
Yngve Finnestad

Automatisering og signalbehandling Vårsemesteret, 2015

Morten Mossige

Morten Mossige

Analysis of Kinect Motion Capture Capabilities for
Automated Robotic Painting Systems

Simplied Robot Programming
ABB
Kinect

Motion Capture
OpenCV

30

53

source code

14. juni / 2015

Analysis of Kinect Motion Capture Capabilities for
Automated Robotic Painting Systems

Yngve Finnestad
202588

June 15, 2015

1 Abstract

The focus of this project is to determine the motion capture capabilities of the Kinect sensor.
Motion capture is the process of recording human movement, and converting the captured data
into a virtual environment. A simple implementation of motion capture is currently used by
ABB for their Simplified Robot Programming project. Simplified Robot Programming allows
the painter to program a robot by demonstrating the desired movement, instead of program-
ming it.

To simplify the programming of paths for robotic paint applications, the movements of a pro-
fessional painter are recorded and translated into a corresponding path in virtual space. The
programmer will no longer have to manually program the coordinates in a path for the robot to
follow, as it will follow the motion of the painter. This is currently done by a magnetic motion
capture system.

This project will ideally determine if the Microsoft Kinect v2 sensor can serve as a more cost
efficient replacement for the current system. The Kinect sensor features a 1080p camera and a
time-of-flight based depth measuring technology. By combining these technologies, the goal of
the implementation is to achieve tracking of a marker and compare the features of the Kinect
to the current system.

The scope of this project extends to analyzing the accuracy and precision measured by the
Kinect. This will only include the measured position of a marker, not its orientation, as this
requires additional sensors or a different implementation.

To test the system’s ability to track a dynamic target, the marker was mounted to an in-
dustrial ABB paint robot. The tracking and mapping capabilities of the Kinect worked to a
satisfactory degree. While measuring a marker moving at 1 m/s the standard deviation of the
measurement averaged at 2 cm, which should satisfy the requirements for a paint programming
application.

1

Contents

1 Abstract 1

2 Theory 3
2.1 Motion Capture . 3

2.1.1 Optical Systems . 3
2.1.2 Non - Optical Systems . 5

2.2 Computer Vision . 6
2.2.1 Image Processing . 6
2.2.2 Aquiring Depth by Stereo Vision . 13

2.3 The Kinect Device . 17
2.4 3D Path Creation . 19
2.5 Simplified Robot Programming . 20

2.5.1 The SRP Process . 21
2.5.2 The Polhemus System . 22

3 Implementation 23
3.1 System Setup . 23
3.2 Software Implementation . 23

3.2.1 Data Capture . 25
3.2.2 Image Segmentation . 26
3.2.3 Coordinate Mapping . 29
3.2.4 Data Logging . 30
3.2.5 Data Processing . 31

3.3 Hardware Implementation . 32
3.3.1 Marker . 32

4 Experiments and Results 33
4.1 Static Tests . 33

4.1.1 Setup . 33
4.1.2 Results . 33

4.2 Dynamic Tests . 37
4.2.1 Setup . 37
4.2.2 Results . 38

5 Conclusion 48

6 Improvements and Further Work 49

7 References 51

8 Appendix 53
8.1 C# Files . 53
8.2 Python Files . 53
8.3 Matlab Files . 53

2

2 Theory

The general purpose of a motion capture system is to record and convert movement data from
a three-dimensional scene and, by image processing, convert it into relevant digital information.
A motion capture system will generally consist of one or more markers located in the scene,
and a sensor to capture their three-dimensional position, and in many cases their orientation.

This section will encompass the theory behind commonly used motion capture systems, and
their intended use. Different implementations of motion capture systems will be presented and
discussed, with a focus on advantages and disadvantages. Testing the Kinect device as a suit-
able motion capture sensor is an integral part of this project; hence its features and technology
will be analyzed.

As image processing and computer vision is an important part of an optical motion capture
system, the major steps in the process of capturing and analyzing data, using computer vision,
will be discussed. The utilization of the collected data, and its relevance regarding the SRP
project will be described near the end of this section.

2.1 Motion Capture

In the process of recording data from a scene and recreating it digitally, the first step is cap-
turing multiple consecutive samples of the relevant movement in the scene. There are various
systems designed for this purpose, which utilize a range of available technologies. As the pri-
mary purpose of this project is to measure the position of a single marker, a fairly basic motion
capture system will suffice.

Multiple combinations of sensors and markers can be used for various motion capture pur-
poses. Motion capture technology is widely used in special effects and entertainment applica-
tions, where the entire body of a person is tracked. The captured data is in these circumstances
used to animate a virtual character in 3D.

This section will describe the general principle behind the most common motion capture sys-
tems.

2.1.1 Optical Systems

Optical motion capture systems are designed to triangulate the position of a marker covered
by two or more image sensors. By setting up an array of two or more calibrated image sensors,
the three-dimensional position of any marker in the covered area can be calculated.

The image sensors must be calibrated and must overlap the working area. The markers will
then be captured by at least two of the image sensors. By segmenting the images to isolate
the markers their position can be calculated with sub-millimeter accuracy. 1 (the process of
triangulation and image processing will be discussed in 2.2.2 and 2.2.1 respectively.)

As motion capture technology has a wide area of use, the requirement of the system can
change to better accommodate different scenarios. The two major variations in an optical
motion capture system are in their use of passive or active markers. Both systems rely on a

1An Enhanced Correlation-Based Method for Stereo Correspondence with Sub-Pixel Accuracy
http://perception.inrialpes.fr/people/evangelidis/george_files/ICCV_2005.pdf

3

http://perception.inrialpes.fr/people/evangelidis/george_files/ICCV_2005.pdf

light source, either infrared or visible light, but the placement of the light source vary between
the two systems. Each type of light has its advantages and disadvantages. By equipping the
markers and sensors to emit and capture IR light, there is less interference from visible light
sources, which causes the markers to distinctively separate themselves from the rest of the scene.

The optical markers themselves contain no explicit information about their orientation, which
gives each marker three degrees of freedom, as only the X, Y, Z axis can be directly observed.
Orientation can, however, be inferred from the relative location of other markers.

Passive Markers

The markers used in a passive system will not contain any electronics, and will rely on their
ability to be segmented when the image is processed. For the markers to separate themselves
from the scene without being illuminated, they require a distinct feature to isolate themselves
from the rest of the scene. For this purpose they will often be coated with a reflective material,
or have a uniquely distinct color. When reflective markers are used in a controlled scene, they
will be segmented by their high brightness, compared to the rest of the scene.

Reflective markers are widely used by motion capture actors, where markers are placed at
strategic points to cover the movement of the whole body. This is to capture the real-time
movements of the actor and translate it into a digital animation based on the actor’s exact
movements. When used in a professional setting, the recording will often take place in a mo-
tion capture studio, where the fixed scene around the motion capture actor can be controlled.
As passive marker systems depend on being able to segment the markers from the rest of the
scene, a specially designed background scene is optimal.

Passive markers do not have to be reflective. As long as a distinct feature of the marker
can be isolated from the rest of the scene by segmentation, it can be used for motion capture.
Naturally, to be able to easily isolate a marker based on a distinct feature, the background
scene should not contain the same features. Tracking a blue ball in front of a blue sky will not
be as effective as tracking the same ball in a field of grass, or in front of a white screen.

While passive markers offer a simple and cost-effective implementation of a motion capture
system, it has its drawbacks. In a scene where the background can not be as easily controlled
as in a studio, the markers might be harder to capture. As the emitted and reflected light follows
the law of inverse squares, the light intensity of the markers can in some cases be insufficient.
This is where the active marker becomes a better choice.

Active Markers

The active marker utilizes electronics to illuminate the markers by LED technology. As the
markers are no longer reflecting external light, but provide their own, the useful range of the
motion capture system is increased, as described by

Intensity =
1

distance2

A good feature of the active markers is their ability to emit a very specific kind of light, which
can be tuned to make the segmentation more robust.

Every passive marker in the field of view of the camera will be illuminated at once, yielding
multiple markers at once, which then has to be identified. A positive feature of active markers

4

is their ability to be electronically controlled. Each individual marker can then be turned on or
off at high frequencies. By illuminating one specific marker at a synchronized time, the motion
capture system can distinguish the identity of each marker, but at the cost of a lower frame rate.

