
Frontpage for master thesis 

Faculty of Science and Technology 
 

 

 
 

Faculty of Science and Technology 

 

MASTER’S THESIS 

 

Study program: 

 

Lektor i Realfag 8.-13. 

 

Spring semester, 2021 

 

 

Open access 

 

Author:  

Anders Rikard Løvoll 

 

 

………………………………………… 

 

Faculty supervisor: Alexander Ulanovskii 

 

 

Thesis title: 

 

On the Convergence of Fourier Series in Hilbert Spaces  

– an introduction to sampling theory. 

 

 

Credits (ECTS): 30 

 

Key words: 

 

Norm 

Hilbert Space 

Banach Space 

Fourier Series 

Fourier Transformation 

Convergence (L2, piecewise, uniform) 

Shannon sampling theorem 

Riesz basis 

Kadets ¼ theorem 

 

 

         Pages: ………76……… 

     

     + enclosure: ……0…… 

 

 

         Stavanger, 15.06.2021. 

      

 

 



On the Convergence of Fourier Series

in Hilbert Spaces

An introduction to sampling theory

Anders Rikard Løvoll

A thesis presented for the degree of

Lektor i Realfag 8.-13.

Faculty of Science and Technology

University of Stavanger

Norway

June 15th, 2021



Abstract

Løvoll, A. R. (2021). On the Convergence of Fourier Series in Hilbert Spaces. University of

Stavanger.

Classical calculus, which traces its origins back to the 17th century is concerned with the study

of continuous change. However, classical calculus lacks the ability to adequately transform

natural processes such as audio, radio waves and even images into their digital counterparts.

Fast forward to the 18th century, mathematical calculus was gradually encountering problems

with some of its assumptions. The work done by Joseph Fourier (1768-1830) marked a

turning point, commencing an investigation of such proportions that it ultimately lead

to a restructuring into what we now call Analysis. Many branches of analysis emerged

in the following centuries. Of particular note was the creation of functional analysis by

Stefan Banach in the early 20′s. In it, we find the proper tools for digitization of such

natural processes. We provide an introduction to this intriguing theory, together with some

examples of Banach- and Hilbert spaces. Including applications such as the reconstruction of

band-limited signals through the famous Shannon-sampling theorem. Particularly we take

advantage of Kadets 1/4-theorem to improve the sampling process.
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Chapter 1

Introduction

The study of Fourier series is an important field in modern mathematics. Through the course

of this thesis we will provide an overview of central topics and use examples to conceptualize

them such that a general foundation is reached. Our purpose is to give an account of the

processing of signals.

The rest of the thesis is organized as follows. Firstly, we will provide a brief historical account

of Joseph Fourier and his mathematical contributions. Following this we will introduce some

important concepts from functional analysis - a relatively new branch of mathematics - which

will allow us to delve deeper in the following sections. Particularly we will cover the notion

of normed vector spaces, along with Banach- and Hilbert spaces. Afterwards we will discuss

Fourier series and their convergence before we cover the Fourier transformation. Then we

will give some examples of how the theory may be applied and solve some practical examples

involving Fourier series. Lastly, we will discuss the famous Shannon-sampling theorem along

with some interesting adaptations.

In this thesis much of the necessary background information has been inspired by the

detailed book Functions, Spaces and Expansions by Ole Christensen, and the Master course

Mathematical Analysis 2 presented by professor Alexander Ulanovskii at the University of

Stavanger. The preliminary structure is based on the structure presented there, and several

examples and exercises have been found in the book. Our results differ from the work of

Christensen by a change of course - away from Wavelet Analysis and Banach Theory - and

towards the process of signal sampling and reconstruction.
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Chapter 2

History

2.1 Joseph Fourier

The well renowned mathematician Jean-Baptiste Joseph Fourier was born 21 March 1768 in

a small town in central France. In the town Auxerre he received a thorough education where

he excelled in mathematics (Debnath, 2012). During his youth he contemplated whether to

pursue a life of religion in order to become a priest, or to focus on his mathematical prowess.

In 1787 he made the decision to pursue priesthood at St.Benedict’s Abbey (O’Connor &

Robertson, 1997), but did not lose interest in mathematics. A mere two years later at the

age of 21, he had a change of heart and left the abbey in pursuit of immortality like many

mathematicians before him.

Around the same time, the French Revolution stirred up the mindsets of many Frenchmen,

including Fourier. He had an active role in promoting the French Revolution amongst his

own surroundings. Though his participation at times led to personal pain, it paved him

a path towards a successful research career in mathematics and physics (Debnath, 2012).

After the end of the Revolution, he joined the Ècole Normale teacher-training school where

he met many prominent mathematicians. More notably Pierre-Simon Laplace, Joseph-Louis

Lagrange and Gaspard Monge. Having shown great promise and ability, he became a teacher

at the Ècole Polytechnique where he showed his talents as a lecturer (O’Connor & Robertson,

1997). However, during his time as a teacher not much research was performed. In 1798 he
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Chapter 2

was appointed as a scientific advisor in Napoleon’s army and headed off to Egypt (O’Connor

& Robertson, 1997). During this time he was in charge of the collation of all literary and

scientific discoveries of Egyptian documents. His work led to the publication of Description

de l’Égypte, a massive collection which sparked the start of Egyptology - the study of ancient

Egypt by archaeologists (Egyptology: study of pharanoic Egypt, 2008).

He returned to Paris in 1801 to proceed his position as Professor of Analysis at the Ècole

Polytechnique. Not long after he was once again contacted by Napoleon and promoted to

Prefect of Isère in Grenoble. In this position he performed several tasks for Napoleon, but

his greatest accomplishments were the drainage of 80, 000km2 of the Swamp in Burgouin

and the planning of a grand highway stretching from Grenoble in France to Turin in Italy.

Unfortunately only the French section was ever built. Simultaneously, he began work on

his memoir On the Propagation of Heat in Solid Bodies which may be considered his most

important mathematical contribution. He completed it by 1807 and presented it to the

Academy of Sciences of Paris. There were objections to the mathematical rigour of the

memoir, which led to a mixed reception in two regards. Firstly, Lagrange and Laplace were

not convinced of Fourier’s implementation of the (at the time) controversial concept of an

infinite sum of trigonometric series to expand an arbitrary function into what we now call

a Fourier series. They found that there were some instances were the properties presented

paradoxical qualities. Secondly, the manner of which Fourier had derived his equations for

’the transfer of heat through a continuous solid’ were believed to be lacking physical principles

(Debnath, 2012). As a result, Fourier spent the following years defending and revising his

work. Though he got it accepted in 1812, it was not officially published until 1822 due to

the scepticism and disbelief towards ’Fourier Analysis’ in the mathematical community.

Finally, his research was published in 1822, along with the adjusted title The Analytical

Theory of Heat. Here he presented a great quantity of problems, an example of which was to

explain how the heat in a thin-layered material spreads as time passes. By assuming we have

measured the temperature at certain locations along the boundary and the exterior at time

3
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0, he then described how to use the subsequent differential equation to solve the problem

∂u

∂t
= k

[
∂2u

∂x2
+
∂2u

∂y2

]
where u is the temperature at a point (x, y) in the Euclidean plane at any time t, whilst k

describes the proportionality of the diffusivity of the material, i.e. k represents how quickly

the heat spreads in the material. Thereby, the differential equation presented above can be

used to describe the heat conduction in two-dimensional objects (Struik, 2020). Furthermore,

the solutions for the one-dimensional case were presented by infinite sums of trigonometric

functions such as

y =
a0
2

+ (a1 cosx+ b1 sinx) + (a2 cos 2x+ b2 sin 2x) + · · · ,

which reminds us of the well known general form of Fourier series (see Section 8.1). Although

he passed away at the age of 62 in 1830, his mathematical contributions lived on and were

improved upon. Some of the more notable accomplishments include his work on Fourier

series, the Fourier transform and calculating Fourier Integrals. According to Debnath these

topics have had major impacts on physical engineering. Additionally, he has been credited

with the initial discovery of the Greenhouse effect, where he suggested that the Earth’s

atmosphere had the property of capturing the heat of sunlight (Debnath, 2012, p. 8).

2.2 Historical development of Fourier series

Today, Fourier series is a well established and rigorous tool for mathematical analysis. As

infinite series, they were originally introduced and investigated by mathematicians such as

Euler, d’Alembert and Bernoulli in relation to describing the vibration of a string (Debnath,

2012). Their mathematical modelling highlighted a false presumption in the contemporary

mathematical analysis and concept of a function. When Fourier used the same concepts of

infinite series in his work on the propagation of heat, this resulted in the aforementioned

mistrust and scepticism where the committee discarded this use of the concept. Namely that

there was a problem with the convergence of Fourier’s presented series, since the convergence

of an infinite series were thought to be impossible. However, through his (and others)
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continued work and exploration it was eventually accepted. This signified a turning point

in mathematical analysis to such a degree that the concept of a function and infinity would

need to be re-evaluated (Bressoud, 2007).

Although the Fourier series expansion is a very useful tool, it has its limitations. Perhaps the

most prominent one is that the function must be periodic. Many signals and waves which

appear in nature do not follow a specific repeating pattern and are therefore classified as

aperiodic. An obvious complication which arises for a function which is aperiodic, is that

its frequencies may vary throughout the whole domain. Thankfully, another tool can be

used in such situations, namely the Fourier transform. One of the main uses for the Fourier

transform is that they speed up the calculations of certain Partial Differential Equations.

(PDE) Much like how the introduction of log x by John Napier in 1614 simplified certain

algorithmic operations, the Fourier transform may transform the PDE into a more favourable

form where its mathematical manipulation becomes easier (Dominguez, 2016). Concretely,

there are many applications of the transform within signal- and image processing, as well

as interpreting certain events in quantum mechanics. The Fourier transform is currently

defined as the generalization of complex Fourier series in the limit where the period L→∞.

This is a (slight) variation to how Fourier defined the Fourier transform, as complex-valued

functions were not usual at the time (Dominguez, 2016, p. 6). Although Joseph Fourier and

other mathematicians talked about how the functions were transformed, the formal name

Fourier transform was not used until after 1915 (Dominguez, 2016, p. 5). On the vector

space L1(R) the Fourier transform takes f ∈ L1(R) and assigns a new function f̂ : R → C

by

f̂(x) :=

∫ ∞
−∞

e−2πixtf(t)dt

We often consider the above as an operation. This will become clear later on.
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Mathematical Background

In this chapter some basic definitions and results from Linear Algebra, as well as Real- and

Complex Analysis will be presented. We will focus on a few selected topics and briefly define

or recall other concepts as we go.

3.1 Euclidean spaces, Rn and Cn

Let R denote the set of all real numbers, and C the set of all complex numbers. The

n-dimensional Euclidean space is the set of all sequences of real numbers, often defined as:

Rn := {(x1, x2, ..., xn) |xk ∈ R, k = 1, ..., n}.

In this space we define the norm ‖ · ‖ of a vector v = (v1, ..., vn) ∈ Rn(or Cn) by

‖v‖ :=

(
n∑
k=1

|vk|2
)1/2

(3.1)

where |vk| simply represents the absolute value of vk. The meaning of the norm depends on

the context in which it is given. In R2, the norm ‖(x1, x2)‖ =
√
x21 + x22 describes the length

of the vector i.e., its Euclidean distance from the origin. However in other vector spaces

(which we formally define later), the norm of an element v ∈ V could refer to anything

from its size to the largest achievable value the vector attains. Consequently, for two vectors

x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) one may prove the triangle inequality

‖x + y‖ ≤ ‖x‖+ ‖y‖ (3.2)

6
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which in R2 symbolizes that the shortest distance between two points x,y ∈ R2 is a straight

line between the points.

Definition 3.1.1. Given a point x = (x1, ..., xn) ∈ Rn, the ball centred at x and with radius

r > 0 is defined as the set

B(x, r) : = {y ∈ Rn
∣∣ ‖y− x‖ < r}

=

y ∈ Rn|

(
n∑
k−1

|yk − xk|2
)1/2

< r

 (3.3)

where B
(

(0, 0), 1
)

is the unit ball centered at the origin in R2.

Definition 3.1.2 (Basis). Given v1, ..., vn ∈ Rn or Cn, we say that v1, ..., vn form a basis for

Rn or Cn if:

v1, ..., vn are linearly independent

&

{vk}∞k=1 spans Rn or Cn.

From Linear Algebra we know that the span collects all possible linear combinations of

vectors in a vector space.

Example 3.1.1. Let e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1). Then {e1, e2, e3} forms an

orthonormal basis for R3. This means that the vectors are all orthogonal, ⊥, to each other

and their norms ‖ek‖ = 1.

Proof. We need to express any vector v ∈ R3 as a sum of these basis vectors ek. Observe

that xe1 + ye2 + ze3 = (x, y, z) =: v, so {e1, e2, e3} spans R3.

3.2 Vector spaces

A vector space V is a non-empty set of vector elements v which are contained within the

set under the operations addition (+) and scalar multiplication (·). This means that for the

first operation (+), any pair of elements v,w ∈ V generate a third vector v + w = u ∈ V .

Furthermore, if we take a complex scalar α ∈ C, then the length of any vector in V may

7
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be scaled through the second operation (·), denoted by αv or vα. Finally, any vector space

must satisfy the so-called vector axioms for these operations.

We say that a vector space is finite dimensional whenever ∃n linearly independent vectors

v1,v2, ...,vn ∈ V, for n ∈ N which span V . The dimension of such a vector space is n.

Otherwise, V is called infinite dimensional. In functional analysis the attention is centered

more around such infinite dimensional vector spaces, as we will see later on. An example is

the vector space of functions. For this purpose, we present the following definition:

Definition 3.2.1. (C[a, b]) Given a closed fixed interval I = [a, b] where a < b we denote

C[a, b] as the set of all continuous functions f : [a, b]→ C.

