
Snarl: Entangled Merkle Trees for
Improved File Availability and Storage Utilization
Racin Nygaard

racin.nygaard@uis.no
University of Stavanger
Stavanger, Norway

Vero Estrada-Galiñanes
vero.estrada@epfl.ch

EPFL
Lausanne, Switzerland

Hein Meling
hein.meling@uis.no

University of Stavanger
Stavanger, Norway

ABSTRACT
In cryptographic decentralized storage systems, files are split into
chunks and distributed across a network of peers. These storage
systems encode files usingMerkle trees, a hierarchical data structure
that provides integrity verification and lookup services. A Merkle
tree maps the chunks of a file to a single root whose hash value is
the file’s content-address.

A major concern is that even minor network churn can result in
chunks becoming irretrievable due to the hierarchical dependen-
cies in the Merkle tree. For example, chunks may be available but
can not be found if all peers storing the root fail. Thus, to reduce
the impact of churn, a decentralized replication process typically
stores each chunk at multiple peers. However, we observe that
this process reduces the network’s storage utilization and is vul-
nerable to cascading failures as some chunks are replicated 10×
less than others.

We propose Snarl, a novel storage component that uses a varia-
tion of alpha entanglement codes to add user-controlled redundancy
to address these problems. Our contributions are summarized as
follows: 1) the design of an entangled Merkle tree, a resilient data
structure that reduces the impact of hierarchical dependencies, and
2) the Snarl prototype to improve file availability and storage uti-
lization in a real-world storage network. We evaluate Snarl using
various failure scenarios on a large cluster running the Ethereum
Swarm network. Our evaluation shows that Snarl increases stor-
age utilization by 5× in Swarm with improved file availability. File
recovery is bandwidth-efficient and uses less than 2× chunks on
average in scenarios with up to 50 % of total chunk loss.

CCS CONCEPTS
•Computer systems organization→Availability;Redundancy;
Reliability; • Information systems→ Storage recovery strate-
gies; Distributed storage; Storage replication.

KEYWORDS
storage utilization, entanglement codes, erasure codes, cryptographic
decentralized storage system, file availability

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Middleware ’21, December 6–10, 2021, Virtual Event, Canada
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8534-3/21/12.
https://doi.org/10.1145/3464298.3493397

ACM Reference Format:
Racin Nygaard, Vero Estrada-Galiñanes, and Hein Meling. 2021. Snarl: En-
tangled Merkle Trees for Improved File Availability and Storage Utilization.
In 22nd International Middleware Conference (Middleware ’21), December
6–10, 2021, Virtual Event, Canada. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3464298.3493397

1 INTRODUCTION
Large-scale decentralized peer-to-peer (p2p) storage systems, such
as InterPlanetary File System (IPFS) [2] and Ethereum Swarm [28],
aim at providing novel services to satisfy current and future storage
and communication needs. In such p2p systems, integrity verifi-
cation plays a pivotal role [23], as peers are untrusted and the
network may exhibit significant churn. Further, each peer typi-
cally only stores a subset of each file in fixed-sized chunks, and
each chunk is given a content address for later retrieval. A con-
tent address is unique; it is the cryptographic hash of the chunk’s
data. To assist in this integrity verification and retrieval, a Merkle
tree [18] data structure is typically used, where the tree’s nodes
are distributed across the peers of the p2p network based on their
content address.

HABCDEFGH

HEFGH

HAB

HA HB HC HD HE HF HG HH

A B C D E F G H

HCD HEF HGH

HABCD

(a) (b)

Figure 1:Merkle tree: (a) BinaryMerkle tree built with 8 data
chunks (A-H); (b) content addressing application.

A Merkle tree is a cryptographic data structure that maps multiple
elements (nodes) to a single root node, as seen in Figure 1a. Internal
nodes are obtained by hashing their children recursively using a
bottom-up approach, so the root hash value covers the entire tree.
The tree’s integrity can be verified using the root hash value as any
modification is propagated up. Merkle trees are widely used as they
minimize audit costs and facilitate a wide range of applications, as
mentioned in §2.

Figure 1b shows a file in a content-addressing system, such as
the aforementioned Swarm and IPFS, where all content is placed at
the lowest level of the tree, while the internal nodes and root are
metadata required for lookup. Any given file will be represented by
a unique Merkle tree, where the chunks of the file are the content
at the lowest level. Internal nodes and the root are also stored as
chunks in the p2p network, and contain a concatenation of the
content addresses of their children. Thus, to retrieve the content,

236

https://doi.org/10.1145/3464298.3493397
https://doi.org/10.1145/3464298.3493397
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Middleware ’21, December 6–10, 2021, Virtual Event, Canada Nygaard, et al.

we must first request the root using its content address and then
recursively retrieve internal nodes until we reach the leaves. Conse-
quently, the loss of the root or an internal node causes a cascading
failure as it is impossible to request their children without the
content address.

The data loss in real systems is further exacerbated because they
use k-ary Merkle trees with a large branching factor, k . To illustrate
the problem, Figure 2 depicts a radial visualization of the 128-ary
Merkle tree for a 100 MB file stored in our 1000-peer Swarm cluster.
The tree contains 24426 leaves, 191 internal nodes at level 1, two
internal nodes at level 2, and the root at level 3. This figure also
captures information about imbalances caused by the decentralized
replication process in Swarm. Specifically, the replication factor
(R) for each chunk is in the range of R ∈ [9, 160]. The root, labeled
“1”, has R = 132, with its two children labeled “2” and “3” having
R = 108 and R = 31, respectively. This means that all data below
internal node “3” is far more vulnerable than the data below “2”.

Figure 2: The 128-ary Merkle tree for a 100 MB file obtained
in our cluster. The leaves are along the outer orbit and the
root in the center. Edges connecting parents with children
are colored according to their replication factor, with darker
edges corresponding to weakly replicated parents.

1.1 Motivations for This Work
The Merkle trees used in decentralized storage systems introduce
hierarchical dependencies between the content and themetadata, i.e.,
the content addresses used to locate the content. Hence, the root and
internal nodes must also be available to ensure that the content is
available. In other words, any replication added to the leaves is futile
if the pointers to the leaves are not reachable. Previous experiences
support our claim. Wilcox-O’Hearn admitted that about 90 % of all
the content that has ever been stored in the Tahoe-LAFS [32] grids
might have died despite using “erasure coding parameters with
massive fault tolerance” [31]. He highlighted that administrators get
a false impression by computing reliability under the assumption
of independent failures because the numbers lead to many nines of
reliability. In particular, for the standard 3-out-of-10 erasure code
and p = 0.90 used in Tahoe-LAFS, we get 6 nines of reliability. He
concluded that monitoring is more important than the redundancy
parameters used in the system.

The assumption of independent failures is widely accepted de-
spite that researchers have shown its pitfalls [22]. However, to the
best of our knowledge, the risk of cascading failures in Merkle
trees has not been studied. Previous research on cryptographic file
systems focuses on the intersection between integrity and confiden-
tiality. While some works combine Merkle tree and erasure coding
or replication, the availability of the root and internal nodes has not
been considered. Hence, we observe that the intersection between
integrity and availability has not been sufficiently studied.

Coding algorithms are more storage efficient than replication [14,
21, 29], but they require repair metadata to decode. Decoding al-
gorithms need some clue to start decoding, e.g., the index number
of each coded block. A common solution is to use a metadata file
or manifesto. For instance, Tahoe-LAFS treats the metadata as an
additional erasure-coded file distributed on k servers [24]. Another
approach is to store metadata in a local manifest. The caveat is
that a local manifest is not publicly accessible and thus limits user
collaboration. Hence, having to manage an additional metadata file
is undesirable, especially in decentralized storage systems.

Some decentralized systems include incentive mechanisms to
improve availability [6]. Currently, the Swarm Foundation is about
to deploy an incentive layer that will create liabilities for chunk
availability in the Ethereum Swarm network [26]. Still, redundancy
mechanisms are critical for content survivability. However, it is
well-known that systems built for fault tolerance in networks with
untrusted peers use hefty amounts of redundancy [16, 20, 31]. Thus,
we posit that a method imposing low redundancy yet achieving high
fault tolerance will improve the network’s storage utilization.

1.2 Contributions
We propose a novel solution that combines Merkle trees with alpha
entanglement (AE) codes [7] to address the gaps above, aiming
at high fault tolerance, low bandwidth, and low storage require-
ments. To the best of our knowledge, this is the first work that
addresses the intersection between integrity and availability when
using Merkle trees.

