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A B S T R A C T   

Since Bitcoin price is highly volatile, forecasting its volatility is crucial for many applications, 
such as risk management or hedging. We study which model is the most suitable for forecasting 
Bitcoin volatility. We consider several GARCH and two heterogeneous autoregressive (HAR) 
models and compare them. Since we utilize realized variance estimated from high frequency data 
as a proxy for true volatility, we can draw sharper conclusions than studies which use only daily 
data. We find that EGARCH and APARCH perform best among the GARCH models. HAR models 
based on realized variance perform better than GARCH models based on daily data. Superiority of 
HAR models over GARCH models is strongest for short-term volatility forecasts.   

1. Introduction 

Cryptocurrency is a digital payment medium. Starting out as a niche products used in small online communities, cryptocurrencies 
have now become mainstream, attracting the attention of both financial experts and the general population. With billions of dollars in 
market capitalization, this market has also become a new arena for speculators. 

This paper studies the most popular cryptocurrency, Bitcoin, which is currently traded on more than 500 exchanges. Since Bitcoin is 
the first cryptocurrency, established in 2008, it provides the longest historical data to study. However, results are likely to apply to 
other cryptocurrencies as well, due to high correlation between the cryptocurrencies. 

Compared to traditional fiat currencies, the Bitcoin price is highly volatile (Blau, 2017; Chu et al., 2017). For risk management purposes, 
it is therefore important to model and forecast the volatility of Bitcoin. Bitcoin also differs from traditional currencies in that it is not issued 
by a government, and therefore not attached to a specific country’s economy. Kristoufek (2013) argues that the expectations of macro-
economic development, which influence traditional currencies, do not influence Bitcoin prices, since Bitcoin has no underlying economy. 
This is supported by Bouoiyour and Selmi (2015b), who found that the price of Bitcoin exhibits unpleasant speculative behaviour. The 
occurrence of bubbles has been confirmed for Bitcoin and other cryptocurrencies (Corbet et al., 2018; Enoksen et al., 2020). 

Bitcoin has been considered predominantly a speculative financial asset, rather than a medium of exchange for goods and services, 
like traditional currencies. This is supported by Dyhrberg (2016), who found that Bitcoin can be classified in between gold and the 
American dollar. The Bitcoin market is highly speculative, and Bitcoin can therefore be considered mainly an asset and not a currency 
(Baek and Elbeck, 2015). Baumöhl (2019) study the comovement between cryptocurrencies and traditional currencies. It is hard to 
place Bitcoin in a certain asset class. Burniske and White (2017) argue that Bitcoin is a distinct asset class, due to its unique char-
acteristics, when compared to other asset classes. This is supported by Bouri et al. (2017), who found that the behaviour of Bitcoin 
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makes it suitable for diversification. Whether we regard Bitcoin as a currency or an asset, it is crucial to understand its volatility. 
Volatility tells us the extent to which the price of the asset changes over time. Understanding Bitcoin’s volatility is a first and crucial 

step in understanding its risk characteristics, and it is also an important aspect of risk management, market making, portfolio optimi-
zation and selection, derivative pricing and hedging, and several other activities. There exists a vast amount of volatility models with 
different properties. This paper focuses on generalized autoregressive conditional heteroskedasticity (GARCH) models estimated for daily 
returns data and heterogeneous autoregressive (HAR) models estimated using realized variance calculated from high-frequency data. 

Many of the studies about volatility forecasting of Bitcoin consider a few GARCH-type models with a limited number of distri-
butions of the error term (see the literature review in the following section). Also, studies often evaluate in-sample goodness-of-fit, and 
not how the models perform out-of-sample. We therefore study volatility forecasting for Bitcoin. Our goal is to compare the most 
commonly used volatility models, GARCH models and HAR models.1 To evaluate the models, we utilize realized variance as a proxy for 
the true variance. Among the GARCH family of GARCH models, EGARCH and APARCH perform best. Papers most closely related to our 
work are Trucíos (2019) and Köchling et al. (2020). Both these papers did a great job in evaluation of various GARCH models. 
However, we consider also HAR models, and find that the HAR models outperform even the best performing GARCH models. 

The rest of this paper is organized as follows: Section 2 provides an overview of the volatility research for cryptocurrencies. Section 
3 presents the data. Section 4 is an overview of the volatility models utilized in this study and methods for comparing them. Section 5 
presents the results, and Section 6 concludes. 

2. Literature review 

The original focus in cryptocurrency research has primarily been on technical and legal aspects of cryptocurrencies. However, as the 
popularity of cryptocurrencies has increased, the financial debate has also intensified, particularly concerning the risk characteristics of 
cryptocurrencies. Chu et al. (2017) found that cryptocurrencies are highly volatile compared to traditional currencies. Naimy and Hayek 
(2018) study the volatility of the Bitcoin/USD exchange rate, focusing mainly on generalized autoregressive conditional hetero-
scedasticity (GARCH), the exponentially weighted moving average (EWMA), and the exponential generalized autoregressive conditional 
heteroscedasticity (EGARCH) models. Of these three models, they found that EGARCH(1,1) outperforms the others, both in- and 
out-of-sample. Chu et al. (2017) were the first to provide a paper of GARCH modelling on the seven most popular cryptocurrencies. They 
fitted 12 different types of GARCH models and used information criteria to evaluate the models. They conclude that IGARCH and 
GJR-GARCH models provide the best fit in-sample for most of the cryptocurrencies. Katsiampa (2017) explored several conditional 
heteroskedasticity models with regard to goodness-of-fit to Bitcoin prices, finding that AR-CGARCH gives the best fit. This can indicate 
that it is important to include both a short-run and a long-run component of the conditional variance. Bouoiyour and Selmi (2015a) found 
that the volatility of Bitcoin is more influenced by negative shocks than positive ones, giving evidence of leverage effects. Trucíos et al. 
(2020) used Robust GARCH and GAS models to evaluate Value-at-risk and Expected shortfall of a cryptocurrency portfolio. 

Letra (2016) fitted a GARCH(1,1) model on daily data and web content from Google Trends, Wikipedia, and Twitter tweets and 
conclude that Bitcoin returns are highly driven by popularity, and web content has some degree of predictive power. Charles and Darné 
(2018) built on Katsiampa’s study by detecting jumps in Bitcoin returns. They used a semi-parametric test for jumps and estimated 
GARCH-type models on filtered data. They conclude that returns of Bitcoin are characterized by the presence of jumps, and that an 
AR-GARCH estimated on filtered returns gives the best result. The selection of the best model was based on in-sample goodness-of-fit. 
Catania et al. (2018) argue for using sophisticated volatility models, including leverage effect and time-varying skewness to improve 
volatility forecasts. Stavroyiannis and Babalos (2017) used data from 2013 to 2016 to estimate a FIAPARCH(1,d,1) model under a 
skewed student’s t distribution. They then considered how Bitcoin can be used as a natural hedge, where they conclude that investors 
cannot benefit from using Bitcoin as a hedge or diversifier with respect to the US market. Balcilar et al. (2017) studied how Bitcoin 
trading volume can be used to predict volatility using a quantiles-based approach. They conclude that trading volume can predict 
returns but not volatility, when the market is in median mode. Most studies have been performed on Bitcoin, but Burnie (2018) found 
that the correlation between cryptocurrencies is strong, especially when one is a fork of the other. A fork is produced when changes to 
the programming of a currency create incompatibilities between the original version and the new one (Kirk, 2014). We therefore argue 
that it is reasonable to assume that most findings are also applicable for other cryptocurrencies than Bitcoin. 

Some researchers have utilized realized variance (RV) and models based on this in the study of Bitcoin. As realized variance is a 
precise measure, it has previously been applied to commodities like oil (Haugom et al., 2014), gold and silver (Lyócsa and Molnár, 
2016), and electricity (Birkelund et al., 2015), as well as stock markets (Christoffersen et al., 2010), and major exchange rates 
(Andersen et al., 2001). Li (2017) did a study on the volatility forecasting performance of GARCH, HEAVY, HAR, and logarithmic HAR 
models on S&P 500 data, using the MSE and QLIKE loss functions. She found that there was no universal winner of the models. Under 
the MSE loss function, the HEAVY model produced the best forecasts up to three days in the future, and the logarithmic HAR model did 
best after that, up to a 60 day horizon. Under the QLIKE loss function, the HEAVY model did best the first two days, the HAR model 
from three to five days, and the GARCH model from six to 60 days. Liu and Maheu (2008) used logarithmic HAR models to identify and 
date structural breaks in reduced form time-series of RV. They found strong evidence of a structural break in S&P 500 in 1997, and that 
the evidence was robust when compared to different models, including a GARCH model for the conditional variance of logarithmic 

1 We do not consider stochastic volatility models, as these are more difficult to estimate (Ruiz, 1994; Lord et al., 2010), and therefore, less used by 
practitioners. Broto and Ruiz (2004) provide a great overview of stochastic volatility models. Recently, stochastic volatility models have been 
applied to cryptocurrencies (Shi et al., 2020). 
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realized variance. Dimpfl and Jank (2016) studied the relationship between the volatility of the Dow Jones and retail investors’ 
attention to the stock market. Using the fact that search queries Granger-cause volatility, they found that volatility forecasts could be 
improved by using a logarithmic HAR model in combination with Google search queries. 

Examples of the application of realized variance and the HAR model do exist in Bitcoin research. Baur and Dimpfl (2018) did an 
in-depth analysis of Bitcoin realized volatility and showed that the volatility of Bitcoin is extreme compared to major fiat currencies. 
Furthermore, their results suggest that the majority of Bitcoin trading is noise trading. Aalborg et al. (2018) used the HAR-RV model in 
combination with Google trends, transaction volume, traded volume, unique Bitcoin addresses, returns, and the VIX index to explain 
and predict the changes in Bitcoin’s daily and weekly realized volatility. They found that the past daily, weekly, and monthly realized 
variance are highly significant and that their model has high explanatory power for the realized variance of Bitcoin. Pichl and Kaizoji 
(2017) used a HAR-RV model with jumps, as well as the day-to-day distribution of log returns, to model the volatility of Bitcoin. They 
found that the HAR-RV-J model manages to capture the dynamics of the realized volatility of Bitcoin reasonably well. Kurka (2016) 
used HAR and GARCH models to examine the patterns and drivers of volatility in Bitcoin. Evidence of the leverage effect was found, as 
well as high persistence of volatility shocks. Yu (2019) also used the HAR model and found that it is improved when it incorporates 
leverage effect, and that jumps and economic policy uncertainty are not important for Bitcoin volatility forecasting. 