It can be shown that C[a, b] is a vector space of infinite dimension. Furthermore, any function

f ∈ C[a, b] is bounded and attains both its supremum and infimum on the interval [a, b]. It

follows from a basic theorem that if f is a continuous function on a closed interval, then |f |

attains its max and min values. We can further specify what kind of continuous functions we

consider. Denote by C0(R) the set of all continuous functions on R which tend towards 0 as

|x| → ∞. Denote by Cc(R) the set of all continuous functions which have compact support

in R. Let us illustrate this with a short example:

Example 3.2.1. Let the following functions be defined on R.

f1(x) := e−x
2

,

f2(x) := x3 + 2x+ 4,

f3(x) := sin(πx)χ[−2,2](x),

f4(x) :=
1

1 + x2
.

Here the functions f1 and f4 belong to C0(R), since they go towards 0 as x→∞. Whereas

f3 ∈ Cc(R) since its support suppf3 = [−2, 2] is compact, whilst f2 is simply an element of

C(R), see Figure [3.1].

8
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Figure 3.1: A sketch of the functions f1, f2, f3 and f4.

Definition 3.2.2 (The lp-space). The set of all complex sequences v = {vk}∞k=1 where

∞∑
k=1

|vk|p <∞, p ≥ 1, (3.4)

is called the lp(N)-space.

We may sometimes omit the specification of N as it is often clear from context. The lp space

has infinite dimension, where the more notable lp-spaces are the l1, l2 and l∞-spaces. We

will also explore what happens when the summation is replaced by integrals.

Another operation which may be satisfied in certain vector spaces is the inner product which

we will discuss more later on. Finally, for such vector spaces one may easily define the

topological notions of open, closed, closure, a boundary, etc. As this is quite trivial, we skip

these definitions.

9
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Normed Vector Spaces

In this chapter we will consider norms and linear operators. Our goal is to eventually

establish a theory of vector spaces which allows us to work with vector spaces in a similar

manner to Rn. This applied structure will simplify the mathematical modelling in Fourier

analysis.

4.1 The norm of a vector space

In the previous chapter we defined the norm of a vector v ∈ Rn (see Definition 3.1). Let us

now consider a general vector space V and define how any norm applies to elements of V .

Definition 4.1.1 (Norm). A norm in a vector space V is a function which sends an element

v ∈ V into [0,∞)

‖ · ‖ : V → [0,∞) (4.1)

which satisfies the following conditions:

(i) ‖v‖ ≥ 0, ∀v ∈ V, and ‖v‖ = 0⇔ v = 0

(ii) ‖αv‖ = |α| ‖v‖, ∀v ∈ V, α ∈ C

(iii) ‖v + w‖ ≤ ‖v‖+ ‖w‖, ∀v,w ∈ V

If the norm comes from an inner product then
∣∣〈u,v〉∣∣2 ≤ ‖u‖2 · ‖v‖2, ∀u,v ∈ Rn (orCn)

where 〈u,v〉 represents the inner product between two vector quantities. In particular, if

10
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V = l2(N) then

〈u,v〉 :=
n∑
k=1

xkyk, x,y ∈ R. (4.2)

Now we formally define a normed vector space V as a vector space equipped with a norm.

This means that the norm may be applied to all the elements v inside the vector space.

Conversely, there are many norms which may be induced upon a vector space V . We will

consider several different norms throughout this thesis. Whenever we consider multiple

vector spaces with different norms, a symbol in the index of the norm will be used, e.g.,

‖ · ‖V . In regards to the above conditions, it is often easy to check whether or not the

two first conditions hold, whilst the triangle inequality may require some fidelity for certain

norms.

Make special note that the 4th property above is called the Cauchy-Schwartz inequality. It

can be derived through the 3rd property and holds in certain other vector spaces as well.

Example 4.1.1. Recall C[a, b] the space of continuous functions, we claim that the supremum

norm ‖ · ‖∞ given by

‖f‖∞ = sup
x∈[a,b]

|f(x)| = max
x∈[a,b]

|f(x)| (4.3)

is well defined. The last equality holds since any f ∈ C[a, b] attains its maximum value. Let

us verify that expression (4.3) defines a norm in the vector space C[a, b].

Proof. Firstly, we see that ‖f‖∞ = 0 if and only if (iff) f ∈ C[a, b] such that f = 0.

Clearly |f(x)| ≥ 0 ∀ f ∈ C[a, b]. Also, if ‖f‖ = 0 then f = 0, which means that property

(i) is satisfied. Secondly, (ii) is satisfied by checking that ‖αf‖∞ = maxx∈[a,b] |αf(x)| =

|α| maxx∈[a,b] |f(x)| = |α| ‖f‖∞. Lastly, if we consider two functions f, g ∈ C[a, b], we should

notice that if we pick any x ∈ [a, b], the absolute value of the sums are equivalent to:

|f(x) + g(x)| ≤ |f(x)|+ |g(x)| (by the triangle inequality)

≤ max
x∈[a,b]

|f(x)|+ max
x∈[a,b]

|g(x)|.

By using the definition of the supremum norm, we see that

‖f + g‖∞ = max
x∈[a,b]

|f(x) + g(x)| ≤ ‖f‖∞ + ‖g‖∞.

and the claim holds.

11
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Example 4.1.2. Now for the vector space lp(N) from Definition 3.2.2, we claim that we can

equip it with the following norm

‖v‖lp =

(
∞∑
k=1

|vk|p
)1/p

(4.4)

where the index of ‖ · ‖ refers to the specific lp space, p ≥ 1.

Proof. It is easy to see that properties (i) and (ii) hold, thus we omit them from the proof.

Now for (iii), we do the following. Let v,w ∈ lp(N), and using the Minkowskii’s inequality

for sequences observe that the normed sum becomes

‖v + w‖lp =

(
∞∑
k=1

|vk + wk|p
)1/p

≤

(
∞∑
k=1

|vk|p
)1/p

+

(
∞∑
k=1

|wk|p
)1/p

= ‖v‖lp + ‖w‖lp

which satisfies (iii).

Also notice that for p = 2, the norm in Equation (4.4) is analogous to the Euclidean norm

for infinite dimensions, whilst if p = ∞ it can be shown that the supremum norm is well

defined for l∞.

4.2 Linear operators

Consider the structure of Rn and Cn, notice that they are linear, which means that the

elements of the sets all satisfy the axioms of linearity (see 1. and 2. below). On finite

n-dimensional vector spaces, we often consider linear transformations by n × n matrix

operations. Unfortunately, on infinite dimensional vector spaces the concept of an

∞ × ∞ matrix loses its practicality. Therefore we will now see how to establish linear

operators in normed vector spaces. Generally, a linear operator T from Rn to Rm is a

function T : Rn → Rm which satisfies the properties:

1. T (x + y) = T (x) + T (y), ∀x,y ∈ Rn

2. T (αx) = αT (x), ∀x ∈ Rn, α ∈ R.

12
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If we combine these two properties and apply them to the topic of normed vector spaces, we

can define an operator T which to any element v ∈ V1 associates a new element Tv ∈ V2.

Here V1, V2 are two complex vector spaces not necessarily equal, i.e., V1 6= V2. Any such

operator is linear if

T (αv + βw) = αT (v) + βT (w), α, β ∈ C, v,w ∈ V1 (4.5)

is satisfied. Consider the following example.

Example 4.2.1. Let T : C[0, 1]→ C where T1f =
(
f(0), f(1)

)
and T2f =

(
f(0), f(1

2
)2
)

1. Is T1 a linear operator? Choose f, g ∈ C[0, 1] and α, β ∈ C, then

T1
(
αf + βg

)
=
(
αf(0) + βg(0), αf(1) + βg(1)

)
=

=
(
αf(0), αf(1)

)
+
(
βg(0), βg(1)

)
= αT1f + βT1g

which satisfies Equation (4.5) ⇒ T1 is linear.

2. How about T2? Following the same procedure as above, we get that

T2
(
αf + βg

)
=
(
αf(0) + βg(0),

[
αf(

1

2
)
]2

+
[
βg(

1

2
)
]2)

=
(
αf(0), α2f(

1

2
)2
)

+
(
βg(0), β2g(

1

2
)2
)
6= αT2f + βT2g

which shows that T2 is not linear.

Since the vector space V is equipped with a norm, the next step is to equip a linear operator

with a norm. This may be done in the following manner.

Definition 4.2.1 (The norm of an operator). For two normed vector spaces, V1, V2 and a

linear operator T : V1 → V2, we denote the norm of the operator by ‖T‖. Then ‖T‖ is the

smallest number K ≥ 0 which satisfies:

‖T‖ = sup
v 6=0

(
K
‖Tv‖V2
‖v‖V1

)
≤ K

‖Tv‖
‖v‖

∀v ∈ V1. (4.6)

Observe that any such K bounds the operator. If such a number K does not exist, we say

that ‖T‖ =∞. To better understand this definition, we consider the following example.

13
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Example 4.2.2. What is the norm of T1 from the previous example?

‖T1‖ = sup
0≤x≤1

‖T1f‖C
‖f‖C[0,1]

= sup
0≤x≤1

‖
(
f(0), f(1)

)
‖Euclideannorm

‖f‖∞

= sup
0≤x≤1

√
|f(0)|2 + |f(1)|2

sup
0≤x≤1

|f(x)|
where



|f(0)| ≤ sup
0≤x≤1

|f(x)|,

&

|f(1)| ≤ sup
0≤x≤1

|f(x)|.

(?)

≤ sup
0≤x≤1

√
‖f(x)‖2∞ + ‖f(x)‖2∞
‖f(x)‖∞

≤
√

2 ‖f(x)‖∞
‖f(x)‖∞

=
√

2.

So ‖T1‖ ≤
√

2, and we know that the linear operator T1 is bounded by this number (the

norm cannot achieve a greater value). Now it remains to check if ∃f ∈ C[0, 1] such that

‖T1‖ =
√

2. Suppose f(x) = 1, then

‖T1‖ =

√
|1|2 + |1|2
sup

0≤x≤1
|1|

=

√
2

1
=
√

2.

Regarding (?): Here we are considering all possible functions f ∈ C[0, 1] at the same time.

Remark. In cooperation with the Definition 4.2.1 on the norm of an operator and the above

result, we see that
√

2 is the smallest number which guarantees that ‖T1f‖ ≤
√

2 ‖f‖ holds

∀ f ∈ C[0, 1] s.t. T1f ∈ C. However, not all operators are bounded on every normed vector

space.

Whether the dimension of a vector space V is finite or infinite may have significant impacts

on how we need to treat or deal with an operator in the general sense. Yet, if we can show

that it is bounded, then we can treat the operator T similarly to how we would in Rn.

Like a regular map from linear algebra, a linear operator may also be classified as injective

and/or surjective, bijective if both are satisfied. Let us apply these definitions to the operator

T1 : C[0, 1]→ C from the previous examples.

Example 4.2.3. Let T : C[0, 1]→ C, T f =
(
f(0), f(1)

)
1. Is T injective?

First recall that T injective ⇔ Tf = (0, 0) ⇒ f = 0. However, we can clearly find a

14
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counterexample, e.g.,

f1(x) := x(x− 1) =⇒ T
(
x(x− 1)

)
=
(
0 · (−1), 1 · 0

)
= (0, 0) = 0

2. Is T surjective?

To satisfy this, we need that ∀w ∈ C, ∃v ∈ C[0, 1] such that T (v) = w.

Now if we pick any w := (α, β) ∈ C, notice that for

f2(x) := (1− x)α + xβ =⇒ T
(
f2(x)

)
= (α + 0 · β, 0 · α + β) = (α, β) = w

3. T is not bijective since it is not injective and surjective.

Example 4.2.4. Let u := {u1, u2, ...} be a bounded sequence of complex numbers, and let

T : l1(N)→ l1(N) be defined by

T{vk}∞k=1 = {ukvk}∞k=1.

Let us prove that T is a bounded operator, and show that ‖T‖ = supk=1,2,3,... |un|.

1. To begin, we denote by v = {vk}∞k=1, and w = {wk}∞k=1, then

T (αv + βw) = T (αv1 + βw1, αv2 + βw2, ...)

= u1(αv1 + βw1), u2(αv2 + βw2), ...

= α(u1v1, u2v2, ...) + β(u1w1, u2w2, ...) = αTv + βTw,

which confirms that T is linear.

2. To show that T is bounded, we make note that |uk| ≤ sup |uk|. It follows that

‖Tv‖l1 = ‖u1v1, u2v2, ...‖l1 =
∞∑
1

|ukvk| =
∞∑
1

|uk| · |vk|

≤ sup |uk|
∞∑
1

|vk| = sup |uk| · ‖v‖l1 , k = 1, 2, ...

=⇒ ‖T‖ =
‖Tv‖
‖v‖

≤ sup |uk|

which shows that ‖T‖ is bounded. Now we choose an element v = (0, 0, ...,

k︷︸︸︷
1 , 0, 0, ...)

such that Tv = (0, 0, ..., uk, 0, 0, ...). But this implies that ‖Tv‖l1 = |uk|, where the

15
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definition of a supremum requires that |uk| > sup |un| − ε. But this implies that

‖T‖ = |uk|
1
≥ sup |un| − ε. Consequently, we arrive at the following relation

sup |uk| ≥ ‖T‖ ≤ sup |uk| − ε

which squeezes the norm into satisfying ‖T‖ = sup |uk|.

The topic of linear operators is one which we will return to and expand upon throughout

this thesis.

16
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Banach Spaces

The concept of a Banach space was first introduced by Stefan Banach in his 1920 dissertation

where he formally called them class E -spaces. His theories and notions are said to have laid

the foundation of what we now call functional analysis (O’Connor & Robertson, 2000). As

general Banach spaces can be quite complicated to deal with, we will mainly focus on the

analytic structures which hold for all Banach spaces.

5.1 A complete vector space

Before we give a formal definition of a Banach space, let us consider some important

conditions which need to be fulfilled by the elements of a vector space V .