As with other codes, AE codes also require repair metadata.
However, we observe that by exploiting synergies between the
Merkle tree structure and the encoding/decoding algorithm, we can
eliminate the need for a local or remote metadata file. Therefore,
our solution only requires the content address of the tree’s root to
locate content even if it is encoded and distributed in a p2p network.

We present Snarl, another way of saying entangle. Snarl does
not require any modification to the underlying storage system and
seamlessly integrates with a local peer in a p2p storage network.
Users interact with Snarl when uploading or downloading content.
The content is encoded in an entangledMerkle Tree (eMT) structure
before being uploaded to the network. Further, Snarl offers user-
controlled redundancy in the sense that the encoding configuration
can be adjusted to match the behavior of the storage network, i.e.,
higher network churn requires more redundancy.

We have implemented Snarl and deployed it in our 1000-peer
cluster running Ethereum Swarm. Our results demonstrate that
data integrity and availability for decentralized storage systems can
be obtained without significant storage or bandwidth overhead. Our
evaluation shows that Snarl is capable of simultaneously improving

237

Snarl: Entangled Merkle Trees for Improved File Availability and Storage Utilization Middleware ’21, December 6–10, 2021, Virtual Event, Canada

the storage utilization and file availability in Swarm. Specifically,
with the Snarl-14 configuration, five times the amount of data
could be stored in the network with failure-resiliency comparable
to Swarm. We show that file recovery is bandwidth-efficient in the
presence of failures and uses less than 2.08× the chunks on average
in scenarios with up to 50 % of total chunk loss.

2 PRELIMINARIES
Integrity and redundancy are interrelated. Systems introduce some
form of redundancy to ensure data integrity [25]. Integrity checking
requires comparing data with some derived piece of information
to offer a certain level of assurance. For example, disk mirroring
and checksums can detect integrity violations but cannot recover
the original data. Assurance can be increased in a system that
stores N >2 copies using a majority vote, i.e., the majority of the
copies are accepted as valid with some degree of confidence. Other
widespread techniques are RAID parity and error detection and
correction algorithms, which can recover data up to some level. For
example, a (n,k)MDS erasure code encodes k data symbols into n
coded symbols, and any k out of these n coded symbols can be used
to decode the k data symbols. MDS stands for maximum distance
separable codes and, in practice, it means that a (n,k) MDS code
can recover data up to n − k failures.

Hash functions generate a derived piece of information with
negligible overhead. This property made them suitable to check
correctness in memory stacks and queues [3]. Merkle trees [18]
leverage the benefits of hash functions. Their original application
was a digital signature system, where the growth of the signature
is logarithmic with the number of messages signed. With its effi-
cient verification of large amounts of data, it found its way into
several other areas—particularly p2p-based systems, where it is nec-
essary to verify the integrity of data received from untrusted parties.
Often, cryptographic file systems, e.g., SiRiUS [10], TDB [15], Tahoe-
LAFS [24], use Merkle trees to guarantee integrity. It is also used in
blockchains like Bitcoin [19] and Ethereum [33], decentralized stor-
age systems like IPFS [2] and Swarm [28], revision control systems
like Git [4], and protocols like BitTorrent [5].

2.1 Swarm Overview
Swarm is a decentralized storage system that distributes stored
data to a network of peers. The peer-to-peer network is based on
Kademlia [17] for discovery and routing. By following the protocol,
storing, and delivering content, peers are rewarded BZZ tokens
through a smart contract on the Ethereum blockchain. According
to a monitoring website [1], the public network has more than
270 000 peers.

Connecting to the Swarm network requires running a local peer
or using a public gateway. Peers runs the Bee client, which is un-
der active development at the time of writing. The Bee client will
incorporate incentive mechanisms to reduce network churn. In
this work, we used the more stable Swarm client, v0.5.8. We run a
cluster with 1000 peers isolated from the public Swarm network.

Swarm splits files into 4 KB chunks and places them as leaves in a
128-ary Merkle tree. The internal nodes and root of the Merkle tree
are also 4 KB chunks and contain a concatenation of the content
addresses of their children. Chunks in Swarm are given a unique

content address derived from a cryptographic hash function over
the chunk’s data. All chunks are distributed to peers whose address
has the same prefix as the chunk’s content address, also known as
an address space neighborhood.

Redundancy is of significant importance in Swarm. It is deeply
embedded in its design to provide fault tolerance, censorship resis-
tance, DDoS resistance, and zero downtime.

Currently, the redundancy in Swarm is provided by a decentral-
ized replication process called syncing. Syncing is separated into
three mechanisms. First, push-sync involves transferring chunks
from the uploader to storage peers, i.e., from the network’s entry
point to each chunk’s corresponding address space neighborhood.
Once the chunk reaches the neighborhood, it is replicated to all the
peers within it. Second, when a new peer enters the network, it
initiates pull-sync with its neighbors. When pull-syncing, the new
peer queries its connected peers for a list of chunks they are storing
and then proceeds to request those within its address space. Lastly,
each time a chunk is transferred in the network, all peers that act
as relays between the sender and receiver may choose to replicate
the chunk.

2.2 System Requirements
Our primary design goal for Snarl is to increase the resilience
of data stored in a cryptographic decentralized storage system
without adding storage overhead. Snarl should be optional and
user-controlled, meaning that the user should be able to specify
the resilience level and choose how much of the resilience will be
disclosed to the public. Snarl should enable file recovery despite the
failure of a large part of the underlying storage system. Further, any
peer should be able to repair efficiently, without overhead when
there are no failures.

Snarl requires no modification to the underlying storage system.
However, we specifically target storage systems that connect the
stored data in a graph with a hierarchical dependency between
nodes, typically a Merkle tree. We assume the presence of APIs to
upload and download content.

3 ENTANGLED MERKLE TREE
Let k-MT (d1, . . . ,dn) denote a k-ary Merkle tree, where data items
d1, . . . ,dn are at the leaves of the tree, and k is the branching factor
limiting the number of children of a node. An internal node of
the tree ih at height h with children c1, . . . , ck is the hash of the
concatenation of its children, i.e., H (c1 | | . . . | |ck), for H a collision-
resistant hash function. If the concatenated leaves form a file f , we
can refer to its Merkle tree as k-MTf .

Cryptographic decentralized storage systems often split the con-
tent into chunks and provide integrity via a Merkle tree. The Merkle
tree maps chunks to a single root hash value used as a content iden-
tifier and entry point for retrieval. However, a serious concern is
that the hierarchical dependencies between chunks can render sev-
eral chunks irretrievable, even though they are stored at available
peers. This can happen if a critical storage peer fails, resulting in a
logic failure cascade. To reduce the impact of these dependencies
within Merkle trees, we aim to transform the Merkle tree into a
failure-resilient structure.

238

Middleware ’21, December 6–10, 2021, Virtual Event, Canada Nygaard, et al.

To fulfill our aims, we define a k-ary entangled Merkle tree
(k-eMT) data structure, constructed from a k-MT using these func-
tions in sequence:

k-MT | mapper | swapper | entangler | k-eMT

Snarl implements these functions. The original k-MT contains in-
formation (the user file or any arbitrary content) at the leaf level.
However, the mapper, swapper, and entangler consider all the nodes
of the k-MT as information. The entangler generates α k-eMT s as
output. These carry redundant information to recreate all nodes in
the original k-MT .

We start by describing k-eMT in §3.1 and §3.2, followed by the
entangler in §3.3 and §3.4. The mapper is described in §3.5, and
lastly, the swapper in §3.6.

3.1 The k-eMT : Challenges and Solutions
Let k-eMT (p1, . . . ,pm) denote a k-ary entangled Merkle tree, where
items p1, . . . ,pm are at the leaves of the tree, and m is the total
number of nodes in the original k-MT . An item pi is a parity ob-
tained by the entanglement algorithm and is a shorten for a parity
pi, j , more details are explained in §4.4. An internal node of the tree
ih is computed as in k-MT .

Our k-eMT design solves the problem of handling metadata for
decoding mentioned in §1. We avoid the use of extra metadata by
carefully crafting the entangled chunks in a forest formed by the
original k-MT and a few k-eMT s created with the entanglement. By
leveraging content-addressing and AE codes, the decoding process
only needs to know the roots. In fact, some roots may be kept
private and released only when needed via a smart contract or
some other medium.

