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Abstract

The aim of the paper is to shed light on the role played by

regional knowledge bases in Industry 3.0 in fostering new

technologies in Industry 4.0 in European regions (NUTS 3)

over the period 1991–2015. We find that 4.0 technologies

appear to be quite related to 3.0 technologies, with some

heterogeneity among different technology fields. The paper

investigates the geographical implications. We find that the

probability of developing Industry 4.0 technologies is higher

in regions that are specialized in Industry 3.0 technologies.

However, other types of knowledge bases also sustain

regional diversification in Industry 4.0 technologies.
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1 | INTRODUCTION

There is a long tradition of scholars pointing out that capitalist societies tend to go through a number of Industrial

Revolutions (Perez, 2010; Perez & Soete, 1988). A well-established approach in the economics of innovation litera-

ture conceives the history of innovation as a temporal sequence of discrete jumps leading to new technological
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paradigms, followed by incremental changes along technological trajectories (Boschma, 1999; Dosi, 1982; Dosi &

Nelson, 2013). According to this view, the innovation process is characterized by historical moments in which the

introduction of new and disruptive technologies (such as general-purpose technologies) paves the way for a com-

plete re-organization of the economic system.

A broad consensus has developed around the idea that the last great techno-economic transformation was the

one empowered by the advent and the wide diffusion of information and communication technologies (ICTs) in the

last decades of the last century. The unfolding of the technological paradigm 3.0—namely that set of ICTs, digital

innovations and solutions—is acknowledged to have empowered the so-called Third Industrial Revolution, a deep

transformation that not only involved the vast majority of the economic sectors but also profoundly changed the

whole society. However, when it comes to interpreting the present techno-economic trends, the picture is less well-

defined and discordant opinions can be found.

On the one hand, some scholars argue that we are now in the maturity phase of the ICTs technological para-

digm, in which 3.0 technologies are now being improved, without significative discrete jumps. At the same time,

other scholars claim that the technological frontier is rapidly moving ahead, leading the economic system towards a

fully-fledged Fourth Industrial Revolution (Brynjolfsson & Mcafee, 2011, 2014; Schwab, 2017). This so-called tech-

nological paradigm 4.0 is not characterized by a single and easily identifiable technology, but concerns a set of very

different technologies (Ménière et al., 2017; Popkova et al., 2019). In particular, 4.0 technologies often combine

advanced 3.0 technologies (both hardware and software) with technologies pertaining to different application

domains. The disruptive novelty brought about by the 4.0 paradigm is that this process of recombination introduces

radical change in fields that have not been extensively affected by the 3.0 paradigm in the past. Examples are the

application of internet of things technologies in the agricultural sector or artificial intelligence tools in legal and busi-

ness services (Liao et al., 2017; Lu, 2017). Thus, on the one hand, we observe a certain degree of continuity between

the 3.0 paradigm and 4.0 technologies, in which the 4.0 technological paradigm builds on the 3.0 paradigm through a

process of continuous innovation. On the other hand, the broad recombinatory nature of the 4.0 paradigm intro-

duces discontinuity in the innovation process: the application of advanced 3.0 technologies in new fields determines

original and potentially disruptive 4.0 technical solutions that represent discrete jumps in the innovation process

(Laffi & Lenzi, 2021).

As has happened with past industrial revolutions (Boschma, 1999; Hall & Preston, 1988; Marshall, 1987), it is

reasonable to expect that the transition from the 3.0 to the 4.0 paradigm will bring changes in the geography of inno-

vation. This may depend on the distribution of typical material and immaterial inputs that are necessary for the crea-

tion of the particular technical knowledge on which the paradigm relies. In other words, there might be a connection

between the technological features of each paradigm and its subsequent geography of innovation. Consequently, it

is important to understand the mechanisms that influence the capacity of a region to play an active role in the crea-

tion of new technological knowledge. In the end, regional development depends not only on the adoption of technol-

ogies imported from outside the region (Balland & Boschma, 2021a) but also on the possibility of producing new

knowledge locally. Clearly, this is even more important when the unfolding of a new technological paradigm seems

to be imminent. In this sense, regions face challenges and opportunities with huge impacts on their present and

future development (Capello & Lenzi, 2021a, 2021c).

Despite the fact that the Fourth Industrial Revolution is attracting full attention, its geography and local determi-

nants are still barely investigated. Among the few works on the topic (Ciffolilli & Muscio, 2018; Gress &

Kalafsky, 2015; Muscio & Ciffolilli, 2020; Strange & Zucchella, 2017), the European Patent Office published a study

on the geography of 4.0 innovation (Ménière et al., 2017), but it did not provide an analysis of its regional determi-

nants. Balland and Boschma (2021b) identified European regions that display potential in the development of 4.0

technologies, showing the importance of relevant regional capabilities. They explored the connection between the

local knowledge base and the ability of NUTS 2 regions in Europe to develop 4.0 technologies by applying the relat-

edness framework (Boschma, 2017).
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So, although the literature on the geography of 4.0 innovation is growing, there is still little evidence on their

regional determinants. The present paper takes up this topic by analysing the ability of NUTS 3 regions in 32 Euro-

pean countries (EU 27, UK and the four EFTA countries) to develop new 4.0 technologies in the period 1991–2015.

We aim to move this literature a step forward with respect to at least three aspects. First, we shed new light on the

connection between the two paradigms, exploring the degree of continuity between the two from a relatedness

framework. We do so by examining the degree of relatedness between 4.0 and 3.0 technologies, rather than provid-

ing a detailed technical overview of 4.0 technologies, which is beyond the scope of this paper. Our findings show

that 4.0 technologies appear to be quite related to 3.0 technologies, with some heterogeneity among technological

fields. Second, the paper explores the relationship between regional specialization in 3.0 technologies and 4.0 knowl-

edge creation in European NUTS 3 regions over the period 1991–2015. Our findings show that the probability of

developing 4.0 technologies is higher in regions specialized in 3.0 technologies, especially for those 4.0 technologies

that are closer to the 3.0 paradigm. Third, other types of technological specialization are considered in order to test

what kind of regional knowledge bases foster 4.0 knowledge creation. As recombinations lay at the heart of the 4.0

paradigm, we investigate whether local expertise and know-how in technologies coming from other fields may

increase the ability of regions to diversify into 4.0 technologies.

The paper is organized as follows. Section 2 briefly discusses the relevant literature. Section 3 presents the data,

while Sections 4 and 5 explain the methodology adopted. Section 6 and 7 discuss the results and provide some

robustness checks. Section 8 concludes.

2 | LITERATURE REVIEW

The long-term history of technology and innovation has been described in terms of a temporal sequence of discrete

jumps and incremental changes. Dosi (1982; Dosi & Nelson, 1994, 2013) developed an interpretative framework to

describe this long-term pattern through the concepts of technological paradigms and technological trajectories. The

advent of a new technological paradigm represents a discontinuity that sets into motion an incremental innovation

process, which in turn take places along different technological trajectories. This framework has been further devel-

oped to include the phenomenon of Industrial Revolutions (Perez, 2010). When some conditions are met, a new

technological paradigm might have such disruptive consequences on the socio-economic system that the transition

towards the new equilibrium represents a revolution.

