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In this work, we provide a more consistent alternative for performing value of information (VOI) analyses
to address sequential decision problems in reservoir management and generate insights on the process
of reservoir decision-making. These sequential decision problems are often solved and modeled as
stochastic dynamic programs, but once the state space becomes large and complex, traditional tech-
niques, such as policy iteration and backward induction, quickly become computationally demanding
and intractable. To resolve these issues and utilize fewer computational resources, we instead make use
of a viable alternative called approximate dynamic programming (ADP), which is a powerful solution
technique that can handle complex, large-scale problems and discover a near-optimal solution for
intractable sequential decision making. We compare and test the performance of several machine
learning techniques that lie within the domain of ADP to determine the optimal time for beginning a
polymer flooding process within a reservoir development plan. The approximate dynamic approach
utilized here takes into account both the effect of the information obtained before a decision is made and
the effect of the information that might be obtained to support future decisions while significantly
improving both the timing and the value of the decision, thereby leading to a significant increase in
economic performance.

© 2021 Chinese Petroleum Society. Publishing services provided by Elsevier B.V. on behalf of KeAi
Communication Co. Ltd. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Reservoir management is defined as the utilization of available
technology, financial assets, and human resources to maximize the
economic recovery of a reservoir. This type of management involves
a series of operations and decisions, from the initial stage of the
discovery of a reservoir to the final stage of field abandonment
(Wiggins and Startzman, 1990). A significant number of decision-
making problems related to reservoir management are regarded
as sequential problems, as most petroleum engineers and geo-
scientists are used to considering the information gathered, sup-
porting their future decision making, and maximizing the value
created by the reservoirs. However, the models for reservoir man-
agement decisions may be computationally prohibitive and
intractable if several sequential decisions and uncertainties are
involved. To solve this issue and successfully execute good reservoir
ing services provided by Elsevier B
y/4.0/).
management, decision analysis (DA) is recommended due to its
several advantages (Evans, 2000). (Howard, 1988) stated that “DA is
a systematic procedure for transforming opaque decision problems
into transparent decision problems through a series of transparent
procedures.” In the context of reservoir management, DA is used as
a consistent means of evaluating different approaches and alter-
natives to determine the optimal scenario to maximize the net
present value (NPV) of any project (Evans, 2000). Enhanced oil
recovery (EOR) is an important phase in the field development
planning process and is mainly applied whenever the primary and
secondary recovery mechanism are not sufficient to displace the
hydrocarbon from the remaining reserve. EOR methods include
gas-flooding, polymer flooding, surfactant flooding, CO2 flooding,
and thermal flooding. However, EOR may not be applied to the
process if it is not cost-effective. Therefore, a key decision in the
development the planning process pertaining to the implementa-
tion of EOR methods is determining the best time to initiate an EOR
process. With this method, oil companies can estimate the period
for which the field will be economically profitable. However, since
the initiation of EOR demands a high cost, it is important to assess
.V. on behalf of KeAi Communication Co. Ltd. This is an open access article under the
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its impact on the decision-making process. The value of informa-
tion is a type of decision analytics that is suited to quantifying the
value of prior information (Schlaifer, 1959). was the first to intro-
duce and define the concept of VOI in the context of business
decision-making. Since then, the VOI approach has appeared in
several textbooks and references, e.g., (Raiffa and Schlaifer, 1961;
Howard, 1966; Clement, 1991; Bratvold and Begg, 2010; Howard
and Abbas, 2016). The first application of this concept in the oil
and gas (O&G) industry was done by (Grayson, 1960). (Bratvold
et al., 2009) presented an overview of the use of VOI analysis in
the O&G industry. Recently (Eidsvik et al., 2016), and (Dutta et al.,
2019) demonstrated a comprehensive application of this method
in the domain of earth sciences and subsurface energy. In the O&G
industry, two different approaches are used to include the impact of
information: closed-loop reservoir management (CLRM) and
sequential reservoir decision making (SRDM). These approaches
serve as a priori analyses, and each technique is implemented
before the collection of additional information. Thus, whenever
additional data are gathered, both CLRM and SRDM can be readily
applied to make use of those data. However, for a complicated
decision-making problem with many uncertain outcomes, alter-
natives, and decision points, these approaches suffer from the
“curse of dimensionality.” For a more detailed description of SRDM
and CLRM, see (Howard and Abbas, 2016; Bratvold et al., 2009;
Barros et al., 2015; Hong et al., 2018).