In recent years, some research has been done on volatility modelling of Bitcoin; however, few studies have compared the volatility 
models both in- and out-of-sample. Investigation of the optimal in-sample window size is also lacking in the literature. While others 
have previously calculated the realized volatility of Bitcoin using a five or 10 min grid, we use the average of several grids as our proxy, 
mitigating the variance-bias trade-off. Moreover, most research only considers either GARCH or HAR models, and does not compare 
the two group of models. The paper most closely related to ours is Caporale and Zekokh (2019). This paper is a very detailed com-
parison of GARCH models, not only for Bitcoin, but also for Ethereum, Ripple and Litecoin, with primary focus on Value at Risk and 
Expected Shortfall. However, we study not only GARCH models, but also HAR models and compare them. 

Since volatility of Bitcoin is a very important topic, several papers have investigated the impact of external shocks on Bitcoin volatility. 
These studies find that Bitcoin volatility is increased when geopolitical risks are high (Aysan et al., 2019), economic policy uncertainty is 
high (Wang et al., 2020), on days of cryptocurrency-related hacking attacks (Lyócsa and Molnár, 2016), and also Mondays and Thursdays 
(Ma and Tanizaki, 2019). Comovement among cryptocurrencies has been studied too (Beneki et al., 2019; Katsiampa, 2019). 

3. Data 

According to bitcoin.com there are about 2000 cryptocurrencies and over 500 exchanges currently recorded (Sedgwick, 2018). In 
this paper we solely study Bitcoin cryptocurrency. This is due to Bitcoin being the largest cryptocurrency in terms of both volume and 
market capitalization, as well as being the oldest one, meaning more historical data is readily available (CoinMarketCap, 2018). There 
is also a strong correlation between cryptocurrencies in general (Burnie, 2018), so results are likely to apply to other cryptocurrencies. 

Bitcoin prices have been collected from the Bitstamp exchange, as this is one of the oldest exchanges, founded in 2011, and licensed 
in the EU (Shin, 2016). The choice of using data from one exchange, rather than several, is due the limited price differences across the 
larger Bitcoin exchanges (Brandvold et al., 2015; Kroeger and Sarkar, 2017). The decision was also driven by data quality, as it was 
possible to retrieve intraday BTC/USD data from 13-Sep-11 to 19-Sep-18 through the Bitstamp API. Since the exchange is open around 
the clock, the daily closing price is the USD price of Bitcoin at the last registered trade of each day. These prices were extracted and 
transformed into log-returns. Data from 1-Jan-14 to 19-Sep-18, 1720 observations in total, has been used throughout this paper, as we 
consider this time frame representative of the market in terms of both price and volumes. After 2014, we also observe that data is 
frequent enough to estimate our realized variance precisely for all time grids. 

Table 1 presents the summary statistics of the daily log-returns of Bitcoin from the Bitstamp exchange. We can see the data is left 
skewed and has excess kurtosis, which indicates non-normality. This is confirmed by the Jarque–Bera test. The augmented Dick-
ey–Fuller test statistic rejects the null hypothesis of a unit root, meaning that returns can be viewed as stationary. This can also be seen 
in Fig. 1, where the log returns have been plotted against time. From this plot we also see evidence of volatility clustering. 

Fig. 2 shows the histogram of the log-returns. The distribution exhibits fat tails. This can also be seen from the kurtosis in the 

Table 1 
Summary statistics of Bitcoin log-returns from 01-Jan- 
14 to 19-Sep-18.  

Statistic Value 

Mean 0.00125 
Median 0.00157 
Max 0.238 
Min − 0.281  
Std. Dev. 0.040 
Skewness − 0.335  
Kurtosis 8.80 
Jarque–Bera 2444.3 
p-value 0.00 
ADF test statistic − 11.612  
p-value <0.01   
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summary statistics. This means that our data is prone to extreme outcomes, which is in accordance with the large price movements of 
Bitcoin. It is also evident from the summary statistics that the distribution is left skewed, with a mean below the median and a negative 
skewness. From this we can conclude that the data set is slightly more prone to extreme negative returns than positive ones. 

As Bitcoin and other cryptocurrencies are traded 24 hours a day, every day, high frequency data can be used to estimate realized 
variance (RV) as a variance proxy. An estimate of the daily variance can be constructed using m evenly spaced intraday squared returns 
(Christoffersen, 2011), with returns defined as: 

Rt+j/m = ln
(
St+j/m

)
− ln

(
St+(j− 1)/m

)
(1)  

where j defines the jth x-minute return. With m observations within a day, the realized variance can be estimated with the following 
formula: 

RVm
t+1 =

∑m

j=1
R2

t+j/m (2)  

This equation gives the variance for 24 h. We have chosen to calculate the realized variance using a grid of 10, 15, and 30 min, and then 
taking the average of the estimated realized variances for each of these periods. For this, we use Eq. (2) with j = 10, 15, and 30. An 
equally spaced grid is constructed by taking the last observation for each of these periods. The final realized variance used in our 
analysis is the average of these three proxies. The variance proxy should satisfy the four following stylized facts of realized variance 
(Christoffersen, 2011):  

1. The estimated realized variance is a better indicator for true variance than using the squared daily returns.  
2. The log of the realized variance will be approximately normally distributed.  
3. For many lags, the realized variance will have large positive autocorrelation.  
4. Taking the daily return and dividing it by the realized variance estimated, will produce independent and identically distributed 

standard normally distributed variables. 

Fig. 1. Plot of daily log-returns from 01-Jan-14 to 19-Sep-18.  

Fig. 2. Histogram of daily log-returns from 01-Jan-14 to 19-Sep-18.  
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Fig. 3. Realized variance for 10, 15, and 30 min grids and the average realized variance for the grids, for the period 01-Jan-14 to 19-Sep-18.  
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Fig. 3a–c shows the plots of realized variance calculated for each of the mentioned grids. Fig. 3d visualizes the average of these, our 
variance proxy going forward. From the figures we are able to see that the 10-minute interval grid contains more spikes in the variance 
compared to when we calculate the realized variance using larger intervals. When using a larger interval, we are less likely to get a 
biased estimate (Christoffersen, 2011). However, this involves using fewer observations, and estimates will be noisier. By taking an 
average of different grids, we mitigate part of this variance-bias trade-off. 

There are two important issues related to estimation of realized variance that should be mentioned. First, there are more advanced 
realized volatility measures designed to deal with jumps, see for example Barndorff-Nielsen and Shephard (2004) and Andersen et al. 
(2012). These estimators allow to decompose total variance into continuous and jump component, as was done previously also for 
Bitcoin, see Lyócsa et al. (2020). However, most of the models studied in our paper are low-frequency GARCH models based on daily 
data, and these models forecast the total variance. We therefore purposefully do not remove jump component from the realized 
variance to keep our realized variance measure comparable with variance estimated from GARCH models. Second, if trading volume is 
very low, then prices are not necessarily informative. Therefore, we do not include early days of Bitcoin, when trading volume was low, 
in our sample. Our sample starts in 2014, and already at the first day of our sample, trading volume was over 5 million USD. Time 
evolution of trading volume is plotted in Fig. 4. 

4. Overview of volatility models 

This section presents the GARCH and HAR models used in this paper. 

4.1. GARCH models 

Generalized autoregressive conditional heteroskedacity (GARCH) models illustrate the volatility as a stationary process. Let Xt denote the 
observed log-returns of the Bitcoin prices, and μ the conditional mean. With a volatility process denoted by σ2

t , GARCH models can be given by: 

Xt = μt + σtZt (3)  

The GARCH-models differ in the specification of the volatility process σt , but all these models use an AR(1) process for the conditional 
mean. The innovation Zt is distributed according to one of the following distributions: normal distribution (norm), skewed normal 
distribution (snorm), generalized error distribution (ged), skewed generalized error distribution (sged), Student’s t distribution (std), 
skewed Student’s t distribution (sstd), normal inverse Gaussian distribution (nig), generalized hyperbolic distribution (ghyp), or 
Johnson’s SU-distribution (jsu). In the case of Markov Switching GARCH model with two standard GARCH(1,1) regimes, the two 
regimes have the same type of the distribution of the innovation, either norm, snorm, ged, sged, std, or sstd. 

The GARCH(p,q) process is specified as (Bollerslev, 1986): 

σ2
t = α0 +

∑q

i=1
αiZ2

t− i +
∑p

j=1
βjσ2

t− j (4)  

Here, p are the number of lags of the conditional variance and q the number of lags of the squared errors. We also need that: 

α0 > 0, αi ≥ 0, i = 1, 2,…, q
βi ≥ 0, 2,…, p 

The Glosten–Jagannathan–Runkle GARCH (GJR-GARCH) model is another form of GARCH-model. It was developed based on the 
idea that the standard GARCH might not be good enough at capturing the characteristics of monthly excess return (Glosten et al., 
1993). It is an asymmetric version of the GARCH(p,q) model which takes leverage effects into account. The conditional variance in the 
GJR-GARCH(p,q) model is: 

Fig. 4. Logarithm of Bitstamp trading volume measured in USD.  
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σ2
t = α0 +

∑q

i=1
(αi + γiIt− i)Z2

t− i +
∑p

j=1
βjσ2

t− j (5)  

where It− i is an indicator function that takes the values: 

It− i =

{
1 if Zi− t < 0, for i = 1, 2,…, q
0 if Zt− i ≥ 0, for i = 1, 2,…, q  

We also need that: 

α0 > 0, αi ≥ 0, i = 1, 2,…, q
βi ≥ 0, i = 1, 2,…, p
αi + γi ≥ 0, i = 1, 2,…, p  

γi is an asymmetry parameter. If it is positive, it indicates that volatility increases relatively more following negative shocks than what 
it does following positive shocks. 

The integrated GARCH (IGARCH) model has a persistent variance property. The equation for the conditional variance is the same as 
for standard GARCH(p,q), Eq. (4)., but the IGARCH(p,q) is characterized by having: 

∑q

i=1
αi +

∑p

j=1
βj = 1 (6)  

In this model, the unconditional variance of the model does not exist. 
The exponential GARCH (EGARCH) model is another asymmetric GARCH model accounting for leverage effects proposed by 

Nelson (1991). The conditional variance in the EGARCH(p,q) model is defined by: 

ln
(
σ2

t

)
= α0 +

∑p

j=1
βjln
(

σ2
t− j

)
+
∑q

i=1

[

γi

(
Zt− i
̅̅̅̅̅̅̅̅
σ2

t− i

√

)

+ αi

(
|Zt− i|
̅̅̅̅̅̅̅̅
σ2

t− i

√ − E

(
|Zt− i|
̅̅̅̅̅̅̅̅
σ2

t− i

√

))]

(7) 

For γi < 0 negative shocks will have a higher influence than positive shocks of the same magnitude on future volatility, accounting 
for the leverage effect. If γi equals zero, the model indicates perfect symmetry. By using the logarithm, it is not necessary to impose 
restrictions on the parameters requiring them to be positive. 