A further development of the active marker technology is referred to as Time Modulated Active
Marker Motion Capture. For this method, each marker can be identified based on their pulse
width modulated frequency.

Markerless motion capture

A newer technology in motion capture is markerless motion capture, which requires no markers
but instead relies heavily on algorithms to classify human bodies. The Kinect device falls
under this category, as it can identify up to six humans at once through an infrared and an
RGB camera. After processing it will fairly accurately identify joint positions to generate a
skeleton for each person it identifies. The Kinect will be further described in 2.3.

2.1.2 Non - Optical Systems

An alternative to optical systems is motion capture systems, utilizing magnetic or inertial
measurement technology. These systems are not dependent on any visual markers but employ
one or more electronic sensors.

Magnetic Systems

Magnetic motion capture systems emit a magnetic field from a source, where the markers will
sense the relative change of the magnetic flux.

Magnetic motion capture systems have some advantages over optical systems. They do not
require a line of sight, and can directly measure six degrees of freedom, giving both position
and orientation. The drawback of magnetic motion capture systems is their negative response
to metallic objects, which interferes with the sensors magnetic fields. The area of motion is
also limited by the range of the magnetic field.

Inertial Measurement Systems

Motion capture system based on inertial measurement technology will use accelerometers and
gyroscopes to record position and orientation respectively. Although the orientation is directly
measured, the absolute position of the sensors is harder to estimate, as it will be derived from
the acceleration. A common problem when estimating absolute position from acceleration
only, is drifting. The sensor continuously integrates the current acceleration for all axes and
angles, then adds the calculated velocity to the current velocity. The position is calculated the
same way; by integrating the current velocity to estimate the current position. As the system
continually adds changes in velocity and position, any eventual errors will also get added to
the final position. If there is a consistent error in the acceleration measurement, this will
propagate through the double integration and add as an error to the calculated position, which
will accumulate as time goes. 2 , 3 A Kalman filter can be implemented to reduce noise error,
but there will be a certain amount of drift in a system of this kind.

2Accelerometer for Mobile Robot Positioning
http://biorobotics.ri.cmu.edu/papers/sbp_papers/integrated4/liu_accel_position.pdf

3Drift-Free Position Estimation of Periodic or Quasi-Periodic Motion Using Inertial Sensors
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231462/

5

http://biorobotics.ri.cmu.edu/papers/sbp_papers/integrated4/liu_accel_position.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231462/

2.2 Computer Vision

For optical motion capture systems, the recorded data will consist of images of the scene.
Computer vision and image processing is essential to process these images and separate the
markers from the rest of the scene. The markers must first be separated from the rest of the
scene by the process of segmentation, which will be discussed in 2.2.1. When the position of
the markers has been determined in the captured images, their three-dimensional position can
be estimated by the process of three-dimensional reconstruction from multiple images, which
is discussed in 2.2.2.

2.2.1 Image Processing

To isolate the markers in the captured images from the rest of the scene, the image will go
through a set of image processing techniques. Ideally, the scene of the motion caption recording
will contain nothing that interferes with the features of the markers. Eg. if the tracked markers
are blue, the scene should not contain any other blue objects if their blue color is the feature
that separates them from the background. As there are many applications of motion capture,
in various locations, the scene should not be expected to be ideal. To limit interfering factors
in the scene and increase robustness, thresholding and smoothing are relevant techniques.

Image Segmentation

Image Segmentation is the process of dividing an image into multiple segments based on a
defined feature. The purpose of the segmentation is to represent the parts of the image with
common characteristics in an easy way. The image can be segmented with regards to features
like brightness, color or texture. When applying this to motion capture, the object of interest
will be the markers. As the purpose of the marker is to distinguish itself from the rest of the
scene by exhibiting a distinct feature, the captured images can be segmented with regard to
this exact feature. The background and markers will ideally represent different segments, where
the markers can easily be distinguished from the rest of the scene.

There are multiple methods of image segmentation, and depending on the application and
type of image, the method should be chosen accordingly. There exist two main categories of
image segmentation, edge-based and region-based. Edge-based image segmentation classify re-
gions based on a discontinuity between them, like a sharp change in intensity. Region-based
segmentation classifies regions based on a common criteria, like the same intensity.

Thresholding

For the problem of isolating the marker from the background, the simple method of threshold-
ing can be applied. Thresholding will segment a grayscale image based on pixel intensity. Each
pixel in the image will be tested against a certain threshold value. If the pixel intensity falls
above or below the threshold value, it will be classified as true or false accordingly, depending
on the implementation. Thresholding an image will generate a new, binary image where the
pixels classified as true will be white while the rest will be black.

While the principle of segmentation is simple, the hard part is to determine the correct thresh-
old value. This value must be accurate enough to separate the object of interest, also called
foreground, from the scene, or background. One approach is the use of a histogram to analyze
the pixel intensity of the image, as illustrated in figure 1.

6

If there is a clear difference between the foreground and background, the histogram will show
two distinct peaks, one for the foreground, and one for the background. The threshold value
will then fall in between them. However, if there are no obvious distinction, the histogram will
not show any clearly defined peaks, making the threshold value harder to pinpoint.

Figure 1: Illustration of a segmented grayscale image. The graph represents the quantity
of the specific grayscale pixels, from 0 to 255, in this case, where the threshold value is

set between the two peaks. 4

Considering a normal motion capture scenario, the scene will ideally be designed to maximize
the gap between the intensity of the marker (foreground), and the background. By using a
marker with a characteristic easy distinguishable from the background, the segmentation of the
image should be based on this characteristic. An example of this would be a reflective marker
in a scene with a normal, uniformly lit background. The pixels representing the intensity of
the marker would be higher compared to those representing the background. Looking at this
in the form of a histogram, the markers would manifest as a peak in the high-intensity range
of the histogram, although small, as the pixels representing the markers will be few compared
to the background pixels.

However, if the targeted characteristic of the marker is a specific color, not intensity, seg-
mentation by thresholding will be more complicated. As thresholding works by categorizing
all pixels below a certain threshold on the intensity scale, as a segment, it is ideally suited
for grayscale pictures. The pixels in grayscale pictures are single channel, meaning each pixel
only has an intensity value between 0 and max resolution, which is 255 for commonly used
8bit pictures. To apply thresholding to color images, the thresholding must be done on specific
channels of the image. Which channel to use depends on the color space used for the image.

4https://scipy-lectures.github.io/packages/scikit-image/

7

https://scipy-lectures.github.io/packages/scikit-image/

Color spaces

Color images can be represented in several ways, two common representations are RGB and
HSV. RGB images display pixels as an addition of the primary colors; red, green and blue.
Every color in the captured image will consist of a specific amount of the primary colors added
together. RGB is a common representation, which is widely used. In image processing, each of
these colors will have their designated channel. An RGB image will consist of three channels;
red, green and blue (see figure 2).

Figure 2: Illustration of the RBG components of a pixel. Each color represents one color
channel. The combination of these three channel will represent one color when seen from

afar. 5

Describing a specific color range in the RGB color space is complicated, as each color in the
spectrum is a result of three channels. As two shades of the same color can differ on all three
color channels, mapping a range of a single color can prove difficult.

Figure 3: Illustration of the change in color channels between the RGB and HSV format.

The HSV color space is a derivative of RGB and makes defining a range of colors easier. HSV
pixels are represented by a combination of hue, saturation, and value. By remapping the three-
dimensional RGB, the HSV color space can be represented as a cylinder or cone. While the angle
around the vertical center line corresponds to the hue, the saturation and value corresponds
to the distance from center and distance in height respectively. To isolate a specific color and
its different shades, a hue can be chosen with a narrow band while allowing larger bands on
saturation and value.

5http://paginas.fe.up.pt/~ee06205/?paged=2

8

http://paginas.fe.up.pt/~ee06205/?paged=2

Figure 4: Representation of the RGB and HSV color spaces. 6

This leads back to the threshold problem. As each image consist of multiple channels, the
threshold must be applied for each channel of the image with respect to the characteristics
of the channel. As the HSV color space separates the chromaticity from the saturation and
brightness, a very specific chromaticity can be defined in the hue channel, while allowing a
larger range of brightness and value.

In the case of tracking a marker of a specific color, the HSV color space gives the opportu-
nity to easily define a hue that corresponds to the hue of the marker. As the marker may be
recorded in varying degrees of lighting, a larger pass-band can be set for saturation and value.

