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Abstract:  The main contribution of this paper is the 

design of an event-triggered formation control for 

leader-following consensus in second-order multi-

agent systems (MASs) under communication faults. All 

the agents must follow the trajectories of a virtual 

leader despite communication faults considered as 

smooth time-varying delays dependent on the distance 

between the agents. Linear matrix inequalities (LMIs)-

based conditions are obtained to synthesize a controller 

gain that guarantees stability of the synchronization 

error. Based on the closed-loop system, an event-

triggered mechanism is designed to reduce the control 

law update and information exchange in order to reduce 

energy consumption. The proposed approach is 

implemented in a real platform of a fleet of unmanned 

aerial vehicles (UAVs) under communication faults. A 

video with the experimental results in this link 

https://youtu.be/Lo_kuGY9Wq4. 
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1. Introduction 

Leader-following consensus for multi-agent 

systems (MASs) has attracted interest due to its 

applications in collective missions including, 

among others, self-organization, clusters of 

satellites, formation flying, and sensor 

networks [1]. Leader-following consensus is a 

particular problem in multi-agent systems 

where all the agent trajectories must converge 

to the trajectory of a leader [2]. Several 

research works have increased the focus on 

considering multiplicative and additive noises 

[3], switching topologies [4], time delays [5], 

particle swarm optimization [6], and event-

triggered mechanisms [7], among others. The 

information exchange through digital networks 



 

is a key point in leader-following consensus. 

However, delays [8], packet losses [9], 

communication faults [10], or bandwidth 

limitations [11] are challenges in real 

engineering applications [12].  

 

An alternative control strategy is the event-

triggered approach, which is used often for 

reducing the information exchange and the 

control law rate [13]. The difference between 

event-triggered and time-triggered approaches 

are that considers a periodic control law update, 

whereas, in the former, the update of the control 

law and the information exchange between the 

agents are determined by an event generator 

[14,15]. Related works have increased the 

focus on event-triggered leader-following 

consensus in the last decades considering 

sufficient conditions using the M-matrix theory 

and algebraic inequalities for second-order 

nonlinear time-delayed dynamic agents [16]; 

LMIs-based conditions using the M-matrix 

theory for reaching bipartite consensus in 

nonlinear second-order agents [17]; 

nonuniform delays in heterogeneous agents [8]; 

bounded delays in fractional-order agents [18]; 

sufficient conditions including dependent, 

independent fixed delays, time-varying delays 

[19]; constant delays in linear agents [20]. 

R2Q1, R3Q1 Nevertheless, the aforementioned 

works have not been considered a degradation 

in the communication based on the distances 

between agents. In [10], communication faults 

are modeled as a modification in the weights of 

the adjacency matrix as a result of a 

malfunction in the exchange of information. 

The communication faults in this work are 

considered as a delay-dependent on the 

distances between agents. Unlike [21], where a 

time-triggered control is designed to tolerate 

smooth communication faults, the main 

contribution of this paper inspired by [7], is the 

design of an event-triggered strategy to solve 

the leader-following consensus problem in 

second-order multi-agent systems under 

communication faults. A synthesis of a robust 

control gain is obtained in order to tolerate 

faults in the exchange of information. Then, 

based on the closed-loop system, an event-

triggered mechanism is used in order to reduce 

the information exchange between agents and 

the control update rate. The proposed technique 

has been implemented in a real platform 

comprising a fleet of UAVs achieving a desired 

formation and following a virtual leader agent 

in spite of the degradation in the exchange of 

information. 

 

This paper is organized as follows. 

Preliminaries and problem statement are 

provided in Section 2. The event-triggered 

leader-following formation control design is 

described in Section 3. The experimental 

results are shown in Section 4. Finally, the main 

conclusions are presented in Section 5. 

2. Preliminaries and problem 

statement 

2.1 Notation and graph theory 

Given a matrix 𝑋 , 𝑋𝑇  denotes its transpose, 



 

𝑋 > 0 (< 0)  denotes a positive (negative) 

definite matrix. ‖. ‖  denotes the Euclidean 

norm. For simplicity, the symbol ∗  within a 

symmetric matrix represents the symmetric 

entries. The Hermitian part of a square matrix 

𝑋 is denoted by 𝐻𝑒{𝑋} = 𝑋 + 𝑋𝑇. The symbol 

⊗  denotes the Kronecker product, which for 

real matrices 𝐴 ,𝐵 , 𝐶 , and 𝐷  with appropriate 

dimensions, satisfies the following properties 

[22]:  

1. (𝐴 + 𝐵) ⊗ 𝐶 = 𝐴 ⊗ 𝐶 + 𝐵 ⊗ 𝐶, 

2. (𝐴 ⊗ 𝐵)𝑇 = 𝐴𝑇 ⊗ 𝐵𝑇, 

3. (𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = (𝐴𝐶) ⊗ (𝐵𝐷). 