Definition 5.1.1 (Cauchy sequence). Let {vk}∞k=1 be a sequence in a normed vector space

V . Such a sequence is said to be Cauchy if

∀ε > 0 ∃N ∈ N such that ‖vi − vj‖ ≤ ε ∀i, j ≥ N. (5.1)

Thus the elements of such a sequence become arbitrarily close to one another. There are

many examples where a Cauchy sequence does not converge towards an element within V .

However, for such cases it is possible to show (using mathematics beyond the scope of this

thesis) that the Cauchy sequence will converge in an extended space V ′ which expands the

initial space V . The next example will illustrate the Cauchy-requirement.

17



Chapter 5

Example 5.1.1. Let us give an example of a sequence which is Cauchy, and one which is

not in the normed vector space R where the norm of an element x ∈ R corresponds to its

absolute value, i.e., ‖x‖ = |x|.

(i) Consider the sequence {xk}∞k=1 where xk := k2, k ∈ N. Then

‖xi − xj‖ = |xi − xj| = |i2 − j2| ≥

3, if i 6= j.

0, if i = j.

and we see that the sequence is not Cauchy because a simple choice of ε = 1 would not

satisfy Equation (5.1).

(ii) Now if yk := k
k+1

we must find N such that ‖yi − yj‖ < ε for all i, j ≥ N . We have

‖yi − yj‖ =

∣∣∣∣ i

i+ 1
− j

j + 1

∣∣∣∣ =

∣∣∣∣(j + 1)i− j(i+ 1)

(i+ 1)(j + 1)

∣∣∣∣ =

∣∣∣∣ i− j
(i+ 1)(j + 1)

∣∣∣∣ =: (∗)

Now assume i > j and notice that i−j
i+1

< 1, then

(∗) =
i− j

(i+ 1)(j + 1)
<

1

j + 1
.

Choose N to be any integer s.t. N > 1
ε
⇔ ε > 1

N
. Thereby 1

j+1
≤ 1

N
< ε, so for every

j ≥ (N − 1) we get that |yi − yj| < ε, so yk is Cauchy.

Notice that the sequence yk converges towards 1 since lim
k→∞

k
k+1

= 1. Then if we were to

change the normed vector space R into R/{1}, then the sequence, although Cauchy, would

no longer be converging towards an element of the space. To avoid all such cases and thereby

be able to properly work with limits, we present the following definition.

Definition 5.1.2 (Completeness). A vector space V is called complete whenever all Cauchy

sequences {vk}∞k=1 in V converge to an element v ∈ V .

Now we are able to give a formal definition of a Banach space.

Theorem 5.1.1 (Banach space). A normed vector space V is a Banach space if it is

complete. We denote such spaces by B.
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So the main advantage a Banach space provides, is that it becomes much easier to check

whether or not a sequence of vectors converges. If we can show that {vk}∞k=1 ∈ B is Cauchy,

then we immediately know that it converges. Particularly, we know that it converges to an

element of the space, and we can give the following corollary.

Corollary 5.1.1.1. If B is a Banach space ⇔ every Cauchy sequence {vk}∞k=1 converges to

an element of B.

Hence, we say that the space is closed under limiting operations. A final result from

completeness is presented in the following lemma.

Lemma 5.1.2. Let {vk}∞k=1 be a Cauchy sequence in a normed vector space V . Then it is

bounded, i.e., ∃c > 0 such that ‖vk‖ < c, k ∈ N.

Proof. Suppose {vk}∞k=1 is a Cauchy sequence, and observe from the triangle inequality that

‖vk‖ = ‖vk− vj + vj‖ ≤ ‖vk− vj‖+ ‖vj‖ . Now fix ε := 1 such that ‖vi− vj‖ ≤ 1, ∀i, j ≥ N .

By inserting this into the initial observation, we get that: ‖vk‖ < 1+‖vj‖. Choose j = N+1

such that ‖vk‖ < 1 + ‖vN+1‖ and notice that all terms beyond the N th is bounded, provided

k > N . So {vk}∞k=N is bounded. It remains to check the finitely many terms before the N th

term, but clearly ‖vk‖ ≤ max(‖v1‖, ..., ‖vN‖). Then we can finally find the constant c which

bounds all the terms of {vk}∞k=1.

To sum up, we see that in a Banach space B, every Cauchy sequence converges, and they

converge towards elements of B.

5.2 Examples of Banach spaces

Some of the vector spaces we have already considered are in fact Banach spaces. Rn and Cn

induced with the Euclidean norm, C[a, b] with the supremum norm and the sequence spaces

lp(N) with their respective p-norms are all examples of Banach spaces. Actually, it has been

proven that all finite-dimensional normed vector spaces are complete and therefore Banach

(Christensen, 2010, p. 49). Let us instead prove that a particular lp-space is Banach, for
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example the l∞ space of all bounded sequences:

l∞(N) :=

{
{xk}∞k=1

∣∣∣xk ∈ C, sup
k∈N
|xk| <∞

}
. (5.2)

Proof. We wish to prove that l∞(N) is a Banach space w.r.t. to the norm ‖x‖l∞ = sup
k∈N
|xk|.

First we must show that l∞(N) is a vector space. But clearly l∞(N) is a set of sequences

where for any pair
(
{xk}, {yk}

)
their sum and products with scalars are contained within

the set.

Let us check that the norm is well defined. We leave it to the reader to verify that properties

(i) & (ii) are satisfied. Now for (iii): let x,y ∈ C then by using the triangle inequality along

with maximizing the result through the supremum, we see that

‖x + y‖l∞ = sup
k∈N
|xk + yk| ≤ sup

k∈N

(
|xk|+ |yk|

)
≤ sup

k∈N
|xk|+ sup

k∈N
|yk| = ‖x‖l∞ + ‖y‖l∞ .

Since the result is finite, the norm is well defined.

We will now consider a more concrete example. Consider the norm: ‖(x1, x2)‖ := max
0≤x≤1

{|x1|, |x2|}

in R2. Notice that this is the supremum norm for the Real-plane. Denote x := (x1, x2). Let us

show that it satisfies the conditions for being a norm and provide a geometric representation

of its unit ball B
(

(0, 0), 1
)

:

(i) ‖x‖ = max
0≤x≤1

{|x1|, |x2|} ≥ 0 & ‖x‖ = 0⇔ x1 = x2 = 0

(ii) ‖αx‖ = max
0≤x≤1

{|αx1|, |αx2|} = max
0≤x≤1

{|α| |x1|, |α| |x2|}

= |α| max
0≤x≤1

{|x1|, |x2|} = |α| ‖x‖

(iii) ‖x + y‖ = max
0≤x≤1

{|x1 + y1|, |x2 + y2|} using the triangle inequality we get :

≤ max
0≤x≤1

{|x1|+ |y1|, |x2|+ |y2|} ≤ max
0≤x≤1

{|x1|, |x2|}+ max
0≤x≤1

{|y1|, |y2|}

= ‖x‖+ ‖y‖

So ‖(x1, x2)‖ is a norm in R2. Usually we visualize a unit ball in the plane as a circle.

However we claim that the following Figure [5.1] represents a unit ball.
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Figure 5.1: A representation of the unit ball in the supremum norm.

Intuitively, our visual sense tells us that this is a square. But if we use the definition given by

the norm, we will see that this is in fact the representation of a unit ball (circle)! Think of it as

following. Suppose the largest value is r = 0.25. Fix x1 := −0.25 and let x2 ∈ (−0.25, 0.25).

Now the norm ‖(x1, x2)‖ ≤ 0.25 for all these points, and notice that by marking all the

points given by x2, we can draw the line l1 shown in Figure 5.1. Then choose x1 := 0.25

and repeat the same procedure for all possible x2, this should draw the line l2. If we switch

the roles of x1 and x2, it should now be clear that we will be able to draw the missing lines

of the square centred at (0, 0) with side lengths 1
2
. Consider this as one iteration, then by

performing more iterations ∀r ∈ [0, 1) we see that we can mark all values inside the square.

Since these are all the points from the origin whose norm is strictly less than 1, we see that

the figure does represent the unit ball B
(

(0, 0), 1
)

=
{

v ∈ R2
∣∣∣ ‖v‖ < 1

}
.

Example 5.2.1. Another interesting example is the unit ball described by the norm:

‖(x1, x2)‖ :=
√
x21 + 4x22 shown in Figure 5.2. We omit the proof that the norm is well

defined. In order to find its unit ball, we must consider the equation:
√
x21 + 4x22 = 1 ⇔

x21 + (2x2)
2 = 12. Clearly, this represents a horizontal ellipse with a major axis of 1 on the

x1-axis and semi axis of 1
2

on the x2-axis. By following the same idea as in the previous

example, notice that a smaller choice of radius in the ball centered at the origin provides us

21



Chapter 5

with a smaller horizontal ellipse. E.g., for r := 1
4
, the major- and semi axis are shortened

to 1
2

and 1
4

respectively. By allowing r ∈ (0, 1) to achieve all these values except r = 1, we

are able to mark all the points inside the vertical ellipse. Thus the unit ball of this norm

consists of all the points inside such a vertical ellipse.

Figure 5.2: Another representation of the unit ball in a norm.

By changing the value of p for the Lp-space of functions, the unit ball can be represented by

quite a lot of different figures. Some examples are an astroid, a rhombus and a square with

rounded corners, but there are many other possibilities.

5.3 Linear operators on Banach spaces

It is often difficult to define a linear operator directly on an infinite dimensional vector space

due to convergence issues (Christensen, 2010, p. 54). We will investigate this further in

Section 9.1. For now, we only verify that the properties of such pre-defined linear operators

hold. We give the following example based on an exercise from Christensen [p. 59].

Example 5.3.1. Let x = (x1, x2, ..., xn, ...), then we define

the right-shift operator T : l1(N)→ l1(N), T (x) = (0, x1, x2, ..., xn, ...) and

the left-shift operator S : l1(N)→ l1(N), S(x) = (x2, x3, ..., xn, ...)
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1. What is the norm of these operators? Well, recall that in l1(N) the norm is given as:

‖x‖1 =
∞∑
k=1

|xk|, for x ∈ l1(N). Before we look at the ratio, let us find the norms

‖Tx‖1 & ‖Sx‖1:

‖Tx‖1 = |0|+ |x1|+ |x2|+ |x3|+ · · · = ‖x‖1

‖Sx‖1 = |x2|+ |x3|+ |x4|+ · · · ≤ ‖x‖1
(5.3)

Then it follows that

‖T‖ =
‖Tx‖1
‖x‖1

=
‖x‖1
‖x‖1

= 1. ‖S‖ =
‖Sx‖1
‖x‖1

≤ ‖x‖1
‖x‖1

= 1.

Since ‖Tx‖1 = ‖x‖1, for all x ∈ l1(N), then T is an isometry. However, we claim that

this is not the case for S. To prove this we need only find one vector x∗ such that

‖Sx∗‖ 6= ‖x∗‖. Particularly, let x∗ = (1, 0, 0, ...) ∈ l1(N) whose norm may be verified

as ‖x∗‖1 = 1. When the left-shift operator acts on x∗, we get that Sx∗ = (0, 0, 0, ...)

which clearly has norm ‖Sx∗‖1 = 0. So S is not an isometry.

2. Another question we could investigate is whether ST = TS = I. First, let us think

of ST (x) similarly to how we do function compositions, i.e.,
(
g � f

)
(x) = g

(
f(x)

)
.

Then ST (x) = S
(
T (x1, x2, ...)

)
= S(0, x1, x2, ...) = (x1, x2, ..., ) = x. So ST = I.

On the contrary, the reversed operation: TS(x) = T
(
S(x1, x2, ...)

)
= T (x2, x3, ...) =

(0, x2, x3, ...) 6= x, and we see that both operators are not invertible.

In this example we see that when the operator T acts on elements of l1, it actually preserves

the norm of l1. Although S restrains the norm, i.e., keeps it bounded with maximum as

‖ · ‖l1 , we were able to construct cases where the norm is smaller compared to elements of l1.

We also discovered that it is necessary to check both the orderings of ST and TS to ensure

invertibility of the operators.
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Hilbert Spaces

In this chapter we will discuss a more specialized type of Banach spaces, namely Hilbert

spaces. These spaces are often credited to the work performed by the German mathematician

David Hilbert in 1902-1912 when he studied integral equations. Hilbert spaces have directly

impacted many fields such as integral equations, Fourier analysis, quantum mechanics and

many more (Carlson, 2006). The name Hilbert space was first coined by John von Neumann

in 1929 as a tribute, and was further adopted by others. We will show that for such Banach

spaces, the norm ‖ · ‖ can be represented by an inner product 〈·, ·〉 which imposes additional

structures to the space.

6.1 Inner product spaces and additional structures

An inner product is a function 〈·, ·〉 : V × V → C which ∀α, β ∈ C and v,u,w ∈ V satisfies

that:

(i) 〈αv + βw,u〉 = α〈v,u〉+ β〈w,u〉 (Linearity in its first argument)

(ii) 〈v,w〉 = 〈w,v〉

(iii) 〈v,v〉 ≥ 0 and 〈v,v〉 = 0⇔ v = 0

If we equip a vector space V with such an operation, then we call it an inner product space.

In fact, some of the norms of the vector spaces we have considered earlier originate from
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inner products. For such inner product spaces, the norm is defined by

‖v‖ :=
√
〈v,v〉, ∀v ∈ V (6.1)

Notice that this norm is equivalent to ‖v‖l2 =

(
∞∑
k=1

|vk|2
)1/2

which is the l2 norm for p = 2

which we saw in Equation (4.4). Consequently, Equation (6.1) is generally called the l2-norm,

but may also be identified as the Euclidean norm (Weisstein, 2003).