Figure 5: Representation of the passbands for the thresholding process. The brackets
represent the upper and lower values, where hue has a narrower passband than saturation

and value.

To isolate a specific color, the thresholding must be used as pass-bands for each of the channels.
Everything above or below a range of intensities will be classified as irrelevant while the values
falling in the pass-band range will classify as the marker.

Filtering

Before thresholding the image, it can be enhanced by a number of image processing methods.
Even if the physical scene is optimized for motion capture, the captured images may contain
noise and small details with characteristics similar to the markers. These errors can interfere
with the segmentation process, where the noise may be classified as a false positive, resulting in
a false marker detection. Image noise manifests as random variations in intensity and/or color
in the image, and is usually caused by electronic noise in the image sensor.7

6http://darkpgmr.tistory.com/66
7Minimizing Electronic Noise in Digital Images

http://conganat.uninet.edu/IVCVHAP/CONFERENCIAS/Alvira/index.html

9

http://darkpgmr.tistory.com/66
http://conganat.uninet.edu/IVCVHAP/CONFERENCIAS/Alvira/index.html

Figure 6: Example of noise in digital images. Note the variations of color manifesting
through the noise. 8

Image noise can coincidentally make pixels fall within the passband of the threshold, resulting
in a false positive. However, as noise affects very small areas of the image, Gaussian smoothing
can suppress much of it.

Gaussian smoothing is achieved through convolution of a Gaussian filter kernel and the im-
age. The Gaussian filter kernel is a result of the Gaussian distribution function defined by
equation 1. A good representation of the Gaussian model is given by the standard deviation
function in one dimension, but in the case of image processing two dimensions are used as in
equation 2.

G1D(σ, x) =
1

2πσ
e
−
(
x2

2σ2

)
(1)

G2D(σ, x, y) =
1

2πσ2
e
−
(
x2+y2

2σ2

)
(2)

Applying a Gaussian function as the filter kernel will result in a weighted average, where pixels
closer to the center will have a higher effect on the result than pixels at a further distance,
according to equation 2. As the image contains discrete pixels, the filter kernel will be a
discretized approximation. The form of the kernel varies according to the standard
deviation σ.

8http://www.johnpaulcaponigro.com/blog/tag/noise/

10

http://www.johnpaulcaponigro.com/blog/tag/noise/

The standard deviation σ of the Gaussian function determines the extent of smoothing. A large
standard deviation will utilize pixels in a larger region to compute the result compared to a
smaller standard deviation. A very small standard deviation will yield very small smoothing
effect compared to a larger standard deviation.

(a) Unfiltered grayscale example image (b) After Gaussian filter
(σ = 3 and kernel size = 15)

(c) Unfiltered high-noise color
background.

(d) Filtered image, note the suppression
of sharp colors pixels.

Figure 7: Illustration of the effects of Gaussian smoothing of images and noise.

Figure 7 illustrates the effect of Gaussian smoothing of an image. The small details, mainly
noise, is suppressed leaving the large characteristics relatively intact. However, if the tracked
object is detailed, a large standard deviation may smooth the wanted details of the object as
well as the disturbances. The size of the mask should be large enough to contain the entire
Gaussian function, as a too small kernel size will disregard the outer edges of the Gaussian
function.

11

Image Moments

After thresholding the captured images, the only remaining segments will ideally be the mark-
ers. The next step in the image processing chain is locating the center of the segments. An
approach to finding the segment center is the use of image moments.

Image moments are a form of weighted average, based on the intensity of the pixels in the
image. The function for determining image moments are described by equation 4 and 5, which
represent the continuous and discrete versions respectively. The general function for image
moments from a point [cx, cy] is described in 3, where m,n represents the orders.

µm,n =

∫∫
(x− cx)m (y − cy)n f(x, y) dy dx (3)

As the moments are calculated from (0, 0), cx and cy will be zero. This gives the continuous
(4), and discrete image moments (5) functions. For the discrete function (5), the summation
will span the height h and width w of the image.

µm,n =

∫∫
xm yn f(x, y) dy dx (4) µm,n =

w∑
x=0

h∑
y=0

xm yn f(x, y) (5)

Assuming the thresholded image is binary, the zeroth order moments will simply add the true
pixels in each dimension, and will calculate the area of the segmented region. The center of the
segment can be found by also calculating the first order moments for each dimension. The first
order moments will accumulate the coordinates of the true pixels, according to equation 5.

The spatial center of the region, or the center of gravity can be described by equation 6,
where the first order moments are divided by the area found by the zeroth order moments.9

xcenter =
µ1,0

A
=
µ1,0

µ0,0

ycenter =
µ0,1

A
=
µ0,1

µ0,0

(6)

Image moments must be applied to each isolated segment individually, as it will only be effec-
tive for one segment in an otherwise empty subsection of the image. If there are more than
one segment, the center of gravity will fall between the two. This is why noise suppression is a
valuable step in the process, as unsuppressed noise can manifest as separate segments, which
will affect the center moments.

9Simple Image Analysis By Moments
http://breckon.eu/toby/teaching/dip/opencv/SimpleImageAnalysisbyMoments.pdf

12

http://breckon.eu/toby/teaching/dip/opencv/SimpleImageAnalysisbyMoments.pdf

2.2.2 Aquiring Depth by Stereo Vision

Image processing is one aspect of motion capture, and will ideally find the center of the markers
in the image. However, to relate this two-dimensional position within the image to the real
world scene, and acquire the depth of the marker, stereo vision can be applied. With minimum
two cameras covering the same area of the scene, the position of a common detected object can
be acquired relative to one camera.

There are two main coordinate spaces to consider. The first is the internal coordinate space
of each camera, where the (x,y) coordinates are known, as they were calculated during the
image processing phase. The second coordinate space is the world space, which is the actual
coordinate space of the scene, and is the relevant space to measure movement. To simplify the
explanation, a scene with one marker and two cameras can be considered as in figure 8.

The marker will be located at a three-dimensional point in the scene P(X,Y,Z), where (X,Y,Z)
are world-space coordinates. The purpose of stereo vision is to calculate the position of the
marker based on the gathered info from the two cameras. The marker position in the camera
space can be described as u(x,y). The camera setup for stereo vision systems will often consist
of two cameras placed alongside each other, giving the same y coordinate. For a setup similar
to the one in figure 8, where the orientation of the cameras will be identical, the position of
the marker in camera space will be expected to differ along the x-axis, as there is a distance in
x-axis between the cameras.

Figure 8: Simple stereo camera setup. 10

The same point is viewed by both cameras, which is separated by a distance b on the X axis,
the horizontal points of the marker in camera space can be described as uL and uR for the left
and right camera respectively. The camera focus f is an intrinsic constant of the camera, and
is camera dependent.

pL = f · X
Z

pR = f · X − b
Z

(7)

10http://www.ni.com/white-paper/14103/en/

13

http://www.ni.com/white-paper/14103/en/

From the distance between the points uL and uR, in its respective images, the disparity d can
be calculated. The disparity is the camera space distance between the markers located in the
images.

d = uL − uR = f · b
Z

(8)

solving for Z, which is the world-space depth gives.

Z = f · b
d

(9)

This is the fundamental principles behind stereo vision. It demonstrates a very simple setup
and essential theoretical steps. Any applied stereo vision setup will be far more complex and
must include a camera calibration process. The essence of calibrating a camera is determining
the camera matrix, which describes the mapping from a 3D point in world-space to a corre-
sponding 2D point in the captured images.

image plane coordinates : p =

[
x
y

]
world coordinates : cP =

cX
cY
cZ

 (10)

optical axis : cZ

camera axis : cZ

camera center : cX =c Y =c Z = 0

From (10) the coordinates can be written as, where f is the focal length of the camera:xy
f

︸︷︷︸

p

=
f
cZ

1 0 0 0
0 1 0 0
0 0 1 0

︸ ︷︷ ︸

Π0

cX
cY
cZ

︸ ︷︷ ︸

cP

(11)

Introduce normalized image coordinates by dividing by f.

x̂ =
x

f
ŷ =

y

f
(12)

This gives (13) where x and y are measured in metric distance.

p̂ =

x̂ŷ
1

 =
1
cZ

Π0
cP

x = fx̂

y = fŷ
(13)

14

The metric size of the pixels is ∆x, ∆y, where the image coordinates in pixels
will then be

ix =
x

∆x
=

f

∆x
· x̂ = α · x̂ when α =

f

∆x

iy =
y

∆y
=

f

∆y
· ŷ = β · ŷ when β =

f

∆y

(14)

This reduces the intrinsic parameters f,∆x,∆y to the constants α and β. By using the
lower, left corner of the image as a starting position for the image indexes (m,n)

this can then be described asnm
1

︸ ︷︷ ︸

p

=

α 0 n0

0 β 0
0 0 1

︸ ︷︷ ︸

K

x̂ŷ
1

︸︷︷︸

p̂

p = Kp̂ (15)

Combining this gives a function for p,

p = K
1
cZ

Π0
cP → cZ p = K Π0

cP (16)

which can be solved for cZ, giving the metric distance from the camera to the object.
Further, let

cZ = λ and cP = TR wP (17)

where wP represent the world coordinates, as reference to the real world scene.

