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ABSTRACT

We address how to robustly interpret natural language refinements
(or critiques) in recommender systems. In particular, in human-
human recommendation settings people frequently use soft at-
tributes to express preferences about items, including concepts like
the originality of a movie plot, the noisiness of a venue, or the com-
plexity of a recipe. While binary tagging is extensively studied in the
context of recommender systems, soft attributes often involve sub-
jective and contextual aspects, which cannot be captured reliably
in this way, nor be represented as objective binary truth in a knowl-
edge base. This also adds important considerations when measuring
soft attribute ranking. We propose a more natural representation
as personalized relative statements, rather than as absolute item
properties. We present novel data collection techniques and evalua-
tion approaches, and a new public dataset. We also propose a set
of scoring approaches, from unsupervised to weakly supervised to
fully supervised, as a step towards interpreting and acting upon
soft attribute based critiques.
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1 INTRODUCTION

Recommender systems provide personalized recommendations of
products or services to users, based on their preferences. A key
element of recommender systems is the ability for users to provide
feedback on their likes and dislikes. This is inherently a sequential
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interactive process, and there is a growing interest in designing auto-
mated systems that solicit users’ preferences and provide personal-
ized recommendations via multi-turn dialogue [9, 10, 21, 30, 34, 46].
Ideally, such systems should be able to incorporate any natural
language user feedback on items [30].

Imagine a scenario where a conversational recommender has
suggested some item. The user may respond “show me more like
this but..” [27], explaining desired differences with respect to this
anchor item. For example, they might ask for a “less violent,” “more
thought-provoking,” or “less predictable” movie. In case of restau-
rants, it might be for places that are “more down home.” While
soft attributes are common in natural dialogue [29], interpreting
them (that is, determining the degree to which they apply to items)
represents the open challenge that we tackle. In contrast, most past
work on attribute-based critiquing has been trained and evaluated
with datasets focused on binary and unambiguous attributes (e.g.,
movie tags [12] or book and product categories [28, 40]).

The key difficulty stems from the unconstrained natural language
of soft attributes, i.e., properties that are not universally agreed
upon, or where different people have different norms, expectations,
and thresholds (e.g., “exciting” vs. “boring” movies). This contrasts
with well-studied objective properties like movie actors and genres,
point-of-interest categories, or attributes like “plot twist” Due to
their subjective nature, representing soft attributes as property-
value pairs in a knowledge base is error-prone and often infeasible.
Critically, while soft attributes resemble social tags, there are at
least two key differences that make applying tag collections (e.g.,
the MovieLens Tag Genome [38]) challenging. First, tags are binary
labels that do not allow for a relative ordering within relevant items
(e.g., which of two movies is “more violent,” if both are violent to
some degree). Thus most tag-based evaluations focus on compar-
ing items with and without a tag, being insensitive to fine-grained
structure. Second, while in principle both tags and soft attributes
are unconstrained natural language, most tagging approaches in-
tentionally bias users towards a consistent vocabulary, for example
displaying frequent past labels [12, 39] or pre-defining an ontol-
ogy of genres [40]. Soft attributes are by definition meant to allow
critiquing in natural conversations, i.e., serve a different purpose.

Specifically, this paper addresses the problem of the interpreta-
tion of soft attributes. Note that this is different from the task of
incorporating subjective item descriptions into latent user prefer-
ence representations for improving end-to-end recommendation
performance (measured in terms of success rate or the number of
conversational turns) [20, 24, 25, 42]. Instead, our objectives are to
be able to (1) explicitly measure the degree to which a soft attribute
applies to a given item and (2) quantify the degree of “softness” (i.e.,
subjectivity) of soft attributes.
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As our first main contribution, we develop a reusable test col-
lection, comprising a set of soft attributes and ground truth item
orderings with respect to that attribute (for particular users), and
an evaluation metric. The soft attributes we study come from real-
istic conversations of movie preferences [29]. Sampling attributes
mentioned extemporaneously by participants, we develop a novel
controlled multi-stage crowd labeling mechanism to collect ground
truth of personalized partial orderings, while keeping workers’
cognitive load low. Contrasting the attributes with tags, we note
that only 47% of the soft attributes we study are present as tags
in the commonly used MovieLens TagGenome [38]. To assess the
quality of the scoring functions, we also propose a novel weighted
extension to established rank correlation [11], based on agreement
with respect to the structured ground truth ranking.

A second key contribution is explicit quantification of the sub-
jectivity or “softness” of soft attributes. We identify ways to differ-
entiate more from less subjective soft attributes, and for measuring
how this affects item scoring. This result also has ramifications for
standard tagging, drawing attention to the role of subjectivity.

As our third main contribution, we address the problem of cri-
tiquing based on soft attributes, and present empirical evidence
to demonstrate the importance of debiased collection of ground
truth. In particular, soft attribute-based critiquing is the task of rank-
ing items relative to a given anchor item with respect to a given
soft attribute. Three families of methods are devised for this task
(unsupervised, weakly supervised, and fully supervised), which
correspond to increasingly advanced approaches. These methods
are compared on two test collections: one created based on existing
social tags and another constructed using our proposed approach.
We observe a discrepancy between the results on the two test col-
lections, showing that the tag-based test collection is blind to item
ranking improvements, making progress in this area difficult. This
demonstrates how new datasets and evaluation approaches may
enable significant progress in nuanced interpretation of natural lan-
guage critiques, which could not previously be reliably addressed.
We also analyze performance with respect to attribute “softness”
and find that methods perform significantly better on attributes
with higher agreement as opposed to those with low agreement.