Another feature of the innovation process that has drawn full attention is that it is subject to path dependence

processes (Arthur, 1994; Dosi et al., 1988; Nelson & Winter, 1982). It is widely recognized that the existing knowl-

edge base has a strong influence on paths of new knowledge creation and technological diversification. This influ-

ence is both direct and indirect. In the former case, the development of new technologies heavily relies and builds on

existing technologies. In the latter, the availability of specific know-how, human capital, institutions, networks and

peculiar resources that sustain the development of the existing knowledge base also shape future technological tra-

jectories. From this point of view, the past and present technological structure conditions and shapes its future

development (Castaldi & Dosi, 2006).

The idea of path dependency has been applied in the geography literature, and is now considered to be one of

the main pillars of evolutionary economic geography (Boschma & Lambooy, 1999; Henning et al., 2013; Martin &

Sunley, 2006). A more recent body of literature has empirically analysed this idea of history matters using the relat-

edness concept to understand the diversification process in countries and regions (Boschma, 2017; Hidalgo et al.,

2018; Neffke et al., 2011). The main finding arising from these studies is that technological diversification in regions

is more likely in those technological fields that are technologically “closer” to the ones in which the region already

has relevant expertise (Boschma et al., 2015; Kogler et al., 2013; Rigby, 2015). Unrelated diversification is rare and

more likely to happen under particular conditions, such as unrelated variety (Castaldi et al., 2015), responsive institu-

tions (Boschma & Capone, 2015) and inflow of external actors (Neffke et al., 2018).
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The innovation considered in the present study is of a particular type, since it involves a change of technological

paradigm. However, it is less clear whether the rise of the 4.0 paradigm represents a discontinuity in the history of

technology and innovation, or whether it shows signs of continuity in which processes of path dependency prevail.

Some scholars emphasize its more radical and disruptive features (Laffi & Lenzi, 2021), associating it with the Fourth

Industrial Revolution (Brynjolfsson & Mcafee, 2011, 2014; Schwab, 2017). Other scholars highlight the fact that 4.0

technologies combine technologies of the 3.0 paradigm with other technologies in particular application domains. This

would imply that 3.0 technologies are being used and improved without significative discrete jumps, although, at the

same time, they lead to radical change and disruptions in new fields of application (Liao et al., 2017; Lu, 2017). This

makes it crucial to determine whether 4.0 technologies and 3.0 technologies display some degree of cumulativeness,

and which 4.0 technologies are closer to the ICT paradigm (continuity), and which ones are not (discontinuity).

For a region, moving to 4.0 knowledge creation means to manage to exploit, at its best, all those elements that

are necessary to reach the edge of the innovation frontier. Many regions in Europe show the ambition to do so

(Reischauer, 2018; Santos et al., 2017). However, there is little understanding which of them have the real potential

to diversify into the technologies of the Fourth Industrial Revolution. This requires insights in the geography of the

Fourth Industrial Revolution and its regional determinants, but this is still rather underinvestigated (Ciffolilli &

Muscio, 2018; Gress & Kalafsky, 2015; Strange & Zucchella, 2017), with some exceptions. For instance, Muscio and

Ciffolilli (2020) investigated the role of European funding and networking in relation to the capacity of regions to

develop Industry 4.0. Moreover, the European Patent Office published a study with some evidence on the geogra-

phy of 4.0 innovation (Ménière et al., 2017). However, this study did not provide an analysis of its regional determi-

nants. Balland and Boschma (2021b) investigated the potential of NUTS 2 regions in Europe to develop 4.0

technologies. Using the analytical framework of relatedness (Boschma, 2017), they found that regions were more

likely to diversify into 4.0 technologies when they could draw on relevant local capabilities. What Balland and

Boschma (2021b) did not investigate, however, was the connection with 3.0 technologies, and to what extent there

is discontinuity or continuity when shifting to a new paradigm from a geographical perspective.

The question that has not yet been addressed is whether a change of technological paradigm can be interpreted

as a form of diversification in which regions leverage on their knowledge base and local inputs to develop new 4.0

technologies and “jump” into the new paradigm. A theoretical notion connected to the one of technological para-

digm is that of technological regimes (Breschi et al., 2000; Nelson & Winter, 1982; Winter, 1984), which can be

defined as a specific combination of technological opportunities, the appropriability of innovations, the properties of

the knowledge base and, much importantly, the cumulativeness of technical advances. In that sense, it is interesting

to investigate what kinds of knowledge base are important for the development of 4.0 technologies, and to what

extent cumulative innovation processes in ICTs enable a possible “jump” into the technological paradigm 4.0.

The geographical implication of the possible relatedness between 3.0 and 4.0 technologies is that, in case of high

levels of cumulativeness between the two paradigms, regions characterized by a well-developed 3.0 knowledge base

might have an advantage in the production of 4.0 knowledge. Moreover, there is little understanding of what types

of local knowledge bases are needed to develop what kinds of 4.0 technologies. Given the technological heterogene-

ity of the 4.0 paradigm, the local 3.0 knowledge base might have differentiated impacts on the development of dif-

ferent 4.0 technologies, depending on their level of cumulativeness with 3.0 technologies. What is more, the local

know-how in a specific 4.0 technology might be a strategic asset for a region to diversify in other 4.0 technologies.

This might be self-reinforcing: the higher the number of 4.0 technologies produced in a region, the easier it could be

for that region to diversify in other 4.0 technologies. There is no evidence yet whether such a marginal effect exists.

Furthermore, although 3.0 and 4.0 knowledge bases in regions are expected to be a strategic element in fostering

4.0 diversification, it is possible that other types of knowledge bases also play a role. As technologies coming from

application fields are combined, a strong local knowledge base in these technologies could facilitate the diversifica-

tion process in regions towards 4.0 technologies. Finally, analyses on 4.0 technologies have so far been done for

NUTS 2 regions in Europe. We will look at the more detailed level of NUTS 3 regions instead, which enables us to

analyse more precisely the importance of local capabilities.
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3 | DATA ON TECHNOLOGIES

The study relies on patent data which is considered a good proxy for inventions and knowledge creation (Strumsky

et al., 2012; Strumsky & Lobo, 2015). The use of patent data allows identifying the regional knowledge base by

looking at the technological codes that describe the patents produced in a region. Patent data are taken from the

OECD Regpat database (Maraut et al., 2008) and the inventions are regionalized according to the inventors' share.

The geographical level of the analysis is the NUTS 3 European regions (EU 27, the UK and the EFTA countries) and

the overall time span considered is 1991–2015.

The first empirical challenge is to select among the CPC classification technological codes that represent 3.0 and

4.0 technologies. It is possible to argue that, given its phase of maturity, there is a broad consensus on the technolog-

ical boundaries of the 3.0 paradigm. In order to select 3.0 technological patent codes, we adopted the classification

of high-tech IPC codes made by Eurostat (High-tech industry and knowledge-intensive services [htec], Annex 6)

(Inaba & Squicciarini, 2017). Two classes of ICT codes were selected, namely computer and automated business

equipment (ht_a) and communication technologies (ht_f). These sets of IPC codes were mapped in the correspondent

CPC codes using the official concordance tables. A possible limitation of this approach is that some actual ICTs might

be left aside because they do not display the technological codes considered in the Eurostat classification. However,

the procedure adopted is quite standard in the literature (Laffi & Lenzi, 2021).