15

TR = T ·R =

[
R t
oT 1

]
t =

t1t2
t3

 (18)

The TR matrix is a Translation-Rotation matrix, which describes the camera center in
relation to the ”real-world center”, which is defined as the origin point for the scene.
R is a conventional three-dimensional rotation matrix and describes the orientation
of the camera, related to the scene coordinate system. T is a translation vector, and
describes the linear translation in each axis from the scene center. This gives

λp = KΠ0 TR
wP = M wP where M = KΠ0 TR (19)

which can be written as

Π0 TR =
[
Id 0

] [R t
0T 1

]
=
[
R t

]
(20)

The camera matrix is then

M = K
[
R t

]
(21)

K contains all intrinsic parameters, while
[
R t

]
contains all extrinsic parameters.

As displayed, the intrinsic and extrinsic parameters must be supplied, for the calculation of the
camera matrix to be calculated. The intrinsic parameters needed are focal length f , pixel width
∆x and pixel height ∆y. The intrinsic parameters are camera specific and have no relation to
the scene.

The extrinsic parameters are directly related to how the camera setup is configured, where
the rotation and translation matrix relate the camera orientation and position to the defined
world coordinate system respectively.

There are multiple methods of acquiring these parameters. Special software and Matlab pack-
ages are designed for this exact purpose. A common technique is to use a reference template,
which will be captured by both cameras in the scene. As the reference template contain figures
with known dimensions, the software will be able to estimate the parameters needed for camera
calibration.

16

2.3 The Kinect Device

The Kinect device is a motion sensing device developed by Microsoft primarily for the Xbox
game console. Kinect version one was announced in 2010 while version two was released in
2014. The purpose of the Kinect sensor is to enable a person to interact with their Xbox
through physical movement. Contrary to previous systems created for the same purpose, the
Kinect has a depth measurement feature. The depth measurement sensor is an addition to
the RGB camera, and allow the Kinect to function as a standard camera, but also as a depth
measurement system.

Figure 9: The Microsoft Kinect v2 11

The optical aspect of the Kinect device contains an RGB camera, IR projection device, and an
IR camera. The IR camera work in conjunction with the IR projection to estimate the depth
of the scene in view. The RGB camera has no direct relation to the IR system or the depth
measurement system, and is simply used as a conventional camera.

The principle of acquiring depth differs between the two versions of the Kinect. Version one
uses a sensor developed by Primesense, which produces a 320x240 pixel grayscale depth map.
An infrared pattern will be projected on the scene, which will then be captured by the infrared
camera, then processed using the proprietary LightCoding technology. All depth computation
is done on embedded, dedicated hardware in the Kinect device. This will provide an 11-bit
depth map, resulting in a depth resolution of 2048.

The exact details of the depth calculation are hard to pinpoint, as it runs on proprietary
software, but the key points of the depth mapping process can be shown from the US Patent
for this method (figure 10).

11http://commons.wikimedia.org/wiki/File:Xbox-One-Kinect.jpg

17

http://commons.wikimedia.org/wiki/File:Xbox-One-Kinect.jpg

(a) Brief explanation of the structured light
technology used by Kinect v1

(b) Diagram of depth mapping process for the
structured light technology.

Figure 10: Excerpts from the Kinect v1 depth mapping patent (US 20080106746 A1),
showing the major steps in depth measuring by structured light. 12

As shown in the patent, the first version of the Kinect utilizes structured light imaging. The
IR emitter projects a pseudo-random grid of dots, illuminating the field of view. The image
processing hardware on the Kinect will analyze this field of dots, and establish a relationship
between them. Any movement in the scene will distort this relationship, and provide enough
data to determine the corresponding depth for that area. As the depth calculation depend on
the relationship between these dots, it puts a limit in resolution. Large objects will be covered
by several dots, and thereby give a better representation of its shape compared to a smaller
object, where there are an insufficient amount of dots covering the object.

This is generally not a problem for the intended use of recording the motion of humans for
the purpose of entertainment, as small details are insignificant in this application. However,
this can be a bigger problem when picking up smaller objects, such as a motion capture marker.

The Kinect version 2 are fairly similar to its previous version. The purpose and general princi-
ple behind the Kinect as a gaming device remain the same, but there are significant hardware
upgrades. The new sensor features a 512x424 pixel depth map and a 1080p camera. It will
process up to two gigabits of data per second, and interfaces with Windows 8 machines and
Xbox One consoles through USB 3.

Figure 11: Demonstration of the depth measurement quality of the Kinect v1 (left),
where structured light is used, and the Kinect v2 (right), where time-of-flight is used. 13

12http://www.google.com.ar/patents/US20080106746
13https://www.microsoft.com/en-us/kinectforwindows/meetkinect/features.aspx

18

http://www.google.com.ar/patents/US20080106746
https://www.microsoft.com/en-us/kinectforwindows/meetkinect/features.aspx

The depth measurement method for version 2 is based on Time-of-Flight technology. Time of
Flight technology relies on projected light and the time it takes to reflect from a surface. The
light emitter will emit a pulse of light which will reflect from the surface of the scene, and back
to the sensor. An array of sensors will capture the reflected light, but as there are differences
in the depth of the scene, there will be a delay for some of the returning light. This delay can
be described as

tD =
2D

c
(22)

This outlines the main difference between the two technologies, where the earlier version relies
on the change in a neighborhood of dots, the newer version captures the depth for each pixel,
increasing the resolution.

Figure 12: Illustration of the principle behind time-of-flight technology 14

There are some disadvantages regarding this type of system. Unwanted reflection and inter-
ference are two significant ones. Interference occurs when multiple devices observe the same
space. As all devices rely on the same measurement method, interference will disrupt the timing
process. Multiplexing or modulation can, however, fix this. The other significant disadvantage
is reflection from the scene. As the light can be reflected from a different point than the one
intended, or reflected away from the measured point, is can cause local errors in depth mea-
surement.

The major advantages of time-of-flight systems include the size, simplicity, and efficiency.
Compared to a stereo vision system, where each captured image needs to be processed to
find disparity, and then distance, a time-of-flight system will retrieve all depth data with a
single scan. As a camera rig is no longer required, the size of the system can be considerably
compressed to the point where everything needed can be embedded in a single unit, like the
Kinect. A stereo vision rig will also require extensive calibration, where a small error can
severely affect the end results. A time-of-flight device requires no similar calibration, except
for its extrinsic parameters, when related to a reference point in the scene.

2.4 3D Path Creation

After the 3D position of the marker has been acquired, a path will be generated. In ideal
conditions, the Kinect will capture images at a rate of 30 frames per second. Combining the
raw captured data without further processing might give an unsatisfactory path, as the data
might be affected by noise from either the sensor itself or the image processing. Occlusion of
the marker may give time segments without any positional data, which must be taken into
consideration.

14http://campar.in.tum.de/twiki/pub/Chair/TeachingSs11Kinect/2011-DSensors_LabCourse_

Kinect.pdf

19

http://campar.in.tum.de/twiki/pub/Chair/TeachingSs11Kinect/2011-DSensors_LabCourse_Kinect.pdf
http://campar.in.tum.de/twiki/pub/Chair/TeachingSs11Kinect/2011-DSensors_LabCourse_Kinect.pdf

There are a number of suitable methods for improving this kind of signals. Moving Average is
a common signal processing method for removing disturbances in a signal. Moving Average is a
low pass filter that suppresses sudden, rapid changes in the positional values recorded, as such
rapid deviations often are manifestations of noise. Below is a formula for the moving average,
with output signal y and input signal x. M is the window size of the moving-average filter.

y[i] =
1

M

M−1∑
j=0

x[i+ j] (23)

A time stamp can be put on each acquired point, which gives an estimate of the velocity
between two samples. This can serve as a data set of positional data for the Simplified Robot
Programming algorithms, which will generate a path for the robot to follow.