In summary, the main novelty of the present work is the for-
malization of the notion of soft attributes, which opens up new
possibilities for more natural interactions with conversational rec-
ommender systems. Our main technical contributions are threefold:
(1) We present an efficient method for debiased collection of ground
truth for comparing items with respect to a given soft attribute
and release a new dataset (Section 3); (2) We introduce a measure
to quantify soft attribute subjectivity, and perform an analysis of
“softness” (Section 4); (3) We introduce and formalize a much refined
task of critiquing based on soft attributes, developing unsupervised,
weakly supervised, and fully supervised approaches (Sections 5-6).

2 RELATED WORK

We present an overview of key past work on conversational rec-
ommendation, then specifically on critiquing. Following this, we
present connections to opinion mining and related item tagging.
Conversational Recommender Systems. Conversation has be-

come recognized as a key modality for recommender systems (RSs)
[19, 29, 43]. Under the broader umbrella of information seeking and

recommendation, conversational interaction has been recognized as
of particular interest to the research community [10]. Growing out
of early work on slot filling [41] and facted search [36], conversa-
tional recommendation is distinct in that the sequence of exchanges
between the user and the system is less rigid in structure, and often
allow natural language dialogue. Radlinski and Craswell [30] pos-
tulated specific desirable properties of conversational search and
recommendation systems in general, with critiquing being a core
property. Various aspects of conversation have been addressed—
including selecting preference elicitation questions to ask [9, 32],
deep reinforcement learning models to understand user responses
[34], multi-memory neural architectures to model preferences over
attributes [46], and neural models for recommendation directly
based on conversations [21]. Our work continues in this thread,
albeit with a focus on semantic understanding of user utterances,
at a level of detail that has not been addressed before.

Critiquing in Recommender Systems. A specific interaction in
conversational recommendation, critiquing seeks user reactions to
items or sets of items. As such, critiquing-based RSs make recom-
mendations, then elicit feedback in the form of critiques [8]. The
user may give feedback on various facets of importance, e.g. the
airline and cost of a flight, or time and date of travel, with respect
to options presented [23]. This is often repeated multiple times
before the user makes a final selection. Chen and Pu [7] present a
user interface facilitating critiquing, by letting users indicate how
individual attributes should be changed (e.g., different screen size
for a digital camera). Critiquing has also been studied in conver-
sational RSs [27, 43] whereby users can affect recommendations
along some standard item attributes with which items have been
labeled, e.g., genres in movies. Bi et al. [3] present a product search
model that incorporates negative feedback on certain item prop-
erties (aspect-value pairs). Unlike them, we solicit unconstrained
natural language feedback, not limited to specific item properties.
Critiquing also happens in human conversations, where it is also
not limited to predefined facets [30]. Being able to interpret soft
attributes, which is our main objective, would thus enable the de-
velopment of conversational agents that more closely resemble a
human-to-human conversation. Some previous work has also mod-
elled how to learn different users’ different definitions for particular
terms. For instance, a safe car may mean different things to different
people [4, 5], although evaluation was limited to simulations.

A recent line of work aims to facilitate language-based critiquing
in modern embedding-based recommender systems beyond ex-
plicitly known item attributes [20, 24, 25, 42]. The central theme
of these efforts is to co-embed subjective item descriptions (i.e.,
keyphrases from user reviews) with general user preference infor-
mation. Then, end-to-end recommender architectures are trained
to suppress items that match a critiqued keyphrase. We also address
the problem of natural language critiquing, but our focus lies on
measuring the degree to which a soft attribute applies to a given
item, as opposed to end-to-end recommender architectures. Our
ranking models also operate in a latent embedding space to help
overcome data sparsity and to account for variety in language usage,
but we represent soft attributes as a function over item embedding
dimensions, instead of trying to co-embed them in the same space.
This way we are not constrained by keyphrase extraction.



Comparative Opinion Mining. Not to be confused with opinion
mining, comparative opinion mining deals with identifying and ex-
tracting information that is expressed in a comparative form [37].
Long studied by linguists, Jindal and Liu [13] presented the first
computational approach to comparative sentence extraction. Once
comparative sentences are identified, comparative elements must
be extracted: the entities and the attribute/aspect on which they are
being compared, the comparative predicate, and the comparison
polarity. For instance, Jindal and Liu [13] identify entities by POS
tagging, and recognize comparative predicates using a manually
compiled list. More recently, Kessler and Kuhn [15] employ seman-
tic role labeling techniques instead. Comparative sentences may be
utilized in various ways, e.g. for determining which of two entities
is better overall [18, 35, 47] or obtaining a global ranking of entities
on a given aspect [22]. A typical approach is to build a directed
graph of entities, where edge weights encode the degree of belief
that one entity is better than the other on a given aspect. Then,
entities can be ranked by some measure of graph centrality [18, 22].

However, the aspects considered previously are limited, often
coming from a fixed ontology (e.g., [22]). Further, comparative opin-
ion statements in natural text are uncommon, with estimates that
10% of sentences in typical reviews contain a comparison [16]. The
most important difference in our work is that we aim to interpret ar-
bitrary critiques, allowing direct navigation of the recommendation
space. By designing a data collection and evaluation specifically
for this task, we do not limit ourselves to common terms nor to
reviews, but rather to natural critiques.

3 BUILDING A TEST COLLECTION FOR
CRITIQUING BASED ON SOFT ATTRIBUTES

We begin this section by motivating and formally introducing the
notion of soft attributes (Sec. 3.1). Next, we describe the process
of creating a reusable test collection for determining how a soft
attribute applies to given items. At a high level, the process con-
sists of (1) sampling soft attributes, (2) obtaining ground truth item
orderings for each attributes, and (3) developing an appropriate
evaluation measure for this task. A main challenge is that obtaining
complete and universal ground truth orderings of items is infeasible,
because of the human annotation effort required, and because peo-
ple often disagree on the relative ordering of items. We therefore
use two types of evaluation collections. The first, which we term
the MovieLens Attribute Collection, reuses past social tag annota-
tions, with all their pertinent limitations and biases (Section 3.3).
Our second dataset, which we term the Soft Attribute Collection, is
collected with a process designed to reduce the biases (Section 3.4).