The asymmetric power ARCH (APARCH) model – which accounts for long memory, power effects and leverage terms – was 
proposed by Ding et al. (1993). The APARCH(p,q) model is defined as: 

σδ
t = ω +

∑p

j=1
βjσδ

t− j +
∑q

i=1
αi(|Zt− i| − γiZt− i)

δ (8)  

The introduction of the power term, δ > 0 as a parameter to be estimated is the main difference from other GARCH-type models where 
it is usually assumed to be 2. δ plays the role of a Box-Cox transformation of the conditional volatility σt , whereas γi reflects the leverage 
effect. The standard GARCH model is a special case of the APARCH model where δ = 2 and γi = 0 (i = 1,…,q). 

Markov switching GARCH (MSGARCH) models allow the unconditional mean and variance to change from one GARCH regime to 
another (Bauwens et al., 2010). Mikosch and Stărică (2004) and Hillebrand (2005) show that in the presence of structural changes in the 
unconditional variance, the estimation of regular GARCH models can create bias upwards in the persistence parameter. In MSGARCH, the 
parameters are allowed to change from one regime to another. The model allows the unconditional variance to change based on different 
regimes. Denoting the log-return at time t by yt, we assume that this variable has a zero mean and is not serially correlated, so: 

E[yt] = 0 and E[ytyt− k] = 0, for k ∕= 0  

Let I t− 1 denote the information we have up to time t − 1: I t− 1 ≡
{
yt− i, i > 0

}
. D

(
0, σ2

k,t , ξk

)
is a zero-mean continuous distribution 

with a time-varying variance σ2
k,t. ξk is a vector of additional shape parameters for the distribution. A Markov-switching GARCH 

specification can then be written as: 

yt|(st = k, I t− 1) ∼ D

(
0, σ2

k,t, ξk

)
(9)  

The MSGARCH models can be characterized by an integer-valued stochastic variable st . This variable is defined on the discrete space 
{1,…,K}. It is assumed that this evolves as stated by an unobserved periodic homogeneous Markov chain. The transition matrix has K 
rows and K columns: 

P =

⎡

⎢
⎢
⎣

p1,1 ⋯ p1,K
⋮ ⋱ ⋮

pK,1 … pK,K

⎤

⎥
⎥
⎦
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Here pi,j denotes the probability of going from state st− 1 = i to state st = j. We therefore require that the following holds: 
∑K

j=1pi,j = 1,
∀i ∈ {1,…,K}. Haas et al. (2004) assume that the conditional variances σ2

k,t , k = 1,…,K each follow a separate GARCH-process giving 
K separate processes evolving in parallel. They use the past observations, past variance and a vector of regime dependent parameters, 
θk, to find σ2

k,t conditional on regime st : 

σ2
k,t = f

(
yt− 1, σ2

k,t− 1, θk

)
(10)  

f is a function that takes into account all previous observations and ensures positiveness. 
Specification of GARCH models. GARCH(p,q), EGARCH(p,q), IGARCH(p,q), GJR-GARCH(p,q), and APARCH(p, q) models were 

fitted as described in this section for p = 1 and q = 1. 

4.2. Heterogeneous autoregressive models 

The heterogeneous autoregressive (HAR) model is able to capture the long-memory of realized variance (Corsi, 2009), which can be 
estimated as a simple regression. The regression uses daily, weekly, and monthly realized variance. Since Bitcoin is traded 24 h a day, 
independent of exchanges’ opening hours, we use seven day weeks and 30 day months. Define the simple moving averages: 

RVD,t = RVt

RVW,t = RVt− 6, t =
RVt− 6 + RVt− 5 + ⋯ + RVt

7

RVM,t = RVt− 29,t =
RVt− 29 + RVt− 28 + ⋯ + RVt

30

(11)  

Forecast is constructed by running the following regression: 

RVt+1 = ϕ0 + ϕDRVD,t + ϕW RVW,t + ϕMRVM,t + εt+1 (12)  

This equation defines the HAR model, specified by Corsi (2009). Corsi and Renò (2012) changed this model by a log-transformation: 

ln(RVt+1) = ϕ0 + ϕDln
(
RVD,t

)
+ ϕW ln

(
RVW,t

)
+ ϕMln

(
RVM,t

)
+ εt+1 (13)  

The advantages of using the logarithmic specification (13) is that it assures positive variance forecasts, and it fits the assumptions of the 
ordinary least squares (OLS) better. 

HAR and logarithmic HAR models for the variance have been estimated using Eqs. (12) and (13), respectively. In the regular HAR, the 
realized variance is regressed on the previous day’s variance, previous weekly variance, and previous monthly variance. For logarithmic 
HAR, we do the same. However, we now regress the logarithm of the realized variance on the logarithm of the previous day’s variance, the 
average of the previous seven day’s logarithmic variances, and the average of the previous 30 day’s logarithmic variances. 

5. Methods for model comparison 

This section describes how models are compared using the information criteria AIC and BIC and the loss functions MAE, MSE, 
MAPE, and QLIKE. In addition, we describe the model confidence set approach used to establish whether the models have statistically 
different predictive abilities. 

5.1. Information criteria 

Information criteria are a common way to compare models in-sample. The Akaike information criterion (AIC) and the Bayesian 
information criterion (BIC) are estimates of the relative quality of statistical models. We let k denote the number of parameters in the 
model, L̂ the maximum value of the likelihood function, and n the number of observations. Then the Akaike information criterion, 
developed by Akaike (1974), is defined as: 

AIC = 2k − 2ln(L̂) (14)  

and the Bayesian information criterion, developed by Schwarz et al. (1978), is defined as: 

BIC = ln(n)k − 2ln(L̂) (15) 

The model with the lowest value of the information criterion is preferred. 
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5.2. Loss functions 

Loss functions are used to evaluate forecasts. The general rule is that the model producing the lowest loss function value is the best 
at predicting volatility when comparing different models. In our case, it tells us how a model performs out-of-sample compared to 
realized variance defined in Section 3. We let T denote the number of observations out-of-sample, σ̂2

t be the variance forecast for day t, 
and σ2

t be the “true” variance for day t. 
Mean square error (MSE) is one of the most used loss functions. It is calculated by taking the squared difference between the 

variance proxy and the variance forecast for each of the out-of-sample observations, and then the average is taken: 

MSE =
1
T

∑T

t=1

(
σ̂2

t − σ2
t

)2
(16) 

The literature has shown that a few extreme outcomes can have a large impact on the forecast evaluation, see Andersen et al. (1999) 
and Poon and Granger (2003). Mean absolute error (MAE) loss function, which mitigates this problem, is calculated as follows: 

MAE =
1
T
∑T

t=1

⃒
⃒σ̂2

t − σ2
t

⃒
⃒ (17) 

A third loss function is the mean absolute percentage error (MAPE): 

MAPE =
1
T
∑T

t=1

⃒
⃒
⃒
⃒
σ2

t − σ̂2
t

σ2
t

⃒
⃒
⃒
⃒ (18) 

A forth loss function we use is QLIKE, which is very suitable for evaluation of volatility forecasts (Patton, 2011): 

QLIKE =
1
T

∑T

t=1

(

ln
(

σ̂2
t

)
+

σ2
t

σ̂2
t

)

(19)  

5.3. Model confidence set 

The model confidence set (MCS) procedure, developed by Hansen et al. (2011), is an approach for choosing the best model or set of 
models. The models are evaluated using a user-specified loss function. 

di⋅,t = (m − 1)
∑

j∈M
dij,t, i = 1,…,m (20)  

where M is a set of m models. Then, the null and alternative hypotheses of equal predictive ability of a model set M can be formulated 
as: 

H0,M : E
[
dij
]
= 0, for all i, j = 1,…,m

H1,M : E
[
dij
]
∕= 0, for some i, j = 1,…,m (21) 

Hansen et al. (2011) show that these hypotheses can be tested using two test statistics: 

tij =
dij
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ̂2
(

dij

)√ and ti⋅ =
di⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ̂2
(

di,⋅

)√ , for i, j ∈ M (22)  

Here di⋅ gives the relative sample loss between model i and j, given by dij = 1
m
∑m

t=1dij,t . Then di,⋅ =
1

m− 1
∑

j∈Mdij gives the simple loss of 

model i relative to the average of losses for all models in M. σ̂2
(

dij

)
and σ̂2

(
di,⋅

)
are bootstrapped estimates of σ2

(
dij

)
and σ2

(
di,⋅

)
. The 

test statistics are then constructed as: 

TR,M = max
i,j∈M

⃒
⃒tij
⃒
⃒ and Tmax,M = max

i∈M
ti⋅ (23)  

The relevant distribution under the null hypothesis has to be estimated using bootstrapping since it is asymptotic and nonstandard. If 
the test statistics are larger than the bootstrapped estimates, the null hypothesis is rejected, and the models compared have different 
predictive abilities. 

6. Results 

This section presents the results. First, the in-sample fits of the GARCH and HAR models are evaluated. Next, results from the out-of- 
sample model comparison are presented. 
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6.1. In-sample comparison 

The in-sample comparison tells us how well a model fits the entire data set. The GARCH models were compared relative to each 
other using the information criteria AIC and BIC. This method is not applicable for comparing GARCH models with HAR models, since 
the models are estimated on different data. Therefore, the HAR models are compared separately. Lastly, the loss function MSE is used to 
illustrate the difference in performance between GARCH and HAR models. 

6.1.1. GARCH models 
All GARCH-type models were fitted on the total data sample consisting of 1720 observations. The values of AIC and BIC for the top 

10 models are given in Table 2. We can see that the models selected by AIC and BIC are quite different. The best model according to the 
AIC is the Markov Switching GARCH-sstd, while the best model according to the BIC is the EGARCH-nig. The AIC tends to favour more 

Table 2 
Information criteria values for the 10 best performing 
GARCH models in-sample.  