Moreover, the forest reduces the hierarchical dependencies of the
original k-MT , as with the addition of k-eMT s there are alternative
paths for traversal. In addition, as will be detailed in §4, the new
structure can recover from missing and corrupt nodes.

We highlight that the design of k-eMT is non-trivial. It involves
mapping the elements of a hierarchical structure into a helical
lattice structure constructed by the AE encoding algorithm. As we
explain later, the process needs to remove specific dependencies
between chunks, as otherwise, the protection offered by AE codes
would be reduced due to the appearance of additional irrecoverable
failure patterns.

Our solution is designed for k-MT with k ≫ 2, see §3.6 for more
details. This is consistent with real-world systems, e.g., Swarm uses
k = 128 and IPFS uses k = 174. Large k generates a shallow tree
that accelerates the lookup in content address networks.

3.2 Canonical Naming
To aid in the reconstruction of the tree, we devise a canonical
naming scheme. A similar scheme was proposed by Merkle [18] for
a 2-MT with the root node labeled 1, the left child of node i labeled
2i and right child of node i labeled 2i+1. Our scheme supports k-ary
branching, and also allows us to assign labels to nodes during initial
chunking, without knowing the size of the data beforehand. The
scheme is based on a post-order traversal algorithm, with naming
starting at the leaf level (see §3.5 for an example).

3.3 Overview of Alpha Entanglement Codes
AE codes [7] are designed to tolerate a large number of failures
with low computation and bandwidth requirements. The encod-
ing algorithm produces entangled chunks embodying parities to
be disseminated across the system. Assuming the chunks are dis-
tributed to different storage peers, the decoding algorithm can use
multiple “paths” in the lattice structure to decode the content. Each
path requires the availability of a set of distinct peers. Paths are
formed by an n-length combination of data and entangled chunks,
with n ≥ 2. The shortest path to repair a single failure has length
two. Multiple paths improve the access and recovery likelihood for
temporarily and permanently unavailable content, respectively. As
such, paths provide for an efficient recovery mechanism for high
churn scenarios.

The entanglement process creates a graph of interdependent
chunks. In its simplest form, where α = 1, the graph is a path,
usually referred to as a chain or strand. It starts with e_,1 = 0,
a dummy chunk and continues with e1,2 = d1, and then alter-
nates unencoded data chunks and entangled chunks. The strand is
constructed by encoding the entangled elements ei, j according to:
en,_ = en−1 ⊕ dn , with n > 1 where di are data chunks presented
as input to the encoding algorithm, and ei, j is adjacent to di and
dj . Note that di are the ordered chunks obtained by chunking a file
f , or the chunks of any arbitrary data stream.

The Cylindrical Helical Lattice. With α > 1, the graph becomes a
lattice composed of intertwined strands, where each data chunk di
belongs to α strands.

LetLATα (d1, . . . ,dn) denote anAE(α , s,p)-lattice forα >1, where
data items d1, . . . ,dn are the lattice vertices v . LATα is a regular
graph of degree 2α with di ’s position in the lattice according to: top
v for i ≡ 1 (mod s), central v for i . 1 ∧ i . 0 (mod s), or bottom
v for i ≡ 0 (mod s). LATα is composed of s + (α − 1) ·p intertwined
strands. Each strand can be constructed independently using the
equations in §3.3; therefore, lattice construction can be parallelized
for efficiency.

For α ∈ [2, 3], the lattice can be thought of as a weaker version
of graph embedding on a cylinder, i.e., we relax the embedding
definition by omitting the non-intersection condition for edges [12].
In LAT3, p strands are cylindrical double-helix, denoted RH- and
LH-strands (right-handed and left-handed helical strands), and the
remaining s strands are in parallel with the cylinder axis, hence,
denoted H-strands (horizontal strands). In LAT2, the strands are
not a double-helix since there are only s + p intertwined strands,
choosing RH- or LH-strand does not yield any difference. Helical
strands revolve around the imaginary central axis of a cylinder.
RH-strands connect vertices in cycles, alternating a sequence of a
top vertex, s − 2 central vertices, and a bottom vertex. LH-strands
connect vertices in cycles, alternating a sequence of a bottom vertex,
s − 2 central vertices, and a top vertex. H-strands connect vertices
of the same type.

Let LW (di , . . . ,di+s ·p−1) denote a lead window for α = 3, where
data items di+j ·(s+1) with j ∈ [0,p − 1] are connected to the same
helical strand. The lead window describes the interval it takes a
helical strand to revolve around the cylinder’s axis. The concept
is similar to the pitch of a helix, i.e., the height of one complete

239

Snarl: Entangled Merkle Trees for Improved File Availability and Storage Utilization Middleware ’21, December 6–10, 2021, Virtual Event, Canada

helix turn, measured parallel to the helix’s axis. Given a flat repre-
sentation of the lattice, we can say that if di is a top vertex, a lead
window spans an area defined by s rows and p columns with its
top-left vertex di .

3.4 A Variation for AE codes: A Toroidal Lattice
We propose a variation for AE codes based on closed entangle-
ments [8]. Closed entanglements are entanglements with α = 1
that generate a closed path with a slight modification to the algo-
rithm to connect dn with d1 by recomputing e1,2 and replacing the
dummy chunk with en,1. The objective of closing the path is to
better protect the elements at the extreme of the path. The original
AE codes, however, used an “open” lattice. We modified the origi-
nal design by closing each path that forms the lattice. As a result,
the cylindrical helical lattice is transformed into a toroidal lattice.
The subtleties of the closing are related to the number of nodes,
N , in the tree. If N is multiple of s · p (the number of vertices in a
lead window), the closing is straightforward. For other cases, the
connections added to close the lattice prioritize connecting vertices
from the same path. Figure 3 illustrates the toroidal lattice for a
case where N is not multiple of s · p.

Figure 3: Toroidal lattice for a Merkle tree with 259 nodes.

3.5 Mapping the Tree Into a Lattice
Mapping is the first of two steps needed to prepare the input for
the entanglement. The encoding algorithm (entangler) takes an
input stream of “ordered” chunks (information), i.e. entangler is
deterministic and produces an output that depends on the order
of the input chunks. Internally, the entangler creates LATα , where
its vertices d1, . . . ,dm correspond to the input stream (m is the
total number of k-MT nodes and not just the leaves). All nodes
are treated as information in our redundancy scheme in order to
create redundancy for the internal nodes and the root too. Each
vertex represents a distinct chunk. The order of the input chunks is
reflected in the way the lattice unfolds.

To map the tree into the lattice, themapper uses a post-order tra-
versal algorithm that reads the tree and generates the input stream.
To illustrate, reading the 2-MT showed in Figure 1a,MTf (A, . . . ,G)
produces the ordered input:A→ B → HAB → C → D → HCD →

HABCD → E → F → HEF → G → H → HGH → HEFGH →

HABCDEFGH . Using our canonical naming, the elements of the
sequence are labeled 1, 2, 3, . . . , 15. Therefore, this example creates
a LATα with 15 vertices. The number of strands in LATα is defined

by the entangler (obtained by the coding parameters). Before, we
need the swapper to finish preparing the input for the entangler.

3.6 Swapping
Swapping is the second and final step to prepare the input for
entanglement. Nodes that have a parent-child relationship cannot
be adjacent or in a close neighborhood in the LATα . The reason
for this is to avoid that a parent is entangled with its children or
with their neighbors. If that occurs, and the chunk represented by
the parent node is missing, then it is not possible to retrieve the
elements in the lattice that are used to recover the missing chunk.
The swapping algorithm (swapper) moves the parents at least one
LW away from their children. The swapper looks for a candidate
vertex position where none of the vertices in its neighborhood are
children of the swapped vertex.

4 SNARL
The high-level architecture comprises three components: Snarl,
a proxy, and the underlying storage system. Figure 4 shows the
architecture and the main packages of Snarl.

Storage
System

Snarl

replicatorrepairDownload

Upload Proxy

connector

eMT-coder
mapper swapper entangler

Figure 4: Snarl architecture.

Snarl is designed to be a general-purpose tool for providing user-
controlled redundancy to any Merkle tree, and requires no modifi-
cation to the underlying storage system. Snarl uses a modular ap-
proach and comprises four packages: (i) eMT -coder implements en-
coding and decoding algorithms for the eMT (§3). (ii) repair contains
the algorithms needed to recover from failures. (iii) replicator com-
bines eMTs and replication to further improve storage utilization.
(iv) connector abstracts the low-level details of the storage system.