3.1 Defining Soft Attributes

Consider the partial exchange between a user and an agent shown
in Table 1. The terminology employed and the aspects of this par-
ticular movie that attract the user’s interest are likely to be useful
for an RS providing future recommendations. Here, the user men-
tions concepts such as the immersiveness of the movie, the in-depth
exploration of a particular time period, a bumbly character that they
relate to, and the level of violence depicted. Yet it is difficult to argue
that many of these attributes could be attached as definitive labels
(i-e., tags) for the movie. Rather, the concepts are soft attributes.

Table 1: Example partial exchange between a user and an
agent about the user’s movies interests [29].

USER Zodiac’s one of my favorite movies.

USER Zodiac the movie about a serial killer from the ’60@s or
’70s, around there.

ASSISTANT  Zodiac? Oh wow ok, what do you like about that movie?

USER And I just think serial killers, in general, are
interesting, so the movie was really good. And it was
just neat to see that world. Like it went really in-depth.
It was like almost 3 hours long, so you got to really
feel like you were a part of that world and time period.
And see what the detectives and the police did and the

investigators.

ASSISTANT  So you feel like you were part of that world ?

USER Yeah. It was really an immersive movie.

ASSISTANT  If you were in the movie what character do you feel most
relatable

USER Probably the main character, Robert Graysmith, just cuz

he’s awkward and bumbly. So, I guess that’s the one I
would be the closest to.

ASSISTANT  What scene do you like the best?

USER Probably the most memorable one is the murder at the lake.
Just cuz it’s really vivid and horrific to watch. But it’s
very memorable.

DEFINITION. We define a soft attribute as a property of an item
that is not a verifiable fact that can be universally agreed upon, and
where it is meaningful to compare two items and say that one item
has more of the attribute than another.

A number of examples of soft attributes are provided in Table 2
(Soft Attribute Collection). We highlight two main distinguishing
features that make a given attribute soft. First, there is commonly
a question of degree. For instance, consider the movie attribute
“violent” If taken to either apply or not apply to a particular movie,
it would be natural to ask what it takes for a movie to be marked
as such. Are there different types of violence? How much violence
is necessary in a movie before an entire movie is considered vi-
olent? Thus it is critical to model the degree to which each soft
attribute applies to a given item. Second, people may disagree in
their assessment, even with a real-valued measure. While there are
societal norms for attributes like violence (reflected in movie rating
criteria, corresponding to a rating scale), this need not apply in
general. In fact, we may ask whose opinion about an attribute (such
as “violence”) should matter if a given user says that they prefer
“less violent movies”? As such, different people may have differ-
ent norms, expectations and thresholds for a given soft attribute.
Boutilier et al. [4, 5] for instance postulated that an attribute such
as “safety” may have different sub-aspects, with different people
placing different importance on these sub-aspects. We also include
soft attributes that do not have norms: for example, “exciting” and
“boring” are attributes where different people may entirely disagree.

Another important difference of soft attributes versus social tags
is that most tagging approaches intentionally bias users towards a
consistent vocabulary, for example displaying frequent past labels
[12, 39] or pre-defining an ontology of genres [40]. This encourages
social taggers to conflate different semantics in popular tags.

We also note that soft attributes do not need to necessarily apply
to all items in the collection. For example, “realistic CGI” in a movie
is a soft attribute, yet CGI is not always present. This means that
for any given soft attributes there is a (personal) partial order over
items, where some items have the attribute more or less than others,
while others are incomparable.



Table 2: Examples of soft attributes from our test collections.

MovieLens Attribute Collection

action comedy depressing dystopia
romance sci-fi superhero suspense
Soft Attribute Collection
artsy feelsreal  incomprehensible intense
light-hearted  predictable  simplistic script violent

3.2 Items Considered

Here, we work within the movies domain as it has received the most
attention in recommender systems research, and has a rich variety
of publicly available resources (e.g., [12, 29]). However, we note
that there is nothing domain dependent in our approach and the
same procedure may be employed to create test collections for other
domains. Our corpus consists of the 300 most popular movies in
the MovieLens-20M collection [12], where popularity is measured
by the number of users who rated the movie. We annotate each
movie with its reviews in the Amazon review corpus [26], using
the mappings established in [44]1

3.3 MovieLens Attribute Collection

As frequently done [6, 31, 33], one can create a synthetic test collec-
tion based on social tags (such as those present in MovieLens). We
do so, noting that its main limitation is that it does not allow for to
measurement of the “degree” of a soft attribute, only its presence or
absence. We shall investigate later on (in Section 6) how this affects
the observed performance of ranking methods.

3.3.1 Soft Attributes. The top 100 most frequent MovieLens tags
are taken as soft attributes, excluding tags that are named entities
(names of actors, directors, studios, etc.), refer to adult content, or
contain coarse language. We note that each of the tags has been
assigned to 200-900 different items. Table 2 shows examples.

3.3.2  Ground Truth. We identify two sets of items: those that have
not been assigned that tag by any user, X~, and those where a
significant portion a of users who assigned any tag to an item
assigned the given tag, X*. We take the threshold to be & = 0.15.
This is a conservative threshold, leaving typically only a handful
of items as positive examples for each tag. Arguably, more items
could be included, but that would come at the expense of potentially
introducing noise. A manual inspection of the results showed that
all items in X" appear to be valid examples for the tag. Because of
this conservative threshold, there were no positive examples for 18
tags, leaving us with 82 tags as soft attributes.

For reliable statistics, we also require items to be tagged by at
least 50 users. This leaves 238 out of the original 300 movies in this
test collection. Table 3 presents descriptive statistics for the dataset.