A directed graph 𝒢 is a pair (𝒱, ℰ), where 𝒱 =

{𝓋1, … , 𝓋𝑁} is a non-empty finite node set (set 

of agents) and ℰ = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝒱} ⊆ 𝒱 × 𝒱 is 

an edge set of ordered pairs of 𝑁  nodes. The 

neighbors of the node 𝑖 are denoted as 𝑗 ∈ 𝒩𝑖. 

The adjacency matrix 𝒜 = [𝑎𝑖𝑗] ∈ ℝ𝑁×𝑁 

associated with the graph 𝒢 is defined such that 

𝑎𝑖𝑖 = 0 , 𝑎𝑖𝑗 > 0  if and only if (𝑖, 𝑗) ∈ ℰ  and 

𝑎𝑖𝑗 = 0  otherwise. The Laplacian matrix ℒ =

[ℓ𝑖𝑗] ∈ ℝ𝑁×𝑁  of the graph 𝒢  is defined as 

ℓ𝑖𝑖 = ∑ 𝑎𝑖𝑗𝑗≠𝑖  and ℓ𝑖𝑗 = −𝑎𝑖𝑗, 𝑖 ≠ 𝑗. 

Lemma 1 ([23]). For a given matrix 

[
𝑆1 𝑆2

𝑆2 𝑆3
] < 0  the following statements are 

equivalent: 

1. 𝑆1 < 0, 𝑆3 − 𝑆2
𝑇𝑆1

−1𝑆2 < 0; 

2. 𝑆3 < 0, 𝑆1 − 𝑆2
𝑇𝑆3

−1𝑆2 < 0. 

2.2 Problem statement 

Consider the second-order multi-agent system 

as follows: 

𝑝̇𝑖(𝑡) = 𝑣𝑖(𝑡),

𝑣̇𝑖(𝑡) = 𝑢𝑖(𝑡),
 

 

(1) 

where 𝑝𝑖(𝑡), 𝑣𝑖(𝑡), 𝑢𝑖(𝑡) ∈ ℝ𝑛 are the position, 

velocity, and acceleration input ∀𝑖 =

1,2, … , 𝑁, in an 𝑛-dimensional Euclidean space.  

Leader-following consensus is designed such 

that all the agents follow the trajectories of a 

virtual leader. In this case, the leader’s dynamic 

is considered as follows: 

𝑝̇𝑟(𝑡) = 𝑣𝑟(𝑡), (2) 

where 𝑝𝑟(𝑡) , 𝑣𝑟(𝑡) ∈ ℝ𝑛  are the position and 

velocity of the leader agent. The leader agent 

position can be manipulated through its velocity. 

Let us define the rigid desired-position formation 

from the agent 𝑖 to its neighbors 𝑗, as ℎ𝑖, ℎ𝑗 ∈ ℝ𝑛. 

According to [1], the classical leader-following 

formation control is given by: 

𝑢𝑖(𝑡) = ∑ 𝑎𝑖𝑗 [((𝑝𝑗(𝑡) − 𝑝𝑖(𝑡)) −𝑗∈𝒩𝑖

(ℎ𝑗 − ℎ𝑖)) + (𝑣𝑗(𝑡) − 𝑣𝑖(𝑡))] − (𝑝𝑖(𝑡) −

𝑝𝑟(𝑡)) − (𝑣𝑖(𝑡) − 𝑣𝑟(𝑡)), 

 

 

 

(3) 

 

where 𝒩𝑖 is the set of 𝑖’s neighbors.  

R1Q5 Assumption 1. The graph 𝒢  is an 

undirected graph. 

Assumption 2. All the agents receive 

information states from the virtual leader agent. 

R1Q5 Lemma 2 ([24]). The Laplacian matrix 

ℒ associated with an undirected graph has at 

least one zero eigenvalue and all the nonzero 

eigenvalues are positive. The Laplacian matrix 

ℒ has exactly one zero eigenvalue if and only if 

the graph is connected. 

R1Q3. Using the consensus protocol (3), the multi-

agent system (1) achieves the desired formation if 

the following is satisfied: 

 

lim
𝑡→∞

‖(𝑝𝑖(𝑡) − ℎ𝑖) − (𝑝𝑗(𝑡) − ℎ𝑗)‖ = 0,  

∀𝑖 ≠ 𝑗, 𝑖 = 1,2, … 𝑁. 

 

(4) 

 



 

Bandwidth limitations, delays, or packet losses are 

challenges in real engineering applications in 

multi-agent systems. Let us define 𝜏𝑖𝑗(𝑡)  as the 

communication faults between the agent 𝑖 and the 

agent 𝑗 . Based on 𝜏𝑖𝑗(𝑡) , the leader-following 

formation control under communication faults (3) 

becomes: 

𝑢𝑖(𝑡) = ∑ 𝑎𝑖𝑗 [((𝑝𝑗 (𝑡 − 𝜏𝑖𝑗(𝑡)) − 𝑝𝑖 (𝑡 − 𝜏𝑖𝑗(𝑡)))

𝑗∈𝒩𝑖

− (ℎ𝑗 − ℎ𝑖))

+ (𝑣𝑗 (𝑡 − 𝜏𝑖𝑗(𝑡)) − 𝑣𝑖 (𝑡 − 𝜏𝑖𝑗(𝑡)))]

− (𝑝𝑖(𝑡) − 𝑝𝑟(𝑡)) −  (𝑣𝑖(𝑡) − 𝑣𝑟(𝑡)). 