A vector space whose norm is induced by an inner product achieves multiple additional

properties, we will consider the following:

(i) The parallelogram law

‖v + w‖2 + ‖v −w‖2 = 2
(
‖v‖2 + ‖w‖2

)
(6.2)

holds for all v,w ∈ V .

(ii) The inner product may be related to the norm for any v ∈ V by:

‖v‖ = sup
{
〈|v,w|〉

∣∣∣w ∈ V, ‖w‖ = 1
}
.

Beware that if the first property does not hold, then this implies that the norm ‖ · ‖ of the

vector space is not induced by an inner product. Then we can use this property to check

whether or not a norm comes from an inner product. The second property allows us to find

the norm of any v ∈ H through the inner product between v and the unit ball surrounding

it in H. With this in mind, we can now formally define what a Hilbert space is.

Definition 6.1.1 (Hilbert space). A vector space V with an inner product 〈·, ·〉, which is a

Banach space w.r.t. the norm ‖ · ‖ =
√
〈·, ·〉 is called a Hilbert space. Such spaces will be

denoted by H.

It follows that an inner product space V is a Hilbert space if every Cauchy sequence {vk}∞1
converges to an element v ∈ V with respect to the norm ‖v‖. In short, whenever an inner

product space is complete it defines a Hilbert space.

Based on this, we can easily check that Rn,Cn, l2(N) are all Hilbert spaces with respect to
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‖u‖2 = 〈u,v〉 =
∞∑
k=1

ukvk. However, some of the previously discussed vector spaces do not

classify as Hilbert spaces, e.g., lp for p ≥ 1, excluding p = 2. We present the following

example based on an exercise from Christensen’s book [p. 85].

Example 6.1.1. We claim that the vector space C[a, b] equipped with the norm ‖ · ‖∞ does

not come from an inner product. Let us give a proof by contradiction. For simplicity, we fix

[a, b] := [0, 2] and assume that ‖ · ‖∞ on C[0, 2] does come from an inner product. Now let

f(x) =

x, if x ∈ [0, 1],

2− x, if x ∈ [1, 2],

g(x) =

1− x, if x ∈ [0, 1],

x− 1, if x ∈ [1, 2].

Where one can verify that:

(
f + g

)
(x) =

1, if x ∈ [0, 1],

1, if x ∈ [1, 2],

(
f − g

)
(x) =

−1 + 2x, if x ∈ [0, 1],

3− 2x, if x ∈ [1, 2].

Let us now use the definition of the ‖ · ‖∞ norm, which “grabs” the supremum value of each

element. Then according to the parallelogram law, the subsequent relation must hold:

‖f + g‖2∞ + ‖f − g‖2∞ = 2
(
‖f‖2∞ + ‖g‖2∞

)
12 + 12 = 2

(
12 + 12

)
2 = 4.

But clearly this is a contradiction, therefore we conclude that ‖ · ‖∞ does not come from

an inner product. Another interesting and convenient result of an inner product space, is

that we can easily withdraw information about the angles between its elements, particularly

orthogonality.

Example 6.1.2. Let v = (0, 1) and w = (1, 0), then 〈v,w〉 = (0 · 1, 1 · 0) = 0, so v ⊥ w.
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Figure 6.1: A representation of two orthogonal vectors v ⊥ w and their vector sum u.

It is often convenient to collect all vectors v1,v2, ... ∈ H which are orthogonal to each other

in what we call an orthogonal system {vk}∞k=1, where 〈vk,vl〉 = 0 for all k 6= l. Furthermore,

this orthogonal system can be separated into two subspaces U and W of H such that the

orthogonal elements are separated from each other. Then these subspaces complement one

another in such a way that we may reconstruct the Hilbert space through a direct sum.

Definition 6.1.2 (Direct sum). Let v ∈ H, u ∈ U and w ∈ W . The sum between two

subspaces U and W of H is called direct if and only if v ∈ U + W is uniquely represented

by v = u + w. Denoted by U
⊕

W .

Example 6.1.3 (Direct sum). Consider the space Rn. Let

W = span{wk}pk=1, U = span{uj}qj=1, where p, q ∈ N, wk, uk ∈ Rn.

Proposition: W
⊕

U is direct iff the vectors w1, ..., wp and u1, ..., uq are linearly independent.

Proof. Assume that ∃w,w′ ∈ W,u, u′ ∈ U s.t. w + u = v and w′ + u′ = v

w = c1w1 + · · ·+ cpwp, w′ = c′1w1 + · · ·+ c′pwp

u = d1u1 + · · ·+ dquq, u′ = d′1u1 + · · ·+ d′q + uq,

then,

w + u = w′ + u′

c1w1 + · · ·+ cpwp + d1u1 + · · ·+ dquq = c′1w1 + · · ·+ c′pwp + d′1u1 + · · ·+ d′q + uq

(c1 − c′1)w1 + · · ·+ (cp − c′p)wp + (d1 − d′1)u1 + · · ·+ (dq − d′q)uq = 0.
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Now, if we impose that W
⊕

U is a direct sum i.e., that v has a unique representation, then

clearly we need that c1 = c′1, ..., cp = c′p and d1 = d′1, ..., dq = d′q in order to have a non-trivial

solution to the above equation. This means that the vectors w1, ..., wp and u1, ..., uq must be

linearly independent, which completes the proof.

6.2 Functionals and linear operators

A linear operator which sends elements of H into the set of complex numbers C is called a

functional. More notably, a functional Φ : H → C may be thought of as a special case of a

linear operator, which implies that we can use Definition 4.2.1 to find its norm. Particularly,

observe that after Φ has acted on v ∈ H, then Φv is just a complex number. Thus, we can

replace ‖Φv‖ with |Φv| in the expression of the norm.

‖Φv‖ = sup
v 6=0

|Φv|
‖v‖

Interestingly, the set of all continuous linear functionals over H is itself a vector space, since

we may add and multiply linear functionals by scalars. Equipped with the norm ‖ · ‖ = 〈·, ·〉

we call this the dual space of H, commonly denoted by H∗. Moreover, the map defined by

〈·, ·〉 on an inner product space V is said to represent a linear functional on V , see Equation

(7.2) in the following chapter. This result leads us towards the famous Riesz Representation

theorem.

Theorem 6.2.1 (Riesz’ Representation Theorem). Given any bounded linear functional

Φ : H → C then there exists a unique w ∈ H such that Φv := 〈v,w〉, ∀v ∈ H.

Consequently a different choice of w gives root to a different functional. We may also consider

linear operators T between two Hilbert spaces H1, H2. Note that these are not functionals

on their own, since the ’destination’ is another Hilbert space. Assume that T : H1 → H2 is a

bounded linear operator. Then fix any w ∈ H2 and let Φ : H1 → C, Φv = 〈Tv,w〉. Make

special note that here v ∈ H1, whilst both arguments in the inner product Tv and w ∈ H2.

Now let us give a definition of an adjoint to an operator T , often denoted T ∗.
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Definition 6.2.1. Given a linear operator T which sends elements of a Hilbert space H1 →

H2, the corresponding adjoint T ∗ sends elements from H2 → H1. Then

〈Tx,y〉 = 〈x, T ∗y〉. (6.3)

One may easily show that such an operator is linear and bounded with (T ∗)∗ = T . The

norm may also be verified to be equal between T and T ∗ such that ‖T‖ = ‖T ∗‖.

Example 6.2.1. Let us investigate the operator T : l2(N)→ l2(N) given by

T (x1, x2, ...) := (3x2, 2x1, x3, x4, ...). If x,y ∈ l2(N) and α, β ∈ C, then we get that

T (αx + βy) =
(
3(αx2 + βy2), 2(αx1 + βy1), αx3 + βy3, ...

)
=

=
(
3αx2, 2αx1, αx3, ...

)
+
(
3βy2, 2βy1, βy3, ...

)
= αTx + βTy

So T is linear. Next we check if there exists a number K which bounds the operator.

Therefore we start by finding the norm of Tx and x. Clearly,

‖x‖l2 =

(
∞∑
k=1

|xk|2
)1/2

=
√
|x1|2 + |x2|2 + |x3|2 + |x4|2 + · · ·,

‖Tx‖l2 =
√
|3x2|2 + |2x1|2 + |x3|2 + |x4|2 + · · ·

≤
√
|3x1|2 + |3x2|2 + |3x3|2 + |3x4|2 + · · · = 3 · ‖x‖l2 .

We find the norm by using Definition 4.2.1, which simplifies into

‖T‖ =
‖Tx‖l2
‖x‖l2

≤ 3,

so T is bounded. Moreover, if we choose the vector x̃ := (0, 1, 0, 0, ...), then

‖T x̃‖l2 =
√

0 + |3|2 + 0 + 0 + · · · = 3 =⇒ ‖T‖ = 3.

From Definition 6.2.1 we know that 〈Tx,y〉 = 〈x, T ∗y〉. We wish to figure out how the

adjoint operator T ∗ acts on a vector y ∈ l2(N), for this purpose let us denote

T ∗y := (w1, w2, w3, w4, ...). (6.4)

Consider first the left-hand side, LHS, of the equation:

〈Tx,y〉 =
〈
(3x2, 2x1, x3, x4, ...), (y1, y2, y3, y4, ...)

〉
= 3x2ȳ1 + 2x1ȳ1 + x3ȳ3 + x4ȳ4 + · · ·
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Then by Equation (6.4) the right-hand side, RHS, gives:

〈x, T ∗y〉 =
〈
(x1, x2, x3, x4, ...), (w1, w2, w3, w4, ...)

〉
= x1w̄1 + x2w̄2 + x3w̄3 + x4w̄4 + · · ·

Finally, by comparing LHS and RHS notice that we need w1 = 2y2, w2 = 3y1, w3 = y3, w4 =

y4, ... therefore T ∗y = (2y2, 3y1, y3, y4, ...) , and we see that the adjoint operator T ∗ acts

rather similarly on a vector y as T acts on x.

Corollary: In cases where the operators prove to be equal, i.e. T = T ∗, we say that T is

self-adjoint.

6.3 Short summary of important aspects

Up until now we have been looking at normed vector spaces with specific properties. Let

us now present a short overview along with a figure. A Hilbert space H is always a Banach

space, but the opposite need not be true. Similarly, a Banach space is always normed, but

a normed vector space is not necessarily Banach. At the same time, a Hilbert space is an

inner product space, where an inner product space can have Cauchy sequences that do not

converge to an element of the space. In this case it cannot be classified as a Hilbert space as

it does not satisfy the Banach properties. Consequently, the Hilbert spaces are found in the

intersection between the Banach- and Inner product spaces, see Figure [6.2] below. As such,

the Hilbert spaces are clearly the most complex spaces induced with powerful analytical

structures. In the following chapter we will introduce a specific Hilbert space which provides

a simpler method for checking convergence of Fourier series.

Figure 6.2: A representation of vector spaces.
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The Function spaces

In this chapter we will present our most favourable vector spaces, i.e., the Lp(R)-spaces. For

a completely rigorous treatment which works for all functions within these spaces, it would

be necessary to give an extensive account of measure. To this extent, we will briefly discuss

when and how to apply the relevant measure theory. Afterwards, we investigate how to

apply an inner product to a norm.

7.1 Lp spaces

A function f : R→ C is said to be absolutely integrable if∫ ∞
−∞
|f(x)| dx <∞, (7.1)

all functions which satisfy Equation (7.1) are found in the L1(R)-space. However, in order

for this integral to make sense, we must require the functions to be measurable. Otherwise,

we may run into integrability issues whenever the function f fails to be piecewise continuous.

Definition 7.1.1 (Zero measure). A set S is of zero measure, denoted by m(S) = 0 if ∀ε > 0,

there exist open intervals Ik = (ak, bk) such that S ⊂
N⋃
k=1

(ak, bk) and
N∑
k=1

(bk − ak) < ε, where

N is either infinite or finite.

Examples of sets with zero measure are the countably infinite sets, e.g., {N,Z,Q} and all

finite sets. Informally we may think of a measurable function as a structure-preserving
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function between two sets of measure. To provide a more formal definition we require

significantly more measure theory which is outside the scope of this thesis. A well known

measurable function is the Dirichlet function defined by

f(t) =

1, if t ∈ Q,

0, if t ∈ R/Q.

which is discontinuous for all t. Such a function is not Riemann integrable, but has been

shown to be Lebesgue integrable. We will briefly discuss what this entails in Section 8.4

along with an example. Generally, we denote the set of all continuous functions f where |f |p

is integrable by:

Lp(R) :=

{
f : R→ C

∣∣∣ ∫ ∞
−∞
|f(x)|p dx <∞

}
, 1 ≤ p <∞. (7.2)

The “L” stands for Lebesgue. One may easily verify that ∀p ∈ [1,∞) these sets make up

vector spaces. Furthermore it can be proven that ∀p as described above, the corresponding

space satisfies the Banach conditions w.r.t. the norm

||f ||Lp :=

(∫ ∞
−∞
|f(x)|p dx

)1/p

, f ∈ Lp(R)

and the proof follows similar procedures as we have shown in earlier examples.

Proposition: When p ∈ (0, 1) we still have a vector space, but Lp(R) fails to satisfy the

triangle inequality.

Proof. Take for example f(x) =

x, if 0 < x < 1

0, otherwise.

g(x) =

1− x, if 0 < x < 1

0, otherwise.

and fix

p := 1
2
. If we assume the norm for p = 1

2
is well defined, then the norms can be found by:

‖f + g‖ 1
2

=

(∫ ∞
−∞
|f + g|

1
2

) 1
1
2

=

(∫ 1

0

√
|1|
)2

= 1.

‖f‖ 1
2

=

(∫ 1

0

√
|x|
)2

=

(
2

3
x

3
2

∣∣∣∣1
0

)2

=
4

9
.

‖g‖ 1
2

=

(∫ 1

0

√
|1− x|

)2

=

(
2

3
(1− x)

3
2

∣∣∣∣1
0

)2

=
4

9
.

