dx+

∫ 1

0

k̂
m2
x

m2
dx

≤ 1

4

∫ 1

0

k̂(uw − uo)2dx+ Iwo

∫ 1

0

m2
x

m
dx =

1

4

∫ 1

0

k̂(uw − uo)2dx+ Iwo

∫ 1

0

mw2dx

(2.55)

and

Ko1 =

∫ 1

0

k̂(uw − uo)(
nx
n

)dx

≤ 1

4

∫ 1

0

k̂(uw − uo)2dx+

∫ 1

0

k̂
n2
x

n2
dx

≤ 1

4

∫ 1

0

k̂(uw − uo)2dx+ Iwo

∫ 1

0

n2
x

n
dx =

1

4

∫ 1

0

k̂(uw − uo)2dx+ Iwo

∫ 1

0

nv2dx.

(2.56)
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Furthermore,

Kw2 = −
∫ 1

0

k̂wuw(
mx

m
)dx

≤ 1

4

∫ 1

0

k̂wu
2
wdx+

∫ 1

0

k̂w
m2
x

m2
dx

=
1

4

∫ 1

0

k̂wu
2
wdx+ Iw

∫ 1

0

m2
x

m
dx =

1

4

∫ 1

0

k̂wu
2
wdx+ Iw

∫ 1

0

mw2dx

(2.57)

and

Ko2 = −
∫ 1

0

k̂ouo(
nx
n

)dx

≤ 1

4

∫ 1

0

k̂ou
2
odx+

∫ 1

0

k̂o
n2
x

n2
dx

=
1

4

∫ 1

0

k̂ou
2
odx+ Io

∫ 1

0

n2
x

n
dx =

1

4

∫ 1

0

k̂ou
2
odx+ Io

∫ 1

0

nv2dx.

(2.58)

Putting the estimates (2.54)–(2.58) into (2.53), integrating the result over (0, t),
and using Corollary 2.1, we have

∫ 1

0

[εwmw
2 + εonv

2] dx+ 4Co

∫ t

0

∫ 1

0

so[(ρ
1/2
o )x]2 dx ds

+ 4Cw

∫ t

0

∫ 1

0

sw[(ρ1/2
w )x]2 dx ds−

∫ t

0

∫ 1

0

P ′c(sw)s2
wx dx ds

≤
∫ 1

0

[εwm0w
2
0 + εon0v

2
0 ] dx+ a

∫ t

0

∫ 1

0

(mw2 + nv2)dx ds+
1

4
g2(m̃+ ñ)t

+
1

2

∫ t

0

∫ 1

0

k̂(uw − uo)2dx ds+
1

4

∫ t

0

∫ 1

0

k̂wu
2
wdx ds+

1

4

∫ t

0

∫ 1

0

k̂ou
2
odx ds

≤
∫ 1

0

[εwm0w
2
0 + εon0v

2
0 ] dx+ amax{ 1

εw
,

1

εo
}
∫ t

0

∫ 1

0

(εwmw
2 + εonv

2)dx ds

+ g2(m̃+ ñ)T +K0,

(2.59)

where a = max{1 + Iwo + Iw, 1 + Iwo + Io}.
Using Gronwall’s inequality and (2.59), we get (2.43). (2.44) is given by (2.43)

and (2.59).

In view of Lemma 2.2 it follows that
√
m,
√
n ∈ H1(0, 1). Combined with the

Sobolev inequality H1(0, 1) ↪→ C([0, 1]) we have the following corollary.

Corollary 2.2. It holds that





m(x, t) + n(x, t) ≤ C(T ),
∫ 1

0

(m2
x + n2

x) dx ≤ C(T ),
(2.60)

for any (x, t) ∈ [0, 1]× [0, T ∗).
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(c) Upper and lower bounds of density and related quantities.

Lemma 2.3. It holds that



n ≤ ρo ≤ C(T ),

m ≤ ρw ≤ C(T ),
(2.61)

for any (x, t) ∈ [0, 1]× [0, T ∗).

Proof. Since

ρo =
Cw
Co

ρw −
Cw
Co

ρ̃w0 + ρ̃o0 +
1

Co
Pc(sw), (2.62)

we have

ρo = (so + sw)ρo = n+ sw

[Cw
Co

ρw −
Cw
Co

ρ̃w0 + ρ̃o0 +
1

Co
Pc(sw)

]
, (2.63)

ρw = (sw + so)ρw = m+ so

[ Co
Cw

ρo + ρ̃w0 −
Co
Cw

ρ̃o0 −
1

Cw
Pc(sw)

]
. (2.64)

Armed with the upper bounds of m and n from Corollary 2.2, we get the upper
bounds of ρo and ρw from (2.63) and (2.64). Note that the term ρi appearing on
the right-hand-side is grouped with the corresponding si which gives either m or
n. In addition, we make use of the uniform bound on Pc(sw) given by (2.24). The
lower bounds can be derived from the definitions n = soρo and m = swρw combined
with (1.3).

Corollary 2.3. The following uniform lower bound holds

m,n ≥ 1

C
, for any (x, t) ∈ [0, 1]× [0, T ∗), (2.65)

subject to the constraint that K1 < min{εwm̃, εoñ} where K1 is given by (2.45).

Proof.

|m(x, t)− m̃| =|
∫ 1

0

[m(x, t)−m(y, t)] dy| = |
∫ 1

0

∫ x

y

mξ(ξ, t) dξ dy|

≤
∫ 1

0

|mx(x, t)| dx =

∫ 1

0

√
m(x, t)| mx(x, t)√

m(x, t)
| dx

≤
(∫ 1

0

m(x, t) dx

) 1
2
(∫ 1

0

|mx(x, t)|2
m

dx

) 1
2

≤
(
m̃K1

εw

) 1
2

.

Letting
(
m̃K1

εw

) 1
2

< m̃, i.e., K1 < εwm̃, we have

m ≥ 1

C

on [0, 1]× [0, T ∗) for some positive constant C. Similarly, letting
(
ñK1

εo

) 1
2

< ñ, i.e.,

K1 < εoñ, we get the positive lower bound of n.
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(d) Higher-order estimates.

Lemma 2.4. The following estimate holds
∫ 1

0

[
(sw)2

x + (so)
2
x + (ρw)2

x + (ρo)
2
x

]
dx ≤ C(T ) (2.66)

for any t ∈ [0, T ∗).

Proof. Differentiating (2.64) with respect to x, we have

(ρw)x =mx +
Co
Cw

(soρo)x + ρ̃w0(so)x −
Co
Cw

ρ̃o0(so)x

− 1

Cw
(so)xPc(sw)− 1

Cw
soP

′
c(sw)(sw)x

=mx +
Co
Cw

nx − (ρ̃w0 −
Co
Cw

ρ̃o0)(sw)x

+
[ 1

Cw
Pc(sw)− 1

Cw
soP

′
c(sw)

]
(sw)x,

(2.67)

where we have used so + sw = 1 such that (so)x = −(sw)x.
With (2.67), we proceed to estimate (sw)x.

(sw)x =(
m

ρw
)x =

mx

ρw
− sw(ρw)x

ρw

=
mx

ρw
− sw
ρw

[mx +
Co
Cw

nx] +
sw
ρw

(ρ̃w0 −
Co
Cw

ρ̃o0)(sw)x

− sw
ρw

[ 1

Cw
Pc(sw)− 1

Cw
soP

′
c(sw)

]
(sw)x,

which implies that

(sw)x

[
ρw − sw(ρ̃w0 −

Co
Cw

ρ̃o0) + sw
[ 1

Cw
Pc(sw)− 1

Cw
soP

′
c(sw)

]]

=mx − sw(mx +
Co
Cw

nx).

(2.68)

By (2.62), we have

ρw =
Co
Cw

ρo + ρ̃w0 −
Co
Cw

ρ̃o0 −
1

Cw
Pc(sw).

Substituting this identity and that 1− sw = so into (2.68), we have

(sw)x =(somx − sw
Co
Cw

nx)
[
ρw − sw(ρ̃w0 −

Co
Cw

ρ̃o0)

+ sw
[ 1

Cw
Pc(sw)− 1

Cw
soP

′
c(sw)

]]−1

.

(2.69)

Since

ρw =
Co
Cw

ρo + ρ̃w0 −
Co
Cw

ρ̃o0 −
1

Cw
Pc(sw), (2.70)

we have

ρw − sw(ρ̃w0 −
Co
Cw

ρ̃o0) + sw
[ 1

Cw
Pc(sw)− 1

Cw
soP

′
c(sw)

]

=
Co
Cw

ρo + so

[
ρ̃w0 −

Co
Cw

ρ̃o0 −
1

Cw
Pc(sw)

]
− 1

Cw
swsoP

′
c(sw).

(2.71)
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Combining (2.71) with (2.69), (2.61), (2.65), and the assumptions (2.24) and (2.25),
allow us to conclude that

∫ 1

0

(sw)2
x dx ≤C

∫ 1

0

1

ρ2
o

(m2
x + n2

x) dx

≤C
∫ 1

0

s2
o

n2
(m2

x + n2
x) dx ≤ C(T ).

(2.72)

This combined with (2.67) and (2.60) gives

∫ 1

0

(ρw)2
x dx ≤ C(T ). (2.73)

By virtue of (2.70), the fact that (sw)x = −(so)x, (2.72), and (2.73), we get the
estimates of (so)x and (ρo)x.

Lemma 2.5. For any t ∈ [0, T ∗), it holds that

∫ 1

0

[
(uw)2

x + (uo)
2
x

]
dx ≤ C(T ). (2.74)

Proof. By virtue of (2.32), we have

∫ 1

0

(εwmu
2
wx + εonu

2
ox) dx+

∫ 1

0

[
k̂(uw − uo)2 + k̂wu

2
w + k̂ou

2
o

]
dx

=− (

∫ 1

0

nguo dx+

∫ 1

0

mguw dx)−
∫ 1

0

(soPoxuo + swPwxuw) dx

≤C(‖uo‖L∞ + ‖uw‖L∞) + C‖(ρo)x‖L2‖uo‖L2 + C‖(ρw)x‖L2‖uw‖L2

≤C(T )
(
‖(uo)x‖L2 + ‖(uw)x‖L2

)
≤ C(T )

(
‖√n(uo)x‖L2 + ‖√m(uw)x‖L2

)

≤1

2

∫ 1

0

(εwmu
2
wx + εonu

2
ox) dx+ C(T ),

(2.75)

where we use

∫ 1

0

mdx = m̃,

∫ 1

0

ndx = ñ and Hölder inequality in the first inequal-

ity, and use the inequality ‖ui‖∞ ≤ C‖uix‖L2 , (2.66), (2.65), and Cauchy inequality
in the rest.

Using (2.65) again, and (2.75), we get

∫ 1

0

(u2
wx + u2

ox) dx ≤ C(T ). (2.76)

Corollary 2.4. For any t ∈ [0, T ∗), it holds that

∫ 1

0

[
(uw)2

xx + (uo)
2
xx

]
dx ≤ C(T ). (2.77)

Proof. From the equation of uw, we have

εwm(uw)xx = −εwmxuwx + swPwx + k̂wuw + k̂(uw − uo) +mg,

104



COMPRESSIBLE AND VISCOUS TWO-PHASE FLOW IN POROUS MEDIA 509

which together with (2.65), (2.60), (2.66), and (2.74) gives
∫ 1

0

(uw)2
xx dx ≤C(T )

∫ 1

0

m2
xu

2
wx dx+ C(T )

≤C(T )‖u2
wx‖L∞

∫ 1

0

m2
x dx+ C(T )

≤C(T )
(
‖(uw)x‖2L2 +

∫ 1

0

|(uw)x(uw)xx| dx
)

+ C(T )

≤1

2

∫ 1

0

(uw)2
xx dx+ C(T ),

where we use W 1,1(0, 1) ↪→ L∞(0, 1) in the third inequality, and use
∫
ab dx ≤

C
∫
a2 dx+ ε

∫
b2 dx with appropriate choice of ε in the last one. This implies

∫ 1

0

(uw)2
xx dx ≤ C(T ).

Similarly, we get the estimate of (uo)xx.

Corollary 2.5. For any t ∈ [0, T ∗), it holds that
∫ 1

0

[
m2
t + n2

t + (sw)2
t + (so)

2
t + (ρw)2

t + (ρo)
2
t

]
dx ≤ C(T ). (2.78)

Proof. By using the equation of m, Cauchy inequality, (2.60), and (2.74), we have
∫ 1

0

m2
t dx ≤2

∫ 1

0

[
m2(uw)2

x +m2
xu

2
w

]
dx

≤2‖m‖2L∞
∫ 1

0

(uw)2
x dx+ 2‖uw‖2L∞

∫ 1

0

m2
x dx

≤C(T ).

(2.79)

Similarly we get
∫ 1

0

n2
t dx ≤ C(T ). (2.80)

We consider (2.69) with ∂x replaced by ∂t, and use similar analysis as (2.72).
Then

∫ 1

0

(sw)2
t dx ≤C

∫ 1

0

1

ρ2
o

(m2
t + n2

t ) dx

≤C
∫ 1

0

s2
o

n2
(m2

t + n2
t ) dx ≤ C(T ),

(2.81)

where we use (2.65), (2.79), and (2.80). Since (so)t = −(sw)t, we get
∫ 1

0

(so)
2
t dx ≤ C(T ).

By virtue of (2.67) where ∂x is replaced by ∂t, (2.79), (2.80), and (2.81), we have
∫ 1

0

(ρw)2
t dx ≤ C(T ).
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This combined with (2.70) and (2.81) gives
∫ 1

0

(ρo)
2
t dx ≤ C(T ).

With the above estimates, we get (2.29). Thus the proof of Theorem 2.2 is
complete.

3. Numerical results. The main objective of this section is to carry out some
testing of the numerical schemes presented in Appendix D, respectively, for the
compressible and incompressible version of (1.1). First, we want to test general
stability properties. Second, we seek some insight into the role played by using
Darcy velocity Ui = siui versus interstitial fluid velocity ui (i = w, o) in the viscous
terms. In other words, we modify (4.145)3,4 and use the following momentum
equations for the compressible case

so(Pw + Pc)x = −(k̂o + k̂)uo + k̂uw + ng + εo(ρoUox)x

sw(Pw)x = −(k̂w + k̂)uw + k̂uo +mg + εw(ρwUwx)x,
(3.82)

and modify (4.165)3,4 as follows for the incompressible case

so(Pw + Pc)x = −(k̂o + k̂)uo + k̂uw + ng + (εoρo)Uoxx

sw(Pw)x = −(k̂w + k̂)uw + k̂uo +mg + (εwρw)Uwxx.
(3.83)

Third, we also test the behavior of the scheme as the coefficients εw, εo are varied
to see what kind of impact this term will have on the solution. This also allows us
to get some understanding of whether the viscous model seems to converge to the
inviscid version obtained by letting εw, εo → 0. We conduct numerical tests similar
to those reported in [9]. We refer to Remark 1.2 for more details regarding the
model they solve. Most importantly, the viscous term in their model depends on the
Darcy velocity Uw, Uo. We apply the scheme for the incompressible model for these
investigations, see Section 3.1. However, in Section 3.2 we also include examples
where we use the scheme derived for the compressible model (see Appendix D) and
do some comparison with the results from the incompressible model. The following
input data are chosen for the numerical examples.

We choose parameters as specified in Table 1. In particular, when combined with
the relations (4.132) it gives rise to a fractional flow function given by

fw =
kw/µw

kw/µw + ko/µo
=

s2
w

s2
w + (1− sw)2

= fw(sw).

The function is illustrated in Fig. 1 (left figure). The initial data of water saturation
is set to be as in [9]:

sw(x, t = 0) =

{
0.8 0 ≤ x ≤ 2,
0.8 exp(−150(x− 2)2) 2 < x ≤ 100.

(3.84)

A horizontal reservoir layer is considered in this case and porosity is also assumed to
be 1. The whole test is a 10-day flooding process with a constant interstitial water
injection rate at left boundary, Q = 8.004m3/d. The relevant boundary values are:
sw(x = 0, t) = 0.8 and uw(x = 0, t) = 8.004m/d. In addition, 2001 grids are used to
simulate this displacement. Water and oil have the same properties such as density
and viscosity. Fluid-fluid interaction effect is ignored here by setting I = 0 in the
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Parameter Dimensional Value Parameter Dimensional Value
L 100 m Iw 1.5
φ 1 Io 1.5
A 1 m2 I 0 (Pa·s)−1

ρ̃w0 1 g/cm3 α 0
ρ̃o0 1 g/cm3 β 0
Cw 106 m2/s2 εw 107, 106, 105, 104, 103, 102 cP
Co 5 · 105 m2/s2 εo 107, 106, 105, 104, 103, 102 cP
µw 1 cP K 1000 mD
µo 1 cP kmaxrw = 1/Iw 0.667
Q 8.004 m3/day kmaxro = 1/Io 0.667
PwL 106 Pa T 10 days
Nx 2001 4t 8640 s

Table 1. Input parameters of reservoir and fluid properties used
for for the below simulations. Note that PwL is the boundary pres-
sure at left for the incompressible model whereas for the compress-
ible model it represents the initial pressure distribution.

Figure 1. Water fractional flow function f̂w(sw) as given by
(4.127) for the incompressible model obtained by using the param-
eters specified in Table 1 (left figure) and initial water saturation
(3.84) profile (right), both similar to that used in [9].

correlations (4.132). The corresponding initial water saturation profile is shown in
Fig. 1 (right figure).

3.1. The incompressible model.

Case 1. First, we want to compare the numerical results obtained by using the
scheme from Appendix D (incompressible variant) and compare with similar results
presented in [9], which are based on the model (1.13). We also mimic their scheme
by slightly modifying the scheme prescribed in Appendix D (incompressible variant)
where siuix is replaced by Uix in the viscous term, as described by (3.83). Results
are illustrated in Fig. 2. We show water saturation profiles after 10 days flooding
with, respectively, εw = εo = 107 and εw = εo = 106 (upper row) and compare with
the corresponding results from Coclite et al. [9] (lower row). Main observations are:
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Figure 2. Upper row: Results produced by the discrete scheme
described in Appendix D (incompressible model). Three kinds of
curves are plotted including the case without viscous effect, i.e.,
εw = εo = 0, the one based on using Darcy velocity Ui (i = w, o) in
the viscous term, and the one with interstitial velocity ui (i = w, o)
in the viscous term. The left figure shows results with ε = εw =
εo = 107 whereas the right figure shows results with ε = εw =
εo = 106. Lower row: The results of two corresponding cases
with εw = εo = 107 and εw = εo = 106 after a dimensionless
time, 0.65, produced by the numerical scheme described in [9] to
solve the model (1.13). From these computations we see that the
solution is sensitive to whether the interstitial velocity ui or the
Darcy velocity Ui appear in the viscous term. In particular, the use
of Darcy velocity seems to generate considerably more oscillatory
behavior behind the “water bank” formed at the front.

(i) A new “water bank” is formed behind the front of the water as a result of the
viscous terms. This is a local effect restricted to the region right behind the water
front where large gradients in velocity are present;
(ii) Internal viscous forces slow down the transport effect, especially at the satura-
tion front where velocity involves dramatic changes. Right behind the water bank,
the model with Darcy velocity involved in the viscous term tends to develop oscil-
latory behavior;
(iii) The solution shows a clear sensitivity to the magnitude of εo, εw (i.e., 107

versus 106) for the scheme based on Darcy velocity Ui in the viscous terms. The
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Figure 3. Simulation results with smaller viscous parameters
after 10 days of water flooding. Three kinds of curves are compared:
zero viscous effect, Darcy velocity Ui in viscous term and interstitial
velocity ui in viscous term. It shows that the viscous constant water
level gradually vanishes when ε is as low as 103 and 102.

scheme with viscous term based on interstitial velocity ui shows less sensitivity to
this change in εo, εw.

The classical Buckley-Leverett model solution (i.e., εw = εo = 0) is composed of
a sharp water front followed by a rare-faction wave which is due to a viscous effect
associated with resistance forces between fluid (water and oil) and walls of the pore
space. The new water bank is a consequence of internal viscosity within the fluid felt
at the region behind the water front. The difference between solution when viscous
term is based on Darcy velocity Ui versus solution when viscous term is based on
interstitial velocity ui, can be naturally understood in light of the expansion

∂x(∂x(siui)) = ∂x(si∂x(ui)) + ∂x(ui∂x(si)).

Clearly, the viscous term based on Ui = siui gives rise to an additional term that
naturally can be linked to the observed difference between the two schemes used
to produce solutions in Fig. 2. It should be noted that Brinkman equation was
developed empirically for single phase flow and afterwards has been extended to
the multiphase setting in a heuristic manner. As noted in Remark 1.3 there seems
to be an ongoing discussion in the literature whether to base the viscous term on
Darcy velocity or interstitial velocity. Finally, in Fig. 3 is shown the result for the
two schemes as εw, εo get smaller. Both schemes seem to reflect convergence toward
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Figure 4. The results after 10 days with initial data are shown
in Fig. 1 with interstitial velocity in viscous term. Four curves are
compared: the one with large values of εw and εo, 106; the second
one with large εo, 106 and small εw, 104; the third one with large
εw, 106 and small εo, 104 and the last one with small values of εw
and εo, 104. It shows that the displaced oil influences significantly
on the constant level of water which displaces oil.

the solution of the inviscid model (i.e., εw = εo = 0) with a considerably faster
convergence produced by the scheme with viscous term based on interstitial fluid
ui.

Case 2. In Fig. 4 we show simulation results when we vary the internal relation
between εw and εo. It is intuitively understandable that oil viscous effects can
have a strong impact on the constant water level right behind the water front.
Apparently, the same change of magnitude of water viscous parameter εw from 104

to 106 with a constant εo has a dramatic effect when εo is small (i.e., 104) whereas
the effect is rather small when εo is large (i.e., 106). We refer to Fig. 4 for simulation
results.

Case 3. Now, we move to another case which has a different initial condition but
still with the same injection rate of water, 8.004m3/d, as interstitial velocity at left
boundary. The initial water saturation is illustrated in Fig. 5. Numerical results are
shown in Fig. 6 where we compare the scheme based on interstitial viscosity (right
figure) with the simulation result reported in [9] (left figure). In particular, it seems
that the numerical solution based on using Darcy velocity produces an unphysical
water saturation value near the left boundary. The numerical solution illustrated
in Fig. 6 (right) does not contain this “defect”. In addition, apparently the solution
converges to the classical Buckley-Leverett type result with a small ε such as 103.
This behavior seems different from the conclusion in [9].

3.2. The compressible model. Next, we use the numerical scheme described in
Appendix D (compressible variant) to compute and illustrate the numerical behavior
for the compressible model. Comparison is made with the cases shown in Fig. 2
for the incompressible model. The compressible fluids are assumed to be given by
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Figure 5. Initial water saturation profile from Coclite et al. [9].

Figure 6. Left: The results from Coclite et al. [9] based on Darcy
velocity in viscous term. Right: Numerical scheme (after 8 days)
which uses interstitial velocity in viscous term with different viscous
values ε = 0, 103, 104, 105 and εw = εo = ε.

the pressure-density relation (1.4). The initial water saturation is also the same as
shown in Fig. 1. The water saturation sw at left boundary is constrained with 0.8
and the initial water pressure at left boundary is 106 Pa. The numerical behavior is
shown in Fig. 7. The essential difference is a delay in the solution of the compressible
model.

In order to shed light on the difference observed in Fig. 7, we explore the pressure
profiles at various times (shown in Fig. 8). It is clear from these plots that water
pressure keeps increasing, especially for the water displacing part. Water can be
compressed in the compressible model therefore the water density will also increase,
which leads to a larger viscous effect since density is included in the coefficient of
the viscous term. Water will feel more resistance forces and it is more difficult to
displace oil resulting in a delay effect.

Injection of water versus gas. Finally, a numerical example is shown with gas in-
jection to displace oil in the compressible model instead of water. The parameters
of gas are the same as for water, as described in Table 1, except using the pressure-
density relation: ρg = Pg/Cg where Cg = 105. The left figure of Fig. 9 compares
the results of gas injection and water injection. As expected, it is a much slower
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Figure 7. Comparison between the compressible model and the
incompressible model for water-oil flow with εw = εo = ε =
107, 106. After the same period of 10 days, water flow in the com-
pressible model is delayed compared with water profiles in the in-
compressible model, for both situations with interstitial velocity
and Darcy velocity in viscous terms.

Figure 8. The water pressure evolution in the compressible model
for the case with Darcy velocity in viscous term (left figure) and
the case with interstitial velocity in viscous term (right figure).
Water pressure increases with time in the water displacing part of
the reservoir layer which leads to a compression effect where the
magnitude of the viscous terms increase and thereby slows down
the displacement of the water front.

process for gas to displace oil. This is a natural consequence of the fact that gas
is much more compressible than water. The high gas pressure which results from
the increased viscous effect will generate a strong compression of gas. It is also
interesting to see that the fluctuation in the gas saturation profile becomes stronger
as time elapses, which is not observed in the case of water injection. However, the
elevated constant water level is almost the same in both cases (compare the left and
the right subfigures in Fig. 9).
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Figure 9. Left: Comparison of saturation profiles for water injec-
tion and gas injection, respectively, after the same time period (10
days) in the compressible model using interstitial velocity in vis-
cous term (εw = εo = ε = 107). Right: The gas saturation profile
shown at different times.

4. Concluding remarks. Some main observations from the investigations of the
present manuscript are:

• We have found that exploiting the fact that the viscous term depends on the
interstitial fluid flow velocity uw, uo, we can derive stability estimates (energy-
type estimate and BD-estimate) that also naturally deal with the capillary
pressure term Pc(sw). This approach seems strongly linked to the special
structure of the viscous coefficients.

• We formulated finite difference schemes, both for the incompressible and com-
pressible version of the model. These schemes allow us to systematically gain
some insight into the effect of compressibility as well as the effect from the
viscous terms that account for the frictional resistance within the fluid. We
also observe that by using Darcy velocity in the viscous term, the resulting
scheme tends to give more oscillatory behavior similar to that reported in [9].

• In particular, when the viscous coefficients εw, εo become small enough, the
numerical experiments carried out in a one-dimensional setting indicate that
the approximate solution converges to the solution of the inviscid model. The
stability estimates for the model based on interstitial fluid velocity, however,
do depend on εw, εo and cannot be used to ensure convergence to the inviscid
model. Hence, this remains an interesting open problem.

Acknowledgments. We are grateful for instructive comments from the anony-
mous reviewers that helped improving certain parts of a first version of this manu-
script.

Appendix A: Proof of Theorem 2.1. We apply a method similar to the one
used in our previous work [16] to prove the local existence and uniqueness. Hence,
in order to make the proof more compact we will heavily refer to that paper for
details and highlight what is different.

First, we consider the solution space

S := ST0,A1
=
{
v ∈ C([0, T0];H1

0 ∩H2)
∣∣∣‖v‖C([0,T0];H2) ≤ AA1

}
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where A = max{ 1
εo
, 1
εw
}, A1 and T0 satisfy (4.101) and (4.87), (4.88), and (4.117),

respectively.

Step 1. Construct an iteration sequence.
We define an iteration sequence to approximate (2.14) which takes the following

form

(nk)t + (nkuk−1
o )x = 0

(mk)t + (mkuk−1
w )x = 0

skoP
k
ox = −k̂kouko + k̂k(uk−1

w − uko) + εo(n
kukox)x − nkg

skwP
k
wx = −k̂kwukw − k̂k(ukw − uko) + εw(mkukwx)x −mkg

(4.85)

with the initial-boundary value conditions:

(ukw, u
k
o)(0, t) = (ukw, u

k
o)(1, t) = 0, t ≥ 0,

and

(mk, nk)(x, 0) = (m0, n0)(x), x ∈ [0, 1],

for k = 1, 2, 3, · · ·, where (u0
w, u

0
o) = (0, 0), skw = sw(mk, nk), sko = so(m

k, nk), P kw =

Pw(mk, nk), P ko = Po(m
k, nk), k̂kw = k̂w(mk, nk), k̂ko = k̂o(m

k, nk), k̂k = k̂(mk, nk),
and

(mk, nk) ∈ C([0, T0];H1) ∩ C1([0, T0];L2), (ukw, u
k
o) ∈ C([0, T0];H1

0 ∩H2).

Step 2. Boundedness of the sequence.
Assume that uk−1

w , uk−1
o ∈ S. To prove uiw, u

i
o ∈ S for all i = 0, 1, 2, 3, ..., it

suffices to prove ukw, u
k
o ∈ S.

In fact, as a consequence of that uk−1
w , uk−1

o ∈ S, we have
{
‖uk−1

w,x (·, t)‖L∞ ≤ ‖uk−1
w,x (·, t)‖W 1,1 ≤ AA1

‖uk−1
o,x (·, t)‖L∞ ≤ ‖uk−1

o,x (·, t)‖W 1,1 ≤ AA1

(4.86)

for t ∈ [0, T0].
By virtue of (4.85)1, (4.85)2, and (4.86), we can find positive constants C, k0

and k1 independent of T0, A, and A1 and where T0 ≤ T1 for some T1 > 0 which
reflects smallness on time, such that





k0 ≤ mk ≤ k1, and k0 ≤ nk ≤ k1 on [0, 1]× [0, T0],

‖∂Pw(mk,nk)
∂nk ‖L∞([0,1]×[0,T0]) ≤ C, ‖∂Pw(mk,nk)

∂mk ‖L∞([0,1]×[0,T0]) ≤ C,

‖∂Po(mk,nk)
∂nk ‖L∞([0,1]×[0,T0]) ≤ C, ‖∂Po(mk,nk)

∂mk ‖L∞([0,1]×[0,T0]) ≤ C,

(4.87)

and 



∫ 1

0

|nkx(x, t)|2dx ≤ C,
∫ 1

0

|mk
x(x, t)|2dx ≤ C.

(4.88)

In fact, (4.87)1 as well as (4.88) are straightforward consequences of the fact that
mk and nk are transported by the smooth vector fields uk−1

w and uk−1
o . Moreover,

(4.87)2,3 can then be deduced from the regularity of (m,n) 7→ ρs(m,n) and of
ρs 7→ Ps(ρs) for s = w, o. See Step 2, Section 2.2 in [16] for more details.
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Multiplying (4.85)3 by uko and ukoxx respectively, and integrating the results over
(0, 1), we have

εo

∫ 1

0

nk|ukox|2 dx = −
∫ 1

0

skoP
k
oxu

k
o dx−

∫ 1

0

k̂ko |uko |2 dx

+

∫ 1

0

k̂k(uk−1
w − uko)uko dx−

∫ 1

0

nkguko dx

≤− 1

2

∫ 1

0

k̂ko |uko |2 dx+
1

2

∫ 1

0

k̂k|uk−1
w |2 dx− 1

2

∫ 1

0

k̂k|uko |2 dx+ C

≤− 1

2

∫ 1

0

k̂ko |uko |2 dx+
Iwok1

2
(AA1)2 − 1

2

∫ 1

0

k̂k|uko |2 dx+ C,

(4.89)

and

εo

∫ 1

0

nk|ukoxx|2 dx = −εo
∫ 1

0

(nk)xu
k
oxu

k
oxx dx+

∫ 1

0

skoP
k
oxu

k
oxx dx

+

∫ 1

0

k̂kou
k
ou

k
oxx dx−

∫ 1

0

k̂k(uk−1
w − uko)ukoxx dx+

∫ 1

0

nkgukoxx dx

≤εo
2

∫ 1

0

nk|ukoxx|2 dx+
5εo
2

∫ 1

0

1

nk
|(nk)x|2|ukox|2 dx+

C

εo

+
5

2εo

∫ 1

0

1

nk
|k̂ko |2|uko |2 dx+

5

2εo

∫ 1

0

1

nk
|k̂k|2|uk−1

w − uko |2 dx

≤εo
2

∫ 1

0

nk|ukoxx|2 dx+
5εo
2k0

∫ 1

0

|(nk)x|2|ukox|2 dx+
C

εo
+

5Io
2εo

∫ 1

0

k̂ko |uko |2 dx

+
5(Iwo)

2k1(AA1)2

εo
+

5Iwo
εo

∫ 1

0

k̂k|uko |2 dx

≤εo
2

∫ 1

0

nk|ukoxx|2 dx+
5Cεo
2k0

∥∥∥|ukox|2
∥∥∥
L∞

+
C

εo
+

5Io
2εo

∫ 1

0

k̂ko |uko |2 dx

+
5(Iwo)

2k1(AA1)2

εo
+

5Iwo
εo

∫ 1

0

k̂k|uko |2 dx,

(4.90)

where we have used Cauchy inequality, (4.87), (4.88). Note that we obtain

∥∥∥|ukox|2
∥∥∥
L∞
≤
∫ 1

0

|ukox|2 dx+ 2‖ukox‖L2‖ukoxx‖L2

≤(1 +
1

δ
)

∫ 1

0

|ukox|2 dx+ δ

∫ 1

0

|ukoxx|2 dx,
(4.91)

for any small δ > 0, by using Sobolev inequality, Hölder inequality and Cauchy
inequality.

By virtue of (4.87), (4.89), (4.90), and (4.91), we have





∫ 1

0

|ukox|2 dx ≤
1

εo

[Iwok1

2k0
(AA1)2 +

C

k0

]
,

∫ 1

0

k̂ko |uko |2 dx+

∫ 1

0

k̂k|uko |2 dx ≤ Iwok1(AA1)2 + 2C,

(4.92)
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and
∫ 1

0

|ukoxx|2 dx ≤
10C

(k0)2
(1 +

10C

k0
)

∫ 1

0

|ukox|2 dx+
4C

(εo)2k0

+
10Io

(εo)2k0

∫ 1

0

k̂ko |uko |2 dx+
20(Iwo)

2k1(AA1)2

(εo)2k0
+

20Iwo
(εo)2k0

∫ 1

0

k̂k|uko |2 dx,
(4.93)

where we take δ = k0
10C .

Putting (4.92) into (4.93), we have

∫ 1

0

|ukoxx|2 dx ≤
10C

(k0)2
(1 +

10C

k0
)
(Iwok1

2εok0
(AA1)2 +

C

εok0

)
+

4C

(εo)2k0

+
20(Iwo)

2k1(AA1)2

(εo)2k0
+
[ 10Io

(εo)2k0
+

20Iwo
(εo)2k0

]
(Iwok1(AA1)2 + 2C)

=Eεo,1(AA1)2 + Eεo,2,

(4.94)

where



Eεo,1 = 1

εo

[
10C
(k0)2 (1 + 10C

k0
) Iwok1

2k0
+ 20(Iwo)2k1

εok0
+ 10IoIwok1

εok0
+ 20(Iwo)2k1

εok0

]
,

Eεo,2 = 1
εo

[
10C
(k0)2 (1 + 10C

k0
) Ck0 + 4C

εok0
+ 20CIo

εok0
+ 40CIwo

εok0

]
.

In view of (4.92) and (4.94), we have

‖uko(t)‖2H2 ≤
[Iwok1

k0εo
+ Eεo,1

]
(AA1)2 +

2C

εok0
+ Eεo,2. (4.95)

Similar to (4.89) and (4.90), we have

εw

∫ 1

0

mk|ukwx|2 dx+
1

2

∫ 1

0

k̂kw|ukw|2 dx+
1

2

∫ 1

0

k̂k|ukw|2 dx ≤
1

2

∫ 1

0

k̂k|uko |2 dx+ C,

and

εw
2

∫ 1

0

mk|ukwxx|2 dx ≤
5Cεw
k0

(1 +
10C

k0
)

∫ 1

0

|ukwx|2 dx+
2C

εw
+

5Iw
εw

∫ 1

0

k̂kw|ukw|2 dx

+
10Iw
εw

∫ 1

0

k̂k|ukw|2 dx+
10Iw
εw

∫ 1

0

k̂k|uko |2 dx,

which yield




∫ 1

0

|ukwx|2 dx ≤
1

εw

[Iwok1

2k0
(AA1)2 +

2C

k0

]
,

∫ 1

0

k̂kw|ukw|2 dx+

∫ 1

0

k̂k|ukw|2 dx ≤ Iwok1(AA1)2 + 4C,

(4.96)

and
∫ 1

0

|ukwxx|2 dx ≤
10C

(k0)2
(1 +

10C

k0
)

1

εw

[Iwok1

2k0
(AA1)2 +

2C

k0

]
+

4C

(εw)2k0

+
[ 10Iw

(εw)2k0
+

20Iw
(εw)2k0

+
20Iw

(εw)2k0

]
(Iwok1(AA1)2 + 4C)

=Eεw,1(AA1)2 + Eεw,2.

(4.97)
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where



Eεw,1 = 1
εw

[
10C
(k0)2 (1 + 10C

k0
) Iwok1

2k0
+ 10IwIwok1

εwk0
+ 20IwIwok1

εwk0
+ 20IwIwok1

εwk0

]
,

Eεw,2 = 1
εw

[
10C
(k0)2 (1 + 10C

k0
) 2C
k0

+ 4C
εwk0

+ 40CIw
εwk0

+ 80CIw
εwk0

+ 80CIw
εwk0

]
.

In view of (4.96) and (4.97), we have

‖ukw(t)‖2H2 ≤
[Iwok1

k0εw
+ Eεw,1

]
(AA1)2 +

4C

εwk0
+ Eεw,2. (4.98)

Letting

max
{Iwok1

k0εo
+ Eεo,1,

Iwok1

k0εw
+ Eεw,1

}
≤ 1

2
(4.99)

which can be done by assuming for instance that εo and εw are large enough, we
obtain from (4.95) and (4.98)

‖uko(t)‖H2 ≤ AA1, ‖ukw(t)‖H2 ≤ AA1, (4.100)

where we choose that

A1 ≥
1

A
max

{( 4C

εok0
+ 2Eεo,2

) 1
2

,
( 8C

εwk0
+ 2Eεw,2

) 1
2
}

(4.101)

Consequently, we have ukw, u
k
o ∈ S for all k = 1, 2, 3, · · ·, if we assume that (4.99)

is satisfied for A1 given by (4.101) and for T0 ≤ T1.

Step 3. Compactness arguments.

By virtue of the estimates uniformly for k in Step 2, there exist a subsequence
ki (i = 1, 2, 3, ...) and a (uw, uo,m, n), such that

(ukiw , u
ki
o ) ⇀ (uw, uo) weak-* in L∞([0, T0];H1

0 ∩H2),

nki ⇀ n weak-* in L∞([0, T0];H1),

mki ⇀m weak-* in L∞([0, T0];H1),

(nkit ,m
ki
t ) ⇀ (nt,mt) weak-* in L∞([0, T0];L2)

(4.102)

as ki →∞, where

(uw, uo) ∈ L∞([0, T0];H2 ∩H1
0 ), and (m,n) ∈ L∞([0, T0];H1),

and nt,mt ∈ L∞([0, T0];L2). Using the Aubin-Lions’ compactness theorem, we can
obtain some strong convergence. More precisely, there exists a subsequence still
denoted by ki without loss of generality (i = 1, 2, 3, ...), such that

nki → n in C([0, 1]× [0, T0]),

mki → m in C([0, 1]× [0, T0]),
(4.103)

as ki →∞. It follows from (4.103) and (4.87) that

k0 ≤ m ≤ k1, and k0 ≤ n ≤ k1 on [0, 1]× [0, T0].

Step 4. Convergence of (uki−1
w , uki−1

o ).
We are going to investigate the convergence of the neighbor sequence of (ukiw , u

ki
o ),

i.e., (uki−1
w , uki−1

o ), in order to make sure that their limits are the same, since they
both appear in the approximate system (4.85).