 

 

 

 

(5) 

 

A degradation of the communication between 

agents can be associated to their distance as 

considered in [25]. Communication faults are 

considered dependent on the agent positions in link 

with the distance between them and described by 

the following function: 

 

𝜏𝑖𝑗(𝑡) = (𝛽1 − 𝛽1ℯ−𝛽2‖𝑝𝑖(𝑡)−𝑝𝑗(𝑡)‖) (0.5 −

0.5 tanh (𝛽3(𝑡 − 𝑡𝑓))), 

 

(6) 

 

where 𝛽1 , 𝛽2 , and 𝛽3  are positive constants, and 

𝑡𝑓 is the time of fault occurrence.  

R1Q1 Assumption 3. The derivative of the 

communication fault 𝜏̇𝑖𝑗(𝑡) ≤ 𝑑𝜏 < 1, ∀𝑖 ≠

𝑗, 𝑗 ∈ 𝒩𝑖 where 𝑑𝜏 is a fixed scalar.  

Note that, when 𝜏𝑖𝑗(𝑡) = 0, the leader-following 

formation control problem can be solved using (3). 

Nevertheless, as reported in [24], the longest delay 

to reach the consensus is determined as 𝜏𝑖𝑗 <

𝜋

2𝜆𝑁(ℒ)
, where 𝜆𝑁(ℒ) is the maximum eigenvalue 

of the Laplacian matrix, and the delay is considered 

constant with the same value for all agents in a 

fixed, undirected, and connected graph. 

 

The problem under consideration in this paper is to 

design an event-triggered leader-following 

formation control such that all the agents follow the 

leader’s trajectories subject to communication 

faults considered as smooth delays dependent on 

the agent positions.  

3. Event-triggered leader-following 

formation control design 

In the following subsections, a time-triggered 

formation control design and the event-

triggered mechanism are presented in order to 

develop a strategy such that all the agents 

tolerate communication faults while reducing 

the information exchange. 

 

3.1 Time-triggered leader-following formation 

control design 

 

Let us define the error between the agent 𝑖 and the 

leader as follows: 

 

𝑝̅𝑖(𝑡) = 𝑝𝑖(𝑡) − 𝑝𝑟(𝑡), 

𝑣̅𝑖(𝑡) = 𝑣𝑖(𝑡) − 𝑣𝑟(𝑡). 

 

(7) 

 

Let 𝛿𝑖(𝑡) = [𝑝̅𝑖(𝑡)𝑇 − ℎ𝑖
𝑇, 𝑣̅𝑖(𝑡)𝑇]𝑇 , then, the 

error dynamics can be rewritten as follows: 

𝛿̇𝑖(𝑡) = 𝐴𝛿𝑖(𝑡) + 𝐵𝑢𝑖(𝑡), 

with 𝐴 = [
0 𝐼𝑛

0 0
] and 𝐵 = [

0
𝐼𝑛

]. 

 

 

(8) 

 

Adding the control gain 𝐾𝑐 ∈ ℝ𝑛×2𝑛  and the 

scalar 𝛼 , the leader-following control (5) is 

modified in order to tolerate communication faults 

when 𝜏𝑖𝑗(𝑡) >  
𝜋

2𝜆𝑁(ℒ)
 as follows: 

𝑢𝑖(𝑡) = 𝐾𝑐 [∑ 𝑎𝑖𝑗 (𝛿𝑖 (𝑡 − 𝜏𝑖𝑗(𝑡)) −𝑗∈𝒩𝑖
 

 



 

𝛿𝑗 (𝑡 − 𝜏𝑖𝑗(𝑡))) + 𝛼𝛿𝑖(𝑡)], (9) 

 

where 𝐾𝑐  is the control gain to be designed and 

𝛼 > 0  must be a positive constant which 

represents the relationship between the leader and 

the followers. Based on (8), (7) becomes: 

 

𝛿̇𝑖(𝑡)  = 𝐴𝛿𝑖(𝑡) + 𝐵𝐾𝑐 [∑ 𝑎𝑖𝑗 (𝛿𝑖 (𝑡 −𝑗∈𝒩𝑖

𝜏𝑖𝑗(𝑡)) − 𝛿𝑗 (𝑡 − 𝜏𝑖𝑗(𝑡))) + 𝛼𝛿𝑖(𝑡)] , 

 

(10) 

 