2.5 Simplified Robot Programming

The Simplified Robot Programming (SRP) technology aims to cut programming time, and
complexity when creating robotic paint programs. The goal is to replicate the motions of a
human painter and translate it to a robotics paint program. This process starts with recording
the motion of the painter, where a handheld sensor, similar to a conventional spray-paint pistol
is used. The captured data will contain position, orientation, and time stamps. This allows for
the recreation of the near exact motion of the painter, but in virtual space.

Figure 13: Illustration of the SRP setup 15

15https://library.e.abb.com/public/8e8168587cb1ef4cc1257ddc0033de9f/SRP_Final_external.

pdf?filename=SRP_Final_external.pdf

20

https://library.e.abb.com/public/8e8168587cb1ef4cc1257ddc0033de9f/SRP_Final_external.pdf?filename=SRP_Final_external.pdf
https://library.e.abb.com/public/8e8168587cb1ef4cc1257ddc0033de9f/SRP_Final_external.pdf?filename=SRP_Final_external.pdf

Algorithms will process the captured data, and optimize it for use in a robotics paint program.
Once the processing is done, the robotic manipulator will move its spray-paint tool in a path
consistent with the one recorded.

The SRP project will both simplify and advance robotic paint programming, as it removes
the need for manually programming a path, with can be both complex and time consuming.
The advancement comes as a result of capturing the authentic human movement, instead of
computer programmed coordinates. The human aspect of painting will be transferred to the
final path, giving it a more complex and fluid movement.

2.5.1 The SRP Process

The process starts by recording the painters movement. This is done by the Polhemus Liberty
system, a magnetic based motion capture system. The Polhemus system itself will later be
described in section 2.5.2, while the general principle of magnetic motion capture systems is
discussed in 2.1.2. The painter will move a hand-held sensor, resembling a standard spray-paint
pistol with a magnetic sensor embedded. Buttons on the pistol enable the painter to start and
stop the sequence while the system continuously record the position and orientation.

After capturing the data, algorithms will simplify the captured points, down to what is needed
for the robot to follow the path to a satisfactory degree. The motion capture system will cap-
ture a huge amount of samples, where all may not be as relevant. The information they provide
might be superfluous to the intended path.

An example of this is defining a straight line by more than two points. As only two points are
needed to form a line segment, any excess points are irrelevant to the form of the line itself.
However, the sampled points contain a timestamp, which will describe the velocity between
points. Removing points will then simplify the path, but may also cause loss of useful velocity
data. This is a trade-off between a simple and easy robot path with a few points, and a more
detailed path with more points to take into consideration. This must be taken into considera-
tion when forming the robot path, as simple paths with few points are easier to manipulate if
needed. The path can be viewed and edited in RobView, a software developed by ABB for the
purpose of viewing and tuning robots in a painting setting. Finally, the path will be transferred
to the paint robot controller, as a paint program for the robot to follow.

Figure 14: The tool marker currently used in SRP. 16

16https://library.e.abb.com/public/ba0082be61601cb9c1257ddc003ad796/Simplified%20Robot%

20Programming_data%20sheet.pdf?filename=Simplified%20Robot%20Programming_data%20sheet.pdf

21

https://library.e.abb.com/public/ba0082be61601cb9c1257ddc003ad796/Simplified%20Robot%20Programming_data%20sheet.pdf?filename=Simplified%20Robot%20Programming_data%20sheet.pdf
https://library.e.abb.com/public/ba0082be61601cb9c1257ddc003ad796/Simplified%20Robot%20Programming_data%20sheet.pdf?filename=Simplified%20Robot%20Programming_data%20sheet.pdf

2.5.2 The Polhemus System

The Polhemus system utilizes magnetic motion capture to track the position and orientation
of a marker, as a general magnetic motion capture system do. The system uses a proprietary
AC electromagnetic technology, and will deliver points with six degrees-of-freedom, as it will
calculate position (X, Y, Z) and orientation (Pitch, Yaw, Roll). The system has a high sample
rate compared to conventional optical motion capture systems.

The major advantage of the Polhemus system, and magnetic motion capture systems in gen-
eral, is their ability to track the marker regardless of occlusion of the marker, which is a major
disadvantage in optical motion capture systems. However, like all systems based on magnetic
fields, the Polhemus system is vulnerable to metallic objects, as these will distort the magnetic
field emitted by the source. As the magnetic field is distorted, the readings of the sensor will
be affected accordingly.

Figure 15: The Polhemus Liberty product line, used in the SRP project 17

17http://polhemus.com/_assets/img/LIBERTY_Brochure.pdf

22

http://polhemus.com/_assets/img/LIBERTY_Brochure.pdf

3 Implementation

This section will describe how a simple motion capture system was implemented. The purpose of
implementing this system is to analyze its motion capture capabilities. The final implementation
will be a combination of the different methods and techniques described in the theory section. It
will be able to capture the 3D position of a marker by using only the Microsoft Kinect v2 (further
referenced as Kinect) as a motion capture sensor. A simple demo video has been made for the
purpose of illustrating the process, and can be viewed at https://youtu.be/yjUPy5moT5I

3.1 System Setup

The purpose of a motion capture system is to track the 3D position of markers in a scene. In
this case, the system will only track one marker. This marker can be mounted to a spray-paint
pistol sensor, as it is in the SRP project described in 2.5.

The purpose of this implementation is to acquire the positional data of the marker. Orien-
tation is outside the scope of this project, as it is not achievable with this setup of only one
marker and no inertial measurement systems. The marker will be an illuminated blue ping-
pong ball, as this inhibits good features for a marker, as described in 3.3.1.

The Kinect is the focus of this project, and will be the only device used in this implemen-
tation. As the Kinect contains both a color camera and depth measurement technology, these
two technologies will be combined to form the final result. The RGB camera (further referenced
as the color camera) will capture a color image of the scene and process the image to isolate
the position of the marker within the image. This is the same method used in stereo vision
systems, as described in 2.2.1, but after determining the position of the marker in only one
image, it will be used for a different purpose than determining disparity, as is the next step in
stereo vision systems.

As the Kinect will additionally capture a grayscale depth image (further referenced to as depth
image) of the scene the 2D coordinates from the color image will be mapped to its correspond-
ing location in the depth image. By reading the depth value at this position, the depth can be
determined as well.

A 3D position has now been found, and will be logged in a log file. This file can then be
processed. In this implementation, the data will be processed as described in 3.2.5. This entire
process will be described in further detail, as the software implementation will be presented
next.

3.2 Software Implementation

The majority of the software implementation is done in C#. This allows for easy use of the
Kinect SDK, created by Microsoft for the purpose of developing applications for the Kinect.
The image processing is done by OpenCV, a powerful image processing library often used for
real-time applications. As this application is written in C#, while OpenCV is originally written
in C++, EmguCV, a wrapper for C# is used in this implementation. After the C# application
has logged the position, it will be written to a text file that will be processed by a Python script
for the purpose of signal processing, and graphical representation.

23

https://youtu.be/yjUPy5moT5I

Below is a screen shot of the application, where the view of the color camera is shown by
default. An indication will be displayed over the currently tracked marker, where the user can
change the tracked color by clicking anywhere on the image, and thereby set this color as the
new tracked color. There is a start / stop record button, which will start and stop the current
recording session.

The figure above shows the major steps in the process. Each of these steps will be discussed
next.

24

3.2.1 Data Capture

The data capturing is event triggered. Using the Kinect SDK Library, subscriptions to certain
events can be configured.

The application subscribes to the MultiSource event, which triggers when Kinect has cap-
tured and processed all specified types of input. These inputs include images captured from
the variety of sensor on the Kinect, such as color, infrared- and depth images. The Kinect
can also supply sound and an estimation of certain joint positions of the person in the scene.
The functions used in this implementation are the color- and depth image. By configuring this
event, the Kinect will supply a depth frame and a color frame, which are objects storing the
depth and color data respectively.

These objects contain more data than just the raw image data. They provide valuable informa-
tion about the settings of the sensor as the specific image was taken, as well as details regarding
the image itself.

In optimal conditions, the Kinect will capture both depth and color at 30 frames per sec-
ond. In low-light conditions, the color camera will drop to 15 frames per second. As the
subscription is set up to receive both depth and color, as both are needed, this will limit the
total frame rate, even though the depth sensor works at 30 fps.