3.3.3  Evaluation Measure. To be able to evaluate algorithms that
score items with respect to soft attributes, we need a measure that
defines the goodness of a ranking. Our evaluation measure is based
on the number of concordant and discordant pairs between the
generated ranking and the ground truth, specifically Goodman and

Thttp://goo.gle/research-docent

Table 3: Descriptive statistics of the test collections.

MovieLens Attribute Collection

Description Count (min/mean/max)

Number of soft attributes 82
Positive examples / attribute 1/5.77/ 28
Negative examples / attribute 144/ 214.7 / 234

Soft Attribute Collection

Description Count
Number of soft attributes 60
Sets of movies rated 5,991

Pairwise preferences 249,863 with 52,352 ties

Kruskal’s gamma [11] as a measure of rank correlation:
N — Ny

= —_— 1
N5+Nd ()

where N is the number of concordant pairs and Ny is the number
of discordant pairs with respect to the ground truth ordering. G
can range from —1 (perfect inversion) to +1 (perfect agreement).

3.4 Soft Attribute Collection

While the MovieLens Attribute Collection was created using a
common approach, tags suffer from a number of biases. Not least,
item popularity biases the potential for items to receive particular
tags, and the very nature of tagging limits the set of assigned tags
to a handful of most strongly associated ones. Yet, the fact that a
tag has not been assigned to an item does not necessarily mean that
it does not apply to that item at all. Here, we present a multi-step
approach that aims to reduce such biases. The final dataset statistics
are presented in Table 3, with the data available for download?

3.4.1 Soft Attributes. We sample soft attributes from the CCPE-M
dataset [29]. It consists of over 500 English dialogs between a user
and an assistant discussing movie preferences in natural language.
Utterances are annotated with (1) entity mentions, (2) preferences
about entities, (3) descriptions of entities, and (4) other statements
of entities. Of these, we leverage annotations of preferences (2).
First, we filter for utterances that potentially express a preference,
by simply checking for the presence of the words “more,” “less,” or
“t0o.” The resulting utterances were evaluated manually, and soft
attributes identified. A conservative filtering was applied, removing
expressions that were problematic even for humans to interpret.
This yielded 173 unique soft attributes, of which we sample 60
for our evaluation (the probability of selecting an attribute was
proportional to its frequency of use). Table 2 lists a few examples.

3.4.2  Ground Truth. Our methodology for collecting ground truth
for soft attributes is one of the key contributions of this work. In
particular, we focus on efficient collection of relative preferences
over pairs of items for the same soft attribute, to enable inter-rater
effects to be fairly measured. Additionally, the rater interface is
designed to reduce popularity biases, as well as biases due to certain
soft attributes never even being considered for certain items.

2http://goo.gle/soft-attribute-data
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Annotation Procedure. For these attributes, we design a two-stage
procedure to obtain pairwise item orderings via crowdsourcing. In
particular, we recruited native English speakers based in the United
States and Canada with a record of high quality annotation.

In Stage 1, the crowd workers are asked to indicate which movies
they have seen, from a pool of popular movies (cf. Section 3.2).

In Stage 2, each worker is presented with a specific ordering task
for each soft attribute a. As illustrated in Figure 1, they are provided
with an anchor item x and a small sample set of items (usually 10),
which are to be divided into three categories with reference to the
anchor item: “less a than x,” “about the same a as x.” and “more a
than x.” We represent each item by its image (movie poster) and title.
The set of items shown (both the anchor item and the sample set)
are personalized for each worker, that is, they are chosen from the
set of movies that the person has indicated as seen in Stage 1 so as
to ensure that all judgments compare items on an equal footing. By
forcing workers to consider consistent terminology across a variety
of items, we reduce biases due to the context in which individual
items are usually considered, and typical comparisons which are
made (e.g., dominated by the genres to which items belong, or tags
given by other users in the past). By offering the “about the same”
label, we also force an explicit decision as to whether a difference
between two items is meaningful or not. This full set of judgments
then yields pairwise preferences over all pairs of items placed into
two different classes, as well as relative to the anchor item.

Sampling Methodology. Notice that the way items are selected for
crowd workers influences the number of pairwise item preferences
that can be obtained. To maximize this value of the rating task,
we develop the following sampling methodology. To increase the
likelihood of meaningful comparisons between items, we score
items using two baseline algorithms: the term-based item-centric
and review-centric models (described in Section 5.2.1). First, we
eliminate all items that the user has not marked as seen in Stage 1.
All seen items are then sorted by score and partitioned into M=5
bins for each baseline, each with about the same number of items.
For a particular user and attribute a, we must select the anchor
item x and subset X to rank. The choice of anchor item x is particu-
larly key: if it is at an extreme for the soft attribute, most items that
x is compared to would fall into just one or two buckets, yielding
few pairwise preferences. Therefore, only items not in the first or
last bin for either baseline shall be selected as x. Second, as the
anchor item is present in the most pairwise preferences inferred, we
wish to bias it towards more popular items, maximizing the num-
ber of observed preferences for this attribute for different workers.
Thus, from the set of possible anchor items, we sample the anchor
item with probability proportional to the number of crowd workers
who indicated that they had seen this item in Stage 1. Finally, X
is a stratified sample of one item from each of the M bins for each
baseline algorithm, sampling items with probability proportional
to the number of workers who marked each item as seen in Stage 1.
This gives |X|=10 items, unless the user has seen too few items.

3.4.3 Evaluation Measure. As explained above and in Figure 1,
raters (crowd workers) are presented, for each soft attribute, with a
reference item x and a sample set of items X, to be categorized into
three disjoint sets: X~ (“less a than x”), X° (“about the same a as
x”), and X* (“more a than x”). A standard approach for evaluating

Drag and drop these movies into three categories
based on how {a} they are compared to {x}.