Let 𝛿(𝑡) = [𝛿1(𝑡)𝑇, 𝛿2(𝑡)𝑇, … , 𝛿𝑁(𝑡)𝑇]𝑇  and 

𝛿(𝑡 − 𝜏) = [𝛿1 (𝑡 − 𝜏1𝑗(𝑡))
𝑇

, 𝛿2 (𝑡−𝜏2𝑗(𝑡))
𝑇

, … , 𝛿𝑁 (𝑡 −

𝜏𝑁𝑗(𝑡))
𝑇

]
𝑇

, then the error dynamics (9) are rewritten 

as follows: 

 

𝛿̇(𝑡) = (𝐼𝑁 ⊗ (𝐴 + 𝛼𝐵𝐾𝑐))𝛿(𝑡) +

(ℒ ⊗ 𝐵𝐾𝑐)𝛿(𝑡 − 𝜏), 

 

(11) 

 

The following theorem provides LMI-based 

conditions for the computation of the control gain 

𝐾𝑐. 

 

Theorem 1. Given the non-zero eigenvalues of 

the Laplacian matrix 𝜆𝑖(ℒ) , 𝑖 = 2,3, … , 𝑁 , 

scalars 𝛼 > 0 , 𝜇1 > 0 , 𝜇2 > 0 , and 𝜏̇𝑖𝑗 ≤

𝑑𝜏 < 1 , the leader-following consensus is 

quadratically stable under (9), if there exist 

symmetric matrices 𝑃1 > 0 , 𝑃2 > 0 , and a 

matrix 𝐾𝑐 such that the following inequality 

 

[

𝑄1 0 𝑄2𝑖 𝑄3

∗ 𝑄4 −𝜇2𝐾𝑐
𝑇 0

∗ ∗ −2𝜇2𝐼 0
∗ ∗ ∗ −𝐼

] < 0 

 

 

(12) 

 

holds ∀𝑖 = 2,3, … , 𝑁 , with 𝑄1 = 𝐻𝑒{𝑃1𝐴} +

𝐼 −
2𝑃1

𝜇1
+ 𝑃2 , 𝑄2𝑖 = −𝜆𝑖𝑃1𝐵 , 𝑄3 =

𝑃1

𝜇1
+

𝜇1𝛼𝐵𝐾𝑐, 𝑄4 = −(1 − 𝑑𝜏)𝑃2. 

Proof. Let us define the following candidate 

R1Q6 Lyapunov functional inspired by [26]: 

 

𝑉 = 𝛿(𝑡)𝑇(𝐼𝑁 ⊗ 𝑃1)𝛿(𝑡)

+ ∫ 𝛿(𝑠)𝑇(𝐼𝑁 ⊗ 𝑃2)𝛿(𝑠)𝑑𝑠
𝑡

𝑡−𝜏

. 

 

(13) 

 

The time derivative of 𝑉 along any solution of 

the system (11) is given by: 

 

𝑉̇ = 2𝛿(𝑡)𝑇(𝐼𝑁 ⊗ 𝑃1)𝛿̇(𝑡) +

𝛿(𝑡)𝑇(𝐼𝑁 ⊗ 𝑃2)𝛿(𝑡) − (1 − 𝜏̇)𝛿(𝑡 −

𝜏)𝑇(𝐼𝑁 ⊗ 𝑃2)𝛿(𝑡 − 𝜏). 

 

 

(14) 

 

According to [26] and Assumption 3, (14) is 

negative-definite when 

 

𝑉̇ = 2𝛿(𝑡)𝑇(𝐼𝑁 ⊗ 𝑃1)𝛿̇(𝑡) +

𝛿(𝑡)𝑇(𝐼𝑁 ⊗ 𝑃2)𝛿(𝑡) − (1 − 𝑑𝜏)𝛿(𝑡 −

𝜏)𝑇(𝐼𝑁 ⊗ 𝑃2)𝛿(𝑡 − 𝜏) < 0, 

 

 

(15) 

 

thus,  

 

𝑉̇ = 2𝛿(𝑡)^𝑇 (𝐼_𝑁 ⊗ (𝑃_1 (𝐴 +

𝛼𝑃_1 𝐵𝐾_𝑐 )))𝛿(𝑡) + 2𝛿(𝑡)^𝑇 (ℒ ⊗

𝑃_1 𝐵𝐾_𝑐 )𝛿(𝑡 − 𝜏) +

𝛿(𝑡)^𝑇 (𝐼_𝑁 ⊗ 𝑃_2 )𝛿(𝑡) − (1 −

𝑑_𝜏 )𝛿(𝑡 − 𝜏)^𝑇 (𝐼_𝑁 ⊗ 𝑃_2 )𝛿(𝑡 −

𝜏) < 0. 