As an event triggers, the raw data extracted from the objects returned from the Kinect will
be copied to specific memory locations, referenced to by pointers. The raw data of the color
frame will be stored in the backbuffer of a writable bitmap. The Writable bitmap is part of the
Windows.Media.Imaging library, and provides the opportunity to store specified pixel data in
a back buffer, which keeps a consistent memory address. Storing the image data in a consistent
memory allocation and rewriting it, is more efficient, compared to copying the image to a new
memory location.

The CopyConvertedFrameDataToIntPtr(...) method will copy the raw pixel data of the color
image to the memory allocation indicated by the pointer. The first argument is the data to
copy. As mentioned, the back buffer, which only contains the raw data is copied. The next
argument describes the size of the memory allocation needed. As this is a BGRA image (Blue
Green Red Alpha), it will require Width · height · 4 bytes to contain all four image channels.
The last argument simply describes the current image format.

While this method in itself seems insignificant, it illustrates the images format and the storage
method used in this implementation. When discussing the image processing in 2.2.1, the im-
portance of pointers will be further discussed.

25

Storage of depth data follows the same procedure. The raw depth data is copied from the
underlying buffer of the depth object. This represents the raw depth data of the depth image.
Raw data is used for visualization purposes in the GUI, but will also be used for coordinate
mapping purposes, as described in 3.2.3.

3.2.2 Image Segmentation

After both depth- and color images have been captured, the next step is to process the image and
isolate the 2D marker position by regional image segmentation as described in 2.2.1. OpenCV
functions are used for this purpose. As this implementation is written in C#, EmguCV is used,
which is a wrapper for OpenCV.

As described in the theory, the optimal image format for segmentation by color is the HSV
format. The captured images are in a BGRA format. BGR represents the Blue Green and
Red channels of the picture while A represents the opacity of the pixel. There exist methods
in OpenCV for the exact purpose of remapping the image format from BGRA to HSV via BGR.

The conversion method accepts a pointer as the first parameter, which points to the mem-
ory location of the unconverted image. The pointer for the converted image location is the
second parameter while the conversion type is the third. There is no method to directly con-
vert the image format from BGRA to HSV. Because of this, the conversion process will be done
in two steps, first from BGRA to BGR, and then from BGR to HSV.

The relevant functions are shown below, where imageBgr, imageHsv and colorimageBGRA
are EmguCV image objects. The pointer for the memory location of the image can be read
from the image object, by using the Image.Ptr variable.

After converting the images to an HSV format, they can be smoothed by a Gaussian filter, as
described in 2.2.1. However, this is computationally heavy and will slow the frame rate down.
As the images in this implementation contain low amounts of noise, the Gaussian smoothing
will be obsolete for many scenes.

Regardless of if smoothing takes place or not, the image needs to be thresholded. This is done
by declaring two objects of the MCvScalar type. Each McvScalar holds the info of one color,
as it contains a value for each channel. The excerpt below shows the implementation of these
scalars, where their arguments represent the hue, saturation and value respectively.

26

The code above demonstrates the initialization of the upper and lower thresholds. They are
initialized with an arbitrary color. When selecting the color of the marker by clicking it in
the GUI, the upper and lower scalars will be based on the color sampled at the origin of the
mouse click. There will be a small predetermined interval for the three values where a narrow
pass-band will be applied for the hue while a wider passband will be used for the saturation and
value. This can be adjusted according to the environment and scene for optimal segmentation.

The code above is an excerpt of the code where the threshold levels are redefined. hsvInts[] are
an array of the HSV values collected from the color image by selecting the desired color to be
tracked from the GUI.

The InRange(...) method is used for the thresholding and requires pointers to the source
and destination images, as well as the upper and lower thresholds, as defined by the scalars.
The source is the HSV image, while the destination is a designated memory allocation, as
referenced by the pointer.

After the segmentation, a binary image remains, where the marker is indicated by the true
pixels, displayed as white in the image.

(a) Marker before thresholding (b) Marker after thresholding

Figure 16: Illustration of the segmentation process.

The thresholding is now complete, and the center of the True pixels must be determined. As
described in 2.2.1, the image moments are used for this purpose. OpenCV has the functionality
to calculate the image moments in a grayscale image. By supplying a pointer for the segmented
binary image, the CvMoments(...) method will acquire the image moments needed, and store
them in a referenced variable. The segment of code below illustrates this.

27

The center moments are calculated according to equation 5, where the resulting coordinates are
stored in an array representing the 2D coordinates of the marker, as seen from the perspective
of the color camera. Before the 3D coordinates can be determined, the 2D coordinates must
be mapped to its corresponding coordinates in the depth image, to compensate for the offset
between the color camera and depth sensor.

The image segmentation section of the software is the most computationally demanding. Be-
cause of this, the OpenCV methods are run in a separate, asynchronous thread. This prevents
the GUI, and other functionality from freezing.

Another significant aspect of these methods are the use of pointers and fixed memory loca-
tions. By manipulating the image at its memory location, instead of copying it to a new
object, the total processing time dropped significantly. To keep up with the 30 fps capture rate
of the Kinect, the processing time should be kept below 30/1000 ≈= 33ms. By utilizing point-
ers, where OpenCV works directly on the memory, the processing time got the segmentation
dropped from ∼ 60ms to ∼ 20ms. This is inside the timeframe that will allow the application
to run in real-time. The full segmentation method is shown below and represents the image
processing methods used.

28

3.2.3 Coordinate Mapping

The 2D position of the marker has been found, but its corresponding location in the depth
image is still unknown. The Kinect device is factory calibrated and can map points between
its coordinate spaces.

The Kinect features three coordinate systems, the camera space, depth space, and color space.
The camera space is centered around the depth measurement sensor and is the default coor-
dinate space. As the figure below (17) shows, the origin of the camera space is at the center
of the IR sensor while the Y axis is vertical, and X is horizontal from right to left. In camera
space, the units are measured in meters.

Figure 17: Illustration of the Kinect camera space coordinate system. 18

The depth space has the same origin as the camera but is a description of the captured depth
image. Color space is the last coordinate system and is offset from the camera- and depth
space, as the color camera and depth sensor are placed at different locations on the Kinect
device.

In the case of this implementation, the color images are captured and analyzed, which re-
sults in coordinates in the color space. To find their corresponding location in the depth image,
the color coordinates can be mapped to the camera space.

As each sensor comes factory-calibrated, the intrinsic parameters of each sensor are stored
within it. These parameters can be accessed by methods in the Kinect SDK library, which
can also do the mapping between the spaces. By first creating an empty CameraSpacePoints[]
array to store the map data, the MapColorFrameToCameraSpaceUsingIntPtr(...) method can
be used. This method uses the depth frame data to map the entire frame captured from color
space to camera space. As a relation between the two color spaces has been established, the
coordinates from the color image can be used to probe the depth image for its depth in its cor-
rect location. This is computationally intensive, as the entire scene must be mapped. Mapping
from depth to color is simpler, as the depth is known before the mapping.

The segment of code below shows how the 2D coordinates of the unmapped color space are
used to extract the 3D coordinate of the corresponding point in camera space.

18https://msdn.microsoft.com/en-us/library/dn785530.aspx

29

https://msdn.microsoft.com/en-us/library/dn785530.aspx

As the camera space points are stored in a 1D array, the position of the desired pixel must first
be determined.

3.2.4 Data Logging

The 3D positions of the marker through the time of the movement are now known, and can be
further processed if wanted. To effectively allow for easy processing by other software, a log
file will be created. The recorded coordinate points will be logged to a text file, which will be
written at the end of the recording session.

The log file will have a specific, consistent structure and can easily be parsed by other software.
After a header, describing general info of the recording system, the data will be presented in a
CSV (Comma Separated Value) format, as illustrated in the figure below.

30

3.2.5 Data Processing

To process the logged data, a Python script has been written. The purpose of this script is to
filter the signal and remove possible outliers and errors.

The first action taken by this script is removing the outliers. Outliers are created in some
cases when the coordinates calculated from the color image misses the location of the marker,
and a faulty depth is sampled. This can be caused by inaccuracies in the image processing,
such as noise in the image, or too rapid motion of the marker for the image processing or depth
sensor to follow. Another source is simply occlusion of the marker for any period of time.
Errors in measurements such as these will often yield a significant change in position. They
can because of this be easily classified as outliers and excluded from the data set.