In previous studies (Hong et al., 2018), illustrated a method for
ADP, specifically the Least-Squares Monte Carlo (LSM) algorithm,
which was proposed by (Longstaff and Schwartz, 2001). This al-
gorithm can be implemented with a production model based on
exponential declines to determine the optimal time to switch from
one recovery phase to another. Theoretically, LSM implementation
is independent of production models but still suffers from the curse
of dimensionality in the action space, where the computational
effort of LSM will increase exponentially with the number of both
alternatives and decision points, according to (Powell, 2016) and
(Hong et al., 2018). Apart from this (Alkhatib and Babaei, 2013),
showed that LSM can be used in a homogenous reservoir model in
the context of surfactant flooding.

Our approach in the current study is different from that of
(Alkhatib and Babaei, 2013) and (Hong et al., 2018). Here, the
objective is to do a VOI analysis of in the context initiating polymer
flooding in reservoir development plan, where a decision problem
is constructed where to determine the optimal time to switch from
water flooding to polymer injection based on the information from
production profiles and oil prices, and the switch happens only
once. The analysis is done on a constructed case study involving
both homogenous and heterogeneous reservoir model, Further, we
use various machine learning regression approach that lies within
the domain of ADP to directly estimate the conditional expected
value given the data outcomes without approximating the poste-
rior probabilities of reservoir properties. The ADP approach utilized
here accounts for both the effect of the information of both pro-
duction profiles and oil prices obtained before a decision is made
and the effect of the information that might be obtained to support
future decisions.

The paper is divided into multiple sections. In the following
section, we provide a consistent basic concept and equation for VOI
computation. Second, we propose a workflow of assessing VOI
using machine learning methods and, following this, we test the
proposed methodology by implementing it in an ensemble ho-
mogenous and heterogeneous reservoir model, where we perform
fast analysis of the optimal EOR switch time using the proposed
workflow. Fourth, we include oil price as uncertain economic
parameter, and finally, some concluding remarks are added.
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2. Value of information and decision making

The VOI in any information gathering activity depends on two
fundamental uncertainties; (1) the uncertainties we hope to learn
but cannot directly observe; which we call events of interests, and
(2) the test results referred as the observable distinctions (Bratvold
et al., 2009). In Reservoir management data gathered until time t
which a decision will be made is the observable distinction, and
future prediction production after time t is the events of interest.
We denote the observable distinction as x, since x is very high
dimension; it is difficult to represent the distribution of x in
analytical form, we usually approximate the distribution of x by
Monte Carlo sampling. Assuming a risk neutral decision maker, VOI
is defined as:

VOI ¼
�

Expected value with
additional information

�
�
�
Expected value without
additional information

�

In mathematical form, this is:

VOI ¼ f0;Dg (1)

D ¼ EVWII � EVWOI (2)

The lower limit of VOI is always 0, since if D is negative when
EVWOI > EVWII, the decision-maker can always choose not to
gather information.

In a decision-making context, the decision without information
(DWOI) is the alternative that optimizes the expected value (EV)
over the prior value, and EVWOI is the optimal EV over the prior.

EVWOI ¼ maxa2A

� ð
vðx; aÞpðxÞdx

�
zmaxa2A

"
1
b

XB
b¼1

v
�
xb; a

�#

(3)

where a is the decision alternative from the a set of A, x is the
distinctions of interests, v(x, b) is the value function that assigns a
value to each alternative outcome pair for a given x and realization
b, and p(x) is the prior probability distribution of x.

Similarly, if we have perfect information regarding the value of x
that the distinction of interests would take, we would choose the
optimal action for that value of x. The decision with imperfect in-
formation (DWII) is the alternative that optimizes the expected
value over the posterior value:

EVWII ¼
ð
maxa2A

"
Eðvðx; aÞjyÞ

� �pðyÞdyz1
B

XB
b¼1

maxa2AE
h
vðx; aÞjyb

#
(4)

Where p(y) is the marginal probability distribution over y.
Additionally, the decision with perfect information (DWPI) can

also be determined in this decision-making context. For instance, in
reservoir engineering, perfect information is the information that
reveals the true reservoir properties and the impacts of the re-
covery mechanism. Taking the EOR initiation problem as an
example, the EVWith Perfect Information (EVWPI) is themaximum
NPV for every path based on prior realizations or distributions.
Then, averaging these NPVs over the paths would result in the
EVWPI. In this way, every path would have an optimal decisionwith
perfect information. The difference between EVWPI and EVWOI is
the value of the perfect information (VOPI).
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3. Value computation by ADP

We use an ADP method called the simulation-regression (or
least-squares Monte Carlo) method to calculate the expected value
with imperfect information. The simulation regression method
involves Monte Carlo simulation and regression for (approxi-
mately) calculating the conditional expected value given data.