 

 

 

 

(16) 

 

Let us perform a spectral decomposition of the 

Laplacian matrix ℒ, such that ℒ = 𝑇𝐽𝑇−1 with 

an invertible matrix 𝑇 ∈ ℝ𝑁×𝑁 and a diagonal 

matrix 𝐽 = 𝑑𝑖𝑎𝑔(𝜆1 = 0, 𝜆2, … , 𝜆𝑁). R1Q7 By 

Lemma 2, eigenvalues of ℒ  form a base of 

eigenvectors which are used to construct the 



 

invertible matrix 𝑇.  Let us define the following 

change of coordinates: 

 

𝜓(𝑡) = (𝑇−1 ⊗ 𝐼𝑁)𝛿(𝑡), 

𝜓(𝑡 − 𝜏) = (𝑇−1 ⊗ 𝐼𝑁)𝛿(𝑡 − 𝜏). 

 

(17) 

 

Replacing (17) in (16) leads to: 

 

𝑉̇ = 2𝜓(𝑡)𝑇 (𝐼𝑁 ⊗ (𝑃1(𝐴 +

𝛼𝐵𝐾𝑐))) 𝜓(𝑡) + 2𝜓(𝑡)𝑇(𝐽 ⊗

𝑃1𝐵𝐾𝑐)𝜓(𝑡 − 𝜏) + 𝜓(𝑡)𝑇(𝐼𝑁 ⊗

𝑃2)𝜓(𝑡) − (1 − 𝑑𝜏)𝜓(𝑡 − 𝜏)𝑇(𝐼𝑁 ⊗

𝑃2)𝜓(𝑡 − 𝜏). 

 

 

 

 

(18) 

 

By Lemma 2, it is obtained that 𝜓1(𝑡) = 0 and 

𝜓1(𝑡 − 𝜏) = 0  due to 𝜆1 = 0 , then (18) is 

rewritten as follows: 

 

𝑉̇ = ∑ 𝜓𝑖(𝑡)𝑇𝐻𝑒{𝑃1(𝐴 +𝑁
𝑖=2

𝛼𝐵𝐾𝑐)}𝜓𝑖(𝑡) +

2 ∑ 𝜓𝑖(𝑡)𝑇𝜆𝑖𝑃1𝐵𝐾𝑐𝜓𝑖(𝑡 − 𝜏)𝑁
𝑖=2 +

∑ 𝜓𝑖(𝑡)𝑇𝑃2𝜓𝑖(𝑡)𝑁
𝑖=2 − (1 −

𝑑𝜏) ∑ 𝜓𝑖(𝑡 − 𝜏)𝑇𝑃2𝜓𝑖(𝑡 − 𝜏)𝑁
𝑖=2 . 

 

 

 

 

(19) 

 

Then, the following matrix is obtained: 

 

𝑉̇ = ∑ [
𝜓𝑖(𝑡)𝑇

𝜓𝑖(𝑡 − 𝜏)𝑇]
𝑇

Ωi [
𝜓𝑖(𝑡)

𝜓𝑖(𝑡 − 𝜏)
]

𝑁

𝑖=2
, 

 Ω𝑖 = [
𝐻𝑒{𝑃1(𝐴 + 𝛼𝐵𝐾𝑐)} + 𝑃2 𝜆𝑖𝑃1𝐵𝐾𝑐

∗ −(1 − 𝑑𝜏)𝑃2
]. 

 

 

(20) 

 

If matrix Ω𝑖 < 0 , ∀𝑖 = 2,3, … , 𝑁 , then 𝑉̇ < 0 ; 

thus, the synchronization error between the 

leader and the followers is quadratically stable. 

R1Q4 Using Schur complement (Lemma 1) in 

(12), the following inequality is obtained: 

 

[

𝑅1 0 𝑄2𝑖

∗ 𝑄4 −𝜇2𝐾𝑐
𝑇

∗ ∗ −2𝜇2𝐼
] < 0, 

 

(21) 

 

where 𝑅1 = 𝐻𝑒{𝑃1𝐴} + 𝐼 −
2𝑃1

𝜇1
+ 𝑃2 + (

𝑃1

𝜇1
+

𝜇1𝛼𝐵𝐾𝑐)
𝑇

(
𝑃1

𝜇1
+ 𝜇1𝛼𝐵𝐾𝑐). The inequality (21) 

is pre- and post- multiplied by [
𝐼 0 0
0 𝐼 −𝐾𝑐

𝑇] 

and its transpose, thus obtaining: 

 

[
𝑅1 𝑄2𝑖

∗ 𝑄4
] < 0, 

 

(22) 

 

Note that: 

 

𝐻𝑒{𝑃1(𝐴 + 𝛼𝐵𝐾𝑐)} + 𝑃2 ≤

𝐻𝑒{𝑃1(𝐴 + 𝛼𝐵𝐾𝑐)} + 𝑃2 +

𝛼2(𝑃1𝐵𝐾𝑐)𝑇(𝑃1𝐵𝐾𝑐) =

𝐻𝑒{𝑃1𝐴} + 𝑃2 −
𝑃1

2

𝜇1
2 + (

𝑃1

𝜇1
+

𝛼𝐵𝐾𝑐)
𝑇

(
𝑃1

𝜇1
+ 𝛼𝐵𝐾𝑐), 

 