To begin with, we need the estimates of the difference between mk+1 (nk+1)
and mk (nk), since there is a connection between velocity and mass due to the
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momentum equation. Denote m̄k+1 = mk+1 −mk and n̄k+1 = nk+1 − nk. Then,
from (4.85)1,2 it follows
{
m̄k+1
t + m̄k+1

x ukw +mk
x(ukw − uk−1

w ) + m̄k+1[ukw]x +mk(ukw − uk−1
w )x = 0,

m̄k+1(x, 0) = 0
(4.104)

and{
n̄k+1
t + n̄k+1

x uko + nkx(uko − uk−1
o ) + n̄k+1[uko ]x + nk(uko − uk−1

o )x = 0,

n̄k+1(x, 0) = 0
(4.105)

for (x, t) ∈ [0, 1]× [0, T0].
Using (4.104), we have

d

dt

∫ 1

0

|m̄k+1|2 dx ≤C̄‖(ukw − uk−1
w )x‖L2‖m̄k+1‖L2 + C̄A‖m̄k+1‖2L2 , (4.106)

where C̄ is a generic positive constant depending only on the initial data, the upper
bound of T0 and other known constants but independent of k , A and T0. Here we
have used the facts that mk

x is bounded in L2 and that ukw ∈ S, and the Poincaré
inequality. Similarly, we have

d

dt

∫ 1

0

|n̄k+1|2 dx ≤ C̄‖(uko − uk−1
o )x‖L2‖n̄k+1‖L2 + C̄A‖n̄k+1‖2L2 . (4.107)

Using (4.85)3, we have

εo[n
k(uko − uk−1

o )x]x = −εo[(nk − nk−1)(uk−1
o )x]x + (sko − sk−1

o )P kox

+ sk−1
o [P ko − P k−1

o ]x + g(nk − nk−1) + [k̂o(m
k, nk)− k̂o(mk−1, nk−1)]uk−1

o

+ k̂ko (uko − uk−1
o )− k̂k[uk−1

w − uk−2
w − (uko − uk−1

o )]

− [k̂(mk, nk)− k̂(mk−1, nk−1)](uk−2
w − uk−1

o ),

(4.108)

where k = 2, 3, 4, · · ·.
Denote ūo

k+1 = uk+1
o −uko and ūw

k+1 = uk+1
w −ukw. Then similar to the estimate

of uko (see (4.89)), the ‖(uko − uk−1
o )x‖L2 can be evaluated as follows:

‖[ūok]x‖2L2 ≤ C̄‖n̄k(uk−1
o )x‖2L2 +

C̄

(εo)2
‖(sko − sk−1

o )P kox‖2L1

+
C̄

(εo)2
‖[sk−1

o ]x(P ko − P k−1
o )‖2L1 +

C̄

(εo)2
‖sk−1
o (P ko − P k−1

o )‖2L2 +
C̄

(εo)2
‖m̄k‖2L2

− 1

εok0
‖
√
k̂ko ūo

k‖2L2 +
C̄

(εo)2
‖k̂o(mk, nk)− k̂o(mk−1, nk−1)‖2L2

− 1

2εok0
‖
√
k̂kūo

k‖2L2 +
1

2εok0
‖
√
k̂kūw

k−1‖2L2

+
C̄

(εo)2
‖k̂(mk, nk)− k̂(mk−1, nk−1)‖2L2 ,

(4.109)

where k = 2, 3, 4, · · ·. Note that




|sko − sk−1
o | ≤ C̄(|m̄k|+ |n̄k|) and |P ko − P k−1

o | ≤ C̄(|m̄k|+ |n̄k|),

|k̂o(mk, nk)− k̂o(mk−1, nk−1)| ≤ C̄(|m̄k|+ |n̄k|)
and |k̂(mk, nk)− k̂(mk−1, nk−1)| ≤ C̄(|m̄k|+ |n̄k|).
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This, together with Hölder inequality, (4.109) and the boundedness of P kox and
[sk−1
o ]x in L2, implies that

‖[ūok]x‖2L2 ≤C̄(1 +A2)(‖m̄k‖2L2 + ‖n̄k‖2L2)− 1

εok0
‖
√
k̂ko ūo

k‖2L2

− 1

2εok0
‖
√
k̂kūo

k‖2L2 +
1

2εok0
‖
√
k̂kūw

k−1‖2L2 ,

(4.110)

where k = 2, 3, 4, · · ·.
Similarly, by virtue of (4.85)4, we have

εw[mk(ukw − uk−1
w )x]x

= −εw[(mk −mk−1)(uk−1
w )x]x + (skw − sk−1

w )P kwx + sk−1
w [P kw − P k−1

w ]x

+ g(mk −mk−1) + k̂kw(ukw − uk−1
w ) + [k̂w(mk, nk)− k̂w(mk−1, nk−1)]uk−1

w

+ k̂k[ukw − uk−1
w − (uko − uk−1

o )] + [k̂(mk, nk)− k̂(mk−1, nk−1)](uk−1
w − uk−1

o ),

(4.111)

and

‖[ūwk]x‖2L2 ≤C̄(1 +A2)(‖m̄k‖2L2 + ‖n̄k‖2L2)− 1

εwk0
‖
√
k̂kwūw

k‖2L2

− 1

2εwk0
‖
√
k̂kūw

k‖2L2 +
1

2εwk0
‖
√
k̂kūo

k‖2L2 ,

(4.112)

where k = 2, 3, 4, · · ·.
Putting (4.110) into (4.112), we have

‖[ūwk]x‖2L2 ≤C̄1(‖m̄k‖2L2 + ‖n̄k‖2L2) +
1

2εwk0
‖
√
k̂kūw

k−1‖2L2

≤C̄1(‖m̄k‖2L2 + ‖n̄k‖2L2) +
Iwok1

2εwk0
‖[ūwk−1]x‖2L2 ,

(4.113)

for k = 2, 3, 4, · · ·, where we have used (4.87) and Sobolev inequality.
Combining (4.106), (4.107), (4.110) and (4.113) with Cauchy inequality, we have

d

dt

∫ 1

0

(|m̄k+1|2 + |n̄k+1|2) dx+ ‖(ūwk+1)x‖2L2 + ‖(ūok+1)x‖2L2

≤C̄2(‖m̄k+1‖2L2 + ‖n̄k+1‖2L2) +
(Iwok1

εwk0
+
Iwok1

εok0

)
(‖(ūwk)x‖2L2 + ‖(ūok)x‖2L2),

which yields

d

dt
fk+1(t) + gk+1(t) ≤ C̄2f

k+1(t) +
(Iwok1

εwk0
+
Iwok1

εok0

)
gk(t), (4.114)

where

fk =

∫ 1

0

(|m̄k|2 + |n̄k|2) dx, gk = ‖(ūwk)x‖2L2 + ‖(ūok)x‖2L2 .

Then, (4.114) together with Gronwall inequality yields

fk+1(t) ≤
(Iwok1

εwk0
+
Iwok1

εok0

)∫ t

0

eC̄2(t−s)gk(s) ds. (4.115)

Integrating (4.114) over [0, T0], and using (4.115), we have
∫ T0

0

gk+1(s) ds ≤
(
C̄2T0e

C̄2T0 + 1
)(Iwok1

εwk0
+
Iwok1

εok0

)∫ T0

0

gk(s) ds. (4.116)
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Letting



C̄2T0e

C̄2T0 ≤ 1,

Iwok1
εwk0

+ Iwok1
εok0

≤ 1
4

(4.117)

for small T0 and large εo, εw. We note that (4.116) and (4.115) imply that




Σ∞k=1

∫ T0

0

gk+1(t) dt <∞,

Σ∞k=1 max
t∈[0,T0]

fk+1(t) <∞.
(4.118)

Thus, (4.118) combined with (4.102)1 implies that

(uki−1
w , uki−1

o ) ⇀ (uw, uo) weak-* in L∞([0, T0];H1
0 ∩H2) (4.119)

as ki →∞.

Step 5. Conclusion.

Based on (4.102), (4.103), and (4.119), it can be verified that (m,n, uw, uo) is
a unique solution of (2.14)-(2.16). See [16] for more details. Thus the proof of
Theorem 2.1 is complete.

Appendix B: Some issues related to the general model (1.1). The purpose
of this section is to elaborate on some of the differences between the model (1.1) and
other Brinkman-type of two-phase models like the one mentioned in Remark 1.2.

The incompressible, viscous version of the generalized two-phase model
(1.1). It seems useful to impose some simplifying assumptions on the model (1.1)
and derive a reduced version of it. We may impose the following assumptions:

• incompressible fluid, i.e., ρw and ρo are constant.
• porosity φ is constant

We may rescale the time such that the porosity disappears in the time derivative
terms. The mass and momentum equations in (1.1) now take the form

(so)t +∇ · (φsouo) =
Qo
ρo
, Uo = φsouo

(sw)t +∇ · (φswuw) =
Qw
ρw

, Uw = φswuw

so[∇Pw +∇Pc + ρog]− εoρo∇ · (so∇uo) = +k̂uw − [k̂o + k̂]uo

sw[∇Pw + ρwg]− εwρw∇ · (sw∇uw) = −[k̂w + k̂]uw + k̂uo,

(4.120)

where we have used that Pc = Po − Pw. Note that in the rest of this paper we

will use k̂ow = k̂. We can solve for uw and uo from the two momentum balance
equations in (4.120) and find that

uw =

− [swk̂o] + k̂

k̂ok̂w + k̂[k̂o + k̂w]
∇Pw −

sok̂

k̂ok̂w + k̂[k̂o + k̂w]
∇Pc −

(swρw + soρo)k̂ + swρwk̂o

k̂ok̂w + k̂[k̂o + k̂w]
g

+ (εwρw)
[k̂o + k̂]

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (sw∇uw) + (εoρo)

k̂

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (so∇uo),
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uo =

− [sok̂w] + k̂

k̂ok̂w + k̂[k̂o + k̂w]
∇Pw −

so[k̂w + k̂]

k̂ok̂w + k̂[k̂o + k̂w]
∇Pc −

(swρw + soρo)k̂ + soρok̂w

k̂ok̂w + k̂[k̂o + k̂w]
g

+ (εwρw)
k̂

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (sw∇uw) + (εoρo)

[k̂w + k̂]

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (so∇uo).

(4.121)

That is, we find for Ui = φsiui:

Uw =

− λ̂w∇Pw −
φsoswk̂

k̂ok̂w + k̂[k̂o + k̂w]
∇Pc − λ̂wρwg +

φsoswk̂∆ρ

k̂ok̂w + k̂[k̂o + k̂w]
g

+ (εwφρw)
sw[k̂o + k̂]

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (sw∇uw)

+ (εoφρo)
swk̂

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (so∇uo),

Uo =

− λ̂o∇Pw − λ̂o∇Pc +
φsoswk̂

k̂ok̂w + k̂[k̂o + k̂w]
∇Pc − λ̂oρog −

φsoswk̂∆ρ

k̂ok̂w + k̂[k̂o + k̂w]
g

+ (εwφρw)
sok̂

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (sw∇uw)

+ (εoφρo)
so[k̂w + k̂]

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (so∇uo),

(4.122)

where ∆ρ = ρw − ρo and with generalized mobility functions λ̂i (i = w, o, T ) of the
form

λ̂w = λ̂w(sw) =
[s2
wk̂o] + swk̂

k̂ok̂w + k̂[k̂o + k̂w]
φ,

λ̂o = λ̂o(sw) =
[s2
ok̂w] + sok̂

k̂ok̂w + k̂[k̂o + k̂w]
φ,

λ̂T = λ̂T (sw) = λ̂w(sw) + λ̂o(sw).

(4.123)

Note that the resistance force coefficients k̂w(sw), k̂o(sw), k̂(sw) typically are func-
tions of water saturation sw. From (4.122) we find

UT = Uw + Uo = −λ̂T∇Pw − λ̂o∇Pc − [λ̂wρw + λ̂oρo]g

+ (εwφρw)
swk̂o + k̂

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (sw∇uw) + (εoφρo)

sok̂w + k̂

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (so∇uo).

(4.124)

Remark 4.1. A fundamental difference between the above expression (4.124) for
the total superficial velocity UT for the mixture and the model described in Remark
1.2 and expressed by the mixture momentum balance equation (1.12), is the viscous
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terms. Taking the divergence of (4.124) combined with the sum of the two first
equations of (4.120) and (1.3), we arrive at

Qo
ρo

+
Qw
ρw

= −∇ · (λ̂T∇Pw)−∇ · (λ̂o∇Pc)−∇ · ([λ̂wρw + λ̂oρo]g)

+∇ ·
(

(εwφρw)
swk̂o + k̂

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (sw∇uw)

)

+∇ ·
(

(εoφρo)
sok̂w + k̂

k̂ok̂w + k̂[k̂o + k̂w]
∇ · (so∇uo)

)
.

(4.125)

This gives an elliptic pressure equation for Pw. However, due to the appearance
of complex viscous terms, it seems not easy to obtain H1-estimate of Pw needed
for compactness of the non-conservative pressure term sw∇Pw in the momentum
balance equation.

We may conclude that it does not seem straightforward to analyse the incom-
pressible, viscous model (4.120) by relying on an approach similar to the one used
in [9]. The main reason is the use of interstitial fluid velocity ui instead of Darcy
velocity Ui = φsiui.

The incompressible, inviscid case εw = εo = 0. It is instructive to also derive
the model where viscous terms are set to zero. Hence, in the following we consider
the incompressible model (4.120) where we assume that viscous terms in the mo-
mentum equations are ignored by setting εw = εo = 0. We observe that (4.124)
gives

∇Pw = −UT

λ̂T
− λ̂o

λ̂T
∇Pc − [f̂wρw + f̂oρo]g, (4.126)

where

f̂w =
λ̂w

λ̂T
= f̂w(sw), f̂o =

λ̂o

λ̂T
= f̂o(sw) (4.127)

are the standard fractional flow functions which satisfy that f̂w + f̂o = 1. Using
(4.126) in (4.122) we get

Uw = −λ̂w∇Pw −
φsoswk̂

(k̂ok̂w + k̂[k̂o + k̂w])
∇Pc − ρwλ̂wg +

φsosw∆ρk̂

(k̂ok̂w + k̂[k̂o + k̂w])
g

= UT
λ̂w

λ̂T
+
λ̂w[λ̂wρw + λ̂oρo]

λ̂T
g +

λ̂wλ̂o

λ̂T
∇Pc − ρwλ̂wg

− φsoswk̂

(k̂ok̂w + k̂[k̂o + k̂w])
∇Pc +

φsosw∆ρk̂

(k̂ok̂w + k̂[k̂o + k̂w])
g

= UT f̂w +
(
−f̂wλ̂o +

φsoswk̂

(k̂ok̂w + k̂[k̂o + k̂w])

)
∆ρg

−
(
−f̂wλ̂o +

soswk̂

(k̂ok̂w + k̂[k̂o + k̂w])

)
∇Pc

= UT f̂w(sw)− ĥ(sw)∆ρg + ĥ(sw)∇Pc(sw),

(4.128)
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where ∆ρ = ρw − ρo and ĥ(sw) is defined by

ĥ
def
:= f̂wλ̂o −

φsoswk̂

(k̂ok̂w + k̂[k̂o + k̂w])
=

s2
w(1− sw)2

s2
wk̂o + s2

ok̂w + k̂
φ = ĥ(sw). (4.129)

From this, it also follows that

Uo = UT −Uw = UT (1− f̂w(sw)) + ĥ(sw)∆ρg − ĥ(sw)∇Pc(sw). (4.130)

Consequently, the model (4.120) has been reduced to solving the following conser-
vation law

∂tsw +∇ ·Uw =
Qw
ρw

, (4.131)

where Uw = Uw(sw) is given by (4.128).

Remark 4.2. The model (4.131) combined with (4.128) (last line), (4.127), (4.129),
and the generalized mobility functions as defined by (4.123), recovers the classical
incompressible immiscible model except that we now also include for an additional

water-oil drag force effect through the term k̂. Setting this term to zero reproduces
exactly the classical formulation. To obtain closed expressions for the generalized

mobility functions λ̂i as well as for ĥ(sw), we must specify appropriate functional

correlations for (i) the water-rock resistance force k̂w; (ii) the oil-rock resistance

force k̂o; (iii) the water-oil drag force effect k̂. In the recent work [31] we used
correlations of the following form:

k̂w = Iw
µw
K
φsαw, k̂o = Io

µo
K
φsβw, k̂ = I

µwµo
K

φsw(1− sw), (4.132)

where µi is fluid viscosity, K absolute permeability, Iw, Io, I are parameters that
characterize the strength of the resistance force (similar to the end points of rel-
ative permeability in classical formulation). The generalized mobility functions
introduced above account for two different resistance forces, instead of only one, as
in standard Darcy’s equation-based formulation. Mobility functions that are mea-
sured experimentally are known to generally depend on the flow configuration. Two
main flow regimes are present in the expression for Uw given by (4.128) and Uo

given by (4.130): Co-current flow (i.e., flow of water and oil in the same direction)

represented by the first component UT f̂w and counter-current flow (i.e., flow in the

opposite direction) represented by −ĥ(sw)∆ρg and ĥ(sw)∇Pc(sw) (compare with

(4.130)). The fact that the fluid-fluid interaction term k̂ is explicitly accounted

for and appears in ĥ (4.129) and mobility functions (4.123) implies that a more
accurate understanding of water-oil flow mechanisms can be sought [31].

Appendix C: A pressure evolution equation. From the two mass balance
equations we get after multiplying the n mass balance with ρw and the m mass
balance with ρo and summing the two resulting equations

ρwso
Co

Pot +
ρosw
Cw

Pwt + ρw(soρouo)x + ρo(swρwuw)x

=− ρwρosoQp − ρwρoswQp + ρwρoQI (4.133)

or

κPot −
ρosw
Cw

P ′cswt + ρw(soρouo)x + ρo(swρwuw)x = ρwρo(QI −Qp), (4.134)

with

κ = soρw
1

Co
+ swρo

1

Cw
= soρw

∂ρo
∂Po

+ swρo
∂ρw
∂Pw

. (4.135)
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Clearly,

swt = −sot = −
( n
ρo

)
t

= − 1

ρo
nt +

n

ρ2
o

ρot = − 1

ρo
nt +

n

Coρ2
o

Pot.

Consequently,

−ρosw
Cw

P ′cswt =
ρosw
Cw

P ′c
[ 1

ρo
nt −

n

Coρ2
o

Pot

]
=
swP

′
c

Cw
nt −

soswP
′
c

CwCo
Pot.

Using this in (4.134) we get

κPot+
swP

′
c

Cw
nt−

soswP
′
c

CwCo
Pot+ρw(soρouo)x+ρo(swρwuw)x = ρwρo(QI−Qp), (4.136)

that is,
[
κ− soswP

′
c

CwCo

]
Pot +

[
ρw −

swP
′
c

Cw

]
(soρouo)x + ρo(swρwuw)x

= ρwρo(QI −Qp) +
swP

′
c

Cw
nQp.

(4.137)

Note that
[
κ− soswP

′
c

CwCo

]
=
soρ̃w
Co

+
swρo
Cw

:= κ̃, ρ̃w = ρw −
swP

′
c

Cw

so that

κ̃Pot + ρ̃w(nuo)x + ρo(muw)x = ρwρo(QI −Qp) +
swP

′
c

Cw
nQp (4.138)

or

Pot + η̃ρ̃w(nuo)x + η̃ρo(muw)x = η̃ρwρo(QI −Qp) + η̃
swP

′
c

Cw
nQp,

η̃ =
1

κ̃
=

CwCo
soρ̃wCw + swρoCo

.

(4.139)

Similarly, we have for Pw:

κPwt +
ρwsoP

′
c

Co
swt + ρw(soρouo)x + ρo(swρwuw)x = ρwρo(QI −Qp). (4.140)

Clearly,

swt =
(m
ρw

)
t

=
1

ρw
mt −

m

ρ2
w

ρwt =
1

ρw
mt −

m

Cwρ2
w

Pwt.

Consequently,

ρwso
Co

P ′cswt =
ρwso
Co

P ′c
[ 1

ρw
mt −

m

Cwρ2
w

Pwt

]
=
soP

′
c

Co
mt −

swsoP
′
c

CwCo
Pwt.

Using this in (4.140) we get

κPwt +
soP

′
c

Co
mt −

soswP
′
c

CwCo
Pwt + ρw(soρouo)x + ρo(swρwuw)x = ρwρo(QI −Qp),

(4.141)
that is,

[
κ− soswP

′
c

CwCo

]
Pwt + ρw(soρouo)x +

[
ρo −

soP
′
c

Co

]
(swρwuw)x

= ρwρo(QI −Qp)−
soP

′
c

Co
(ρwQI −mQp).

(4.142)
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Note that
[
κ− soswP

′
c

CwCo

]
=
soρw
Co

+
swρ̃o
Cw

:= κ̃, ρ̃o = ρo −
soP

′
c

Co
,

so that

κ̃Pwt + ρw(nuo)x + ρ̃o(muw)x = ρwρo(QI −Qp)−
soP

′
c

Co
(ρwQI −mQp), (4.143)

or

Pwt + η̃ρw(nuo)x + η̃ρ̃o(muw)x = η̃ρwρo(QI −Qp)− η̃
soP

′
c

Co
(ρwQI −mQp),

η̃ =
1

κ̃
=

CwCo
soρwCw + swρ̃oCo

.

(4.144)

Appendix D: Discrete schemes for the compressible/incompressible ver-
sion of (1.1).

A semi-discrete scheme for the compressible model. We consider discrete
schemes for both the compressible and incompressible version of (2.14). For that
purpose we introduce a reformulation that brings the compressible model closer
to the incompressible model. In particular, we solve explicitly only for the mass
transport of m = swρw whereas the mass n is computed implicitly. This will be in
the spirit of the incompressible approach where we solve the mass balance equation
for sw and computes so = 1− sw. Details are given below.

The starting point is the model (2.14) with (n,m, uw, uo) as the main (un-
known) variables. We rewrite the model in the following equivalent form with
(m,Pw, uw, uo) as the main variables:

(m)t + (muw)x = −mQp + ρwQI

Pwt + η̃ρw(nuo)x + η̃ρ̃o(muw)x = η̃ρwρo(QI −Qp)− η̃
soP

′
c

Co
(ρwQI −mQp)

so(Pw + Pc)x = −(k̂o + k̂)uo + k̂uw + ng + εo(nuox)x

sw(Pw)x = −(k̂w + k̂)uw + k̂uo +mg + εw(muwx)x
(4.145)

with

η̃ =
CwCo

soρwCw + swρ̃oCo
, ρ̃o = ρo −

soP
′
c

Co
. (4.146)

We refer to Appendix C and (4.144) which gives the pressure evolution equation
(4.145)2. Note that sw, so, n, Po are determined by

sw =
m

ρw(Pw)
, so = 1− sw

n = soρo(Po) =
(

1− m

ρw(Pw)

)
ρo(Po) = n(m,Pw)

Po = Pc(sw) + Pw = Po(m,Pw)

(4.147)

We solve (4.145) on our domain Ω with boundary conditions

uw|∂Ω = uo|∂Ω = 0 (4.148)

and initial condition

m(x, t = 0) = m0(x), Pw(x, t = 0) = Pw(m0(x), n0(x)). (4.149)
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System of ODEs. We consider the domain Ω = [0, 1] and introduce a grid of Nx
cells with nodes xj placed at the center of the cells

x1 =
1

2
∆x, x2 = (1+

1

2
)∆x, . . . , xj = (j− 1

2
)∆x, . . . , xNx

= (Nx−
1

2
)∆x

and cell interfaces xj+1/2 at the cell interfaces

x1/2 = 0, x3/2 = ∆x, . . . , xj+1/2 = j∆x, . . . , xNx+1/2 = Nx∆x = 1,

where ∆x = 1/Nx. We introduce the approximate mass and pressure {mj(t)}Nx
j=1

and {Pw,j(t)}Nx
j=1 associated with the nodes {xj}Nx

j=1 whereas the approximate ve-

locities {uw,j+1/2}Nx
j=0 and {uo,j+1/2}Nx

j=0 are associated with the cell interfaces

{xj+1/2}Nx
j=0. In the following we describe a semi-discrete version of (4.145).

Step 1: Mass transport. We solve for mj(t) by considering the following ODE
corresponding to (4.145)1:

dmj

dt
+

1

∆x
([muw]j+1/2 − [muw]j−1/2) = −mjQp,j + ρwjQI,j , m = swρw

(4.150)

where

[muw]j+1/2 =

{
mjuw,j+1/2, if uw,j+1/2 ≥ 0;
mj+1uw,j+1/2, if uw,j+1/2 < 0.

(4.151)

This can also be expressed as

[muw]j+1/2 =
mj +mj+1

2
uw,j+1/2 −

1

2
(mj+1 −mj)|uw,j+1/2|.

Step 2: Computation of velocities and pressure. Next, we solve for Pw,j(t)
and uw,j+1/2(t) and uo,j+1/2(t) by considering the following ODE system corre-
sponding to (4.145)2,3,4:

dPwj
dt

+η̃jρwj
1

∆x
([nuo]j+1/2 − [nuo]j−1/2)

+η̃j ρ̃oj
1

∆x
([muw]j+1/2 − [muw]j−1/2)

= [η̃ρwρo]j(QI,j −Qp,j)−
[
η̃
soP

′
c

Co

]
j
(ρwjQI,j −mjQp,j),

(4.152)

which is combined with the momentum balance equations

so,j+1/2
1

∆x
(Pw,j+1 − Pw,j) = −so,j+1/2

1

∆x
(Pc,j+1 − Pc,j)

−k̂o,j+1/2uo,j+1/2 + k̂j+1/2

(
uw,j+1/2 − uo,j+1/2

)
+ nj+1/2g

+εo
1

∆x2

(
nj+1[uo,j+3/2 − uo,j+1/2]− nj [uo,j+1/2 − uo,j−1/2]

)
,

sw,j+1/2
1

∆x
(Pw,j+1 − Pw,j) =

−k̂w,j+1/2uw,j+1/2 − k̂j+1/2

(
uw,j+1/2 − uo,j+1/2

)
+mj+1/2g

+εw
1

∆x2

(
mj+1[uw,j+3/2 − uw,j+1/2]−mj [uw,j+1/2 − uw,j−1/2]

)
.

(4.153)
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Here we note that the average sw,j+1/2 in (4.153) is based on upwind relatively
uw,j+1/2

sw,j+1/2 =





sw,j , if uw,j+1/2 > 0;
sw,j+sw,j+1

2 , if uw,j+1/2 = 0;
sw,j+1, if uw,j+1/2 < 0.

(4.154)

Similarly, for so,j+1/2 and for the interaction terms k̂w,j+1/2 and k̂o,j+1/2. In addi-

tion, k̂j+1/2 is based on upwind relatively uw,j+1/2 and uo,j+1/2 as follows:

k̂j+1/2 =





k̂j , if uw,j+1/2 > 0 & uo,j+1/2 > 0 ;
k̂j+k̂j+1

2 , if uw,j+1/2uo,j+1/2 ≤ 0;

k̂j+1, if uw,j+1/2 < 0 & uo,j+1/2 < 0.

(4.155)

Moreover, [nuo]j+1/2 and [muw]j+1/2 appearing in (4.152) employ upwind as de-
scribed in (4.151). Now, we are in a position where we can describe a fully discrete
model.

A fully discrete scheme. We assume that we have given (mk
j , P

k
w,j , u

k
w,j , u

k
o,j).

We then compute the approximate solution at time tk+1 expressed by (mk+1
j , P k+1

w,j ,

uk+1
w,j , u

k+1
o,j ) as follows:

Step 1: Mass transport.

mk+1
j −mk

j

∆t
+

1

∆x
([muw]kj+1/2 − [muw]kj−1/2) = −mk

jQp,j + ρkwjQI,j ,
(4.156)

where

[muw]kj+1/2 =

{
mk
ju

k
w,j+1/2, if ukw,j+1/2 ≥ 0;

mk
j+1u

k
w,j+1/2, if ukw,j+1/2 < 0.

(4.157)

Having computed mk+1
j we can compute an updated water saturation s

k+1/2
w,j given

by

s
k+1/2
w,j =

mk+1
j

ρw(P kw,j)
. (4.158)

Similarly, we compute updated mass n
k+1/2
j = (1−sk+1/2

w,j )ρo(P
k+1/2
o,j ) and P

k+1/2
o,j =

P kw,j +Pc(s
k+1/2
w,j ), according to (4.147), which are needed to evaluate coefficients in

the next step.

Step 2: Computation of velocities and pressure. Next, we solve simultane-
ously for P k+1

w,j and uk+1
w,j+1/2 and uk+1

o,j+1/2 by considering the following algebraic
system

P k+1
wj − P kwj

∆t
+[η̃ρw]

k+1/2
j

1

∆x

(
[nk+1/2uk+1

o ]j+1/2 − [nk+1/2uk+1
o ]j−1/2

)

+[η̃ρ̃o]
k+1/2
j

1

∆x

(
[mk+1uk+1

w ]j+1/2 − [mk+1uk+1
w ]j−1/2

)

= [η̃ρwρo]
k+1/2
j (QI,j −Qp,j)−

[
η̃
soP

′
c

Co

]k+1/2

j
(ρkwjQI,j −mk+1

j Qp,j),

(4.159)
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which is combined with the momentum balance equations

s
k+1/2
o,j+1/2

1

∆x
(P k+1
w,j+1 − P k+1

w,j ) = −sk+1/2
o,j+1/2

1

∆x
(P

k+1/2
c,j+1 − P

k+1/2
c,j )

−k̂k+1/2
o,j+1/2u

k+1
o,j+1/2 + k̂

k+1/2
j+1/2

(
uk+1
w,j+1/2 − uk+1

o,j+1/2

)
+ n

k+1/2
j+1/2g

+εo
1

∆x2

(
n
k+1/2
j+1 [uk+1

o,j+3/2 − uk+1
o,j+1/2]− nk+1/2

j [uk+1
o,j+1/2 − uk+1

o,j−1/2]
)
,

s
k+1/2
w,j+1/2

1

∆x
(P k+1
w,j+1 − P k+1

w,j ) =

−k̂k+1/2
w,j+1/2u

k+1
w,j+1/2 − k̂

k+1/2
j+1/2

(
uk+1
w,j+1/2 − uk+1

o,j+1/2

)
+mk+1

j+1/2g

+εw
1

∆x2

(
mk+1
j+1 [uk+1

w,j+3/2 − uk+1
w,j+1/2]−mk+1

j [uk+1
w,j+1/2 − uk+1

w,j−1/2]
)
.

(4.160)

Equipped with (P k+1
w,j , u

k+1
w,j+1/2, u

k+1
o,j+1/2) we can now update the saturation sw,j by

sk+1
w,j =

mk+1
j

ρw(P k+1
w,j )

, (4.161)

from which we also compute the updated oil mass nk+1
j and pressure P k+1

o,j via

(4.147). If necessary, we may repeat step 2 to improve the accuracy before we
proceed to next time level.

Remark 4.3. The upwind discretization of [nk+1/2uk+1
o ]j+1/2 and [mk+1uk+1

w ]j+1/2

appearing in (4.159) are based on “old” velocities uko,j+1/2 and ukw,j+1/2.

A semidiscrete scheme for the incompressible model. When fluids are in-
compressible the model (2.14) takes the following form with unknown variables
(sw, Pw, uw, uo)

(sw)t + (swuw)x = −swQp +QI

(so)t + (souo)x = −soQp
sw(Pw)x = −k̂wuw − k̂(uw − uo) + swρwg + εwρw(swuwx)x

so(Pw + Pc)x = −k̂ouo + k̂(uw − uo) + soρog + εoρo(souox)x,

(4.162)

subject to the boundary condition

uw|∂Ω = uo|∂Ω = 0 (4.163)

and initial condition

sw(x, t = 0) = sw0(x). (4.164)

Note that we can only determine Pw up to a constant and a reference pressure P ∗

at some point in the domain may be specified. An equivalent formulation of (4.162)
is given by (after a summation of the two mass balance equation)

(sw)t + (swuw)x = −swQp +QI

(swuw + souo)x = −Qp +QI

sw(Pw)x = −k̂wuw − k̂(uw − uo) + swρwg + εwρw(swuwx)x

so(Pw + Pc)x = −k̂ouo + k̂(uw − uo) + soρog + εoρo(souox)x.

(4.165)
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This formulation is consistent with and follows directly from (4.145) by letting
Cw, Co → ∞ (i.e., the fluids become incompressible). This is a consequence of the
fact that η̃ →∞ and ρ̃o → ρo, see (4.146).

Step 1: Mass transport. We solve the following ODE for sw,j(t) corresponding
to (4.165)1:

dsw,j
dt

+
1

∆x
([swuw]j+1/2 − [swuw]j−1/2) = −sw,jQp,j +QI,j (4.166)

where

[swuw]j+1/2 =

{
sw,juw,j+1/2, if uw,j+1/2 ≥ 0;
sw,j+1uw,j+1/2, if uw,j+1/2 < 0.

(4.167)

Step 2: Computation of velocities and pressure. Next, we solve for Pw,j(t)
and uw,j+1/2(t) and uo,j+1/2(t) by considering the algebraic system corresponding
to (4.165)2,3,4:

1

∆x
([swuw]j+1/2 − [swuw]j−1/2) +

1

∆x
([souo]j+1/2 − [souo]j−1/2) = QI,j −Qp,j

(4.168)

which is combined with the momentum balance equations

sw,j+1/2
1

∆x
(Pw,j+1 − Pw,j) =

−k̂w,j+1/2uw,j+1/2 − k̂j+1/2

(
uw,j+1/2 − uo,j+1/2

)
+ sw,j+1/2ρwg

+εw
ρw

∆x2

(
sw,j+1[uw,j+3/2 − uw,j+1/2]− sw,j [uw,j+1/2 − uw,j−1/2]

)

so,j+1/2
1

∆x
(Pw,j+1 − Pw,j) = −so,j+1/2

1

∆x
(Pc,j+1 − Pc,j)

−k̂o,j+1/2uo,j+1/2 + k̂j+1/2

(
uw,j+1/2 − uo,j+1/2

)
+ so,j+1/2ρog

+εo
ρo

∆x2

(
so,j+1[uo,j+3/2 − uo,j+1/2]− so,j [uo,j+1/2 − uo,j−1/2]

)
.

(4.169)
Here we note that the average sw,j+1/2 in (4.169) is based on upwind relatively
uw,j+1/2

sw,j+1/2 =





sw,j , if uw,j+1/2 > 0;
sw,j+sw,j+1

2 , if uw,j+1/2 = 0;
sw,j+1, if uw,j+1/2 < 0.

(4.170)

Similarly, for so,j+1/2 and for the interaction terms k̂w,j+1/2 and k̂o,j+1/2. In addi-

tion, k̂j+1/2 is based on upwind relatively uw,j+1/2 and uo,j+1/2

k̂j+1/2 =





k̂j , if uw,j+1/2 > 0 & uo,j+1/2 > 0 ;
k̂j+k̂j+1

2 , if uw,j+1/2uo,j+1/2 ≤ 0;

k̂j+1, if uw,j+1/2 < 0 & uo,j+1/2 < 0.

(4.171)

Moreover, [souo]j+1/2 and [swuw]j+1/2 appearing in (4.168) employ upwind as de-
scribed in (4.170).

A fully discrete scheme for the incompressible model. We can now proceed
with a description of a full discrete scheme for the incompressible case which bears
clear similarity to the scheme for the compressible model.
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Step 1: Mass transport.

sk+1
w,j − skw,j

∆t
+

1

∆x
([swuw]kj+1/2 − [swuw]kj−1/2) = −skw,jQp,j +QI,j (4.172)

where

[swuw]kj+1/2 =

{
skw,ju

k
w,j+1/2, if ukw,j+1/2 ≥ 0;

skw,j+1u
k
w,j+1/2, if ukw,j+1/2 < 0.

(4.173)

Having computed sk+1
w,j we can compute pressure and velocities simultaneously at

time level k + 1.

Step 2: Computation of velocities and pressure. We solve for P k+1
w,j and

uk+1
w,j+1/2 and uk+1

o,j+1/2 by considering the following algebraic system

1

∆x
([sk+1

w uk+1
w ]j+1/2 − [sk+1

w uk+1
w ]j−1/2) +

1

∆x
([sk+1

o uk+1
o ]j+1/2 − [sk+1

o uk+1
o ]j−1/2)

= QI,j −Qp,j
(4.174)

which is combined with the momentum balance equations

sk+1
w,j+1/2

1

∆x
(P k+1
w,j+1 − P k+1

w,j ) =

−k̂k+1
w,j+1/2u

k+1
w,j+1/2 − k̂k+1

j+1/2

(
uk+1
w,j+1/2 − uk+1

o,j+1/2

)
+ sk+1

w,j+1/2ρwg

+εw
ρw

∆x2

(
sw,j+1

k+1[uk+1
w,j+3/2 − uk+1

w,j+1/2]− sk+1
w,j [uk+1

w,j+1/2 − uk+1
w,j−1/2]

)
,

sk+1
o,j+1/2

1

∆x
(P k+1
w,j+1 − P k+1

w,j ) = −sk+1
o,j+1/2

1

∆x
(P k+1
c,j+1 − P k+1

c,j )

−k̂k+1
o,j+1/2u

k+1
o,j+1/2 + k̂k+1

j+1/2

(
uk+1
w,j+1/2 − uk+1

o,j+1/2

)
+ sk+1

o,j+1/2ρog

+εo
ρo

∆x2

(
so,j+1

k+1[uk+1
o,j+3/2 − uk+1

o,j+1/2]− sk+1
o,j [uk+1

o,j+1/2 − uk+1
o,j−1/2]

)
.

(4.175)

Remark 4.4. The upwind discretization of [sk+1
w uk+1

w ]j+1/2 and [sk+1
o uk+1

o ]j+1/2

appearing in (4.174) are based on “old” velocities ukw,j+1/2 and uko,j+1/2.
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VISCOUS TWO-PHASE FLOW IN POROUS MEDIA DRIVEN BY
SOURCE TERMS: ANALYSIS AND NUMERICS\ast 

YANGYANG QIAO\dagger , HUANYAO WEN\ddagger , AND STEINAR EVJE\dagger 

Abstract. In this work we consider the initial-boundary value problem for a generalized, com-
pressible, porous media two-phase model. The formulation is motivated by principles from mixture
theory and involves interstitial fluid velocity ui instead of Darcy type velocity Ui = \phi siui, where
\phi is porosity and si is saturation (volume fraction) of phase i. The momentum balance equations
account for fluid-rock resistance forces as well as fluid-fluid interaction effects, in addition to inter-
nal viscosity through a Brinkmann type viscous term. We explore a one-dimensional version of this
model where we account for two-phase dynamics driven by injection and production of fluids through
realistic source terms and where physically relevant capillary pressure is accounted for. Our inves-
tigations are twofold: (i) Various a priori estimates are derived that give rise to an existence result
subject to a constraint on the magnitude of the viscous terms and the strength of the injection and
production rate. (ii) A numerical finite difference scheme, designed for dealing effectively with the
strong nonlinear coupling between the mass and momentum equations, is then used to demonstrate a
variety of two-phase injection-production scenarios for a realistic reservoir setting. Different physical
effects are highlighted such as the difference between compressible and incompressible flow, balance
between gravity and pressure-driven flow, and effect of viscous coupling.

Key words. Darcy's equation, mixture theory, two-phase flow, interaction forces, viscous
coupling, Brinkman equation, compressibility

AMS subject classifications. 76T10, 76N10, 65M12, 35L60

DOI. 10.1137/19M1252491

1. Introduction.

1.1. Introduction. Mathematical modeling of multiphase flow is essential in
practical applications like enhanced oil recovery and geological CO2 storage in de-
pleted oil and gas reservoirs [5, 16, 19, 7, 41] as well as biological processes [10, 14, 23].
An instructive overview is given in [30] on how generalizations of the standard Darcy's
law for single phase flow can be derived within the context of mixture theory [8].
Starting with more general momentum balance equations and using different sets of
assumptions leads to a hierarchy of mathematical models. In particular, it can be
shown that popular models due to Brinkman, Biot, and many others can be obtained
via various approximations imposed on this more general formulation. Further exten-
sion of the viscous stress tensor is necessary in order to account for non-Newtonian
fluid properties corresponding to shear-thickening or shear-thinning behavior [25, 30].
Javaheri and Jessen [18] studied the modeling of CO2 migration in two-phase displace-
ment of relevance to sequestration processes in saline aquifers and emphasized that
it is necessary to consider the fluid-fluid interaction (water-gas) effect in numerical
calculations whenever transitions between co-current and countercurrent flow occurs.
For more validation of the relevance of including viscous coupling effects through
fluid-fluid interaction terms we refer to the recent works [35, 34, 28] and references
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therein. More recently, similar models have been introduced in order to explore cell-
fluid dynamics that account for cell-matrix interaction, fluid-matrix interaction, and
cell-fluid interaction [39, 38, 36, 11] to mimic experimental observed cancer cell mi-
gration mechanisms that might play a role in dissemination of cancer cells from a
primary tumor [32, 27]. Note that these applications require inclusion of different
chemical agents (e.g., proteins and enzymes) in terms of advection-diffusion-reaction
equations that account for advective transport in the flow direction. The general form
of the model we are interested in describes creeping flow of two compressible immis-
cible fluids in a porous media (e.g., water (w), oil (o), or gas (g)) and was presented
in the recent work [29]. In the current work we focus on the one-dimensional (1D)
version of it where we use ``w"" and ``o"" as indices and where (n,m, uw, uo) are the
main variables:

(\phi n)t + (\phi nuo)x =  - nQp, n = so\rho o, Qp \geq 0,

(\phi m)t + (\phi muw)x =  - mQp + \rho wQI , m = sw\rho w, QI \geq 0,

soPox =  - \^kouo + \^k(uw  - uo) + ng

+ \varepsilon o(nuox)x,

swPwx =  - \^kwuw  - \^k(uw  - uo) +mg

+ \varepsilon w(muwx)x, Pc = Po  - Pw = Pc(sw),

(1.1)

subject to the boundary condition

uw(x = 0, t) = uo(x = 0, t) = 0,

uw(x = 1, t) = uo(x = 1, t) = 0, t \geq 0,
(1.2)

and initial condition

(1.3) n(x, t = 0) = n0(x), m(x, t = 0) = m0(x), x \in [0, 1].

Herein, capillary pressure Pc is defined as the difference between the nonwetting fluid
(oil) pressure Po and the wetting fluid (water) pressure Pw,

(1.4) Pc = Po  - Pw = Pc(sw), P \prime 
c(sw) < 0.

Moreover, \phi is the porosity of the medium, \rho i represents density, and si represents
the volume fraction where i = w, o. In addition, we have the fundamental relation
that expresses that the water and oil occupy the pore space,

(1.5) so + sw = 1.