Identifying a precise set of 4.0 technologies is not an easy task. There is a narrative of the Fourth Industrial Rev-

olution based on anecdotes and examples of single technologies (e.g., artificial intelligence, 3D- printing, big data

analytics, cloud computing, smart sensors). Only few studies provide a comprehensive description from a technologi-

cal perspective, such as Chiarello et al. (2018) who exploited Wikipedia data to map clusters of Industry 4.0 technol-

ogies. A landmark study by the European Patent Office (Ménière et al., 2017) provides a sample of technological

patent codes related to 4.0 technologies. This work is based on the expertise of technicians and patents examiners

from the EPO. This paper makes use of the 4.0 technological codes provided by the EPO. Ménière et al. (2017) rep-

resents the most complete and reliable source available.

The EPOs' experts created a meaningful taxonomy of 4.0 inventions (patents) that allows assigning each technol-

ogy to a specific class according to its characteristics. In particular, three macro technological classes were identified,

each of them composed by some sub-categories, as reported in Table A1 in the Appendix. The three classes are: core

technologies, enabling technologies and application domains. The class of core technologies corresponds to the

building blocks upon which 4.0 technologies are developed and include basic hardware technologies (sensors, pro-

cessors, advanced memories), software technologies (adaptive databases, mobile operating systems, virtualization)

and connectivity systems (network protocols, adaptive wireless data systems). These are the advanced 3.0 technolo-

gies that can be recombined with other technologies in the context of the 4.0 technological paradigm. The second

category, Enabling technologies, builds upon and complements the core technologies paving the way for technologi-

cal recombinations. Among enabling technologies we find analytics systems, user interfaces (virtual reality), 3d tech-

nologies (printers and scanners), artificial intelligence (machine learning and neural networks), position determination

systems (enhanced GPS), smart power supply technologies and intelligent safety systems. Finally, the application

domains refer to the final and recombinatory applications of 4.0 technologies in different parts of the economy, such

as applications pertaining to individuals (wearables, health monitoring devices), applications for the home environ-

ment (domotics), for moving vehicles, business enterprises (smart offices), manufacture (smart factories) and infra-

structure. Table A2 in the Appendix reports some examples of 4.0 CPC codes, together with their description (the

complete list of 4.0 CPC codes is available in Ménière et al., 2017).

The EPO study identified CPC codes belonging to at least one of the three macro classes. For the purpose of

the study, the technological classes considered in the analysis are required to be mutually exclusive. Consequently, a

new classification of 4.0 CPC codes is proposed, with seven classes, as reported in Table 1. Each new class of 4.0

technologies corresponds to one of the three EPO classes, or to a mix of them. Classes 2, 3, 5 and 6 present a mix of

the technological characteristics of macro-classes.
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As discussed above, 3.0 and 4.0 technologies are conceptually two different groups of technologies, both from a

technological and an economic point of view. Consequently, it is important to assure the complete distinction

between 3.0 and 4.0 technologies also from an empirical perspective. To do so, when a technological code belongs

both to the 3.0 definition and the 4.0 definition (which applies to about 15% of 4.0 technologies), the latter prevails

and the CPC is considered as 4.0. As a robustness check, an alternative criterion was adopted in which only “pure”
3.0 and 4.0 CPC were considered, after having discarded those corresponding to both definitions.

4 | ESTIMATION OF RELATEDNESS BETWEEN TECHNOLOGIES

The aim of the paper is to look at the local determinants of knowledge creation in 4.0 technologies. Following the

relatedness framework, we expect the “closer” the knowledge base of a region is to 4.0 technologies, the more likely

the region will develop 4.0 technologies. This requires a measure of technological distance between technologies.

Following literature (Boschma et al., 2015; Rigby, 2015), we computed a so-called “knowledge space,” namely a kxk

matrix—where k equals to the number of technologies—in which each element of the matrix is a standardized mea-

sure of the frequency with which the two technologies considered (i.e., two CPC codes) co-occur in a single patent

in the sample of patents considered. The knowledge space was computed for four non-overlapping periods: 1991–

1996;1997–2002;2003–2008;2009–2015. The calculations were made by exploiting some Python functions based

on the EconGeo R package (Balland, 2017).

Figure 1 presents the relatedness between the seven classes of 4.0 technologies and the two classes of 3.0 tech-

nologies for the last period: the lighter the colour, the higher the relatedness is between two technologies. 4.0 Core

technologies (in particular classes 1, 2 and 3) are on average the closest to the 3.0 class of communication technolo-

gies (ht_f). This supports the interpretation of 4.0 core technologies as very advanced 3.0 technologies: 4.0 core

technologies and 3.0 communication technologies are often combined in the same invention. This result can also be

interpreted as a sign of the presence of cumulative innovation processes between 3.0 technologies and 4.0 core

technologies (Laffi & Lenzi, 2021). Interestingly, the 4.0 applied technologies (class no. 7) displays also high levels of

relatedness with the 3.0 class of computer and automated business equipment (ht_a) which suggests that this kind

of technologies are somehow complementary for the realization of applied 4.0 solutions.

Figure 2 shows the relatedness between 4.0 technologies. Some of them are highly related, meaning that they

frequently co-occur in the same patent, such as classes 1 and 3, and 4 and 5.

It is interesting to notice that the degree of relatedness between 3.0 and 4.0 technologies and between 4.0 tech-

nologies is quite stable over time. For instance, if we consider the relatedness values registered in period

TABLE 1 The new classification of 4.0 CPC codes based on EPO's classification

New classification of 4.0 technologies (CPC)

EPO's classification of 4.0 technologies (CPC)

Core tech. Enabling tech. Application dom.

1 Core technologies 1 0 0

2 Core and applied technologies 1 0 1

3 Core and enabling technologies 1 1 0

4 Enabling technologies 0 1 0

5 Enabling and applied technologies 0 1 1

6 Core, enabling and applied technologies 1 1 1

7 Applied technologies 0 0 1

Source: Authors' elaboration.
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1 (Figures A1 and A2 in the Appendix), the broad picture does not change substantially. However, it is worth

highlighting the presence of a higher relatedness between some 4.0 technologies (class 2 and class 4) and the 3.0

class of Computer and automated business equipment (ht_a) in period 1 with respect to period 4. This might be evi-

dence of a diverging trend between the two technological paradigms, with 4.0 technologies differentiating more

from 3.0 technologies over time. This point will be taken into consideration in the econometric analysis.

Do 4.0 technologies display higher levels of relatedness with technologies other than 3.0 ones? Figure 3 com-

pares, for each of the seven classes of 4.0 technologies, the relatedness values of the top 2-related technologies to

the relatedness values of the two 3.0 classes. What Figure 3 shows is that for none of the seven 4.0 classes, 3.0

technologies are among the two top-related technologies: other technologies are characterized by significantly

higher levels of relatedness (the full list is provided in Table A3 in the Appendix).

5 | MODELLING THE ENTRY OF 4.0 TECHNOLOGIES IN EUROPEAN
REGIONS

To assess the importance of local determinants for the entry of new 4.0 technologies in a region, we estimate linear

probability models based on a panel data structure with fixed effects for 4.0 technologies and time periods. Follow-

ing studies on regional diversification, all observations include 4.0 technologies in which a region is not specialized

F IGURE 1 Relatedness between 4.0 technologies and 3.0 technologies (last period)

F IGURE 2 Relatedness between 4.0 technologies (last period)
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(measured as a relative technological advantage (RTA< 1). The dependent variable is a dummy variable, entryr,i,t, that

takes value 1 when region r develops an RTA higher than 1 in a 4.0 technology i at time t, and 0 otherwise. Different

specifications of the entry models aim at exploring different aspects that influence the probability of a region to

develop new 4.0 technologies.