 

 

 

 

(23) 

 

where 𝜇1 > 0 . By taking into account the 

following inequality: 

(𝐼 −
𝑃1

𝜇1
) (𝐼 −

𝑃1

𝜇1
) ≥ 0, 

𝐼 −
2𝑃1

𝜇1
≥ −

𝑃1
2

𝜇1
2, 

 

 

(24) 

 

and combining (23) and (24), the following is 

obtained: 

 

𝐻𝑒{𝑃1(𝐴 + 𝛼𝑃𝐵𝐾𝑐)} + 𝑃2 ≤

𝐻𝑒{𝑃1𝐴} + 𝐼 + 𝑃2 −
2𝑃1

𝜇1
+ (

𝑃1

𝜇1
+

𝛼𝐵𝐾𝑐)
𝑇

(
𝑃1

𝜇1
+ 𝛼𝐵𝐾𝑐). 

 

 

 

(25) 

 

Based on (25) and (22), Ω𝑖 < 0 is recovered, 

  

thus, the LMI (12) corresponds to (20) and the 

synchronization error is quadratically stable 



 

under (9), thus completing the proof. ∎ 

Remark 1: Theorem 1 guarantees the time-

triggered leader-following formation control 

design which is continuously updated. 

 

3.2 Event-triggered mechanism 

 

The following section, an event-triggered 

mechanism is developed in order to reduce the 

information exchange and the control update 

rate. 

 

The update of the control law action in event-

triggered approaches depends on an event error. 

This event error is calculated based on the last 

and the current state values. When the 

magnitude of the event error exceeds a 

threshold, the control law value is updated, 

otherwise, the control law keeps the last 

calculated value. The control in (9) is modified 

in order to design an event-triggered 

mechanism as follows: 

𝑢𝑖(𝑡) = 𝐾𝑐 [∑ 𝑎𝑖𝑗 (𝛿𝑖 (𝑡𝑘
𝑖 −𝑗∈𝒩𝑖

𝜏𝑖𝑗(𝑡𝑘
𝑖 )) − 𝛿𝑗 (𝑡𝑘

𝑖 − 𝜏𝑖𝑗(𝑡𝑘
𝑖 ))) +

𝛼𝛿𝑖(𝑡𝑘
𝑖 )], 

 

 

 

(26) 

 

where 𝛿𝑖(𝑡𝑘
𝑖 ) and 𝛿𝑗(𝑡𝑘

𝑖 ) are the last values of 

the synchronization errors of agents 𝑖  and 𝑗 , 

respectively, and agent 𝑗 ; 𝛿𝑖 (𝑡𝑘
𝑖 − 𝜏𝑖𝑗(𝑡𝑘

𝑖 )) 

and 𝛿𝑗 (𝑡𝑘
𝑖 − 𝜏𝑖𝑗(𝑡𝑘

𝑖 ))  are the last values of the 

delayed synchronization errors of agents 𝑖 and 

𝑗. The sequence of event-times 0 ≤ 𝑡0
𝑖 ≤ 𝑡1

𝑖 … 

of the agent 𝑖  is defined as 𝑡𝑘+1 
𝑖 = inf {𝑡: 𝑡 >

𝑡𝑘
𝑖 , 𝑓𝑖(𝜁𝑖(𝑡)) > 0} . The agent 𝑖  requests the 

information of the agent 𝑗 at the event 𝑡𝑘+1
𝑖  in 

order to update the control law, otherwise, the 

control law keeps the last computed value. Let 

us define the event error as follows: 

 

𝜁𝑖(𝑡) = 𝛿𝑖(𝑡𝑘
𝑖 ) − 𝛿𝑖(𝑡), 

𝜁𝑖 (𝑡 − 𝜏𝑖𝑗(𝑡)) = 𝛿𝑖 (𝑡𝑘
𝑖 −

𝜏𝑖𝑗(𝑡𝑘
𝑖 )) − 𝛿𝑖 (𝑡 − 𝜏𝑖𝑗(𝑡)). 

 

 

 

(27) 

 

According to [7], if the leader-following 

consensus is quadratically stable, then, the 

following event function can be considered:  

 

𝑓𝑖(𝑡) = ‖𝜁𝑖(𝑡)‖ − (𝑐1 + 𝑐2ℯ−𝑐3𝑡), (28) 

 

where 𝑐1 > 0 , 𝑐2 > 0 , 0 < 𝑐3 < |𝛾𝑚𝑖𝑛(𝐴 +

𝛼𝐵𝐾𝑐)|, and 𝛾𝑚𝑖𝑛(𝐴 + 𝛼𝐵𝐾𝑐) is the minimum 

eigenvalue of (𝐴 + 𝛼𝐵𝐾𝑐). 

 

4. Example: Fleet of UAVs under 

communication faults 

In order to illustrate the effectiveness of the 

proposed strategy, real implementations in a 

fleet of UAVs are presented in the following 

section. 