Furthermore, \varepsilon w, \varepsilon o are assumed to be constant and characterize the magnitude of
the viscous terms. We refer to [29] for further information and motivation for this
model. The two phases will be treated as weakly compressible fluids. More precisely,
we represent the water and the oil (gas) by linear pressure-density relations of the
form

(1.6) \rho w  - \~\rho w0 =
Pw

Cw
, \rho o  - \~\rho o0 =

Po

Co
,

\Bigl( 
\rho g =

Pg

Cg

\Bigr) 
,

where Cw and Co (Cg) essentially represent the inverse of the compressibility of water
and oil (gas), respectively. This is often referred to as bulk modulus, which is a
constant that describes how resistant a substance is to compression. Hence, a weakly
compressible fluid corresponds to a large Ci (i = w, o, g) value. Porosity \phi is in the
following assumed to be constant and is for simplicity only set to be \phi = 1.
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Objective. In [29] we obtained an existence result for the case where the source
terms Qp and QI were set to zero. Appropriate regularity estimates were derived
that ensure global existence subject to constraints on the viscous terms controlled
by \varepsilon i. We also derived semidicrete and fully discrete approximate systems based on
rewriting the model (1.1) and using a pressure evolution equation to replace one of
the mass balance equations. Some initial numerical investigations of these discrete
formulations, for both the incompressible and the compressible case, were carried out.
The purpose of the current manuscript is to continue these investigations but where
the source terms are included, which is very essential for real-world applications. More
precisely, we will (i) derive estimates and obtain an existence result where the role
of source terms related to injection and production wells are accounted for; (ii) use
the numerical scheme to explore in a more realistic setting the role of compressibility,
the balance between countercurrent (gravity driven) and co-current (pressure driven)

flow, as well as the effect of fluid-fluid interaction (viscous coupling) through \pm \^k(uw - 
uo), in addition to fluid-rock viscous interaction through  - \^kiui (i = w, o). All the
interesting dynamic is now generated from the injection and production wells through,
respectively, QI and Qp. A consequence of having the source terms as a driver for the
dynamics is that the energy can no longer be controlled without taking into account
higher order regularity terms (see Remark 2.5) of section 2.2. The main results are
summed up in Theorems 2.1 and 2.2 in section 2.1.

Remark 1.1. More details about the choice of the interaction coefficients \^k, \^kw,
and \^ko are given below, in the introduction of section 2. In addition, a functional
form of the capillary pressure Pc(sw) must be specified. Combining (1.4), (1.5), and
(1.6) it follows that \rho w = \rho w(m,n) \geq 0 and \rho o = \rho (m,n) \geq 0 are well-defined as
functions of m and n for m,n \geq 0 from which we also can compute sw = sw(m,n)
and so = so(m,n); see [29] (beginning of section 2) for details.

Remark 1.2. For the numerical simulations in section 3 we use a numerical scheme
which is based on a reformulation of (1.1). More precisely, we rewrite the model in
the following equivalent form with (m,Pw, uw, uo) as the main variables:

(m)t + (muw)x =  - mQp + \rho wQI ,(1.7)

Pwt + \~\eta \rho w(nuo)x + \~\eta \~\rho o(muw)x = \~\eta \rho w\rho o(QI  - Qp) - \~\eta 
soP

\prime 
c

Co
(\rho wQI  - mQp),

so(Pwx + Pcx) =  - (\^ko + \^k)uo + \^kuw + ng + \varepsilon o(nuox)x,

swPwx =  - (\^kw + \^k)uw + \^kuo +mg + \varepsilon w(muwx)x

with

(1.8) \~\eta =
CwCo

so\rho wCw + sw \~\rho oCo
, \~\rho o = \rho o  - 

soP
\prime 
c

Co
.

We refer to [29] for more details regarding the pressure evolution equation (1.7)2 as
well as a description of both semidiscrete and fully discrete versions of (1.7). Note
that for this approach sw, so, n, Po are determined by

sw =
m

\rho w(Pw)
, so = 1 - sw,

n = so\rho o(Po) =
\Bigl( 
1 - m

\rho w(Pw)

\Bigr) 
\rho o(Po) = n(m,Pw),

Po = Pc(sw) + Pw = Po(m,Pw).

(1.9)
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This approach is slightly different from the one explained in Remark 1.1, where the
mass balance equations (1.1)1,2 give us m and n, from which the other physical vari-
ables are derived.

We end this section with a brief review of some previous and recent studies of
compressible, viscous two-fluid models that are naturally related to (1.1). In the
recent review paper [40] useful information about different versions of such models
and corresponding mathematical studies can be found. For a broad discussion of
the existence and uniqueness of compressible multifluid in a 1D setting relying on
a one-velocity approach we refer to [24]. We refer to [2] for results on a general
multidimensional, viscous, and compressible two-fluid model and [3] for a 1D variant
which lies closer to (1.1) but with inclusion of transient and acceleration terms in
the momentum balance equations. An interesting recent study of a one-velocity two-
phase model, obtained by summing the two momentum equations (Stokes equations)
and assuming that one of the phases is largely dispersed in the other and therefore
moves with the same velocity, is found in [4]. In particular, a density evolution
equation is derived, similar to (1.7)2, that plays a central role in their analysis. The
above pressure evolution equation (1.7) represents a two-fluid, two-velocity version of
such an evolution equation. This approach is also taken in [42, 17], where the full
momentum equations are used but subject to the one-velocity assumption. We also
refer to [37, 26] and references therein for recent results on global existence of weak
solutions by relying on an energy estimate only combined with refined compensated
compactness arguments. For more results on the 1D model similar to (1.1) we refer
to [12, 13]. The model (1.1) and its multidimensional version seems to be a natural
starting point for studying multiphase processes that involve coupled porous media-
channel (or wellbore) flow. See [33, 9] for examples of such models mainly motivated
by engineering related applications. Moreover, interesting analyses of incompressible
and compressible versions of two-phase porous media models based on Darcy's law
are found in [16, 15, 22, 1]. For analysis of numerical approximations of such models
we refer to [31, 7] and references therein. Finally, for analysis of the incompressible
version of (1.1) based on Darcy's law and a reformulation of the model such that
it is expressed in terms of an elliptic pressure equation and nonlinear hyperbolic
conservation law for the saturation with a possible rough total velocity field we refer
to [20, 21, 6].

2. Stability analysis.

Notation. We first give some notation.
\bullet Lp = Lp([0, 1]) for p \in [1,\infty ].
\bullet We define

(2.1) \~m(t) =

\int 1

0

m(x, t) dx; \~n(t) =

\int 1

0

n(x, t) dx.

Assumptions. The following assumptions are made:
\bullet Capillary pressure Pc(sw). We assume that for \Phi (sw) such that \Phi \prime (sw) =
Pc(sw), the following property holds:

(2.2) c0(1 - sw) + \Phi (sw) \leq Pc(\~sw)sw, 0 \leq sw \leq 1,

where \~sw can be any water saturation in [0, 1] and c0 is a positive small
constant. See Remark 2.2 for a justification. Moreover, we assume that
capillary pressure Pc(sw) is a decreasing function satisfying
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| Pc(0)| <\infty , inf
sw\in (0,1)

[ - P \prime 
c(sw)] > 0,(2.3)

sup
sw\in (0,1)

Pc(sw) < Cw \~\rho w0  - Co\~\rho o0 := D.(2.4)

Note that these constraints on the capillary pressure Pc(sw) are all mild and
physical reasonable conditions.

\bullet Source terms QI and Qp in (1.1)1,2 are assumed to have the following
regularity:

(2.5) \| Qp, QI\| \infty , \| (Qp)x\| \infty , \| (
\sqrt{} 
QI)x\| \infty \leq C

for some positive constant C. One possible expression, for example for QI , is
given by

(2.6) QI =

\left\{ 
          
          

0, 0 \leq x \leq x1  - \delta ,

 - Q
\biggl( 
x1  - x

\delta 

\biggr) s

+Q, x1  - \delta < x < x1,

Q, x1 \leq x \leq x2,

 - Q
\biggl( 
x - x2
\delta 

\biggr) s

+Q, x2 < x < x2 + \delta ,

0, x2 + \delta \leq x \leq 1,

where Q is a constant, s \geq 2, and (x1, x2) is a small region associated with
the injector.

\bullet The following constraint on the strength of the injection rate QI and the
functional form of the capillary pressure Pc(sw) will be used:

16\varepsilon w
Cw

\| QI\| \infty \| D  - Pc\| \infty < inf
sw\in (0,1)

| P \prime 
c(sw)| (2.7)

\leq | P \prime 
c(sw)| \leq D  - Pc(sw), 0 \leq sw \leq 1,

whereD (constant) is defined in (2.4). For a given estimate of \| D  - Pc\| \infty > 0
we can make the lower limit in (2.7) as small as we want throughQI . For more
information about the last inequlity (upper bound) we refer to Remark 2.2
below.

\bullet Interaction terms \^kw, \^ko, and \^k are set as follows:

(2.8) \^kw = Iw
m2

m+ n
, \^ko = Io

n2

m+ n
, \^k = Iwo

mn

m+ n
.

Remark 2.1. Clearly, in view of (1.1)1,2, and the condition (1.2), it follows from
(2.1) that

\~m(t) =

\int 1

0

m0(x) dx - 
\int t

0

\int 1

0

mQp dx ds+

\int t

0

\int 1

0

\rho wQI dx ds,

\~n(t) =

\int 1

0

n0(x) dx - 
\int t

0

\int 1

0

nQp dx ds.

(2.9)

Remark 2.2. We explore the condition on capillary pressure Pc(sw) as given by
(2.2) for a representative capillary pressure curve of the form Pc(sw) =  - P \ast 

c ln(\delta + sw
a )
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for some \delta \in (0, 1) and a > 0. In view of the relation \Phi \prime (sw) = Pc(sw) we introduce
two positive constants C1 and C2 to be determined such that

\Phi (sw) =  - P \ast 
c

\int \rho 

0

ln
\Bigl( x
a
+ \delta 
\Bigr) 
dx - C1  - C2

=  - P \ast 
c a

\int sw/a+\delta 

\delta 

ln(u)du - C1  - C2 = P \ast 
c a(u - u ln(u))

\bigm| \bigm| \bigm| 
sw/a+\delta 

\delta 
 - C1  - C2

= P \ast 
c sw + P \ast 

c a
\Bigl[ 
\delta ln(\delta ) - (sw/a+ \delta ) ln(sw/a+ \delta )

\Bigr] 
 - C1  - C2.

(2.10)

Since x ln(x) is an increasing function for x \geq e - 1 whereas for x \in [0, e - 1) it decreases
from zero for x = 0 and takes a minimum  - e - 1, it is clear that we can secure that

P \ast 
c a
\Bigl[ 
\delta ln(\delta ) - (sw/a+ \delta ) ln(sw/a+ \delta )

\Bigr] 
 - C1 \leq 0, sw \in [0, 1],

for an appropriate choice of C1 such that we conclude from (2.10) that

\Phi (sw) \leq P \ast 
c sw  - C2.

We only need to verify that

c0(1 - sw) + P \ast 
c sw  - C2 \leq Pc(\~sw)sw

for 0 \leq sw \leq 1 and some small positive constant c0. Clearly, (P
\ast 
c  - Pc(\~sw) - c0)sw \leq 

C2  - c0 for an appropriate choice of the constant C2 = C2(P
\ast 
c , \~sw) since sw \in [0, 1].

Finally, we also verify the upper bound of (2.7). We only need to observe that

(2.11) | P \prime 
c(sw)| \leq 

P \ast 
c

\delta a
, Pc(sw) \leq  - P \ast 

c ln(\delta ), sw \in [0, 1].

We assume that

(2.12) P \ast 
c

\Bigl[ 1

\delta a
 - ln(\delta )

\Bigr] 
\leq D, \delta \in (0, 1), a > 0.

This represents a (mild) restriction on the shape and magnitude of the capillary
pressure curve as D >> P \ast 

c . Hence, in light of (2.11) and (2.12), it follows that

| P \prime 
c(sw)| \leq P\ast 

c

\delta a \leq D  - ( - P \ast 
c ln(\delta )) \leq D  - Pc(sw), which is the last inequlity of (2.7).

2.1. Main results. First, we present a local (in time) existence result.

Theorem 2.1 (local existence). Assume thatm0\in H1, n0\in H1, and infx\in [0,1] n0 >
0, infx\in [0,1]m0 > 0, and that

\left\{ 
  

  

Iwok1
\varepsilon wk0

+
Iwok1
\varepsilon ok0

\leq 1

4
,

max

\biggl\{ 
Iwok1
k0\varepsilon o

+ E\varepsilon o,1,
Iwok1
k0\varepsilon w

+ E\varepsilon w,1

\biggr\} 
\leq 1

2
,

where k0 = min\{ inf n0

2e , inf m0

2e \} , and k1 = max\{ e supm0 + 1, e supn0 + 1\} , and
\left\{ 
   

 

E\varepsilon w,1 =
1

\varepsilon w

\biggl[ 
10C

(k0)2

\biggl( 
1 +

10C

k0

\biggr) 
Iwok1
2k0

+
10IwIwok1
\varepsilon wk0

+
20IwIwok1
\varepsilon wk0

+
20IwIwok1
\varepsilon wk0

\biggr] 
,

E\varepsilon o,1 =
1

\varepsilon o

\biggl[ 
10C

(k0)2

\biggl( 
1 +

10C

k0

\biggr) 
Iwok1
2k0

+
20(Iwo)

2k1
\varepsilon ok0

+
10IoIwok1
\varepsilon ok0

+
20(Iwo)

2k1
\varepsilon ok0

\biggr] 
.
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Then there exists a positive constant T0 such that the system (1.1) with initial-boundary
conditions (1.2) and (1.3) has a unique solution (m,n, uw, uo) on [0, 1]\times [0, T0] in the
sense that

\left\{ 
\| (m,n, sw, so, \rho w, \rho o)(t)\| H1 + \| (uw, uo)(t)\| H2 \leq C,

\| 
\bigl( 
mt, nt, (sw)t, (so)t, (\rho w)t, (\rho o)t

\bigr) 
(t)\| L2 \leq C,

inf
(x,t)\in QT0

m(x, t) > 0, inf
(x,t)\in QT0

n(x, t) > 0,

for any t \in [0, T0), where QT0
= [0, 1]\times [0, T0) and C = C(T0).

Remark 2.3. Without the source terms, Theorem 2.1 was derived in our previous
work [29]. In the case with the source terms, we only need to slightly modify the
conditions in Theorem 2.1, i.e., the definitions of k0 and k1, as well as account for the
presence of the source terms in the proof. More precisely, the iteration scheme in the
proof as in [29] should be replaced by

(nk)t + (nkuk - 1
o )x =  - nkQp,

(mk)t + (mkuk - 1
w )x =  - mkQp + \rho w(m

k - 1, nk)QI ,

skoP
k
ox =  - \^kkou

k
o + \^kk(uk - 1

w  - uko) + \varepsilon o(n
kukox)x  - nkg,

skwP
k
wx =  - \^kkwu

k
w  - \^kk(ukw  - uko) + \varepsilon w(m

kukwx)x  - mkg

(2.13)

with the initial-boundary value conditions

(ukw, u
k
o)(0, t) = (ukw, u

k
o)(1, t) = 0, t \geq 0,

and

(mk, nk)(x, 0) = (m0, n0)(x), x \in [0, 1],

for k = 1, 2, 3, . . ., where (u0w, u
0
o) = (0, 0), m0 = m0, s

k
w = sw(m

k, nk), sko =

so(m
k, nk), P k

w = Pw(m
k, nk), P k

o = Po(m
k, nk), \^kkw = \^kw(m

k, nk), \^kko = \^ko(m
k, nk),

\^kk = \^k(mk, nk). We omit the details for brevity.

The second main result is devoted to an almost global existence result. This result
relies on the local existence result combined with certain a priori estimates as stated
in (2.15) and obtained in section 2.2.

Theorem 2.2 (global existence of small data solutions). In addition to the
conditions of Theorem 2.1, for any given T > 0, if

K1 \leq min

\Biggl\{ 
\varepsilon w
4

\~m0e
 - 

\int T
0

sup
x\in [0,1]

| Qp| ds
,
\varepsilon o
4
\~n0e

 - 
\int T
0

sup
x\in [0,1]

| Qp| ds
\Biggr\} 
,(2.14)

then the system (1.1) with initial-boundary conditions (1.2) and (1.3) has a unique
solution (m,n, uw, uo) on [0, 1]\times [0, T ] in the sense that

(m,n) \in C([0, T ];H1) \cap C1([0, T ];L2), (uw, uo) \in C([0, T ];H2 \cap H1
0 ),

where K1 is given by (2.76).
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Moreover, we have the following estimates:

\int 1

0

\bigl[ 
(sw)

2
x + (so)

2
x + (\rho w)

2
x + (\rho o)

2
x

\bigr] 
dx \leq C(T ),

\int 1

0

\Bigl[ 
(sw)

2
t + (so)

2
t + (\rho w)

2
t + (\rho o)

2
t

\Bigr] 
dx \leq C(T ),

for any t \in [0, T ].

Remark 2.4. The constraint (2.14) implies smallness of initial data (and suffi-
ciently large viscosity \varepsilon w and \varepsilon o) as well as small production rate Qp, which is only
used to get the positive lower bound of m and n. See Corollary 2.2 for the details.
At the same time we also see that the injection rate QI has a restriction as expressed
by the inequality (2.7).

2.2. Proof of Theorem 2.2. For any given T > 0, our aim in this section is
to prove that the solution exists on the time interval [0, T ] under some assumptions
depending on T (see (2.14)) as in Theorem 2.2. More specifically, let T \ast denote the
maximum time for the existence of solutions as in Theorem 2.1.1 Then due to the
local existence theorem, i.e., Theorem 2.1, we have T \ast > 0. If [0, T ] \subset [0, T \ast ), the
proof of Theorem 2.2 is done. Therefore we consider the other case only, i.e., T \geq T \ast .
We are going to prove that this assumption T \geq T \ast will lead to a contradiction with
the definition of T \ast , based on the following estimates uniformly for t, i.e.,

\left\{ 
\| (m,n, sw, so, \rho w, \rho o)(t)\| H1 + \| (uw, uo)(t)\| H2 \leq C(T \ast ),

\| 
\bigl( 
mt, nt, (sw)t, (so)t, (\rho w)t, (\rho o)t

\bigr) 
(t)\| L2 \leq C(T \ast ),

inf
(x,t)\in QT\ast 

m(x, t) > 0, inf
(x,t)\in QT\ast 

n(x, t) > 0,

(2.15)

for any t \in [0, T \ast ), where QT\ast = [0, 1]\times [0, T \ast ). In fact, (2.15) implies that T \ast is not
the maximum time for the existence which is the desired contradiction. Thus the case
T \geq T \ast is not true, i.e., [0, T ] \subset [0, T \ast ).

To get (2.15) for the case T \geq T \ast , we need a series of lemmas and corollaries
as given in the remainder of this section. Due to the similarity to the model studied
in [29] we will refer to this work whenever possible and focus on new aspects caused
by the source terms. To simplify the proof, we let C(T ) denote a generic positive
constant depending on the initial data and T . Moreover, for given T > 0, C(T ) <\infty .
Throughout the rest of the section, that is, in Lemma 2.1 through Corollary 2.4, we
let t \in [0, T \ast ).

(a) Energy estimate. From the two momentum equations of (1.1)3,4 we get
after a multiplication, respectively, by uo and uw, followed by integration over [0, 1],
integration by parts, and use of (1.2),

\int 1

0

(\varepsilon wmu
2
wx + \varepsilon onu

2
ox) dx+

\int 1

0

\^k(uw  - uo)
2 dx+

\int 1

0

\^kwu
2
w dx+

\int 1

0

\^kou
2
o dx

=

\int 1

0

nguo dx+

\int 1

0

mguw dx - 
\int 1

0

(soPoxuo + swPwxuw) dx := I1a + I1b

(2.16)

1It means that the solution exists on [0, T \ast ) but not on [0, T \ast ].
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with I1a =
\int 1

0
nguo dx+

\int 1

0
mguw dx and I1b =  - 

\int 1

0
(soPoxuo + swPwxuw) dx. As to

I1b, we observe that by using (1.6), (1.1)1,2, (1.2), and (2.9) we can compute

\int 1

0

souoPox dx

(2.17)

= Co

\int 1

0

souo(\rho o)x dx = Co

\int 1

0

nuo(ln(\rho o))x dx =  - Co

\int 1

0

(nuo)x ln(\rho o) dx

= Co

\int 1

0

nt ln(\rho o) dx+ Co

\int 1

0

Qpn ln(\rho o)dx

= Co
d

dt

\int 1

0

n ln(\rho o) dx - Co

\int 1

0

so(\rho o)t dx+ Co

\int 1

0

Qpn ln(\rho o)dx

= Co
d

dt

\int 1

0

n ln(\rho o) dx+ Co

\int 1

0

(so)t\rho o dx - Co
d

dt

\int 1

0

ndx+ Co

\int 1

0

Qpn ln(\rho o)dx

= Co
d

dt

\int 1

0

n ln(\rho o) dx+

\int 1

0

(so)tPo dx+Co\~\rho o0

\int 1

0

(so)t dx+Co

\int 1

0

Qpn ln(e\rho o)dx,

and, by similar calculations,

\int 1

0

swuwPwx dx = Cw

\int 1

0

swuw(\rho w)x dx = Cw

\int 1

0

muw(ln(\rho w))x dx(2.18)

=  - Cw

\int 1

0

(muw)x ln(\rho w) dx

= Cw

\int 1

0

mt ln(\rho w) dx+ Cw

\int 1

0

Qpm ln(\rho w)dx - Cw

\int 1

0

QI\rho w ln(\rho w)dx

= Cw
d

dt

\int 1

0

m ln(\rho w) dx+

\int 1

0

(sw)tPw dx+ Cw \~\rho w0

\int 1

0

(sw)t dx

+ Cw

\int 1

0

(Qpm - QI\rho w) ln(e\rho w)dx.

Consequently, using that Pw = Po  - Pc and (1.5), we find from summing (2.17) and
(2.18) that

 - I1b = Co
d

dt

\int 1

0

n ln(\rho o) dx+ Cw
d

dt

\int 1

0

m ln(\rho w) dx

 - 
\int 1

0

swtPc(sw) dx+ Co\~\rho o0
d

dt

\int 1

0

so dx

+ Cw \~\rho w0
d

dt

\int 1

0

sw dx+ Co

\int 1

0

Qpn ln(e\rho o)dx

+ Cw

\int 1

0

(Qpm - QI\rho w) ln(e\rho w)dx.
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That is,

 - I1b = Co
d

dt

\int 1

0

n ln(\rho o) dx+ Cw
d

dt

\int 1

0

m ln(\rho w) dx - 
\int 1

0

\Phi (sw)t dx(2.19)

+ Co\~\rho o0
d

dt

\int 1

0

so dx+ Cw \~\rho w0
d

dt

\int 1

0

sw dx

+ Co

\int 1

0

Qpn ln(e\rho o)dx+ Cw

\int 1

0

Qpm ln(e\rho w)dx

 - Cw

\int 1

0

QI\rho w ln(e\rho w)dx,

where we have used that \Phi \prime (sw) = Pc(sw).

Total mass. In order to estimate the three last terms on the right-hand side
(RHS) of (2.19) it will be useful to first control the total mass

\int 
(m+ n) dx. For that

purpose, we integrate mass balance equations (1.1)1,2 over space and time:

\int 1

0

ndx =

\int 1

0

n0dx - 
\int t

0

\int 1

0

Qpndxdt(2.20)

and

\int 1

0

mdx =

\int 1

0

m0dx - 
\int t

0

\int 1

0

Qpmdxdt+

\int t

0

\int 1

0

QI\rho wdxdt

\leq 
\int 1

0

m0dx - 
\int t

0

\int 1

0

Qpmdxdt+

\int t

0

\int 1

0

QImdxdt+
Co

Cw

\int t

0

\int 1

0

QIndxdt

+ C

\int t

0

\int 1

0

sodxdt,

(2.21)

where C = C(Co, Cw, \~\rho w0, \~\rho o0) = \| QI\| \infty B < \infty with B = 1
Cw

max(x,t) | D  - Pc(sw)| .
For the inequality in (2.21) we make use of the estimate

(2.22) \rho w \leq m+
Co

Cw
n+ soB,

which can be derived from combining

(2.23) \rho w = (sw + so)\rho w = so\rho w +m

and

(2.24) Pc(sw) = Po  - Pw = Co\rho o  - Cw\rho w +D,

where D = Cw \~\rho w0  - Co\~\rho o0. Similarly, we can also get

(2.25) \rho o = n+
Cw

Co
m+

sw[Pc(sw) - D]

Co
\leq n+

Cw

Co
m+ swZ,

where Z = 1
Co

max(x,t) | Pc(sw) - D| .
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Now we combine (2.20) and (2.21)

\int 1

0

(m+ n)dx \leq C1 +

\int t

0

\int 1

0

\biggl( 
QIm+

Co

Cw
QIn

\biggr) 
dxdt - 

\int t

0

\int 1

0

Qp(m+ n)dxdt

+ C

\int t

0

\int 1

0

sodxdt

\leq C1 + C2

\int t

0

\int 1

0

(m+ n)dxdt+ C

\int t

0

\int 1

0

sodxdt,

(2.26)

where C1 =
\int 1

0
(m0 + n0)dx and C2 = max(x,t)

\bigm| \bigm| max\{ 1, Co

Cw
\} QI  - Qp

\bigm| \bigm| .
Using Gronwall's inequality in combination with (2.26), we can get

(2.27)

\int 1

0

(m+ n)dx \leq (C1 + CT )eC2T .

Further work to estimate  - \bfitI \bfone \bfitb . Now we can estimate the last term in (2.19)
as follows. First, we note that x ln(x) \leq x3/2, which gives

\int 1

0

QI\rho w ln(e\rho w)dx

\leq e
1
2 \| QI\| L\infty 

\int 1

0

\rho 
3
2
wdx \leq e

1
2 \| QI\| L\infty 

\bigm\| \bigm\| \bigm\| \rho 
1
2
w

\bigm\| \bigm\| \bigm\| 
L\infty (0,1)

\int 1

0

\rho wdx

\leq max

\Biggl\{ 
1,
C

3
2
o

C
3
2
w

\Biggr\} 
e

1
2 \| QI\| L\infty \| (m+ n+ C)

1
2 \| L\infty (0,1)

\int 1

0

(m+ n+ Cso)dx

\leq C3\| (m+ n+ C)
1
2 \| L\infty (0,1)

\int 1

0

(m+ n+ Cso)dx,

(2.28)

where C3 = max\{ 1, ( Co

Cw
)

3
2 \} e 1

2 (\| QI\| L\infty + 1) and we have used (2.22).

Using Sobolev inequality W 1,1(0, 1) \lhook \rightarrow L\infty (0, 1), we get

\| (m+ n+ C)
1
2 \| L\infty (0,1) \leq \| ((m+ n+ C)

1
2 )x\| L1(0,1) + \| (m+ n+ C)

1
2 \| L1(0,1)

\leq \| ((m+ n+ C)
1
2 )x\| L2(0,1) + \| (m+ n+ C)\| 

1
2

L1(0,1),
(2.29)

where we use H\"older's inequality in the second line. In particular,

\| ((m+ n+ C)
1
2 )x\| L2(0,1)

(2.30)

=

\biggl( \int 1

0

\Bigl( 1
2

mx + nx\surd 
m+ n+ C

\Bigr) 2
dx

\biggr) 1
2

\leq 
\biggl( \int 1

0

1

2

\Bigl( m2
x

m+ n+ C
+

n2x
m+ n+ C

\Bigr) 
dx

\biggr) 1
2

\leq 
\biggl( \int 1

0

1

2

\Bigl( m2
x

m
+
n2x
n

\Bigr) 
dx

\biggr) 1
2

\leq 1

2

\int 1

0

1

2

\biggl( 
m2

x

m
+
n2x
n

\biggr) 
dx+

1

2

=
1

4

\int 1

0

(mw2 + nv2)dx+
1

2

\leq 1

4
max

\biggl\{ 
1

\varepsilon w
,
1

\varepsilon o

\biggr\} \int 1

0

(\varepsilon wmw
2 + \varepsilon onv

2)dx+
1

2
, w =

mx

m
, v =

nx
n
,
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where the Cauchy--Schwarz inequality has been used. Combining (2.29) and (2.30)
with (2.28), where we also take advantage of (2.27), we find

\int 1

0

QI\rho w ln(e\rho w)dx

\leq C3\| (m+ n+ C)
1
2 \| L\infty (0,1)

\int 1

0

(m+ n+ Cso)dx

= C4

\int 1

0

(m+ n+ Cso)dx

\int 1

0

(\varepsilon wmw
2 + \varepsilon onv

2)dx+ C5

\int 1

0

(m+ n+ Cso)dx,

(2.31)

where C4 = C3

4 max\{ 1
\varepsilon w
, 1
\varepsilon o
\} and C5 = C3[

1
2 +

\bigl( 
C + (C1 + CT )eC2T

\bigr) 1
2 ].

For the two remaining source-related terms involved in the RHS of (2.19) we note
that \left\{ 

 - 
\int 1

0

Qpm ln(e\rho w)dx =  - 
\int 1

0

Qpm ln(\rho w)dx - 
\int 1

0

Qpmdx,

 - 
\int 1

0

Qpn ln(e\rho o)dx =  - 
\int 1

0

Qpn ln(\rho o)dx - 
\int 1

0

Qpndx.

(2.32)

Clearly, we need to control the terms
\int 
m ln(\rho w) and

\int 
n ln(\rho o) that also appear in

the two first terms on the RHS of (2.19). First, we see that
\int 1

0

Qpm

\int \rho w

\~\rho w

s - \~\rho w
s2

ds dx(2.33)

=

\int 1

0

Qpm
\Bigl[ 
ln(s) +

\~\rho w
s

\Bigr] \bigm| \bigm| \bigm| 
\rho w

\~\rho w

dx

=

\int 1

0

Qpm ln(\rho w) dx - ln(\~\rho w)

\int 1

0

Qpmdx+ \~\rho w

\int 1

0

Qpsw dx - 
\int 1

0

Qpmdx

and
\int 1

0

Qpn

\int \rho o

\~\rho o

s - \~\rho o
s2

ds dx(2.34)

=

\int 1

0

Qpn
\Bigl[ 
ln(s) +

\~\rho o
s

\Bigr] \bigm| \bigm| \bigm| 
\rho o

\~\rho o

dx

=

\int 1

0

Qpn ln(\rho o) dx - ln(\~\rho o)

\int 1

0

Qpndx+ \~\rho o

\int 1

0

Qpso dx - 
\int 1

0

Qpndx,

where we choose reference densities \~\rho w, \~\rho o to be related to the total initial masses m0

and n0, which are expressed by \~m0 = \~m(0) and \~n0 = \~n(0) according to the notation
in (2.1). That is, we set \~\rho w = \rho w( \~m0, \~n0) and \~\rho o = \rho o( \~m0, \~n0) which are positive
constants. In light of (2.32), (2.33), and (2.34), we have

 - Cw

\int 1

0

Qpm ln(e\rho w)dx - Co

\int 1

0

Qpn ln(e\rho o)dx

(2.35)

=  - Cw

\int 1

0

Qpm

\int \rho w

\~\rho w

s - \~\rho w
s2

ds dx - Cw ln(\~\rho w)

\int 1

0

Qpmdx+ Cw \~\rho w

\int 1

0

Qpsw dx

 - 2Cw

\int 1

0

Qpmdx - Co

\int 1

0

Qpn

\int \rho o

\~\rho o

s - \~\rho o
s2

ds dx - Co ln(\~\rho o)

\int 1

0

Qpndx
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+ Co\~\rho o

\int 1

0

Qpso dx - 2Co

\int 1

0

Qpndx

\leq 
\Bigl[ 
Cw| ln(\~\rho w)| +Co| ln(\~\rho o)| 

\Bigr] 
\| Qp\| L\infty 

\int 1

0

(m+ n) dx+

\int 1

0

Qp(Cw \~\rho wsw+Co\~\rho oso) dx,

where we have used the nonnegative sign of Qp and
\int \rho i

\~\rho i

s - \~\rho i

s2 ds (i = w, o) to throw

away some troublesome terms. Moreover, (2.31) and (2.35) allow us to estimate the
last three terms of the RHS of (2.19) as follows:

Cw

\int 1

0

QI\rho w ln(e\rho w)dx - Cw

\int 1

0

Qpm ln(e\rho w)dx - Co

\int 1

0

Qpn ln(e\rho o)dx

(2.36)

\leq CwC4

\int 1

0

(m+ n+ Cso)dx

\int 1

0

(\varepsilon wmw
2 + \varepsilon onv

2)dx+ C6

\int 1

0

(m+ n+ Cso)dx

+

\int 1

0

Qp(Cw \~\rho wsw + Co\~\rho oso) dx,

where C6 = CwC5 + [Cw| ln(\~\rho w)| + Co| ln(\~\rho o)| ]\| Qp\| L\infty .
Now we continue with a discussion of the two first terms on the RHS of (2.19).

Similar to (2.33) and (2.34), we have

\int 1

0

m

\int \rho w

\~\rho w

s - \~\rho w
s2

ds dx =

\int 1

0

m ln(\rho w) dx - ln(\~\rho w)

\int 1

0

mdx+\~\rho w

\int 1

0

sw dx - 
\int 1

0

mdx

(2.37)

and

\int 1

0

n

\int \rho o

\~\rho o

s - \~\rho o
s2

ds dx =

\int 1

0

n ln(\rho o) dx - ln(\~\rho o)

\int 1

0

ndx+ \~\rho o

\int 1

0

so dx - 
\int 1

0

ndx.

(2.38)

Hence we have

Cw
d

dt

\int 1

0

m ln(\rho w) dx = Cw
d

dt

\int 1

0

m

\int \rho w

\~\rho w

s - \~\rho w
s2

ds dx - Cw \~\rho w
d

dt

\int 1

0

sw dx(2.39)

+ Cw ln(e\~\rho w)
d

dt

\int 1

0

mdx

and

Co
d

dt

\int 1

0

n ln(\rho o) dx = Co
d

dt

\int 1

0

n

\int \rho o

\~\rho o

s - \~\rho o
s2

ds dx - Co\~\rho o
d

dt

\int 1

0

so dx(2.40)

+ Co ln(e\~\rho o)
d

dt

\int 1

0

ndx.

Combining (2.19) with (2.39), and (2.40), we see that

 - I1b +
d

dt

\int 1

0

\Phi (sw) dx

(2.41)

= Co
d

dt

\int 1

0

n ln(\rho o) dx+ Cw
d

dt

\int 1

0

m ln(\rho w) dx+ Co\~\rho o0
d

dt

\int 1

0

so dx

+ Cw \~\rho w0
d

dt

\int 1

0

sw dx+ Co

\int 1

0

Qpn ln(e\rho o)dx
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+ Cw

\int 1

0

Qpm ln(e\rho w)dx - Cw

\int 1

0

QI\rho w ln(e\rho w)dx

= Cw
d

dt

\int 1

0

m

\int \rho w

\~\rho w

s - \~\rho w
s2

ds dx+ Co
d

dt

\int 1

0

n

\int \rho o

\~\rho o

s - \~\rho o
s2

ds dx

+ Cw ln(e\~\rho w)
d

dt

\int 1

0

mdx+ Co ln(e\~\rho o)
d

dt

\int 1

0

ndx

+ Co

\int 1

0

Qpn ln(e\rho o)dx+ Cw

\int 1

0

Qpm ln(e\rho w)dx - Cw

\int 1

0

QI\rho w ln(e\rho w)dx

+ Co[\~\rho o0  - \~\rho o]
d

dt

\int 1

0

so dx+ Cw[\~\rho w0  - \~\rho w]
d

dt

\int 1

0

sw dx.

Note that in view of (1.6), the last line of (2.41) gives us

Co[\~\rho o0  - \~\rho o]
d

dt

\int 1

0

so dx+ Cw[\~\rho w0  - \~\rho w]
d

dt

\int 1

0

sw dx

=  - Po(\~\rho o)
d

dt

\int 1

0

so dx - Pw(\~\rho w)
d

dt

\int 1

0

sw dx

=  - Po(\~\rho o)
d

dt

\int 1

0

so dx - Po(\~\rho o)
d

dt

\int 1

0

sw dx+ Pc(\~sw)
d

dt

\int 1

0

sw dx

= Pc(\~sw)
d

dt

\int 1

0

sw dx,

where \~\rho o, \~\rho w, and \~sw are related to each other by common initial total masses \~m0, \~n0 as
mentioned above. Consequently, we have that (i) \~\rho o = \rho o( \~m0, \~n0), \~\rho w = \rho w( \~m0, \~n0),
and \~sw = sw( \~m0, \~n0); (ii) Po(\~\rho o) = Pw(\~\rho w) + Pc(\~sw).

Hence, it follows from (2.41) that

I1b = - Cw
d

dt

\int 1

0

m

\int \rho w

\~\rho w

s - \~\rho w
s2

ds dx - Co
d

dt

\int 1

0

n

\int \rho o

\~\rho o

s - \~\rho o
s2

ds dx

(2.42)

 - d

dt

\int 1

0

[Pc(\~sw)sw  - \Phi (sw)] dx - Cw ln(e\~\rho w)
d

dt

\int 1

0

mdx - Co ln(e\~\rho o)
d

dt

\int 1

0

ndx

 - Co

\int 1

0

Qpn ln(e\rho o)dx - Cw

\int 1

0

Qpm ln(e\rho w)dx+ Cw

\int 1

0

QI\rho w ln(e\rho w)dx.

Inserting (2.42) in (2.16) we get

Cw
d

dt

\int 1

0

m

\int \rho w

\~\rho w

s - \~\rho w
s2

ds dx+ Co
d

dt

\int 1

0

n

\int \rho o

\~\rho o

s - \~\rho o
s2

ds dx

(2.43)

+
d

dt

\int 1

0

[Pc(\~sw)sw  - \Phi (sw)] dx+ Cw ln(e\~\rho w)
d

dt

\int 1

0

mdx

+ Co ln(e\~\rho o)
d

dt

\int 1

0

ndx+ Co

\int 1

0

Qpn ln(e\rho o)dx+ Cw

\int 1

0

Qpm ln(e\rho w)dx

150



VISCOUS TWO-PHASE FLOW 5117

+

\int 1

0

(\varepsilon wmu
2
wx + \varepsilon onu

2
ox) dx+

\int 1

0

\^k(uw  - uo)
2 dx+

\int 1

0

\^kwu
2
w dx+

\int 1

0

\^kou
2
o dx

=

\int 1

0

nguo dx+

\int 1

0

mguw dx+ Cw

\int 1

0

QI\rho w ln(e\rho w)dx.

Now we want to deal with the gravity related terms appearing on the RHS of
(2.43). Clearly, we can integrate in space the mass equations (1.1)1 and (1.1)2 as

\int 1

0

\int x

0

(m+n)t dy dx+

\int 1

0

\int x

0

(muw+nuo)x dy dx =

\int 1

0

\int x

0

(\rho wQI - mQp - nQp)dydx,

which implies that

\int 1

0

(gmuw + gnuo)dx =  - d

dt

\int 1

0

\int x

0

g(m+ n) dy dx(2.44)

+

\int 1

0

\int x

0

g(\rho wQI  - mQp  - nQp)dydx.

Therefore, we have

d

dt

\int 1

0

\Bigl[ 
Cwm

\int \rho w

\~\rho w

s - \~\rho w
s2

+ Con

\int \rho o

\~\rho o

s - \~\rho o
s2

\Bigr] 
ds dx

(2.45)

+
d

dt

\int 1

0

\Bigl[ 
Cw ln(e\~\rho w)m+ Co ln(e\~\rho o)n+ Pc(\~sw)sw  - \Phi (sw)

\Bigr] 
dx

+
d

dt

\int 1

0

\int x

0

g(m+ n) dy dx+

\int 1

0

\^k(uw  - uo)
2 dx

+

\int 1

0

\^kwu
2
w dx+

\int 1

0

\^kou
2
o dx+

\int 1

0

(\varepsilon wmu
2
wx + \varepsilon onu

2
ox) dx

= Cw

\int 1

0

QI\rho w ln(e\rho w)dx - Co

\int 1

0

Qpn ln(e\rho o)dx - Cw

\int 1

0

Qpm ln(e\rho w)dx

+

\int 1

0

\int x

0

g(\rho wQI  - mQp  - nQp)dydx

\leq CwC4

\int 1

0

(m+ n+ Cso)dx

\int 1

0

(\varepsilon wmw
2 + \varepsilon onv

2)dx+ C6

\int 1

0

(m+ n+ Cso)dx

+

\int 1

0

Qp(Cw \~\rho wsw + Co\~\rho oso) dx+ g\| QI\| L\infty max

\biggl\{ 
1,
C0

Cw

\biggr\} \int 1

0

(m+ n+ Cso)dx,

where we have used (2.36), the inequality (2.22), and that g > 0. Regarding the LHS
of (2.45), there is a concern about the sign of the integral

\int \Bigl[ 
Cw ln(e\~\rho w)m+ Co ln(e\~\rho o)n+ Pc(\~sw)sw  - \Phi (sw)

\Bigr] 
dx.