(a) AIC values 

Model AIC 

MS-SGARCH-sstd − 7072.0  
EGARCH-nig − 7066.6  
EGARCH-ghyp − 7065.0  
APARCH-nig − 7062.5  
EGARCH-jsu − 7061.7  
MS-SGARCH-sged − 7061.2  
APARCH-ghyp − 7060.9  
APARCH-jsu − 7057.5  
EGARCH-ged − 7056.0  
IGARCH-nig − 7055.1   

(b) BIC values 

Model BIC 

EGARCH-nig − 7023.0  
IGARCH-nig − 7022.4  
IGARCH-ged − 7020.8  
EGARCH-jsu − 7018.1  
EGARCH-ged − 7017.9  
IGARCH-ghyp − 7016.8  
EGARCH-ghyp − 7016.0  
IGARCH-sged − 7014.8  
SGARCH-nig − 7014.5  
APARCH-nig − 7013.5   

Fig. 5. Fitted values of EGARCH nig (green) against realized variance. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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complex models that might be overfitting. We see that using the AIC, we get several Markov Switching GARCH and APARCH models in 
the top 10. These models have more parameters than simpler GARCH models. The BIC penalizes the number of parameters more 
heavily than the AIC, and therefore favours the simpler models. Fig. 5 shows the conditional volatility of the EGARCH-nig model 
plotted against the volatility proxy. We can see that the model is not able to properly capture the large jumps in volatility. This is as 
expected, as GARCH models have a tendency to smooth out variance. 

6.1.2. HAR models 
Another group of volatility models we estimated are HAR models. We estimated the regular HAR as specified by Eq. (12) and logarithmic 

Fig. 6. Fitted values of regular HAR (green) against realized variance. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 

Fig. 7. Fitted values of logarithmic HAR (green) against realized variance. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Table 3 
Parameters and R2 values for regular and logarithmic HAR models.   

Regular HAR Logarithmic HAR 

ϕ0  4.740× 10− 4**  − 0.7990**  

ϕD  0.3894**  0.5400**  
ϕW  0.1358*  0.2336**  
ϕM  0.2585**  0.1245**   

R2  0.2665  0.6393  

Adjusted R2  0.2652  0.6386  

Significance codes: p = 0 ‘**’, p ≤ 0.001 ‘*’. 
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HAR as specified by Eq. (13). Figs. 6 and 7 plot the regular HAR and the logarithmic HAR against the variance proxy for the entire period, 
respectively. From the figures we can see that the estimated variances produced by the HAR models fit realized variance more precisely than 
the EGARCH-nig model in Fig. 5. When comparing the two HAR models, we see that the regular HAR model fits the proxy better in times of 
high variance, whereas the logarithmic HAR model fits better in times of low variance. The parameter values from the two HAR models are 
presented in Table 3. All parameters are significant at the 0.001 significance level. For both regular and logarithmic HAR, the previous day’s 
variance is the most important predictor of the current day’s variance. Even though logarithmic HAR gives a much larger R2 value than the 
regular HAR, the values are not comparable since the logarithmic HAR model is estimated on transformed data. 

Table 4 
In-sample MSE values for regular HAR, logarithmic 
HAR, and EGARCH-nig.  

Model MSE 

Regular HAR 1.451× 10− 5  

Log HAR 1.480× 10− 5  

EGARCH-nig 1.599× 10− 5     

Table 5 
Summary of the model confidence sets for the MAE, MSE, MAPE, and QLIKE loss functions for cumulative forecasts on horizons of 1, 2, 5, 10, and 15 
days, using a significance level of α = 0.05.  

Forecast horizon MAE MSE MAPE QLIKE 

1 day Log HAR Regular HAR Log HAR Regular HAR   
Log HAR     
APARCH-sstd   

2 days Log HAR Regular HAR Log HAR Regular HAR   
APARCH-sstd  APARCH-sged 

5 days Regular HAR Regular HAR Log HAR Regular HAR  
Log HAR APARCH-sstd  EGARCH-std     

EGARCH-sstd     
EGARCH-jsu     
APARCH-std     
APARCH-jsu 

10 days Regular HAR Regular HAR Log HAR Regular HAR  
Log HAR MSGARCH-sstd  EGARCH-std   

APARCH-sstd  EGARCH-sstd     
EGARCH-jsu     
MSGARCH-std     
MSGARCH-sstd     
APARCH-sged     
APARCH-std     
APARCH-sstd     
APARCH-jsu 

15 days Regular HAR Regular HAR Log HAR Regular HAR  
Log HAR GARCH-norm  EGARCH-std   

EGARCH-std  EGARCH-sstd   
EGARCH-sstd  EGARCH-jsu   
EGARCH-nig  APARCH-ged   
EGARCH-ghyp  APARCH-sstd   
EGARCH-jsu  APARCH-jsu   
IGARCH-norm     
IGARCH-snorm     
GJR-GARCH-norm     
GJR-GARCH-ged     
GJR-GARCH-sged     
GJR-GARCH-std     
GJR-GARCH-sstd     
GJR-GARCH-nig     
GJR-GARCH-ghyp     
GJR-GARCH-jsu     
MSGARCH-sstd     
APARCH-ged     
APARCH-std     
APARCH-sstd     
APARCH-jsu    
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6.1.3. Best in-sample fit based on MSE 
In order to illustrate the difference between the GARCH and HAR models, we also compare the best GARCH model (EGARCH-nig), 

and the HAR models in terms of in-sample MSE. The analysis is done using the loss function mean square error, presented in Section 
5.2. The loss is calculated using the fitted values from the previously mentioned three models and the realized variance. Results are 
presented in Table 4. The regular HAR model has the lowest loss function value, and therefore fits the data best. 

Fig. 8. The daily average cumulative realized variance against the predicted daily average cumulative variance for regular HAR (green) and 
logarithmic HAR (red) for time horizons of 1, 2, 5, 10, and 15 days. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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6.2. Comparison of forecasting performance 

The comparison of predictive accuracy of the different models has been determined through four different analyses. We have 
looked at the forecasting performance of all models on cumulative variance at different horizons. A subset of well-performing models 
was selected for the analysis of predictive accuracy of logarithmic variance, daily variance, and cumulative variance using varying in- 
sample window size. The comparison was done using loss functions and the MCS approach presented in Section 5.3. 

6.2.1. Predicting cumulative variance 
We used the K-day cumulative realize variance when evaluating the predicted variance for the K-day period, where K is one, two, 

five, 10, and 15. When predicting the cumulative variance, all models were fitted on a rolling window of 1220 observations starting on 
01-Jan-2014, leaving out 500 observations. The fitted models were then used to predict the variance for periods of one, two, five, 10, 
and 15 days. For each period, we use the cumulative predictions for that period’s variance. To evaluate the forecasts, we compared the 
models against our variance proxy, the realized variance. 

We evaluated the models by calculating the loss functions MSE, MAE, MAPE, and QLIKE, as described in Section 5.2, for each model. The 
model with the lowest value is identified as the best model. Tables A.1–A.5 in the appendix present the loss function values for the 10 models 
with the lowest loss function values for each of the four loss functions. From the tables, we observe that both HAR models perform well 
compared to the other models, especially for shorter horizons. For one-day forecast, logarithmic HAR performs best when considering MAE 
and MAPE, while regular HAR has the lowest values when considering MSE and QLIKE. The same results apply for the two day-period. For a 
five day-period, regular HAR has the lowest value for MAE, MSE, and QLIKE, while logarithmic HAR is best when looking at MAPE. For the 
10- and 15-day periods, we observe the same results, except where the 15-day period EGARCH-std has the lowest value for QLIKE. 

To determine if any of the models are statistically better than the others, we used the model confidence set (MCS) approach, as 
described in Section 5.3. For each prediction horizon, we used the model with the smallest loss function value for each of the loss 
functions as a benchmark model and compared it to each of the other models. This test gives us the set of models with forecasting 
abilities not statistically different from the best model. These models will make up the sets of superior forecasting models. We make the 
evaluation using a significance level of α = 0.05. The test is summarized in Table 5. 

Table 5 combined with Tables A.1, A.2, A.3, A.4 and A.5 indicate that the HAR models perform well at predicting the variance of 
Bitcoin. We especially observe that for one day logarithmic HAR is part of the superior sets of models when using the three loss 
functions MAE, MSE, and MAPE, while regular HAR is part of the sets when considering MSE and QLIKE. For the two-day period, 
logarithmic HAR has superior predictive ability when looking at MAE and MAPE, while regular HAR is in the superior sets for MSE and 
QLIKE. For periods of five, 10, and 15 days, regular HAR is part of all superior sets, except when considering MAPE. Logarithmic HAR 
performs well in general, especially when considering the loss functions MAE and MAPE but less so when using MSE and QLIKE. These 
last two loss functions are considered robust, as opposed to MAE and MAPE. It is worth noting that APARCH-sstd is part of the superior 
sets for MSE for all horizons. Since regular HAR is in the superior sets for all time horizons when looking at both of the robust loss 
functions, and it is a much less complex model than APARCH, we conclude that regular HAR is the best choice of model for all horizons 
of the considered models. However, we note that when the horizon increases, several of the GARCH-type models are included in the 
superior sets of models, especially for QLIKE and MSE. We observe that APARCH-sstd and EGARCH with distributions std, sstd, and jsu 
will be the best alternative to the HAR models of the GARCH family of models. It is worth noting that EGARCH is less complex than the 
APARCH model and would therefore probably be the preferred choice in many practical applications. 

Fig. 8a–e plots the daily average cumulative realized variance against daily average cumulative variance predicted by HAR and 
logarithmic HAR for each of the time horizons. We observe again, as in the in-sample-comparison, that the regular HAR has a tendency 
to follow the realized variance well in times of high volatility, while the opposite seems to be the case for the logarithmic HAR. 
Especially, for longer time horizons the logarithmic HAR has a tendency to under-predict the variance more than the regular HAR. 

6.2.2. Predicting logarithmic variance 
We also tested ability of some (better performing) models to predict the logarithmic cumulative realized variance. We did not perform 

this analysis on all the models, but chose one distribution for each of the GARCH-type models. For each horizon, we based our selection on 
which distribution provided the lowest MSE value for each GARCH model for the specified time horizon, using the analysis conducted in 
Section 6.2.1. See Table A.11 for which GARCH models this includes for each horizon. The MCS approach was used to evaluate the models, 

Table 6 
Summary of the model confidence sets for the MAE, MSE, and MAPE loss functions for forecasting horizons of 1, 2, 5, 10, and 15 days for 
predicting logarithmic variance, using a significance level of α = 0.05.  