However, notice that ‖f + g‖ 1
2

= 1 > 4
9

+ 4
9

= ‖f‖ 1
2

+ ‖g‖ 1
2

which contradicts the triangle

inequality.
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Similarly we can find examples and show this for the remaining p ∈ (0, 1). Since the triangle

inequality fails, we get that ‖·‖Lp is not a norm on Lp for this range of p, ultimately revoking

the Banach-title of the vector spaces. We move our focus onto the case p = 2 where the

functions are said to be square-integrable. In some cases we will also consider Lp(a, b), where

we restrict f to a section of R, i.e., f : [a, b]→ C.

7.2 The L2-space

Our goal is to show that the norm of L2(R) actually comes from an inner product. For this

purpose, we need to briefly explain what an equivalence relation is. Let f, g ∈ L2(R)

f ∼ g ⇔
∫ ∞
−∞
|f(x)− g(x)| dx = 0

In such cases, it means that we identify f with g, i.e., f ≈ g, because f and g are equal

almost everywhere. We collect all the functions f which are equal to 0 almost everywhere

by 0̃ :=
{
f ∈ L2(R)

∣∣∣f ∼ 0
}

. This implies that the elements of Lp(R) are (strictly speaking)

equivalence classes of functions which satisfy (7.2). The reason why this is necessary will

become clear in the proof of its inner product. Yet, in most cases we can usually pretend

that these elements are regular functions f : R→ C.

Let us now show that the L2-norm comes from an inner product which in turn implies that

L2 is a Hilbert space.

Theorem 7.2.1. The vector space L2(R) is a Hilbert space with respect to the inner product

〈f, g〉 =

∫ ∞
−∞

f(x)g(x) dx, f, g ∈ L2(R). (7.3)

Proof. A key element in this proof will be the usage of the Cauchy-Schwartz inequality, which

follows from the Hölders inequality for p = q = 2. This allows us the following representation
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for all f, g ∈ L2(R):

|〈f, g〉| =
∣∣∣∣∫ ∞
−∞

f(x)g(x) dx

∣∣∣∣
≤
∫ ∞
−∞
|f(x)g(x)| dx

≤

√∫ ∞
−∞
|f(x)|2 dx ·

√∫ ∞
−∞
|g(x)|2 dx

= ‖f‖L2 · ‖g‖L2 <∞, whenever f, g ∈ L2(R)

Hence the expression is well-defined (it exists). It remains to check that the function from

(7.3) actually represents an inner product. Firstly, for any given f1, f2, g ∈ L2(R) we show

that:

〈αf1 + βf2, g〉 =

∫ ∞
−∞

(
αf1(x) + βf2(x)

)
g(x) dx

= α

∫ ∞
−∞

f1(x)g(x) dx+ β

∫ ∞
−∞

f2(x)g(x) dx

= α〈f1, g〉+ β〈f2, g〉 (Linearity)

Secondly, we can show that if we interchange f and g in the inner product, we get:

〈g, f〉 =

∫ ∞
−∞

g(x)f(x) dx

=

∫ ∞
−∞

f(x)g(x) dx = 〈f, g〉

Lastly,

〈f, f〉 =

∫ ∞
−∞

f(x)f(x) dx 〈f, f〉 = 0

and m

=

∫ ∞
−∞
|f(x)|2 dx ≥ 0 f = 0̃

This completes the proof.

It should now be clear why the elements of L2(R) must be equivalence classes. Namely that

if f1(x) =

1 if x = 0,

0 otherwise,

then we have that f1 6= 0, yet 〈f1, f1〉 = 0.
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Example 7.2.1. In the previous chapter we mentioned that it is possible to equip C[a, b]

with an inner product. We will now show that this is true. For convenience we again fix

[a, b] := [0, 2].

Claim: The inner product from Equation (7.3) defines an inner product on C[0, 2], and the

proof follows from above, with integral limits from 0→ 2. Its associated norm is given by

‖f‖ =

√∫ 2

0

|f(x)|2dx, f ∈ C[0, 2].

Consider the functions

fn(x) := min(xn, 1) for n ∈ N, and f(x) :=

0 if x ∈ [0, 1),

1 if x ∈ [1, 2].

Clearly fn(x) ∈ C[0, 2], whereas f(x) /∈ C[0, 2]. Meanwhile, their normed difference shows

that

‖fn − f‖ =

√∫ 1

0

(xn − 0)dx+

∫ 2

1

(1− 1)dx =

√∫ 1

0

xndx→ 0 as n→∞.

As result, we see that the Cauchy sequence fn(x) converges towards f(x) which is an

element outside C[0, 2]. This means that C[a, b] achieves the additional property that we

can approximate discontinuous functions through the norm. So even though we were able to

apply an inner product to C[a, b], we simultaneously removed the Banach space property of

completeness. Consequently, we conclude that C[a, b] is not a Hilbert space w.r.t. the norm

given by ‖f‖.
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Fourier series and convergence

We have now covered the necessary theory in order to properly work with convergence of

Fourier series. In this chapter we give two definitions of Fourier series. The structure provided

by the Lp(R) spaces allows a more general study on convergence. Although there exists

many types of convergence, we will focus on three. Namely, norm, piecewise and uniform

convergence. We end this chapter by briefly discussing an alternative method which is often

used to study convergence, the Dirichlet Kernel.

8.1 Fourier series

As mentioned earlier, Fourier series naturally show up in the topic of heat-equations. Other

practical areas are in found in electrical engineering, analog signal processing of periodic

signals, vibration analysis and much more. Consequently, Fourier series are often used for

problems involving the concept of time, and it is therefore natural to replace the unknown

variable x by t. When discussing Fourier series, the most common construction is through

the trigonometric system, which was the first representation used (Fourier series, 2012).

Furthermore, we are interested in how the properties of a function f relates to the properties

of its corresponding Fourier series. We often restrict the functions to a 2π-periodic interval,

e.g., f ∈ L2(−π, π) or f ∈ L2(0, 2π) where

f(t+ 2π) = f(t) t ∈ R.
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One reason for considering L2(a, b), a, b ∈ R is that physical models and experiments often

are restricted to finite intervals. Examples of periodic systems are ’vibrating strings’ and

’musical tones’.

According to Christensen (p. 118) we have that f ∈ L2(−π, π) ⇒ f ∈ L1(−π, π), which

means that if f is square-integrable on the interval (−π, π) then it is also an integrable

function. This statement fails for f ∈ L2(R), as shown in Example 8.2.1. Given that

f ∈ L2(−π, π) then its corresponding Fourier series can be found by expanding the function

with respect to the trigonometric functions cosnt, sinnt, for n ∈ N. Hence the Fourier series

of f are represented by

f ∼ a0
2

+
∞∑
k=1

(an cosnt+ bn sinnt), (8.1)

where one can verify that the Fourier coefficients are given by

an :=
1

π
〈f, cosnt〉 =

1

π

∫ π

−π
f(t) cosnt dt, n = 0, 1, 2, ...

bn :=
1

π
〈f, sinnt〉 =

1

π

∫ π

−π
f(t) sinnt dt, n = 1, 2, 3, ...

This is similar to how Joseph Fourier himself represented the expansions of functions in

1807 (Fourier series, 2012). However, in modern mathematics we also often study complex

numbers. By using the well know relation of the complex exponential known as Euler’s

formula: e±iθ = cos θ ± i sin θ we can represent cosnt = eint+e−int

2
, and

sinnt = eint−e−int
2i

. Then by inserting this into Equation (8.1), one can check that if the

Fourier coefficients are given by

ck :=
1

2π

∫ π

−π
f(t)e−iktdt, for f ∈ L2(−π, π)

then the complex (or exponential) form of the Fourier series are:

f ∼
∞∑

n=−∞

cne
int. (8.2)

It is often useful to investigate the N -th partial sum of the Fourier series, defined as

SN(t) :=
a0
2

+
N∑
k=1

(ak cos kt+ bk sin kt) =
N∑

k=−N

cke
ikt. (8.3)
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Observe that both in Equation (8.1) and (8.2) we use the ’∼’ symbol rather than the equality

sign. This is due to an unclear convergence towards the function f . The “rate” that the

Fourier series converges towards the function f is also unknown. Generally, we say that

a Fourier series converges slowly if we need N to become sufficiently large, i.e., N → ∞.

Before we clarify the convergence of these series, we recall the concept of a basis.

Proposition. The functions {ek}∞1 :=

{
1√
2π
eikt
}∞
k=−∞

form an orthonormal basis for

L2(−π, π). This means that {ek}∞1 spans L2(−π, π) where all the {ek}∞1 functions are linearly

independent. Since the basis is orthonormal, the inner product between the elements is given

by 〈ei, ej〉 = δij. Where δij is the Kronecker delta function, i.e.,

δij =

1 if i = j,

0 if i 6= j.

It follows that any element f ∈ L2(−π, π) can be represented by f =
∞∑
k=1

〈f, ek〉ek (Christensen,

2010, p. 2:3). In fact, it is through this basis that the function f has been expanded in

Equation (8.2). To show this, we take a function g ∈ L2(R) which may be represented as

g(t) =
∞∑

k=−∞

〈g, 1√
2π
eikt〉 1√

2π
eikt

Then we use the norm defined by the inner product on L2(R) and recall how the exponential

coefficients ck of the Fourier series are given. Lastly, we sum together all the possible

representations and arrive at the desired form.

〈g, 1√
2π
eikt〉 =

1√
2π

∫ ∞
−∞

g(t)e−iktdt =
√

2π · ck,

which implies that g(t) =
∞∑

k=−∞

(
√

2π · ck)
1√
2π
eikt =

∞∑
−∞

cke
ikt

It follows that by expanding a function g with respect to an orthonormal basis, we arrive at

its Fourier series. There are other orthonormal bases which may be used to represent Fourier

series. However, a change in basis often requires a change of its period through a scaling of

the function. E.g., the basis {e2πikt}∞k=−∞ holds on the interval (−1
2
, 1
2
). As the proof is quite

technical, we omit it. Let us instead explain how to change the interval. Given a constant

38



Chapter 8

L ∈ R, we say that a function is L-periodic if f(t+L) = f(t). So for a function with general

period L, its Fourier series can be expressed through

f(t) ∼
∞∑
−∞

cne
2π
L
int,

where {e
2π
L
int}∞k=−∞ is an orthogonal basis. In the following sections we are interested in

expressing when and how Fourier series converge, i.e., that the partial sums SN(x) converge

to f(x). To this extent, we will investigate when the expression ′ limN→∞ SN = f ′ is true by

considering three types of convergence.

8.2 L2-convergence

We will begin by discussing the simplest manner in which Fourier series may converge, namely

convergence in a norm. For this purpose, we will focus on the norm defined in the L2-space

for the following reasons. Firstly, recall that ∀x = (x1, x2, ...) ∈ Rn we can represent it by

x = 〈x1, e1〉e1 + 〈x2, e2〉e2 + · · · . In comparison, the L2-space is a generalization of Rn where

the elements are equivalence classes of functions instead of vectors and the coordinates have

been extended to infinitely many coordinates. Therefore, one may refer to Hilbert spaces

as a natural extension of the Euclidean space (Weisstein, 2005). It follows that many ideal

structures and identities are valid in the L2-space compared to other normed spaces. Due to

all the added structure we have been applying through norms, inner products etc., we can

see that the functions in our spaces are better equipped to check for convergence. Finally,

we say that the Fourier series of a function f(t) ∈ L2(−π, π) converges in the L2-norm when∥∥∥∥f(t)− SN(t)

∥∥∥∥
L2(−π,π)

→ 0, as N →∞,

or more intuitively ∫ π

−π

∣∣∣∣f(t)−
N∑

k=−N

cke
ikt

∣∣∣∣2 dx→ 0 as N →∞. (8.4)

Make note that SN(t) need not become arbitrarily close towards f(t) for all t ∈ (−π, π)

(Christensen, 2010, p. 118:119). This dates back to 1966 when Carleson proved that given a
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L2-function, its Fourier series converges in the L2-norm as shown in (8.4) almost everywhere

(Fourier series, 2012). As before, this means that divergence occurs in a set of points of zero

measure. Two years later, Richard Hunt extended this result to cover f ∈ Lp(−π, π), ∀p > 1.

So far, the proof given by Hunt is regarded as the most difficult in the theory of Fourier

series (Walker, 2003, p. 9). The result from Hunt implies that if we replace the number 2

in Equation (8.4) by any p ∈ (1,∞), then we can talk about norm-convergence in general.

However, it becomes more difficult to show convergence in these cases, as they are no longer

Hilbert spaces.

Additionally, there is no automatic implication of convergence between the Lp(R) spaces.

By this we mean that checking the convergence of Fourier series for a function with respect

to the L2(R) norm gives no indication on its convergence in other Lp(R) spaces. We will

now consider an example to show that a function of sequences may converge in the L1 norm,

yet diverge in the L2-norm, and vise-versa.

Example 8.2.1. Let f1(x) :=


1√
x
, 0 < x < 1,

0, otherwise.

and f2(x) :=


1
x
, 1 < x <∞,

0, otherwise.

.

Then for f1 we have that

‖f1‖L1(0,1) =

∫ 1

0

∣∣ 1√
x

∣∣dx = 2
√
x

∣∣∣∣1
0

= 2.

‖f1‖L2(0,1) =

∫ 1

0

∣∣ 1√
x

∣∣2dx =

∫ 1

0

1

x
= lnx

∣∣∣∣1
0

= 0− (−∞) =∞.

Conversely, we see that for f2

‖f2‖L1(1,∞) =

∫ ∞
1

∣∣1
x

∣∣dx = lnx

∣∣∣∣∞
1

=∞.

‖f2‖L2(1,∞) =

∫ ∞
1

∣∣1
x

∣∣2dx = −1

x

∣∣∣∣∞
1

= 0 + 1 = 1.