Monte Carlo simulation:

(1) Many possible realizations of state variables (xb) such as
porosity and permeability are generated using Monte Carlo
simulation model.

(2) Forward modelling is performed to generate modeled
(future) production data (yb) from t0 to tend, with the addition
of random noises generated from the statistics measure-
ments errors to the modeled production data.

(3) For each decision alternative a, the NPV(xb, a) is calculated.
(4) The EVWOI is then calculated using the following equation:

EVWOI ¼
"
1
b

PB
b¼1NPV

�
xb; a*DWOI

�#
a*DWOI ¼

argmaxa2A

"
1
b

PB
b¼1NPV

�
xb; a

�#

where a*DWOI is the optimal decision without information and it
is identical to each realization.

Backward induction:

(1) Starting recursively from the last decision point in time, in
order to estimate the expected NPV (ENPV)with alternative a
conditional on themodeled production data, ENPV(x, a)|y, we
regress [NPV1j, NPV2j, …, NPVB(x, a)] on the modeled pro-
duction profiles. This procedure is repeated for each of the
alternatives.

(2) The optimal decision is then determined by choosing the
alternative that achieves the highest value of conditional
ENPV given the known information.

(3) The EVWII is then as follows:

EVWII ¼ 1
b

PB
b¼1NPV

�
xb; a*DWII

�
yb
��

a*DWII

�
yb
�
¼ arg 1

b

P
b¼1

Bmaxa2AE
h
NPV

�
xb; a

����yb i; where a*DWII

�
yb
�

is the optimal decisionwith given information yb

(4) Finally, the VOI is given by maxf0; EVWII � EVWOIg

The process of ADP is further detailed in Hong et al. (2018);
Longstaff and Schwartz (2001).

Various methods (linear or non-linear) can be used for regres-
sion to calculate the conditional ENPV given data. In the next sec-
tion, we will review the regression methods used in this study.
Machine learning algorithms (regression methods) are listed:

e Least Squares Monte Carlo Methods (LSM), is a state-of-the-art
dynamic programming approach used in financial engineering
with real options initially proposed by (Longstaff and Schwartz,
2001). (Jafarizadeh and Bratvold, 2009) recommended the use
of the LSM technique as a potential real option valuation tech-
nique for the oil industry (Willigers and Bratvold, 2009).
explained how LSM simulation can handle more realistic valu-
ation situations with multiple uncertain variables. One of the
limitations of the LSM method is its high-dimensional space,
through which the computational time can increase exponen-
tially (Hong et al., 2018).
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The mathematical depiction of the ordinary least square is the
following:

yn ¼
Xk
i¼0

bixni þ e (5)

where xi is the explanatory variable i.e. production profiles, and y is
a dependent variable i.e. NPVs. The coefficient b minimizes the
error prediction.

e Partial Least square (PLS), is a regression technique that is
frequently used for high-dimensional methods (Rosipal and
Kr€amer, 2006 34e51). It takes into account the structures of
both the explanatory variable and the dependent variable. This
model is linear, as shown in Eq (5). However, b coefficients are
found in a different way than with the ordinary least squares
method. The principal of PLS regression involves data x and y,
which are decomposed into their latent structures in an iterative
process such that the covariance of the latent structure is
maximized.

e Principal Component Regression (PCR), reduces a large num-
ber of explanatory variables xi in a regression model to a small
number of principal components. PCRmainly differs from PLS in
that the dependent variables in the former are regressed on the
principal components of the data using linear regression Abdi
(2010).

e Neural Network (NN), often simply called multilayer percep-
tron MLP), is a nonlinear method for either classification or
regression (Liu et al., 2019). The NN model consists of several
layers, each containing a large number of neurons. Each neuron
receives an input and provides a corresponding output through
functional operations such as weight, bias, and transfer function
(see Fig. 1). In mathematical form, the MLP parameters is given
as follows:

q ¼ ðW1; b1;W2; b2;…;WL; bLÞ (6)

whereWi is a weight matrix and bi is the corresponding bias vector
of the L � th neural layer. A function can then be given as follows:

yðxÞ ¼ FðxjqÞ (7)

For neurons, the standard form is given as:

zli ¼ fl

0
@X

j

wl
ijz

l�1
j þ bl

1
A (8)

Where zli denote the value of the i � th neuron in the l � th layer;

zl�1
j is the i � th neuron in the (l � 1) layer; and wl

ij2wl; b
l
ij2bl.