Forecast horizon MAE MSE MAPE 

1 day Log HAR Regular HAR Log HAR   
Log HAR  

2 days Regular HAR Regular HAR Regular HAR  
Log HAR Log HAR Log HAR 

5 days Regular HAR Regular HAR Regular HAR  
Log HAR   

10 days Regular HAR Regular HAR Regular HAR 
15 days Regular HAR Regular HAR Regular HAR  
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again at a significance level of 5%. Table 6 shows the results. QLIKE requires taking the logarithm of the prediction, but since the logarithmic 
variance predictions are negative, it cannot be calculated. Therefore, only the loss functions MAE, MSE, and MAPE are used. We observe that 
regular HAR outperforms the logarithmic version. Logarithmic HAR is only included in the superior sets of models for shorter time horizons, 
while regular HAR is included in all superior sets, except for MAE and MAPE when considering one day. We also notice that none of the 
GARCH models are included in any of the superior sets. This supports our finding that the HAR models have the ability to capture the 
dynamics of the realized variance time series, and this is especially the case for regular HAR, even when predicting logarithmic variance. 

6.2.3. Predicting daily variance at different horizons 
As another experiment, we wanted to look at the predictive accuracy of different models on daily variance, as opposed to cumulative 

variance, at different horizons. We estimated all models, as in Section 6.2.1, and predicted the variance for the 1st, 2nd, 3rd, 10th, and 
15th day ahead. We then calculated the MAE, MSE, MAPE, and QLIKE loss functions for each model using the daily realized variance. 
These results are presented in Tables A.6–A.10 in the appendix. Again, we evaluated the models using the MCS approach with a sig-
nificance level of 5%. For this test, we used the same subset of models as in Section 6.2.2, see Table A.11. We found that logarithmic HAR 
was included in the sets of superior models for all horizons when considering MAE and MAPE. For the first, second, and 10th day 

Table 7 
Summary of the model confidence sets for the MAE, MSE, MAPE, and QLIKE loss functions when forecasting the daily volatility for the 1st, 2nd, 5th, 
10th, and 15th day ahead, using a significance level of α = 0.05.  

Forecast horizon MAE MSE MAPE QLIKE 

1 day Log HAR Regular HAR Log HAR Regular HAR   
Log HAR   

2 days Log HAR Regular HAR Log HAR Regular HAR   
Log HAR  EGARCH-nig   
EGARCH-nig   

5 days Regular HAR Regular HAR Log HAR Regular HAR  
Log HAR   APARCH-ged 

10 days Regular HAR Regular HAR Log HAR Regular HAR  
Log HAR Log HAR  GARCH-ghyp  
EGARCH-jsu EGARCH-jsu  EGARCH-jsu  
GJR-GARCH-sged GJR-GARCH-sged  GJR-GARCH-sged   

GARCH-ghyp  IGARCH-ghyp   
IGARCH-ghyp     
MSGARCH-sged     
APARCH-ged   

15 days Regular HAR Regular HAR Log HAR Regular HAR  
Log HAR IGARCH-ghyp  GJR-GARCH-ghyp  
GARCH-ghyp GARCH-ghyp  MSGARCH-sstd  
EGARCH-jsu EGARCH-jsu    
GJR-GARCH-ghyp GJR-GARCH-ghyp     

MSGARCH-sstd     
APARCH-ged    

Table 8 
Summary of the model confidence sets for the MSE and QLIKE loss functions when forecasting the 
cumulative forecast for one, two, five, 10, and 15 days ahead, using a significance level of α =

0.05. Models are estimated using 750 observations; loss functions are calculated using 970 out- 
sample observations.  

Forecast horizon MSE QLIKE 

1 day Regular HAR Regular HAR  
Log HAR Log HAR   

EGARCH-jsu 
2 days Regular HAR Regular HAR  

Log HAR Log HAR   
EGARCH-jsu 

5 days Regular HAR Regular HAR  
Log HAR EGARCH-std   

EGARCH-jsu 
10 days Regular HAR Regular HAR  

Log HAR EGARCH-std  
EGARCH-sstd EGARCH-sstd  
EGARCH-jsu EGARCH-jsu 

15 days Regular HAR EGARCH-std  
Log HAR EGARCH-sstd  
EGARCH-sstd EGARCH-jsu  
EGARCH-jsu   
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prediction, is it included also in the superior sets of models for MSE. Regular HAR is included in all superior sets when considering MSE 
and QLIKE, as well as MAE for the fifth, 10th, and 15th day prediction. Again, HAR performs well, especially for shorter horizons. When 
considering horizons of 10 and 15 days ahead, several of the models are included in the superior sets. This is due to increasing uncer-
tainty, making us less able to distinguish the models. Complete results of the MCS approach are summarized in Table 7. 

6.2.4. Varying the in-sample window size 
In all the above analyses, we estimated the models with an in-sample window size of 1220 observations. This is a relatively long 

history, and the potential risk is that past observations that worsen the fit of our models are included. We investigated this by estimating 
some of the models using in-sample window sizes of 500, 750, and 1000 observations. We compared both of the models estimated with 
the same window, and the models estimated with different in-sample windows. From the summary of the MCS approach, Table 5, we 
chose to do the analysis on the regular HAR, logarithmic HAR, EGARCH-std, EGARCH-sstd, and EGARCH-jsu models. This choice was 
based on the observation that these models are frequently represented in the sets of superior models. Based on this argument, we could 

Fig. 9. Autocorrelation function for squared log-returns time series from lag 1 to 35, confidence level 5%.  

Fig. 10. Autocorrelation function for realized variance from lag 1 to 35, confidence level 5%.  

Fig. 11. Autocorrelation function for logarithmic realized variance from lag 1 to 35, confidence level 5%.  
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also have chosen to use APARCH-sstd, however, due to its complexity, we have chosen not to. As MSE and QLIKE are robust loss functions, 
we chose to compare the models using these functions. Again, we use the cumulative forecast for one, two, five, 10, and 15 days. 

Tables A.12–A.15 give the MSE and QLIKE loss function values when evaluating the models estimated on different in-sample 
window sizes, using 500 out-of-sample observations. They show that regular HAR with 1000 in-sample observations gives the 
lowest MSE value for all time horizons, while regular HAR with 1220 in-sample observations gives the lowest QLIKE value, except for 
the 15 day horizon, where EGARCH-std with 1220 observations gives the lowest value. We used the MCS approach to evaluate each 
model’s predictive ability when changing the window size. Again, we use a significance level of 5%. In general, all the regular HAR 
models have the same predictive ability over all horizons. The same is the case for logarithmic HAR. When considering the EGARCH 
models, we found that the EGARCH models with 1220 in-sample observations are typically superior for shorter horizons, while for 
horizons of five to 15 days, EGARCH models with 750 and 1000 observations have the same predictive abilities. HAR is a simple model 
that requires fewer observations to be estimated precisely, while GARCH-type models are more complex and require a larger sample of 
observations for estimation. Altogether, the length of the estimation window has a very small impact on our conclusions. 

We also did an experiment where we compared the models using a larger set of out-of-sample observations to estimate the loss 
functions. We chose the models estimated on 750 observations, leaving 970 observations out-of-sample. Table A.16 provides the loss 
function values for the models. We see that regular HAR has the lowest MSE value for all time horizons, except for one day predictions 
where logarithmic HAR has the lowest MSE value. EGARCH-jsu has lowest QLIKE value for all horizons. Again, we apply the MCS 
procedure with a significance level of 5%. The results are summarized in Table 8. From the table, we see that when we estimate the 
models using fewer observations and evaluate them using more out-of-sample observations, the conclusions are consistent with the 
original findings which used 1220 in-sample observations. Regular and logarithmic HAR appear superior for shorter time horizons, 
especially when considering MSE. However, we also observe that the EGARCH models are still part of most of the superior sets of 
models. From this, we determine that our conclusions regarding models estimated on 1220 observations do not change when using 
smaller in-sample sizes and more out-of-sample observations. 

6.2.5. Autocorrelation in squared returns and realized variance 
Throughout the previous sections, we have concluded that regular HAR is the preferred model for the considered time horizons. We 

also observed that logarithmic HAR performed well for the shorter horizon. In order to illustrate why models based on realized 
variance perform better than models based on squared returns, we plot the autocorrelations (ACF) for the time series of squared returns 
(Fig. 9), realized variance (Fig. 10) and logarithmic realized variance (Fig. 11). 

Fig. 9 plots the autocorrelation of the squared log-returns. From this figure, it appears that this time series is highly autocorrelated 
for several lags. This shows that the autocorrelation of the squared returns are highly persistent. Fig. 10 and 11 plot the autocorrelation 
function for the realized variance and the logarithmic realized variance, respectively. These figures indicate strong autocorrelation in 
both time series. We observe that both regular realized variance and the logarithmic version have a trend where the ACF decreases 
slowly. The ACF decreases slower for the logarithmic realized variance than for the regular one. The long memory of the process is even 
more visible when compared to the squared log-returns. 

7. Conclusion 

This paper analyses which models are most suitable for forecasting volatility of Bitcoin. We consider several GARCH models 
(GARCH, EGARCH, GJR-GARCH, IGARCH, MSGARCH, and APARCH) models with various error distributions and two HAR models 
(regular and logarithmic HAR model). The models are compared in terms of both in-sample fit and out-of-sample forecasting per-
formance but emphasis is on the forecasting performance. We study forecasting of volatility one, two, five, 10, and 15 days ahead. As a 
proxy for true variance, we utilize realized variance calculated from high-frequency data. 

We find that from the class of GARCH models, EGARCH and APARCH are the best performing models. HAR models perform better 
than any of the considered GARCH models. The reason for superiority of HAR models over GARCH models is that HAR models are 
estimated from realized variance, and as we show, realized variance exhibits much higher degree of autocorrelation than squared returns. 

The difference between performance of HAR models and GARCH models is largest particularly for short-term forecasting horizons. 
However, HAR models perform well for all horizons. These conclusions are robust with respect to the size of the estimation window, as 
well as choice of loss function. We arrive at similar conclusions when we forecast logarithmic variance, and also when we forecast 
volatility for a particular day in the future, e.g. volatility for the 10th day in the future, instead of volatility for the 10-day period. 

Altogether, we recommend the HAR model based on high-frequency data whenever precise volatility forecasts of Bitcoin are 
required. In the case that the user seeks a model estimated on daily data, we recommend an EGARCH model as a good alternative. 
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Appendix A  

Table A.1 
Loss function values for 1 day cumulative forecast.  