This example shows that L1(R) is not a subspace of L2(R) (the same is true for the reversed

statement). Similar situations may be found when investigating convergence of Fourier series

on the whole of R.
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8.3 Pointwise convergence

A 2π-periodic function f(t) is called piecewise continuous on a closed interval [a, b] or on R,

if it is continuous except for at a finite number of discontinuous points t0. At these points

we say that f(t0) jumps such that the right- and left limits of f exists at each point t0, see

Figure [8.1]. More particularly, if both f(t) and its derivative f ′(t) are piecewise continuous,

then f(t) is called piecewise smooth. This is the case for the function in Figure [8.1], given

that we restrict the interval to [−2, 3). Furthermore, if f(t) is discontinuous at a point t0,

then its left limit lim
r>0,r→0

f(t0−r) =: f(t0−0) and its right limit lim
r>0,r→0

f(t0 +r) =: f(t0 +0)

are different.

Figure 8.1: A representation of a piecewise continuous function. By Math24, 2005.

The famous mathematician Dirichlet was the first to present a type of convergence for Fourier

series in 1829 (Fourier series, 2012). Based on his theorem, we give the following formulation:

Theorem 8.3.1 (Pointwise convergence). Let f be a 2π-periodic piecewise smooth function

with a finite number of maximum and minimum points. Then the Fourier series SN of a

function f converges to

lim
N→∞

SN(to) =

f(t0), if f(t) is continuous at t0,

f(t0−0)+f(t0+0)
2

, if f(t) is discontinuous at t0.

The proof is quite lengthy and complicated, so we omit it. We end this section by mentioning

that the above theorem may fail under certain conditions. This was originally shown by

Kolmogorov which constructed an absolutely integrable function, i.e., f ∈ L1(0, 2π), whose
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Fourier series diverges at every point. Interestingly, whenever there is a discontinuity at

t0 the partial sums of the Fourier series forces oscillations to occur on both sides of the

discontinuity. Let us represent this by the famous Square Wave, denoted by Sq(t) in Figure

[8.2]. Clearly the Square Wave function is discontinuous and periodic, where the vertical

lines represent the jump-discontinuity of the function.

Figure 8.2: An approximation of a square wave (orange) by its first 16 partial sums of Fourier

series (green).

One may verify that the partial sum of its Fourier Series is given by

SN(t) =
4

π

N∑
k=1

sin(2k − 1)2πt

2k − 1
.

Notice that Sq(t) is an odd function, which due to the properties of inner products forces

all the an coefficients in the trigonometric representation to disappear, because Sq(t) is

orthogonal to cosnt, for n = 0, 1, 2, ... Through a process called Fourier Synthesis where

the N th odd terms in the Fourier series are added together with the average of Sq(t), the

resulting Fourier series SN(t) is a continuous function (Serway & Jewett, 2013, p. 553:554).

These N -odd terms represent the number of oscillations (or harmonics) which occur between

the smallest periodic interval, e.g., [0.5, 1.5] in SN(t). Given that the function of interest

is continuous, then these oscillations are distributed evenly on the whole period L with

frequencies n
L

. They eventually become unnoticeable as N → ∞, or sooner if the Fourier

series converges quickly (Walker, 2003, p. 6). Since Sq(t) is discontinuous, notice that we
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get a so-called overshoot value where the partial sum of the Fourier series achieves a greater

value than the function f(t), and an undershoot where it achieves a smaller value. This is

called the Gibbs phenomenon and is a direct result from the oscillations being trapped or

restricted near the jump discontinuity, coupled with a slow rate of convergence proportional

to |n|−1(Walker, 2003). Now combine the over- and undershoot value into a spike. Then

the length, or amplitude, of the spike can be shown to be approximately 18% greater than

the jump-discontinuity itself as N → ∞ (Math24, 2005). At the same time, the length of

the interval where the spike occurs goes towards 0, so the contribution of the spike in the

integral becomes arbitrarily small.

8.4 Uniform convergence

Uniform convergence is the most ideal and strongest type of convergence, which in turn

poses it to be difficult to show. In return, uniform convergence implies all other forms of

convergence (Math24, 2005). The simplest case to check for uniform convergence is by using

the following theorem.

Theorem 8.4.1 (Uniform convergence). The Fourier series expansion of a 2π-periodic

continuous and piecewise smooth function converges uniformly to the function f .

We say that a sequence of functions converges uniformly towards another function whenever

the speed of convergence is independent of x in the whole domain. The same can be said

for Fourier series, which means that when a Fourier series converges uniformly to a function

g(t), it does so in the supremum norm, i.e.,

‖g(t)− SN(t)‖∞ = max
x∈[−π,π]

∣∣∣g(t)− SN(t)
∣∣∣→ 0, N →∞. (8.5)

This means that we can also check that the convergence is independent of t to show that the

series expansion converges to the function.

Remark. Fourier series generally converge rather slowly. In a practical sense, this implies

that if we wish to approximate a signal through Fourier Synthesis, then we either need to

let N become very large, which is computationally expensive, or choose a smaller N which

could potentially cut off important information.
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Example 8.4.1. Let us determine how the Fourier series SkN of the functions fk below

converge to fk, for k ∈ {1, 2, 3}. All the following functions are 2π-periodic.

f1(t) =

1, 0 < t < π

−1, −π < t < 0,

f2(t) =

π − |t|, t ∈ [−π, π],

0, otherwise,

f3(t) =

t, t ∈ [−π, π],

0, otherwise.

Figure 8.3: A sketch of the functions f1, f2 & f3 on [−π, π].

Imagine if we extend these functions onto the whole real line, then f2 becomes the so-called

Triangle Wave. Due to the discontinuities which appear for f1 and f3, the visualization

is more prettier if we draw a vertical line between the edges at each discontinuity. Then

f1 traces the Square Wave whilst f3 represents the Saw-tooth Wave. If we were to use

Fourier series to approximate these three functions then only f2 would be free of the Gibbs

phenomenon (Cheever, 2020). With this in mind, we begin by expanding f1 into its Fourier

series. Observe that f1(t) is an odd function, which implies that its Fourier series will only

have proper contributions from its sine terms. Then the expansion is a lot simpler to perform

by using the trigonometric construction. Firstly the coefficients an and bn can be calculated
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by

an =
1

π
〈f1, cosnt〉 =

1

π

∫ π

−π
f(t) cosnt dt =

1

π

∫ π

−π
(odd function) dt = 0, ∀n ∈ N.

bn =
1

π
〈f1, sinnt〉 =

1

π

∫ π

−π
f(t) sinnt dt

=
1

π

[∫ 0

−π
− sinnt dt+

∫ π

0

sinnt dt

]
=

1

π

cosnt

n

∣∣∣∣∣
0

−π

+
− cosnt

n

∣∣∣∣∣
π

0


=

1

π

[
1− (−1)−

(
(−1)− 1

)
n

]
=

4

πn
, where ± cosnπ =

±1 if n odd,

0 if n even.

Hence, the Fourier series expansion is found as

f1(t) ∼
4

π

∞∑
n=1

sinnt

n
=

4

π

∞∑
k=1

sin(2k − 1)t

2k − 1

Now let us check how this Fourier series converges towards the function f1. Since f1 is

discontinuous at the points 0,±π,±2π, ... we immediately know that it cannot converge

uniformly. The reason comes from a theorem introduced by Weierstrass which requires that

a uniform limit of continuous functions, like SN , must originate from a continuous function.

However, we see that f1 satisfies the conditions given by Theorem 8.3.1, so it follows that

S1
N(t) converges pointwisely towards f1. Specifically, the Fourier series converges towards

f1(t) ∀t 6= 0,±π,±2π, ... and it converges to (−1)+1
2

= 0 at t = 0,±π,±2π, .... Finally, since

f1 ∈ L2(−π, π) then this implies that its Fourier series converges towards f1 in the L2-norm

as well, based on the definition of L2 convergence in Equation (8.4).

In contrast, observe from Figure [8.3] that f2 is both continuous and piecewise smooth (also

verified through its derivative), which implies that we can use Theorem 8.4.1 to say that its

Fourier series converges uniformly.

Lastly, f3 can be expanded into S3
N(x) =

∑∞
k=1

−2(−1)k
k

sin kx (see appendix for an outline of

the expansion). Then the type of convergence follows similarly to that of f1. Particularly,

the pointwise convergence

lim
N→∞

S3
N(t) =

f3(t), if t 6= 0± π,±2π, ...,

(−π)+π
2

= 0, if t = 0± π,±2π, ...
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Example 8.4.2. Recall the Dirichlet function from Section 7.1. It can be verified that this

function has Fourier coefficients which are 0, yet the series converges towards f(t) in the

L2-norm. As this seems like a rather artificial example, let us instead consider the following

function. We define the Modified Dirichlet function on the interval [−π, π] as the function

fD(t) ∈ L2(−π, π) where

fD(t) =

1, if t ∈ Q ∩ [−π, π], denoted I1

t, if t ∈ R/Q ∩ [−π, π] denoted I2.

Figure 8.4: A sketch of the Modified Dirichlet function

Before we begin, observe that the Modified Dirichlet function coincides with the function f3

whenever t ∈ [−π, π] is irrational. Similarly to the Dirichlet function, this function is not

Riemann integrable. Luckily, it is Lebesgue integrable, where∫
I

fD(t)dt =

∫
I1

fD(t)dt+

∫
I2

fD(t)dt.

Then to find its Fourier coefficients, we simply divide the integral over the two relevant

intervals. Since t ∈ I2 ⇒ fD(t) = f3(t) it only remains to find the contributions from

fD(t) = 1, when t ∈ I1. Afterwards we simply add together the respective contributions to
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find the coefficients. However, since I1 ⊂ Q, then I1 is of zero measure. It follows that the

coefficients of fD(t) = 1 all become 0, since we integrate simple functions over a set of zero

measure. Finally, we get that the Fourier series expansion of the Modified Dirichlet function

is identical to the expansion of f3(t).

SDN (x) =
∞∑
k=1

−2(−1)k

k
sin kx.

The result means that even though the Modified Dirichlet function is discontinuous at all

points, its Fourier series converges towards a continuous function.

8.5 Convolution and the Dirichlet Kernel

In Fourier Analysis one often encounters a multitude of functions to study. As such, a useful

tool is the ability to convolve pairs of functions.

Definition 8.5.1. Let f, g ∈ L1(R), then the convolution of these functions f ∗ g : R → C

combines them into a new continuous function by

(f ∗ g) (t) =

∫ ∞
−∞

f(t− s)g(s) ds. (8.6)

This integral expresses how much the function f coincides with g as it is being shifted,

or moved, across it (Weisstein, 2008). Note that Equation (8.6) may hold under other

restrictions on f and g as well.

Example 8.5.1. Let us calculate the following convolution: χ[0,1](t)︸ ︷︷ ︸
f

∗χ[0,2](t)︸ ︷︷ ︸
g

.

We begin by noticing how the convolution will behave at the end-points.

Clearly f = 0

t < 0

t > 1

and g = 0

t < 0

t > 2,

which implies that f∗g = 0

t < (0 + 0) = 0

t > (1 + 2) = 3.

Now we can use the definition of the convolution to figure out how the functions combine
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inside the interval [0, 3]. Then

(
χ[0,1] ∗ χ[0,2]

)
(t) =

∫ ∞
−∞

f(t− s) ∗ g(s)ds, where

f(t− s) = 1, if 0 < t− s < 1

g(s) = 1, if 0 < s < 2.

=

∫
[0, 2]∩[−1+t, t]

1 · 1ds =

min{2, t}∫
max{0,−1+t}

1 ds =



0, if t < 0,

t− 0 = t, if 0 < t < 1

t− (−1 + t) = 1, if 1 < t < 2,

2− (−1 + t) = 3− t, if 2 < t < 3,

0, if t > 3.

In Figure [8.5] we provide a sketch of this convolution, and we see that it is indeed a

continuous function.

Figure 8.5: The convolution of two functions f and g.

Convolutions can be a very useful tool in regards to Fourier series and Fourier transformation,

particularly along with the so-called Dirichlet Kernel.

Definition 8.5.2 (The Dirichlet Kernel). Given any N ∈ N, the function

DN(t) :=
N∑

k=−N

eikt =
sin(N + 1

2
)t

sin( t
2
)

(8.7)

is called the Dirichlet Kernel. Let us present a proof which shows that the representation is

valid.

Proof. Let us begin by converting the initial partial sum into a more suitable form. To start of

with we use Euler’s identity, then recall that cos(x) is an even function, i.e., cos(−x) = cos(x),
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whilst sin(x) is an odd function, i.e., sin(−x) = − sin(x). It follows that the sum of sines

cancels ∀N 6= 0, whereas the sums of cosine add up. It remains to check what happens when

N = 0 :

DN(t) :=
N∑

k=−N

eikt =
N∑

k=−N

(
cos(kt) + i sin(kt)

)
=

N∑
k=−N

cos(kt) + i
N∑

k=−N

sin(kt)

= 2
N∑
k=1

cos(kt) + cos(0 · t) + sin(0 · t) = 1 + 2
N∑
k=1

cos(kt).

As DN(t) now has a more suitable form, we can multiply and divide the R.H.S. by sin( t
2
)

and apply the trigonometric identity 2 cosα sin β = sin(α + β)− sin(α− β) .

DN(t) =
sin( t

2
) + 2

∑N
k=1 cos(kt) · sin( t

2
)

sin( t
2
)

=
sin( t

2
) +

∑N
k=1

(
sin(kt+ t

2
)− sin(kt− t

2
)
)

sin( t
2
)

=
sin( t

2
) + sin(N + t

2
)− sin( t

2
)

sin( t
2
)

where most of the terms cancel, leaving only

=
sin(N + 1

2
)t

sin( t
2
)

which was the desired result.

This completes the proof.

By combining Equation (8.6) and (8.7), we can take the convolution of DN(t) with any 2π

periodic function f . This provides us with another representation of its Fourier series where

the convergence may be studied through the properties of the Dirichlet kernel (Walker, 2003,

p. 8).