When l ¼ 0, zo ¼ x the input explanatory variables i.e. production
profiles, when l¼ L, zL¼ y is the network dependent output variable
i.e. NPVs. zl represents an intermediate variable. The function f(.)
represents the hidden node output, and is given as an activation
function e.g. Relu;fðxÞ ¼ maxðx;0Þ; Sigmoid;fðxÞ ¼ 1

1þe�x

e Gaussian process regression (GPR), is a non-parametric
Bayesian machine learning technique, used to model an un-
known value function with the help of a Gaussian process
(Rasmussen, 2004). A Gaussian process V � GPðm; kÞ, is
completely specified by its mean function mðxÞ ¼ E½VðxÞ � and

covariance function � kðx;x́ Þ ¼ 1
ffiffiffiffiffiffiffiffi
2ps2

p
e

kx�x
́ k

2 2s2. GPR is a kernel-
based which does not attempt to identify “best-fit” models of
the data. Instead, GPR computes the posterior Gaussian process



Fig. 1. Illustration of a neuron and multi-layer perceptron configuration (Liu et al., 2019).

Fig. 2. The front view of the 2D reservoir model.

Table 1
Values of important reservoir parameters and PVT properties e the 2D reservoir
model.

Water density, kg/m3 1080
Oil density, kg/m3 962
Water viscosity, pa.s 0.48 � 10�3

Oil viscosity, pa.s 5 � 10�3

Water compressibility, 1/bar 4.28 � 10�5

Oil compressibility, 1/bar 6.65 � 10�5

Initial reservoir pressure, bar 234
Porosity 0.3
Polymer Concentration INJECT 1, kg 4
Polymer Concentration INJECT 2, kg 1
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by conditioning on the observed the values. In this study, we
choose k to be the Gaussian radial basis function,

kðx; x́ Þ ¼ 1ffiffiffiffiffiffiffiffi
2ps2

p e
kxj

22s2 and assume that we observe y ¼ V(x) þ ε,

where ε � N �
0; s2

ε

	
; ε is the gaussian noise …

e Automated Machine Learning (Auto ML), in general, machine
learning typically requires substantial human resources to
determine a relevant pipeline (including various types of pre-
processing and the choice of the regression method and
hyperparameters). In response to this, various Auto ML tech-
niques have been developed to build systems that can automate
the process of designing and optimizing machine learning
pipelines. In our study, we use an Auto ML technique called the
Tree-Based Pipeline Optimization Tool (TPOT). TPOT was first
proposed by (Olson and Moore, 2019). In short, TPOT optimizes
machine learning pipelines using a stochastic search algorithm
such as genetic programming.

4. VOI in polymer flooding recovery

In this section, we use two more realistic examples to illustrate
how the methodology discussed in sections 2 and 3 can be applied
to reservoir simulations and modeled to solve the EOR initiation
time problem.

4.1. 2D reservoir model

Consider a simple 2D reservoir model with homogenous
permeability and porosity fields. This model simulates the
displacement of oil to the producer by two water-well injections.
We used an ensemble of N ¼ 500 realizations for the permeability.
The top view of this reservoir model and the well position are
shown in Fig. 2, and other important reservoir parameters and PVT
properties are shown in Table 1.

Problem setting: For the problem setting of this example, a
total period of 6 years of production time is supposed. We consider
two recovery phases: water flooding and polymer. We will analyze
the optimal time to switch from water flooding to polymer injec-
tion. This analysis will provide useful insights into the reservoir
development plan, and the decision will affect the learning over
time. After each year of production, the decision of whether or not
to inject a polymer has to be made, but the switch happens only
once. This indicates that there will be 5 different switch times and
decisions to be made (see Table 2 and Fig. 3).

The oil and water production of 500 ensembles are modeled
312
using the reservoir simulation model and inform the decision-
making. Thus, to obtain the measured rates, the measurement er-
rors should be normally distributed with a mean of zero and a
standard deviation of 10% of the modeled rates and then added to
the modeled rates. Fig. 4 shows the oil and water production for all
realization of some decision alternatives.

The value function is defined as the NPV for each decision
alternative corresponding to each realization. NPV is a function of
revenue from the oil production and costs for water production,



Table 2
Decision problem setting.