(a) MAE loss values 

Model MAE 

Logarithmic HAR 1.711× 10− 3  

Regular HAR 1.831× 10− 3  

EGARCH-nom 1.973× 10− 3  

MSGARCH-sged 1.974× 10− 3  

MSGARCH-snorm 1.981× 10− 3  

EGARCH-snorm 1.981× 10− 3  

MSGARCH-norm 1.996× 10− 3  

GARCH-ghyp 2.002× 10− 3  

GARCH-ged 2.002× 10− 3  

GARCH-sged 2.003× 10− 3   

(b) MSE loss values 

Model MSE 

Regular HAR 1.563× 10− 5  

Logarithmic HAR 1.616× 10− 5  

IGARCH-sged 1.859× 10− 5  

IGARCH-ghyp 1.859× 10− 5  

IGARCH-ged 1.859× 10− 5  

GARCH-sged 1.860× 10− 5  

GARCH-ghyp 1.861× 10− 5  

GARCH-ged 1.861× 10− 5  

IGARCH-nig 1.862× 10− 5  

GARCH-nig 1.864× 10− 5   

(c) MAPE loss values 

Model MAPE 

Logarithmic HAR 0.541  
MSGARCH-norm 0.645  
MSGARCH-snorm 0.649  
GARCH-nig 0.764  
GARCH-std 0.764  
GARCH-sstd 0.764  
GARCH-jsu 0.765  
Regular HAR 0.765  
GARCH-ghyp 0.766  
GARCH-ged 0.766   

(d) QLIKE loss values 

Model QLIKE 

Regular HAR − 4.972  
EGARCH-jsu − 4.921  
EGARCH-nig − 4.915  
APARCH-ghyp − 4.914  
EGARCH-ghyp − 4.913  
APARCH-std − 4.907  
EGARCH-sged − 4.903  
EGARCH-ged − 4.903  
APARCH-std − 4.900  
IGARCH-ghyp − 4.890     
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Table A.2 
Loss function values for 2 days cumulative forecast.  

(a) MAE loss values 

Model MAE 

Logarithmic HAR 3.322× 10− 3  

Regular HAR 3.500× 10− 3  

EGARCH-norm 3.862× 10− 3  

MSGARCH-sged 3.875× 10− 3  

EGARCH-snorm 3.880× 10− 3  

MSGARCH-snorm 3.933× 10− 3  

GARCH-ghyp 3.934× 10− 3  

GARCH-sged 3.936× 10− 3  

GARCH-ged 3.937× 10− 3  

GARCH-nig 3.937× 10− 3   

(b) MSE loss values 

Model MSE 

Regular HAR 4.880× 10− 5  

Logarithmic HAR 5.234× 10− 5  

IGARCH-ghyp 5.955× 10− 5  

IGARCH-sged 5.956× 10− 5  

IGARCH-ged 5.959× 10− 5  

GARCH-ghyp 5.961× 10− 5  

GARCH-sged 5.961× 10− 5  

GARCH-ged 5.964× 10− 5  

IGARCH-nig 5.966× 10− 5  

GARCH-nig 5.972× 10− 5   

(c) MAPE loss values 

Model MAPE 

Logarithmic HAR 0.469  
MSGARCH-norm 0.565  
MSGARCH-snorm 0.567  
GARCH-nig 0.665  
GARCH-std 0.666  
GARCH-jsu 0.666  
GARCH-sstd 0.666  
GARCH-ghyp 0.667  
MSGARCH-sged 0.667  
GARCH-ged 0.667   

(d) QLIKE loss values 

Model QLIKE 

Regular HAR − 4.238  
EGARCH-jsu − 4.192  
EGARCH-nig − 4.182  
EGARCH-ghyp − 4.180  
APARCH-sstd − 4.176  
APARCH-ghyp − 4.174  
APARCH-std − 4.174  
EGARCH-std − 4.170  
EGARCH-sstd − 4.169  
EGARCH-sged − 4.163     
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Table A.3 
Loss function values for 5 days cumulative forecast.  

(a) MAE loss values 

Model MAE 

Regular HAR 8.381× 10− 3  

Logarithmic HAR 8.416× 10− 3  

EGARCH-norm 9.424× 10− 3  

EGARCH-snorm 9.434× 10− 3  

MSGARCH-sged 9.520× 10− 3  

EGARCH-sged 9.537× 10− 3  

EGARCH-ged 9.541× 10− 3  

GARCH-ghyp 9.788× 10− 3  

GARCH-nig 9.794× 10− 3  

GARCH-sged 9.797× 10− 3   

(b) MSE loss values 

Model MSE 

Regular HAR 2.358× 10− 4  

Logarithmic HAR 2.615× 10− 4  

EGARCH-nig 2.828× 10− 4  

EGARCH-ghyp 2.835× 10− 4  

EGARCH-sged 2.858× 10− 4  

EGARCH-ged 2.861× 10− 4  

EGARCH-jsu 2.863× 10− 4  

MSGARCH-sged 2.867× 10− 4  

IGARCH-ghyp 2.879× 10− 4  

GARCH-ghyp 2.881× 10− 4   

(c) MAPE loss values 

Model MAPE 

Logarithmic HAR 0.427  
MSGARCH-norm 0.517  
MSGARCH-snorm 0.518  
Regular HAR 0.566  
EGARCH-snorm 0.595  
EGARCH-norm 0.603  
EGARCH-ged 0.606  
EGARCH-sged 0.607  
MSGARCH-sged 0.613  
GARCH-nig 0.622   

(d) QLIKE loss values 

Model QLIKE 

Regular HAR − 3.244  
EGARCH-jsu − 3.207  
EGARCH-std − 3.207  
EGARCH-sstd − 3.206  
APARCH-sstd − 3.198  
APARCH-std − 3.196  
EGARCH-nig − 3.186  
APARCH-ghyp − 3.185  
EGARCH-ghyp − 3.182  
MSGARCH-std − 3.171     
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Table A.4 
Loss function values for 10 days cumulative forecast.  

(a) MAE loss values 

Model MAE 

Regular HAR 1.628× 10− 2  

Logarithmic HAR 1.718× 10− 2  

EGARCH-sged 1.842× 10− 2  

EGARCH-ged 1.842× 10− 2  

EGARCH-snorm 1.848× 10− 2  

EGARCH-norm 1.856× 10− 2  

EGARCH-ghyp 1.870× 10− 2  

EGARCH-nig 1.872× 10− 2  

MSGARCH-sged 1.879× 10− 2  

EGARCH-jsu 1.926× 10− 2   

(b) MSE loss values 

Model MSE 

Regular HAR 7.093× 10− 4  

EGARCH-jsu 8.463× 10− 4  

EGARCH-nig 8.518× 10− 4  

EGARCH-ghyp 8.568× 10− 4  

Logarithmic HAR 8.570× 10− 4  

MSGARCH-sged 8.879× 10− 4  

EGARCH-sged 8.905× 10− 4  

EGARCH-ged 8.918× 10− 4  

EGARCH-norm 9.000× 10− 4  

EGARCH-snorm 9.037× 10− 4   

(c) MAPE loss values 

Model MAPE 

Logarithmic HAR 0.424  
Regular HAR 0.493  
MSGARCH-norm 0.493  
MSGARCH-snorm 0.495  
EGARCH-ged 0.533  
EGARCH-sged 0.534  
EGARCH-snorm 0.561  
EGARCH-norm 0.573  
MSGARCH-sged 0.577  
MSGARCH-ged 0.578   

(d) QLIKE loss values 

Model QLIKE 

Regular HAR − 2.494  
EGARCH-std − 2.487  
EGARCH-sstd − 2.487  
APARCH-sstd − 2.80  
APARCH-std − 2.468  
EGARCH-jsu − 2.464  
APARCH-ghyp − 2.488  
MSGARCH-std − 2.446  
MSGARCH-sstd − 2.438  
EGARCH-nig − 2.431     
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Table A.5 
Loss function values for 15 days cumulative forecast.  

(a) MAE loss values 

Model MAE 

Regular HAR 2.367× 10− 2  

Logarithmic HAR 2.587× 10− 2  

EGARCH-jsu 2.642× 10− 2  

EGARCH-nig 2.646× 10− 2  

EGARCH-ghyp 2.656× 10− 2  

EGARCH-sged 2.702× 10− 2  

EGARCH-ged 2.703× 10− 2  

APARCH-ged 2.711× 10− 2  

GJR-GARCH-ghyp 2.712× 10− 2  

GJR-GARCH-sged 2.714× 10− 2   

(b) MSE loss values 

Model MSE 

Regular HAR 1.313× 10− 3  

EGARCH-jsu 1.447× 10− 3  

EGARCH-nig 1.517× 10− 3  

EGARCH-ghyp 1.537× 10− 3  

MSGARCH-sstd 1.607× 10− 3  

GARCH-ghyp 1.611× 10− 3  

IGARCH-ghyp 1.613× 10− 3  

APARCH-ged 1.613× 10− 3  

GARCH-sged 1.613× 10− 3  

GARCH-ged 1.614× 10− 3   

(c) MAPE loss values 

Model MAPE 

Logarithmic HAR 0.403  
Regular HAR 0.447  
MSGARCH-norm 0.465  
MSGARCH-snorm 0.472  
EGARCH-sged 0.480  
EGARCH-ged 0.481  
EGARCH-ghyp 0.515  
EGARCH-nig 0.520  
EGARCH-snorm 0.525  
EGARCH-norm 0.536   

(d) QLIKE loss values 

Model QLIKE 

EGARCH-std − 2.077  
EGARCH-sstd − 2.077  
APARCH-sstd − 2.071  
Regular HAR − 2.060  
APARCH-std − 2.049  
EGARCH-jsu − 2.037  
APARCH-jsu − 2.036  
MSGARCH-sstd − 2.023  
MSGARCH-std − 2.017  
IGARCH-sstd − 2.004     
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Table A.6 
Loss function values for 1st day ahead daily forecast.  