(f ∗ DN) (t) =

∫ π

−π
f(t− s)DN(s) ds = SN(t).

Particularly, this relationship may be used to explain the Gibb’s phenomenon and ringing,

where a convolution between the Dirichlet Kernel and the square wave, i.e., (DN ∗ Sq)(t)

can be investigated to verify the 18% increase found in the spike. We end this chapter by

mentioning that there are many modifications which may be performed on the partial sums

of Fourier series to avoid some of the convergence issues we have encountered. Through

a method called arithmetic means one may even achieve L1-convergence for Kolmogorov’s

function (Walker, 2003, p. 9). In the next chapter we move on to Fourier’s other major

contribution, the Fourier transform.
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Application to sampling of

band-limited signals

In this chapter the Fourier transform for L1(R) functions, along with important properties

are defined. We also discuss how to extend the transform to apply for L2(R) functions.

Afterwards, the Paley-Wiener space and the Shannon-sampling theorem are introduced.

Based on this, we try to explain how signal processing works. Lastly an account of Riesz

basis is provided along with applications for the Fourier transform.

9.1 The Fourier transform.

Before the introduction of Fourier series, mathematicians would often find it problematic to

combine the concept of a function with infinite summations (Bressoud, 2007). Fourier series

are a useful tool for investigating periodic functions, yet not all signals are structured this

way. We say that a periodic function becomes aperiodic in the limit as its period, L →∞.

Generally for aperiodic functions we do not know which frequencies the function is limited

to. Therefore we replace the Fourier series with an integral over all frequencies. The classical

way to define the Fourier transform is for absolutely integrable functions.
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Definition 9.1.1 (Fourier transform). We say that the Fourier transform operates on a

function f ∈ L1(R) and assigns a new function f̂ : R→ C through

f̂(x) := Ff(x) =

∫ ∞
−∞

e−2πixtf(t) dt. (9.1)

Observe that the transformed function, f̂ takes x as its input, whereas the original function

f takes t as its input. More concretely, we often consider the values of f̂(x) as the frequency

domain, and f(t) as the time domain. This is particularly done in signal processing, where

f(t) represents the original signal. The Fourier transform expresses a function or signal

as a superposition of sinusoids. Consider the function f(t) := e−tχ[0,1](t), then its Fourier

transform becomes

f̂(x) =

∫ ∞
−∞

e−2πixte−tχ[0,1](t) dt =

∫ 1

0

et(−2πix−1) dt

=
et(−2πix−1)

−2πix− 1

∣∣∣∣∣
1

0

=
1

2πix+ 1

(
1− e−(2πix+1)

)
.

Common for all such transformations is that they tend towards zero as x → ±∞, i.e.,

F : L1(R) → C0(R). This property is officially known as the Riemann Lebesgue Lemma.

Moreover, under certain conditions, the values of f̂ allow us to reconstruct the function f .

This is an important result. In other words, the Fourier transform is invertible:

Theorem 9.1.1 (Inverse transform for L1(R) functions.). Let f, f̂ ∈ L1(R), then

f(t) := F−1f̂(x) =

∫ ∞
−∞

e2πixtf̂(x) dx for almost all x ∈ R. (9.2)

Whenever f is continuous, this expression holds pointwise for all x ∈ R.

When solving Differential Equations through Fourier transformations, the inversion formula

allows us to retrieve the solution on the desired form. In signal processing, this is what allows

us to represent a signal through its frequencies (Christensen, 2010, p. 136). The Fourier

transform can also be defined for functions which are square integrable, i.e., f ∈ L2(R).

However, due to convergence issues the transformation is no longer an integral in the classical

notion. Instead it exists as a limit which converges in the L2(R) norm. This is achieved

through extending the linear operator F from a convenient subspace where it is well-defined.

In our case, the Cc(R)-space is convenient because if we equip it with the L2-norm, one may

verify that:
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(1) ‖Ff‖2 = ‖f‖2, ∀f ∈ Cc(R), where F : Cc(R)→ L2(R)

(2) The closure Cc(R) = L2(R) is dense in L2(R)

The fact that Cc(R) is dense in L2(R) means that for all v ∈ V, and ∀ε > 0 there exists

v1 ∈ V1 such that ‖v − v1‖ < ε. Furthermore taking (1) and (2) into consideration, it

is possible to extend the operator F to hold for L2(R) functions. This is analogous to

saying f̂(x) is well defined ∀f ∈ L2(R), (Christensen, 2010, p. 55). In summary, we say

that the Fourier transform can be extended from Cc(R) to L2(R) as a unitary operator

F : L2(R)→ L2(R) which satisfies

(i) ‖f̂ ‖L2 = ‖f‖L2 , ∀f ∈ L2(R) (Parseval’s Equality)

(ii) 〈f̂ , ĝ〉 = 〈f, g〉, ∀f, g ∈ L2(R)

(iii) F∗F = FF∗ = I

(iv) f(t) =
∫∞
−∞ e

2πixtf̂(x) dx, ∀f ∈ L2(R), f̂ ∈ L2(R)

where

‖f‖L2 =

(∫ ∞
−∞
|f(t)|2 dt

)1/2

.

The third property tells us that he Fourier transform for L2(R)-functions is invertible, and

its form is found in (iv). Parseval’s Equality confirms that for physical problems involving

energy, the total amount of energy contained within a signal f(t) may be calculated from

the frequency domain signal through the sum of its expanded Fourier coefficients (Walker,

2003, p. 8). Finally, given a number R > 0 and f(t) ∈ Cc(R) the expression∥∥∥∥∫ R

−R
e−2πixtf(t) dt− f̂(x)

∥∥∥∥
L2(R)

→ 0 as R→∞

describes the convergence in the L2-norm.

Let us now introduce an interesting operator which can be shown to be unitary, bounded

and linear in the L2(R)-space (Christensen, 2010, p. 120:122). Due to these properties, the

following operator (along with modulation, and dilation operators) is often used in Fourier

analysis.
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The Translation operator moves a function along the x-axis:

(
Taf
)
(x) := f(x− a), a ∈ R

Since the operation is linear, bounded and unitary, this implies that the new function is still

located inside L2(R).

(
FTaf

)
(x) =

∫ ∞
−∞

e−2πixt
(
Taf
)
(t) dt =

∫ ∞
−∞

e−2πixtf(t− a) dt Let u = t− a, t = u+ a

=

∫ ∞
−∞

e−2πix(u+a)f(u) du = e−2πixa
∫ ∞
−∞

e−2πixuf(u) du

= e−2πixa f̂(x) =
(
E−af̂

)
(x).

In the last step of the calculation we used the definition of the dilation operator.

Another interesting property of the Fourier transform follows from the Convolution Theorem

which was allegedly introduced by Percy John Daniell in 1920 (Dominguez, 2015). The

theorem relates the Fourier transform of a convolution between functions to the product

of their respective transforms, i.e., that f̂ ∗ g(x) = f̂ · ĝ. Similar to the Fourier transform

there are some restrictions, specifically that it holds for all x ∈ R given f, g ∈ L1(R), and

almost all x ∈ R for f ∈ L2(R) and g ∈ L1(R). We omit the proof. If we consider f(t)

and g(t) to be two arbitrary signals, then a direct implication of the Convolution Theorem

is that the convolution in the time domain equals multiplication in the frequency domain

(DSP Illustrations, 2020). In such cases it is often time-beneficial to transform the signals

separately, calculate their product and then find the inverse Fourier transform of the result.

This would surely be the case if we wanted to find the Fourier transform of the convolution

from example 8.5.1.

We are now nearing a point where we can discuss one of the applications for Fourier

transforms and convergence of Fourier series, namely sampling. By this we mean that given

a signal, f(t), we wish to record or sample enough datapoints in order to reproduce the

original signal.
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9.2 Sampling theory.

Why do we need sampling? Well, signals found in the real world, such as musical tones, are

both continuous in time and amplitude. We say that they are analog signals. The ability to

repeat these signals at any time and place along with perfect quality has long been yearned

for. Although instruments such as the gramophone and the cassette player were introduced

between the late 1800s and mid 1900s, they came with their limitations. Large production

expenses, storage, the fact that analog signals are prone to noise, and poor durability were

some of them. With the rise of computers and digital machines a new possibility emerged.

Initially, analog signals posed a problem for digital storage on computers which are discrete

by nature. A perfect recording of a continuous signal would require precise measurements

and great storage capacity. It was also believed that information would be lost if a continuous

measurement was not performed. However, as we will show, this may all be avoided through

sampling. This method allows us to convert an analog signal to a digital signal which is

discrete in both time and amplitude.

Definition 9.2.1. The Paley-Wiener space, often shortened PW is a subspace of L2(R).

It is often defined for a general interval length σ. For simplicity we consider a particular

interval given by

PW :=

{
f ∈ L2(R)

∣∣∣ suppf̂ ⊆
[
−1

2
,
1

2

]}
. (9.3)

Definition 9.2.2. A signal is band-limited with band (−Ω,Ω) if its Fourier transform

f̂(x) =

∫ ∞
−∞

e−2πixtf(t) dt

vanishes for |x| > Ω. In essence, this is the same as requiring compact support for f̂ .

According to these two definitions, we have that the functions belonging to PW are band-limited.

In Section 8.1 we mentioned that {e2πikt}∞k=−∞ forms an orthonormal basis for L2(−1
2
, 1
2
).

We will now demonstrate an important result by finding its inverse Fourier transform. Thus,

F−1e2πixt =

∫ ∞
−∞

e2πikt · e2πixt dt =

∫ 1
2

− 1
2

e2πi(x+k)t dt

=
e2πi(x+k)t

2πi(x+ k)

∣∣∣∣ 12
− 1

2

=
eπi(x+k) − e−πi(x+k)

2πi(x+ k)
=

sin π(x+ k)

π(x+ k)
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which leads us to the cardinal sine function (defined for t ∈ (−1
2
, 1
2
) with k = 0):

sinc t :=


sinπt
πt

, if t 6= 0,

1, if t = 0.

(9.4)

On this interval, the sinc function is normalized, see also Figure [9.1] where it has been

extended to the interval (-6, 6) to show its behaviour.

Figure 9.1: The cardinal sine function.

Theorem 9.2.1 (Shannon’s sampling theorem). The functions
{

sinc (t + k)
}
k∈Z form an

orthonormal basis for PW . If f ∈ PW is continuous, then

f(t) =
∑
k∈Z

f(k) sinc (t− k) (9.5)

where f(k) represents the kth sample.

The series in Equation (9.5) converges towards f(t) both pointwise and in the L2-norm

(Christensen, 2010, p. 151). Notice that this allows us to reconstruct the original function

f(t) through the sampled values f(k). Consequently, this theorem is said to have laid the

foundation for digitization of images, sound and music in the modern-day-world. The work

done by E.T. Whittaker (1915) and Harry Nyquist (1928) contributed towards the discovery

of Theorem 9.2.1. Actually, Vladimir Kotelnikov reached the same conclusion as Theorem

9.2.1 in 1933, but he was unable to publish his findings. Therefore it was not until Claude

Shannon re-introduced it in two articles in 1948-1949 that the full strength of the theorem

was realized within communication theory (Yankin, 2019). Perhaps due to all these different

discoveries, it is also referred to as the cardinal theorem of interpolation to avoid confusion.
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The theorem proves that it is technically possible to perfectly reconstruct any continuous

band-limited analog signal without any distortions or errors through discrete sampling of

its frequency. For this to be true, it requires that the sampling rate is greater than the

so-called Nyquist rate, 1
2 dt

, when sampling at regular time intervals dt (Avantaggiati, Loreti,

& Vellucci, 2016, p. 1). In other words, for a given signal f(t) whose largest frequency is ω

Hz, the Nyquist criteria allows for a perfect reconstruction when sampling more frequently

than 2ω Hz. In certain cases, this may result in large file-sizes, which is undesirable and

should therefore be avoided when possible.

Consider a sampling rate exactly equal to the highest frequency, i.e., ω Hz, then it is possible

that we are only sampling the peak-value of our signal. Ultimately our result will produce

a straight line where almost all information of complexity is lost. Sampling at a different

rate (between 0 Hz and 2ω Hz) may result in reproducing a signal with lower frequency and

smaller amplitudes than the original. Figure [9.2] illustrates the importance of following the

Nyquist rate.

Figure 9.2: A periodic function f(t) with approximate period L = 0.225 (green). Sampled

uniformly at intervals of x = 0.05 and reconstructed into an alias (blue).

In this figure we have sampled uniformly with a low sampling frequency. The reconstructed

continuous time signal found in Figure [9.2] is then called an alias to the original. It is
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“indistinguishable” to the original before comparison after reproduction. This phenomena

is called aliasing and is a known problem in signal processing (Brunton, 2020, 8:00-9:00).

Aliasing occurs due to the presence of unwanted components and/or loss of frequencies found

in the original signal. In our example, we see that much of the information stored in f(t)

is lost with respect to its alias. Using the same method as above, we would therefore need

to increase our sampling rate to get a better approximation. Other issues which may occur

when implementing the Shannon sampling theorem are slow convergence rates, sampling at

uniformly distributed intervals (which is difficult to realize with physical instruments), large

file-sizes, as well as requiring the functions to be band-limited. In the next section we will

look at the possibility of allowing the samples to be distributed irregularly to combat the

sampling issue.

9.3 Riesz basis

Let {ek}∞k=1 be an orthonormal basis for H. Let T : H → H be a bounded invertible linear

operator. We denote un = Ten and vn = (T−1)∗en.

Definition 9.3.1. A system of elements {uk}∞k=1 in a Hilbert space is called a Riesz basis if

un = Ten, n = 1, 2, 3, ...

where {en}∞n=1 is an orthonormal basis for H and T is a linear bounded invertible operator

from H to itself.