Excluding points in the data set, for any reason, leaves gaps in the path. If these are only
an occasional small gap, it can be bridged. An algorithm written for this purpose will remem-
ber the last valid point as it iterates through the path. If the next point is marked as invalid,
as it is classified as an outlier, it will start the bridging sequence. The algorithm will count the
invalid points until it reaches a valid one. Every invalid point in the segment will be recreated.
The points will be distributed evenly between the two valid points in either end. This will only
give a realistic approximation to the original path if the gap is short, which it would be if it
were caused by noise, etc. However, if the invalid points were caused by occlusion, the gap will
be larger, and this approach may not leave a realistic reconstruction of the path.

(a) Bridge (red) created in gap where no positional
data exists

(b) Path after moving average filter
(window size = 3)

Figure 18: Illustration of the bridging process, for gaps in recorded data

After bridging eventual gaps, the signal will be filtered through a lowpass, boxcar filter also
known as a moving average filter, as described in 2.4. Filtering will remove a large number
of disturbances in the signal, depending on the window size. A large window size will reduce
much of the noise, but will also suppress any sudden, but intended movements, such as a sharp
corner.

31

3.3 Hardware Implementation

Most of this implementation are done through the Kinect device, and by software, where not
much consideration needs to be taken regarding hardware. Had this been a stereo vision sys-
tem, the hardware configuration of the system would be of much higher importance, as extrinsic
parameters play a crucial role (see 2.2.2).

The software runs on an Intel i5 3.5GHz processor, with the GeForce GTX 750 GPU. The
Kinect interfaces with the PC through USB3.

3.3.1 Marker

One highly hardware dependent aspect of this system is the marker. Simple experiments have
been made to determine the most important features of a good marker. As the Kinect will use
a color image to determine the location of the marker, one of the weak points of the system is
the thresholding phase.

The marker should easily distinguish itself from the scene by its color, which should be as
uniform as possible, to make the entire marker fall within the pass band of the threshold more
easily. One of the main factors determining if an object can be used as a suitable marker is its
gloss. If the marker is glossy, it will reflect light from the scene instead of its color. This means
an object with a shiny surface is poorly suited as a marker. Diffuse or ”frosted” markers are
much more suitable. By having a diffuse surface, the light will scatter in all directions, resulting
in a smoother and more uniform surface. For this implementation, a ping-pong ball with a blue
color was chosen. As it was of a manageable size and relatively diffuse, it served well as a
marker. To further highlight the color and thereby increase robustness towards varying light
conditions, a small LED was placed in the ball.

Figure 19: Different markers displayed, where the ball to the far left is the most glossy.
The blue ping-pong ball is illuminated and somewhat glossy while the smaller ball is
matte. The ping-pong ball in a darker environment is illustrated to the far right and

shows a highly uniform color.

An alternative approach to the colored marker was also tried, where an infrared marker was
used instead. The IR marker position would be captured directly by the depth measurement
sensor, and would not require mapping. However, the IR diode interfered with the time-of-flight
technology and resulted in an infinite depth at the location of the marker.

32

4 Experiments and Results

To determine the feasibility of using the Kinect as a motion capture sensor, some tests will be
performed. The core purpose of these tests is ascertaining the performance of the Kinect as
a measurement device. Two categories of tests will be conducted, static and dynamic. The
static tests will focus on the precision and accuracy of the provided measurement, in a static
environment. The focus of dynamic tests is to determine if these measurements will also apply
for a moving marker, at various velocities.

4.1 Static Tests

The purpose of the static test is to determine the accuracy and precision of the measurements
provided by the Kinect. The camera aspect, which will yield the 2D coordinates, will be
examined, but the most interesting part of the Kinect technology is its depth measurement
capabilities. As the 3D location is heavily dependent on the depth measurements, this will be
closer studied.

4.1.1 Setup

The setup of this test is relatively straightforward. The Kinect will be placed at a permanent
location while the marker will be placed at various predetermined locations in front of the
Kinect. The distance between the Kinect and marker is manually measured by measuring tape
and compared to the measurements given by the Kinect.

There are some sources of error in this setup, one of the largest might be the manual mea-
surement of the distance, which will affect the accuracy of the measurements. Another source
of error is determining the origin of the range measurement. As the camera space coordinate
system starts at the center of the depth measurement sensor, inside the Kinect, its location is
hard to pinpoint.

4.1.2 Results

Despite the sources of errors for this test, such as manual error measurement, and an eventual
bias caused by an undetermined source of origin, the results should ideally give valuable infor-
mation regarding the precision, accuracy and possible distortions.

As the origin of the camera space is hard to determine accurately, it will naturally result
in a systematic bias in depth measurement. The bias can easily be compensated for, as a new
point of origin can be defined in the camera space. Every point captured after this can now be
described relative to this new reference point, leaving any systematic bias obsolete. As bias can
easily be compensated for, it is important to establish if there is any form of scaling error or
non-linear error. Even if a point of origin is determined, the captured positions may contain an
error in accuracy related to the distance of the point. This relation may be linear, or non-linear.
This error can also be compensated for if correctly modeled.

The ideal results of this test will be data indicating a close match between the measured
and actual distance, with a low variance. Below is a graph describing the measurements of
the Kinect compared to the actual distance. A similar test of the Polhemus systems depth
measurements is included. The test of the Polhemus system carried out in the same way as for
the Kinect, by placing the magnetic field generator at a static location and moving the sensor
to actual measured distances.

33

Figure 20: Illustration of the depth measurements of the Kinect and Polhemus, compared
to each other.

As figure 20 shows, the measurements were started at a range of 0.6m, as this is approximately
the nearest distance the Kinect will work effectively. The observed measurements are practi-
cally overlapping until they reach a range of ∼ 1.3m. From this distance, the magnetic sensor
starts to deviate from its ideal linear path, by an increasingly large distance. This deviance
is expected, as the Polhemus technology relies on magnetic fields, which will dissipate at a
distance.

The Kinect, with its time-of-flight technology, keeps an approximately linear path in the entire
span of the measured distances. To examine the error of the Kinect measurements in more
detail, the standard deviation at each point has been calculated and plotted, 100 samples were
used for each distance.

As figure 21 illustrates, the standard deviations of the Kinect’s depth measurements increase
with range. However, the variations are quite small compared to the distance at which they
are measured. The standard deviations in the ∼ 0.6m to ∼ 1.6m range are between 1mm and
1.5mm. This difference increases with range and gives a standard deviation at ∼ 3.5 mm at the
far end of the measured ranges. This error is not a highly significant if the intended application
is to capture the human movements involved in spray painting.

34

Figure 21: Illustration of the standard deviation in relation to the measured distance.

The standard deviation calculated from this test resembles an exponential function, as shown
in the figure, where a fitted exponential function is overlaid the estimated standard deviations.
This function indicates the error is increasing at an exponential rate to the distance.

To extend the scope of this experiment, the depth measurement was also tested at differ-
ent locations along the x-axis, which is the horizontal axis of the Kinect coordinate system.
The purpose of this extended test was to create a grid of measurements in the x,z plane.

The results of this test will ideally indicate if the depth measurements will still follow the
same general pattern, even if the measurements are not taken along the optical (z) axis. This
experiment should also provide data to determine if the camera measurements suffer from any
distortions, as the measurements would not follow a linear pattern if this were the case.

Ideal results from this test should show precise depth measurements at all positions in the
x-axis not only towards the center (x=0). As the focus is depth, a wide marker (∼ 10cm ·
10cm) was used. This size of marker resulted in a non-precise x,y measurement, but a robust
depth measurement. The resulting grid can be seen in figure 22

35

Figure 22: Illustration of the grid produced by x,z measurements.

As figure 22 shows, the depth measurement remained relatively precise at every position. The
grid of measurements also shows a straight linear relationship between the clusters of data,
indicating a very low presence of lens distortions, if any. Had lens distortion affected the mea-
surements, a non-linear relationship between the clusters could be observed, but as every cluster
is positioned in a relatively straight grid this seems not to be the case. As lens distortion does
not affect the measurements, it has been correctly compensated for by the factory calibration.

In summary, the observations from the static test indicate an accurate, precise and linear
measurement pattern. The system calibration seems to compensate for any eventual sources
of systematic error, such as distortion and has so far provided satisfactory measurements for
motion capture applications. However, these measurements were performed in a static setting,
where disturbances from movement or a smaller marker were not taken into consideration. The
dynamic tests will address this.