5.1 | Model A—baseline specification

The baseline specification of the model aims at verifying a standard result of the regional diversification literature in

the context of 4.0 knowledge creation. More specifically, we test whether the probability to develop an RTA in a

specific 4.0 technology is higher for those regions that are characterized by a local knowledge base close to that 4.0

technology. To do so, we calculated the relatedness density around the seven classes of 4.0 technologies (Balland

et al., 2019) for each region. The relatedness density around a specific 4.0 technological class i in region r at time t is

defined as the sum of technological relatedness φi,j,t of technology i to all other technologies j (4.0 or not 4.0) in

which the region has an RTA, divided by the sum of technological relatedness of technology i to all other technolo-

gies j in the reference region (i.e., the EU 28+EFTA countries) at time t:

F IGURE 3 Top 4.0 related technologies
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Relatedness_densityr,i,t ¼

P

j � r, j≠ i
RTAr,j,tφi,j,t

P

j≠ i
φi,j,t

�100:

A region r has a RTAr,j,t in technology j at time t when the share of patents in technology j at time t in the region is

greater than the same share in the reference area;

RTAr,j,t ¼1 if
patentstr,j=

P
jpatents

t
r,j

P
rpatents

t
r,j=

P
r

P
jpatents

t
r,j

>1:

RTAr,j,t ¼0 otherwise

Thus, the higher is the value of relatedness density with respect to a certain 4.0 technology, the closer that technol-

ogy is to the regional knowledge base.

To get a first indication, we compare in Figure 4 regions with an RTA in 4.0 technologies (indicated with a black

grid pattern) and regions with high values of relatedness density (the darker the colour the higher the value) with

respect to Core 4.0 technologies in period 4. What can be observed is that regions specialized in 4.0 technologies

F IGURE 4 Regional specialization in Core 4.0 technologies (black grid) and relatedness density (field colour)

around Core 4.0 technologies (period 4)
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are also characterized by a high relatedness density. Moreover, also surrounding regions often tend to display high

relatedness density values.

Another way to look at the possible connection between relatedness density and the development of a speciali-

zation in 4.0 technologies is to classify regions in four categories. Table 2 classifies the regions according to their

level of relatedness density (values lower or higher than the median value) and their specialization in core technolo-

gies (RTA lower or higher than 1) in period 4. Two hundred and four out of the 242 regions (84%) that present a 4.0

specialization in core technologies display also higher than median values of relatedness density to 4.0 core technol-

ogies. On the contrary, 656 out of the 1,146 regions (57%) that are not specialized in the production of core technol-

ogies are characterized by lower than median values of relatedness density to core technologies. It is interesting to

note that many capital regions (for example Vienna, Berlin, Madrid, Paris, Budapest) are characterized by both a spe-

cialization and high levels of relatedness with respect to core technologies. Instead, among the regions with a high

relatedness density but without a specialization we can find advanced regions like Utrecht, Milan, Bergamo and

Birmingham.

In order to provide more systematic evidence, we conducted econometric analysis. Our entry model includes

relatedness density as the main independent variable of interest. In more details:

entryr,i,t ¼ αr,i,tþβ1relr,i,t�1þ γ1pop_densr,tþ γ2gdpr,tþθiþμtþεr,i,t, ð1Þ

where relr,i,t�1 represents the value of the relatedness density in region r for 4.0 technology i at time t-1. The coeffi-

cient β1 is expected to be positive and significant, indicating a positive effect of relatedness to 4.0 technology i in

the precedent period on the probability of developing an RTA in that technology in the following period. Two con-

trols variables are included, namely the logarithm of regional population density (pop_densr,t) and the logarithm of

regional gdp (gdpr,t, calculated in pps). Both variables are considered at the beginning of the period and derived from

Cambridge Econometrics.1 Finally, θi and μt represent fixed effects at the technological and temporal level.

5.2 | Model B—effect of 3.0 technologies

To test the impact of regional specialization in 3.0 technologies, we added the two variables computer and auto-

mated business equipment (ht_ar,t�1) and communication technologies (ht_fr,t�1) that represent 3.0 technologies, and

which take value of 1 when the region has an RTA>1 in the respective 3.0 technology at time t-1, and 0 otherwise.

Figures A3 and A4 in the Appendix present maps of European NUTS 3-regions with respect to their scores on the

two 3.0 technologies. A positive and significant value of coefficients β2 and β3 would suggest that ceteris paribus,

regions specialized in 3.0 technologies are more likely to develop 4.0 technologies. This takes the following form:

entryr,i,t ¼ αr,i,tþβ1relr,i,t�1þβ2htar,t�1þβ3htf r,t�1þ γ1popdensr,tþ γ2gdpr,t þθiþμtþεr,i,t: ð2Þ

Model specification 3 adds two interaction terms that explore whether the effect of a specialization in 3.0 tech-

nologies on the probability of developing 4.0 technologies is greater for those 4.0 technologies that are technologi-

cally closer to the 3.0 paradigm:

TABLE 2 Relatedness density and specialization in Core technologies: a classification of European NUTS 3
regions (period 4)

Specialization (RTA>1) No specialization (RTA<0)

High relatedness density (> median value) 204 490

Low relatedness density (< median value) 38 656
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entryr,i,t ¼ αr,i,tþβ1relr,i,t�1þβ2ht_ar,t�1þβ3ht_fr,t�1þβ4ht_a_intr,t�1þ
β5ht_f_intr,t�1þ γ1pop_densr,tþ γ2gdpr,tþθiþμtþεr,i,t,

ð3Þ

where:

ht_a_intr,t�1 ¼ epo123�htar,t�1,

ht_f_intr,t�1 ¼ epo123�ht_fr,t�1,

and epo123 is a dummy variable taking value 1 when the observation concerns core, core and applied, and core and

enabling 4.0 technologies (classes 1,2,3).

5.3 | Model C—effect of other 4.0 technologies

We also estimate the possible effect of existing regional specializations in 4.0 technologies on the probability of

developing a new specialization in another 4.0 technology. The analysis is based on model A and includes two

dummy variables few_other40r,t�1 and many_other40r,t�1 which take value 1 if the region had a specialization

(RTA>1) in, respectively, one or two 4.0 technologies, and in more than two 4.0 technologies, different from i at

time t-1. In this way, we verify whether the marginal effect of a 4.0 specialization on the probability of developing a

new specialization in another 4.0 technology is increasing with the number of present 4.0 specializations. In this case,

we would have β7 > β6. Figure A4 in the Appendix provides a map of all European NUTS 3 regions scoring on the

number of 4.0 technologies in which they are specialized;

entryr,i,t ¼ αr,i,tþβ1relr,i,t�1þβ2ht_ar,t�1þβ3ht_fr,t�1þβ6few_other40r,t�1þ
β7many_other40r,t�1þ γ1pop_densr,tþ γ2gdpr,tþθiþμtþεr,i,t:

ð4Þ

5.4 | Model D—effect of “top-related” technologies

Model D includes the variable toprelr,t�1, which captures the specialization of region r in the so-called top 4.0 related

technologies. More precisely, toprelr,t�1 takes value 1 when the region is specialized in at least one of the two top-

related technologies with respect to 4.0 technology i. The relatedness density variable is excluded from this specifi-

cation because it is highly correlated with this variable toprelr,t�1, leading to an endogeneity problem:

entryr,i,t ¼ αr,i,tþβ2ht_ar,t�1þβ3ht_fr,t�1þβ4toprelr,t�1þ γ1pop_densr,tþ
γ2gdpr,tþθiþμtþεr,i,t:

ð5Þ

6 | RESULTS

Table 3 reports the results of the estimations of all models. First, the coefficient of the relatedness density variable is

positive and highly significant in all specifications. This result confirms that the relatedness framework also holds in

the context of 4.0 knowledge creation (Balland & Boschma, 2021b): the probability of developing a specialization in

a 4.0 technology is higher in those NUTS 3 regions characterized by a knowledge base technologically close to that

4.0 technology.
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Models B1 and B2 analyse the role of 3.0 regional specializations in fostering 4.0 technologies. The results of

model B1 highlight a positive and significant effect on the entry probability only for communication technologies

(ht_f) but not for automated business equipment (ht_a). Furthermore, model B2 tells us that this effect is even

greater when the probability of developing specific types of 4.0 technologies is measured. Indeed, when considering

core 4.0 technologies, the impact of specialization in communication technologies is much higher than the overall

effect (0.0522 + 0.0527 = 0.1049). These results confirm our expectations on the possible implications of techno-

logical cumulativeness between 3.0 and 4.0 technologies for the geography of 4.0 innovation. A local knowledge

base in communication technologies allows the region to leverage on the cumulative dimension of the 4.0 technolog-

ical paradigm and, consequently, to produce more easily those kinds of 4.0 technologies that are more related to the

3.0 paradigm.

Model C demonstrates that having a specialization in some 4.0 technologies increases the probability of devel-

oping additional specializations in other classes of 4.0 technologies. Moreover, the higher the number of existing 4.0

specializations, the easier it is for the region to diversify in a new 4.0 technology. Both coefficients of variables

few_other40r,t�1 and many_other40r,t�1 are positive and significant, with the latter being higher than the former.

Model D shows how also a regional specialization in those technologies that display the highest levels of 4.0

relatedness foster regional 4.0 innovation. Also in this case, the coefficient is positive, significant and high in

TABLE 3 Estimation results

Dependent variable: Entry(r,i,t)

A B1 B2 C D

reldens 0.00539*** 0.00475*** 0.00460*** 0.00391***

(0.000442) (0.000451) (0.000453) (0.000466)

ht_a �0.00658 �0.00730 �0.00694 0.00946

(0.00813) (0.0118) (0.00811) (0.00811)

ht_f 0.0726*** 0.0522*** 0.0570*** 0.0898***

(0.00934) (0.0120) (0.00963) (0.00933)

ht_a_int 0.00300

(0.0157)

ht_f_int 0.0527**

(0.0189)

few_other40 0.0337***

(0.00567)

many_other40 0.0678***

(0.0100)

toprel 0.0539***

(0.0105)

pop dens 0.00846*** 0.00766*** 0.00769*** 0.00760*** 0.00951***

(0.00223) (0.00223) (0.00223) (0.00223) (0.00223)

gdp �0.0580*** �0.0543*** �0.0527*** �0.0579*** �0.0220**

(0.00826) (0.00828) (0.00830) (0.00825) (0.00776)

N 17,938 17,938 17,938 17,938 17,938

R2 0.028 0.032 0.033 0.036 0.027

Note: Standard errors in parentheses.

*p < 0.05, **p < 0.01, ***p < 0.001.
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magnitude (0.0539). This suggests that regional specialization in 3.0 technologies is not the only driver of the devel-

opment of 4.0 technologies.

Looking at the control variables, Table 3 shows that the coefficient of GDP is negative and usually significant,

although the magnitude is barely negligible. Similarly, the positive, significant coefficient of population density does

not provide relevant additional information.

7 | ROBUSTNESS CHECKS

We performed a number of robustness checks. First, we included a time-invariant version of the regional 3.0 special-

ization variables. The rationale behind this choice is that, with the unfolding of the 4.0 technological paradigm, also

those technologies classified as 3.0 might evolve in a similar direction. For this reason, we considered only the 3.0

specialization in the first period, when the 4.0 phenomenon was not present yet. The results in Table 4 are in line

with the previous ones, with the exception of the interaction term for communication technologies (ht_f_int_p1)

which is not more significant. This evidence somehow supports this intuition, given that the link between a

TABLE 4 Estimation results, 3.0 specialization variables calculated in period 1 (time-invariant)

Dependent variable: Entry(r,i,t); Specialization in period 1

B1 B2 C D

relatedness 0.00492*** 0.00488*** 0.00392***

(0.000452) (0.000453) (0.000467)

ht_a_p1 �0.00246 �0.00574 �0.00327 0.0168

(0.00972) (0.0139) (0.00972) (0.00966)

ht_f_p1 0.0575*** 0.0468*** 0.0455*** 0.0728***

(0.00919) (0.0124) (0.00932) (0.00920)

ht_a_int_p1 0.00798

(0.0188)

ht_f_int_p1 0.0258

(0.0183)

few_other40 0.0354***

(0.00567)

many_other40 0.0756***

(0.00987)

toprel 0.0539***

(0.0106)

pop dens 0.00817*** 0.00818*** 0.00798*** 0.0101***

(0.00223) (0.00223) (0.00222) (0.00222)

gdp �0.0583*** �0.0577*** �0.0612*** �0.0248**

(0.00826) (0.00828) (0.00823) (0.00777)

N 17,938 17,938 17,938 17,938

R2 0.031 0.031 0.035 0.024

Note: Standard errors in parentheses.

* p < 0.05, ** p < 0.01, *** p < 0.001.
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specialization in 3.0 technologies and 4.0 innovation in core 4.0 technologies appears to be weaker when only the

“old” specialization is considered, disregarding the subsequent evolution of the regional knowledge base.

Second, we considered an alternative specification of the dependent variable by adding a further condition on

the regional development of an RTA in 4.0 technologies. The entry variable, in this case, takes value 1 only when:

(i) the location quotient becomes greater than 1; and (ii) the absolute increase of the share of 4.0 technologies is

larger than the minimum threshold of 0.3. Tables A4 and Table A5 in the Appendix, show the results and confirm our

previous findings. Third, the sample of the regions considered in the analysis was filtered in order to exclude those

cases with less than 10 patents per period. Tables A6 and A7 present the results and show the validity of our previ-

ous findings. Fourth, we changed the measurement of the 3.0 and 4.0 technologies (CPC). We excluded technologies

that fitted both the 3.0 and the 4.0 definitions from our analysis (which applied to 1,795 CPC's, out of a total of

10,490 CPC's identified as 4.0), in order to exclude potential bias due to the partial overlapping of the 3.0 and 4.0

definitions. The results of the estimations are reported in Tables A8 and A9. They confirm earlier findings. Finally, we

tested another specification of the dependent variable, namely an entry variable which takes value 1 when the new

4.0 technology has an RTA > 2, instead of RTA > 1. The findings are reported in Tables A10 and A11. They show the

same results.