EEEE
B

less {a} about as {a}

.l

X~ x°

sample set X’

anchor item T

more {a}

D DX+

Figure 1: User interface for obtaining item orderings. Given
a soft attribute (a) and a set of items (X), workers are re-
quired to drag the image for each item based on how this
item compares to the anchor item (x) with respect to a. Items
are thus partitioned into three classes, X7, X° and X*.

scoring algorithms given pairwise preferences is to count how many
pairs are ordered in agreement with the test data.

However, with three classes, we are able to measure agreement
with a stronger metric. We present an extended version of the
pairwise agreement metric that differentiates between more/less
and much more/less. Specifically, we define a weighted extension
of Goodman and Kruskal’s gamma rank correlation measure [11]:

’_ (Ns = Ng) + 2(Nss — Ngq) )
(Ns + Ny) + 2(Ngs + Ngg) ’
where the number of concordant and discordant pairs, Ny and
N, are measured on elements in adjacent buckets, that is, X~ vs.
XOU {x} and in X° U {x} vs. X* (the anchor item x is considered
in the “middle” bucket).3

For pairs of items judged much more/less (in buckets X~ vs. X™),
we give double weight: Ngs counts the number of pairs of items
in X~ vs. X" that are ranked identically, while Ny, counts how
many of those are ranked differently, in a given item ranking as
compared to the ground truth. Similar to the original G (Eq. (1)),
the extended G’ also ranges from -1 (perfect anti-correlation) to +1
(perfect correlation), with a score of 0 indicating random agreement.

In the rare case where all items are rated into a single bucket,
namely to “about the same a as x,” this metric is undefined. We
leave out these ratings from the evaluation.

Note that unlike the original G, our extended G’ does not assume
an universally accepted ground truth. Instead, it measures how
well a ranking aligns with the preferences of a single rater. In our
experiments, we report on mean G’ values over all raters.

4 ANALYSIS OF SOFT ATTRIBUTES

There are two particularly fundamental concepts when considering
a given soft attribute: (1) How subjective is the meaning of the text
used for that attribute when applied to particular items?, and (2) Do
we observe significant “equality?” That is, when a user requests an
item with a given attribute changed, how much change is expected?
We address what our data tells us about each in turn.

3Measurement on elements in buckets X4 vs. X¥ means that all pairs of items x, €
X% xp € X? are considered; if Xq is ranked higher (i.e., given a higher score) than
Xp in the ranking, then it counts as a concordant pair, otherwise as a discordant pair.



4.1 Quantifying Subjectivity

Past attribute datasets have not analyzed personal variations in the
meaning of a term, or in the relative applicability of soft attributes:
While often scored for relevance (as in [39]), it is difficult to argue
that scores are an unbiased measure of disagreement about meaning.
In our work, these questions are reflected in inter-judge agreement:
Do different people considering the same soft attribute for the same
items agree on which is “more”?

For example, consider the attribute “predictable.” Different peo-
ple may consider different plot devices predictable, based on their
past experience, leading to disagreement about the relative order-
ing of some movies. On the other hand, we might consider the
attribute “funny” under-specified: for some people it may indicate
slapstick comedy, while for others it may indicate peculiar charac-
ters, plots, and settings (often characteristic of British comedy). As
such, disagreements may come from different definitions.

To measure soft attribute subjectivity, we identify all pairs of
movies (x,x") that have been ranked for the same attribute a by
different raters. At this point, recall that multiple judgment of tuples
(a,x,x”) is not something we can directly control. Rather, raters
specify which movies they have seen, and anchor items and movies
are sampled as described above—meaning we rely on this being an
unbiased sample of such tuples. Most tuples were judged just twice.

We define preference agreement by considering every pair of
judgments for every soft attribute. Agreement is defined as the
fraction of pairs where either (1) both raters agree on the direction
of preference, or (2) at least one rater indicates a lack of preference
(i.e., there is no disagreement). Formally, let N)‘C‘ < be the number
of raters who indicated that attribute a applies more to x’ than to x,
and N¢__, that for raters who indicated that a applies about equally.

x=x'

For each pair of movies x and x”,

a a
pa — x<x! pa — xxx!
x<x' =~ N% _,+N% ,+N% x=x" — N% ,+N% ,+N°
x<x’ x=x' x>x a x<x x=x' x>x (3)
pa — x>x!
x>x"— N¢ ,+N¢ ,+N¢ ,
x<x’ x=x x>

meany x [ agree(a, x, x”)], where

For attribute a, agree(a)

agree(a,x,x") =l (Piaw + Piax) @

+P;:>x’ : (P§>x' +p;:x’) +p§::x”

taking lack of preference (x ~ x”) as indicating agreement with ei-
ther direction. Based on agreement rate, we divide the soft attributes
into three equal-sized groups: High, Medium, and Low agreement
attributes. A sample from each is shown in Table 4. We see that
the attributes with highest score are reminiscent of typical tags in
tag corpora for movies (we found it surprising that funny has high
agreement). Many of the attributes with lowest agreement relate to
personal preferences (entertaining, overrated). It is also particularly
interesting to observe that attributes that are seemingly opposite
(e.g., intense and boring) can have quite different agreement rates.

4.2 Quantifying Equality
As we tasked raters to bucket movies into three categories, we can
observe the distribution over the counts in these buckets. Given

an anchor item and attribute, on average raters put* 3.46 movies
into X~, 3.28 movies into X°, and 3.19 movies into X*. While this

4These counts do not add up to 10 as | X | was not always 10.

Table 4: Selection of attributes with High, Medium, and Low
agreement rates (agree(a)).