We now deal with this. First, it is clear from (2.2) that

\int 1

0

[Pc(\~sw)sw  - \Phi (sw)] dx \geq c0

\int 1

0

so dx.(2.46)
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Consequently, we note that (2.20) and (2.21) combined with (2.46) give for some
positive constant A to be chosen that

d

dt

\int 1

0

A(m+ n)dx \leq 
\int 1

0

A

\biggl( 
QIm+

Co

Cw
QIn+ Cso

\biggr) 
dx \leq Cmax

\int 1

0

\bigl( 
m+ n+ so

\bigr) 
dx

\leq Cmax

\int 1

0

\bigl[ 
m+ n+ Pc(\~sw)sw  - \Phi (sw)

\bigr] 
dx,

(2.47)

where Cmax = max\{ A\| QI\| L\infty 
x,t
, Co

Cw
A\| QI\| L\infty 

x,t
, CA

c0
\} for some positive constant A sat-

isfying

A > max\{ Cw| ln(e\~\rho w)| , Co| ln(e\~\rho o)| \} ,(2.48)

whose reason for that choice will become clear below.

A preliminary energy inequality. Adding (2.47) to (2.45) and introducing
the energy related quantity E(t) defined in (2.50) below gives after using (2.27)

d

dt
E(t) +

\int 1

0

\^k(uw  - uo)
2 dx+

\int 1

0

\^kwu
2
w dx+

\int 1

0

\^kou
2
o dx+

\int 1

0

(\varepsilon wmu
2
wx+\varepsilon onu

2
ox) dx

(2.49)

\leq CwC4

\int 1

0

(m+ n+ Cso)dx

\int 1

0

(\varepsilon wmw
2 + \varepsilon onv

2)dx

+ Cmax

\int 1

0

\bigl[ 
m+ n+ Pc(\~sw)sw  - \Phi (sw)

\bigr] 
dx

+

\biggl( 
C6 + g\| QI\| L\infty max

\biggl\{ 
1,
C0

Cw

\biggr\} \biggr) \int 1

0

(m+ n+ Cso)dx

+

\int 1

0

Qp(Cw \~\rho wsw + Co\~\rho oso) dx

=CwC4

\int 1

0

(m+ n+ Cso)dx

\int 1

0

(\varepsilon wmw
2 + \varepsilon onv

2)dx

+

\int 1

0

QpCw \~\rho wsw dx+

\int 1

0

QpCo\~\rho oso dx

+ Cmax

\int 1

0

\bigl[ 
Pc(\~sw)sw  - \Phi (sw)

\bigr] 
dx+

\biggl( 
C6 + g\| QI\| L\infty max

\biggl\{ 
1,
C0

Cw

\biggr\} \biggr) \int 1

0

(Cso)dx

+

\biggl( 
Cmax + C6 + g\| QI\| L\infty max

\biggl\{ 
1,
C0

Cw

\biggr\} \biggr) \int 1

0

\bigl( 
m+ n)dx

\leq CwC4

\Bigl[ 
(C1 + CT )eC2T + C

\Bigr] \int 1

0

(\varepsilon wmw
2 + \varepsilon onv

2)dx+ Cw \~\rho w

\int 1

0

Qp dx

+

\biggl[ 
Co\~\rho o\| Qp\| \infty 

c0
+ Cmax +

\biggl( 
C6 + g\| QI\| L\infty max

\biggl\{ 
1,
C0

Cw

\biggr\} \biggr) 
C

c0

\biggr] 

\times 
\int 1

0

\bigl[ 
Pc(\~sw)sw  - \Phi (sw)

\bigr] 
dx
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+

\biggl( 
Cmax + C6 + g\| QI\| L\infty max

\biggl\{ 
1,
C0

Cw

\biggr\} \biggr) 
max

\biggl\{ 
1

A+ Cw ln(e\~\rho w)
,

1

A+ Co ln(e\~\rho o)

\biggr\} 

\times 
\int 1

0

\Bigl[ \bigl( 
A+ Cw ln(e\~\rho w)

\bigr) 
m+

\bigl( 
A+ Co ln(e\~\rho o)

\bigr) 
n
\Bigr] 
dx

\leq CwC4

\Bigl[ 
(C1 + CT )eC2T + C

\Bigr] \int 1

0

(\varepsilon wmw
2 + \varepsilon onv

2)dx+ Cw \~\rho w

\int 1

0

Qp dx+ C7E(t),

where w = mx

m and v = nx

n and we also have used the relation (2.46) to estimate the
last term in the fourth and fifth lines of (2.49),

\int 1

0

QpCo\~\rho osodx \leq \| Qp\| \infty Co\~\rho o
c0

\int 1

0

[Pc(\~sw)sw  - \Phi (sw)]dx

and \int 1

0

Csodx \leq C

c0

\int 1

0

[Pc(\~sw)sw  - \Phi (sw)]dx.

For the last term in line 6, we use that
\int 
(m+n)dx \leq max\{ 1/\varepsilon 1, 1/\varepsilon 2\} 

\int 
(\varepsilon 1m+\varepsilon 2n)dx

for appropriate choices of \varepsilon 1 and \varepsilon 2. Note that the two integrals in lines 8 through
10 are contained in the definition of E(t), where we have introduced a constant C7 as
follows:

\left\{ 

    

C7 =

\biggl( 
Cmax + C6 + g\| QI\| L\infty max

\biggl\{ 
1,
C0

Cw

\biggr\} \biggr) 

\times max
\Bigl\{ 

1
A+Cw ln(e\~\rho w) ,

1
A+Co ln(e\~\rho o)

, C
c0

\Bigr\} 

+Cmax +
Co\~\rho o\| Qp\| \infty 

c0
,

E(t) =

\int 1

0

\biggl[ 
Cwm

\int \rho w

\~\rho w

s - \~\rho w
s2

+ Con

\int \rho o

\~\rho o

s - \~\rho o
s2

+ Pc(\~sw)sw

 - \Phi (sw) +

\int x

0

g(m+ n) dy

\biggr] 
dx

+

\int 1

0

\Bigl[ \bigl( 
A+ Cw ln(e\~\rho w)

\bigr) 
m+

\bigl( 
A+ Co ln(e\~\rho o)

\bigr) 
n
\Bigr] 
dx.

(2.50)

In view of (2.46) and the definition of A expressed by (2.48), it follows that E(t)
is nonnegative.

Remark 2.5. The energy inequality (2.49) reflects the additional complexity in-
troduced by the source terms QI and Qp. In particular, on the RHS of the inequlity
we find both the appearance of the energy E(t), source-dependent terms, as well as
the higher order terms w = mx

m and v = nx

n . This contrasts with the situation without
source terms as reflected by Lemma 2.1 in [29], where the energy E(t) is controlled
by the initial energy E(t = 0).

(b) Higher order regularity of mass ``\bfitm "" and ``\bfitn .""

Lemma 2.1. The following estimates hold for any t \in [0, T \ast ):

E(t) +

\int 1

0

1

2
[\varepsilon wmw

2 + \varepsilon onv
2] dx \leq K1, w =

mx

m
, v =

nx
n
,
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and
\int t

0

\int 1

0

\Bigl( 
so[(\rho 

1/2
o )x]

2 + sw[(\rho 
1/2
w )x]

2 + s2wx

\Bigr) 
dxdt+

\int t

0

\int 1

0

(\varepsilon wmu
2
wx + \varepsilon onu

2
ox) dx dt

+

\int t

0

\int 1

0

\Bigl[ 
\^k(uw  - uo)

2 + \^kwu
2
w + \^kou

2
o

\Bigr] 
dx dt \leq C(T ),

for some positive constant C(T ), where E(t) is given by (2.50)2 and K1 by

K1 = eC11T
\Bigl[ 
E(0) +

\int 1

0

1

2
[\varepsilon wm0w

2
0 + \varepsilon on0v

2
0 ] dx+ Cw \~\rho w

\int T

0

\int 1

0

Qp dx ds
\Bigr] 
,

and C11 is given by (2.75).

Proof. Note that from (1.1)2 we get the following reformulated equation after
expanding the advective term and taking a derivative in space:

(mx)t + (mxuw)x + (mQp  - \rho wQI)x =  - (muwx)x.(2.51)

Note the appearance of the viscosity term on the RHS of (2.51). We have from (1.1)4

swPwx =  - \^kwuw  - \^k(uw  - uo) + \varepsilon w(muwx)x +mg.(2.52)

Combining (2.51) with (2.52) we arrive at

(\varepsilon wmx)t + (\varepsilon wmxuw)x + \varepsilon w(mQp  - \rho wQI)x =  - \varepsilon w(muwx)x

=  - swPwx  - \^kwuw  - \^k(uw  - uo) +mg.

This is the same as

[\varepsilon wmw]t + [\varepsilon wmwuw]x + \varepsilon w(mQp  - \rho wQI)x =  - swPwx  - \^kwuw  - \^k(uw  - uo) +mg

for
w =

mx

m
,

which clearly, by using (1.1)2, can be rewritten as

\varepsilon wmwt + \varepsilon wmuwwx + \varepsilon w(mQp  - \rho wQI)x + \varepsilon ww(\rho wQI  - mQp)(2.53)

=  - swPwx  - \^kwuw  - \^k(uw  - uo) +mg.

Now, we test (2.53) with w and combine it with (1.1)2 and (1.2), which leads us to

\varepsilon w
2

d

dt

\int 1

0

mw2 dx+
\varepsilon w
2

\int 1

0

(\rho wQI  - mQp)w
2dx+

\int 1

0

\varepsilon ww(mQp  - \rho wQI)xdx(2.54)

=  - 
\int 1

0

swPwxw dx - 
\int 1

0

\^kwuww dx - 
\int 1

0

\^k(uw  - uo)w dx+

\int 1

0

mgw dx.

Similarly, for the oil phase we obtain

\varepsilon o
2

d

dt

\int 1

0

nv2 dx+
\varepsilon o
2

\int 1

0

( - nQp)v
2dx+

\int 1

0

\varepsilon ov(nQp)xdx(2.55)

=  - 
\int 1

0

soPoxv dx - 
\int 1

0

\^kouov dx+

\int 1

0

\^k(uw  - uo)v dx+

\int 1

0

ngv dx

with
v =

nx
n
.
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Source-related terms. Regarding one of the source-related terms in (2.54) we
estimate as follows:

\int 1

0

\varepsilon ww(mQp)xdx = \varepsilon w

\int 1

0

\biggl( 
mw2Qp +

mx\surd 
m

\surd 
mQpx

\biggr) 
dx(2.56)

\leq \varepsilon w

\int 1

0

mw2Qpdx+
1

2
\varepsilon w

\int 1

0

mw2dx+
1

2
\varepsilon w

\int 1

0

mQ2
pxdx.

Similarly, for one of the source-related terms in (2.55) we have

\int 1

0

\varepsilon ov(nQp)xdx = \varepsilon o

\int 1

0

\biggl( 
nv2Qp +

nx\surd 
n

\surd 
nQpx

\biggr) 
dx(2.57)

\leq \varepsilon o

\int 1

0

nv2Qpdx+
1

2
\varepsilon o

\int 1

0

nv2dx+
1

2
\varepsilon o

\int 1

0

nQ2
pxdx.

By Cauchy inequality (with \varepsilon = 1/4), we can estimate another source-related term in
(2.54) as follows:

\int 1

0

\varepsilon ww(\rho wQI)xdx =

\int 1

0

\varepsilon ww[\rho w(QI)x + (\rho w)xQI ]dx

(2.58)

\leq \varepsilon w
2

\int 1

0

\rho wQIw
2dx+ \varepsilon w

\int 1

0

\rho w
| (QI)x| 2
QI

dx+ \varepsilon w

\int 1

0

| (\rho w)x| 2
\rho w

QIdx

\leq \varepsilon w
2

\int 1

0

\rho wQIw
2dx

+ \varepsilon w max

\biggl\{ 
1,
Co

Cw

\biggr\} \bigm\| \bigm\| \bigm\| | (QI)x| 2
QI

\bigm\| \bigm\| \bigm\| 
L\infty 

\int 1

0

(m+ n+ Cso)dx

+ \varepsilon w

\int 1

0

| (\rho w)x| 2
\rho w

QIdx,

where we have used (2.22). We now focus on how to estimate the last term in (2.58).
Recalling (2.24), we have

\rho w = sw\rho w + so\rho w, \rho w =
Co

Cw
\rho o +

D  - Pc(sw)

Cw
,

where D = Cw \~\rho w0  - Co\~\rho o0. Thus we have

\rho w = m+
Co

Cw
n+

so[D  - Pc(sw)]

Cw
,(2.59)

which implies that

(\rho w)x =mx +
Co

Cw
nx +

(so)x[D  - Pc(sw)]

Cw
 - soP

\prime 
c(sw)(sw)x
Cw

(2.60)

=mx +
Co

Cw
nx  - (sw)x

D  - Pc(sw) + soP
\prime 
c(sw)

Cw
.
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Substituting (2.60) into the last term on the RHS of (2.58), we have

\varepsilon w

\int 1

0

| (\rho w)x| 2
\rho w

QIdx \leq 4\varepsilon w

\int 1

0

| mx| 2
\rho w

QIdx+ 4\varepsilon w

\biggl( 
Co

Cw

\biggr) 2 \int 1

0

| nx| 2
\rho w

QIdx

+ 4\varepsilon w

\int 1

0

| (sw)x| 2
\rho w

QI

\biggl[ 
D  - Pc(sw) + soP

\prime 
c(sw)

Cw

\biggr] 2
dx.

In view of (2.4) it is clear from (2.59) that

\rho w \geq Co

Cw
n+m.

Therefore

\varepsilon w

\int 1

0

| (\rho w)x| 2
\rho w

QIdx \leq 4\varepsilon w\| QI\| L\infty 

\int 1

0

mw2dx+ 4\varepsilon w\| QI\| L\infty 

\biggl( 
Co

Cw

\biggr) \int 1

0

nv2dx

+ 4\varepsilon w

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\Biggl( 
\sqrt{} 
QI

D  - Pc(sw) + soP
\prime 
c(sw)

Cw
\surd 
\rho w

\Biggr) 2\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty 

\int 1

0

(sw)
2
xdx.

(2.61)

Consequently, from (2.58) we obtain

\int 1

0

\varepsilon ww(\rho wQI)xdx(2.62)

\leq \varepsilon w
2

\int 1

0

\rho wQIw
2dx+ \varepsilon w max

\biggl\{ 
1,
Co

Cw

\biggr\} \bigm\| \bigm\| \bigm\| | (QI)x| 2
QI

\bigm\| \bigm\| \bigm\| 
L\infty 

\int 1

0

(m+ n+ Cso)dx

+ 4\varepsilon w\| QI\| L\infty 

\int 1

0

mw2dx+ 4\varepsilon w\| QI\| L\infty 

\biggl( 
Co

Cw

\biggr) \int 1

0

nv2dx

+ 4\varepsilon w

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\biggl( \sqrt{} 
QI

D  - Pc(sw) + soP
\prime 
c(sw)

Cw
\surd 
\rho w

\biggr) 2
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty 

\int 1

0

(sw)
2
xdx.

Next, we focus on the terms appearing on the RHS of (2.54):

 - 
\int 1

0

swPwxw dx =  - 
\int 1

0

swPwx

\Bigl( mx

m

\Bigr) 
dx := Jw,1.

We note that

Jw,1 =  - 
\int 1

0

swPwx
mx

m
dx =  - 

\int 1

0

swxPwx dx - 
\int 1

0

swPwx
sw\rho wx

m
dx(2.63)

=  - 
\int 1

0

swxPwx dx - 4Cw

\int 1

0

sw[(\rho 
1/2
w )x]

2 dx.

Similarly, for Jo,1 associated with (2.55)

Jo,1 =  - 
\int 1

0

soPox
nx
n
dx =  - 

\int 1

0

soxPox dx - 
\int 1

0

soPox
\alpha o\rho ox
n

dx(2.64)

=  - 
\int 1

0

soxPox dx - 4Co

\int 1

0

so[(\rho 
1/2
o )x]

2 dx.
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A preliminary higher order energy inequality. To conclude, we see that by
summing (2.54) and (2.55), using (2.63) and (2.64), we get

1

2

d

dt

\int 1

0

[\varepsilon wmw
2 + \varepsilon onv

2] dx+ 4Co

\int 1

0

so[(\rho 
1/2
o )x]

2 dx+ 4Cw

\int 1

0

sw[(\rho 
1/2
w )x]

2 dx

+
\varepsilon w
2

\int 1

0

\rho wQIw
2dx =

\int 1

0

s2wxP
\prime 
c(sw) dx+

\int 1

0

mgw dx+

\int 1

0

ngv dx

 - 
\int 1

0

\^k(uw  - uo)w dx+

\int 1

0

\^k(uw  - uo)v dx - 
\int 1

0

\^kwuww dx - 
\int 1

0

\^kouov dx

+
\varepsilon w
2

\int 1

0

Qpmw
2dx+

\varepsilon o
2

\int 1

0

Qpnv
2dx

 - 
\int 1

0

\varepsilon ww(mQp  - \rho wQI)xdx - 
\int 1

0

\varepsilon ov(nQp)xdx,

(2.65)

where we again have used Pc(sw) = Po - Pw. Now, we focus on estimating the source-
related terms appearing in the last line of (2.65). In particular, by referring to (2.56),
(2.57), and (2.62), we can estimate the last five terms in (2.65) as follows:

d

dt

\int 1

0

\biggl[ 
\varepsilon wmw

2

2
+
\varepsilon onv

2

2

\biggr] 
dx+ 4Co

\int 1

0

so[(\rho 
1/2
o )x]

2 dx(2.66)

+ 4Cw

\int 1

0

sw[(\rho 
1/2
w )x]

2 dx - 
\int 1

0

s2wxP
\prime 
c(sw) dx

\leq  - 
\int 1

0

\^k(uw  - uo)
\Bigl( mx

m

\Bigr) 
dx+

\int 1

0

\^k(uw  - uo)
\Bigl( nx
n

\Bigr) 
dx

 - 
\int 1

0

\^kwuw

\Bigl( mx

m

\Bigr) 
dx - 

\int 1

0

\^kouo

\Bigl( nx
n

\Bigr) 
dx

+

\int 1

0

mxg dx+

\int 1

0

nxg dx+

\biggl( 
3

2
\| Qp\| L\infty +

1

2

+4max

\biggl\{ 
1,
Co

Cw

\biggr\} 
\| QI\| L\infty 

\biggr) \int 1

0

\bigl( 
\varepsilon wmw

2 + \varepsilon onv
2
\bigr) 
dx

+ C9

\int 1

0

\bigl[ 
m+ n+ Pc(\~sw)sw  - \Phi (sw)

\bigr] 
dx

+ 4\varepsilon w

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\biggl( \sqrt{} 
QI

D  - Pc(sw) + soP
\prime 
c(sw)

Cw
\surd 
\rho w

\biggr) 2
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty 

\int 1

0

(sw)
2
xdx

:= Kw1 +Ko1 +Kw2 +Ko2 +Kw3 +Ko3

+ C8

\int 1

0

\bigl( 
\varepsilon wmw

2 + \varepsilon onv
2
\bigr) 
dx+ C9

\int 1

0

\bigl[ 
m+ n+ Pc(\~sw)sw  - \Phi (sw)

\bigr] 
dx

+ C10

\int 1

0

(sw)
2
xdx,

where

Kw1 =  - 
\int 1

0

\^k(uw  - uo)w dx, Kw2 =  - 
\int 1

0

\^kwuww dx, Kw3 =

\int 1

0

mxgdx
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(similarly for Ko1, Ko2, and Ko3) and

C8 =
3

2
\| Qp\| L\infty +

1

2
+ 4max

\biggl\{ 
1,
Co

Cw

\biggr\} 
\| QI\| L\infty ,

C9 = max

\biggl\{ 
1

2
\varepsilon w\| Q2

px\| L\infty ,
1

2
\varepsilon o\| Q2

px\| L\infty 

\biggr\} 

+max

\biggl\{ 
\varepsilon w

\bigm\| \bigm\| \bigm\| | (QI)x| 2
QI

\bigm\| \bigm\| \bigm\| 
L\infty 

, \varepsilon w
Co

Cw

\bigm\| \bigm\| \bigm\| | (QI)x| 2
QI

\bigm\| \bigm\| \bigm\| 
L\infty 

,
C

c0

\biggr\} 
,

C10 =4\varepsilon w

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\biggl( \sqrt{} 
QI

D  - Pc(sw) + soP
\prime 
c(sw)

Cw
\surd 
\rho w

\biggr) 2
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty 

.

Note that the first term on the RHS of (2.62), \varepsilon w
2

\int 1

0
\rho wQIw

2dx, has been adsorbed
by a term of the same form appearing in the first line of (2.65). Note also that we
use (2.5) to ensure that C9 is a positive constant. Similarly, we use the fact that
Cw\rho w \geq D  - Pc(sw) \geq D  - supPc(sw) > 0, as seen from the relation above (2.59)
and (2.4), to conclude that C10 is a positive constant since

C10 = 4\varepsilon w
\| QI\| \infty 
Cw

\bigm\| \bigm\| \bigm\| (D  - Pc(sw) + soP
\prime 
c(sw))

2

Cw\rho w

\bigm\| \bigm\| \bigm\| 
\infty 

(2.67)

\leq 8\varepsilon w
\| QI\| \infty 
Cw

\Bigl( 
\| D  - Pc\| \infty +

P \prime 
c(sw)

2

D  - Pc(sw)

\Bigr) 
\leq 16\varepsilon w

\| QI\| \infty 
Cw

\| D  - Pc\| \infty ,

where we have used (2.7) (last inequality). Next, we estimate as follows by relying on
Cauchy's inequality:

Kw3 =

\int 1

0

mxgdx = g

\int 1

0

mx\surd 
m

\surd 
mdx(2.68)

\leq g

\int 1

0

m2
x

m
dx+

1

4
g

\int 1

0

mdx = g

\int 1

0

mw2dx+
1

4
g

\int 1

0

mdx

and

Ko3 =

\int 1

0

nxgdx = g

\int 1

0

nx\surd 
n

\surd 
ndx(2.69)

\leq g

\int 1

0

n2x
n
dx+

1

4
g

\int 1

0

ndx = g

\int 1

0

nv2dx+
1

4
g

\int 1

0

ndx.

In the following we make use of the functional form of the interaction coefficients \^ko,
\^ko, and \^k as expressed in (2.8).

Kw1 \leq 1

4

\int 1

0

\^k(uw  - uo)
2dx+ Iwo

\int 1

0

m2
x

m
dx =

1

4

\int 1

0

\^k(uw  - uo)
2dx+ Iwo

\int 1

0

mw2dx,

(2.70)

Ko1 \leq 1

4

\int 1

0

\^k(uw  - uo)
2dx+ Iwo

\int 1

0

n2x
n
dx =

1

4

\int 1

0

\^k(uw  - uo)
2dx+ Iwo

\int 1

0

nv2dx,

(2.71)

Kw2 \leq 1

4

\int 1

0

\^kwu
2
wdx+ Iw

\int 1

0

m2
x

m
dx =

1

4

\int 1

0

\^kwu
2
wdx+ Iw

\int 1

0

mw2dx,(2.72)

and

Ko2 \leq 1

4

\int 1

0

\^kou
2
odx+ Io

\int 1

0

n2x
n
dx =

1

4

\int 1

0

\^kou
2
odx+ Io

\int 1

0

nv2dx.(2.73)

158



VISCOUS TWO-PHASE FLOW 5125

A combined low and high order energy inequality. Then we sum the
energy estimate (2.49) and Bresch--Desjardin estimate (2.66) and combine the result-
ing inequality with the estimates (2.68)--(2.73) and obtain

d

dt

\Bigl[ 
E(t) +

\int 1

0

1

2
(\varepsilon wmw

2 + \varepsilon onv
2) dx

\Bigr] 
(2.74)

+ 4Co

\int 1

0

so[(\rho 
1/2
o )x]

2 dx+ 4Cw

\int 1

0

sw[(\rho 
1/2
w )x]

2 dx - 
\int 1

0

s2wx(P
\prime 
c(sw) + C10) dx

+

\int 1

0

(\varepsilon wmu
2
wx + \varepsilon onu

2
ox) dx+

1

2

\int 1

0

\^k(uw  - uo)
2 dx+

3

4

\int 1

0

\^kwu
2
w dx

+
3

4

\int 1

0

\^kou
2
o dx

\leq 
\Biggl( 
(g + Iwo + Iw + Io)max

\biggl\{ 
1

\varepsilon w
,
1

\varepsilon o

\biggr\} 
+ C8

+ CwC4

\Bigl[ 
(C1 + CT )eC2T + C

\Bigr] \Biggr) \int 1

0

(\varepsilon wmw
2 + \varepsilon onv

2)dx

+

\biggl( 
C9 +

1

4
g

\biggr) \int 1

0

\bigl[ 
m+ n+ Pc(\~sw)sw  - \Phi (sw)

\bigr] 
dx+ C7E(t) + Cw \~\rho w

\int 1

0

Qp dx

\leq C11

\Bigl[ 
E(t) +

\int 1

0

1

2
(\varepsilon wmw

2 + \varepsilon onv
2) dx

\Bigr] 
+ Cw \~\rho w

\int 1

0

Qp dx,

where we make use of the fact that P \prime 
c(sw) + C10 < 0 for all sw \in [0, 1] which is

guaranteed through (2.7) (first inequality) combined with (2.67). Moreover, we have
introduced the notation

C11 =2

\biggl( 
(g + Iwo + Iw + Io)max

\biggl\{ 
1

\varepsilon w
,
1

\varepsilon o

\biggr\} 
+ C8 + CwC4

\Bigl[ 
(C1 + CT )eC2T + C

\Bigr] \biggr) 
(2.75)

+

\biggl( 
C9 +

1

4
g

\biggr) 
max

\biggl\{ 
1

A+ Cw ln(e\~\rho w)
,

1

A+ Co ln(e\~\rho o)
, 1

\biggr\} 
+ C7.

In other words, we have by application of Gronwall's inequality

E(t) +

\int 1

0

1

2
[\varepsilon wmw

2 + \varepsilon onv
2] dx(2.76)

\leq eC11T
\Bigl[ 
E(0) +

\int 1

0

1

2
[\varepsilon wm0w

2
0 + \varepsilon on0v

2
0 ] dx+ Cw \~\rho w

\int T

0

\int 1

0

Qp dx ds
\Bigr] 

:= K1

for t \in [0, T \ast ), where

E(t) =

\int 1

0

\Bigl[ 
Cwm

\int \rho w

\~\rho w

s - \~\rho w
s2

+ Con

\int \rho o

\~\rho o

s - \~\rho o
s2

+ Pc(\~sw)sw  - \Phi (sw)

+

\int x

0

g(m+ n) dy
\Bigr] 
dx+

\int 1

0

\Bigl[ \bigl( 
A+ Cw ln(e\~\rho w)

\bigr) 
m

+
\bigl( 
A+ Co ln(e\~\rho o)

\bigr) 
n
\Bigr] 
dx.
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Consequently, it follows from (2.74) and (2.76) that

\int t

0

\int 1

0

\Bigl( 
so[(\rho 

1/2
o )x]

2 + sw[(\rho 
1/2
w )x]

2 + s2wx

\Bigr) 
dxdt+

\int t

0

\int 1

0

(\varepsilon wmu
2
wx + \varepsilon onu

2
ox) dxdt

(2.77)

+

\int t

0

\int 1

0

\Bigl[ 
\^k(uw  - uo)

2 + \^kwu
2
w + \^kou

2
o

\Bigr] 
dxdt \leq C12(T ).

In view of Lemma 2.1 and (2.27) it follows that
\surd 
m,

\surd 
n \in H1(0, 1). Combined

with the Sobolev inequality H1(0, 1) \lhook \rightarrow C([0, 1]), we have the following corollary.

Corollary 2.1. It holds that

\left\{ 
m(x, t) + n(x, t) \leq C(T ) for any (x, t) \in [0, 1]\times [0, T \ast ),
\int 1

0

(m2
x + n2x) dx \leq C(T ) for any t \in [0, T \ast ).

(2.78)

(c) Upper and lower bounds of density and related quantities.

Lemma 2.2. For any (x, t) \in [0, 1]\times [0, T \ast ), it holds that

\left\{ 
n(x, t) \leq \rho o \leq C(T ),

m(x, t) \leq \rho w \leq C(T ).
(2.79)

We omit the proof and refer to [29, Lemma 2.3] for details.

Corollary 2.2. It holds that for any (x, t) \in [0, 1]\times [0, T \ast )

\left\{ 
m(x, t) \geq 1

2
\~m0e

 - 
\int T
0

sup
x\in [0,1]

| Qp| ds
,

n(x, t) \geq 1

2
\~n0e

 - 
\int T
0

sup
x\in [0,1]

| Qp| ds
,

(2.80)

provided that

K1 \leq min
\Bigl\{ \varepsilon w

4
\~m0e

 - 
\int T
0

sup
x\in [0,1]

| Qp| ds
,
\varepsilon o
4
\~n0e

 - 
\int T
0

sup
x\in [0,1]

| Qp| ds\Bigr\} 
.(2.81)

Proof.

| m(x, t) - \~m| =
\bigm| \bigm| \bigm| \bigm| 
\int 1

0

[m(x, t) - m(y, t)] dy

\bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| 
\int 1

0

\int x

y

m\xi (\xi , t) d\xi dy

\bigm| \bigm| \bigm| \bigm| 

\leq 
\int 1

0

| mx(x, t)| dx =

\int 1

0

\sqrt{} 
m(x, t)

\bigm| \bigm| \bigm| \bigm| \bigm| 
mx(x, t)\sqrt{} 
m(x, t)

\bigm| \bigm| \bigm| \bigm| \bigm| dx

\leq 
\biggl( \int 1

0

m(x, t) dx

\biggr) 1
2
\biggl( \int 1

0

| mx(x, t)| 2
m

dx

\biggr) 1
2

\leq 
\biggl( 

\~mK1

\varepsilon w

\biggr) 1
2

,
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in light of (2.76). Therefore

m(x, t) \geq 
\int 1

0

m(x, t)dx - 
\biggl( 

\~mK1

\varepsilon w

\biggr) 1
2

.

Integrating the water mass balance equation (1.1)2 gives

\~m(t) =

\int 1

0

m(x, t)dx =

\int 1

0

m0(x)dx - 
\int t

0

\int 1

0

mQpdxdt+

\int t

0

\int 1

0

\rho wQIdxdt.

We can get

m(x, t) \geq 
\int 1

0

m0(x)dx - 
\int t

0

\int 1

0

mQpdxdt+

\int t

0

\int 1

0

\rho wQIdxdt - 
\biggl( 

\~mK1

\varepsilon w

\biggr) 1
2

.

In order to get the lower limit of \~m, we consider the integration of water mass
balance equation (1.1)2 and can get the following inequality:

d

dt

\int 1

0

m(x, t)dx \geq  - 
\int 1

0

mQpdx \geq  - sup
x\in [0,1]

| Qp| \~m(t).

Therefore

d

dt
\~m(t) + sup

x\in [0,1]

| Qp| \~m(t) \geq 0,

\~m(t)e

\int t
0

sup
x\in [0,1]

| Qp| ds
\geq \~m0,

\~m(t) \geq \~m0e
 - 

\int T
0

sup
x\in [0,1]

| Qp| ds
.

Letting

K1 \leq \varepsilon w
4

\~m0e
 - 

\int T
0

sup
x\in [0,1]

| Qp| ds
,

we have

m(x, t) \geq [ \~m(t)]
1
2

\Bigl[ 
[ \~m(t)]

1
2  - 

\biggl( 
K1

\varepsilon w

\biggr) 1
2 \Bigr] 

\geq 1

2
\~m0e

 - 
\int T
0

sup
x\in [0,1]

| Qp| ds
.

Similarly, letting

K1 \leq \varepsilon o
4
\~n0e

 - 
\int T
0

sup
x\in [0,1]

| Qp| ds
,

we get the positive lower bound of n.
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(d) High-order estimates of volume fraction and density.

Lemma 2.3. The following estimate holds:

\int 1

0

\bigl[ 
(sw)

2
x + (so)

2
x + (\rho w)

2
x + (\rho o)

2
x

\bigr] 
dx \leq C(T )(2.82)

for any t \in [0, T \ast ).

Lemma 2.4. For any t \in [0, T\ast ), it holds that

\int 1

0

\bigl[ 
(uw)

2
x + (uo)

2
x

\bigr] 
dx \leq C(T ).(2.83)

Corollary 2.3. For any t \in [0, T \ast ), it holds that

\int 1

0

\bigl[ 
(uw)

2
xx + (uo)

2
xx

\bigr] 
dx \leq C(T ).(2.84)

We refer to [29] for more details regarding the proofs of Lemma 2.3, Lemma 2.4,
and Corollary 2.3 since these essentially are the same.

Corollary 2.4. For any t \in [0, T \ast ), it holds that

\int 1

0

\Bigl[ 
m2

t + n2t + (sw)
2
t + (so)

2
t + (\rho w)

2
t + (\rho o)

2
t

\Bigr] 
dx \leq C(T ).(2.85)

Proof. By using the mass equation of water (1.7)1, the Cauchy inequality, (2.78),
(2.79), and (2.83), we have

\int 1

0

m2
t dx \leq 2

\int 1

0

\Bigl[ 
m2(uw)

2
x +m2

xu
2
w

\Bigr] 
dx+ 4

\int 1

0

m2Q2
pdx+ 4

\int 1

0

\rho 2wQ
2
Idx

(2.86)

\leq 2\| m\| 2L\infty 

\int 1

0

(uw)
2
x dx+ 2\| uw\| 2L\infty 

\int 1

0

m2
x dx+ 4\| m\| 2L\infty 

\int 1

0

Q2
pdx

+ 4\| \rho w\| 2L\infty 

\int 1

0

Q2
Idx

\leq C(T ).

Similarly we get

\int 1

0

n2t dx \leq C(T ).(2.87)

We omit the details here since the rest of the proof can be found in [29].

With the above estimates, we get (2.15). Then we have completed the proof of
Theorem 2.2.

3. Numerical results. In the following numerical tests a 1D reservoir layer
is considered with one injection well at the center of the layer and two production
wells at the left and right sides as shown in Figure 3.1. The volume rate Qp of

each production well is assumed to be half of the injection rate QI at the center
of the layer. Two scenarios are investigated, respectively, with the water-oil system
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Fig. 3.1. 1D inclined reservoir. Water is pumped into the injection well to displace reservoir
fluids (90\% oil or gas and 10\% water, initially) and its injection rate is double the production rate
at two sides of the reservoir layer.

and the water-gas system. The so-called water-oil model is as follows: pump water
into the injection well and displace reservoir fluids (90\% oil and 10\% water, initially)
to the production wells. Similarly, the water-gas model is the situation in which
water is injected to displace reservoir fluids (90\% gas and 10\% water, initially) to the
production wells. For a complete description of the discrete schemes we use for the
incompressible and compressible cases we refer to [29]. They are both based on a
finite difference approach.

Initial and boundary conditions. The reservoir layer is assumed to be with
10\% water and 90\% oil or gas, initially. For the water-oil model,

(3.1) sw(x, t = 0) = 0.1, so = 0.9,

and for the water-gas model,

(3.2) sw(x, t = 0) = 0.1, sg = 0.9.

In addition, a reference pressure PwL is given to the compressible model at the left
boundary of the reservoir layer, initially,

(3.3) PwL(x = 0, t = 0) = 105 Pa.

For the water-oil (-gas) model we assume a closed reservoir, i.e.,
(3.4)

uw(x = 0, t) = uw(x = L, t) = 0, ui(x = 0, t) = ui(x = L, t) = 0, i = o, g.

Specially for the incompressible model, we give a reference pressure PwL at the left
boundary of the layer for the entire period of tests,

(3.5) PwL(x = 0, t) = 105Pa.

Source and interaction terms. Water is injected in the well placed in the
center and reservoir fluids (water and oil/gas) are displaced to the left and the right
sides of the reservoir layer. We assume that QI(x) and Qp(x) take the form

QI(x) =
QI

\sigma 

\biggl\{ 
1 if | x - xI | \leq \sigma /2,
0 otherwise,

Qp(x) =
Qp

\sigma 

\biggl\{ 
1 if | x - xpi| \leq \sigma /2,
0 otherwise,

(3.6)

where (i = 1, 2) and QI = 0.495m3/day and Qp = 0.2475m3/day. The width of the
small region associated with the injector and producer is \sigma . Note that the expression
suggested in (2.6) represents a regularized version of (3.6). In the numerical scheme
\sigma = \Delta x.
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The model should be armed with appropriate functional correlations for fluid-rock
resistance force \^ki and fluid-fluid drag force \^k. We follow [28] and use correlations of
the following form:

(3.7) \^kw = Iw
\mu w

K
\phi s\alpha w,

\^ko = Io
\mu o

K
\phi (1 - sw)

\beta , \^k = I
\mu w\mu o

K
\phi sw(1 - sw),

where \mu i is fluid viscosity, K absolute permeability, and Iw, Io, I are parameters that
characterize the strength of the interaction force.

Expressions for relative permeabilities and fractional flow function. We
can relate the model described in (1.1) to more standard formulations commonly used
in reservoir modeling [41], which involve flow curves such as relative permeabilities
kri(sw) and water fractional flow function fw(sw). It is sufficient to impose the sim-
plifying assumptions that the fluids are incompressible, \rho w = \~\rho w0 and \rho o = \~\rho o0, and
viscosity terms are negligible, \varepsilon w = \varepsilon o = 0. First, we then can show that (1.1) is
reduced to (see [28] for details)

(3.8) (\phi sw)t + (Uw)x =  - swQp +QI ,

with Darcy velocity Uw = \phi swuw given by
(3.9)

Uw = UT
\^fw(sw)+W (sw)\Delta \rho g sin \theta +W (sw)Pc(sw)x, (UT )x = (Uw+Uo)x = QI - Qp,

with

\^fw(sw) =
\^\lambda w

\^\lambda w + \^\lambda o
=

s2w
\^ko + sw\^k

s2w
\^ko + (1 - sw)2\^kw + \^k

,(3.10)

W (sw) = \^fw\^\lambda o  - 
sosw\^k\phi 

\^ko\^kw + \^k(\^ko + \^kw)
=

s2w(1 - sw)
2\phi 

s2w
\^ko + (1 - sw)2\^kw + \^k

,

where we use the following notation for generalized phase mobilities \^\lambda w and \^\lambda o:

\^\lambda w(sw) =
s2w

\^ko + sw\^k

\^ko\^kw + \^k(\^ko + \^kw)
\phi ,(3.11)

\^\lambda o(sw) =
s2o
\^kw + so\^k

\^ko\^kw + \^k(\^ko + \^kw)
\phi .

With these assumptions, relative permeabilities (see Figure 3.2 right) in the water-oil
model can be expressed as follows when (3.7) is used:

krw =
\mu w

K
\^\lambda w =

Iosws
\beta  - 1
o + I\mu wsw

IwIos
\alpha  - 1
w s\beta  - 1

o + I(Iws\alpha w\mu w + Ios
\beta 
o\mu o)

,(3.12)

kro =
\mu o

K
\^\lambda o =

Iwsos
\alpha  - 1
w + I\mu oso

IwIos
\alpha  - 1
w s\beta  - 1

o + I(Iws\alpha w\mu w + Ios
\beta 
o\mu o)

.

The expression of water fractional flow function fw(sw) in the conventional water-oil
model (assuming no capillary pressure and viscous coupling effect, i.e., Pc = 0 and
\^k = 0) is

fw(sw)
def
:=

Uw

UT
=

\^\lambda w
\^\lambda w+\^\lambda o

UT +
\^\lambda w

\^\lambda o
\^\lambda w+\^\lambda o

\Delta \rho g sin \theta 

UT
,(3.13)
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Fig. 3.2. Left: Input capillary pressure curve Pc(sw) for water-oil or water-gas. Right: Relative
permeabilities krw(sw), krw(sw) obtained from (3.12) combined with data from Table 3.1 for the
water-oil model.

Fig. 3.3. Water flow fractional function fw(sw) as defined in (3.13) with different flow direc-
tions and layer inclinations where UT is now a constant equal to \pm (QI/2). Left: Water-oil reservoir.
Right: Water-gas reservoir.

where we have used (3.9) and (3.10), where \Delta \rho = \~\rho w0 - \~\rho o0 and UT =
\int x

0
(QI - Qp)dx.

In order to illustrate the water flow fraction f(sw) (see Figure 3.3) we represent UT by

a reference total velocity UT \in [ - QI

2 ,+
QI

2 ]. We refer to Table 3.1 for input data that
are used. Similarly, we can also obtain the corresponding expressions for the water-
gas model. For simplification, we use the same capillary relation Pc for both the
water-oil and water-gas flow system. In particular, we use Pc(sw) =  - P \ast 

c ln(\delta + sw
a )

(see Remark 2.2 and Figure 3.2 left), where P \ast 
c , a, and \delta are specified in Table 3.1.

3.1. Simulation cases. For the closed system, we choose three reservoir incli-
nations, 0\circ , 45\circ , and 90\circ , and compare phase velocities (interstitial) uw, uo(ug), pres-
sures Pw, Po(Pg), and normalized water saturation sw = 1 - swr

1 - swr - sir
(i = o, g) from the

incompressible model and the compressible models for both the water-oil system and
water-gas system considered at two given times: T1 = 20 days and T2 = 100 days.