8 | CONCLUSION AND DISCUSSION

The paper aimed to shed light on the fundamental question what kinds of local knowledge bases have enabled the

development of new Industry 4.0 technologies in Europe in the last 3 decades. First, we explored the extent to which

local knowledge bases in 3.0 technologies laid the foundations of the development of 4.0 technologies in European

regions at a very detailed level (the NUTS 3 level). Second, we examined which other types of knowledge bases may

have contributed to the development of new 4.0 technologies, applying recent insights from the empirical literature

on regional diversification (Boschma, 2017). Both questions are part of a much broader debate about possible links

between Industry 3.0 and Industry 4.0 technologies (Brynjolfsson & Mcafee, 2011; Schwab, 2017). It centres around

the key question whether Industry 4.0 stands for a major technological transformation that reflects a radical depar-

ture from existing technologies in general, and 3.0 technologies more in particular. Looking at this debate through a

geographical lense, and adopting a relatedness framework, may provide new inputs to this.

First of all, we found that the knowledge space involving 4.0 technologies shows that the relationship

between 4.0 technologies and 3.0 technologies is quite heterogeneous, with some 4.0 technologies being

technologically closer to the previous 3.0 technological paradigm than others. Thus, there exists a certain degree

of cumulativeness between the two paradigms, at least with respect to some 4.0 technologies. This cumulative

dimension has some important implications for the resulting geography of Industry 4.0 innovation in Europe. In

fact, the analysis showed that the probability of developing 4.0 technologies is higher in those regions that

are specialized in the production of 3.0 technologies. This link is even stronger for the development of those

4.0 technologies that are closer to the 3.0 technological paradigm. At the same time, it is shown that the

development of 4.0 technologies is a self-reinforcing process: when a region develops a specialization in some

4.0 technologies, the probability of diversification in new 4.0 technologies increases, and this increase is larger

when the number of 4.0 specializations is higher.

A possible limitation of the study regards the empirical assessment of 4.0 diversification based on patent data. In

other words, the usual limitations of patent data studies apply: some relevant 4.0 inventions and innovations might

not be patented or might elude our patent search strategy. Even when correctly identified, 4.0 inventions are only a

part of the 4.0 transformation that is shaping the future of modern economies. Regions might take advantage of the

4.0 technological paradigm also through the passive adoption of 4.0 technologies produced elsewhere, a phenome-

non that is still difficult to empirically investigate due to data limitations on 4.0 investments and technology

adoption.
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Despite these possible limitations, our study is particularly effective in capturing the geographical dynamics of

new 4.0 technical knowledge creation. The local development of 4.0 technologies might represent a precious com-

petitive advantage for regions thanks to the productivity gains achievable in many sectors of the economy and espe-

cially in the manufacturing industry. Indeed, Industry 4.0 is expected to completely change the production system by

making it not only more automated and efficient but also more flexible and sustainable. Interestingly, the advantages

stemming from the diffusion of the technological paradigm 4.0 are not limited to already developed areas but spread

also in more peripheral areas (Capello & Lenzi, 2021b).

As we did noy focus on policy in our empirical analysis, it is not immediately straightforward to derive policy

lessons. Our findings tend to suggest that investments in the creation of 4.0 technologies could be strategic, given its

self-reinforcing dynamics. However, policy-makers should adopt a smart approach to 4.0, in which local capabilities

provides opportunities but also set limits to what can be achieved (Balland et al., 2019). This applies to regions that

were at the centre of the 3.0 technological paradigm which could leverage on their 3.0 knowledge base to diversify in

core 4.0 technologies. But also regions that are not specialized in ICT production, but have other kinds of relevant tech-

nological specializations could be made part of such policy, in order to boost specific types of 4.0 diversification.

The present study provides contributions but also opens the way for future research. First, it is important to take

into consideration other local conditions that could enhance 4.0 technologies, going beyond the knowledge base

approach adopted here. Although present technological trends influence future regional development paths, other

regional variables could play a role and push regions in certain technological trajectories. The presence of local uni-

versities and other knowledge infrastructure (Tanner, 2014, 2016) but also university-industry linkages might be cru-

cial here (D'Este et al., 2013; Reischauer, 2018). Institutional settings may also be considered important (Boschma &

Capone, 2015). Second, it could be interesting to include in the analysis some degree of spatial heterogeneity:

regions are not all alike and different territories might present different modes of 4.0 knowledge creation. For exam-

ple, the 4.0 innovation might be enhanced by the agglomeration of innovative firms in industrial clusters. This point

could be addressed in future research also by means of statistical networks models (Hermans, 2021). Third, we only

looked at regional knowledge bases, but we did not account for knowledge links with other regions. Inter-regional

knowledge linkages can provide access to complementary capabilities (Balland & Boschma, 2021a; Miguelez &

Moreno, 2018) and might enhance the ability of regions to contribute to the development of new 4.0 technologies, a

topic that is still relatively unexplored. Fourth, there is a need to look more closely at the fields of application of

Industry 4.0 technologies in regions. What needs to be explored is whether there is overlap between the geogra-

phies of 4.0 technology production and the geographies of 4.0 industrial application in Europe (De Propris &

Bailey, 2020). Fifth, there is need to focus on the consequences of Industry 4.0 technologies for spatial inequalities

in Europe. This may be due to the fact that 4.0 technologies are likely to be highly complex, and therefore may have

a tendency to concentrate in space, creating new spatial inequalities (Balland et al., 2019; Balland & Rigby, 2017).

But also the role of big and powerful companies need to be investigated and assessed in this respect, as they domi-

nate the development of some 4.0 technologies (Ménière et al., 2017). This is part of a much broader debate that

revolves around the quasi-monopolistic power of giant companies that are heavily engaged in Industry 4.0, and the

types of reponses against the negative downsides of Industry 4.0 that come from citizens and the political system in

different countries and regions (Feldman et al., 2019). No doubt this will impact the extent to which, and what types

of Industry 4.0 technologies will be produced and implemented. It remains to be seen what consequences that will

have for the future geography of Industry 4.0.
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APPENDIX A.

TABLE A1 4.0 technologies classes proposed by Ménière et al., 2017

Technological fields Examples

Core technologies

Hardware Sensors, advanced memories, processors, adaptive displays

Software Intelligent cloud storage and computing structures, adaptive databases, mobile

operating systems, virtualization

Connectivity Network protocols for massively connected devices, adaptive wireless data systems

Enabling technologies

Analytics Diagnostic systems for massive data

User interfaces User interfaces, virtual reality, information display in eyewear

Three-dimensional support

systems

Additive manufacturing, 3D printers and scanners for parts manufacture, automated 3D

design and simulation

Artificial intelligence Artificial intelligence, machine learning, neural networks

Position determination Enhanced GPS, device to device relative and absolute positioning

Power supply Situation-aware charging systems, shared power transmission objectives

Security Adaptive security systems, intelligent safety systems

Application domains

Personal Personal health monitoring devices, smart wearables, entertainment devices

Home Smart homes, alarm systems, intelligent lighting and heating, consumer robotics