The repair algorithm locates parity chunks in a bandwidth-
efficient manner and is only applied when failures are detected.
When downloading content not encoded with an eMT, Snarl re-
verts to the retrieval mechanism of the underlying storage system.
Likewise, a non-Snarl user can download content encoded with an
eMT, as the original Merkle tree is untouched and reachable.

Snarl comprises 4800 lines of Go code and 2200 lines for testing
and benchmarking purposes. We have made the code available in
our GitHub repository (https://github.com/relab/snarl-mw21).

4.1 User Interaction With Snarl
The user interacts with Snarl using the command-line. To encode
content – without interacting with the storage system, we provide
the entangle command. The entangle command takes as input the
content that needs protection and the desired level of protection. It
will generate α files, one for each eMT, and no other metadata.

To interact with the storage system, the commands download and
upload are used. Upload calls entangle internally before uploading
the original Merkle tree and α eMTs to the storage system. After

240

https://github.com/relab/snarl-mw21

Middleware ’21, December 6–10, 2021, Virtual Event, Canada Nygaard, et al.

each upload, the storage system replies with the content address of
the root. The user must persist the content addresses of the roots
for the original Merkle tree and the eMTs, as they are necessary to
retrieve the content later. Each content address is small; usually, 32
bytes, depending on the underlying storage system.

To download content from the storage system, a usermust supply
the original Merkle tree root’s content address. When downloading
through Snarl, a user may also pass the content address of the eMTs
root, allowing Snarl to repair the original content if chunks are
missing. The repair process is seamless for the user, downloading
parity chunks on-demand and reconstructing the content, despite
widespread data loss.

4.2 Snarl Interaction With the Storage System
This section explains how Snarl interacts with the underlying stor-
age system before detailing how we successfully deployed Snarl
using Swarm as the storage system.

Snarl does not require any change to the underlying storage
system. To achieve this, we assume a proxy that exposes APIs to
upload and download content. In a decentralized storage system, the
proxy will be a peer participating in the network. As we expect the
various storage systems’ APIs to be slightly different, we provide a
set of interfaces in our connector package. This allows a separation
of concerns in the other packages, as all storage system-specific
details are implemented in separate packages.

To satisfy the connector package’s interfaces, specific details such
as the Merkle tree branching factor, its balancing algorithm, and
the maximum chunk size must be implemented. By designating this
to its own package, the behavior can be mirrored either by calling
the proxy, importing a library, or as a separate implementation of
its specification.

Swarm as the Storage System. Swarm uses a 128-MT construction
for each file. A chunk’s maximum payload size is 4096 bytes, with an
extra 8 bytes describing the accumulated size of all its leaves if it is
an internal node, otherwise its length. The tree is constructed from
left to right ensuring that all non-leaves, except the righter-most, are
of the same size and height. These 8 bytes also subverts the length
extension attack [30] and can be used to determine the canonical
index of the node without exploring the tree. At the same time, the
8 bytes create some difficulty, as our eMT is limited by the same
4096 bytes. Thus, we cannot encode the chunk size information in
the eMT, as we would have to fit 4104 bytes inside 4096. Instead,
we observe that since the tree’s construction is deterministic, the
chunk size can be derived from the size of the eMT and the chunk’s
position.

4.3 Local Repair Information
The edges of the toroidal lattice outlined in §3.4 are the parity
chunks needed for repair, and knowledge of their content address
is the only way to retrieve them.. The mapping of parities to con-
tent addresses is called repair metadata and is used by Snarl when
requesting parities.

As the size of repair metadata grows linearly with the content’s
size, it could be impractical to store locally for large files. Further,
it hinders collaborated repairs, as only those with access to the
metadata can partake in repairs. Storing the metadata in the storage

system itself is also a bad idea, as the original content’s resilience
would be reduced to the single failure of the metadata.

In Snarl, we instead implement the eMT from §3, which allows
requesting correct parities knowing only the root chunk’s content
address. An eMT has the same number of leaves as there are chunks
in the original Merkle tree. The leaves are ordered such that the
left parity for the chunk with canonical index n is leaf n in an
eMT. To find the leaf index for the right parity for the chunk, we
implemented an algorithm according to §3.3.

We now illustrate how to retrieve the desired leaves from the
k-eMT (d1, . . . ,dn). To retrieve a leaf di from the k-eMT , we first
request its root to know the content addresses for their children.
Each child is a leaf or an internal node that points to a subtree. Every
subtree of a parent is of equal size, apart from the right-most. To
calculate the subtree’s size, we realize that their sizemust be a power
y of the branching factor k , wherey is the chunk’s level, starting at 0
on the leaves. Thus, given a parent at levelh, each parent’s child will
have size kh−1, apart from the right-most. Therefore, to find a path
to leaf x , we traverse through theд-th sibling defined byд = ⌈ x

kh−1
⌉.

This continues recursively by redefining x = x − (д − 1) · kh−1 for
each step, until we reach the desired leaf. The pseudo-code is given
in Algorithm 1.

Algorithm 1 Parity retrieval from an entangled Merkle tree
1: func GetParity(parentAddr, leafId)
2: parent ← Download(parentAddr)
3: childSize← parent.branchFactor ∧ (parent.level − 1)
4: if childSize = 1 then ▷ All children are leaves
5: return Download(parent.child[leafId])
6: next ← math.Ceil(leafId/childSize) ▷ д
7: leafId ← leafId − (next − 1) · childSize ▷ x
8: return GetParity(parent.children[next], leafId)

4.4 Repairing Failures
Snarl can detect and repair failures due to both corrupt and missing
chunks. It is agnostic to the reason for a failure, whether it is due to
data loss, network partition, malicious behavior, or churn. Integrity
verification of chunks is done by comparing the cryptographic hash
of the received data with the requested content address. Therefore,
we treat corrupt chunks the same way as missing chunks.

A repair begins as soon as a failure is detected during a down-
load and runs concurrently with the remaining download. Snarl
uses the same algorithm to repair any node of the Merkle tree. It is
intelligently aware that the loss of an internal node prevents down-
loading any of its children and will thus give priority to repairing
internal nodes first.

We illustrate the repair algorithm in Figure 5 with three example
scenarios. For illustrative simplicity, we use a Merkle tree with
three levels and a branching factor of 14.

Snarl starts by requesting the root of the original Merkle tree,
labeled “25” in Figure 5d. Then it proceeds through the internal
nodes, labeled “15” and “24”, to the leaves, which hold the content. If
a chunk loss or corruption is detected, even at the root chunk, Snarl
immediately requests parity chunks from the eMTs, also shown

241

Snarl: Entangled Merkle Trees for Improved File Availability and Storage Utilization Middleware ’21, December 6–10, 2021, Virtual Event, Canada

1
2

3
4

5678
9

10
11
12
13
14
15

16
17 18 19 20 21

22
23
24
25

(a)

1
2

3
4

5678
9

10
11
12
13
14
15

16
17 18 19 20 21

22
23
24
25

(b)

1
2

3
4

5678
9

10
11
12
13
14
15

16
17 18 19 20 21

22
23
24
25

(c)

1
2

3
4567

8
9

10

11

12
13

14
16 17 18 19

20
21
22

2325

24

15

(d)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

p2,7p22,2 p22,2

p11,16
p16,21

p16,22

p15,16

p15,16

p9,14 p14,19 p19,24

p13,19

p19,25p 15
,19

p 19
,23

p24,4 p24,4

(e)

Figure 5: Repair algorithm: (a,b,c) horizontal (H-eMT), right (RH-eMT) and left (LH-eMT) entangled Merkle trees, (d) original
Merkle tree, (e) lattice. Failed downloads are colored with red, successful downloads are colored in green. Repairs are colored
with cyan. White is not requested. Users can collaborate to maintain the system by re-uploading repaired chunks.

in Figure 5 with three strand types (α = 3), (a) H-eMT, (b) RH-
eMT, and (c) LH-eMT. The lattice shown in Figure 5e is a virtual
data structure used to coordinate repairs. Each vertex in the lattice
represents a chunk from the original Merkle tree. The parities in
the lattice are illustrated as edges labeled pX ,Y , where X is the
vertex connected on the left, and Y is the vertex connected on the
right. When downloading a parity, we request the n-th leaf chunk
of an eMT of the correct strand type, where n is the left-connected
vertex’s index.