Group Attribute agree(a) Distinct movie pairs Total comparisons
High scary 0.962 291 617 (6 ties)
agreement  gory 0.952 246 513 (3 ties)
action filled 0.950 277 583 (23 ties)
funny 0.949 318 672 (10 ties)
terrifying 0.947 289 623 (19 ties)
violent 0.946 290 615 (13 ties)
intense 0.937 297 634 (27 ties)
Medium fictionalized 0.894 243 511 (12 ties)
agreement  tearful 0.880 233 493 (10 ties)
romantic 0.885 272 585 (21 ties)
confusing 0.882 183 390 (16 ties)
mushy mushy  0.855 241 510 (16 ties)
exaggerated 0.830 288 606 (24 ties)
Low unique story 0.813 225 470 (22 ties)
agreement  original 0.808 189 391 (20 ties)
entertaining 0.796 270 569 (18 ties)
boring 0.791 234 514 (28 ties)
dynamic 0.785 280 590 (25 ties)
overrated 0.766 280 596 (26 ties)

distribution is likely influenced by the stratified sampling of items
in X, it confirms that there often exist many pairs of movies to
which a given attribute applies equally—even when many others
can be classified as more or less. Considering the scores of movies in
the X° set (“about the same a as x”), it would be possible to identify
thresholds that determine how different scores for items should be
for a recommender to have satisfied a user’s critique of more/less
without necessitating extreme differences. For instance, asking for
a “less violent” movie compared to a very violent one should likely
not lead to recommendations of movies with no violence at all.

We also observe that long (4.55 movies in X°), documentary
style (4.51 movies), well directed (4.13 movies) and original (4.13
movies) have the most items in X°. This suggests that critiques of
these attributes are likely to eliminate many movies simply because
significant differences are less common. In contrast, the attributes
playful (2.53 movies in X°), funny (2.57 movies), sappy (2.69 movies)
and scary (2.78 movies) are much more likely to have raters provide
a more complete order over movies, thus fewer would be eliminated
on the grounds of being too similar so as to satisfy a critique.

5 SCORING ITEMS BY SOFT ATTRIBUTE

We now address the question of how to apply soft attribute critiques
in a recommendation setting. Specifically, we cast this task as a
ranking problem. Our approach hinges on the idea that for the type
of critiquing we aim to support—specifying some soft attribute of
the desired item(s) relative to a given anchor item—it is sufficient to
determine the relative ordering of items. Once that relative ordering
is established, we can locate the anchor item in the ranking and
move in the required direction (and distance) with respect to that
(e.g., “little less” or “much more”). Our formal objective then is
to devise a scoring function score(x, a), where x is an item in the
collection and a is a soft attribute. If an attribute cannot be applied
at all to a given item, it should ideally be assigned a score of 0.

At their core, the scoring functions boil down to the question of
how items and soft attributes are represented. We represent items
in a latent space by learning embeddings from item-rating data
(Sec. 5.1). Our underlying assumption is that a representation of
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Figure 2: Unsupervised item ranking using the Centroid-
Based (CB) method.

soft attributes within the same embedding space can be learned.
(Note that we do not assume interpretability of these embeddings.)
We learn to represent soft attributes in three fundamentally different
ways, from unsupervised to weakly supervised to fully supervised.

e When no explicit training data over soft attributes exists, we use
implicit signals from item reviews, employing established models
from entity retrieval. Taking the centroid of top-ranked items, in
the spirit of pseudo-relevance feedback, we representation soft
attribute using an unsupervised approach (Section 5.2).

o Instead of considering only positive examples, we can also take
the top-ranked and bottom-ranked items as positive and negative
(pseudo-)training examples, respectively, to learn a pointwise
regression model in a weakly supervised way (Section 5.3).

o Finally, where pairwise item orderings for a given soft attribute
are available (facilitated by the data collection methodology we
introduce), we can use these pairwise preferences as training
examples and learn a model using full supervision (Section 5.4).

We note that these models do not personalize the meaning of a soft
attribute to a particular user, although we analyze the importance
of personalization in Section 6.3.2.

5.1 Generating Item Embeddings

Many methods have been proposed to compute item embeddings,
e.g., [2]. One of the most common ways to compute item repre-
sentations from collaborative filtering datasets is matrix factoriza-
tion [17]. Matrix factorization for collaborative filtering works by
using the user-item rating matrix R™™ for n users and m items,
factorizing this matrix to two low rank matrices containing the
user embeddings U™ and item embeddings X"*¢. To this end
the following objective function is minimized:

(rij = (wi, %)) + A llwi || + Azl 1 ®)
where r;; is the rating of item j by user i, u; is the d-dimensional
embedding for user i and x; that for item j. Each user and item
embedding vector corresponds to one row in the user and item
embedding matrices. The objective function is minimized using
stochastic gradient descent.

5.2 Unsupervised Ranking
We present two unsupervised ranking approaches as baselines: one
operating in the term space (Section 5.2.1) and another operating
in the embedding space (Section 5.2.2).
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Figure 3: Weakly supervised item ranking using the Weakly-
supervised Weighted Dimensions (WWD) method.

bottom 2% items as
negative examples

5.2.1 Term-based Ranking. Adapting well-established evidence ag-
gregation strategies for entity retrieval [1, 45], we leverage the
corpus of item reviews, using soft attributes as search queries, for
our term-based (TB) methods. Items are represented by aggregating
reviews following an item-centric or a review-centric strategy.

Item-centric Method A term-based representation dy is built
for each item x by concatenating all reviews mentioning x:
dx = Urer, r- The representations are then scored using
standard text-based retrieval models (here: BM25):

score'™™(x, a) = scorepyas (dyx, q) - (6)

Review-centric Method Reviews r € R are ranked using stan-
dard retrieval models (here: BM25). Then, for each item x,
the retrieval scores of reviews that mention x are aggregated:

score™ ¥ (x, a) = Z scoreppas (1, q) (7)
reR,

where R, denotes the set of reviews that mention x.