3.1.1. Comparison of compressible and incompressible water-oil
models. Results for water-oil behavior in a horizontal reservoir with closed boundary
are shown in Figure 3.4. The phase pressures (Pw and Po) are higher in the com-
pressible model than the incompressible model at both 20 days and 100 days. This
is because compressible fluids in the reservoir center can adsorb the pressure energy
leading to higher densities of reservoir fluids. In particular, this seems to be a natural
consequence of the fact that the injected volume of water QI is kept fixed instead of
a constraint on \rho wQI . The phase pressure increases from 20 days to 100 days in both
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Table 3.1
Input parameters with reservoir and fluids' properties for the simulations of the water-oil and

water-gas models.

Parameter Dimensional value Parameter Dimensional value
L 100 m Iw 2.5
\phi 1 Io 1.1
\~\rho w0 1 g/cm3 Ig 1.1
\~\rho o0 0.8 g/cm3 I 1000 (Pa\cdot s) - 1

\~\rho g0 0.0018 g/cm3 \alpha 0.01
swr 0.3 \beta 0.01
sor 0.2 P \ast 

c 4 \ast 104 Pa
sgr 0 a 2
\mu w 1 cP \delta 0.08
\mu o 1.5 cP Cw 106 m2/s2

\mu g 0.015 cP Co 5 \ast 105 m2/s2

K 1000 mD Cg 105 m2/s2

kmax
rw 0.4 \varepsilon w 0.1 cP

kmax
ro 0.909 \varepsilon o 0.2 cP

kmax
rg 0.909 \varepsilon g 0.02 cP

QI 0.495 m3/day xI 50 m

Qp 0.2475 m3/day xp1, xp2 10, 90 m
PwL 105 Pa A 1 m2

Nx 101 \bigtriangleup t 1570 s

Fig. 3.4. Comparison between the compressible and incompressible horizontal (no inclination)
water-oil models at 20 and 100 days. (a), (d) Interstitial velocity uw, uo. (b), (e) Phase pressure
Pw, Po. (c), (f) Water saturation sw. Obviously, all the relevant results are symmetric. A higher
phase pressure is observed in the compressible model compared with incompressible model, reflecting
that the compressible water and oil adsorb energy (pressure).

models and the phase pressure difference between these two models increases over
time. This can be explained by the fact that the more viscous water (which creates
stronger resistance forces) fills the reservoir to a larger extent and results in a higher
phase pressure Pw after 100 days. Since both water and oil are weakly compress-
ible, there is no obvious difference seen in the phase velocities and saturations when
comparing the compressible and incompressible models.
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Fig. 3.5. Comparison between the compressible and incompressible water-oil models with 45\circ 

inclination at 20 and 100 days. (a), (d) Interstitial velocity uw, uo. (b), (e) Phase pressure Pw, Po.
(c), (f) Water saturation sw. Pressure profiles are not symmetric due to the gravity effect. Simi-
lar to Figure 3.4, a negligible difference is observed on velocity and saturation curves between the
incompressible and compressible models. Phase pressure is higher in the compressible model.

Fig. 3.6. Comparison between the compressible and incompressible vertical water-oil models at
20 and 100 days. (a), (d) Interstitial velocity uw, uo. (b), (e) Phase pressure Pw, Po. (c), (f) Water
saturation sw. Compared with Figures 3.4 and 3.5 we see that pressure is essentially high and flat
at the lower part of the reservoir, reflecting that gravity is the driving transport mechanism in this
region.

Figures 3.5 and 3.6 show behavior for compressible and incompressible water-oil
models, respectively, with 45\circ and 90\circ inclinations. Similar to the horizontal case
(see Figure 3.4), the differences of phase velocities and normalized water saturation
between the two models are rather negligible. Phase pressure in the compressible
model is higher due to the same reason as explained for Figure 3.4. The most striking
difference with the horizontal case in Figure 3.4 is that pressure in the lower part of
the reservoir flattens out since gravity becomes a driving force for the displacement of
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Fig. 3.7. Comparison between the compressible and incompressible horizontal water-gas models
at 20 and 100 days. (a), (d) Interstitial velocity uw, ug. (b), (e) Phase pressure Pw, Pg. (c), (f)
Water saturation sw. There is essentially no difference observed. Gas pressure gradients in both
models are small in the undisplaced part due to the high mobility of gas (low viscosity).

water and oil toward the producer at the bottom. In the upper part of the reservoir,
however, the opposite effect is seen: a larger pressure gradient is formed since gravity
must now also be overcome.

3.1.2. Comparison of compressible and incompressible water-gas
models. Figure 3.7 illustrates the compressible and incompressible horizontal water-
gas model with closed boundary. Water (with much higher density than gas) is in-
jected and flows to the lower pressure region of the reservoir. Gas can easily adsorb
the energy from water since gas is very compressible. For this case the phase pressure
is essentially the same for the compressible and incompressible cases.

We are more interested in the cases with 45\circ and 90\circ inclinations, where we may
expect to see some compressibility effects. In Figure 3.8, we study the water-gas case
with 45\circ inclination. At 20 days there is a clear difference between the compressible
and incompressible cases; a small volume fraction of gas on the left side of the injector
located at around 48 m is quickly mobilized by the injected water, which tends to
form a high front giving rise to narrow gas flow channels, which explains the large
negative dip in gas velocity ug. This effect is strongest for the incompressible case.
In the lower part of the domain, gravity will help smear out the water front, which
explains the more gentle behavior in the velocity profiles seen in this region. The
remaining low water pressure Pw for the compressible case seen in the lower region of
the reservoir is due to compression of gas which reduces the resistance force felt by
the propagating water front.

At 100 days, it is observed that water blocks (panel (f)) the gas flowing channel
located in the region 25 - 50 m (incompressible case) and there is no room for gas in
the lower part to escape to the upper part. In the compressible model, water can to a
larger extent enter the lower part of the reservoir since gas is easily compressed there
with larger phase pressure. This explains the difference in the water front position in
the lower region for the incompressible and compressible cases. In the upper part of
the reservoir this also leads to a similar difference in the water front position.
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Fig. 3.8. Comparison between the compressible and incompressible water-gas models with 45\circ 

inclination at 20 and 100 days. (a), (d) Interstitial velocity uw, ug. (b), (e) Phase pressure Pw, Pg.
(c), (f) Water saturation sw. Significant differences exist between these two models' results.

Fig. 3.9. Comparison between the compressible and incompressible vertical water-gas models
at 20 and 100 days. (a), (d) Interstitial velocity uw, ug. (b), (e) Phase pressure Pw, Pg. (c), (f)
Water saturation sw. The situation is similar to the one shown in Figure 3.8 at 20 days, but at a
later time (100 days) water cannot block the gas flowing channel in the incompressible model.

Now, we increase the 45\circ inclination in Figure 3.8 to 90\circ . The corresponding
results are shown in Figure 3.9. The most striking difference between this case and
the situation shown in Figure 3.8 is that in the incompressible case gas from the lower
region migrates to the upper region (see negative gas velocity in the lower region).
This largely amplifies the gas velocity (panels (a), (d)) as reflected by the strong
negative dip right above the injector. After a time T = 100 days we see that there is
a steady flow of gas from the lower region to the upper for the incompressible model
(panel (d)). In particular, water will not block this migration (panel (f)). For the
compressible model, on the other hand, water will block this upward migration of gas
(compare gas velocities in panel (d)).
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Fig. 3.10. Space-time plot of pressures (left column), phase velocities (middle column), and
normalized saturations (right column) for the compressible horizontal water-gas model. The results
are symmetric and the water front reaches the production well after around 150 days.

Fig. 3.11. Space-time plot of pressures (left column), phase velocities (middle column), and
normalized saturations (right column) for the compressible water-gas model with inclination 45\circ .
Water displacement in the upper part is different from the lower part of the reservoir. In particular,
the water front reaches the production well earlier (100 days) in the lower part of the reservoir,
whereas it takes around 200 days in the upper region.

3.1.3. More simulation results for the water-gas model. In Figures 3.10,
3.11, and 3.12 the space-time behavior of the compressible water-gas model is illus-
trated with inclinations 0\circ , 45\circ , and 90\circ , respectively. The results of the horizontal
case shown in Figure 3.10 are essentially symmetric, as expected. In the case with
45\circ inclination (Figure 3.11), we see how the water front (right column) will reach the
producer in the lower region (right side of injector) much more quickly than in the
upper region (left side of injector). In Figure 3.12 we note that after the water front
has reached the producer in the lower region (right column) some gas is free to start
migrating toward the upper region, where it is ultimately produced in an upper-region
producer (see gas velocity in middle column).

In Figure 3.13 we consider the incompressible case. A main difference between
this case as compared to the compressible case shown in Figure 3.12 is that much more
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Fig. 3.12. Space-time plot of pressures (left column), phase velocities (middle column), and
normalized saturations (right column) for the compressible vertical water-gas model.

Fig. 3.13. Space-time plot of pressures (left column), phase velocities (middle column), and
normalized saturations (right column) for the incompressible vertical water-gas model.

gas in the lower region is able to escape to the upper region in the early period when
the water front is on its way to the bottom producer. Due to a stronger impact from
gravity when gas is treated as an incompressible fluid, water cannot prevent trapped
gas in the lower part from flowing though a narrow channel (high water saturation
zone) towards to the production well in the upper part.

3.1.4. The viscous coupling effect. We want to illustrate the impact from
the fluid-fluid term both in a horizontal and a vertical flow domain. More precisely,
we apply an interaction coefficient I = 3000 in (3.7) (refer to [28] for more discussion
of this aspect) and compare it to the case with I = 0, that is, no viscous coupling
effect. In Figure 3.14 results are shown after a time T = 100 days. It shows that the
effect of fluids' interaction can play a vital role in both horizontal and vertical cases
where visible differences exist in pressure, phase velocity, and saturation compared
to the results with no fluids interaction. The additional interaction force between oil
and water behaves like a resistance force for water flow. Therefore it smears out the
water front.
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Fig. 3.14. Comparison between two cases with (I > 0) and without (I = 0) fluid-fluid
interaction effect in the horizontal and vertical compressible water-oil model at 100 days. (a), (d)
Interstitial velocity uw, uo. (b), (e) Phase pressure Pw, Po. (c), (f) Water saturation sw. The results
demonstrate how viscous coupling may affect the water-oil model where pressure, phase velocity, and
saturation are all different in the water displacing part.
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A COMPRESSIBLE VISCOUS THREE-PHASE MODEL FOR POROUS

MEDIA FLOW BASED ON THE THEORY OF MIXTURES

Y. QIAO AND S. EVJE

Abstract. In this paper we focus on a general model to describe compressible and immiscible

three-phase flow in porous media. The underlying idea is to replace Darcy’s law by more general
momentum balance equations. In particular, we want to account for viscous coupling effects by

introducing fluid-fluid interaction terms. In [Qiao, et al. (2018) Adv Water Resour 112: 170-

188] a water-oil model based on the theory of mixtures was explored. It was demonstrated how
the inclusion of viscous coupling effects could allow the model to better capture flow regimes

which involve a combination of co-current and counter-current flow. In this work we extend the

model in different aspects: (i) account for three phases (water,oil,gas) instead of two; (ii) deal
with both the compressible and incompressible case; (iii) include viscous terms that represent

frictional forces within the fluid (Brinkman type). A main objective of this work is to explore this

three-phase model, which appears to be more realistic than standard formulation, in the context
of petroleum related applications. We first provide development of stable numerical schemes

in a one-dimensional setting which can be used to explore the generalized water-oil-gas model,
both for the compressible and incompressible case. Then, several numerical examples with

waterflooding in a gas reservoir and water alternating gas (WAG) experiments in an oil reservoir

are investigated. Differences and similarities between the compressible and incompressible model
are highlighted, and the fluid-fluid interaction effect is illustrated by comparison of results from

the generalized model and a conventional model formulation.

Keywords: multiphase flow in porous media; three-phase flow, viscous coupling; mixture theory;
compressible model; water alternating gas (WAG); waterflooding

1. Introduction

Generally. The processes of multiphase flow in porous media occur in many subsurface systems
and have found many applications of practical interest, such as hydrology, petroleum engineer-
ing, geothermal energy development and carbon storage [54]. The immiscible three-phase flow is
always encountered in waterflooding for oil reservoirs with gas cap, in immiscible CO2 storage
in depleted oil and gas reservoirs, and steam floods and water-alternating-gas (WAG) processes
[10, 25]. Darcy’s law was originally developed for single-phase flow [13]. Conventional modeling
of multiphase flow is normally based on Darcy’s extended law [48] by incorporation of relative
permeabilities [39]. However, recent experimental observations indicate that the flow mode (co-
current or counter-current) can have a strong impact on the flowing phase mobilities. That is to
say, the relative permeabilities are not only function of saturation but are also related to the effect
of how the fluids flow relatively to each other [8, 11].

Viscous coupling. Viscous coupling (i.e., fluid-fluid interaction) was firstly mentioned by Yuster
[57] by using theoretical analysis to derive that relative permeability is a function of both saturation
and viscosity ratio. In addition, capillary number was also proposed to be a factor affecting relative
permeabilities [17, 2]. In general, momentum transfer due to differences in interstitial velocities
induces acceleration of the slower and deceleration of the faster moving fluid when the fluids are
moving co-currently. Deceleration of both fluid velocities will occur if they are moving counter-
currently [5, 9, 15, 33].

In order to extend the single-phase Darcy’s law to multiphase flow, de la Cruz and Spanos [14]
derived theoretically Darcy’s empirical extended law by applying the method of volume averag-
ing to Stokes equation. In [27, 28], Kalaydjian developed flow equations using the concepts of
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irreversible thermodynamics [26] from a macroscopic understanding of two-phase flow in porous
media. In addition, some researchers tried to gain insight into how two immiscible phases flow
through a porous medium by using simple analogous models such as tubular flow [57, 6]. In [31]
Langaas and Papatzacos used the Lattice Boltzmann (LB) approach to investigate effects of vis-
cous coupling and concluded that counter-current relative permeabilities caused partly by viscous
coupling are always less than the corresponding co-current curves under different levels of capillary
forces. Using the same method, Li et al. [34] showed that their model was able to capture main
experimental effects caused by viscous coupling. They also mentioned that the interfacial area
between the fluids is a key variable for relative permeability functions for two immiscible fluids
flow in porous media. A generalized model was developed in [43] for two-phase flow with viscous
coupling effect. Numerical investigations showed a better agreement with the experimental tests
[11] compared to the conventional modeling. The authors in [10] constructed modified transport
equations for both co-current and counter-current three-phase flow through a vertical incompress-
ible model based on partition concepts. Their equations are used to estimate the amount of model
error because of a failure to account for the effect of interfacial coupling which has two types: vis-
cous coupling and capillary coupling. Moreover, Sherafati and Jessen [51] investigated the effect of
mobility changes due to flow reversals from co-current to counter-current flow on the displacement
of WAG injection processes.

Complex multiphase flow in porous media and use of the theory of mixtures. The
theory of mixtures offers a general framework for developing models for complex multiphase flow
systems [47]. More lately, biomedical applications have been a driver for the development of various
models relying on this approach. For example, the study how cancer cells are able to break loose
from a primary tumor involves a solid matrix (the so-called extracellular matrix), different type
of cells (cancer cells, stromal cells, immune cells), and interstitial fluid [18, 19]. Various enzymes
and proteins are typically involved which are skewed in the fluid flow direction. In turn, this
may impact the creeping motion of cells caused by biochemical signalling towards corresponding
concentration gradients in a process denoted as chemotaxis. A recent example of this is described
in [55, 53] where, respectively, a cell-fluid two-phase model and a cell-fibroblast-fluid three-phase
model are developed to shed light on the experimentally observed tumor cell behavior reported
in [50]. In the latter case it is explored how the tumor cell migration is strongly affected by the
presence of fibroblast cells and the imposed fluid flow. The model that is derived relies on replacing
Darcy’s law by more general momentum balance equations which incorporate both the cell-ECM
resistance force and the cell-fibroblast interaction. The latter is understood as a ”viscous coupling”
effect caused by a mechanical coupling that can occur between tumor cells and fibroblasts and
has been reported in experimental studies [29]. Another example how generalized momentum
equations can be used to capture non-standard multiphase behavior in the context of aggressive
tumor cells is explored in [56]. In [42] two competing migration mechanisms were observed, one
in the upstream direction and another in the downstream direction. The migration against the
fluid flow reflects that the tumor cells must be understood as an active fluid (in contrast to a
passive) with an ability to create forces against the substrate which is translated into motion. The
use of generalized momentum equations allowed us to account for both this fluid-stress generated
upstream migration and a chemotactive migration in the direction of increasing concentration of
chemical concentrations [56].

In the study of tissue morphology relevant for tissue development, regeneration, and cancer it
has been suggested that in analogy with the behaviour of inert fluids, some of these transitions
can be interpreted as wetting transitions. It has been shown that the transition between two-
dimensional epithelial monolayers and three-dimensional spheroidal aggregates can be understood
as an active wetting transition whose physics differs fundamentally from that of passive wetting
phenomena [40]. Hence, this represents another example where classical continuum based modeling
for passive fluids must be extended to account for active fluid flow behavior.

Motivated by petroleum related applications various attempts to solve the three-phase porous
media flow model have been reported during the past decade [20, 21, 22, 24]. An interesting
investigation was carried out in [36] where a front-tracking algorithm was proposed for constructing
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very accurate solutions to one-dimensional problems (for example WAG test therein). This was
explored in the context of streamline simulation which decouples the three-dimensional problem
into a set of one-dimensional problems along streamlines. This work is limited to three-phase
immiscible, incompressible flow and also gravity and capillarity were ignored. Different numerical
methods have been implemented to simulate three-phase flow in porous media. A finite volume
method was used in [37] for solving compressible, immiscible flow with gravity in heterogeneous
formations by using the black oil formulation. A hybrid-upwinding scheme for phase flux was
proposed in [38] for a finite difference approximation to solve the three phase transport equations
in the presence of viscous and buoyancy forces. A finite element method was applied to simulate
fluid injection and imbibition processes in a deformable porous media [23]. Moreover, [16] applied a
semi-implicit method with discontinuous Galerkin (DG) discretization to solve the incompressible
three-phase flow in two dimensions. Additional physical effects are also discussed and explored
for three-phase porous media flow, such as hysteresis effects of relative permeabilities [49] and
elliptic regions [24, 25, 38]. In [25] Juanes presented a nonequilibrium model of incompressible
three-phase flow in porous media. The nonequilibrium effects by introducing a pair of effective
water and gas saturations into the formulations have the ability to smear saturation fronts from
numerical simulations.

The aim of this work. The objective of this paper is to investigate a mixture theory approach
to simulate three immiscible fluids flowing in a 1D reservoir. We shall consider both the case with
compressible and incompressible fluids. The model which is introduced is quite general since it
can automatically capture flow that involves a combination of co-current and counter-current flow.
The current work represents extension of previous work in two ways:

• Extend the incompressible two-phase model that was explored in [43, 1] to include three
phases.
• Extend the compressible two-phase model studied in [45] to include three phases.

In addition, the models we study in the current work are more general than those studied in [43, 1]
since we consider Stokes like momentum equations which involve viscous terms that account for
internal friction due to viscosity. In particular, appropriate numerical schemes are introduced
to investigate compressible and incompressible three-phase flow scenarios that are motivated by
injection-production flow scenarios.

Main observations from our numerical experiments with two and three-phase flow scenarios
where the flow dynamics are generated by injection of water or gas in the center of the domain
and production of fluids at the left and right boundary are: (i) The simulation cases involve
competition between pressure driven co-current flow and counter-current gravity driven flow; (ii)
Both the incompressible and compressible discrete version of the model appear to have good
stability properties. The numerical experiments indicate that the numerical schemes can be useful
as a tool to deepen the insight into the relation between the incompressible and compressible
version of the model. The model and its discrete approximate counterparts appear to be a good
starting point for extending to more complex flow systems, as mentioned above, that involve
competition between different distinct, non-standard transport mechanisms.

The rest of this paper is organized as follows. In Section 2 we briefly describe the mixture
flux approach in a three-phase setting. In Section 3 we summarize the generalized three-phase
porous media model, both a compressible and an incompressible version of it. Section 4 is de-
voted to numerical simulations to demonstrate three-phase dynamics and verify basic features of
the numerical schemes. The details of the compressible and incompressible scheme are given in
Appendix A - C.

2. Mixture Theory Framework

2.1. Conventional model based on Darcy’s law.
We firstly describe the traditional formulation of incompressible multiphase flow model without
source terms. Transport equations for incompressible and immiscible phases oil (o), water (w) and

181



4 Y. QIAO AND S. EVJE

gas (g) in porous media are normally given by:

∂t(φsi) +∇ ·Ui = Qi, (2.1)

Ui = φsiui, (i = w, o, g), (2.2)

where φ is porosity, si is phase saturation, Qi is the source term, and Ui and ui are the Darcy
velocity and interstitial velocity of each phase i = o, w, g, respectively. The traditional macroscopic
formulation of Darcy’s law that relates the volumetric flux of a phase to the pressure gradient of
that phase is given by:

Ui = −Kkri
µi

(∇pi − ρig), (i = w, o, g), (2.3)

where K is the absolute permeability of porous media, pi is phase pressure, g is the acceleration
of gravity and kri, ρi and µi are phase relative permeability, density and viscosity, respectively.

2.2. A generalized multiphase flow model based on mixture theory.
For our investigations, the mass balance equations with source terms in the case of compressible
water-oil-gas transport can be given by:

(φnw)t +∇ · (φnwuw) = −nwQp + ρwQIw, nw = swρw

(φno)t +∇ · (φnouo) = −noQp, no = soρo

(φng)t +∇ · (φngug) = −ngQp + ρgQIg, ng = sgρg

(2.4)

where ui, (i = w, o, g) represents the interstitial velocity of phase i in the porous media. In
addition, Qp is the production rate and QIw, QIg represent the injection rate of water and gas,
respectively.

The starting point for developing our model that can account for more detailed physical mech-
anisms for water-oil-gas porous media flow than conventional modeling, is the theory of mixtures.
This is a theory based on balance laws and conservation principles, which is well known in con-
tinuum mechanics [7, 46, 12, 4, 41], and has been widely applied to the biological tumor-growth
systems which can be characterized as a mixture of interacting continua.

Neglecting inertial effects (acceleration effects), as is usual when dealing with creeping flow in
porous materials, the mechanical stress balance is given by [4]:

0 = ∇ · (siσi) +mi +Gi, (i = w, o, g), (2.5)

where σi refers to the Cauchy stress tensor, mi represents the interaction forces exerted on the
constituents by other constituents of the mixture, and Gi = siρig is the external body force due
to gravity. The standard expression for the stress terms σi, is given by

σi = −piδ + τi, (i = w, o, g), (2.6)

where δ is the unitary tensor and

τi = 2µiei, ei =
1

2
(∇ui +∇uTi ), (i = w, o, g). (2.7)

The viscous part τi reflects that the water, oil and gas behave as a viscous fluid. According to
general principles of the theory of mixtures, the interaction forces mi between the constituents
appearing in (2.5) may be described as (Preziosi et al., 2002; Ambrosi and Preziosi, 2002):

mo = po∇so + Fwo − Fog +Mom,

mw = pw∇sw − Fwo − Fwg +Mwm,

mg = pg∇sg + Fwg + Fog +Mgm,

(2.8)

where Fij (i, j = o, w, g), denotes the force (drag) that the i phase exerts on the j phase. The
j phase exerts an equal and opposite force −Fij . Similarly, Mom, Mwm and Mgm represent
interaction forces (drag forces) between fluid and pore walls (solid matrix), respectively, for oil,
water and gas. The terms po∇so, pw∇sw and pg∇sg are interfacial forces that arise from an
averaging process. To close the system we must specify the drag force term Fwo, Fwg, and Fog and
the stresses σi (i = o, w, g) and interaction force terms Mim between fluid (i = w, o, g) and matrix.
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Drag force represents the interaction between one phase and another phase and is modelled as
[47, 41, 4]:

Fwo = k̂wo(uw − uo),
Fwg = k̂wg(uw − ug),
Fog = k̂og(uo − ug),

(2.9)

where k̂ij (i, j = o, w, g), remains to be determined. Typically, k̂ij ∼ sisj to reflect that this force
term will vanish when one of the phases vanishes. Similarly, the interaction force between fluid
and pore wall (matrix, which is stagnant) is naturally expressed then as [46, 47, 41, 4]:

Mim = −k̂iui, (i = o, w, g). (2.10)

The coefficients k̂ij and k̂i (dimension Pa·s/m2), that characterize the magnitude of interaction
terms, can be chosen such that the model recovers the classical porous media model based on
Darcy’s law. At the same time the approach used here will open for development of reservoir
models where more detailed physics can be taken into account.

3. A summary of the general three-fluid model for porous media flow

3.1. The compressible case. We are interested in studying a 1-D model for three compressible
immiscible fluids moving in a porous media. After combining (2.4)-(2.10) the model takes the
following form:

(φnw)t + (φnwuw)x = −nwQp + ρwQIw, nw = swρw,

(φno)t + (φnouo)x = −noQp, no = soρo,

(φng)t + (φngug)x = −ngQp + ρgQIg, ng = sgρg

sw(Pw)x = −k̂wuw − k̂wo(uw − uo)− k̂wg(uw − ug) + nwg + εw(nwuwx)x,

so(Po)x = −k̂ouo − k̂wo(uo − uw)− k̂og(uo − ug) + nog + εo(nouox)x,

sg(Pg)x = −k̂gug − k̂wg(ug − uw)− k̂og(ug − uo) + ngg + εg(ngugx)x,

∆Pow(sw) = Po − Pw, ∆Pgo(sg) = Pg − Po

(3.11)

with capillary pressure ∆Pow defined as the pressure difference between the oil and water and
capillary pressure ∆Pgo defined as the pressure difference between the gas and oil. We shall apply
the following correlations

∆Pow = Po − Pw = ∆Pow(sw) = −P ∗c1 ln(δ1 +
sw
a1

) and δ1, a1 > 0,

∆Pgo = Pg − Po = ∆Pgo(sg) = P ∗c2s
a2
g and a2 > 0

(3.12)

with non-negative constants P ∗ci representing interfacial tension. In addition, we have the funda-
mental relation that the three phases fill the pore space

so + sw + sg = 1. (3.13)

The above model must be combined with appropriate closure relations for ρi = ρi(Pi). We
represent the three phases by linear pressure-density relations of the form

ρw − ρ̃w0 =
Pw
Cw

, ρo − ρ̃o0 =
Po
Co
, ρg =

Pg
Cg

(3.14)

where Cw, Co and Cg represent the compressibility of water, oil and gas, respectively.
We refer to Appendix B for a semi-discrete approximation of (3.11) as well as a fully discrete

scheme.

3.2. The incompressible case.

3.2.1. Viscous flow. We may let Cw, Co, Cg go to infinity in (3.14). Then we obtain the incom-
pressible version of the model (3.11). We refer to Appendix C for a semi-discrete as well as a fully
discrete scheme for this incompressible case.
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3.2.2. Inviscid flow. Moreover, in order to relate this incompressible version to the classical Darcy-
based formulation we ignore the viscosity terms in the momentum equations by setting εi = 0
(i = w, o, g) in (3.11)4,5,6. Solving momentum equations with respect to interstitial phase velocities
ui, the Darcy velocities of fluid phase are expressed as follows based on (2.2):

Uw = φswuw = −λww(Pwx − ρwg)− λwo(Pox − ρog)− λwg(Pgx − ρgg),

Uo = φsouo = −λwo(Pwx − ρwg)− λoo(Pox − ρog)− λog(Pgx − ρgg),

Ug = φsgug = −λwg(Pwx − ρwg)− λog(Pox − ρog)− λgg(Pgx − ρgg),

(3.15)

and the following relations are defined:

λww =
φs2

w

R
(RoRg − k̂2

og), λwo = λow =
φswso
R

(k̂woRg + k̂ogk̂wg),

λoo =
φs2

o

R
(RwRg − k̂2

wg), λwg = λgw =
φswsg
R

(k̂wgRo + k̂ogk̂wo),

λgg =
φs2

g

R
(RwRo − k̂2

wo), λog = λgo =
φsosg
R

(k̂ogRw + k̂wgk̂wo),

(3.16)

where

Rw = k̂w + k̂wg + k̂wo,

Ro = k̂o + k̂wo + k̂og,

Rg = k̂g + k̂wg + k̂og,

R = k̂wk̂ok̂g + (k̂w + k̂o + k̂g)(k̂wgk̂wo + k̂ogk̂wo + k̂wgk̂og)

+ k̂gk̂wo(k̂w + k̂o) + k̂wk̂og(k̂o + k̂g) + k̂ok̂wg(k̂w + k̂g).

(3.17)

Using capillary pressure relations (3.12) it follows that (3.15) take the following equivalent form:

Uw = −λ̂wPwx − (λwo + λwg)∆Powx − λwg∆Pgox + (λwwρw + λwoρo + λwgρg)g,

Uo = −λ̂oPwx − (λoo + λog)∆Powx − λog∆Pgox + (λwoρw + λooρo + λogρg)g,

Ug = −λ̂gPwx − (λgg + λog)∆Powx − λgg∆Pgox + (λwgρw + λogρo + λggρg)g.

(3.18)

Here we define the following notation for generalized phase mobilities λ̂i:

λ̂w = λww + λwo + λwg,

λ̂o = λoo + λwo + λog,

λ̂g = λgg + λwg + λog.

(3.19)

By summing Uw, Uo and Ug in (3.18) and using the notation introduced in (3.19), the total Darcy
velocity can be expressed as follows:

UT = −λ̂TPwx − (λ̂o + λ̂g)∆Powx − λ̂g∆Pgox + (λ̂wρw + λ̂oρo + λ̂gρg)g (3.20)

where we have used

λ̂T = λ̂w + λ̂o + λ̂g. (3.21)

Therefore, the water pressure gradient can be derived from (3.20):

Pwx = − 1

λ̂T
UT − (f̂o + f̂g)∆Powx − f̂g∆Pgox + (f̂wρw + f̂oρo + f̂gρg)g (3.22)

with generalized fractional flow function:

f̂i = λ̂i/λ̂T , (i = w, o, g). (3.23)
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Figure 1: Reservoir model with injection and production.

Inserting (3.22) into (3.18) we get:

Uw = f̂wUT + (Wo +Wg)∆Powx +Wg∆Pgox − (Wwρw +Woρo +Wgρg)g,

Uo = f̂oUT + (Oo +Og)∆Powx +Og∆Pgox − (Owρw +Ooρo +Ogρg)g,

Ug = f̂gUT + (Go +Gg)∆Powx +Gg∆Pgox − (Gwρw +Goρo +Ggρg)g,

(3.24)

where

Wi = λ̂wf̂i − λwi,
Oi = λ̂of̂i − λoi,
Gi = λ̂g f̂i − λgi, (i = w, o, g).

(3.25)

It should be noted that Wi +Oi +Gi = 0 (i = w, o, g) in light of (3.16), (3.21), and (3.23).

4. Numerical Examples

We mainly focus on a reservoir model where there are one injection well at the center and two
production wells distributed at two sides. The injection rate is equal to the total production rate
and the rates of two production wells are also same (See Fig. 1). In addition, reservoir inclination
θ is also accounted for in the model.

Interaction Terms.
The model (3.11)4,5,6 should be armed with appropriate functional correlations for fluid-rock

resistance force k̂w, k̂o, k̂g and fluid-fluid drag force k̂wo, k̂wg, k̂og. Here we use the interaction
terms suggested in the recent works [52, 43, 1]:

k̂w := Iws
α
w

µw
K
φ, k̂o := Ios

β
o

µo
K
φ, k̂g := Igs

γ
g

µg
K
φ,

k̂wo := Iwoswso
µwµo
K

φ, k̂wg := Iwgswsg
µwµg
K

φ, k̂og := Iogsosg
µoµg
K

φ.
(4.26)

All the interaction terms k̂i and k̂ij have dimension Pa·s/m2. The parameters α, β and γ are
dimensionless exponents whereas Iw, Io and Ig are dimensionless friction coefficients characterizing
the strength of fluid-solid interaction. Finally, Iwo, Iwg and Iog are coefficients characterizing the
strength of the fluid-fluid drag force with dimension (Pa·s)−1.
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Parameter Dimensional Value Parameter Dimensional Value
L 100 m Iw 2.5
φ 0.25 Io 1.8
ρ̃w0 1 g/cm3 Ig 1.1
ρ̃o0 0.8 g/cm3 Iwo 3000 (Pa·s)−1

ρ̃g0 0.018 g/cm3 Iwg 3000 (Pa·s)−1

swr 0.3 Iog 3000 (Pa·s)−1

sor 0.2 α 0.01
sgr 0 β 0.01
µw 1 cP γ 0.01
µo 1.5 cP P ∗c1 4 ∗ 104 Pa
µg 0.015 cP a1 2
K 1000 mD δ1 0.08
kmaxrw 0.4 P ∗c2 105 Pa
kmaxro 0.5556 a2 2
kmaxrg 0.9091 Cw 106 m2/s2

QIw 0.125 m3/day Co 5 ∗ 105 m2/s2

QIg 0.125 m3/day Cg 105 m2/s2

Qp 0.0625 m3/day εw 0.0 cP
Nx 101 εo 0.0 cP
A 1 m2 εg 0.0 cP
PwL 106 Pa xI 50 m
4t 1570 s xP (1,2) 10(1)&90(2) m

Table 1: Reference input parameters in the simulations.

Figure 2: Left: Capillary pressure between water and oil. Right: Capillary pressure between oil
and gas. We refer to (3.12) for their expressions.

Input Data.
The input parameters used in the simulations are listed in Table 1. We use 101 grid cells for a 100-
meter reservoir layer. The magnitude of the interaction coefficients Iwo, Iwg, and Iog are chosen
as in [43]. In order to avoid too many complicating effects at the same time in the subsequent
discussion, we have set the viscosity terms to zero, i.e., εw = εo = εg = 0.
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Figure 3: Phase flow fractional function (such as fw(sw, so) as defined in (4.27)) for a horizontal

model (sin θ = 0) where UT is now a constant equal to (Qp/2).

Figure 4: Phase flow fractional function (such as fw(sw, so) as defined in (4.27)) for a vertical

model (sin θ = 1) where UT is now a constant equal to −(Qp/2).

We use the similar capillary pressure relations as [44] for water and oil and [35] for oil and
gas (see Fig. 2). The expression of an effective water fractional flow function fw(sw, so) in the
conventional water-oil-gas model (assuming no capillary pressure, i.e., ∆Pow = ∆Pgo = 0) is

fw(sw, so)
def
:=

Uw
UT

=

λ̂w

λ̂T
UT − (Wwρw +Woρo +Wgρg)g sin θ

UT
(4.27)

where we have used (3.24) and (3.25) where UT =
∫ x

0
(QI −Qp)dx. Similarly, fo and fg can also

be expressed in the same manner. In order to illustrate the phase flow fraction fw, fo and fg (see

Fig. 5) we represent UT by a reference total velocity UT ∈ [−Qp

2 ,+
Qp

2 ]. We refer to Table 1 for
other input data that are used.

Initial Conditions.
For the waterflooding case, we assume the reservoir initially is mostly filled with gas (90%) and
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Figure 5: Phase flow fractional function (such as fw(sw, so) as defined in (4.27)) for a vertical

model (sin θ = 1) where UT is now a constant equal to (Qp/2).

some oil (10%):
sg(x, t = 0) = 0.9, so(x, t = 0) = 0.1. (4.28)

For the WAG injection case, the reservoir is assumed initially filled with oil (90%) and some extra
water (10%):

so(x, t = 0) = 0.9, sw(x, t = 0) = 0.1. (4.29)

For the compressible case, a reference pressure PwL at the left boundary of the layer is given at
initial state,

PwL(x = 0, t = 0) = 106Pa. (4.30)

Boundary Conditions.
We assume a closed boundary for both compressible and incompressible models, which means that

ui(x = 0, t) = 0, ui(x = L, t) = 0, i = w, o, g. (4.31)

For the incompressible case, we give a reference pressure PwL at the left boundary of the layer,

PwL(x = 0, t) = 106Pa. (4.32)

Source Terms.
For WAG experiments, gas and water are injected at different time periods during the whole oil
recovery process. We assume that QI(x) and Qp(x) take the form

QIw,Ig (x) =
QIw,Ig
σ

{
1, if |x− xI | ≤ σ/2;
0, otherwise.

, Qp(x) =
Qp
σ

{
1, if |x− xp,i| ≤ σ/2;
0, otherwise.

(4.33)

where (i = 1, 2) and QIw,Ig = 0.125m3/day and Qp = 0.0625m3/day. The width of the small
region associated with the injector and producer is σ. In the numerical scheme σ = ∆x.

4.1. Waterflooding in a gas reservoir.
We first test the proposed compressible three-phase model applied to a gas reservoir development.
In this example, water is injected at 50 m into a gas reservoir layer of length 100 m with a little
proportion of oil (10%). Two cases, respectively, for the horizontal (Fig. 6) and vertical reservoir
(Fig. 7) are shown below.

The results of the horizontal compressible three-phase model with water injection for a total
period of 400 days are shown in Fig. 6 where pressures (first column), velocities (middle column)
and saturations (right column) are symmetric with the injection well located at the center of
reservoir layer. The gas is mostly recovered during the first 130 days, see (I), whereas oil recovery
takes place over more than 300 days, see (F), due to its lower mobility than gas. It is also observed
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Figure 6: Results of the horizontal compressible three-phase model during a 400-day waterflooding
period. (A) Water pressure plot shows a strong pressure gradient region at the early stage (before
130 days). (B) Water velocity profile. It can be seen that water front reaches the production well
after around 100 days. (C) Normalized water saturation shows that the water front is fast whereas
the other phases (oil and gas) are produced slowly (takes almost 300 days). (D) Oil pressure profile
gives a similar result as water pressure. (E) Oil velocity behavior is similar to water velocity. (F)
Normalized oil saturation plot illustrates that oil is displaced quite slowly. (G) The gas pressure
gradient is very low in the gas-displaced region at the early stage due to the high mobility of gas.
(H) There is no gas advancing front since gas flows easily. (I) Gas is displaced fastly and a lot of
gas is recovered before 130 days.

that at early stage gas pressure along the reservoir layer has less gradient than both the water’s
and the oil’s (see first column in Fig. 6). The injected water displaces both oil and gas in the
reservoir near the injection well region where a high pressure gradient is necessary for both water
and oil to flow, see panel (A) and (B), because of their low mobilities. After water has arrived the
production wells at around 100 days (see C), water and oil pressures drop owing to the fact that
water then can find an easy flow path to the production wells.

In Fig. 7, we show the results (phase pressures, velocities and saturations) of a compressible
vertical three-phase model with a 400-day waterflooding displacement. Water is injected to dis-
place oil and gas at both sides of the reservoir layer. It quickly fills the bottom part, then starts
accumulating, see panel (C). Correspondingly, gas is displaced faster in the lower part than in the
upper part because the reservoir layer is vertical. Gravity segregation is seen in the lower part
where gas is squeezed upwardly, see (H) and (I). In contrast to what is shown in Fig. 6G, gas
pressure distribution shows a similar behavior as water and oil (higher at bottom and lower at
top), see first column in Fig. 7. We refer to the figure text for more details.
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Figure 7: Results of the vertical compressible three-phase model during a 400-day waterflooding
period. (A) Water pressure plot indicates that a lot of water flows toward the bottom and by that
greatly increases the pressure in that region. (B) Due to the strong gravity effect water flows faster
towards the bottom of layer compared the water displacement in the upper layer. (C) Normalized
water saturation shows that water flows fastly to the bottom where it is accumulated before it begins
to efficiently displace the upper part of the layer. (D) Oil pressure follows the similar behavior as
water. (E) Water displaces the oil towards both sides from the center. However, at early time some
oil in the upper part of the layer will move downwardly due to gravity. Later, the water front will
displace oil upwardly. (F) The oil advancing front behaves similar as the water front. (G) Gas
pressure behaves similar to the water pressure. (H) At an early stage gas is displaced towards the
production well from the center. After the water front has reached the bottom production well the
whole bottom part of gas (50 m to 100 m) starts moving upwards. (I) Gas is recovered slowly in the
upper part whereas gas recovery in the lower part consists of two stages: initially, gas is displaced
by water to the bottom production well. Then, gas in the lower zone starts flowing upwardly.

4.1.1. Comparison of the compressible and incompressible models.
We continue the discussion of the case shown in Fig. 7. In particular, we want to compare
the behavior of the compressible and incompressible model. Constant density values ρw = 1000
kg/m3, ρo = 800 kg/m3 and ρg = 18 kg/m3 are used in the incompressible model.

Fig. 8 shows a comparison between the compressible and incompressible model after 30 and
120 days. At the early time (30 days) the saturation differences are not distinct, see (C). However,
after a long time (120 days) the differences are more significant, especially, in the water displacing
part, see (F). This is due to the increasing phase pressure difference between compressible and
incompressible model, see (B) and (E). The removal of compressed gas from the gas reservoir as
(almost incompressible) water is injected clearly generates additional space for the water to fill
which gives rise to a lower pressure. Moreover, there are also clear differences in the velocity, see
(A) and (D).
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Figure 8: Comparison between the compressible and incompressible model with vertical three-phase
flow. (A,D) Phase velocity uw and ug for water and gas, respectively. (B,E) Pressure Pw and Pg for
water and gas, respectively. Almost incompressible water is injected whereas the compressible model
senses that compressed gas is removed through the producers. This gives rise to a lower pressure
level for the compressible model as compared to the incompressible. (C,F) Saturation sw and sg for
water and gas, respectively.