(a) MAE loss values 

Model MAE 

Logarithmic HAR 1.711× 10− 3  

Regular HAR 1.831× 10− 3  

EGARCH-nom 1.973× 10− 3  

MSGARCH-sged 1.974× 10− 3  

MSGARCH-snorm 1.981× 10− 3  

EGARCH-snorm 1.981× 10− 3  

MSGARCH-norm 1.996× 10− 3  

GARCH-ghyp 2.002× 10− 3  

GARCH-ged 2.002× 10− 3  

GARCH-sged 2.003× 10− 3   

(b) MSE loss values 

Model MSE 

Regular HAR 1.563× 10− 5  

Logarithmic HAR 1.616× 10− 5  

IGARCH-sged 1.859× 10− 5  

IGARCH-ghyp 1.859× 10− 5  

IGARCH-ged 1.859× 10− 5  

GARCH-sged 1.860× 10− 5  

GARCH-ghyp 1.861× 10− 5  

GARCH-ged 1.861× 10− 5  

IGARCH-nig 1.862× 10− 5  

GARCH-nig 1.864× 10− 5   

(c) MAPE loss values 

Model MAPE 

Logarithmic HAR 0.541  
MSGARCH-norm 0.645  
MSGARCH-snorm 0.649  
GARCH-nig 0.764  
GARCH-std 0.764  
GARCH-sstd 0.764  
GARCH-jsu 0.765  
Regular HAR 0.765  
GARCH-ghyp 0.766  
GARCH-ged 0.766   

(d) QLIKE loss values 

Model QLIKE 

Regular HAR − 4.972  
EGARCH-jsu − 4.921  
EGARCH-nig − 4.915  
APARCH-ghyp − 4.914  
EGARCH-ghyp − 4.913  
APARCH-std − 4.907  
EGARCH-sged − 4.903  
EGARCH-ged − 4.903  
APARCH-sstd − 4.900  
IGARCH-ghyp − 4.980     
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Table A.7 
Loss function values for 2nd day ahead daily forecast.  

(a) MAE loss values 

Model MAE 

Logarithmic HAR 1.936× 10− 3  

Regular HAR 2.019× 10− 3  

MSGARCH-snorm 2.127× 10− 3  

EGARCH-snorm 2.128× 10− 3  

MSGARCH-ged 2.129× 10− 3  

EGARCH-norm 2.131× 10− 3  

MSGARCH-norm 2.156× 10− 3  

MSGARCH-sstd 2.166× 10− 3  

EGARCH-sged 2.191× 10− 3  

EGARCH-ged 2.191× 10− 3   

(b) MSE loss values 

Model MSE 

Regular HAR 1.871× 10− 5  

Logarithmic HAR 1.988× 10− 5  

EGARCH-nig 2.112× 10− 5  

EGARCH-ghyp 2.115× 10− 5  

EGARCH-sged 2.116× 10− 5  

EGARCH-ged 2.118× 10− 5  

IGARCH-ghyp 2.125× 10− 5  

IGARCH-sged 2.126× 10− 5  

GARCH-ghyp 2.126× 10− 5  

IGARCH-ged 2.126× 10− 5   

(c) MAPE loss values 

Model MAPE 

Logarithmic HAR 0.615  
MSGARCH-snorm 0.724  
MSGARCH-norm 0.724  
MSGARCH-ged 0.862  
GJR-GARCH-nig 0.866  
GJR-GARCH-jsu 0.868  
GJR-GARCH-ghyp 0.868  
GJR-GARCH-sstd 0.868  
GJR-GARCH-std 0.870  
GJR-GARCH-sged 0.871   

(d) QLIKE loss values 

Model QLIKE 

Regular HAR − 4.893  
EGARCH-jsu − 4.855  
APARCH-sstd − 4.844  
APARCH-std − 4.843  
EGARCH-std − 4.843  
EGARCH-sstd − 4.842  
EGARCH-nig − 4.840  
EGARCH-ghyp − 4.837  
APARCH-ghyp − 4.829  
EGARCH-sged − 4.812     
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Table A.8 
Loss function values for 5th day ahead daily forecast.  

(a) MAE loss values 

Model MAE 

Logarithmic HAR 2.145× 10− 3  

Regular HAR 2.210× 10− 3  

MSGARCH-norm 2.286× 10− 3  

MSGARCH-snorm 2.298× 10− 3  

EGARCH-snorm 2.329× 10− 3  

EGARCH-sged 2.333× 10− 3  

EGARCH-ged 2.335× 10− 3  

EGARCH-norm 2.344× 10− 3  

MSGARCH-sged 2.349× 10− 3  

MSGARCH-ged 2.362× 10− 3   

(b) MSE loss values 

Model MSE 

Regular HAR 2.154× 10− 5  

MSGARCH-sstd 2.165× 10− 5  

MSGARCH-std 2.260× 10− 5  

Logarithmic HAR 2.301× 10− 5  

MSGARCH-sged 2.308× 10− 5  

EGARCH-nig 2.317× 10− 5  

EGARCH-ghyp 2.320× 10− 5  

EGARCH-jsu 2.323× 10− 5  

EGARCH-norm 2.339× 10− 5  

EGARCH-sged 2.341× 10− 5   

(c) MAPE loss values 

Model MAPE 

Logarithmic HAR 0.695  
MSGARCH-norm 0.810  
MSGARCH-snorm 0.824  
EGARCH-sged 0.973  
EGARCH-ged 0.974  
EGARCH-snorm 1.035  
MSGARCH-ged 1.035  
Regular HAR 1.036  
GJR-GARCH-nig 1.052  
GJR-GARCH-jsu 1.052   

(d) QLIKE loss values 

Model QLIKE 

Regular HAR − 4.789  
EGARCH-std − 4.779  
EGARCH-sstd − 4.778  
MSGARCH-sstd − 4.774  
APARCH-sstd − 4.773  
APARCH-std − 4.762  
EGARCH-jsu − 4.754  
MSGARCH-std − 4.748  
APARCH-ghyp − 4.735  
EGARCH-nig − 4.720     
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Table A.9 
Loss function values for 10th day ahead daily forecast.  

(a) MAE loss values 

Model MAE 

Logarithmic HAR 2.250× 10− 3  

Regular HAR 2.273× 10− 3  

EGARCH-sged 2.340× 10− 3  

EGARCH-ged 2.342× 10− 3  

EGARCH-ghyp 2.365× 10− 3  

EGARCH-nig 2.369× 10− 3  

EGARCH-snorm 2.372× 10− 3  

EGARCH-norm 2.388× 10− 3  

MSGARCH-norm 2.388× 10− 3  

MSGARCH-snorm 2.402× 10− 3   

(b) MSE loss values 

Model MSE 

MSGARCH-sstd 2.234× 10− 5  

Regular HAR 2.236× 10− 5  

EGARCH-sju 2.287× 10− 5  

EGARCH-nig 2.331× 10− 5  

EGARCH-ghyp 2.341× 10− 5  

GJR-GARCH-ghyp 2.361× 10− 5  

GJR-GARCH-nig 2.362× 10− 5  

GJR-GARCH-sged 2.365× 10− 5  

GJR-GARCH-jsu 2.365× 10− 5  

GJR-GARCH-ged 2.367× 10− 5   

(c) MAPE loss values 

Model MAPE 

Logarithmic HAR 0.735  
MSGARCH-norm 0.835  
MSGARCH-snorm 0.840  
EGARCH-sged 0.955  
EGARCH-ged 0.957  
EGARCH-ghyp 1.059  
MSGARCH-ged 1.061  
EGARCH-nig 1.073  
Regular HAR 1.086  
MSGARCH-sged 1.125   

(d) QLIKE loss values 

Model QLIKE 

APARCH-std − 4.794  
EGARCH-std − 4.788  
EGARCH-sstd − 4.788  
APARCH-sstd − 4.783  
Regular HAR − 4.756  
APARCH-ghyp − 4.745  
EGARCH-jsu − 4.728  
GJR-GARCH-std − 4.724  
GJR-GARCH-sstd − 4.724  
GJR-GARCH-jsu − 4.724     
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Table A.10 
Loss function values for 15th day ahead daily forecast.  

(a) MAE loss values 

Model MAE 

Regular HAR 2.263× 10− 3  

Logarithmic HAR 2.288× 10− 3  

EGARCH-nig 2.310× 10− 3  

EGARCH-ghyp 2.313× 10− 3  

EGARCH-jsu 2.327× 10− 3  

EGARCH-sged 2.330× 10− 3  

EGARCH-ged 2.331× 10− 3  

EGARCH-snorm 2.379× 10− 3  

EGARCH-norm 2.394× 10− 3  

MSGARCH-sged 2.402× 10− 3   

(b) MSE loss values 

Model MSE 

EGARCH-sstd 2.095× 10− 5  

EGARCH-std 2.105× 10− 5  

GJR-GARCH-ghyp 2.123× 10− 5  

GJR-GARCH-nig 2.123× 10− 5  

GJR-GARCH-jsu 2.125× 10− 5  

GJR-GARCH-sged 2.127× 10− 5  

GJR-GARCH-ged 2.128× 10− 5  

GJR-GARCH-std 2.129× 10− 5  

GJR-GARCH-sstd 2.129× 10− 5  

GARCH-ghyp 2.158× 10− 5   

(c) MAPE loss values 

Model MAPE 

Logarithmic HAR 0.702  
MSGARCH-norm 0.814  
MSGARCH-snorm 0.817  
EGARCH-sged 0.873  
EGARCH-ged 0.875  
EGARCH-ghyp 0.967  
EGARCH-nig 0.980  
MSGARCH-ged 1.054  
Regular HAR 1.088  
EGARCH-jsu 1.109   

(d) QLIKE loss values 

Model QLIKE 

APARCH-sstd − 4.789  
EGARCH-std − 4.788  
EGARCH-sstd − 4.788  
APARCH-std − 4.769  
GJR-GARCH-sstd − 4.753  
GJR-GARCH-std − 4.752  
GJR-GARCH-jsu − 4.751  
APARCH-ghyp − 4.750  
GJR-GARCH-nig − 4.745  
GJR-GARCH-ghyp − 4.745     
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Table A.11 
Superior distribution for each GARCH-type model considering the MSE loss function for fore-
casting cumulative variance on time horizons of 1, 2, 5, 10, and 15 days.  

Forecast horizon Model Distribution 

1 day GARCH sged  
EGARCH norm  
IGARCH sged  
GJR-GARCH norm  
APARCH ged  
MSGARCH sstd 

2 days GARCH ghyp  
EGARCH nig  
IGARCH ghyp  
GJR-GARCH nig  
APARCH ged  
MSGARCH sged 

5 days GARCH ghyp  
EGARCH nig  
IGARCH ghyp  
GJR-GARCH norm  
APARCH ged  
MSGARCH sged 

10 days GARCH ghyp  
EGARCH jsu  
IGARCH ghyp  
GJR-GARCH sged  
APARCH ged  
MSGARCH sged 

15 days GARCH ghyp  
EGARCH nig  
IGARCH ghyp  
GJR-GARCH ghyp  
APARCH ged  
MSGARCH sstd  

Table A.12 
Loss function values when using 500 observations for model estimation and 500 out-of-sample observations.   