Injection period 6 years
Alternative Continue or switch the injection at times {1, 2,3,4,5}
Uncertainty permeability and porosity.
Value derived from the decision situation Net present value
Information data Oil and water production profiles

Fig. 3. Decision flow chart for Polymer flooding injection.
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water injection, and polymer injection. The NPV is calculated using
the following equation:
v
�
xb; a

�
¼

XnT

k¼1

h
qk0

�
xb; a

�
P0 � qkwp

�
xb; a

�
Pwp � qkwi

�
xb; a

�
Pwi � qkci

�
xb; a

�
Pci

i
t

ð1þ rÞtk=t
(9)
Where k is the index of time step, nT is total number of time steps,b
realization of reservoir, qk0 is the field oil production rate at time k,

qkwp is the field water production rate at k, qkwi is the field water

injection at time k, qkci is the total polymer injection rate at time tk;
P0, Pwp, Pwi and Pci. The values of economic parameters used is also
listed in Table 3.

Results: To compute the VOI of the polymer injection, we need
to regress the NPVs on the simulated oil and water production
profiles for each decision alternative. The various machine learning
techniques discussed in section 3 are employed to perform the
regression in this case. To prevent and reduce “the overfitting” in
the machine learning training process, we use a 10-fold cross-
validation (Crowley and Ghojogh, 2019Crowley and
Ghojogh, 2019). Fig. 5 shows the box plots of squared logarithmic
error regression loss (RMSLE),1 for each decision alternative under
each ML method and LS. GP, LS, PLS, and Auto-ML perform signif-
icantly better than PCR and NN. We measured the CPU running
time for each ML method. The results show that GP, LR, PLR, and
PCR required more-or-less the same time and were notably faster
than NN, which required 8 min and approximately 3 h for Auto-ML.
1 https://www.rdocumentation.org/packages/corer/versions/0.2.0/topics/
meansquaredlogerror
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The DWOI is to have the polymer injection finished by the end of
first year, and the EVWOI is found to be $ 55.59 million. Moreover,
the EVWPI is estimated to be $57.18 million. This makes the VOPI
$1.59 million. The highest EVWII corresponding to the machine
learning was obtained through the Auto-ML (see Table 4), which is
$56.64 million. The respective VOI is $0.842 million. This result
indicates that it is not economical to proceed with any information-
gathering activity if the cost of the activity is more than $0.842
million. This result also illustrates that including the effect of future
information and decisions could improve the EV by 1.73%, which is
the percentage of the fraction of VOI to EVWOI.

The cumulative distribution functions (CDFs) of the NPVs asso-
ciated with DWOI, DWII, and DWPI are plotted in Fig. 6. In this
figure, the DWII moves the CDF of the NPV corresponding to the
DWOI to the right. In this way, integrating the effects of future in-
formation and decisions into the decision-making process would
increase the ENPV. Here, some realizations result in a smaller NPV
with DWII than the NPV with DWOI since the recovery efficiency
increment is very small or ML approach fails to find a near-optimal
solution. Furthermore, the DWPI moves the curve of CDF even
further to the right, as shown in Fig. 6. This occurs because the NPVs
corresponding to the DWPI are always higher, which would lead to
a higher ENPV than the values of DWII and DWOI.

The normalized frequency distribution (NFDs) of Waterflooding
injection lifetime is illustrated in Fig. 7. Based on these results, it is
more worthwhile to switch from water flooding to polymer at the
end of year 1 (i.e., there is an 72.8% chance that the polymer re-
covery mechanism should be used starting at the end of the first

https://www.rdocumentation.org/packages/corer/versions/0.2.0/topics/meansquaredlogerror
https://www.rdocumentation.org/packages/corer/versions/0.2.0/topics/meansquaredlogerror


Fig. 4. Ensemble oil production and water production profile for the alternative “inject polymer flooding at the end of the first year” and for the alternative “inject water flooding”.
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year). There is only a 23% chance that it is optimal to switch after 5
years and 4.6% after 4 years of water-flooding recovery. The specific
switch time depends mainly on the simulated production and the
uncertainty geological realization.
314
4.2. 3D reservoir model

Here, we consider a modified version of the standard Egg
reservoir model, which is a 3D channel model (Jansen et al., 2014)



Fig. 5. Boxplot of RMSLE for the entire decision alternative.

Table 3
Values of economic parameters.