4.2. The compressible three-phase model with a WAG experiment.
In WAG processes, the injected water will migrate towards the bottom of the formation while the
injected gas will flow upwardly. Therefore, counter-current flow occurs in the vertical direction
of the reservoir due to the gravity segregation of water, oil and gas. Significant differences in
terms of saturation distribution and producing GOR (gas-oil-ratio) have been reported between
a conventional model and models that better can account for the mix of different flow regimes
(co-current and counter-current). For example, in [51] an explicit representation of flow transitions
between co-current and counter-current flow was used to improve the design of WAG injection
processes.

In this part, we conduct a water alternating gas (WAG) injection in a 1D reservoir (250 mD)
layer which initially contains 90% oil and 10% water. The water and gas injection well is located
at 50 m and two production wells are set at 10 m and 90 m. Gas is injected for the first 10 days
followed by the water injection the next 10 days. Fluids can be produced in both production wells.
The whole WAG experiment continues with an injection circulation of water and gas (each for 10
days).

Fig. 9 shows the result for a WAG injection process produced by the compressible three-phase
vertical model where gravity segregation has a significant effect. From the simulation we see that
pressure increases with time (first column in Fig. 9). Moreover, pressure values at the lower part
of the layer are larger than at the upper part. Due to the density difference, water displaces oil
faster in the bottom part, see (B) and (C). In addition, gas flows quickly towards the upper part
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Figure 9: Results of the vertical compressible three-phase model for a 400-day WAG injection process.
(A) A high pressure region in the layer center due to the water or gas injection and gravity effect.
(B) Water advancing front implies that water flows faster towards the bottom of layer compared
the water displacement in the upper layer due to gravity segregation. (C) Water prefers to flow
towards the bottom of layer where the edge region (90 m- 100 m) is also swept by water. (D) Oil
pressure follows similar behavior as water pressure. (E) The upper part of oil is recovered faster
than the lower part. (F) Due to the large density difference between oil and gas, the upper part oil is
recovered very quickly, even for the edge region (0 m- 10 m). (G) Gas pressure. (H) Gas advancing
front is fast in the upper part of layer because of the strong gravity segregation. (I) Gas reaches the
bottom production well whereas a lot of gas is accumulated in the top region.

of the reservoir layer, see the saturation plots. In the upper part oil is recovered faster than in the
lower part because of the larger density difference between gas and oil than the one between water
and oil, see the second column in Fig. 9. We also observe that gas reaches the bottom production
well but does not move further. This can be explained by the fact that gravity segregation effect
overcomes the capillarity. However, a lot of gas is accumulated in the upper edge region (0 m- 10
m) due to the buoyancy force, see (I).

4.3. Comparison of compressible and incompressible three-phase models with WAG
experiments.
In this part, we compute solutions from incompressible three-phase models with same WAG injec-
tion process and compare the relevant results with those from the compressible three-phase model.
Constant density values ρw = 1000 kg/m3, ρo = 800 kg/m3 and ρg = 18 kg/m3 are used in the
incompressible model
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Figure 10: Comparison between the compressible and incompressible model of the vertical three-
phase reservoir with a WAG process. Results are shown after 60 and 120 days. (A) Gravity segre-
gation results in a fast advancing front of gas in the upper part of layer and a fast advancing front
of water in the lower part of layer. (B) Phase pressure in the compressible model is higher since the
compressed gas wants to expand when it moves to a region with lower pressure but cannot expand
due to the constrained space for gas. (C) Gas prefers to move towards the upper part of layer and
water prefers to flow towards the lower part. (D) At 120 days, gas reaches the upper production
well and water arrives at the bottom well. (E) Phase pressure in the compressible model increases
with time compared with (B). (F) The difference between the two models is enhanced with time.

Fig. 10 shows a comparison between the compressible and incompressible model of the vertical
three-phase reservoir with a WAG process. Similar to what was observed in Fig. 8, differences
are seen for phase velocity, pressure and saturation. With increasing time, this difference will be
enhanced, especially for the pressure. This is mainly due to the gas compressibility. See (B) and
(E) and the figure text for more explanation. Because of the density difference water prefers to
flow towards the bottom of the layer whereas gas moves faster towards the upper part of layer,
see (C) and (F).

4.3.1. Effect of fluid-fluid interactions.
Here we want to illustrate the impact from fluid-fluid interaction terms on the compressible model
with a WAG process. Two situations are compared below: one with Iwo = Iwg = Iog = 0 and one
with Iwo = Iwg = Iog = 5000.

Fig. 11 compares the results for the horizontal model for a WAG process with and without fluid-
fluid interaction effect at 60 and 120 days. In (B) and (E), we observe that due to the fluid-fluid
interaction, pressure is elevated compared with the case with no fluid-fluid interaction. The water
velocity (A) and saturation profiles (C) show that water to a less extent displaces oil and instead
flows through the original water channels when fluid-fluid interaction is included. The difference
in the water saturation profiles between (C) and (F) is enhanced with time due to the additional
resistance force from the fluid-fluid interaction term.
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Figure 11: Comparison for the horizontal compressible model for a WAG process with and without
fluid-fluid interaction effects. The situation after 60 and 120 days are plotted. (A) Phase velocity at
60 days. (B) Phase pressure at 60 days. (C) Normalized saturation at 60 days. (D) Phase velocity
at 120 days. (E) Phase pressure at 120 days. (F) Normalized saturation at 120 days.

Fig. 12 compares the results for the vertical model for a WAG process with and without fluid-
fluid interaction effect at 60 and 120 days. Due to the density difference a large proportion of gas
flows to the upper part of layer, see (C) and (F), and more of the water flows towards the bottom
part of layer. As a result, differences are seen for the water velocity (A,D) and saturation (C,F)
for the case with and without fluid-fluid interaction. Similar to Fig. 11, the build-up of the water
front is less efficient for the case with fluid-fluid interaction since a larger portion of water tends
to move through the original water channels (A).

5. Concluding remarks

We have presented a three-phase compressible and incompressible viscous model based on the
mixture theory approach. The formulation represents an extension of the conventional Darcy-type
formulations by including fluid-fluid viscous coupling effects. The three-phase flow model consists
of a set of mass balance equations which are coupled to a set of momentum balance equations that
involve both fluid-matrix, fluid-fluid interactions, and internal viscosity effects. Numerical schemes
have been developed for both the compressible and incompressible model. Moreover, various wa-
terflooding displacement scenarios in a gas reservoir and WAG injection in an oil reservoir have
been investigated to illustrate the effects of fluid compressibility and fluid-fluid viscous coupling.
Main findings are:
(i) The numerical schemes proposed in this paper appear to be robust and stable for simulation
of various three-phase flow scenarios, both for the incompressible and compressible case;
(ii) Comparison of the results for the compressible and incompressible model show that the differ-
ences between these two models can be significant, especially in the vertical case where the effect
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Figure 12: Comparison of the vertical compressible model for a WAG process with and without
fluid-fluid interaction effect at 60 and 120 days. (A) Phase velocity at 60 days. (B) Phase pressure
at 60 days. (C) Normalized saturation at 60 days. (D) Phase velocity at 120 days. (E) Phase
pressure at 120 days. (F) Normalized saturation at 120 days. Water tends to flow towards the lower
part of layer due to the gravity segregation, resulting in a strong fluid-fluid interaction in the lower
part of layer where the water saturation profiles clearly are affected, see (D) and (F).

of gravity segregation is rather strong;
(iii) The viscous coupling (fluid-fluid interaction) can have a significant effect on the results.
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Appendix A

From the three mass balance equations we get after multiplying the oil mass balance with ρwρg,
the water mass balance with ρoρg and the c mass balance with ρwρo,





(swtρw + swρwt)ρoρg + ρoρg(swρwuw)x = −swρwρoρgQp/φ+ ρwρoρgQIw/φ,
(sotρo + soρot)ρwρg + ρwρg(soρouo)x = −soρwρoρgQp/φ,
(sgtρg + sgρgt)ρwρo + ρwρo(sgρgug)x = −sgρwρoρgQp/φ+ ρwρoρgQIg/φ,

(5.34)

and summing the three resulting equations

f1 + f2 + f3 = f4, (5.35)

where

f1 = swtρwρoρg + sotρwρoρg + sgtρwρoρg = ρwρoρg(swt + sot + sgt) = 0,

f2 = swρwtρoρg + soρotρwρg + sgρgtρwρo,

f3 = ρoρg(swρwuw)x + ρwρg(soρouo)x + ρwρo(sgρgug)x,

f4 = −swρwρoρgQp/φ+ ρwρoρgQIw/φ− soρwρoρgQp/φ− sgρwρoρgQp/φ+ ρwρoρgQIg/φ

= ρwρoρg(QIw +QIg −Qp)/φ.
Here we want to focus on dealing with expression f2.

f2 = swρoρg
Pwt
Cw

+ soρwρg
Pot
Co

+ sgρwρo
Pgt
Cg

, (5.36)
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Pot = (Pw + ∆Pow)t = Pwt + ∆P ′owswt,

Pgt = (Pw + ∆Pow + ∆Pgo)t = Pwt + ∆P ′owswt + ∆P ′gosgt and

sgt = −(swt + sot) = −(swt +
not
ρo
− no
Coρ2

o

Pot) = −(swt +
not
ρo
− no
Coρ2

o

(Pwt + ∆P ′owswt)).

(5.37)

Therefore we have

f2 = (κρw +
swρoρg
Cw

)Pwt + κρw∆P ′owswt −
sgρwρo
Cg

∆P ′goswt −
sgρw
Cg

not; (5.38)

where

κ =
soρg
Co

+
sgρo
Cg

+
sgso
CoCg

. (5.39)

Clearly,

swt =
(nw
ρw

)
t

=
1

ρw
nwt −

m

ρ2
w

ρwt =
1

ρw
nwt −

m

Cwρ2
w

Pwt.

Consequently,

f2 =
[
κρw +

swρoρg
Cw

− sw
Cw

(κ∆P ′ow −
sgρo
Cg

∆P ′go)
]
Pwt − (κ∆P ′ow −

sgρo
Cg

∆P ′go)(swρwuw)x

+
sgρw
Cg

(soρouo)x −
sgρw
Cg

soρoQp − (ρwswQp − ρwQIw)(κ∆P ′ow −
sgρo
Cg

∆P ′go).
(5.40)

Since that f1 = 0, (5.35) will have the following form:
[
κρw +

swρoρg
Cw

− sw
Cw

(κ∆P ′ow −
sgρo
Cg

∆P ′go)
]
Pwt + (ρoρg +

sgρo
Cg

∆P ′go − κ∆P ′ow)(swρwuw)x

+ (ρwρg +
sgρw
Cg

)(soρouo)x + ρwρo(sgρgug)x = ρwρoρg(QIw +QIg −Qp)/φ+
sgρw
Cg

soρoQp/φ+

(ρwswQp/φ− ρwQIw/φ)(κ∆P ′ow +
sgρo
Cg

∆P ′go).

(5.41)

The upper equation can be reformulated to be

Pwt + η̃1(nwuw)x + η̃2(nouo)x + η̃3(ngug)x = η̃4Qp/φ+ η̃5QIw/φ+ η̃6QIg/φ; (5.42)

where

η = κρw +
swρoρg
Cw

− sw
Cw

(κ∆P ′ow −
sgρo
Cg

∆P ′go)

η̃1 =
1

η
(ρoρg +

sgρo
Cg

∆P ′go − κ∆P ′ow)

η̃2 =
1

η
(ρwρg +

sgρw
Cg

)

η̃3 =
1

η
ρwρo

η̃4 =
1

η

[sgρw
Cg

soρo + ρwsw(κ∆P ′ow −
sgρo
Cg

∆P ′go)− ρwρoρg
]

η̃5 =
1

η

[
ρwρoρg − ρw(κ∆P ′ow −

sgρo
Cg

∆P ′go)
]

η̃6 =
1

η
ρwρoρg.

(5.43)

Remark 5.1. ∆P ′ow is always non-positive and ∆P ′go non-negative.
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Appendix B: Numerical discretization of compressible version

We develop a numerical scheme for this general three-fluid flow model in a 1D setting. The
proposed numerical methods are described separately for the compressible (Appendix B) and
incompressible (Appendix C) model.

5.1. A semi-discrete scheme for the compressible model.
We consider a slight reformulation of the model where we shall make use of the pressure evolution
equation (5.42). This will be convenient to account for the highly nonlinear coupling between the
mass and momentum equations through the pressure terms. It also makes the discretization of
the compressible and incompressible model consistent. The original model takes the form with
(nw, no, ng, uw, uo, ug) as the main variables:

(φnw)t + (φnwuw)x = −nwQp + ρwQIw, nw = swρw

(φno)t + (φnouo)x = −noQp, no = soρo

(φng)t + (φngug)x = −ngQp + ρgQIg, ng = sgρg

sw(Pw)x = −k̂wuw − k̂wo(uw − uo)− k̂wg(uw − ug) + nwg + εw(nwuwx)x,

so(Po)x = −k̂ouo − k̂wo(uo − uw)− k̂og(uo − ug) + nog + εo(nouox)x,

sg(Pg)x = −k̂gug − k̂wg(ug − uw)− k̂og(ug − uo) + ngg + εg(ngugx)x,

∆Pow(sw) = Po − Pw, ∆Pgo(sg) = Pg − Po.

(5.44)

Note that we may rewrite the model in the following equivalent form with (nw, no, Pw, uw, uo, ug)
as the main variables

(φnw)t + (φnwuw)x = −nwQp + ρwQIw,

(φno)t + (φnouo)x = −noQp,
Pwt + η̃1(nwuw)x + η̃2(nouo)x + η̃3(ngug)x = η̃4Qp/φ+ η̃5QIw/φ+ η̃6QIg/φ,

sw(Pw)x = −k̂wuw − k̂wo(uw − uo)− k̂wg(uw − ug)− nwg + εw(nwuwx)x,

so(Pw + ∆Pow)x = −k̂ouo − k̂wo(uo − uw)− k̂og(uo − ug)− nog + εo(nouox)x,

sg(Pw + ∆Pow + ∆Pgo)x = −k̂gug − k̂wg(ug − uw)− k̂og(ug − uo)− ngg + εg(ngugx)x,

∆Pow(sw) = Po − Pw, ∆Pgo(sg) = Pg − Po.
(5.45)

Here ng is determined by

ng = sgρg(Pg) = (1− sw − so)ρg(Pg)

=
(

1− nw
ρw(Pw)

− no
ρo(Po)

)
ρg(Pg) = ng(nw, no, Pw),

(5.46)

where Po = Po(sw, Pw) = Po(nw, Pw) and Pg = Pg(sw, so, Pw) = Pg(nw, no, Pw). We may solve
(5.45) on our domain Ω with boundary conditions

uw|∂Ω = uo|∂Ω = ug|∂Ω = 0 (5.47)

and initial condition

nw(x, t = 0) = nw0(x), no(x, t = 0) = no0(x).

ng(x, t = 0) = ng0(x), Pw(x = 0, t = 0) = PwL.
(5.48)

System of ODEs.
We consider the domain Ω = [0, 1] and introduce a grid of Nx cells with nodes xj placed at the
center of the cells

x1 =
1

2
∆x, x2 = (1 +

1

2
)∆x, . . . , xj = (j − 1

2
)∆x, . . . , xNx = (Nx −

1

2
)∆x
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and cell interfaces xj+1/2 at the cell interfaces

x1/2 = 0, x3/2 = ∆x, . . . , xj+1/2 = j∆x, . . . , xNx+1/2 = Nx∆x = 1,

where ∆x = 1/Nx. We introduce the approximate masses {nwj(t)}Nx
j=1, {noj(t)}Nx

j=1, and {ngj(t)}
Nx
j=1

associated with the nodes {xj}Nx
j=1 whereas the approximate velocities {uw,j+1/2}Nx

j=0, {uo,j+1/2}Nx
j=0,

and {ug,j+1/2}Nx
j=0 are associated with the cell interfaces {xj+1/2}Nx

j=0.

Step 1: Mass transport.
We solve for nwj(t) by considering the following ODE:
for the water phase,

·
nw,j +

1

∆x
([nwuw]j+1/2 − [nwuw]j−1/2) = −nwjQp,j/φ+ ρwjQIw,j/φ, nw = swρw (5.49)

where

[nwuw]j+1/2 =

{
nwjuw,j+1/2, if uw,j+1/2 ≥ 0;
nwj+1uw,j+1/2, if uw,j+1/2 < 0.

(5.50)

This can also be expressed as

[nwuw]j+1/2 =
nwj + nw,j+1

2
uw,j+1/2 −

1

2
(nw,j+1 − nwj)|uw,j+1/2|

for the oil phase,

·
no,j +

1

∆x
([nouo]j+1/2 − [nouo]j−1/2) = −nojQp,j/φ, no = soρo (5.51)

where

[nouo]j+1/2 =

{
nojuo,j+1/2, if uo,j+1/2 ≥ 0;
noj+1uo,j+1/2, if uo,j+1/2 < 0.

(5.52)

Remark 5.2. It should be pointed out that Qp,j =
Qp

σ and QIw,j = QIw

σ (where j refers to a grid
cell which contains a producer/injector) due to the fact that production Qp or injection QIw in
5.44 is interpreted as a value at a point location. The width of the small region associated with
the injector and producer is σ = ∆x consistent with (4.33). This also applies for QIg,j in (5.53),

that is to say, QIg,j =
QIg

σ .

Step 2: Computation of velocities and pressure.
Next, we solve for Pw,j(t) and uw,j+1/2(t), uo,j+1/2(t) and ug,j+1/2(t) by considering the following
ODE system:

·
Pw,j +η̃1,j

1

∆x
([nwuw]j+1/2 − [nwuw]j−1/2) + η̃2,j

1

∆x
([nouo]j+1/2 − [nouo]j−1/2)

+η̃3,j
1

∆x
([ngug]j+1/2 − [ngug]j−1/2) = η̃4,jQp,j/φ+ η̃5,jQIw,j/φ+ η̃6,jQIg,j/φ

(5.53)

which is combined with the momentum balance equations
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sw,j+1/2
1

∆x
(Pw,j+1 − Pw,j) =

−k̂w,j+1/2uw,j+1/2 − k̂wo,j+1/2

(
uw,j+1/2 − uo,j+1/2

)
− k̂wg,j+1/2

(
uw,j+1/2 − ug,j+1/2

)

−gnw,j+1/2 + εw
1

∆x2

(
nw,j+1[uw,j+3/2 − uw,j+1/2]− nw,j [uw,j+1/2 − uw,j−1/2]

)

so,j+1/2
1

∆x
(Pw,j+1 − Pw,j) = −so,j+1/2

1

∆x
(∆Pow,j+1 −∆Pow,j)

−k̂o,j+1/2uo,j+1/2 − k̂wo,j+1/2

(
uo,j+1/2 − uw,j+1/2

)
− k̂og,j+1/2

(
uo,j+1/2 − ug,j+1/2

)

−gno,j+1/2 + εo
1

∆x2

(
no,j+1[uo,j+3/2 − uo,j+1/2]− no,j [uo,j+1/2 − uo,j−1/2]

)

sg,j+1/2
1

∆x
(Pw,j+1 − Pw,j) = −sg,j+1/2

1

∆x
(∆Pow,j+1 −∆Pow,j + ∆Pgo,j+1 −∆Pgo,j)

−k̂g,j+1/2ug,j+1/2 − k̂wg,j+1/2

(
ug,j+1/2 − uw,j+1/2

)
− k̂og,j+1/2

(
ug,j+1/2 − uo,j+1/2

)

−gcg,j+1/2 + εg
1

∆x2

(
cg,j+1[ug,j+3/2 − ug,j+1/2]− ng,j [ug,j+1/2 − ug,j−1/2]

)

(5.54)

Here we note that the average sw,j+1/2 in (5.54) is based on upwind relatively uw,j+1/2

sw,j+1/2 =





sw,j , if uw,j+1/2 > 0;
sw,j+sw,j+1

2 , if uw,j+1/2 = 0;
sw,j+1, if uw,j+1/2 < 0.

(5.55)

Similarly, for so,j+1/2, sg,j+1/2 and for the interaction terms k̂w,j+1/2, k̂o,j+1/2 and k̂g,j+1/2. For

k̂wo,j+1/2, k̂og,j+1/2 and k̂wg,j+1/2 we use the following method:

k̂wo,j+1/2 =





k̂wo,j , if uw,j+1/2 > 0 & uo,j+1/2 > 0 ;
k̂wo,j+k̂wo,j+1

2 , if uw,j+1/2uo,j+1/2 ≤ 0;

k̂wo,j+1, if uw,j+1/2 < 0 & uo,j+1/2 < 0.

(5.56)

k̂wg,j+1/2 and k̂og,j+1/2 are also approximated using the similar way. On the other hand, [nwuw]j+1/2,
[nouo]j+1/2 and [ngug]j+1/2 appearing in (5.53) employ upwind as described in (5.50).

Now, we are in a position where we can describe a fully discrete model.

5.2. A fully discrete scheme.
We assume that we have given (nkw,j , n

k
o,j , P

k
w,j , u

k
w,j , u

k
o,j , u

k
g,j). We then compute the approximate

solution at time tk+1 expressed by (nk+1
w,j , n

k+1
o,j , P

k+1
w,j , u

k+1
w,j , u

k+1
o,j , u

k+1
g,j ) as follows:

Step 1: Mass transport.

nk+1
w,j − nkw,j

∆t
+

1

∆x
([nwuw]kj+1/2 − [nwuw]kj−1/2) = −nkw,jQkp,j/φ+ ρkwjQ

k
Iw,j/φ

(5.57)

where

[nwuw]kj+1/2 =

{
nkw,ju

k
w,j+1/2, if ukw,j+1/2 ≥ 0;

nkw,j+1u
k
w,j+1/2, if ukw,j+1/2 < 0.

(5.58)

nk+1
o,j − nko,j

∆t
+

1

∆x
([nouo]

k
j+1/2 − [nouo]

k
j−1/2) = −nko,jQkp,j/φ (5.59)

where

[nouo]
k
j+1/2 =

{
nko,ju

k
o,j+1/2, if ukw,j+1/2 ≥ 0;

nko,j+1u
k
o,j+1/2, if ukw,j+1/2 < 0.

(5.60)
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Having computed nk+1
w,j and nk+1

o,j we can compute an updated water saturation s
k+1/2
w,j and s

k+1/2
o,j

given by

s
k+1/2
w,j =

nk+1
w,j

ρw(P kw,j)
, s

k+1/2
o,j =

nk+1
o,j

ρo(P
k+1/2
o,j )

=
nk+1
o,j

ρo(P kw,j + ∆Pow(s
k+1/2
w,j ))

. (5.61)

Similarly, we compute updated mass n
k+1/2
g,j and P

k+1/2
g,j needed to evaluate coefficients in the

next step.

Step 2: Computation of velocities and pressure.
Next, we solve simultaneously for P k+1

w,j and uk+1
w,j+1/2, uk+1

o,j+1/2 and uk+1
g,j+1/2 by considering the

following algebraic system

P k+1
w,j − P kw,j

∆t
+η̃

k+1/2
1,j

1

∆x
([nk+1

w uk+1
w ]j+1/2 − [nk+1

w uk+1
w ]j−1/2) + η̃

k+1/2
2,j

1

∆x
([nk+1

o uk+1
o ]j+1/2

− [nk+1
o uk+1

o ]j−1/2) + η̃
k+1/2
3,j

1

∆x
([nk+1/2

g uk+1
g ]j+1/2 − [nk+1/2

g uk+1
g ]j−1/2) =

η̃
k+1/2
4,j Qkp,j/φ+ η̃

k+1/2
5,j QkIw,j/φ+ η̃

k+1/2
6,j QkIg,j/φ

(5.62)

which is combined with the momentum balance equations

s
k+1/2
w,j+1/2

1

∆x
(P k+1
w,j+1 − P k+1

w,j ) =

−k̂k+1/2
w,j+1/2u

k+1
w,j+1/2 − k̂

k+1/2
wo,j+1/2

(
u
k+1/2
w,j+1/2 − u

k+1/2
o,j+1/2

)
− k̂k+1/2

wg,j+1/2

(
u
k+1/2
w,j+1/2 − u

k+1/2
g,j+1/2

)

−nk+1
w,j+1/2g + εw

1

∆x2

(
nk+1
w,j+1[uk+1

w,j+3/2 − uk+1
w,j+1/2]− nk+1

w,j [uk+1
w,j+1/2 − uk+1

w,j−1/2]
)

s
k+1/2
o,j+1/2

1

∆x
(P k+1
w,j+1 − P k+1

w,j ) = −sk+1/2
o,j+1/2

1

∆x
(∆P

k+1/2
ow,j+1 −∆P

k+1/2
ow,j )

−k̂k+1/2
o,j+1/2u

k+1
o,j+1/2 − k̂

k+1/2
wo,j+1/2

(
uk+1
o,j+1/2 − uk+1

w,j+1/2

)
− k̂k+1/2

og,j+1/2

(
uk+1
o,j+1/2 − uk+1

g,j+1/2

)

−nk+1
o,j+1/2g + εo

1

∆x2

(
n
k+1/2
o,j+1 [uk+1

o,j+3/2 − uk+1
o,j+1/2]− nk+1/2

o,j [uk+1
o,j+1/2 − uk+1

o,j−1/2]
)

s
k+1/2
g,j+1/2

1

∆x
(P k+1
w,j+1 − P k+1

w,j ) = −sk+1/2
g,j+1/2

1

∆x
(∆P

k+1/2
ow,j+1 −∆P

k+1/2
ow,j + ∆P

k+1/2
go,j+1 −∆P

k+1/2
go,j )

−k̂k+1/2
g,j+1/2u

k+1
g,j+1/2 − k̂

k+1/2
wg,j+1/2

(
uk+1
g,j+1/2 − uk+1

w,j+1/2

)
− k̂k+1/2

og,j+1/2

(
uk+1
g,j+1/2 − uk+1

o,j+1/2

)

−nk+1/2
g,j+1/2g + εg

1

∆x2

(
n
k+1/2
g,j+1 [uk+1

g,j+3/2 − uk+1
g,j+1/2]− nk+1/2

g,j [uk+1
g,j+1/2 − uk+1

g,j−1/2]
)

(5.63)

Equipped with (P k+1
w,j , u

k+1
w,j+1/2, u

k+1
o,j+1/2, u

k+1
g,j+1/2) we can now update the saturation

sk+1
w,j =

nk+1
w,j

ρw(P k+1
w,j )

, sk+1
o,j =

nk+1
o,j

ρo(P
k+1
o,j )

=
nk+1
o,j

ρo(P
k+1
w,j + ∆P k+1

ow,j(s
k+1
w,j ))

(5.64)

from which we also compute the updated gas mass nk+1
g,j via (5.46). If necessary, we may repeat

step 2 to improve the accuracy before we proceed to next time level.

Remark 5.3. The upwind discretization of [nk+1
w uk+1

w ]j+1/2, [n
k+1/2
o uk+1

o ]j+1/2 and [n
k+1/2
g uk+1

g ]j+1/2

appearing in (5.62) are based on ”old” velocities ukw,j+1/2, uko,j+1/2 and ukg,j+1/2.

Appendix C: Numerical discretization of incompressible version

We first describe a semi-discrete approximation of the incompressible version of model (3.11).
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5.3. A semidiscrete scheme for the incompressible model.
When fluids are incompressible the model (5.45) takes the form

(sw)t + (swuw)x = −swQp/φ+QIw/φ,

(so)t + (souo)x = −soQp/φ,
(swuw + souo + sgug)x = −Qp/φ+QIw/φ+QIg/φ,

sw(Pw)x = −k̂wuw − k̂wo(uw − uo)− k̂wg(uw − ug) + nwg + εwρw(swuwx)x,

so(Po)x = −k̂ouo − k̂wo(uo − uw)− k̂og(uo − ug) + nog + εoρo(souox)x,

sg(Pg)x = −k̂gug − k̂wg(ug − uw)− k̂og(ug − uo) + ngg + εgρg(sgugx)x,

∆Pow(sw) = Po − Pw, ∆Pgo(sg) = Pg − Po.
(5.65)

Step 1: Mass transport.

·
sw,j +

1

∆x
([swuw]j+1/2 − [swuw]j−1/2) = −sw,jQp,j/φ+QIw,j/φ (5.66)

where

[swuw]j+1/2 =

{
sw,juw,j+1/2, if uw,j+1/2 ≥ 0;
sw,j+1uw,j+1/2, if uw,j+1/2 < 0.

(5.67)

·
so,j +

1

∆x
([souo]j+1/2 − [souo]j−1/2) = −so,jQp,j/φ (5.68)

where

[souo]j+1/2 =

{
so,juo,j+1/2, if uo,j+1/2 ≥ 0;
so,j+1uo,j+1/2, if uo,j+1/2 < 0.

(5.69)

Step 2: Computation of velocities and pressure.
Next, we solve for Pw,j(t) and uw,j+1/2(t), uo,j+1/2(t) and ug,j+1/2(t) by considering the following
ODE system:

1

∆x
([swuw]j+1/2 − [swuw]j−1/2) +

1

∆x
([souo]j+1/2 − [souo]j−1/2) +

1

∆x
([sgug]j+1/2 − [sgug]j−1/2)

= QIw,j/φ+QIg,j/φ−Qp,j/φ
(5.70)
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which is combined with the momentum balance equations

sw,j+1/2
1

∆x
(Pw,j+1 − Pw,j) =

−k̂w,j+1/2uw,j+1/2 − k̂wo,j+1/2

(
uw,j+1/2 − uo,j+1/2

)
− k̂wg,j+1/2

(
uw,j+1/2 − ug,j+1/2

)

−gsw,j+1/2ρw + εw
ρw

∆x2

(
sw,j+1[uw,j+3/2 − uw,j+1/2]− sw,j [uw,j+1/2 − uw,j−1/2]

)
,

so,j+1/2
1

∆x
(Pw,j+1 − Pw,j) = −so,j+1/2

1

∆x
(∆Pow,j+1 −∆Pow,j)

−k̂o,j+1/2uo,j+1/2 − k̂wo,j+1/2

(
uo,j+1/2 − uw,j+1/2

)
− k̂og,j+1/2

(
uo,j+1/2 − ug,j+1/2

)

−gso,j+1/2ρo + εo
ρo

∆x2

(
so,j+1[uo,j+3/2 − uo,j+1/2]− so,j [uo,j+1/2 − uo,j−1/2]

)
,

sg,j+1/2
1

∆x
(Pw,j+1 − Pw,j) = −sg,j+1/2

1

∆x
(∆Pow,j+1 −∆Pow,j + ∆Pgo,j+1 −∆Pgo,j)

−k̂g,j+1/2ug,j+1/2 − k̂wg,j+1/2

(
ug,j+1/2 − uw,j+1/2

)
− k̂og,j+1/2

(
ug,j+1/2 − uo,j+1/2

)

−gsg,j+1/2ρg + εg
ρg

∆x2

(
sg,j+1[ug,j+3/2 − ug,j+1/2]− sg,j [ug,j+1/2 − ug,j−1/2]

)
.

(5.71)

Here we note that the average sw,j+1/2 in (5.71) is based on upwind relatively uw,j+1/2

sw,j+1/2 =





sw,j , if uw,j+1/2 > 0;
sw,j+sw,j+1

2 , if uw,j+1/2 = 0;
sw,j+1, if uw,j+1/2 < 0.

(5.72)

Similarly, for so,j+1/2, sg,j+1/2 and for the interaction terms k̂w,j+1/2, k̂o,j+1/2, and k̂g,j+1/2.

In addition, k̂wo,j+1/2 is based on upwind relatively uw,j+1/2 and uo,j+1/2

k̂wo,j+1/2 =





k̂wo,j , if uw,j+1/2 > 0 & uo,j+1/2 > 0 ;
k̂wo,j+k̂wo,j+1

2 , if uw,j+1/2uo,j+1/2 ≤ 0;

k̂wo,j+1, if uw,j+1/2 < 0 & uo,j+1/2 < 0.

(5.73)

k̂wg,j+1/2 and k̂og,j+1/2 are also approximated using the similar way. On the other hand, [swuw]j+1/2,
[souo]j+1/2 and [sgug]j+1/2 appearing in (5.70) employ upwind as described in (5.72).

5.4. A fully discrete scheme for the incompressible model.

Step 1: Mass transport.

sk+1
w,j − skw,j

∆t
+

1

∆x
([swuw]kj+1/2 − [swuw]kj−1/2) = −skw,jQkp,j/φ+QkIw,j/φ

(5.74)

where

[swuw]kj+1/2 =

{
skw,ju

k
w,j+1/2, if ukw,j+1/2 ≥ 0;

skw,j+1u
k
w,j+1/2, if ukw,j+1/2 < 0.

(5.75)

sk+1
o,j − sko,j

∆t
+

1

∆x
([souo]

k
j+1/2 − [souo]

k
j−1/2) = −sko,jQkp,j/φ (5.76)

where

[souo]
k
j+1/2 =

{
sko,ju

k
o,j+1/2, if uko,j+1/2 ≥ 0;

sko,j+1u
k
o,j+1/2, if uko,j+1/2 < 0.

(5.77)

Having computed sk+1
w,j and sk+1

o,j we can compute pressure and velocities simultaneously at time
level k + 1.
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Step 2: Computation of velocities and pressure.
We solve for P k+1

w,j and uk+1
w,j+1/2, uk+1

o,j+1/2 and uk+1
g,j+1/2 by considering the following algebraic

system

1

∆x
([sk+1

w uk+1
w ]j+1/2 − [sk+1

w uk+1
w ]j−1/2) +

1

∆x
([sk+1

o uk+1
o ]j+1/2 − [sk+1

o uk+1
o ]j−1/2)

+
1

∆x
([sk+1

g uk+1
g ]j+1/2 − [sk+1

g uk+1
g ]j−1/2) = QkI,j/φ−Qkp,j/φ

(5.78)

which is combined with the momentum balance equations

s
k+1/2
w,j+1/2

1

∆x
(P k+1
w,j+1 − P k+1

w,j ) =

−k̂k+1/2
w,j+1/2u

k+1
w,j+1/2 − k̂

k+1/2
wo,j+1/2

(
u
k+1/2
w,j+1/2 − u

k+1/2
o,j+1/2

)
− k̂k+1/2

wg,j+1/2

(
u
k+1/2
w,j+1/2 − u

k+1/2
g,j+1/2

)

−sk+1
w,j+1/2ρwg + εw

ρw
∆x2

(
sk+1
w,j+1[uk+1

w,j+3/2 − uk+1
w,j+1/2]− sk+1

w,j [uk+1
w,j+1/2 − uk+1

w,j−1/2]
)

s
k+1/2
o,j+1/2

1

∆x
(P k+1
w,j+1 − P k+1

w,j ) = −sk+1/2
o,j+1/2

1

∆x
(∆P

k+1/2
ow,j+1 −∆P

k+1/2
ow,j )

−k̂k+1/2
o,j+1/2u

k+1
o,j+1/2 − k̂

k+1/2
wo,j+1/2

(
uk+1
o,j+1/2 − uk+1

w,j+1/2

)
− k̂k+1/2

og,j+1/2

(
uk+1
o,j+1/2 − uk+1

g,j+1/2

)

−sk+1
o,j+1/2ρog + εo

ρo
∆x2

(
s
k+1/2
o,j+1 [uk+1

o,j+3/2 − uk+1
o,j+1/2]− sk+1/2

o,j [uk+1
o,j+1/2 − uk+1

o,j−1/2]
)

s
k+1/2
g,j+1/2

1

∆x
(P k+1
w,j+1 − P k+1

w,j ) = −sk+1/2
g,j+1/2

1

∆x
(∆P

k+1/2
ow,j+1 −∆P

k+1/2
ow,j + ∆P

k+1/2
go,j+1 −∆P

k+1/2
go,j )

−k̂k+1/2
g,j+1/2u

k+1
g,j+1/2 − k̂

k+1/2
wg,j+1/2

(
uk+1
g,j+1/2 − uk+1

w,j+1/2

)
− k̂k+1/2

og,j+1/2

(
uk+1
g,j+1/2 − uk+1

o,j+1/2

)

−sk+1/2
g,j+1/2ρgg + εg

ρg
∆x2

(
s
k+1/2
g,j+1 [uk+1

g,j+3/2 − uk+1
g,j+1/2]− sk+1/2

g,j [uk+1
g,j+1/2 − uk+1

g,j−1/2]
)

(5.79)

Remark 5.4. The upwind discretization of [sk+1
w uk+1

w ]j+1/2, [sk+1
o uk+1

o ]j+1/2 and [sk+1
g uk+1

g ]j+1/2

appearing in (5.78) are based on ”old” velocities ukw,j+1/2, uko,j+1/2 and ukg,j+1/2.
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A GENERAL CELL-FLUID NAVIER-STOKES MODEL

WITH INCLUSION OF CHEMOTAXIS

YANGYANG QIAO1 AND STEINAR EVJE1,∗

Abstract. The main purpose of this work is to explore a general cell-fluid model which is based

on a mixture theory formulation that accounts for the interplay between oxytactically (chemo-
taxis toward gradient in oxygen) moving bacteria cells in water and the bouyance forces caused

by the difference in density between cells and fluid. The model involves two mass balance and

two general momentum balance equations, respectively, for the cell and fluid phase, combined
with a convection-diffusion-reaction equation for oxygen. In particular, the momentum balance

equations include interaction terms which describe the cell-fluid drag force effect. Hence, the

model is an extension of the classical Navier-Stokes equation in two different ways: (i) inclusion
of two phases (cell and fluid) instead of one; (ii) inclusion of a chemotactic transport mechanism.

The model can be understood as a natural generalization of the much studied chemotaxis-Stokes

model explored by [Tuval, et al. (2005), PNAS 102]. Assuming that cells and water are incom-
pressible, we explore the nonlinear dynamics inherent in the model in a 2D setting by using an

appropriate finite difference scheme. First, we explore the model for parameters in a range which
ensures that it lies close to the previously studied chemotaxis-Stokes model (essentially very low

cell volume fraction) and where oxygen is available at the water surface. Main observations

are (i) formation of sinking finger-shaped plumes and (ii) convergence to plumes that possibly
can be stationary (i.e., persist over time). The general cell-fluid model provides new insight

into the role played by the cell-fluid interaction term. Formation of falling plumes requires a

sufficiently strong cell-fluid interaction such that the difference between cell and water velocity
becomes small. A weakening of this term typically implies that the falling plumes will detach

from the upper layer. Hence, this term controls the competition between gravity segregation

and chemotaxis effect on the formation of cell plumes. Second, we explore the model where
assumptions used to derive the chemotaxis-Stokes have been relaxed. In particular, we explore

cases with large cell volume fraction (far beyond the regime captured by the chemotaxis-Stokes

model), which gives rise to rich pattern-formation behavior. The general cell-fluid model opens
for exploring a hierarchy of different ”submodels”. Hence, it seems to be an interesting model

for further investigations of various, general cell-fluid spatio-temporal evolution dynamics, both
from an experimental and mathematical point of view.

Keywords: two-phase, mixture theory, Navier-Stokes, chemotaxis-Navier Stokes, bioconvection,
chemotaxis, finite difference

1. Introduction

1.1. Various cell-fluid phenomena. Vast numbers of microorganisms are suspended in temper-
ate aqueous environments. Oceans and rivers, puddles and droplets, the fluid interiors of animals,
all host an array of splendidly varied creatures [31]. Although their presence is usually not ob-
vious, they constitute the major part of the world’s biomass. Microorganisms interact with each
other and with the world, at length scales that vary upward from the size of an individual, say
10−4 cm, to the dimensions of the entire body of fluid in which they live. Various microorgan-
isms respond to stimuli by swimming (in average) in particular directions. Such phenomena are
called taxes. Common examples of taxes of importance are gravitaxis (or geotaxis), a response to
gravity or acceleration; phototaxis, a response to light; and chemotaxis, a response to chemical
gradients. Responses to shear in the ambient flow are sometimes called rheotaxis. Some bacteria
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contain magnetic particles (magnetosomes), which cause them to swim along magnetic field lines
(magnetotaxis).

Bioconvection is the name given to the process of spontaneous pattern formation in suspensions
of upswimming microorganisms. Typically, the cells are denser than the medium they swim in,
nevertheless they tend to swim upwards, on average, in still water, and the patterns die away if the
cells stop swimming. The cause of the upswimming orientation can be different (gravity-sensing,
bottom-heaviness, chemotaxis, phototaxis), but the patterns show great similarities between dif-
ferent species and orientation mechanisms.

Complex bioconvection patterns form when a suspension of the bacterium Bacillus subtilis
is placed in a chamber with its upper surface open to the air. These arise because the cells
are heavier (approximately 10%) than water, yet, they are able to swim up an oxygen gradient
and concentrate in a layer below the water surface, which will undergo Rayleigh-Taylor type
instabilities for sufficiently high concentrations. The reason that the cells swim upwards is that
they are aerotactic, i.e. they swim up gradients of oxygen, and they consume oxygen. When the
vertical density gradient becomes large enough, an overturning instability occurs, analogous to
Rayleigh-Bénard convection in a layer of fluid heated from below, which ultimately evolves into
the observed patterns [25, 26].