1 day 2 days 5 days 10 days 15 days 

Model MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE 

Regular HAR 1.599×

10− 5  
−

4.957  
5.051× 10− 5  −

4.215  
2.407×

10− 4  
3.219  7.164×

10− 4  
−

2.467  
1.317×

10− 3  
−

2.026  

Logarithmic 
HAR 

1.608×

10− 5  
−

4.899  
5.173× 10− 5  −

4.155  
2.537×

10− 4  
−

3.137  
8.083×

10− 4  
−

2.334  
1.557×

10− 3  
−

1.855  

EGARCH-std 18.47×

10− 5  
−

4.753  
73.82×

10− 5)  
−

4.036  
46.49×

10− 4  
−

3.077  
187.7×

10− 4  
−

2.347  
42.11×

10− 3  
−

1.930  

EGARCH-sstd 106.0×

10− 5  
−

4.649  
429.6× 10− 5  −

3.931  
278.5×

10− 4  
−

2.975  
1174× 10− 4  −

2.246  
277.3×

10− 3  
−

1.827  

EGARCH-jsu 2.228×

10− 5  
−

4.908  
7.457× 10− 5  −

4.183  
3.746×

10− 4  
−

3.207  
11.81×

10− 4  
−

2.465  
2.041×

10− 3  
−

2.044   

Table A.13 
Loss function values when using 750 observations for model estimation and 500 out-of-sample observations.   

1 day 2 days 5 days 10 days 15 days 

Model MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE 

Regular HAR 1.573×

10− 5  
−

4.965  
4.940×

10− 5  
−

4.227  
2.369×

10− 4  
−

3.230  
7.066×

10− 4  
−

2.475  
1.296×

10− 3  
−

2.033  

Logarithmic 
HAR 

1.617×

10− 5  
−

4.887  
5.224×

10− 5  
−

4.137  
2.587×

10− 4  
−

3.108  
8.409×

10− 4  
−

2.294  
1.647×

10− 3  
−

1.806  

EGARCH-std 3.808×

10− 5  
−

4.776  
13.48×

10− 5  
−

4.061  
7.418×

10− 4  
−

3.103  
25.86×

10− 4  
−

2.385  
5.126×

10− 3  
−

1.975  

EGARCH-sstd 6.150×

10− 5  
−

4.734  
23.30×

10− 5  
−

4.021  
13.97×

10− 4  
−

3.063  
56.09×

10− 4  
−

2.340  
12.90×

10− 3  
− 1.92  

EGARCH-jsu 2.088×

10− 5  
−

4.895  
6.619×

10− 5  
−

4.170  
3.148×

10− 4  
−

3.198  
9.107×

10− 4  
−

2.467  
1.475×

10− 3  
−

2.049   
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Table A.14 
Loss function values when using 1000 observations for model estimation and 500 out-of-sample observations.   

1 day 2 days 5 days 10 days 15 days 

Model MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE 

Regular HAR 1.559×

10− 5  
−

4.970  
4.867×

10− 5  
−

4.235  
2.352×

10− 4  
−

3.239  
7.050×

10− 4  
−

2.487  
1.293×

10− 3  
−

2.049  

Logarithmic 
HAR 

1.622×

10− 5  
−

4.885  
5.257×

10− 5  
−

4.135  
2.625×

10− 4  
−

3.107  
8.619×

10− 4  
−

2.296  
1.715×

10− 3  
−

1.812  

EGARCH-std 2.820×

10− 5  
−

4.839  
9.656×

10− 5  
−

4.124  
4.954×

10− 4  
−

3.173  
15.58×

10− 4  
−

2.460  
2.755×

10− 3  
−

2.047  

EGARCH-sstd 2.890×

10− 5  
−

4.835  
9.656×

10− 5  
−

4.120  
5.152×

10− 4  
−

3.169  
16.42×

10− 4  
−

2.456  
2.938×

10− 3  
−

2.043  

EGARCH-jsu 2.046×

10− 5  
−

4.899  
6.506×

10− 5  
−

4.175  
3.022×

10− 4  
−

3.203  
8.752×

10− 4  
−

2.472  
1.469×

10− 3  
−

2.048   

Table A.15 
Loss function values when using 1220 observations for model estimation and 500 out-of-sample observations.   

1 day 2 days 5 days 10 days 15 days 

Model MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE 

Regular HAR 1.563×

10− 5  
−

4.972  
4.880×

10− 5  
−

4.238  
2.358×

10− 4  
−

3.244  
7.093×

10− 4  
−

2.494  
1.313×

10− 3  
−

2.060  

Logarithmic 
HAR 

1.616×

10− 5  
−

4.887  
5.234×

10− 5  
−

4.139  
2.615×

10− 4  
−

3.117  
8.570×

10− 4  
−

2.316  
1.702×

10− 3  
−

1.843  

EGARCH-std 2.284×

10− 5  
−

4.887  
7.590×

10− 5  
−

4.170  
3.749×

10− 4  
−

3.207  
11.09×

10− 4  
−

2.487  
1.767×

10− 3  
−

2.077  

EGARCH-sstd 2.300×

10− 5  
−

4.886  
7.661×

10− 5  
−

4.169  
3.796×

10− 4  
−

3.206  
11.25×

10− 4  
−

2.487  
1.788×

10− 3  
−

2.077  

EGARCH-jsu 1.924×

10− 5  
−

4.921  
6.110×

10− 5  
−

4.192  
2.863×

10− 4  
−

3.207  
8.463×

10− 4  
−

2.464  
1.447×

10− 3  
−

2.037   

Table A.16 
Loss function values when using 750 observation for model estimation and 970 out-of-sample observations.   

1 day 2 days 5 days 10 days 15 days 

Model MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE MSE QLIKE 

Regular HAR 1.180×

10− 5  
−

5.532  
3.447×

10− 5  
−

4.778  
1.545×

10− 4  
−

3.751  
4.502×

10− 4  
−

2.994  
8.286×

10− 4  
−

2.554  

Logarithmic 
HAR 

1.150×

10− 5  
−

5.515  
3.466×

10− 5  
−

4.753  
1.616×

10− 4  
−

3.664  
5.117×

10− 4  
−

2.856  
9.971×

10− 4  
−

2.373  

EGARCH-std 2.302×

10− 5  
−

5.453  
7.825×

10− 5  
−

4.728  
4.153×

10− 4  
−

3.740  
14.21×

10− 4  
−

3.017  
28.01×

10− 4  
−

2.587  

EGARCH-sstd 3.508×

10− 5  
−

5.433  
12.83×

10− 5  
−

4.710  
7.520×

10− 4  
−

3.719  
29.65×

10− 4  
−

2.995  
67.57×

10− 4  
−

2.563  

EGARCH-jsu 1.386×

10− 5  
−

5.540  
4.203×

10− 5  
−

4.802  
1.883×

10− 4  
−

3.788  
5.380×

10− 4  
−

3.054  
8.913×

10− 4  
−

2.614   

L.Ø. Bergsli et al.                                                                                                                                                                                                      

https://doi.org/10.1016/j.frl.2018.08.010
https://doi.org/10.1016/j.frl.2018.08.010
http://refhub.elsevier.com/S0275-5319(21)00161-6/sbref0010
http://refhub.elsevier.com/S0275-5319(21)00161-6/sbref0015
http://refhub.elsevier.com/S0275-5319(21)00161-6/sbref0020
http://refhub.elsevier.com/S0275-5319(21)00161-6/sbref0025
http://refhub.elsevier.com/S0275-5319(21)00161-6/sbref0030
http://refhub.elsevier.com/S0275-5319(21)00161-6/sbref0035
http://refhub.elsevier.com/S0275-5319(21)00161-6/sbref0040
http://refhub.elsevier.com/S0275-5319(21)00161-6/sbref0045
http://refhub.elsevier.com/S0275-5319(21)00161-6/sbref0050
http://refhub.elsevier.com/S0275-5319(21)00161-6/sbref0055
http://refhub.elsevier.com/S0275-5319(21)00161-6/sbref0060


Research in International Business and Finance 59 (2022) 101540

30

Beneki, C., Koulis, A., Kyriazis, N.A., Papadamou, S., 2019. Investigating volatility transmission and hedging properties between bitcoin and ethereum. Res. Int. 
Business Finance 48, 219–227. 

Birkelund, O.H., Haugom, E., Molnár, P., Opdal, M., Westgaard, S., 2015. A comparison of implied and realized volatility in the Nordic power forward market. Energy 
Econ. 48, 288–294. 

Blau, B.M., 2017. Price dynamics and speculative trading in bitcoin. Res. Int. Business Finance 41, 493–499. 
Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. J. Econometr. 31 (3), 307–327. 
Bouoiyour, J., Selmi, R., 2015a. Bitcoin Price: Is It Really That New Round of Volatility Can Be On Way? (MPRA Paper No. 65580). University Library of Munich, 

Germany.  
Bouoiyour, J., Selmi, R., 2015b. What does Bitcoin look like? Ann. Econ. Finance 16, 2. 
Bouri, E., Molnár, P., Azzi, G., Roubaud, D., Hagfors, L.I., 2017. On the hedge and safe haven properties of Bitcoin: is it really more than a diversifier? Finance Res. 

Lett. 20, 192–198. 
Brandvold, M., Molnár, P., Vagstad, K., Valstad, O.C.A., 2015. Price discovery on bitcoin exchanges. J. Int. Financ. Markets Inst. Money 36, 18–35. 
Broto, C., Ruiz, E., 2004. Estimation methods for stochastic volatility models: a survey. J. Econ. Surv. 18 (5), 613–649. 
Burnie, A., 2018. Exploring the Interconnectedness of Cryptocurrencies using Correlation Networks. arXiv:1806.06632. 
Burniske, C., White, A., 2017. Bitcoin: Ringing the Bell for A New Asset Class, Ark Invest. https://research.ark-invest.com/hubfs/1_Download_Files_ARK-Invest/ 

White_Papers/Bitcoin-Ringing-The-Bell-For-A-New-Asset-Class.pdf. 
Caporale, G.M., Zekokh, T., 2019. Modelling volatility of cryptocurrencies using Markov-switching Garch models. Res. Int. Business Finance 48, 143–155. 
Catania, L., Grassi, S., Ravazzolo, F., 2018. Predicting the Volatility of Cryptocurrency Time–Series (Working Papers No. No 3/2018). Centre for Applied Macro- and 

Petroleum economics (CAMP), BI Norwegian Business School. 
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