Parameter Value Unit

P0 220 $/m3

Pwp 47.5 $/m3

Pwi 12.5 $/m3

Pci 12 $/kg
r 8% e

t 365 days
Dt 30 days

Table 4
VOI obtained by machine learning algorithms.

VOI $ million VOI/EVWII

LR 0.523 0.94%
PLR 0.602 1.08%
Auto-ML 0.842 1.73%
GP 0.536 0.96%
PCR 0.559 1.01%
NN 0.369 0.66%

Fig. 6. CDFs of NPVs corresponding to DWOI, DWPI, and DWOII.

Fig. 7. NFDs of the polymer injection corresponding to decision with ML.

A. Tadjer, R.B. Bratvold, A. Hong et al. Petroleum Research 6 (2021) 309e320
that contains 8 injection wells and 4 production wells. The model
consists of 100 realizations of channelized reservoirs with
60 � 60 � 7 grid cells of which only 18,553 cells are active, thus
producing the shape of an egg, as illustrated in Fig. 8.

The average reservoir pressure is set at 400 bar, and the initial
315
water saturation is considered uniform over the reservoir at a value
of 0.1. The remaining geological and fluid properties used in this
study are presented in Table 5. We modified the oil viscosity in the
standard Egg model to make the reservoir a candidate to undergo
polymer flooding.

Problem setting: The problem setting in this example is largely
the same as that of the 2D reservoir model. Here, we consider a
maximum life cycle of 10 years in total. Wewill analyze the optimal
time to switch from water flooding to polymer injection after each
year of production, but the switch happens only once. This indicates
that there would be 9 different switch times and decisions to be
made.

The oil and water production levels of 100 ensembles are
modeled using the reservoir simulation model and inform the de-
cision. Fig. 9 shows the oil and water production for all realizations
(i.e., to inject polymer during the ninth year or to maintain the
water-flooding recovery process for the whole life of the produc-
tion cycle).

Results: For the Egg reservoir model, the DWOI involves
injecting the polymer by the end of 9 years. The corresponding
EVWOI is $133.91 million, and the EVWPI is estimated to be $136.7
million. Thus, the VOPI is $2.79 million. The highest EVWII corre-
sponding to machine learning was obtained by Auto-ML and pro-
vides an EVWII of $135.92 million for information from oil and
water production profiles. The related VOI is $2.01 million. There-
fore, the operator should not proceed with any information-
gathering activity if the cost of the activity is more than $2.01
million; further, the effects of future information and decisions
would improve the EV by 1.5% (2.01/133.91).

Fig. 10 compares the CDFs corresponding to the different
methods. Here, the NPV resulting from the ML approach (DWII) is
higher than that of the DWOI, as ML allows learning over time. The
DWPI moved the CDF curve further to the right, leading to higher
ENPV than that of ML and DWOI.

Fig. 11 shows that for the optimal switch time to inject polymer
flooding corresponding to the decision-making with ML, there is a
51% chance of initiating the EOR phase at the end of the year after 9
years, with 33% optimal chances of switching after 8 years, and 16%
after 7 years of water-flooding recovery. The mean oil production
rate (shown in Fig.12) decreases significantly with a close similarity
measurement, but after 7 years, the rate corresponding to DWII
increases slightly, as the decision to switch is applied for some
realizations.



Fig. 8. (Left) Reservoir model displaying the position of the injectors (blue) and producers (red). (Right) Six randomly chosen realizations. (From (Jansen et al., 2014)).

Table 5
Reservoir parameters of Egg model.

Water density, kg/m3 1000
Oil density, kg/m3 900
Water viscosity, pa.s 10e3
Oil viscosity, pa.s 20 � 10-3
Water compressibility, 1/bar 10e5
Oil compressibility, 1/bar 10e5
Initial reservoir pressure, bar 400
Porosity 0.2
Polymer Concentration 2

A. Tadjer, R.B. Bratvold, A. Hong et al. Petroleum Research 6 (2021) 309e320
4.3. Uncertainty in oil price

In both previous studies, we did not include uncertainties into
the economic parameters even though they have a significant
impact on the decision. Therefore, in this work, oil price is treated
as an uncertain parameter and considered in the regression analysis
for determining the optimal stopping time given a switch time in
the EGG reservoir model. Uncertain economic variables must be
modeled as Markovian processes and variants over time. Hence, we
follow a stochastic process. There are two commonly used sto-
chastic models for describing uncertainties in economic variables:
the Geometric Brownian Motion (GBM; also known as the random-
walk model) and the OrnsteineUhlenbeck (OU) Stochastic Process
(also known as the mean-reverting model; refer to Uhlenbeck and
Ornstein (1930)for more details).