The authors of [25] investigated numerical experiments for both shallow- (< 1 cm deep) and
deep-layer (≥ 2 cm deep) chambers assuming the fluid motion is zero. It was found that, for both
shallow and deep chambers, a thin boundary layer, densely packed with cells, formed near the
surface. Beneath this layer the suspension becomes severely depleted of cells. Furthermore, in
the deep chamber cases, a discontinuity in the cell concentration arises between this cell-depleted
region and a cell-rich region further below, where no significant oxygen concentration gradients
develop before the oxygen is fully consumed. The results obtained from their model are in good
qualitative agreement with the experimental observations.

Bacterial chemotaxis, i.e., oriented swimming along chemical gradients, is generally viewed as
locomotion in an otherwise quiescent fluid. Yet, the very flagella which propel the cell inevitably
stir up the fluid through their high-speed rotation, bundling, and unbundling. Conventional
arguments showing the irrelevance of advection compared to diffusion are based on the smallnes of
the Peclet number Pe. However, the collective hydrodynamics of concentrated assemblies of cells
greatly changes this situation, yielding Pe > 1. Such assemblies can arise due to the joint action
of chemotaxis, a symmetry breaking source of metabolite(s), and gravity. Once concentrated, the
collectively driven hydrodynamics may globally outcompete diffusion.

In [11] striking collective effects were reported in bacterial suspensions in which strong mi-
croscale mixing arises from two related aspects of cellular swimming in fluid drops: self-concentration
and large-scale dynamic coherence. The first arises from chemotactically generated accumulations
of cells that encounter, then slide down a slanted meniscus, resulting in even higher concentrations.
Dynamic coherence develops within that nearly close packed population. It appears as jets and
surges, straddled by vortices, often moving > 100µm/s, over scales > 100µm, yielding Pe ≥ 1.
These speeds and lengths exceed greatly the swimming speeds and size of the organisms.

As another example, the research reported in [7] provided experimental and theoretical in-
sights into a state which exhibited large-scale orientational coherence, analogous to the molecular
alignment of nematic liquid crystals, coupled with remarkable spatial and temporal correlations
of velocity and vorticity. The appearance of turbulent dynamics in a system which is nominally
in the regime of Stokes flow can be understood by accounting for the local energy input by the
swimmers.

1.2. A popular cell-fluid model for low cell density. Several related coupled chemotaxis-
fluid models have been proposed to describe the collective behaviour of a suspension of oxytactic
bacteria in an incompressible fluid under the assumptions that the contribution of bacteria to the
bacteria-fluid suspension is suffciently small and that more detailed cell-cell interactions (such as
hydrodynamic interaction) are neglected [6]. The suspension is considered to be dilute, so that the
volume fraction vVb � 1 where v is the number density of cells (bacteria) and Vb is the average
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volume of the cell. Assuming fluid and bacteria are incompressible, the following model has been
proposed [40]

vt + u · ∇v + χ∇ · (vr(C)∇C) = Dv∆v

ρ(ut + u · ∇u) +∇p = v∇Φ + η∆u, ∇ · u = 0

Ct + u · ∇C = DC∆C − κvr(C).

(1.1)

The first equation of (1.1) describes the mass balance equation for the bacteria v subject to
an internal interplay between a fluid-driven advection effect through u · ∇v, chemotaxis toward
higher concentration of oxygen C via∇·(nr(C)∇C), and diffusive spreading of bacteria in the fluid
through Dv∆v. Herein, C is the concentration of oxygen, u is the velocity field of a fluid which is
governed by the incompressible Navier-Stokes equations with density ρ, pressure p and viscosity
η, as expressed by (1.1)2. Moreover, in the fluid momentum balance equation of (1.1)2, the term
∇Φ = Vbg(ρb − ρ)ey describes the gravitational force exerted by a bacterium onto the fluid along
the downwards unit vector ey proportional to the volume of the bacterium Vb with density ρb
where ρb is slightly higher than the fluid density ρ. This formulation relies on the the Boussinesq
approximation in which the density variations caused by bacteria appear only through the buoyant
forcing ∇Φ. A dimensionless cut-off function r(C) models an inactivity threshold of the bacteria
due to low oxygen supply. Experiments suggest that the cut-off function can be modelled by a
step function r(C) = H(C −C∗) [40] where H(·) denotes the Heaviside function. The parameters
χ and κ control the magnitude of chemotaxis and consumption of oxygen, respectively, whereas
Dv and DC are diffusion constants.

Simulation results.
Various numerical schemes have been proposed to solve (1.1). Tuval et al. conducted experiments
with Bacillus subtilis in a drop with meniscus geometry and investigated the corresponding mathe-
matical model (1.1) consisting of oxygen diffusion and consumption, chemotaxis, and viscous fluid
dynamics by using a finite element-based method [40]. The vortex was showned to advectively
enhance uptake of oxygen into the suspension, and the wedge geometry led to a singularity in
the chemotactic dynamics near the contact line. Chertock et al. [6] explored a high-resolution
vorticity-based hybrid finite volume/finite difference scheme. The scheme was used to demonstrate
formation of sinking plumes, possible merging of neighbouring plumes, and convergence towards
numerically stable stationary plumes. In [9] the authors made use of a previously developed up-
wind finite element method to solve the chemotaxis-diffusion-convection system. Three regimes
were emphasized: First, a spatial layered structure is created. Bacteria agglomerate in the upper
stack layer, thus forming a depletion layer, where the bacterial density is very low. Subsequently,
bacterial convection strengthens with time and instabilities in the stack layer appear. Finally,
plumes of bacterial falling in the fluid are generated. The authors of [27] studied numerically the
nonlinear dynamics of the 3D version of (1.1). An operator splitting-type Navier-Stokes solver
was used to avoid a too strong restriction on the time step. They presented numerical examples
showing the formation of falling bacterial plumes out of random initial data and the convergence
towards stationary bacterial plumes.

Mathematical analysis.
The interest for the model (1.1) has also triggered mathematicians to explore more fundamental
issues related to the well-posedness and stability properties of this model. We refer to [47] for an
instructive overview of different mathematical results. Here we briefly mention some examples of
such work. Local-in-time weak solutions have been obtained for a boundary-value problem of (1.1)
in the three-dimensional setting [28]. Global existence was shown in Duan et al. [13, 10] for small
initial concentrations of the oxygen C and without the convection term in the u-equation, that is,
for the Stokes equation instead of the Navier-Stokes equation, which is a reasonable simplification
for the expected low Reynolds number flow. See also [39] for existence result with porous media-
type nonlinear diffusion. In addition, [48] showed that for all reasonably regular initial data, a
corresponding initial-boundary value problem for the Stokes model possesses a globally defined

213



4 YANGYANG QIAO1 AND STEINAR EVJE1,∗

Variable Description

αc,αw volume fraction of cell, fluid
ρc,ρw cell density, fluid density
n,m cell mass, fluid mass
uc,uw cell velocity, fluid velocity
C oxygen concentration
Pc, Pw cell pressure, fluid pressure
∆P , Λ cell-cell stress, chemotactic stress
εc,εw effective viscosity cell, fluid

ζ̂ cell-fluid interaction coefficient (drag force)
K consumption rate (oxygen)
DC diffusion coefficient (oxygen)

Table 1: Nomenclature description for model (1.2)

weak solution. [46] showed that for the system (1.1) suitable regularity assumptions on the initial
data entail the following: If N = 2, then the full chemotaxis-Navier–Stokes system admits a
unique global classical solution. If N = 3, then the simplified chemotaxis-Stokes system (Stokes)
possesses at least one global weak solution. Furthermore, in [47] (see also [50]) a first stabilization
type of result was obtained showing that the solution in a two-dimensional chemotaxis-Navier-
Stokes system stabilizes to the spatially uniform equilibrium when time goes infinitely. The result
obtained in [49] indicates that under certain boundary conditions, the possibly destabilizing action
of chemotactic cross-diffusion in (1.1) does not substantially affect the regularity properties of the
fluid flow, at least on large time scales. Moreover, [38] investigated an incompressible chemotaxis-
Navier-Stokes system with slow p-Laplacian diffusion for (1.1).

1.3. A general cell-fluid model.
It is of interest to study a general cell-fluid model which naturally can represent the model (1.1)
as a special case. Hence, we shall in the following describe such a model by relying on a mixture
theory multiphase formulation. In the multiphase modeling framework, the cell-fluid environment
is considered as a mixture of two interacting continua [2, 35, 12, 36, 33]. The cellular phase
comprises cells represented by a volume fraction αc moving with a velocity uc and the fluid phase
represented by the volume fraction αw moving with a velocity uw. The model takes the following
form (see Table 1 for the different variables):

nt +∇ · (nuc) = 0, n = αcρc

mt +∇ · (muw) = 0, m = αwρw

(nuc)t +∇ · (nuc ⊗ uc) + αc∇Pc = ζ̂(uw − uc) + ng + εc∇ · (n(∇uc +∇uTc ))

(muw)t +∇ · (muw ⊗ uw) + αw∇Pw = ζ̂(uc − uw) +mg + εw∇ · (m(∇uw +∇uTw))

Ct +∇ · (Cuw) = ∇ · (DC∇C)−KαcC.

(1.2)

The two first equations describe mass balance of the cell and fluid phase, respectively. The entire
volume is occupied by the two phases, i.e.,

αc + αw = 1. (1.3)

The next two equations in (1.2) are the corresponding momentum balance equations. The cell
momentum equation (1.2)3 accounts for two migration mechanisms: (i) diffusive migration to-
wards a lower volume fraction of cells αc; (ii) chemotactic migration towards a region with higher
concentration of oxygen C. This is achieved by letting the cell phase pressure Pc feel additional
stress due to cell-cell interaction through a term ∆P (αc) as well as a chemotaxis-related stress
Λ(C) through the relation

Pc = Pw + ∆P (αc) + Λ(C). (1.4)
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This means that the stress Pc associated with the cells differs from the fluid pressure Pw because
of the cell-cell stress term ∆P (αc) and the chemotaxis stress term Λ(C) and will trigger cells to
move in order to even out this pressure difference. We shall use the increasing function

∆P (αc) = P ∗c ln(αc) +R∗ (1.5)

for some positive constant P ∗c > 0 and R∗ with unit Pa. Note that ∆P plays the same role as
capillary pressure in a more classical fluid-mechanical setting where P ∗c is then associated with
the surface tension. The ability of the cancer cells to generate motion towards a positive gradient
in C (chemotaxis) is expressed through Λ(C) here set to be the decreasing function

Λ(C) = Λ0 − Λ1C, (1.6)

where Λ0, Λ1 are constant parameters with units Pa. Moreover, there is also a drag force between
the cell phase and the fluid. This effect is accounted for through the cell-fluid interaction term

±ζ̂(uw − uc), see (1.2)3,4 where

ζ̂ = Ik̂αwα
1+rcw
c , k̂ > 0, rcw ≥ 0, (1.7)

where I (Pa · s/m2) remains to be determined as well as the dimensionless k̂ and rcw. We shall in

this work set k̂ = 1 and rcw = 0.
The viscous stress terms with constant coefficients εc, εw (kinematic viscosity) represent internal

viscous effects associated with the cell and fluid phase, respectively. Finally, the gravity effect is
accounted for through the terms that involve g = gey = (0, g) where the y-axis is directed
downward and g is the gravity constant. Finally, we may use linear density-pressure relations of
the following form for compressible phases

ρw − ρ̃w0 =
Pw
Cw

, ρc − ρ̃c0 =
Pc
Cc

(1.8)

where ρ̃w0, Cw and ρ̃g0, Cg are known constants. Hence, Cw, Cc represent bulk modulus (inverse
of compressibility) which is a constant that describes how resistant a substance is to compression.
For incompressible phases Cw, Cc tend to infinity which implies that ρw = ρ̃w0 and ρc = ρ̃c0.

For some applications with low Reynolds number (which expresses the ratio of intertia to
viscosity) it may not be so relevant to include the acceleration terms (intertia terms) in the
momentum balance which gives us the Stokes like model

(αcρc)t +∇ · (αcρcuc) = 0, n = αcρc

(αwρw)t +∇ · (αwρwuw) = 0, m = αwρw

αc∇Pc = ζ̂(uw − uc) + ng + εc∇ · (n(∇uc +∇uTc ))

αw∇Pw = ζ̂(uc − uw) +mg + εw∇ · (m(∇uw +∇uTw))

Ct +∇ · (Cuw) = ∇ · (DC∇C)−KαcC.

(1.9)

Remark 1.1. The motivation for the choice of the potential functions ∆P (αc) in (1.5), Λ(C) in

(1.6), and the cell-fluid interaction term ζ̂ in (1.7), is to establish a link between the simplified
model (1.1) and the general cell-fluid models (1.2) and (1.9). More details are given in Section 2.

Remark 1.2. Regarding the momentum balance laws in (1.9) it is similar to what has been used
by Wolgemuth to study collective swimming of bacterium immersed in a fluid which may lead to
complex flow caused by the interaction and feedback between the bacteria and the fluid. In [51] a
two-phase model for the collective swimming of dense colonies of bacteria was developed which also
treats the fluid and bacteria as independent, interpenetrating continuum phases. By introducing an
entropically driven tendency for the bacteria to align, similar to nematic liquid crystals, the model
could reproduce coherent structures and density fluctuations in a bacterial bath. The model explains
turbulent flows in terms of the dipole stress that the bacteria exert on the fluid, entropic elasticity
due to the rod shape of each bacterium, and the torque on the bacteria due to fluid gradients.
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1.4. Main objective of this work. The main objective of the current work is to provide some
insight into basic mechanisms of the general model (1.2), which in different ways represents a
generalization of the chemotaxis-Stokes model (1.1). In particular, our investigations are along
the following lines:

• We discuss a reduced version of the model (1.2), similar to (1.9), where we can recover
the link to the model (1.1) and where we can explicitly express the competition between
gravity and chemotaxis.
• We consider a discrete finite difference scheme for the general cell-fluid model (1.2) in 2D

where the cell and fluid phase are assumed incompressible. It is demonstrated numerically
that the scheme possesses good properties like ability to preserve positivity of the cell
volume fraction, is able to give non-oscillatory behavior, and can naturally be extended
to include compressible phases.
• We provide 2D simulation results both for (i) low cell density where simulation results can

be related to those of (1.1); (ii) high cell density where the assumptions used to derive
(1.1) are relaxed and new and different behavior is seen. In particular, we highlight the

essential role played by the strength of the cell-fluid interaction term ζ̂ given by (1.7) and
determined through the parameter I. This parameter controls to what extent the cell-
fluid dynamics is dominated by co-current flow where cell and fluid velocity are essentially
equal or the cell-fluid behavior is more decoupled which gives room for a larger discrepancy
between the cell and water velocity field.

The model (1.2) is a two-phase Navier-Stokes type of model as described by (1.2)1−4, where the
cell phase has been equipped with a chemotactic mechanism such that cells will swim towards a
higher concentration in C (oxygen). The oxygen is in turn distributed by an advection-diffusion-
reaction equation as given by (1.2)5. Hence, the model is an extension of the classical Navier-
Stokes equations in two respects: (i) extension from one phase to two phases; (ii) inclusion of a
chemotactic transport mechanism.

Model (1.2) viewed in the larger context.
Mathematical analysis of compressible two-phase models that represent (in one or another way)
an extension of the mono-phase Navier-Stokes equations, has caught the interest of different re-
searchers more recently. Such models appear naturally in the context of various engineering-
focused applications that involve a (more or less) complex interplay between several fluid phases.
For example, in [14] the motivation was a gas-liquid model that can be used to explore gas-kick
scenarios (i.e., uncontrolled gas-liquid flow in a one-dimensional wellbore due to sudden influx of
compressed gas from the surrounding reservoir) in the context of wellbore operations. The model
is based on considering one momentum equation for the mixture and therefore involves a mixture
velocity of the two phases. By including an algebraic relation that describes the difference between
this mixture velocity and one of the phase velocities, one can study flow regimes where the two
phases flow with different velocities. A related work that focused on how to control the circulation
of gas and liquid is found in [16]. A natural and highly relevant extension is to include interaction
between two-phase flow in the 1D wellbore and the surrounding reservoir [15, 37]. Other gas-liquid
models have been studied in a 1D setting where the two fluids can move with different velocities,
which is needed for more realistic scenarios. Such models have been designed to be consistent with
lab experiments, typically carried out in a one-dimensional setting. For attempts to analyse such
engineering-motivated models we refer to [17, 18].

On the other hand, from a more theoretical point of view, there is a desire to take techniques
and methods applied in the study of the compressible, multidimensional mono-fluid compressible
Navier-Stokes equations, over to the context of multiphase Navier-Stokes models [29, 52]. An
interesting recent study of a one-velocity two-phase model, obtained by summing the two momen-
tum equations (Stokes equations) and assuming that one of the phases is largely dispersed in the
other and therfore moves with the same velocity, is found in [5]. This approach is also taken in
[53, 24] where the full momentum equations are used but subject to the one-velocity assumption.
Recent interesting results on global existence of weak solutions by relying on an energy estimate
only combined with refined compensated compactness arguments can be found in [42, 30, 45].
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A fundamental restriction seems to be the use of a common fluid velocity and a common mo-
mentum balance equation. The more general two-fluid model represented by (1.2)1−4 involves
non-conservative pressure terms and make the analysis challenging. For a seminal first work in
this direction, see [3, 4]. Interesting readers may also consult [22] where a stability analysis was
carried out and the role of capillary pressure (i.e., use of non-equal pressure) was explored.

A more recent direction is adaption and extension of two-phase Stokes-like equations similar to
(1.9) for the study of aggressive cancer cell migration mechanisms where fluid flow plays a role.
A general cancer cell-fluid model was explored by numerical simulations in [19]. Then, motivated
by experimental findings of fluid-sensitive migration mechanisms as reviewed in [23] a cell-fluid
model was formulated in [43]. In [44] the model was further developed to shed light on the
striking competition between two different fluid-sensitive migration mechanisms reported in [32].
Further investigations were done to illustrate how these two competing migration mechanisms
possibly could be used to enable clusters of cancer cells to break loose from the primary tumor
[20]. Mathematical analysis of such models seems rare. One small step in that direction is
found in [21] where a one-dimensional cell-fluid model similar to (1.9) was studied. Existence and
stability was obtained subject to appropriate constraints on initial data and model parameters.
The link between the reduced model (1.9) (when phases are assumed incompressible) and the
chemotaxis-Stokes model (1.1) may suggest that there is room for an interesting exchange of
ideas and techniques used in previous studies of (1.1) like [47, 50] but now in the context of the
formulation (1.9).

The rest of this work is organized as follows: In Section 2 we explore the inviscid, incompressible
version of the model (1.9) which allows us to relate the model (1.2) and (1.1). In Section 3 we
explore further the 1D version of (1.9) and suggest a finite difference scheme. In Section 4 we
describe a finite difference scheme for the full 2D model (1.2). Section 5 is devoted to numerical
investigations to obtain insight into the nonlinear cell-fluid dynamics captured by this model and
explore similarities and differences relatively the chemotaxis-Stokes model (1.1).

2. A reduced model: incompressible, inviscid phases

The purpose of this section is to obtain more insight into the competing cell migration mecha-
nisms that are present in the general model (1.2). We also are interested in the relation between
this model and the simplified and more specific model (1.1). For that purpose we start by taking
a closer look at the model (1.9).

2.1. On the reduced version (1.9). We assume (i) incompressible fluids, i.e., ρc, ρw are con-
stants; (ii) viscosity terms are ignored, i.e., εc = εw = 0; (iii) intertial terms are ignored (low
Reynolds number assumption). This allows us to derive an explicit expression for the interstitial
cell velocity uc which reflects the competition between different migration mechanisms. From
(1.9) we directly obtain the following form

(αc)t +∇ · (αcuc) = 0,

(αw)t +∇ · (αwuw) = 0,

αc∇(Pw + ∆P (αc) + Λ(C)) = +ζ̂(uw − uc) + ng, n = αcρc

αw∇Pw = −ζ̂(uw − uc) +mg, m = αwρw

Ct +∇ · (Cuw) = ∇ · (DC∇C)−KαcC.

(2.10)

The model may be combined with the boundary conditions

uc|∂Ω = 0, uw|∂Ω = 0,
∂

∂ν
C|∂Ω = 0, t > 0 (2.11)

where ν is the outward normal on ∂ν. Corresponding initial data are

αc(x, t = 0) = αc0(x), C(x, t = 0) = C0(x). (2.12)

From the two momentum equations (2.10)3,4 we can find explicit expressions for the cell and fluid
velocity, respectively, uc and uw. The following expressions are found:
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αcuc = [UTαc + ĥ(αc)g∆ρ]− ĥ(αc)∇(∆P (αc) + Λ(C))

αwuw = [UTαw − ĥ(αc)g∆ρ] + ĥ(αc)∇(∆P (αc) + Λ(C))
(2.13)

with

ĥ(αc)
def
:=

α2
cα

2
w

ζ̂
, UT = αcuc + αwuw

def
:= Uc + Uw. (2.14)

First, we observe from (2.10)4 that

α2
w

ζ̂
∇Pw −

mαw

ζ̂
g = −Uw + αwuc = uc −UT . (2.15)

By summing (2.10)3 and (2.10)4 we find

∇Pw = −αc∇(∆P )− αc∇Λ + (n+m)g. (2.16)

Combining (2.15) and (2.16) and using (1.3), it follows that

uc = UT +
α2
w

ζ̂
∇Pw −

mαw

ζ̂
g = UT −

α2
wαc

ζ̂
[∇(∆P ) +∇Λ] +

α2
wαc

ζ̂
g∆ρ (2.17)

with ∆ρ = ρc − ρw, from which (2.13)1 follows. The expression (2.13)2 follows from (2.14). The
model (2.10) then can be written in the following rewritten form:

(αc)t +∇ · (αcuc) = 0

∇ · (αcuc + αwuw) = 0

αcαw∇(∆P (αc) + Λ(C)) = ζ̂(uw − uc) + αcαw∆ρg

∇Pw + αc∇(∆P (αc) + Λ(C)) = (n+m)g

Ct +∇ · (Cuw) = ∇ · (DC∇C)−KαcC

(2.18)

where αcuc is given by (2.13)1. Note that (2.18)2 follows by adding the two continuity equations
in (2.10) and applying (1.3). Moreover, (2.18)3 has been obtained by multiplying (2.10)3,4, respec-
tively, by αw and αc and subtracting. Finally, (2.18)4 is nothing but (2.16). From the cell mass
balance equation (2.18)1 combined with (2.13)1 we see that cell migration velocity Uc = αcuc is
composed of three transport components:

(i) a convective term ∇·(UTαc+ ĥ(αc)g∆ρ) which is related to bouyance and gravity segregation;

(ii) a diffusive spreading mechanism −∇ · (ĥ(αc)∇(∆P (αc)));

(iii) a chemotaxis transport represented by −∇ · (ĥ(αc)∇(Λ(C))).

Remark 2.1. Models similar to (2.10), however, in the context of porous media flow, have been
proposed and explored more recently in the study of cancer cell migration mechanisms that are
sensitive to fluid flow. This implies that there are additional interaction terms, respectively, of

the form −ζ̂cuc included in (2.10)3 and −ζ̂wuw in (2.10)4 to account for the fluid-matrix and
cell-matrix resistance force. We refer to [19, 43, 44, 20, 41] for examples of this activity. A main
advantage of this formulation is the ability to clearly visualize the competition that takes place
between different migration mechanisms which possibly makes the overall behavior complex [23].

2.2. On the relation between the cell-fluid model (2.18) and (1.1). Combining (2.13)1 and
(2.18)1,2 we can write (2.18) in the following form in order to see more clearly the link to the
chemotaxis-Stokes model (1.1).

(αc)t + UT · ∇αc + g∆ρ · ∇ĥ(αc) = ∇ · (ĥ(αc)∆P
′(αc)∇αc) +∇ · (ĥ(αc)Λ

′(C)∇C),

∇Pw + αc∇(∆P (αc) + Λ(C)) = (n+m)g, ∇ ·UT = 0

Ct +∇ · (Cuw) = ∇ · (DC∇C)−KαcC.
(2.19)
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Under the assumption αc � 1 (i.e., αw ≈ 1) we may use
(i) UT ≈ uw (see (2.14));
(ii) ∆ρg� ∇(∆P (αc) + Λ(C)) (gravity segregation is weak relatively diffusion and chemtaxis);
(iii) αc∇(∆P (αc) + Λ(C))� (n+m)g = ρwg +αc∆ρg (using that αc ≈ 0 and ∆ρ = ρc− ρw).

From this, it follows that (2.19) simplifies to

(αc)t + uw · ∇αc = ∇ · (ĥ(αc)∆P
′(αc)∇αc) +∇ · (ĥ(αc)Λ

′(C)∇C)

∇Pw = (n+m)g, ∇ · uw = 0

Ct + uw · ∇C = ∇ · (DC∇C)−KαcC.
(2.20)

Note that the third equation of (2.18), when combined with the definition of ĥ given by (2.14),
leads to (since αw ≈ 1)

αcuc = αcuw −
α2
cαw

ζ̂
∇(∆P + Λ(C)) +

α2
cαw

ζ̂
∆ρg

= αcuw −
ĥ

αw
∇(∆P + Λ(C)) +

ĥ

αw
∆ρg ≈ αcuw − ĥ∇(∆P + Λ(C)) + ĥ∆ρg.

Using assumption (ii), we see that this expression for the cell velocity αcuc, when combined with
(2.18)1, leads to (2.20)1. Consequently, (2.18)3 can be ignored since it does not contain any
information not already taken care of by (2.18)1. We may introduce the pressure p = Pw − ρwgy
where y is the height such that ∇y = (0, 1) and g = (0, g). Then we see that (2.20)2 can be
written as

∇p = ∇(Pw − ρwgy) = ∇Pw − ρwg = (αcρc + αwρw)g − (αc + αw)ρwg = αc∆ρg,

with ∆ρ = ρc − ρw. This is the steady state, inviscid version of the momentum balance equation

ρw(∂tuw + uw · ∇uw) +∇p = αc∆ρg + η∆uw, (2.21)

where we have ignored the inertia term ρw(∂tuw + uw · ∇uw) and viscosity η∆uw. The full
momentum equation (2.21) amounts to the momentum equation in (1.1)2. Hence, the model
(2.20) where the momentum balance in the second line is replaced by the momentum equation
(2.21), coincides with the chemotaxis-Stokes model (1.1) by an appropriate choice of the interaction

coefficient ζ̂ involved in ĥ(αc), as given by (2.14), and by using the correlations (1.5) and (1.6) to
define ∆P (αc) and Λ(C) with suitable constant parameters.

Remark 2.2. The above heuristic and direct analysis brings forth some natural questions:
(i) Can our full model (1.2) reproduce the behavior as previously demonstrated for the chemotaxis-
Stokes model (1.1) when αc � 1 (see for example [6]) and thereby justify the simplifying assump-
tions behind the derivation of the chemotaxis-Stokes model?
(ii) What is the behavior predicted by the model (1.2) when we allow αc to increase?

3. A 1D model and its discrete version

We now focus on the 1D version of the model (2.10). A main purpose is to gain some insight
into the principles we apply when we shall develop a numerical scheme for the full model (1.2).
The model takes the form

(αc)t + (αcuc)x = 0, n = αcρc

(αw)t + (αwuw)x = 0, m = αwρw

αcPwx + αc(∆P (αc) + Λ(C))x = +ζ̂(uw − uc) + ng

αwPwx = −ζ̂(uw − uc) +mg

Ct + (Cuw)x = (DCCx)x −KαcC, x ∈ Ω = (0, L)

(3.22)
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after having ignored the viscosity terms in the momentum equations and assumed constant density
ρw, ρc for both fluid and cell phase. The model is combined with the boundary conditions

uc|x=0,L = 0, uw|x=0,L = 0, C|x=0 = C∗, t > 0 (3.23)

with a known concentration C∗ and initial data are

αc(x, t = 0) = αc0(x), C(x, t = 0) = C0(x), x ∈ Ω = (0, L). (3.24)

It is clear, in view of the previous section, that (3.22) can be rewritten as

(αc)t + (αcuc)x = 0

Ct + (Cuw)x = (DCCx)x −KαcC.
(3.25)

More precisely, summing the two momentum equations in (3.22)3,4, we get

Pwx =
1

αc + αw
(m+ n)g − αc

αc + αw
[∆P + Λ(C)]x. (3.26)

Inserting (3.26) into (3.22)3 and using that UT = αwuw + αcuc, we have

αc
αc + αw

(m+ n)g − α2
c

αc + αw
[∆P + Λ]x + αc[∆P + Λ]x = ζ̂

(UT − αcuc
αw

− uc
)

+ ng. (3.27)

Therefore, the explicit expression for the cell velocity uc is

uc =
UT

αc + αw
+ ĝ(αc, αw)∆ρg − ĝ(αc, αw)[∆P (αc) + Λ(C)]x (3.28)

with

ĝ(αc, αw) =
αcα

2
w

ζ̂(αc + αw)2
. (3.29)

Again, using UT = αwuw + αcuc, we get the corresponding velocity of water phase

uw =
UT − αcuc

αw
=
−αcuc
αw

, (3.30)

where we have used that UTx = 0 from summing the two first equations of (3.22), which implies
that UT = 0 due to the boundary condition (3.23).

Remark 3.1. In light of (3.28) and the fact that αc+αw = 1, it follows that (3.25) can be written
as

(αc)t + f(αc)x = P ∗c (ĝ(αc)αcx)x − Λ1(ĥ(αc)Cx)x

Ct + (Cuw)x = (DCCx)x −KαcC.
(3.31)

Herein we have used the expressions for ∆P , Λ, and ζ̂ as given by (1.5), (1.6), and (1.7), with

k̂ = 1 and rcw = 0, where

f(αc) = ĥ(αc)∆ρg, ĝ(αc) =
1− αc
I

, ĥ(αc) =
α2
cα

2
w

ζ̂
=
αc(1− αc)

I
(3.32)

and fluid velocity uw is given by (3.30). Note that P ∗c , Λ1, and I are constant positive parame-
ters. This model is an example of a taxis-diffusion equation (represented by (3.31)1) which also
contains a nonlinear, advective flux term through f(αc)x. Such models are widely studied in the
context of biological populations and are known to react to external stimuli and form aggregates
(pattern formation). It is known that it might be challenging for numerical schemes to preserve
the fundamental properties of the solutions like energy dissipation, steady states, positivity, and
conservation of total mass [1].
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We now describe a discretization of this model but based on the original form (3.22) instead of
the rewritten form (3.31). First, we rewrite (3.22) as

(αc)t + (αcuc)x = 0

Ct + (Cuw)x = (DCCx)x −KαcC
(αcuc + αwuw)x = 0

αcPwx + αc(∆P (αc) + Λ(C))x = +ζ̂(uw − uc) + ng

αwPwx = −ζ̂(uw − uc) +mg.

(3.33)

We consider the domain Ω = [0, L] with L = 1 and introduce a grid of Nx cells with nodes xj
placed at the center of the cells

x1 =
1

2
∆x, x2 = (1 +

1

2
)∆x, . . . , xj = (j − 1

2
)∆x, . . . , xNx = (Nx −

1

2
)∆x

and cell interfaces xj+1/2 at the cell interfaces

x1/2 = 0, x3/2 = ∆x, . . . , xj+1/2 = j∆x, . . . , xNx+1/2 = Nx∆x = 1,

where ∆x = 1/Nx. We introduce the approximate cell fraction and oxygen concentration {αcj(t)}Nx
j=1

and {Cj(t)}Nx
j=1 and fluid pressure {Pwj(t)}Nx

j=1 associated with the nodes {xj}Nx
j=1 whereas the

approximate velocities {uw,j+1/2}Nx
j=0 and {uc,j+1/2}Nx

j=0 are associated with the cell interfaces

{xj+1/2}Nx
j=0.

In the following we describe the fully discrete scheme of (3.33). Then we also will see how it can
be interpreted as a discretization of (3.31). We assume that we know αkc,j , C

k
j , P kw,j , u

k
c,j+1/2, and

ukw,j+1/2 associated with time level tk. We now describe how to compute these variables at the

new time level tk+1:

Step 1: Mass transport.
First, we solve for αk+1

c,j and Ck+1
j by considering the following discrete schemes for (3.33)1,2:

αk+1
cj − αkcj

∆t
+

1

∆x
([αcuc]

k
j+1/2 − [αcuc]

k
j−1/2) = 0, (3.34)

where

[αcuc]
k
j+1/2 =

{
αkc,ju

k
c,j+1/2, if ukc,j+1/2 ≥ 0;

αkc,j+1u
k
c,j+1/2, if ukc,j+1/2 < 0.

(3.35)

and

Ck+1
j − Ckj

∆t
+

1

∆x
([Cuw]kj+1/2− [Cuw]kj−1/2) =

DC

∆x

[Ckj+1 − Ckj
∆x

−
Ckj − Ckj−1

∆x

]
−Kαkc,jCkj , (3.36)

where

[Cuw]kj+1/2 =

{
Ckj u

k
w,j+1/2, if ukw,j+1/2 ≥ 0;

Ckj+1u
k
w,j+1/2, if ukw,j+1/2 < 0.

(3.37)

Step 2: Computation of velocities uk+1
c,j+1/2, u

k+1
w,j+1/2 and fluid pressure P k+1

w,j .

Next, we consider the following dicrete version of (3.33)3,4,5 where we use that (3.33)3 amounts
to UT = 0:

uk+1
w,j+1/2α

k+1
w,j+1/2 + αk+1

c,j+1/2u
k+1
c,j+1/2 = Uk+1

T,j+1/2 = 0

αk+1
c,j+1/2

1

∆x
(P k+1
c,j+1 − P k+1

c,j ) = +ζ̂k+1
j+1/2(uk+1

w,j+1/2 − uk+1
c,j+1/2) + nk+1

j+1/2g,

αk+1
w,j+1/2

1

∆x
(P k+1
w,j+1 − P k+1

w,j ) = −ζ̂k+1
j+1/2(uk+1

w,j+1/2 − uk+1
c,j+1/2) +mk+1

j+1/2g.

(3.38)
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where

αk+1
c,j+1/2 =





αk+1
c,j , if ukc,j+1/2 > 0;
αk+1

c,j +αk+1
c,j+1

2 , if ukc,j+1/2 = 0;

αk+1
c,j+1, if ukc,j+1/2 < 0.

(3.39)

Similarly, αk+1
w,j+1/2 is based on upwind relatively the ”old” fluid velocity ukw,j+1/2.

αk+1
w,j+1/2 =





αk+1
w,j , if ukw,j+1/2 > 0;
αk+1

w,j +αk+1
w,j+1

2 , if ukw,j+1/2 = 0;

αk+1
w,j+1, if ukw,j+1/2 < 0.

(3.40)

Note that nk+1
j+1/2 and mk+1

j+1/2 follow from this since densities ρc, ρw are constant. Similarly, for

the interaction coefficient

ζ̂k+1
j+1/2 =





ζ̂k+1
j , if ukw,j+1/2 > 0 & ukc,j+1/2 > 0;
ζ̂k+1
j +ζ̂k+1

j+1

2 , if ukw,j+1/2u
k
c,j+1/2 ≤ 0;

ζ̂k+1
j+1 , if ukw,j+1/2 < 0 & ukc,j+1/2 < 0.

(3.41)

Clearly, we have from (1.4) that P k+1
c,j = P k+1

w,j + [∆P (αk+1
c,j ) + Λ(Ck+1

j )]. Hence, from (3.38)2,3 we

get (after a summation)

D+P
k+1
w,j =

[nk+1
j+1/2 +mk+1

j+1/2]g

[αk+1
c,j+1/2 + αk+1

w,j+1/2]
−

αk+1
c,j+1/2

[αk+1
c,j+1/2 + αk+1

w,j+1/2]
D+[∆P (αk+1

c,j ) + Λ(Ck+1
j )] (3.42)

where D+aj = 1
∆x (aj+1−aj). Note that (3.42) is the discrete counterpart of (3.26). Obviously, we

can now plug this expression for D+P
k+1
w,j back in (3.38)2 and compute an expression for uk+1

c,j+1/2

(after having used (3.38)1) which amounts to a discrete version of (3.28). Finally, we then obtain

uk+1
w,j+1/2 from (3.38)1 as well as P k+1

w,j from (3.42).

Remark 3.2. The above discretization has been explored for various two-phase and three-pase
models (both incompressible and compressible versions) but without chemotaxis effect. We refer to
[34]. The advantage is that this approach can be extended to solve the full model (1.2). An inter-
esting question for possible future investigations is whether this approach will give rise to discrete
schemes that can be analyzed by methods as described in [1] (and references therein). In other
words, does the numerical scheme preserve fundamental properties related to energy dissipation,
steady states, positivity, and conservation of total mass?

4. On the discretization of the full 2D model (1.2)

We now write the general cell-fluid model (1.2) in component form for a 2D domain with
x = (x, y) ∈ Ω where y is the downward unit vector in vertical direction and with velocity fields
uc = (uxc , u

y
c ) and uw = (uxw, u

y
w). In the following we focus on the incompressible version. The
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equations have been slightly reordered motivated by the discretization method that is used:

(αc)t + (αcu
x
c )x + (αcu

y
c )y = 0

Ct + (Cuxw)x + (Cuyw)y = (DCC
x
x )x + (DCC

y
x)y −KαcC

(αcu
x
c )x + (αcu

y
c )y + (αwu

x
w)x + (αwu

y
w)y = 0

(muxw)t + (muxwu
x
w)x + (muxwu

y
w)y + αwPwx

= −ζ̂(uxw − uxc ) +mgx + 2εw(muxwx)x + εw(muywx)y + εw(muxwy)y

(nuxc )t + (nuxcu
x
c )x + (nuxcu

y
c )y + αcPcx

= +ζ̂(uxw − uxc ) + ngx + 2εc(nu
x
cx)x + εc(nu

y
cx)y + εc(nu

x
cy)y

(muyw)t + (muywu
y
w)y + (muxwu

y
w)x + αwPwy

= −ζ̂(uyw − uyc ) +mgy + 2εw(muywy)y + εw(muxwy)x + εw(muywx)x

(nuyc )t + (nuycu
y
c )y + (nuxcu

y
c )x + αcPcy

= +ζ̂(uyw − uyc ) + ngy + 2εc(nu
y
cy)y + εc(nu

x
cy)x + εc(nu

y
cx)x.

(4.43)

We refer to Appendix A for a description of the numerical scheme. It follows directly along the
lines of the discretization of the 1D model presented in Section 3. In the next section focus is
on how to set parameters to establish the relevant connection between (1.1) and (4.43). Then we
carry out a number of simulations to explore to what extent the model (4.43) may give similar
behavior as reported for the model (1.1). We also identify new type of behavior caused by terms
which have been ignored in (1.1).

5. Numerical Investigations

5.1. Scaling and input data. In the following we follow the approach of [6] applied for the
model (1.1) to determine how to set parameters in the more general model (4.43) such that we can
expect to see numerical simulation results that are comparable. We denote by Ly a characteristic
length (for instance, Ly to be the height of the 2D domain) and the characteristic cell density by
vr. Rescalling the dimensionless variables according to Tuval et al. [40, 6] defined by

x′ :=
x

Ly
, t′ :=

Dv

L2
y

t, c′ :=
c

cair
, v′ :=

v

vr
, p′ :=

L2
y

ηDv
p, u′ :=

Ly
Dv

u (5.44)

leading to five relevant dimensionless parameters: α, β, γ, δ and Schmidt number Sc given by

α :=
χcair
Dv

, β :=
κvrL

2
y

cairDv
, γ :=

Vbvrg(ρb − ρ)L3
y

ηDv
, δ :=

DC

Dv
, Sc :=

η

Dvρ
. (5.45)

Note that ρ = ρw where ρ is used in (1.1) to represent water density while ρw is used in (1.2).
Similarly, ρb = ρc where ρb is used in (1.1) to represent the cell density whereas ρc is used in
the formulation (1.2). These parameters characterise the system (1.1) in the following vorticity
formulation [6] after dropping the prime notation in the rescaled variables:

vt +∇ · (uv) + α∇ · (vr(c)∇c) = ∆v

ωt +∇ · (uω) = Sc∆ω − γScvx
ct +∇ · (uc) = δ∆c− βvr(c)
∆ψ = −ω,

(5.46)

with x = (x, y)T , u = (ux, uy)T and the vorticity ω := uyx − uxy , the stream-function ψ where
ux = ψy and uy = −ψx. Below more information will be given pertaining to the quantities cair
and vr.

We want to compare the reduced version of (1.9) expressed by (2.20) and (2.21) with the
chemotaxis-Stokes model (1.1). We recall from (2.14) that

ĥ(αc) =
α2
cα

2
w

ζ̂
=
αc(1− αc)

I
≈ αc

I
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for αw ≈ 1 where we have used k̂ = 1 and rcw = 1. Combined with (2.20)1, which takes the form

(αc)t + uw · ∇αc = ∇ · (ĥ(αc)∆P
′(αc)∇αc) +∇ · (ĥ(αc)Λ

′(C)∇C),

we get in light of (1.5) and (1.6) that

(αc)t + uw · ∇αc =
P ∗c
I

∆αc −
Λ1

I
∇ · (αc∇C). (5.47)

We may compare this directly to (1.1)1. In particular, we can link the input parameters for our
model to those used in [40, 6], as expressed by (5.45). In particular, the following relations are
found

Λ1

I
= χ,

P ∗c
I

= Dv. (5.48)

For example, knowing η, ρ = ρw, ρb = ρc, Ly, Vb, and cair as specified in Table 2 as input data
for model (1.1), we can then deduce the different input parameters we need for (1.2) (i.e., P ∗c and
Λ1) from specified values of the dimensionless variables α, β, γ, δ, and Sc as follows:

• Given the value of Sc, from (5.45) we see that Dv = η
ρwSc

and in light of (5.48) we can

determine P ∗c from P ∗c = DvI;
• Given the value of δ, we have DC = δDv;
• Given the value of α, we have χ = αDv

cair
and we can determine Λ1 from Λ1 = χI according

to (5.48);

• Given the value of γ, we find the reference cell density vr = γηDv

Vbg(ρb−ρ)L3
y
;

• Given the value of β, we find the oxygen consumption rate κ from κ = cairDvβ
vrL2

y
.