If {un}∞n=1 is a Riesz basis, then we say that:

1. There is a unique system {vn}∞k=1 which is biorthogonal to {un}∞k=1.

2. Every g ∈ H admits a unique representation g =
∞∑
1

cnun, where cn = 〈g, vn〉.

3. There is a constant c ≥ 1 such that for every sequence {cn}∞n=1 ∈ l2(N),

1

c

∞∑
1

|cn|2 ≤
∥∥∥ ∞∑

1

cnun

∥∥∥2
H
≤ c

∞∑
1

|cn|2.
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We say that a system {vk}∞k=1 is biorthogonal to another system {uk}∞k=1 if their inner product

is reduced to the Kronecker delta function, i.e., 〈un, vk〉 =

1 if n = k,

0 otherwise.

Lemma 9.3.1. Let {en}∞1 be an orthonormal basis for a Hilbert space H, and

T : H → H a linear bounded invertible operator. Then the systems Ten and (T−1)∗en are

biorthogonal.

Proof. From the inner product between these systems and properties of the adjoint operator,

we have that

〈Ten, (T−1)∗ek〉 = 〈en, T ∗(T−1)∗ek〉 = 〈en, I · ek〉 = 〈en, ek〉 = δnk,

which completes the proof.

Lemma 9.3.2. {uk}∞1 and {vk}∞1 both form a basis for H.

Proof. Take any f ∈ H, then we can represent it through the orthonormal basis {ek}∞1 as

f =
∑∞

k=1〈f, ek〉ek. Let the operator T act on f , and use the definition of uk. Thereby

Tf = T

(
∞∑
k=1

〈f, ek〉ek

)
=
∞∑
1

〈f, ek〉Tek =
∞∑
1

〈f, ek〉uk,

where the second equality is true because 〈f, ek〉 := ck ∈ l2(N) and T only acts on elements

of H. Choose any g ∈ H and fix f = T−1g such that g = Tf. Using the above expression,

properties of the adjoint operator and definition of vk it follows that

g = Tf =
∞∑
1

〈f, ek〉uk =
∞∑
1

〈T−1g, ek〉uk =
∞∑
1

〈g, (T−1)∗ek〉uk =
∞∑
1

〈g, vk〉uk.

This proves that {uk}∞1 forms a basis for H, and the proof for {vk}∞1 follows a similar

procedure.

Observe that 〈g, vk〉 = ck ∈ l2(N). Then if we define another operator B : l2(N)→ H where

for any sequence ck ∈ l2(N), we have B{ck}∞1 =
∑∞

1 ckuk.

Lemma 9.3.3. B is a bounded linear operator with ‖B‖ ≤ ‖T‖.
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Proof. We begin by imposing the norm on the operator acting on ck. Then from the

Cauchy-Schwartz equality and orthonormality of {ek}∞1 , observe that∥∥B{ck}∥∥H =
∥∥∥ ∞∑

1

ckuk

∥∥∥
H

=
∥∥∥T (

∞∑
1

ckek)
∥∥∥
H

≤ ‖T‖
∥∥∥ ∞∑

1

ckek

∥∥∥
H

= ‖T‖

√√√√ ∞∑
1

|〈ck, ek〉|

= ‖T‖

√√√√ ∞∑
1

|ck|2 = ‖T‖ ‖{ck}‖l2 .

Finally, the norm of B is simply

‖B‖ = sup
ck 6=0

‖B{ck}‖H
‖{ck}‖l2

≤ ‖T‖‖{ck}‖l
2

‖{ck}‖l2
= ‖T‖,

so B is bounded.

Observe that the facts un = Ten and B bounded implies the R.H.S. of the 3rd Riesz basis

property.

Lemma 9.3.4. The adjoint of B is B∗ : H → l2, given by B∗f = {〈f, uk〉}∞k=1

Proof. By taking advantage of linearity in the first argument along with 〈v,w〉 = 〈w, v〉, we

get that

〈B{ck}, f〉 =
〈 ∞∑

1

ckuk, f
〉

=
∞∑
1

ck〈uk, f〉

=
∞∑
1

ck〈f, uk〉 = 〈{ck}, B∗f〉.

We are now ready to state a well-known theorem made by the Ukrainian mathematician

Mikhail Kadets in 1964.

Theorem 9.3.5 (Kadets 1
4
-Theorem.). Let δn ∈ R and assume 0 < L < 1

4
. Then for every

set Λ = {n+ δn}∞n=−∞, |δn| ≤ L, for n ∈ Z, the exponential system{
e2πi(n+δn)t

}∞
n=−∞

is a Riesz basis for L2(−1
2
, 1
2
).
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We regard the set Λ = {n + δn}∞n=−∞ as a small “perturbation” of the set of integers

Z = {n}∞−∞. The fact that a perturbation of a known Riesz basis produces another Riesz

basis, was originally introduced by Paley and Wiener in 1934 (Avantaggiati et al., 2016, p.

2). The theorem was proven by Kadet to be sharp, which means it fails immediately given

that L ≥ 1
4
. We call ‘1/4‘ an optimal bound when Λ ⊂ R. Thus, every system of functions

un(t) := e2πi(n+δn)t, n ∈ Z (9.6)

forms a Riesz basis for L2(−1
2
, 1
2
) provided |δn| ≤ L < 1

4
. The system in Equation (9.6) is

also called an exponential Riesz basis. Its elements are no longer orthogonal to each other

in L2(−1
2
, 1
2
). Now it remains to check if we can use the set Λ to reconstruct a signal by

sampling at a random rate. Observe that the 1st and 2nd benefits of a Riesz basis allows us

to represent a function g ∈ L2(−1
2
, 1
2
) uniquely by

g(t) =
∞∑
1

〈g, vn〉 un(t)

m (since un and vn are biorthogonal)

g(t) =
∞∑
1

〈g, un〉 vn(t). (9.7)

Using the definition of inner products and Equation (9.6), we see that

〈g, un〉 =

∫ 1/2

−1/2
g(t) e2πi(n+δn)t dt

=

∫ 1/2

−1/2
g(t) e−2πi(n+δn)t dt = ĝ(n+ δn),

where ĝ ∈ PW since g ∈ L2(−1
2
, 1
2
). Let ϕ := ĝ and take the Fourier transform of Equation

(9.7), then every ϕ ∈ PW admits a representation

ϕ(x) =
∞∑

n=−∞

ϕ(n+ δn) v̂n(x), x ∈ R. (9.8)

It remains to find an expression for the biorthogonal system v̂n. We begin with the following

definition.

Definition 9.3.2. A set Λ ⊂ R is called uniformly discrete if

δn(λ) = sup
λ 6=λ′
|λ− λ′| > 0, λ, λ′ ∈ Λ. (9.9)
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Which means that the elements of Λ are separated by |λ − λ′| ≥ δ(Λ). We call δ(Λ) the

separation constant. In the set of integers, Z, one may easily verify that all elements are

distanced by δ(Z) = 1. This implies that Λ = Z is uniformly discrete. In comparison, we

can consider the set Λ = {
√
n
∣∣n ∈ N}. Initially, the elements seem to satisfy the condition

found in Equation (9.9), but notice that δ(Λ) =
√
n+ 1−

√
n→ 0, when n→∞. Therefore

this set is not uniformly discrete.

Since {e2πi(n+δn)t
∣∣ (n + δn) ∈ Λ} forms a Riesz basis for L2(−1

2
, 1
2
), then this implies that

Λ = {n+ δn}∞n=−∞ is uniformly discrete by a well known theorem.

Choose

v̂(z) =
∏
n∈Z

(
1− z

n+ δn

)
, z ∈ C.

and

v̂n(z) =
v̂(z)

v̂′(n+ δn) · (z − n− δn)
. (9.10)

Then another theorem states that the functions v̂n(z) and v̂(z), for n ∈ Z are well defined

and satisfy the following properties

(i) v̂n(z) and v̂(z), n ∈ Z, are entire functions.

(ii) v̂n(x) ∈ L2(R), n ∈ Z.

(iii)
〈
e2πi(n+δn)t, vm(t)

〉
=

1, n = m,

0, n 6= m,

where vm(t) is the inverse transform of v̂m(x).

Therefore the system {vn(t)
∣∣n ∈ Z} is indeed biorthogonal to { e2πi(n+δn)t

∣∣n ∈ Z}, and we

can use the representation of vn given in Equation (9.10). Finally, Equation (9.8) allows

us to extend the famous Shannon sampling theorem to the case when sampling points are

randomly distributed as n+ δn, where |δn| ≤ L < 1
4
, for n ∈ Z and δn ∈ R. See Figure [9.3]

below where we have performed a slight (random) perturbation of the points from Figure

[9.2].
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Figure 9.3: A perturbed sampling of the function f(t).

The perturbation allows a discrepancy in measurement tools, but also provides us with a

better approximation of the function f(t). The exact perturbation can be seen in Table 9.1.

x -0.25 -0.2 -0.15 -0.1 -0.05 0.0 0.05 0.1 0.15 0.2 0.25

x+ δn -0.24 -0.19 -0.145 -0.11 -0.06 0.02 0.055 0.12 0.17 0.19 0.24

Table 9.1: Perturbed sampling points

We remind that the example shown in Figure [9.2] and [9.3] is only meant to illustrate the

effect of perturbation.

The convergence in Equation (9.8) above is in the L2-norm. It is possible to show that the

series
∞∑

n=−∞

ϕ(n+ δn) v̂n(z)

converges to ϕ(z) uniformly on compact sets of the complex plane. Additionally, studies are

being performed on situations where δn ∈ C, and finding the optimal bound (Avantaggiati

et al., 2016, p. 3).

9.4 Applications of the Fourier Transform.

Perhaps the most natural example of a Fourier transform process which we can find, is the

human ear. Sound is created due to interference in air pressure from vibrations between
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particles which propagate through air. When sound arrives at the ear drums they resonate

in unison with the pressure-waves. The vibration waves are forwarded to the cochlea, located

in the inner ear, which transforms these “air pressure signals” into nerve impulses. Lastly,

the brain processes this information into hearing. The ear acquires information about volume

and pitch. Volume is simply determined by the amplitude of the registered waves. A greater

amplitude induces a large impact on the hair cells within the inner ear, which in turn

propagates stronger nerve impulses towards the brain, resulting in louder volume. The

number of vibrations per unit time, also known as frequency, determines the pitch. For

humans, the frequency range is band-limited, covering roughly 20 → 20 000 Hz (Campbell

et al., 2018, p.1168:1172). All of this is done naturally by the ear, resulting in everything we

hear.

The Fourier transform is a mathematical technique for doing a similar process. When applied

to a time-domain function, it produces a frequency spectrum. If we take the Nyquist rate into

consideration, we get an intuitive explanation to why most digital audio signals generally are

sampled at approximately 44 kHz, a little more than twice the greatest frequency humans

may register. Reproducing greater frequencies would not improve the perceived sound for

humans and would therefore be wasteful.

In the modern day world we encounter many different signals. A broadband (or dense)

signal has many prominent frequencies, i.e., peaks in its frequency spectrum. For such

signals it is not possible to beat the Nyquist-rate and Shannon sampling theorem (Brunton,

2020, 14:30-16:54). However, in 2004 mathematicians used the theory based on Riesz bases

and applied it to signals whose frequency spectrum was sparse. They discovered that

for such favourable signals, it was possible to perfectly reconstruct the signal even when

sampling significantly below the Nyquist-rate. This resulted in the field of Compressed

Sensing, where several advancements have reduced file-sizes for such signals. This field is in

rapid development, and may also be used to remove “noise” from signals and images. For

broadband signals, other methods must be applied in order to decrease file-size.
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Conclusion

The mathematical contributions of Joseph Fourier have truly ushered the development of

many mathematical fields of study. We have seen that the structure provided by Hilbert

spaces allow us to properly study convergence of Fourier series. Although it removes limit

issues from the equation, there are other issues which may occur. The Gibb’s phenomenon

and slow convergence rates are examples of this. Depending on the situation, both the rate

of convergence and types of convergence may have different implications and uses. Here

we focused on sampling theory, yet there are many applications to Differential Equations,

Wavelets, physics and much more.

As mentioned before, the Shannon-sampling theorem laid the foundations for digitization

for modern communication and signal processing. We have only briefly touched the surface

of the mathematical concepts and operations which have blossomed from these roots. Given

the recent creation of Compressed Sensing, it is likely that other branches may evolve from

sampling theory as well.

Given that advances in technology continues to achieve greater importance, it is reasonable to

assume that further improvements in these mathematical topics will be of great significance

in the coming years. A profound knowledge about the foundational theory may therefore be

useful in forming new ideas and applications for further research.
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Additional comments to proofs and

results.

A.1 The Dirichlet Kernel

In the proof of representation for the Dirichlet Kernel we took advantage of the fact that

almost all the terms in the summation cancel each other out. This is what we call a telescopic

series, and only the terms marked by red remain.

k = 1⇒ sin(t+
t

2
)− sin(t− t

2
) = sin(

3t

2
)− sin(

t

2
)

k = 2⇒ sin(
5t

2
)− sin(

3t

2
)

...

k = N ⇒ sin(N +
t

2
)− sin(N − t

2
).

A.2 Fourier series expansion of f3

From Section 8.4 we investigated the function f3 =

t, t ∈ [−π, π],

0, otherwise.

To find its Fourier

series expansion, we begin by noticing that f3 is an odd function. Thereby the an terms of
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its trigonometric representation disappear in the expansion. Oppositely, we get that

bn =
1

π

∫ π

−π
t sinnt dt =

2 sinπn− 2πn cos πn

n2π
=
−2(−1)n

n
.

Since sinπn = 0 ∀n ∈ Z, and cosπn = (−1)n ∀n ∈ Z. As a result, the series expansion

becomes

f ∼
∞∑
k=1

bk sin kt =
∞∑
k=1

−2(−1)k

n
sin kt.
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