 

The experimental platform is described and 

some experimental results are shown in the 

following section. A video corresponding to the 

results can be found at the following link 

https://youtu.be/Lo_kuGY9Wq4.  

 

4.1 Experimental platform description  

 

The experimental platform used for this 

implementation consists of: an Optitrack 

system to recognize the UAVs in a three-

dimensional space by image processing using 

cameras Prime 17W; motive 2.1.1 is the 



 

software to manipulate the Optitrack which 

uses VRPN protocol with communication to a 

virtual machine; Ubuntu 16.04 is installed in 

the virtual machine with ROS Kinetic to 

manipulate the UAVs in parallel with Motive; 

identical Bebop 2 parrot are the UAVs (see Fig. 

1). The code is developed in Python 2.7. The 

sample time is 0.02s. 

 

Fig. 1 Bebop 2 parrot 

According to [27], a fleet of UAVs can be 

described as a second-order multi-agent system 

if an inner closed-loop control is considered for 

each UAV employing their angles with the 

following references: 

 

𝜓𝑑𝑖
(𝑡) = 0, 

𝜃𝑑𝑖
(𝑡) = arctan (

𝑢𝑥𝑖

𝑢𝑧𝑖
+𝑔

), 

𝜙𝑑𝑖
(𝑡) = arcsin (−

𝑢𝑦𝑖

√𝑢𝑥𝑖
2 +𝑢𝑦𝑖

2 +(𝑢𝑧𝑖
+𝑔)

2
 

), 

𝑇𝑖(𝑡) = 𝑚𝑠√𝑢𝑥𝑖
2 + 𝑢𝑦𝑖

2 + (𝑢𝑧𝑖
+ 𝑔)

2
, 

 

 

 

 

 

 

(29) 

where 𝑢𝑖(𝑡) = [𝑢𝑥𝑖
, 𝑢𝑦𝑖

, 𝑢𝑧𝑖
]

𝑇
 is the consensus 

control law calculated using (5) (classical 

formation control 𝐾𝑐 = [−𝐼 −𝐼] ), (9) (time-

triggered robust approach), and (27) (event-

triggered approach); 𝜓𝑑𝑖
(𝑡) , 𝜃𝑑𝑖

(𝑡) , and 

𝜙𝑑𝑖
(𝑡) are the reference angles for each UAV; 

𝑚𝑠 = 0.5𝐾𝑔 is the mass of the UAV, which are 

considered to be homogeneous; 𝑔 = 9.806
m

s2 

is the acceleration of gravity. 

 

The goal of the 3 UAVs is to form an isosceles 

triangle and follow the trajectories of a virtual 

agent with the following desired formation 

ℎ1[0,0]𝑇, ℎ2 = [0,1.5]𝑇, and ℎ3 = [0.75,1.3]𝑇. 

 

The LMI in Theorem 1 is solved with the 

following parameters: 𝜇1 = 1, 𝜇2 = 10, 𝛼 = 1,  

and 𝑑𝜏 = 0.2  obtaining the control gain 𝐾𝑐 =

[ −(0.4922 )𝐼3 −(0.9768)𝐼3 ].  This control 

gain is used in both the time-triggered and 

event-triggered approach. R3Q3 Table 1 shows 

the initial values of the UAVs. 

 

Table 1 Initial conditions of the UAVs 

Agent Position [𝑥, 𝑦] Velocity  

1 [-0.7249, -0.7232] [-0.0084, 0.0357] 

2 [0.0330, -0.3345] [0.0129, -0.0107] 

3 [1.5115, 1.0167] [-0.0239, 0.0082] 

 

The communication topology is described by 

the following Laplacian matrix: 

 

ℒ = [
2 −1 −1

−1 2 −1
−1 −1 2

]. 
 

(30) 

 

The communication fault is implemented 

through an artificial function with the 

following parameters: 𝛽1 = 0.8 , 𝛽2 = 1 , 𝛽3 =

0.6 , and 𝑡𝑓 = 10𝑠 . All the UAVs are affected 

by the communication fault. The event-

function has the following parameters: 𝑐1 =

0.03, 𝑐2 = 3, and 𝑐3 = 0.1. 

 

Three implementations have been carried out 

for comparing the performance of the classical 

formation control (5), the time-triggered robust 

approach (9), and the event-triggered approach 

(27). In the case of the classical formation 

control, the experiment had to be stopped to 

avoid the UAVs to crash.  

 

4.2 Experimental results 

Fig. 2 illustrates the obtained trajectories of the 

UAVs using the classical formation control. 



 

The UAVs should follow the trajectory of the 

virtual agent in black, however, due to the 

communication faults, they start to oscillate, so 

they cannot maintain the formation. 

 

Fig. 2 Trajectories of the UAVs (Classical approach). 

Fig. 3 shows the UAVs trajectories obtained 

using the time-triggered robust control. The 

UAVs present a decrease in the oscillations 

with respect to the previous case. Moreover, 

they maintain the desired formation. 