5.2.2 Centroid-based Ranking. Our centroid-based (CB) ranking
method considers the top ranked items, in the spirit of pseudo rel-
evance feedback, as representative examples of the soft attribute.
Then, the centroid of these top ranked items is taken as the repre-
sentation of the soft attribute in the embedding space. Other items
can then be scored by computing their distance to the centroid.

Let v, denote the representation of the soft attribute in the item
embedding space (an N-dimensional vector). We obtain v, by first
ranking items with respect to the soft attribute using a term-based
model over review text, and then taking the centroid of the top-k
ranked items’ embeddings:

valil = ¢ > x[il, ®
x€Xy
where Xj denote the set of top-k ranked items and x[i] refers
to the i dimension of embedding vector x. Once v, has been
computed, a given item x in the collection is scored against it
by computing the cosine similarity of their respective embedding
vectors: scoreB(x, a) = cosine(x, a). See Fig. 2 for an illustration.

5.3 Weakly Supervised Ranking

While the centroid-based method represents items in the embed-
ding space, it considers all factors (dimensions) equally important.
Instead, we would like to learn which factors in the embedding
space encode a particular soft attribute. In the absence of explicit
training labels, we again use term-based models for obtaining an



initial ranking of items. Then, the top- and bottom-ranked items
are taken as positive and negative training examples, respectively,
to learn a regression model. Items can then be scored by applying
this model and taking the prediction probabilities as scores.

Specifically, we employ Logistic Regression (LR), with target
labels y,, where y, = 1 when attribute a applies to item x, and
yq = 0 otherwise. To obtain these labels for training the LR model,
we operationalize the notion of an attribute applying to an item by
considering the item’s position in the ranking for that attribute in
the term-based model (thereby essentially taking the term-based
ranking as a weak supervision signal). Items in top z% positions of
the ranking are taken as positive examples (as long as their initial
scores are greater than zero). The same number of items from the
bottom are taken as negative. The embedding of the soft attribute
can then be computed by fitting a LR of the item embeddings x to
the item attribute labels y, (see Fig. 3 for an illustration):

1
T l4exp(—wg - X)

P (Ya = 1lx) )
Intuitively, the model parameters w, that are computed by LR
reflect the importance (weight) of each dimension in the item em-
beddings in predicting the soft attribute. In this way, we compute
which dimensions (and to what degree) are encoding this attribute.
This can be seen as distilling a representation of the soft attribute
from the item embeddings. Naturally one can compute the scores
of items x with respect to the attributes by using the corresponding
LR model. Our Weakly-supervised Weighted Dimensions (WWD)
method thus ranks items according to:

scoreV P (x, a) = p (ya = 1|x) (10)

5.4 Fully Supervised Ranking

The weakly supervised method (WWD) learns weights over the em-
bedding space dimensions using pseudo-relevance feedback based
on the review corpus. Here, we show how the explicit item or-
derings (i.e., data collected using the methodology we describe in
Section 3.4) can be leveraged to efficiently learn this weighting di-
rectly from the ordinal labelling produced by raters using a ranking
algorithm trained on pairwise preferences.

Specifically, given ground truth judgments as described in Sec-
tion 3.4.2, we infer all possible pairwise preferences. For each judg-
ment with reference item r and labelled sets X~, X°, and Xt we
infer the following sets of preferences between items i and j:

1) {i>jhVieXt,jeX™

() {i > j}, Vie Xt je X U{r}

(3) {i>jh VieX°U{r},jeX™

@) {i~Jj} Vi je X°U{r}

The fully supervised model (Supervised Weighed Dimensions, SWD)
then uses a linear ranking support vector machine® [14]. Briefly,
each preference p was transformed into a constraint: i > j be-
comes scoreSV P (x;) > 1+ scoreSWP (xj) = &p,and i > j becomes

5The hyperparameter C was set to 1. We analyzed the effect of tuning hyperparameters
and using non-linear models including gradient boosted decision trees, finding no
meaningful improvements. We hypothesize this lack of sensitivity to the precise
ranking model to be due to the limited amount of training data, leaving identifying
the best performing model to future work as it is not key to this work.

Table 5: Soft attribute ranking results on the MovieLens At-
tribute Collection (MovieLens) and Soft Attributes Collec-
tion (SoftAttr). The best scores in each block are in bold.

Method

MovieLens SoftAttr

(©)] @)
Unsupervised methods
(TB-IC) Term-based, item-centric 0.800 0.110
(TB-RC) Term-based, review-centric 0.733 0.136
(CB+TB-IC) Centroid-based (w/ TB-IC) 0.404 0.087
(CB+TB-RC)  Centroid-based (w/ TB-RC) 0.471 0.101

Weakly supervised methods

(WWD+TB-IC) Weakly-sup. w. dim. (w/ TB-IC) 0.539 0.194
(WWD+TB-RC) Weakly-sup. w. dim. (w/ TB-RC) ~ 0.517 0.200

Fully supervised method

(SWD) Supervised weighted dimensions 0.485

score®VP (x;) > 2 + score®WP (xj) — &, where x; denotes the em-
bedding vector of item i. Then score®WP (x;) = w - x;, where w is
learned by minimizing %w w+CX,&p.

As with the WWD model, this model represents a soft attribute
by a direction in the embedding space (w), albeit trained using
explicit pairwise preferences between items rather than based on

terms extracted from reviews.

6 EVALUATION

We evaluate scoring algorithms based on how many pairs are or-
dered in agreement with the ground truth data. Specifically, we use
the original Goodman and Kruskal gamma (G, Eq. (1)) for the Movie-
Lens Attribute Collection (MovieLens for short) and our modified
version (G’, Eq. (2)) for the Soft Attributes Collection (SoftAttr for
short). Our focus is to verify whether the algorithmic improvements
we would expect are indeed observed when they are evaluated
against different test collections.