See Table 3 for an example how we can derive the different parameters (right column) we need
for a simulation based on the given dimensional numbers α, β, γ, δ, and Sc (left column) for
model (1.2). However, we note that there is an additional degree of freedom represented through
the cell-fluid drag force parameter I. If I is set to be large, the fluid-cell drag force effect largely
implies that fluid and cell flow together. The additional parameter I may also indicate that
there is not a unique, direct correspondance between choice of parameters set for model (1.1) and
those used in (1.2) as certain effects are contained in the latter model which are ignored in the
first. As I controls the cell-fluid drag force effect, essentially this term also controls the balance
between gravity segregation and chemotaxis. The segregation effect between the cells and water
is not accounted for in (1.1). The role played by the choice of I will be further explored in the
subsequent numerical simulations.

Parameter Dimensional Value Parameter Dimensional Value
T 10 min εw, εc 1 ∗ 10−6 m2/s
Lx × Ly 6× 1 mm R∗ 100 Pa
ρ̃w0 = ρ = ρw 1 g/cm3 Λ0 0 Pa
ρ̃c0 = ρc = ρb 1.1 g/cm3 rcw 0 -

Nx ×Ny 240× 40 k̂ 1 -
cair 1.5× 1023

η 10−3 kg/(m · s)
Vb 10−18 m3

Table 2: Reference input parameters in the simulations. Left column: The first 6 parameters are
used in both model (1.1) and (1.2). The two last (η and Vb) are for model (1.1). Right column:
Parameters used in model (1.2).

Initial and boundary data.
We use mixed boundary conditions as considered in [6]. The boundary condition at the top ∂Ωtop
describes the fluid-air surface, where there is no cell flux. The oxygen shall be saturated with the
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air oxygen concentration cair and the vertical fluid and cell velocity uyw and uyc , as well as the
tangential fluid and cell stress, are assumed zero [40, 26].

C = cair, uyc = 0 = uyw, ∀(x, y) ∈ ∂Ωtop. (5.49)

The other boundaries with no-flow condition for the system are illustrated in Fig. 1.

Figure 1: Boundary conditions for the system of (1.1). The air–water interface, where the oxygen
concentration is equal to that of air, is not crossed by bacteria; the fluid and cell vertical velocity
components equal zero and the fluid and cells are assumed to be free of tangential stress. The
container walls are impermeable to bacteria and oxygen.

Input Data.
The input parameters used in the simulations are listed in Table 2. We use 240 × 40 grids for a
domain corresponding to Lx = 6 mm and Ly = 1 mm. It should be also mentioned that once
the oxygen concentration C is lower than C∗ = 0.3cair, chemotaxis comes to a halt and oxygen
consumption rate is set to zero. This mechanism is built into the model (1.1) through the use of
the step-like function r(C). For the model (1.2) a step function is introduced associated with (1.6)
(assuming Λ0 = 0) in the following way:

Λ(C) = −Λ1

∫ C

0

r(s)ds =

{
−Λ1(C − C∗), if C ≥ C∗;
0, if C < C∗.

(5.50)

This ensures that Λ′(C) = −Λ1r(C) which will make our model (2.20)1 consistent with the model
(1.1)1 since (5.47) now is replaced by

(αc)t + uw · ∇αc =
P ∗c
I

∆αc −
Λ1

I
∇ · (αcr(C)∇C). (5.51)

Similarly, we also replace the consumption term −KαcC in (1.2)5 by −Kαcr(C) to mimic (1.1)3.

5.2. Results.
We use the fact that cell volume fraction αc used in (1.2) is related to the cell density v in (1.1)
by αc = vVb. Note that when we show plots of the cell volume fraction αc it has been scaled
relatively αc,r = vrVb where vr is given through the dimensionless number γ as specified in (5.45).
The relation between the consumption rate κ in (1.1)2 and K in (1.2)5 is K = κ/Vb. The spatial
domain has been scaled according to (5.44) such that the dimensionless size is Ω = 6× 1.

Example - 1D. For the one-dimensional case, we consider the model in vertical direction with
Y = 0 as top and Y = 1 as bottom and input data can be referred to Table 3. Initial condition is
given by:

αc0(y) =

{
vrVb, y > 0.5;
0.5vrVb, otherwise.

, C0(y) = cair. (5.52)

The simulation result is shown in Fig. 2 and we refer to the figure text for further comments.
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16 YANGYANG QIAO1 AND STEINAR EVJE1,∗

Figure 2: Cells αc (left column) consume oxygen C (right column) such that the oxygen concen-
tration is reduced to the limit value C∗ = 0.3 in the lower part (right column). Since the outside
air continues feeding oxygen into the system at Y = 0, a stable gradient of oxygen concentration is
formed. Due to the gravitational and capillary effect, cells move towards the bottom as seen after
a time t = 2.4 (left column). Gradually, a higher amount of cells will accumulate at the bottom.
The cell volume fraction αc decreases higher up before it increases again because the chemotactic
swimming leads cells to the surface. See profiles after times t = 12 and t = 24 min which result
from the force balance between chemotaxis and gravity.
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Examples - 2D.
The final time of 2D simulations is T = 10 min. To highlight and color the plumes better we
follow [6] and use min{ αc

vrVb
, 1} to plot αc, which means that all large values αc

vrVb
> 1 near the

surface are drawn equally red. The initial condition is set as follows:

αc0(x, y) =

{
vrVb, y > 0.499− 0.02 sin((x− 1.5)π);
0.5vrVb, otherwise.

, C0(x, y) = cair. (5.53)

This is similar to examples studied in [6]. The initial perturbation of the cell volume fraction at
the interface between the upper (high volume fraction) and lower region (low volume fraction) will
trigger development of plumes.

Parameter Value Parameter Value
Sc 1000 Dv(=

η
Scρw

) 1 ∗ 10−9

δ 5 P ∗c (= DvI) 50
α 0.025 DC(= δDv) 2.5 ∗ 10−9

γ 1000 Λ1(= αDvI
cair

) 1.25 ∗ 10−23

β 80 vr(=
γηDv

Vbg(ρb−ρw)L3
y
) 1.02 ∗ 1015

κ(= cairDvβ
vrL2

y
) 7.84 ∗ 106

Table 3: (a) Base case. Reference input parameters in the simulations with cell-fluid interaction

coefficient I = 5 ∗ 1010 Pa s/m2. Results are shown in Fig. 3 and Fig. 4.

(a) Base case: formation of falling plumes. We use input data as described in Table 3 (in
terms of Sc, δ, α, γ, and β) which allow us to relate the study of the model (1.2) to (1.1). However,
as noted above, in addition, we have to specify explicitly the strength of the cell-fluid drag force
interaction through the parameter I, see Table 3. The motivation for the choice of I for this
example is to allow formation of falling plumes but such that the plumes do not detach from the
cell layer close to the surface. This requires the right balance between the effect of the gravity force,
which drives the cell phase downwardly, and the upward-directed chemotactic effect controlled by
Λ1. In particular, to achieve this we found that the value of α should be small (compared to what
has been used in [6]), for example, α = 0.025. After all, the model we have derived from (1.2),
which gives rise to the transport equation (5.47) used to motivate for the relations (5.48), is based
on various approximations. The simulation result for this parameter set is shown in Fig. 3 (cell
volume fraction αc and oxygen concentration C) and Fig. 4 (cell velocity uc and fluid velocity
uw).

The main observation is that coherent plumes are formed similar to what has been shown in
other works [6, 8]. This is a result of the fact that the cell-fluid interaction I is strong enough
to ensure a dominant co-current flow where cells and water move together (see Fig. 4). The
figures (see bottom figures of Fig. 4) show how the upward fluid flow between the falling plumes
transports cells back to the upper layer close to the surface which can maintain a high density due
to the everlasting access of oxygen that activates the upward chemotaxis effect. This mechanism
continuously feeds cells into the high-concentration layer at the surface where gravity makes cells
sink and by that maintains the fluid convection.
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Figure 3: (a) Base case. Initially, a high cell volume fraction region dominates in the upper part of 
the domain (left column, top). We see that oxygen is consumed faster at the beginning in this region 
(right column, top). Since the whole system is open to the air at top side oxygen can constantly 
diffuse into the box whereas in the lower part oxygen is consumed by the cells such that the oxygen 
concentration reaches the lower limit C = C∗ = 0.3. Beyond this limit the chemotaxis effect vanishes 
and gravity becomes the dominating force and the plumes will develop as cells sink towards the 
bottom. Clearly, cells are kept coherent in the upper region of the domain reflecting that the gravity 
and chemotaxis driven transport work together such that the developing plumes are maintained.
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Figure 4: (a) Base case. The corresponding velocity field for cells uc (left column) and water uw
(right column). Clearly, the cell-fluid interaction term I is strong enough to keep the two velocity
fields close to each other generating co-current flow of cells and water. The bottom figures illustrate
how the plumes are formed due to the fact that gravity dominates in the region with oxygen C
close to C∗ = 0.3 (see Fig. 3, right column and the blue region) and creates alternating subregions
where cells move, respectively, downwardly and upwardly. This is an effect of gravity only. The
purpose of the chemotactic swimming is to maintain the upper layer of the cells that stay close to
the surface.

(b) What is the effect of reduced cell-fluid interaction I? We consider the same situation
as for the base case. The only change is that we weaken the cell-fluid interaction I with a factor
10. See Table 4 for input data. Now, we may expect to see some clearer discrepancy between
the cell velocity uc and uw. Also, it is no longer obvious that the falling plumes can maintain
the contact with the high volume fraction region close to the surface. Results are shown in Fig. 5
and Fig. 6. The main observation is that the falling plumes in fact will detach from the high cell
density layer at the surface (left column) of Fig. 5. These plumes will be positioned at the bottom

229



20 YANGYANG QIAO1 AND STEINAR EVJE1,∗

at final time. As gravity is the dominating force in this region we expect that the plumes will
gradually even out and form a stagnant high cell volume fraction layer at the bottom.

Parameter Value Parameter Value
Sc 1000 Dv(=

η
Scρw

) 1 ∗ 10−9

δ 5 P ∗c (= 10DvI) 50
α 0.025 DC(= δDv) 2.5 ∗ 10−9

γ 1000 Λ1(= 10αDvI
cair

) 1.25 ∗ 10−23

β 80 vr(=
γηDv

Vcg(ρb−ρw)L3
y
) 1.02 ∗ 1015

κ(= cairDvβ
vrL2

y
) 7.84 ∗ 106

Table 4: (b) Reduced cell-fluid interaction. Reference input parameters in the simulations

with cell-fluid interaction parameter I = 5 ∗ 109 Pa s/m2 (i.e, is reduce with a factor 10 relatively
the base case). Note that we have multiplied with 10 in relation for P ∗c and Λ1 in order to keep
the same values as for the base case. Results are shown in Fig. 5 and Fig. 6.

Figure 5: (b) Reduced cell-fluid interaction. The results in left column (cell volume fraction
αc) show that the high density region of cells (red region) is no longer continuous and separate into
two parts. Referring to its velocity field results in Fig. 6, cells are free to move more independent
of the water behavior due to the low fluid-cell interaction through I. The region where chemotaxis
is not at work (right column, blue region) due to too low oxygen concentration is similar to the
base case.
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Figure 6: (b) Reduced cell-fluid interaction. Left column: cell velocity field uc. Right column:
water velocity field uw. The bottom figures of the velocity fields uc and uw at time t = 3.6 min
show that they largely possess the same general trends. However, there is a difference in the upper
region close to the surface which is enough to lead to a detachment of the falling plumes.

(c) What is the effect of increased chemotaxis effect? We consider the same situation as for
the base case, except that we strengthen the chemotactic swimming by increasing Λ1 with a factor
4. See Table 5 for input data. Since chemotaxis is restricted to the high cell volume fraction region
close to the surface, we may anticipate to see that the stronger chemotactic upward motion of cells
can interrupt the fine-tuned balance seen for the base case where the falling plumes stay connected
with the upper layer of cells. Results are shown in Fig. 7 and Fig. 8 and show that the falling
plumes indeed tend to break loose from the upper layer. Note however that this detachment, as
seen in Fig. 7 (left column) is quite different from the one in the previous example shown in Fig. 5
(left column). In the first case it seems to happen uniformly and globally and at an earlier time
whereas in the latter case the shape of the falling plumes are maintained and the detachment is
more local.
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Parameter Value Parameter Value
Sc 1000 Dv(=

η
Scρw

) 1 ∗ 10−9

δ 5 P ∗c (= DvI) 50
α 0.1 DC(= δDv) 2.5 ∗ 10−9

γ 1000 Λ1(= αDvI
cair

) 5 ∗ 10−23

β 80 vr(=
γηDv

Vcg(ρb−ρw)L3
y
) 1.02 ∗ 1015

κ(= cairDvβ
vrL2

y
) 7.84 ∗ 106

Table 5: (c) Increased chemotactic effect. Reference input parameters in the simulations with

cell-fluid interaction parameter I = 5 ∗ 1010 Pa s/m2 (base case) but where Λ1 (which controls
the strength of the chemotactic swimming towards higher concentration in C) is increased with a
factor 4 through the higher value of α. Results are shown in Fig. 7 and Fig. 8.

Figure 7: (c) Increased chemotactic effect. In this case we use a higher chemotaxis strength
compared to the base case (4 times). It is seen that cells still tend to fall as three plumes, however,
there is not enough cells to maintain this flow pattern closer to the surface. Here cells are under
influence of a strong upward chemotactic swimming. Moreover, we observe that in this case the
falling plumes have a high volume fraction in the plume heads (low part of the system) but a
relatively low cell volume fraction in the middle part.
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Figure 8: (c) Increased chemotactic effect. Left column: cell velocity field uc. Right column:
water velocity field uw. This figure shows that in the middle of the process (t = 2.88 min) cells
are still strongly attracted to the top side (compared with the base case) even though cells and
water follow the same flow pattern.

(d) What is the effect of reduced chemotaxis effect? Next, we wonder what will happen
if we reduce the chemotaxis effect. The input data is given in Table 6. The resulting behavior
for the cell volume fraction and oxygen C is shown in Fig. 9. The most striking effect on the
development of the falling plumes, as compared to the base case in Fig. 3, is that the shape of the
plumes changes and they fill a larger area in the lower part of the domain and the layer at the
surface becomes thinner.
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Parameter Value Parameter Value
Sc 1000 Dv(=

η
Scρw

) 1 ∗ 10−9

δ 5 P ∗c (= DvI) 50
α 6.25 · 10−3 DC(= δDv) 2.5 ∗ 10−9

γ 1000 Λ1(= αDvI
cair

) 3.125 ∗ 10−24

β 80 vr(=
γηDv

Vcg(ρb−ρw)L3
y
) 1.02 ∗ 1015

κ(= cairDvβ
vrL2

y
) 7.84 ∗ 106

Table 6: (d) Reduced chemotactic effect. Reference input parameters in the simulations with

cell-fluid interaction I = 5∗1010 Pa s/m2 (base case). We reduce the chemotaxis effect by reducing
Λ1 with a factor 4 through a lower value of α.

Figure 9: (d) Reduced chemotactic effect. Compared to the results of the base case in Fig. 3,
a larger portion of the cells become part of the falling plumes instead of being captured by the
high cell volume fraction layer close to the surface due. This is a natural consequence of weakening
the chemotaxis effect which is responsible for maintaining the upper high density cell layer.

(e) What is the effect of increased cell volume fraction? The input data is given in Table 7
and shows that the initial cell volume fraction is increased with a factor 50 through the increase
in γ with a factor 50. Results are shown in Fig. 10 and Fig. 11. The main observation is that
in the very beginning (see first row of Fig. 10) falling plumes are quickly formed. However, the
higher volume fraction of cells leads to a large consumption of oxygen which strongly reduces the
chemotactic swimming. Gravity dominates everywhere except close to the surface and a chaotic
behavior is seen through a shorter period of time. A large portion of cells sink to the bottom

234



CELL-FLUID 25

centrally while cells also are transported upwardly closer to the side ends, see Fig. 11, caused by
upward water flow.

Parameter Value Parameter Value
Sc 1000 Dv(=

η
Scρw

) 1 ∗ 10−9

δ 5 P ∗c (= DvI) 50
α 0.025 DC(= δDn) 2.5 ∗ 10−9

γ 50000 Λ1(= αDvI
cair

) 1.25 ∗ 10−23

β 80 vr(=
γηDv

Vcg(ρb−ρw)L3
y
) 5.1 ∗ 1016

κ(= 50cairDvβ
vrL2

y
) 7.84 ∗ 106

Table 7: (e) Increased cell volume fraction. Reference input parameters with I = 5 ∗ 1010

Pa s/m2 (base case) where we have increased γ with a factor 50. I.e., the initial cell volume fraction
αc0 increases with a factor 50 via its dependence on vr. Note that we keep the consumption rate
κ at the same level as before by introducing a factor 50 in the expression for κ.

Figure 10: (e) Increased initial cell volume fraction. Compared with the base case, the
reference cell fraction nr increases with 50 times. The results illustrate totally different flow
behavior, a fast and strong vortex-dominating redistribution of cells in a short period. Large
proportions of cells fall downward due to a dominant gravitational effect.
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Figure 11: (e) Increased initial cell volume fraction. Left column: cell velocity field uc. Right
column: water velocity field uw. As before, the strong fluid-cell interaction through I results in
velocity fields uc and uw that essentially are equal.

(f) Base case with small initial perturbation of cells. In this example we want to test what
happens when we consider input data as for the base case, Table 3, but we change the initial cell
volume fraction such that the perturbations on the interface between the high and low cell density
region are smaller. The initial condition now takes the form:

αc0(x, y) =

{
vrVb, y > 0.499− 0.0135 sin((1.2x− 1.5)π);
0.5vrVb, otherwise.

(5.54)

The result is shown in Fig. 12. Clearly, the shape of the developing falling plumes is affected by
the initial cell volume fraction. Otherwise, the dynamics is to a large extent similar to base case.

(g) What is the role of the fluid and cell acceleration terms? We want to explore the role
played by the acceleration terms in the momentum balance equations, i.e., the two first terms in
(1.2)3,4. For the base case in (a) we find that the model produces virtually the same behavior.
Next, we consider the case (e) with a higher initial cell volume fraction. This gives higher cell and
water velocities and as a result we can now also see that the acceleration terms play a role. We
refer to Fig. 13 and Fig. 14 which should be compared with Fig. 10 and Fig. 11.
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Figure 12: (f) Base case with modified initial perturbation. We implement the same input
parameters as the base case but use different initial cell distribution with smaller perturbation as
prescribed by (5.54). It is interesting to see that the shape of the falling plumes is different and
the only reason is smaller perturbations on the initial interface of the cell distribution.

Figure 13: (g) Increased initial cell volume fraction and acceleration effect is ignored.
Compared with Fig.10, the acceleration effect is ignored in the momentum equations and the
results show the degree of vortex is smaller so that the main part of high-concentration cells flows
downward with relatively stable behavior.
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Figure 14: (g) Increased initial cell volume fraction and acceleration effect is ignored.
Left column: cell velocity field uc. Right column: water velocity field uw. As before, the strong
fluid-cell interaction through I results in velocity fields uc and uw that essentially are equal.

(h) Closed top surface and a high cell density cluster in the middle of the domain.
In this example we shift focus and consider an example where the assumption about very low cell
density, used to link (1.2) to (1.1), is relaxed. We also assume that the the domain is closed with
no continuous feeding of oxygen at the top. We use input data as in Table 3 (the values in the
right column except vr). The initial cell distribution is high in the center of the domain and given
by

αc0(x, y) = 0.7 exp(−(25((x/10)2 + (y − 0.5)2)0.5 − 0.5)2). (5.55)

The results are shown in Fig. 15 and Fig. 16. Main observations are:
(i) Time t = 0.0144. Quickly the initial coherent cell cluster splits into two parts. One which flows
upwardly, another that move to the bottom, see Fig. 15 (second row), both driven by chemotaxis.
The initial cell cluster quickly consumes oxygen and creates gradients in C which the cells move
towards. The strong coupling between cell and fluid phase creates vortex-dominated motion where
the water that surrounds the moving cell clusters enters to fill the left behind void.
(ii) Times t = 0.0432, t = 0.144, and t = 0.288. Both in the upper and lower cell cluster there is a
vortex-like behavior that continues developing. The lower cluster spreads quicker in the horizontal
direction, most likely because of additional momentum from the gravity force. Both cell clusters
experience strong deacceleration as they hit the boundary and are forced to go horizontally.
(iii) Times t = 1.44, t = 4.32, and t = 14.4. The vortices start collapsing as oxygen is consumed
and chemotaxis effect comes to a halt. Gravity segregation becomes the dominating mechanism
and slowly leading to accumulation of more and more cells in the lower region.
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Figure 15: (h) Surface is closed and high initial density of cells located in the center.
Left column: Cell volume fraction αc. Right column: Oxygen concentration C.

239



30 YANGYANG QIAO1 AND STEINAR EVJE1,∗

Figure 16: (h) Surface is closed and high initial density of cells located in the center.
Left column: cell velocity field uc. Right column: water velocity field uw.
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Figure 17: Revisit of example (h) with 1000 times weaker cell-fluid interaction I.
The cells are more free to move independent from the fluid. Gravity segregation will lead to a
sedimentation of cells towards the bottom.

Figure 18: Diffusive and chemotactic spreading versus gravity segregation. We revisit
the base case and visualize the magnitude of the diffusive and chemotactic term appearing on
the right hand side of assumption (ii) in Section 2.2 given by (∆P (αc) + Λ(C))y and compare it
with the gravity segregation term ∆ρg appearing on the left hand side. Note that the red part of
the colorbar covers values up till around 10. We see that gravity segregration cannot be ignored,
neither at the head of the plumes nor higher up towards the central part which plays a role in
shaping the plumes, and by that shows a difference between model (1.2) and (1.1).

5.3. Some final remarks.
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• The base case (a) shows formation of falling plumes. As time elapses it seems that the
magnitude of the velocity field decreases and it may not be likely that this pattern can
persist for eternal time. To our understanding this does not rule out the possibility that
there might be a choice of parameters that can ensure a ”perfect” balance between chemo-
taxis and gravity such that a stationary plume pattern can be achieved. However, this
may require unlimited access to oxygen to maintain the chemotactic effect.
• Example (b) illustrates the role played by the cell-fluid drag force term as a controller of

the internal competition between gravity and chemotaxis. A weaker I will interrupt the
fine tuned balance (seen in the base case) between gravity and chemotaxis that maintains
the connection between the falling plumes and the upper layer. On the other hand, if we
increase I, say with a factor of 100, simulations show that (not included in the paper)
that the stronger cell-fluid coupling leads to a thicker cell-layer close to the surface and
also increases the head of the falling plumes. This illustrates how I controls the gravity
segregation effect which is included in the model (1.2) we use but is ignored in (1.1). In
Fig. 17 we revisit case (h) where we have reduced the cell-fluid interaction I by a factor
1000. The effect is dramatic. Now gravity segregation becomes much more dominating
and the interplay between the cell and fluid phase will instead create a slow separation-
dominated process quite different from the behavior seen in Fig. 15.
• We can illustrate the difference between the two models (1.2) and (1.1) for the base case

example by estimating the strength of gravity segregation through ∆ρg versus the sum of
the diffusion and chemotaxis through (∆P (αc) + Λ(C))y in vertical direction. The result
is shown in Fig. 18 and explains why we may expect to see some difference in the behavior
of the two models.
• The case studied in (h) with a closed domain illustrates how complicated and colorful

behavior is produced as a result of the interplay between chemotaxis and gravity during
a transient period of time. In the early stage chemotaxis completely dominates and gives
birth to strong vortices that later will collapse. At the later stage gravity dominates as
oxygen is consumed. After sufficiently long time chemotaxis vanishes and gravity segre-
gation and diffusion will dictate the long-time behavior of the cell and fluid mass. We
expect the velocity fields to slowly decrease to zero. This behavior seems consistent with
the precise mathematical stabilization results obtained, e.g. in [47, 50] for a model similar
to (1.1). The main reason why a stationary flow pattern cannot be produced, from our
understanding, is the lack of oxygen which implies that chemotaxis will come to a halt
after a finite time.
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Appendix A: Numerical scheme for the 2D model (4.43) with incompressible phases

Figure 19: Staggered grid with boundary cells.

We consider the domain Ω = [0, 1]× [0, 1] in the x-direction and y-direction. For the x-direction

x1 =
1

2
∆x, x2 = (1 +

1

2
)∆x, . . . , xj = (j − 1

2
)∆x, . . . , xNx

= (Nx −
1

2
)∆x

with cell interfaces xj+1/2 at the cell interfaces

x1/2 = 0, x3/2 = ∆x, . . . , xj+1/2 = j∆x, . . . , xNx+1/2 = Nx∆x = 1,

where ∆x = 1/Nx. Similar for the y-direction

y1 =
1

2
∆y, y2 = (1 +

1

2
)∆y, . . . , yi = (i− 1

2
)∆y, . . . , yNy

= (Ny −
1

2
)∆y

with cell interfaces yi+1/2 at the cell interfaces

y1/2 = 0, y3/2 = ∆y, . . . , yi+1/2 = i∆y, . . . , yNy+1/2 = Ny∆y = 1,

where ∆y = 1/Ny. We consider the following finite difference scheme for (4.43).
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Step 1: Mass transport.
The following discrete version of (4.43)1 is used

αk+1
c,ij − αkc,ij

∆t
+

1

∆x
([αcu

x
c ]ki+1/2,j − [αcu

x
c ]ki−1/2,j) +

1

∆y
([αcu

y
c ]ki,j+1/2 − [αcu

y
c ]ki,j−1/2) = 0.

(5.56)

where

[αcu
x
c ]ki+1/2,j =

{
αkc,i,ju

x,k
c,i+1/2,j , if ux,kc,i+1/2,j ≥ 0;

αkc,i+1,ju
x,k
c,i+1/2,j , if ux,kc,i+1/2,j < 0.

(5.57)

and

[αcu
y
c ]ki,j+1/2 =

{
αkc,i,ju

y,k
c,i,j+1/2, if uy,kc,i,j+1/2 ≥ 0;

αkc,i,j+1u
y,k
c,i,j+1/2, if uy,kc,i,j+1/2 < 0.

(5.58)

Similarly, the following discrete version of (4.43)2 is used

Ck+1
ij − Ckij

∆t
+

1

∆x
([Cuxw]ki+1/2,j − [Cuxw]ki−1/2,j) +

1

∆y
([Cuyw]ki,j+1/2 − [Cuyw]ki,j−1/2) =

DC

∆x

[Cki+1,j − Cki,j
∆x

−
Cki,j − Cki−1,j

∆x

]
+
DC

∆y

[Cki,j+1 − Cki,j
∆y

−
Cki,j − Cki,j−1

∆y

]
−Kαkc,ijCkij ,

(5.59)

where

[Cuxw]ki+1/2,j =

{
Cki,ju

x,k
w,i+1/2,j , if ux,kw,i+1/2,j ≥ 0;

Cki+1,ju
x,k
w,i+1/2,j , if ux,kw,i+1/2,j < 0.

(5.60)

and

[Cuyw]ki,j+1/2 =

{
Cki,ju

y,k
w,i,j+1/2, if uy,kw,i,j+1/2 ≥ 0;

Cki,j+1u
y,k
w,i,j+1/2, if uy,kw,i,j+1/2 < 0.

(5.61)

Step 2: Computation of velocities and pressure.

The purpose is to solve for P k+1
c,ij and ux,k+1

w,i+1/2,j , u
x,k+1
c,i+1/2,j , u

y,k+1
w,i,j+1/2 and uy,k+1

c,i,j+1/2 by considering

the algebraic system corresponding to (4.43)3,4,5,6,7. A discrete version of (4.43)3 takes the form

1

∆x
([αk+1

w ux,k+1
w ]i+1/2,j − [αk+1

w ux,k+1
w ]i−1/2,j)

+
1

∆x
([αk+1

c ux,k+1
c ]i+1/2,j − [αk+1

c ux,k+1
c ]i−1/2,j)

+
1

∆y
([αk+1

w uy,k+1
w ]i,j+1/2 − [αk+1

w uy,k+1
w ]i,j−1/2)

+
1

∆y
([αk+1

c uy,k+1
c ]i,j+1/2 − [αk+1

c uy,k+1
c ]i,j−1/2) = 0.

(5.62)

Remark 5.1. The upwind discretization of [αk+1
w ux,k+1

w ]i+1/2,j and [αk+1
w uy,k+1

w ]i,j+1/2 appearing

in (5.62) are based on ”old” velocities ux,kw,i+1/2,j and uy,kw,i,j+1/2. That is,

[αk+1
w ux,k+1

w ]i+1/2,j = αk+1
w,i+1/2,ju

x,k+1
w,i+1/2,j

[αk+1
w uy,k+1

w ]i,j+1/2 = αk+1
w,i,j+1/2u

y,k+1
w,i,j+1/2

(5.63)

with

αk+1
w,i+1/2,j =

αk+1
w,i,j + αk+1

w,i+1,j

2
− 1

2
(αk+1
w,i+1,j − αk+1

w,i,j)sgn(ux,kw,i+1/2,j)

αk+1
w,i,j+1/2 =

αk+1
w,i,j + αk+1

w,i,j+1

2
− 1

2
(αk+1
w,i,j+1 − αk+1

w,i,j)sgn(uy,kw,i,j+1/2)

(5.64)
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Similarly, for [αk+1
c ux,k+1

c ]i+1/2,j and [αk+1
c uy,k+1

c ]i,j+1/2.

The total mass balance equation (5.62) is combined with the momentum balance equation

(4.43)4,5,6,7 to solve for ux,k+1
w,i+1/2,j , u

y,k+1
w,i,j+1/2, ux,k+1

c,i+1/2,j , u
y,k+1
c,i,j+1/2, and P k+1

c,i,j . First, from (4.43)4

we have

mk+1
i+1/2,ju

x,k+1
w,i+1/2,j −mk

i+1/2,ju
x,k
w,i+1/2,j

∆t

+
[muxw]

k+1/2
i+1,j

ux,k+1
w,i+1/2,j

+ux,k+1
w,i+3/2,j

2

∆x
−

[muxw]
k+1/2
i,j

ux,k+1
w,i−1/2,j

+ux,k+1
w,i+1/2,j

2

∆x

+
[muyw]

k+1/2
i+1/2,j+1/2

ux,k+1
w,i+1/2,j

+ux,k+1
w,i+1/2,j+1

2

∆y
−

[muyw]
k+1/2
i+1/2,j−1/2

ux,k+1
w,i+1/2,j−1

+ux,k+1
w,i+1/2,j

2

∆y

+ αk+1
w,i+1/2,j

1

∆x
(P k+1
c,i+1,j − P k+1

c,i,j ) = αk+1
w,i+1/2,j

1

∆x
(∆P k+1

i+1,j −∆P k+1
i,j + Λk+1

i+1,j − Λk+1
i,j )

+ ζ̂k+1
i+1/2,j

(
ux,k+1
c,i+1/2,j − u

x,k+1
w,i+1/2,j

)
+mk+1

i+1/2,jg

+
2εw
∆x2

(
mk+1
i+1,j [u

x,k+1
w,i+3/2,j − u

x,k+1
w,i+1/2,j ]−mk+1

i,j [ux,k+1
w,i+1/2,j − u

x,k+1
w,i−1/2,j ]

)

+ εw
[m]k+1

i+1/2,j+1/2

uy,k+1
w,i+1,j+1/2

−uy,k+1
w,i,j+1/2

∆x − [m]k+1
i+1/2,j−1/2

uy,k+1
w,i+1,j−1/2

−uy,k+1
w,i,j−1/2

∆x

∆y

+ εw
[m]k+1

i+1/2,j+1/2

ux,k+1
w,i+1/2,j+1

−ux,k+1
w,i+1/2,j

∆y − [m]k+1
i+1/2,j−1/2

ux,k+1
w,i+1/2,j

−ux,k+1
w,i+1/2,j−1

∆y

∆y

(5.65)

with

[muxw]
k+1/2
i+1,j =

[
mk+1
i+1,j

ux,kw,i+1/2,j + ux,kw,i+3/2,j

2

]

[muyw]
k+1/2
i+1/2,j+1/2 =

[mk+1
i+1/2,j +mk+1

i+1/2,j+1

2

uy,kw,i,j+1/2 + uy,kw,i+1,j+1/2

2

]

[m]k+1
i+1/2,j+1/2 =

[mk+1
i+1/2,j +mk+1

i+1/2,j+1

2

]

(5.66)

where αk+1
w,i+1/2,j and mk+1

i+1/2,j are discretized as (5.64)1 (recalling that ρw is constant). Similarly,

for (4.43)5 we have
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nk+1
i+1/2,ju

x,k+1
c,i+1/2,j − nki+1/2,ju

x,k
c,i+1/2,j

∆t

+
[nuxc ]

k+1/2
i+1,j

ux,k+1
c,i+1/2,j

+ux,k+1
c,i+3/2,j

2

∆x
− 5

ux,k+1
c,i−1/2,j

+ux,k+1
c,i+1/2,j

2

∆x

+
[nuyc ]

k+1/2
i+1/2,j+1/2

ux,k+1
c,i+1/2,j

+ux,k+1
c,i+1/2,j+1

2

∆y
−

[nuyc ]
k+1/2
i+1/2,j−1/2

ux,k+1
c,i+1/2,j−1

+ux,k+1
c,i+1/2,j

2

∆y

+ αk+1
c,i+1/2,j

1

∆x
(P k+1
c,i+1,j − P k+1

c,i,j ) = −ζ̂k+1
i+1/2,j

(
ux,k+1
c,i+1/2,j − u

x,k+1
w,i+1/2,j

)
+ nk+1

i+1/2,jg

+
2εc
∆x2

(
nk+1
i+1,j [u

x,k+1
c,i+3/2,j − u

x,k+1
c,i+1/2,j ]− nk+1

i,j [ux,k+1
c,i+1/2,j − u

x,k+1
c,i−1/2,j ]

)

+ εc
[n]k+1

i+1/2,j+1/2

uy,k+1
c,i+1,j+1/2

−uy,k+1
c,i,j+1/2

∆x − [n]k+1
i+1/2,j−1/2

uy,k+1
c,i+1,j−1/2

−uy,k+1
c,i,j−1/2

∆x

∆y

+ εc
[n]k+1

i+1/2,j+1/2

ux,k+1
c,i+1/2,j+1

−ux,k+1
c,i+1/2,j

∆y − [n]k+1
i+1/2,j−1/2

ux,k+1
c,i+1/2,j

−ux,k+1
c,i+1/2,j−1

∆y

∆y

(5.67)

with

[nuxc ]
k+1/2
i+1,j =

[
nk+1
i+1,j

ux,kc,i+1/2,j + ux,kc,i+3/2,j

2

]

[nuyc ]
k+1/2
i+1/2,j+1/2 =

[nk+1
i+1/2,j + nk+1

i+1/2,j+1

2

uy,kc,i,j+1/2 + uy,kc,i+1,j+1/2

2

]

[n]k+1
i+1/2,j+1/2 =

[nk+1
i+1/2,j + nk+1

i+1/2,j+1

2

]

(5.68)

where nk+1
i+1/2,j is discretized similar to (5.64)1.

Furthermore, for (4.43)6 we have

mk+1
i,j+1/2u

y,k+1
w,i,j+1/2 −mk

i,j+1/2u
y,k
w,i,j+1/2

∆t

+
[muyw]

k+1/2
i,j+1

uy,k+1
w,i,j+1/2

+uy,k+1
w,i,j+3/2

2

∆y
−

[muyw]
k+1/2
i,j

uy,k+1
w,i,j−1/2

+uy,k+1
w,i,j+1/2

2

∆y

+
[muxw]

k+1/2
i+1/2,j+1/2

uy,k+1
w,i,j+1/2

+uy,k+1
w,i+1,j+1/2

2

∆x
−

[muxw]
k+1/2
i−1/2,j+1/2

uy,k+1
w,i−1,j+1/2

+uy,k+1
w,i,j+1/2

2

∆x

+ αk+1
w,i,j+1/2

1

∆x
(P k+1
c,i,j+1 − P k+1

c,i,j ) = αk+1
w,i,j+1/2

1

∆x
(∆P k+1

i,j+1 −∆P k+1
i,j + Λk+1

i,j+1 − Λk+1
i,j )

+ ζ̂k+1
i,j+1/2

(
uy,k+1
c,i,j+1/2 − u

y,k+1
w,i,j+1/2

)
+mk+1

i,j+1/2g

+
2εw
∆y2

(
mk+1
i,j+1[uy,k+1

w,i,j+3/2 − u
y,k+1
w,i,j+1/2]−mk+1

i,j [uy,k+1
w,i,j+1/2 − u

y,k+1
w,i,j−1/2]

)

+ εw
[m]k+1

i+1/2,j+1/2

ux,k+1
w,i+1/2,j+1

−ux,k+1
w,i+1/2,j

∆y − [m]k+1
i−1/2,j+1/2

ux,k+1
w,i−1/2,j+1

−ux,k+1
w,i−1/2,j

∆y

∆x

+ εw
[m]k+1

i+1/2,j+1/2

uy,k+1
w,i+1,j+1/2

−uy,k+1
w,i,j+1/2

∆x − [m]k+1
i−1/2,j+1/2

uy,k+1
w,i,j+1/2

−uy,k+1
w,i−1,j+1/2

∆x

∆x

(5.69)

with
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[muyw]
k+1/2
i,j+1 =

[
mk+1
i,j+1

uy,kw,i,j+1/2 + uy,kw,i,j+3/2

2

]

[muxw]
k+1/2
i+1/2,j+1/2 =

[mk+1
i,j+1/2 +mk+1

i+1,j+1/2

2

ux,kw,i+1/2,j + ux,kw,i+1/2,j+1

2

]

[m]k+1
i+1/2,j+1/2 =

[mk+1
i,j+1/2 +mk+1

i+1,j+1/2

2

]

(5.70)

where mk+1
i,j+1/2 is discretized by (5.64)2. Finally, for (4.43)7 we have

nk+1
i,j+1/2u

y,k+1
c,i,j+1/2 − nki,j+1/2u

y,k
c,i,j+1/2

∆t

+
[nuyc ]

k+1/2
i,j+1

uy,k+1
c,i,j+1/2

+uy,k+1
c,i,j+3/2

2

∆y
−

[nuyc ]
k+1/2
i,j

uy,k+1
c,i,j−1/2

+uy,k+1
c,i,j+1/2

2

∆y

+
[nuxc ]

k+1/2
i+1/2,j+1/2

uy,k+1
c,i,j+1/2

+uy,k+1
c,i+1,j+1/2

2

∆x
−

[nuxc ]
k+1/2
i−1/2,j+1/2

uy,k+1
c,i−1,j+1/2

+uy,k+1
c,i,j+1/2

2

∆x

+ αk+1
c,i,j+1/2

1

∆x
(P k+1
c,i,j+1 − P k+1

c,i,j ) = −ζ̂k+1
i,j+1/2

(
uy,k+1
c,i,j+1/2 − u

y,k+1
w,i,j+1/2

)
+ nk+1

i,j+1/2g

+
2εc
∆y2

(
nk+1
i,j+1[uy,k+1

c,i,j+3/2 − u
y,k+1
c,i,j+1/2]− nk+1

i,j [uy,k+1
c,i,j+1/2 − u

y,k+1
c,i,j−1/2]

)

+ εc
[n]k+1

i+1/2,j+1/2

ux,k+1
c,i+1/2,j+1

−ux,k+1
c,i+1/2,j

∆y − [n]k+1
i−1/2,j+1/2

ux,k+1
c,i−1/2,j+1

−ux,k+1
c,i−1/2,j

∆y

∆x

+ εc
[n]k+1

i+1/2,j+1/2

uy,k+1
c,i+1,j+1/2

−uy,k+1
c,i,j+1/2

∆x − [n]k+1
i−1/2,j+1/2

uy,k+1
c,i,j+1/2

−uy,k+1
c,i−1,j+1/2

∆x

∆x

(5.71)

with

[nuyc ]
k+1/2
i,j+1 =

[
nk+1
i,j+1

uy,kc,i,j+1/2 + uy,kc,i,j+3/2

2

]

[nuxc ]
k+1/2
i+1/2,j+1/2 =

[nk+1
i,j+1/2 + nk+1

i+1,j+1/2

2

ux,kc,i+1/2,j + ux,kc,i+1/2,j+1

2

]

[n]k+1
i+1/2,j+1/2 =

[nk+1
i,j+1/2 + nk+1

i+1,j+1/2

2

]

(5.72)

where nk+1
i,j+1/2 is discretized similar to (5.64)2.
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