Using the toroidal structure of the lattice, Snarl can repair in
many failure scenarios in which the underlying storage system
cannot. After successful repair, the user can re-upload the repaired
data and parity chunks to the storage system, thus aiding system-
wide maintenance.

We consider three example failure scenarios. First, the most basic
scenario, where a single data chunk is lost. As soon as Snarl cannot
download data chunk “2”, it requests parities p2,7 and p22,2 from
H-eMT. Both are available, and data chunk “2” is repaired with
two parity downloads.

In the second scenario, data chunk “16” is lost, and when attempt-
ing to download the parities p11,16 and p16,21 from H-eMT, Snarl
discovers that p16,21 is unavailable. Snarl then requests the two ad-
jacent parities from the RH-eMT, i.e., parities p15,16 and p16,22. Both
are available, and data “16” is repaired with three parity downloads.

Data chunk “19” is lost in the last scenario, including all its
adjacent parities in the H-eMT, RH-eMT and LH-eMT. Snarl can
recover from such a scenario by repairing one of the parity pairs. It
requests parity p9,14 and uses that together with data “14” to repair
p14,19. Similarly, parity p24,4 and data “24” are used to repair p19,24.
Thus, with a complete parity pair, data “19” can be repaired with
only two parity downloads.

During repair, Snarl will expand both vertically and horizontally
in the lattice until either the chunk is repaired or an irrecoverable
pattern is detected. The expansion is recursive and follows the order;
H, RH, and LH, referring to the eMT from which parity chunks are
requested first.

4.5 Replicating Entangled Merkle Trees
It has been shown that a combination of erasure codes and repli-
cation [9] generally achieves better storage utilization and lower

repair overhead than the two methods separately. With Snarl, we
propose a similar combination of eMTs and replication.

We distinguish between replication of internal and leaf chunks.
These must be weighed against each other, as a higher replication
factor for internal chunks improves the likelihood that a leaf chunk
can be located but does not contribute to the repair algorithm. On
the other hand, a higher replication factor for leaf chunks does
contribute to the repair algorithm. However, a loss of their parent
results in the de facto loss of all leaves.

We use (1) as a measure to balance the replication of internal ver-
sus leaf chunks. Equation (1) captures the likelihood that a chunk
replicated r times, with each replica placed on a distinct peer, would
still be available after f peers failed in a network with n peers. We
observe that adding replicas is an effective measure to increase re-
covery likelihood if the replication factor is low. However, at higher
replication factors, the gains of adding another replica approach 0.
In fact, with only 45 replicas, the recovery likelihood is more than
99.9 %, with up to 86 % peer failure.

P(x) = 1 −
n−f −1∏
i=0

n − r − i

n − i
(1)

Snarl can scale the replication factor, allowing a user to specify the
total storage consumption of the encoded data to be proportional to
uniformly replicating the original Merkle tree. Further, the weight-
ing of the replication factor for internal and leaf chunks can also be
adjusted. By default, we cap the number of internal chunk replicas
at 45. To differentiate between Snarl configurations, we label them
with the ratio of storage consumption compared to the original
Merkle tree. For example, with Snarl-5, we use the same storage
consumption as having 5 copies of the original Merkle tree.

5 EVALUATION
We evaluate Snarl using the toroidal lattice variant of closed en-
tanglements described in §3.4. The encoding parameters are α = 3,
s = 5, p = 5, as it has been previously studied in the litera-
ture [7]. It’s worth noting that Snarl allows the user to adjust
these parameters to fine-tune the performance and redundancy
to its requirements. We compare Snarl with full uniform replica-
tion, where every chunk has the same number of copies, and with
Swarm’s default redundancy.

242

Middleware ’21, December 6–10, 2021, Virtual Event, Canada Nygaard, et al.

In our first evaluation, we studied how files in Swarm are repli-
cated in our cluster. We then evaluate the chunk distribution of
files encoded with Snarl. Next, we study Snarl’s file availability on
our cluster of 1000 Swarm peers to show how Snarl can increase
storage utilization by over 80 %. We show that the encoding speed
of Snarl is linear, requiring only 3.6 seconds for a 1 GB file. The
effectiveness of our repair algorithm is evaluated by examining
bandwidth overhead incurred in different failure scenarios.

5.1 Experimental Setup
We ran our experiments on a cluster of 30machines running Ubuntu
18.04.4 LTS. Each machine is equipped with Intel Xeon E-2136
3.30 GHz CPU, 32 GB RAM, 1.5 TB SSD disk, and 1 Gbit/s NIC. We
used Helm [11] and Kubernetes [13] to distribute 1000 Swarm peers
on 28 machines. We use the remaining two machines to host the
Snarl client, the bootstrapping peer, and manage the experiment
execution.

The bootstrapping peer allows the Swarm peers to discover each
other and to achieve their desired connectivity. Swarm’s maxpeers
parameter is left unchanged, allowing a peer to connect with up to
50 peers in the network.

Each chunk’s replication factor is highly variable in Swarm, as
we discuss in §5.2. To compensate for this variability and make
the comparisons fair, we need to adjust each chunk’s replication
factor to match the evaluated coding scheme. To facilitate these
adjustments, we have developed a set of tools.

Our first tool, listchunks, lists the content addresses of all the
chunks of each file in our storage network. The second tool, deletelist,
determines which chunks must be deleted from which peer. To eval-
uate files of different sizes, we must run listchunks and deletelist
for each file. To obtain an aggregated delete list, we use a third tool,
combinelist. Finally, the aggregated list is passed to deletechunks, to
delete the chunks on the peers in the storage network.
Swarm has three mechanisms for chunk distribution, also called
syncing. Two of these mechanisms, push-syncing, and pull-syncing,
can be disabled with the no-sync command-line option when start-
ing a peer. However, the syncing process for chunks delivered
through the Kademlia [17] DHT cannot be disabled. This posed a
challenge for us, as the increased chunk replication would unduly
skew the results for the different coding schemes.

Hence, to ensure an identical system state across experiment
runs, we must counteract this built-in syncing process. To that end,
we create a snapshot of the entire storage network and recover
from a snapshot between each experiment run. Further, we ensure
that each peer is well-connected before each experiment run. To
reach sufficient connectivity, the peers must first discover each
other. We monitor the discovery process by periodically polling
Swarm’s inter-process communication file, bzzd.ipc. As soon as the
desired connectivity is reached, we start the next experiment run.

5.2 Replication in Swarm
Our study reveals that the replication factor (R) in the Swarm net-
work is not uniform at the chunk level, meaning that some chunks
are more replicated than others. However, the file size does not
appear to impact R notably. For file sizes 1 MB, 10 MB, and 100 MB,
we found that each chunk was in the range R ∈ [9, 162], with an

average R of 72. The relatively high average R of 72 means that for
every gigabyte of original data stored in the network, the collective
resources of the storage peers will consume at least 72 gigabytes.

We plot the relative chunk replication for a 100MB file in Figure 6.
The file consists of 25803 unique chunks, with a R that ranges from
9 for 26 chunks (0.1 %) to 162 for 3 chunks (0.01 %), with an average
R of 72.36. The horizontal axis shows the replication factor, and the
vertical axis shows the relative frequency of occurrence.

Figure 7 shows how the chunks are distributed on the storage
peers by plotting the number of chunks each peer stores for the
same 100 MB file. We have sorted the peers in ascending order
of the number of chunks stored. Interestingly, the values appear
to follow a power-law distribution. The number of chunks stored
ranges from 105 on peer 1 to 12865 on peer 1000, with an average
number of chunks stored 1867.

20 40 60 80 100 120 140 160
Number of Replicas

0.00

0.02

0.04

Fr
eq

ue
nc

y

Relative Chunk Replication

Figure 6: Relative chunk replication for a 100 MB file stored
in a Swarm network consisting of 1000 peers.

0 200 400 600 800 1000
Swarm Peer

0

5000

10000

Ch
un

ks
 S

to
re

d

Chunks Stored for Each Swarm Peer

Figure 7: Storage consumption for a 100 MB file in a Swarm
network consisting of 1000 peers. Peers are enumerated on
the horizontal axis, sorted by the number of chunks stored.

5.3 Chunk Distribution
We observe that a file encoded with Snarl occupies a broader range
of the address space than with full replication.