6.1 Experimental Setup

For the unsupervised (CB) and weakly-supervised (WWD) meth-
ods, we report on a single parameter setting, selecting that which
performs best across the board. Specifically, we use 25 dimensional
embeddings; for the centroid-based methods we use top k = 5 items;
for weighted-dimensions we take z = 0.4.%

For the supervised method, SWD, we use 10-fold cross validation:
We split the raters into 10 groups, and evaluate each group by using
only the remaining 9 groups to train the ranking model. We report
average performance across the 10 folds.

6.2 Results

Our overall results are reported in Table 5, averaged over all soft
attributes and all users. The best performing methods in the super-
vised and unsupervised categories are bolded for each collection.

®We also performed a sensitivity analysis of these parameters and observed stable per-
formance across a broad range of values (k € [1..100],z € [0.1..0.4]). Additionally,
we experimented with the dimensionality of embeddings (between 25 and 100), finding
that higher dimensionality somewhat reduces performance due to over-fitting effects
that frequently manifest themselves in the outright performance of high-dimensional
matrix factorization techniques fitted on (relatively) small data.
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Figure 4: SWD model performance (all soft attributes aver-
aged) vs. the number of rater’s judgments used for training.

First, observe the magnitude of the rank correlation scores when
evaluated on each collection. The simple term-based models per-
form remarkably well when assessed on MovieLens, to the extent
that one could assume the problem of ranking items for a given
soft attribute could be substantially solved with a straightforward
model. Yet we postulate that this common formulation captured by
the MovieLens collection, namely with performance determined by
how well items with a given tag can be distinguished from those
without, is misleading. On the SoftAttr collection we see much
lower scores overall, indicating that this more accurate abstraction
of the attribute ranking problem proves to be considerably harder.

Next we observe that the relative ordering of systems on the
MovieLens collection is TB > WWD+TB > CBE+TB, while on
SoftAttr collection it is WWD+TB > TB > CBE+TB, also empha-
sizing the importance of the task encoded in the data enabling
meaningful progress. Centroid-based ranking (CB+TB) is least per-
formant in both cases. However, the retrieval-based baseline (TB)
performs much better on the MovieLens collection than the weakly
supervised approach (WWD+TB). On the SoftAttr collection it
is exactly the other way around. We hypothesize that one of the
main reasons that WWD+TB performs much better than CB+TB
is that WWD+TB considers positive as well as negative evidence
(i.e., movies at the bottom of the ranking for a given attribute), while
the CB+TB baseline only considers positive evidence (i.e., movies
where the soft attribute can reliably be considered to apply).

Finally, we turn to the supervised method, Supervised Weighted
Dimensions (SWD). We see that direct supervision based on rela-
tive preference judgments yields significant improvement in per-
formance on the SoftAttr collection.

Together, these results show the key contribution that our new
data collection methodology makes to enable the soft attribute
ranking problem to be addressed.

6.3 Analysis

Given that the fully supervised SWD algorithm significantly outper-
forms the unsupervised and weakly supervised methods on the Soft
Attribute collection, we now analyze this model further by asking:
How much rater training data is required to effectively learn a rank-
ing function for a soft attribute (Sec. 6.3.1)? And, how does model
performance change across different soft attributes (Sec. 6.3.2)?

6.3.1 Data Efficiency. Figure 4 shows average SWD performance
as a function of the number of rater’s judgment (sets) provided
to the learning algorithm. Specifically, we subsample raters in the
training set and compute mean G’, averaging over 25 runs at each

pearsonr = 0.87; p = 4.2e-19

0.0
0.75 0.80 0.85 0.90 0.95 1.00
agree
Figure 5: SWD model performance (G’) against attribute sub-
jectivity (agree). Each point represents one soft attribute.

subsample size. We see that the model is very data efficient: For any
given soft attribute, judgments from approx. 20 raters are required
to obtain near-optimal performance. This reinforces the value of
pairwise preferences over a controlled sample of known items, as
opposed to relying on binary judgments of tag presence or absence.

6.3.2  Performance Analysis by Soft Attribute. Next, we plot model
performance against attribute subjectivity in Figure 5. We observe
a clear correlation between the subjectiveness of a soft attribute
(measured in terms of inter-rater agreement) and ranking perfor-
mance (in terms of weighted gamma rank correlation G’). As may
be expected, soft attributes with less agreement are harder to pre-
dict, leaving significant room for personalized soft attribute scoring
models as future work. These results also suggest that predicting
the “softness” of a soft attribute is also an important future direction.

7 CONCLUSIONS

In this work, we have formalized recommender system critiquing
based on soft attributes, that is, aspects of items that cannot be es-
tablished as universally agreed facts. Developing a general method-
ology for obtaining soft attribute judgments, we have presented a
dataset of pairwise preferences over soft attributes applied to the
domain of movies. Our analysis of these preferences has shown that
different attributes exhibit different levels of “softness,.” with those
that have less inter-user agreement being more difficult to model.
We have also developed approaches for critiquing based on soft at-
tributes, in particular introducing a set of scoring approaches, from
unsupervised to weakly supervised to fully supervised, employ-
ing both information retrieval approaches and embedding models.
Moreover, comparisons on a standard tagging dataset has demon-
strated how an appropriate data collection approach is key to mak-
ing progress on the soft attribute scoring task.

Personalization is a key aspect of soft-attribute ranking that was
not addressed in this paper, despite a clear signal of its importance.
In fact, our analysis of performance by soft attribute suggests sig-
nificant headroom for personalized soft attribute ranking methods
as future work: The results suggest that “softer” soft attributes
perform more poorly with non-personalized algorithms.
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