Vehicles Autonomous driving, vehicle fleet navigation devices

Enterprise Intelligent retail and healthcare systems, autonomous office systems, smart offices,

agriculture

Manufacture Smart factories, intelligent robotics, energy saving

Infrastructure Intelligent energy distribution networks, intelligent transport networks, intelligent

lighting and heating systems

Source: Ménière et al. (2017).
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TABLE A2 Examples of 4.0 technological codes identified by Ménière et al., 2017

Technological
fields CPC Description

Hardware B82Y10/00 Nanotechnology for information processing, storage or transmission, e.g. quantum

computing or single electron logic

Software G06F3/067 Distributed or networked storage systems, e.g. storage area networks [SAN],

network attached storage [NAS]

Artificial

intelligence

G06N3/00 Computer systems based on biological models

Wearable

sensors

A61B5/68 Measuring for diagnostic purposes. Arrangements of detecting, measuring or

recording means, e.g. sensors, in relation to patient

Manufacture,

Analytics

G05B15/02 Systems controlled by a computer

Manufacture,

Analytics

G05B23/0297 Testing or monitoring of control systems or parts thereof. Reconfiguration of

monitoring system, e.g. use of virtual sensors; change monitoring method as a

response to monitoring results

F IGURE A1 Relatedness between 4.0 technologies and 3.0 technologies (first period)

F IGURE A2 Relatedness between 4.0 technologies (first period)
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TABLE A3 List of the 2 top-4.0 related technologies

4.0
class Top-rel. Tech 1 Top-rel tech 2

Epo_1 H04R (LOUDSPEAKERS, MICROPHONES,

GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC

ELECTROMECHANICAL TRANSDUCERS; DEAF-

AID SETS; PUBLIC ADDRESS SYSTEMS)

H04S (STEREOPHONIC SYSTEMS)

Epo_2 G03G (ELECTROGRAPHY;

ELECTROPHOTOGRAPHY; MAGNETOGRAPHY)

H04H (BROADCAST COMMUNICATION)

Epo_3 H04L (TRANSMISSION OF DIGITAL

INFORMATION, e.g. TELEGRAPHIC

COMMUNICATION)

G09C (CODING OR CIPHERING APPARATUS FOR

CRYPTOGRAPHIC OR OTHER PURPOSES

INVOLVING THE NEED FOR SECRECY)

Epo_4 G01S (RADIO DIRECTION-FINDING; RADIO

NAVIGATION; DETERMINING DISTANCE OR

VELOCITY BY USE OF RADIO WAVES;

LOCATING OR PRESENCE-DETECTING BY USE

OF THE REFLECTION OR RERADIATION OF

RADIO WAVES; ANALOGOUS ARRANGEMENTS

USING OTHER WAVES)

G06T (IMAGE DATA PROCESSING OR

GENERATION, IN GENERAL)

Epo_5 G01S (See above) E05B (LOCKS; ACCESSORIES THEREFOR;

HANDCUFFS)

Epo_6 B61L (GUIDING RAILWAY TRAFFIC; ENSURING

THE SAFETY OF RAILWAY TRAFFIC)

F02D (CONTROLLING COMBUSTION ENGINES)

Epo_7 G06Q (DATA PROCESSING SYSTEMS OR

METHODS, SPECIALLY ADAPTED FOR

ADMINISTRATIVE, COMMERCIAL, FINANCIAL,

MANAGERIAL, SUPERVISORY OR FORECASTING

PURPOSES)

G10H (ELECTROPHONIC MUSICAL

INSTRUMENTS)
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F IGURE A3 Regional specialization in 3.0 technologies, Computer and Automated business equipment (ht_a,
period 1)
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F IGURE A4 Regional specialization in 3.0 technologies, Communication technologies (ht_f, period 1)
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F IGURE A5 Regional specialization in 4.0 technologies (number of classes in which a region has a specialization,
period 4)

LAFFI AND BOSCHMA 23



TABLE A4 Robustness checks: at least 0.3 increase in the share of technological specialization for the dependent
variable

Dependent variable: Entry(r,i,t)

A B1 B2 C D

relatedness 0.00402*** 0.00342*** 0.00329*** 0.00256***

(0.000425) (0.000435) (0.000437) (0.000449)

ht_a �0.00474 �0.00616 �0.00521 0.00682

(0.00794) (0.0115) (0.00791) (0.00789)

ht_f 0.0667*** 0.0483*** 0.0513*** 0.0790***

(0.00912) (0.0117) (0.00940) (0.00906)

ht_a_int 0.00440

(0.0153)

ht_f_int 0.0474*

(0.0184)

few_other40 0.0391***

(0.00553)

many_other40 0.0683***

(0.00975)

toprel 0.0404***

(0.0102)

pop dens 0.00759*** 0.00684** 0.00687** 0.00674** 0.00821***

(0.00218) (0.00218) (0.00218) (0.00218) (0.00217)

gdp �0.0485*** �0.0452*** �0.0437*** �0.0496*** �0.0221**

(0.00795) (0.00797) (0.00799) (0.00794) (0.00744)

N 18,084 18,084 18,084 18,084 18,084

R2 0.020 0.024 0.025 0.028 0.021

Notes: Standard errors in parentheses.

*p < 0.05. **p < 0.01. ***p < 0.001.
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TABLE A5 Robustness checks: at least 0.3 increase in the share of technological specialization for the dependent
variable

Dependent variable: Entry(r,i,t); Specialization in period 1

B1 B2 C D

relatedness 0.00358*** 0.00353*** 0.00257***

(0.000436) (0.000437) (0.000451)

ht_a_p1 0.000601 �0.00490 �0.000643 0.0146

(0.00951) (0.0136) (0.00950) (0.00941)

ht_f_p1 0.0508*** 0.0388** 0.0391*** 0.0619***

(0.00895) (0.0121) (0.00909) (0.00893)

ht_a_int_p1 0.0130

(0.0184)

ht_f_int_p1 0.0290

(0.0178)

few_other40 0.0407***

(0.00554)

many_other40 0.0757***

(0.00963)

toprel 0.0405***

(0.0102)

pop dens 0.00730*** 0.00731*** 0.00708** 0.00875***

(0.00218) (0.00218) (0.00218) (0.00217)

gdp �0.0488*** �0.0481*** �0.0526*** �0.0245***

(0.00795) (0.00797) (0.00792) (0.00745)

N 18,084 18,084 18,084 18,084

R2 0.023 0.023 0.027 0.019

Notes: Standard errors in parentheses.

*p < 0.05. **p < 0.01. ***p < 0.001.
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TABLE A6 Robustness check: at least 0.3 increase in the share of technological specialization for the dependent
variable, only regions with more than 10 technologies

Dependent variable: Entry(r,i,t)

A B1 B2 C D

relatedness 0.00375*** 0.00315*** 0.00299*** 0.00241***

(0.000441) (0.000450) (0.000452) (0.000463)

ht_a �0.00455 �0.00741 �0.00486 0.00536

(0.00798) (0.0116) (0.00795) (0.00794)

ht_f 0.0659*** 0.0454*** 0.0512*** 0.0772***

(0.00936) (0.0120) (0.00967) (0.00929)

ht_a_int 0.00769

(0.0155)

ht_f_int 0.0531**

(0.0189)

few_other40 0.0320***

(0.00580)

many_other40 0.0635***

(0.00988)

toprel 0.0397***

(0.0102)

pop dens 0.00759** 0.00675** 0.00675** 0.00677** 0.00755**

(0.00232) (0.00233) (0.00232) (0.00232) (0.00232)

gdp �0.0818*** �0.0773*** �0.0755*** �0.0781*** �0.0562***

(0.00980) (0.00985) (0.00988) (0.00980) (0.00940)

N 16,776 16,776 16,776 16,776 16,776

R2 0.021 0.025 0.025 0.028 0.022

Notes: Standard errors in parentheses.