A process “S” can be stochastically modeled using the Ornstein-
Uhlenbeck process as shown below:

dSt ¼ q ðm� StÞdt þ sdWt (10)

where q is the speed of mean reversion, m is the long-term mean
which the process reverts, s is themeasure of process volatility, and

Wt stands for a Brownian motion, where dWt � Nð0;
ffiffiffi
d

p
tÞ. To

implement this stochastic equation in a simulation, it must be
discretized. (Gillespie, 1996) noted that only when the discretized
time, Dt, is sufficiently small, the simulation of the process work
well. Thus, the discretized equation is shown below:

St ¼
�
St�1 � e�qDt	þ m

�
1� e�qDt	þ

2
4s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2qDt

2q

s
� dWt

3
5

(11)

However, if any commodity price, including oil prices or any
other cost, is modeled using the above discrete time expression,
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negative values might be generated. This is not realistic, as negative
commodity prices never exist. To avoid this problem, the lognormal
distribution of the commodity price is used. Thus, in this context,
the logarithm of the modeled parameter, namely pt ¼ ln[St], is
assumed to follow the mean-reverting process. This process can
then be mathematically described as follows:

dpt ¼ k½p̄ �pt �dt þ spdzt (12)

where k is the speed of mean reversion, p
̄
is the long-term mean to

which the logarithm of the variable reverts, sp stands for the
volatility of process, and dzt describes the increments of standard
Brownian motion. Subsequently, to numerically solve for pt, the
stochastic equation is discretized as shown below (by assuming

dzt � ð0;
ffiffiffi
d

p
tÞ, where dt ¼ 1 year).

pt ¼
�
pt�1 � e�kDt	þ p

̄ �
1� e�kDt	
þ

0
@sp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e�2kDt

2q

s

� Nð0;1Þ
1
A

(13)

After calculating pt, the value of St cannot directly be obtained
using the equation of St ¼ ept. This is because the mean of the
lognormal distribution is added with half of the variance, namely
0.5 � var(pt), for the exponential of a normal distribution. There-
fore, half of the variance is deducted using the equation below:

VarðptÞ ¼ �
1� e�kDt
� sp2

2k
(14)

To use this model, a decision must be made to determine its
parameters. This process is known as calibration, and since the
logarithm of the variables is assumed to follow the mean-reverting
process, least squares regression, which was suggested by (Smith,
2010), is conducted on the datasets of pt ¼ ln[St]. To calibrate the
OU parameters for modeling the oil price, a set of oil price data is
required. For illustration, we used the annual oil price data from the
NYMEX future prices of 1985e2020 (considering only historical
data) (EIA and U.E.I.A, 2019), as shown in Fig. 13. These data are
available on the U.S. Energy Information Administration website.

To begin the procedure of calibration, the following equations
are used:



Fig. 9. The oil production and the water production profile for the realization of the alternative “inject polymer flooding at the end of the first year” and for the alternative “inject
water flooding”.
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xt ¼ pt � Dt ¼ ln½Pt�Dt � (15)

yt ¼ pt ¼ ln½Pt� (16)
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yt ¼ axt þ bþ d� (17)

The OU parameters are estimated using the values of a and b:



Fig. 10. CDFs of NPVs corresponding to DWOI, DWPI, and DWII.

Fig. 11. NFDs of the polymer injection corresponding to the decision-making with ML.

Fig. 13. Historical of annual oil prices from 1985 to 2020.

Table 6
Values of parameters used in the mean-reverting model.

Parameter Oil price

Initial value 26.25
Equilibrium Value 26.25
Volatility sd 0.2719
Mean reversion speed, k 0.1165
dt, year 1
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p
̄ ¼ b

1� a
; k ¼ �ln a

Dt
; sp ¼ sd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ln a

Dt
�
1� a2

	
s

(18)

where d is the approximation error introduced in the least-squares
Fig. 12. Mean oil production rate corresponding to the DWOI and DW
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regression, sd stands for the standard deviation of the approxima-
tion errors, and Dt is the difference in two time-steps. Refer to
(Smith, 2010) for more details regarding the derivation of the
equations.

Using the parameters in Table 6, the oil price corresponding to
the respective costs is modeled forward in time. Fig. 14 presents the
probabilistic model of the oil price.