By mapping the first two bytes of the content address for each
chunk, we get an idea of how a file would be distributed in the
network, as chunks are placed at peers that share the same prefix.
We repeated the experiment 10000 times with randomly generated
files and report the average result.

For a 1 MB file in Swarm, there are 259 unique chunks with
Swarm’s full replication, with 258 distinct prefixes, meaning that
2 chunks share the same two first bytes in their address. Snarl
encoding generates 1048 unique chunks, with 1039 distinct prefixes.

A file encoded with Snarl is evenly spread and occupies 1.59 %
of the address space, while a replicated file occupies only 0.39 %.
Consuming more address space is advantageous to mitigate an

243

Snarl: Entangled Merkle Trees for Improved File Availability and Storage Utilization Middleware ’21, December 6–10, 2021, Virtual Event, Canada

attack attempting to make a file unavailable by monopolizing a
small section of the address space.

5.4 File Availability
Next, we empirically estimate Snarl’s file availability from the re-
covery likelihood for different failure scenarios. We compare the
results of Snarl to full uniform replication, where each chunk in
the Merkle tree is replicated the same number of times. We also
compare with Swarm, which has a chunk distribution similar to
that shown in Figure 6. In the case of replication, it is clear that
the file can be recovered as long as at least one replica of each
chunk that composes the file is available. We conduct two types of
evaluations for file availability. In the first experiment, we obtain
the recovery likelihood by artificially marking some percentage
of chunks unavailable and trying to recover the file. The second
experiment is similar, except that we mark some percentage of
storage peers unavailable. Our evaluations show that Snarl provides
a higher recovery likelihood for a lower storage consumption than
the case for full replication. We list the storage consumption used
by each scheme in Table 1.

5.4.1 Chunk Loss. We compare files of sizes 1, 10, and 100 MB
encoded with Snarl-5, Swarm with replication factor 5 (R-5), and
replication factor 10 (R-10). We run 10000 iterations of each experi-
ment, with new random input data for each. Snarl-5 used for this
evaluation has the same storage consumption as R-5; thus, we use
this as the baseline for our evaluations.

Because we are only interested in recovering the entire file, a
single chunk loss will make the file unavailable. Hence, the recovery
likelihood is expected to decrease as the file size increases. As the
number of chunks that compose a file increases, given the same
chunk loss percentage, the likelihood of an irrecoverable error
also increases. From Figure 8, we can observe that the impact on
recovery likelihood for larger files is less for Snarl than for full
replication for all three file sizes.

From Figure 8, we can see that Snarl-5 has a significantly higher
recovery likelihood than both R-5 and R-10, with up to 50 % chunk
loss. Given 45 % chunk loss, Snarl-5 has a recovery likelihood of
99 % for a 1 MB file, while R-5, in comparison, has 1 % recovery
likelihood, and R-10 92 %.

Table 1 summarizes the maximum chunk loss percentage that
the redundancy scheme can tolerate and still provide 99 % recovery
likelihood.

5.4.2 Peer Failure. We now evaluate Snarl deployed with 1000
peers, where each peer stores some of the chunks that compose the
file. For this evaluation, we use Snarl-5 and Snarl-14. We choose
Snarl-14 to evaluate the improved storage utilization Snarl offers,
as Snarl-14 has a storage consumption roughly 81 % lower than
regular files in Swarm. For each experiment we run 10000 iterations.

We can see from Figure 9 that Snarl-5 outperforms both R-5
and R-10, even considering that R-10 requires twice the storage.
Interestingly, Snarl-14 outperforms the redundancy provided by
Swarm while using less than 20 % of the storage. In other words,
if every file in Swarm were encoded with Snarl, storage utiliza-
tion would increase so that five times the amount of data could be
stored in the network, with improved resiliency against failures.

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Chunk Loss Rate %

0

20

40

60

80

100

Fi
le

 R
ec

ov
er

y
Lik

el
ih

oo
d

%

R-5 1MB
R-5 10MB
R-5 100MB

R-10 1MB
R-10 10MB
R-10 100MB

Snarl-5 1MB
Snarl-5 10MB
Snarl-5 100MB

Figure 8: Recovery likelihood for various chunk loss rates.

The recovery likelihood of replicated files for R-5, R-10, and Swarm,
seems to be largely unaffected by the file size. This is because we
need all chunks that compose the Merkle tree to recover the file,
combined with the fact that chunks in Swarm are not uniformly dis-
tributed over the entire network. In other words, chunks are placed
at peers with similar addresses, and therefore we are evaluating the
likelihood that all peers in at least one address region are failing.
Because chunks for various file sizes in Swarm are distributed to
the same address region, the recovery likelihood is independent of
file size, at least for files 1 MB and up.

Table 1 summarizes the maximum peer failure percentage that
the redundancy scheme can tolerate and still provide 99 % recovery
likelihood.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Peer Failure Rate %

0

20

40

60

80

100

Fi
le

 R
ec

ov
er

y
Lik

el
ih

oo
d

%

R-5 1MB
R-5 10MB
R-5 100MB

R-10 1MB
R-10 10MB
R-10 100MB

Swarm-72 1MB
Swarm-72 10MB
Swarm-72 100MB

Snarl-5 1MB
Snarl-5 10MB
Snarl-5 100MB

Snarl-14 1MB
Snarl-14 10MB
Snarl-14 100MB

Figure 9: Recovery likelihood for various peer failure rates.

5.5 Encoding Speed
We evaluate the encoding performance of Snarl by measuring the
time for encoding files from 1 MB to 1 GB. We ran this experiment
on a single machine in our cluster.

Since encoding is based on lightweight XOR operations, it can
be implemented efficiently. We iterate over the file, and for every
chunk, we XOR with the previously added chunks to create the
parity chunks. We keep the last parity chunks in memory to per-
form the XOR operation with the newly added chunk to create the
new parity. The cumulative time it takes to execute the XOR opera-
tions is the most significant factor for larger file sizes. As expected,

244

Middleware ’21, December 6–10, 2021, Virtual Event, Canada Nygaard, et al.

Table 1: Snarl performance when encoding files of different size: storage consumption given in MB and total chunks number,
the number of internal nodes in the k-MT and the α k-eMT unique and total nodes including replicas, the maximum chunk
loss/peer failure for 99% recovery likelihoodper redundancy scheme.Higher values are better formax. chunk loss/peer failure.

Storage Consumption: MB::>total chunks Internal Nodes: unique::>total Max. Chunk Loss Max. Peer Failure
Scheme 1 MB 10 MB 100 MB 1 MB 10 MB 100 MB 1 MB 10 MB 100 MB 1 MB 10 MB 100 MB

R-5 5.06::>1295 50.41::>12905 503.96::>129015 3::>15 21::>105 203::>1015 14 % 8 % 5 % 14 % 14 % 14 %
R-10 10.12::>2590 100.82::>25810 1007.93::>258030 3::>30 21::>210 203::>2030 37 % 29 % 22 % 40 % 40 % 40 %
Snarl-5 5.06::>1295 50.41::>12905 503.96::>129015 15::>165 87::>2784 818::>33518 45 % 38 % 34 % 50 % 47 % 43 %
Snarl-14 13.15::>3626 131.07::>36134 1310.31::>361242 15::>330 87::>3915 818::>36810 79 % 78 % 77 %
Swarm-72 72.60::>18585 723.69::>185264 7292.91::>1866986 3::>104 21::>1548 203::>14258 59 % 59 % 59 %

the encoding time is linear with the file size; a file of 1 MB takes
3.8 milliseconds, a 10 MB file takes 37 milliseconds, a 100 MB file
takes 360 milliseconds, and a file of 1 GB takes 3.6 seconds.

Decoding is also based onXOR,where two parity chunks are used
as input to the XOR operation to reconstruct a data chunk. Thus,
decoding a file requires using the same number of XOR operations
as chunks in the file, resulting in linear time complexity. The actual
time required for decoding, however, will largely depend on the
network latency.

5.6 Network Overhead
We have previously outlined the repair algorithm in §4.4. As long
as there are no failures, there is no need for any parity chunks.
Only when failures occur will Snarl start requesting necessary
parity chunks from the network. Each data chunk is connected
with three parity pairs in the lattice, as shown in Figure 5e. At
best, a single failure or missing data chunk can be repaired with
only a single pair. Both chunks in the pair are requested in parallel,
and if either of them is unavailable, the next pair will be requested.
However, in the case none of the three pairs can be downloaded,
Snarl will expand outwards in the lattice, requesting additional
parities to repair the parity pairs. This process is recursive and
terminates only when the data chunk is repaired or an irrecoverable
pattern is detected.