*p < 0.05. **p < 0.01. ***p < 0.001.
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TABLE A7 Robustness check: at least 0.3 increase in the share of technological specialization for the dependent
variable, only regions with more than 10 technologies

Dependent variable: Entry(r,i,t); Specialization in period 1

B1 B2 C D

relatedness 0.00333*** 0.00327*** 0.00244***

(0.000451) (0.000452) (0.000465)

ht_a_p1 0.000815 �0.00528 �0.0000208 0.0134

(0.00960) (0.0137) (0.00960) (0.00950)

ht_f_p1 0.0489*** 0.0350** 0.0378*** 0.0587***

(0.00904) (0.0122) (0.00918) (0.00903)

ht_a_int_p1 0.0145

(0.0186)

ht_f_int_p1 0.0335

(0.0180)

few_other40 0.0336***

(0.00581)

many_other40 0.0712***

(0.00974)

toprel 0.0398***

(0.0102)

pop dens 0.00734** 0.00734** 0.00721** 0.00820***

(0.00232) (0.00232) (0.00232) (0.00232)

gdp �0.0817*** �0.0808*** �0.0816*** �0.0594***

(0.00981) (0.00983) (0.00977) (0.00939)

N 16,776 16,776 16,776 16,776

R2 0.023 0.023 0.027 0.020

Notes: Standard errors in parentheses.

*p < 0.05. **p < 0.01. ***p < 0.001.
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TABLE A8 Robustness check: at least 0.3 increase in the share of technological specialization for the dependent
variable, only regions with more than 10 technologies, and stricter definition of 3.0 and 4.0 technologies (CPC)

Dependent variable: Entry(r,i,t)

A B1 B2 C D

relatedness 0.00513*** 0.00465*** 0.00442*** 0.00416***

(0.000433) (0.000444) (0.000447) (0.000463)

ht_a 0.00295 �0.00224 0.00209 0.0179*

(0.00861) (0.0121) (0.00861) (0.00852)

ht_f 0.0466*** 0.0210 0.0420*** 0.0592***

(0.00918) (0.0118) (0.00931) (0.00919)

ht_a_int 0.0136

(0.0167)

ht_f_int 0.0654***

(0.0186)

few_other40 0.0235***

(0.00635)

many_other40 0.0371***

(0.00978)

toprel 0.0601***

(0.00960)

pop dens 0.00526* 0.00463 0.00457 0.00480* 0.00576*

(0.00237) (0.00237) (0.00237) (0.00237) (0.00237)

gdp �0.0797*** �0.0771*** �0.0743*** �0.0785*** �0.0450***

(0.00987) (0.00990) (0.00992) (0.00987) (0.00944)

N 16,501 16,501 16,501 16,501 16,501

R2 0.038 0.040 0.041 0.041 0.035

Notes: Standard errors in parentheses.

*p < 0.05. **p < 0.01. ***p < 0.001.
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TABLE A9 Robustness check: at least 0.3 increase in the share of technological specialization for the dependent
variable, only regions with more than 10 technologies, and a stricter definition of 3.0 and 4.0 technologies (CPC)

Dependent variable: Entry(r,i,t); Specialization in period 1

B1 B2 C D

relatedness 0.00487*** 0.00479*** 0.00433***

(0.000442) (0.000443) (0.000462)

ht_a_p1 �0.00536 �0.0138 �0.00656 0.0128

(0.0101) (0.0141) (0.0101) (0.01000)

ht_f_p1 0.0372*** 0.0212 0.0332*** 0.0491***

(0.00909) (0.0121) (0.00916) (0.00913)

ht_a_int_p1 0.0200

(0.0196)

ht_f_int_p1 0.0385*

(0.0182)

few_other40 0.0246***

(0.00635)

many_other40 0.0402***

(0.00974)

toprel 0.0637***

(0.00958)

pop dens 0.00508* 0.00502* 0.00522* 0.00619**

(0.00237) (0.00237) (0.00237) (0.00237)

gdp �0.0801*** �0.0787*** �0.0813*** �0.0466***

(0.00987) (0.00990) (0.00985) (0.00945)

N 16,501 16,501 16,501 16,501

R2 0.039 0.039 0.040 0.033

Notes: Standard errors in parentheses.

*p < 0.05. **p < 0.01. ***p < 0.001.
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TABLE A10 Robustness check: RTA for the entry variable calculated with a threshold of 2

Dependent variable: Entry(r,i,t)

A B1 B2 C D

relatedness 0.00106*** 0.000707** 0.000583* 0.000453

(0.000238) (0.000243) (0.000242) (0.000251)

ht_a �0.00971* �0.00793 �0.00988* �0.00757

(0.00436) (0.00609) (0.00435) (0.00426)

ht_f 0.0340*** 0.0197** 0.0286*** 0.0372***

(0.00514) (0.00656) (0.00529) (0.00513)

ht_a_int �0.00280

(0.00833)

ht_f_int 0.0367***

(0.0105)

few_other40 0.00603

(0.00338)

many_other40 0.0214***

(0.00531)

toprel 0.0180***

(0.00530)

pop dens 0.00232 0.00190 0.00191 0.00187 0.00211

(0.00139) (0.00139) (0.00139) (0.00139) (0.00139)

gdp �0.0345*** �0.0325*** �0.0312*** �0.0334*** �0.0285***

(0.00524) (0.00524) (0.00526) (0.00524) (0.00500)

N 21,056 21,056 21,056 21,056 21,056

R2 0.006 0.008 0.009 0.009 0.009

Notes: Standard errors in parentheses.

*p < 0.05. **p < 0.01. ***p < 0.001.
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TABLE A11 Robustness check: RTA for the entry variable calculated with a threshold of 2

Dependent variable: Entry(r,i,t); Specialization in period 1

B1 B2 C D

relatedness 0.000736** 0.000704** 0.000420

(0.000243) (0.000244) (0.000251)

ht_a_p1 �0.00487 �0.00929 �0.00488 �0.00238

(0.00513) (0.00698) (0.00513) (0.00509)

ht_f_p1 0.0321*** 0.0265*** 0.0275*** 0.0350***

(0.00520) (0.00691) (0.00526) (0.00516)

ht_a_int_p1 0.0107

(0.0101)

ht_f_int_p1 0.0137

(0.0104)

few_other40 0.00679*

(0.00338)

many_other40 0.0242***

(0.00523)

toprel 0.0181***

(0.00532)

pop dens 0.00219 0.00219 0.00211 0.00243

(0.00139) (0.00139) (0.00139) (0.00138)

gdp �0.0347*** �0.0344*** �0.0354*** �0.0305***

(0.00524) (0.00526) (0.00524) (0.00502)

N 21,056 21,056 21,056 21,056

R2 0.008 0.008 0.009 0.008

Notes: Standard errors in parentheses.

*p < 0.05. **p < 0.01. ***p < 0.001.
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