 

Fig. 3 Trajectories of the UAVs (Time-triggered 

proposed approach) 

Fig. 4 presents the UAVs trajectories when the 

event-triggered mechanism is used. The UAVs 

present a better performance, maintaining the 

formation despite the communication faults. 

 

Fig. 4 Trajectories of the UAVs (Event-triggered 

proposed approach) 

Fig. 5 presents the UAVs velocities obtained 

using the classical formation control. After 

approximately 140s, the UAVs start to show 

stronger oscillations. As mentioned earlier, in 

order to preserve the integrity of the UAVs, the 

experiment had to be stopped. 

 

Fig. 5 Velocities of the UAVs (Classical approach) 

Fig. 6 shows the UAVs' velocities using the 

time-triggered robust control. The oscillations 

decrease when compared to the classical 

formation control. However, there is still a 

small offset between the leader velocities and 

the velocities of the UAVs.  Also, an offset is 

observed induced by the fact that the control 

gain is smaller than in the classical formation 

control. 



 

 

Fig. 6 Velocities of the UAVs (Time-triggered 

proposed approach) 

Fig. 7 illustrates the UAVs' velocities using the 

event-triggered control. The oscillations are 

smaller compared to the other two approaches. 

However, the offset is still present due to the 

control gain. It is worth highlighting that the 

event-triggered control reduces the information 

exchange between the agents and the update 

rate of the control law.  

 

Fig. 7 Velocities of the UAVs (Event-triggered 

proposed approach) 

Fig. 8 presents the event-triggered control law. 

The time interval between 15s and 17 s is 

zoomed to illustrate when the control law keeps 

the last value. 

 

Fig. 8 Consensus control law (Event-triggered 

proposed approach) 

In order to measure the performance of the 

consensus, let us define 𝑑𝑖𝑗 = ‖𝑥̅𝑖 − 𝑥̅𝑗‖ , 

where 𝑥̅𝑖 = [𝑝𝑖 − ℎ𝑖 , 𝑣𝑖]𝑇 , and 𝑥̅𝑗 = [𝑝𝑗 −

ℎ𝑗 , 𝑣𝑗]
𝑇
. Fig. 9 illustrates the evaluation of the 

performance of the consensus using the 

classical formation control. The performance 

presents oscillations after 140s due to the 

communication faults.  

 

Fig. 9 Evaluation of the consensus’ performance 

(Classical approach) 

Fig. 10 shows the evaluation of the 

performance of the consensus using the time-

triggered robust control. Compared to Fig. 9, 

the performance has been improved. 



 

 

Fig. 10 Evaluation of the consensus’ performance 

(Time-triggered proposed approach) 

Fig. 11 presents the evaluation of the consensus 

performance using the event-triggered control. 

Compared to Fig. 10, the performance is 

smaller than the threshold value 1 due to the 

desired formation. 

 

Fig. 11 Evaluation of the consensus’ performance 

(Event-triggered proposed approach) 

Fig. 12 presents the profile of the events for the 

event-triggered control. It is considered 1 for 

the UAV one, 2 for the UAV two, 3 for the UAV 

three if an event occurs, respectively, and 0 if 

there is not an event. A zoom is considered in 

some intervals in order to show when an event 

occurs. 

 

Fig. 12 Events for updating the control law. 

R1Q8. Fig. 13 shows the total number of events 

in each UAV. "No event" means that the control 

law and the exchange of information are not 

updated. For example, 𝑈𝐴𝑉1  has 1907 of no 

events compare with 6556 events. In contrast 

with time-triggered, the update of the 

information and the control law has been 

reduced.  

 

Fig. 13Total number of events in each UAV. 

In order to quantify the performance between 

the approaches, root mean square (RMS) 

metric is used. In Table 2, the RMS value of 𝑑𝑖𝑗 

is presented for each combination of UAVs 

corresponding to the classical formation 

control, the time-triggered robust control, and 

the event-triggered control. 

Table 2 Comparative of the consensus RMS 

𝑑𝑖𝑗 Classical 
Time-

triggered 

Event-

triggered 

𝑑12 0.9129 0.8947 0.8932 

𝑑13 0.9060 0.8910 0.8818 



 

𝑑23 0.9189 0.9088 0.8978 

It should be noted that the event-triggered 

approach reduces the energy consumption. 

5. Conclusions 

This paper has presented an event-triggered 

formation for second-order multi-agent 

systems under communication faults. The 

controller gain has been calculated using LMI 

tools and an event-triggered mechanism has 

been introduced to reduce the information 

exchange between agents. The proposed 

approach has been implemented in a real 

platform of a fleet of UAVs subject to 

communication faults. A comparison between a 

state-of-the-art technique and the proposed 

technique has been provided, demonstrating 

the performance improvement brought by the 

proposed approach. R1Q8. For future work, a 

measurement of the energy consumption can be 

implemented in the real platform in order to 

compare the performance between the 

approaches. 
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