Therefore it is crucial that Snarl is bandwidth-aware and only
requests the minimal number of parities necessary for successful
retrieval. In addition, Snarl should be able to traverse the eMT to
find the correct parities needed for each type of failure.

0% 5% 10% 15% 20% 25% 30% 35% 40%
Chunk Loss Rate %

0

20

40

60

80

100

120

140

Ad
di

tio
na

l c
hu

nk
s d

ow
nl

oa
de

d

Figure 10: Download overhead for a 1 MB file in Snarl with
increasing levels of chunk loss.

We measure the bandwidth efficiency of Snarl by counting how
many additional chunks are downloaded compared to Swarm with

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Chunk Loss Rate %

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Re
pa

ir
ra

tio

Figure 11: Repair overhead for a 1 MB file in Snarl with in-
creasing levels of chunk loss.

no failures. Figure 10 shows how many additional chunks were
downloaded for various amounts of chunk loss in a 1 MB file. Each
experiment was executed with 10000 iterations. The error bars show
the standard deviation. We can see that Snarl does not retrieve any
parities when there are no failures, and with failures present, the
number of chunks downloaded grows linearly with the failure rate.

To evaluate the repair efficiency of Snarl, we define the repair
ratio as the number of parities retrieved, divided by the number
of lost data chunks. Figure 11 plots our findings, showing that the
repair ratio is slightly higher than 2 until there is a high number of
chunk losses, after which it starts to decrease. It decreases because
each parity is connected to two data chunks in the lattice, and thus
if both of these data chunks are lost, Snarl will only retrieve this
parity from the network for the first repair operation and then from
the local storage for the second one.

6 DESIGN ALTERNATIVES
Wenowdiscuss two interesting alternatives based on erasure coding
to add resiliency to the Merkle tree.

6.1 Swarm Tree
Swarm tree is a design alternative outlined in [27, §5.1], which
to our knowledge, has not yet been implemented. In Swarm tree,
erasure coding is added at the system level to protect the tree from
data loss. The tree’s non-leaf nodes are encoded using a (128,112)
MDS erasure code, i.e., each node can have 112 child nodes, with
16 entries for parities.

Since Swarm tree is a system-level redundancy scheme, it does
not allow users to control the replication parameters of the coding
scheme. Further, since each internal node in the Swarm tree is

245

Snarl: Entangled Merkle Trees for Improved File Availability and Storage Utilization Middleware ’21, December 6–10, 2021, Virtual Event, Canada

part of a stripe with 112 data chunks and 16 parity chunks, users
must retrieve parities, even if there are no failures. By encoding all
redundancy information in the same Merkle tree as the original
file, usersmust disclose resiliency levels publicly. As with any (n,k)
MDS code, we need any k-of-n chunks to recover the stripe. Thus, to
repair a single chunk, we first need to retrieve k chunks to recover
the stripe and then reconstruct the chunk.

An unknown replication factor protects the root chunk, and thus
we ignore this apparent weakness in our evaluations. Swarm tree’s
description states that there should be 16 parity blocks in each
stripe, independent of data elements.

We can calculate the probability of an irrecoverable error for
chunk losses by realizing that this scheme is equivalent to a compo-
sition of a sequence of MDS-stripes, i.e., a 1 MB file would be split
into 4 stripes; (128, 112)-(128, 112)-(48, 32)-(19, 3), where the first
number inside each bracket is the stripe length n and the second
number is the data elementsk . The first three stripes contain the 256
leaf nodes, while the last stripe contains the internal nodes. Thus,
an irrecoverable error in any of these stripes effectively renders the
entire composition, or file, unavailable.

To evaluate the irrecoverable likelihood, we have developed
equation (2), where c is the total number of chunk losses, Sp is the
number of parity blocks in a stripe, S is the set of stripes and d is
the set of chunk losses per stripe. The set D captures all possible
combinations of chunk losses per stripe, e.g., given |S | = 3, we can
have x chunk losses in stripe 1, y losses in stripe 2, and z losses in
stripe 3, where x + y + z = c . Let L be a subset of D, as described
by (2), containing those scenarios that lead to critical failure. The
product

∏ |S |
n=1

(Sn
dn

)
gives the number of combinations of the given

failure scenario using multivariate geometric distribution, i.e., all
possible ways to select x chunks from stripe 1, y from stripe 2, and
z from stripe 3.

P(c) =

|L |∑ |S |∏
n=1

(
Sn
dn

)
|D |

, where |D | =

(∑
S

c

)
, c ≤

∑
S,

L← {∀d ∈ D : |d | = |S | ∧
∑
d = c ∧ ∃dn ∈ d : dn > Sp }

(2)

Further, if we assume that the probability of chunk loss (b) is inde-
pendent, all stripes are of identical length (n), and with the same
parity parameter (n-k), we can simplify (2) to (3). For a stripe to be
available, we need at least k out of n elements, thus the sum

∑n−k
k=0

the probability that we have up to k losses for a given chunk loss
b. The product

∏ |S | gives the recovery likelihood for the entire
chain.

P(X) = 1 −
|S |∏ n−k∑

k=0

(
n

k

)
bk × (1 − b)n−k (3)

Equation (3) shows the pitfall of this approach—recovery likeli-
hood decreases drastically with file size. This is because Swarm’s
branching factor is constant at 128, and thus the only way to ac-
commodate a larger file is to add branches, resulting in more stripes
and higher |S |.

File availability given chunk loss is shown for various file sizes
in Figure 12. In the legend, [sample] denotes results from random
sampling; similar for [eq (2)] and [eq (3)]. Interestingly, results from
(3) with stripes 20 and 200 fit nicely with results obtained from
random sampling for file sizes 10 MB and 100 MB, respectively.
From this, we can deduce that with a constant parity parameter,
empty branches contribute little to the number of irrecoverable
errors.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Chunk loss rate %

0

20

40

60

80

100

Fi
le

 a
va

ila
bi

lit
y

%

2 stripes [eq (4)]
20 stripes [eq (4)]
200 stripes [eq (4)]
2000 stripes [eq (4)]
20000 stripes [eq (4)]
1 MB File [eq (3)]
1 MB File [sample]
10 MB File [sample]
100 MB File [sample]

Figure 12: Availability of Swarm tree for various file sizes.

6.2 Coded Merkle Tree
Coded Merkle tree [34] is similar to Swarm tree in that they extend
each level of the Merkle tree with additional erasure-coded blocks.
There are two main differences between them. First, in Swarm
tree, the input data is segmented into stripes of length 112 and
extended with 16 parity blocks to 128 in total. In coded Merkle tree,
all input data is placed in the same stripe and then extended with
the appropriate number of parity blocks, depending on the coding
rate (r = k/n). Secondly, Swarm tree always extends a stripe with
16 parity blocks, even if the stripe is not complete. In coded Merkle
tree, the length of the extension depends solely on the coding rate,
leading to several different coding settings.

7 CONCLUSION
This paper introduced Snarl, a user-controlled storage component
that lets users control how to store data redundantly. Snarl can also
improve storage utilization in cryptographic decentralized storage
systems. These systems typically split the content into chunks and
provide integrity verification and lookup services via a Merkle tree.
The root and internal nodes are used to locate data in content-
addressed storage and must thus be stored redundantly.

We have designed an entangled Merkle Tree, a resilient data
structure that protects all nodes in the Merkle tree.

Based on our evaluation on Ethereum Swarm, we conclude that
if every file was encoded with Snarl, five times as much data could
be stored in the network, with a comparable failure-resiliency. We
believe that these findings may prompt developers to incorporate
Snarl into their systems.

246

Middleware ’21, December 6–10, 2021, Virtual Event, Canada Nygaard, et al.

ACKNOWLEDGMENTS
We thank Leander Jehl for providing valuable feedback on earlier
versions of this paper, Rodrigo Q. Saramago for technical assistance,
and the members of the Swarm Foundation for helpful discussions.
This work is partially funded by the BBChain and Credence projects
under grants 274451 and 288126 from the Research Council of
Norway.