Results: By adding the uncertain oil price to the previous results
obtained in the egg reservoir model, the DWOI provides 9 years of
water-flooding recovery and then one-year polymer recovery. This
results in a total lifetime of 10 years. Thus, the EVWOI is found to be
$134.53 million. Moreover, the EVWPI is estimated to be $137.98
million, which makes the VOPI $3.46 million. The EVWII corre-
sponding to the ML approach was obtained with through Auto-ML,
II. Left: Overview of the rate. Right: zoomed rate (last 5 years).



Fig. 14. Oil prices modeled using the mean-reverting process.

Fig. 15. NFDs of the polymer injection corresponding to the decision with ML.

Fig. 16. Graph of CDFs against NPVs with respect to DWOI, DWII, and DWPI.
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with an estimate of $136.04 million. This yields a special VOI of $
1.52 million, which indicates that it is not economical to proceed
with any information-gathering activity if the cost of the activity is
more than $1.52 million. Moreover, this result also illustrates that
including the effect of future information and decisions would
improve the EV by 1.13%, which is the percentage of the fraction of
VOI to EVWOI.
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The NFDs of the total lifetime corresponding to the decisions
with machine learning are displayed in Fig. 15. This result recom-
mends switching from water flooding to polymer injection at the
end of years 8 and 9 (i.e., there is a 53% chance that the polymer
recovery mechanism should be started after year 9). There is only a
32% chance that will be optimal to switch after 8 years and 5% after
both 6 and 7 years of water-flooding recovery. The specific switch
time depends mainly on the measured production uncertainty of
geological realization and oil prices.

Fig. 16 compares the CDFs of the NPVs associated with DWOI,
DWII, and DWPI. Here, DWII approachesmove the CDFs of the NPVs
corresponding to the DWOI to the right (i.e., the ENPV increases),
which allows for learning over time. Some realizations ultimately
yield a smaller NPV with DWII than the NPV with the DWOI. This is
possibly due to a suboptimal decision, as the machine learning al-
gorithm is an approximate method that, for some of the path de-
cisions, makes suboptimal choices. The DWPI further moves the
CDF curve to the right, leading to a higher ENPV. This is obvious
because when perfect information is available, all realizations will
have a higher NPV.

5. Conclusions

In this paper, we demonstrated and described the usefulness of
utilizing the concepts of decision analysis and value information to
support the recovery phase in the field of oil development with
limited computational resources. We applied some linear and
nonlinear machine learning regressions to compute the VOI, which
yielded comparable results and globally optimal solutions. The
methodology could be adapted and applied to other fields such as
energy storage and well-placement optimization.

However, the value of machine learning may be small and not
very significant, as there is always an approximation error when
applying the machine learning regression function. Moreover, how
closely a regression function can estimate the actual expected
values and the accuracy of this method also largely depend on a
prior sample of Monte Carlo simulations, alternatives, and infor-
mation; furthermore, in some cases, the model choice may not be
material.

Therefore, we conclude that for solving the optimal EOR initia-
tion time for both 2D and 3D channel reservoir models, the ma-
chine learning regression method can be used to approximate the
value functions that appear in dynamic programming and can be
considered a robust approach, as it includes and quantifies un-
certainties in dynamic and state variables, including uncertainty in
economic parameters, which are important to make good and
insightful decisions. However, this method's computational effort is
still subject to a finite and limited number of alternatives and de-
cision points. Therefore, we believe that a new theory and meth-
odology based on clustering techniques, in combinationwith proxy
models, must be developed to reduce computational costs and
reliably solve real-world sequential decision-making problems.
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Nomenclature

2D/3D Two Dimensional/Three Dimensional
ADP Approximate Dynamic Programming
AutoML Automated Machine Learning
CDF Cumulative Density Function
CLRM Closed Loop Reservoir Management
DWI Decision with Additional Information
DWOI Decision without Additional Information
DWPI Decision with Perfect Information
ENPV Expected NPV
EOR Enhanced Oil Recovery
EV Expected Value
EVWI EV with Additional Information
EVWOI EV without Additional
GPR Gaussian process regression
LS Least Squares
LSM Least-Squares Monte Carlo
MCMC Markov-Chain Monte Carlo
MCS Monte Carlo Simulation
NFD Normalized Frequency Distribution
NN Neural Network
NPV Net Present Value
PCR Principal Component Regression
PLS Partial Least square
RMSLE Root Mean Squared Logarithmic Error
VOI Value-of-Information
VOPI Value-of-Perfect-Information
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