REFERENCES
[1] Bee nodes live. https://beenodes.live/. Accessed: 2021-06-01.
[2] Juan Benet. IPFS-Content Addressed, Versioned, P2P File System. arXiv preprint

arXiv:1407.3561, 2014.
[3] Manuel Blum, Will Evans, Peter Gemmell, Sampath Kannan, and Moni Naor.

Checking the Correctness of Memories. Algorithmica, 12(2):225–244, 1994.
[4] Scott Chacon and Ben Straub. Pro Git, chapter Git internals - Git objects. Number

10.2. Apress, 2 edition, 2014.
[5] Bram Cohen. Incentives Build Robustness in BitTorrent. https://www.bittorrent.

org/bittorrentecon.pdf, 2003. Accessed: 2021-10-26.
[6] Erik Daniel and Florian Tschorsch. IPFS and Friends: A Qualitative Comparison

of Next Generation Peer-to-Peer Data Networks. 2021.
[7] Vero Estrada-Galiñanes, Ethan Miller, Pascal Felber, and Jehan-François Pâris.

Alpha Entanglement Codes: Practical Erasure Codes to Archive Data in Unreli-
able Environments. In 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 183–194. IEEE, 2018.

[8] Vero Estrada-Galinanes, Jehan-François Pâris, and Pascal Felber. Simple Data
Entanglement Layouts With High Reliability. In 2016 IEEE 35th International
Performance Computing and Communications Conference (IPCCC), pages 1–8.
IEEE, 2016.

[9] Roy Friedman, Yoav Kantor, and Amir Kantor. Replicated Erasure Codes for
Storage and Repair-Traffic Efficiency. In 14-th IEEE International Conference on
Peer-to-Peer Computing, pages 1–10. IEEE, 2014.

[10] Eu-Jin Goh, Hovav Shacham, Nagendra Modadugu, and Dan Boneh. SiRiUS:
Securing Remote Untrusted Storage. In NDSS, volume 3, pages 131–145. Citeseer,
2003.

[11] Helm. The package manager for Kubernetes. https://helm.sh/.
[12] Naoki Katoh and Shin-ichi Tanigawa. Enumerating Constrained Non-crossing

Geometric Spanning Trees. In Guohui Lin, editor, Computing and Combinatorics,
pages 243–253, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[13] Kubernetes. Production-Grade Container Orchestration. https://kubernetes.io/.
[14] WK Lin, Dah Ming Chiu, and YB Lee. Erasure Code Replication Revisited. In

Proceedings. Fourth International Conference on Peer-to-Peer Computing, 2004.
Proceedings., pages 90–97. IEEE, 2004.

[15] Umesh Maheshwari, Radek Vingralek, and William Shapiro. How to Build
a Trusted Database System on Untrusted Storage. In Proceedings of the 4th
conference on Symposium on Operating System Design & Implementation-Volume
4, 2000.

[16] Petros Maniatis, Mema Roussopoulos, Thomas J Giuli, David SH Rosenthal,
and Mary Baker. The LOCKSS peer-to-peer digital preservation system. ACM
Transactions on Computer Systems (TOCS), 23(1):2–50, 2005.

[17] Petar Maymounkov and David Mazieres. Kademlia: A Peer-to-Peer Information
System Based on the XOR Metric. In International Workshop on Peer-to-Peer
Systems, pages 53–65. Springer, 2002.

[18] Ralph C Merkle. A Digital Signature Based on a Conventional Encryption
Function. In Conference on the theory and application of cryptographic techniques,
pages 369–378. Springer, 1987.

[19] Satoshi Nakamoto et al. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008.
[20] Sean C Rhea, Patrick R Eaton, Dennis Geels, Hakim Weatherspoon, Ben Y Zhao,

and John Kubiatowicz. Pond: The OceanStore Prototype. In FAST, volume 3,
pages 1–14, 2003.

[21] Rodrigo Rodrigues and Barbara Liskov. High Availability in DHTs: Erasure
Coding vs. Replication. In International Workshop on Peer-to-Peer Systems, pages
226–239. Springer, 2005.

[22] Bianca Schroeder and Garth A Gibson. Understanding Disk Failure Rates: What
Does an MTTF of 1,000,000 Hours Mean to You? ACM Transactions on Storage
(TOS), 3(3):8–es, 2007.

[23] Thomas SJ Schwarz and Ethan L Miller. Store, Forget, and Check: Using Algebraic
Signatures to Check Remotely Administered Storage. In 26th IEEE International
Conference on Distributed Computing Systems (ICDCS’06), pages 12–12. IEEE,
2006.

[24] Mennan Selimi and Felix Freitag. Tahoe-LAFS Distributed Storage Service in
Community Network Clouds. In 2014 IEEE Fourth International Conference on
Big Data and Cloud Computing, pages 17–24. IEEE, 2014.

[25] Gopalan Sivathanu, Charles PWright, and Erez Zadok. Ensuring Data Integrity in
Storage: Techniques and Applications. In Proceedings of the 2005 ACM workshop

on Storage security and survivability, pages 26–36, 2005.
[26] V Trón, A Fischer, DA Nagy, Z Felföldi, and N Johnson. Swap, swear and swindle:

incentive system for swarm, may 2016.
[27] Viktor Trón. The Book of Swarm - v1.0 pre-release 7 November 17, 2020. https:

//www.ethswarm.org/The-Book-of-Swarm.pdf. Accessed: 2021-10-26.
[28] Viktor Trón et al. Swarm documentation - release 0.5. https://swarm-guide.

readthedocs.io. Accessed: 2021-05-25.
[29] Hakim Weatherspoon and John D Kubiatowicz. Erasure Coding vs. Replication:

A Quantitative Comparison. In International Workshop on Peer-to-Peer Systems,
pages 328–337. Springer, 2002.

[30] Wikipedia contributors. Length extension attack — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Length_extension_attack&
oldid=934998209, 2020. [Online; accessed 26-October-2021].

[31] Zooko Wilcox-O’Hearn. [tahoe-dev] erasure coding makes files more fragile,
not less. https://tahoe-lafs.org/pipermail/tahoe-dev/2012-March/007185.html.
Accessed: 26.10.2021.

[32] Zooko Wilcox-O’Hearn and Brian Warner. Tahoe – The Least-Authority Filesys-
tem. In Proceedings of the 4th ACM international workshop on Storage security and
survivability, pages 21–26, 2008.

[33] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.

[34] Mingchao Yu, Saeid Sahraei, Songze Li, Salman Avestimehr, Sreeram Kannan,
and Pramod Viswanath. Coded Merkle Tree: Solving Data Availability Attacks
in Blockchains. In International Conference on Financial Cryptography and Data
Security, pages 114–134. Springer, 2020.

247

https://beenodes.live/
https://www.bittorrent.org/bittorrentecon.pdf
https://www.bittorrent.org/bittorrentecon.pdf
https://www.ethswarm.org/The-Book-of-Swarm.pdf
https://www.ethswarm.org/The-Book-of-Swarm.pdf
https://swarm-guide.readthedocs.io
https://swarm-guide.readthedocs.io
https://en.wikipedia.org/w/index.php?title=Length_extension_attack&oldid=934998209
https://en.wikipedia.org/w/index.php?title=Length_extension_attack&oldid=934998209
https://tahoe-lafs.org/pipermail/tahoe-dev/2012-March/007185.html

	Abstract
	1 Introduction
	1.1 Motivations for This Work
	1.2 Contributions

	2 Preliminaries
	2.1 Swarm Overview
	2.2 System Requirements

	3 Entangled Merkle Tree
	3.1 The k-eMT: Challenges and Solutions
	3.2 Canonical Naming
	3.3 Overview of Alpha Entanglement Codes
	3.4 A Variation for AE codes: A Toroidal Lattice
	3.5 Mapping the Tree Into a Lattice
	3.6 Swapping

	4 Snarl
	4.1 User Interaction With Snarl
	4.2 Snarl Interaction With the Storage System
	4.3 Local Repair Information
	4.4 Repairing Failures
	4.5 Replicating Entangled Merkle Trees

	5 Evaluation
	5.1 Experimental Setup
	5.2 Replication in Swarm
	5.3 Chunk Distribution
	5.4 File Availability
	5.5 Encoding Speed
	5.6 Network Overhead

	6 Design Alternatives
	6.1 Swarm Tree
	6.2 Coded Merkle Tree

	7 Conclusion
	Acknowledgments
	References