36

4.2 Dynamic Tests

The purpose of the dynamic test is to determine the measurement capabilities of the Kinect in
an environment where the marker is moving. This test will simulate the intended application
of the motion capture system in a controlled environment. To get comparable results, the path
will remain unchanged while the velocity will vary in this array of tests.

4.2.1 Setup

To accurately repeat the same path, the marker is mounted to the tool end of a robotic ma-
nipulator. The manipulator follows a programmed path, designed specifically for this test. By
utilizing a robotic manipulator, this route can be repeated with effectively identical movements.
As the human aspect is removed, this setup allows for repeated precise and accurate reference
path.

The path is designed to test measurements in all three dimensions. Figure 23 below illus-
trates the general path used, which is captured by the system at low velocity. The velocity of
the manipulator will be set to 0.25 m/s, 0.5 m/s, 0.75 m/s and 1.0 m/s throughout these tests.

Figure 23: Illustration of the robot path, captured at 0.25 m/s. The captured points are
represented by the blue dots, while their moving average is represented by the red line.

(Inversed x axis, as the Kinect mirrors the captured image.)

One major source of error in this setup is the lacking measurement of the actual distance from
the sensor to the marker. The coordinate system of the sensor is not calibrated against the
coordinate system of the robot. This will result in two different coordinate systems, with no
reference to each other. However, as range measurements were tested in the static test, the
focus of this test will be the relative positions measured in the robot coordinate system, and
the relative accuracy and precision of these measured points.

37

4.2.2 Results

The first step of the dynamic testing will be to capture a number of paths and compare them
against each other. A path in this context is a recorded capture of all coordinates sampled
in one cycle of the robots program. Before starting to analyze the captured paths, a proper
method of comparing paths should be established.

The captured data will consist of discrete sampled points, as the velocity increases, these
will naturally be further apart, as there is a constant sampling rate of ∼ 30 Hz. For comparing
two parts against each other, a natural approach would be to compare the n-th point in the
first path to the n-th point in the second path, then iterate through the sequence by increasing
n, while accumulating the calculated distance between points. This method would work well
if the corresponding points in the sequences had no offset. If there is an offset between the
sequences, the distance between the corresponding points will increase according to the offset,
for every point in the path. As the focus is the spatial distance between the points, a nearest
neighbor approach can be used, where the distance between the two nearest points in each path
is used to determine the distance.

This will compensate for an offset of the entire sequence of points in a path, as each point
would find its nearest corresponding point in the other path by its euclidean distance. The
path needs to be trimmed at each end, as excessive points in one path would otherwise use the
distance of the last point in the other path as its reference.

By trimming the path to start at roughly the same coordinates, and applying the nearest
neighborhood approach, the error measurements between the paths begins to reduce towards
their actual error. Even though the offset in the entire sequence is accounted for, there will still
be an offset between points in the two paths. The paths may effectively be overlapping, but
the points can still be at a distance from each other, as the sampling intervals are relatively
high. The offset will not be greater than the distance traveled between samples, but represents
an error, and will accumulate.

A solution to this is measuring the distance from a point in one path, to the closest point
on a line segment between the two closest points on the other path. By this approach, the
offset between points become irrelevant, as the line segment between them is used instead.
This is illustrated on a short section of a path in figure 24.

38

Figure 24: Illustration of two different algorithms, and how distance is measured

As seen in figure 24, the point-to-point approach uses an unnecessary long distance. As the
focus of this experiment is to analyze the distance between paths, the point-to-line approach
gives a better estimate of the actual distance.

An experiment with these two approaches will show the difference between them. Besides
testing the algorithms, this experiment will determine if there is any large change in paths
recorded at high and low velocities. The paths will be recorded at 0.25 m/s and 1 m/s, as
shown in figure 25.

Figure 25: Measurements at 0.25 m/s (left) and 1.00 m/s (right)

39

The captured paths deviated to a small degree, however only at an average distance of ∼ 3.4
mm and 4.7mm for the slow and fast tests respectively. The interesting observation, in this
case, is the difference between the two approaches. The increase in error measurement from
the point-to-line measurement to the point-to-point measurement was at ∼ 31% for the slow
test, and sim 71 % for the 1 m/s test.

This illustrates the difference between the methods, as the high-speed measurement was more
affected by the larger spatial distance between the sampled points, compared to the low-speed
test. The point-to-line measurement method is more robust, in this case, as it did not depend
on the distance between the sampled points.

Building on these observations, another approach can be applied. Errors arise from an off-
set between all samples in one path, in relation to the other. A solution can be to shift the
entire sequence of points until the sum of least square errors reaches a minimum. This approach
will align the paths at its optimal position to each other, but assumes the paths are recorded
at the same velocity.

After determining the optimal amount of samples to shift the path, it will be interpolated
to increase the number of points in the path. As observed in the algorithm test earlier, a high
sample rate will reduce error, as the potential offset between points is minimized.

The next array of tests will examine if the position of the measured points corresponds to
its real world equivalents. As the coordinate systems are not calibrated, the positions will be
determined relative to the robot path. This test will show if there are any scaling error or
disturbances. There will be no measurement of an eventual bias, but as discussed during the
static test, a systematic bias can easily be corrected. Scaling and/or other disturbances may
be more complex to correct.

For this test the path will be recorded ten times, in four different velocities; 0.25 m/s, 0.5
m/s, 0.75 m/s and 1 m/s. The sequence of average 3D positions of the ten corresponding
points from the ten paths will be plotted, and compared to the relative path of the robot. The
interesting observations to make regarding these experiments will be to see if the recorded path
will travel the full length of the actual path, or if there will be any scaling or distortions. To
effectively inspect the recorded positions, the 3D path will be split into its three components,
one for x, y and z, as shown in figure 26.

40

Figure 26: Measurements of the path at 0.25 m/s, with indication of actual positions
from the robot path.

These figures show the average position of the marker along the path for each axis. To deter-
mine if the positions correspond to the ones intended in the programmed path, their relative
position will be compared to those in the program. A dotted line in the plots will indicate the
different values used in the original path. At some point in the recorded path, the marker will
reach all these positions, and a comparison can be made.

41

To compare paths, the different positions for each axis in the robot coordinate system were set,
and an identical offset was added to each of the points on each axis. The offset was adjusted
to the point where the coordinates in the recorded path would fit its corresponding coordinates
programmed into the robot.

As mentioned earlier, this test will not take bias into consideration. However, as the Kinect is
placed parallel to the robot’s coordinate system, this bias can be compensated for as there is
no difference in orientation to consider.

By examining the path and its predicted positions from the programmed path, any error re-
lated to scaling could be directly observed. From the observations, the measured and predicted
positions match as expected, as they effectively overlap, with only a few millimeters in standard
deviation.

Some repeated errors are observed in the x and y components. The measured positions are
closer to the center of the scene, compared to what the actual path should be. This is not much
but does not seem to be random. A possible explanation for this is the geometry of the marker.
As the marker is a ping-pong ball, the radius of the sphere will affect the measurements. When
the ping pong ball is measured directly in front of the sensor, there will only be a difference in
depth measurement, as the marker is considered as a small theoretical point. Once the marker
moves to the edges of either the x or y-axis, the measured point will be closer to the center, as
the surface of the ping-pong ball is measured, not the center. As this will only account for an
error equal to the radius of the ping-pong ball at most, it will be relatively insignificant and
can be compensated for as it represents a systematic error.

The recorded positions align well with the estimated positions, and besides the marker sur-
face error, there seem to be no significant scaling or distortions present. This test successfully
provided data describing the relative accuracy of the recorded path. The purpose of the next
test will be to determine the precision of the recorded data, over a range of different velocities.

Ten cycles of the path will be recorded at four different velocities, and compared against each
other. This will determine the extent of the deviation between the captured paths, and if a
higher velocity will produce a larger error.

42

The figure below 27 illustrates the mean path, and the standard deviation relative to the mean
path. For the slowest velocity, 0.25 m/s, there is hardly any error between the recorded paths.
The average standard deviation per point are shown in figure 31. For practical use in pain
applications, an error of this size should not cause any major problems.

Figure 27: Mean and one standard deviation at 0.25 m/s

43

Figure 28 illustrates the same path, only at a higher velocity (0.5 m/s)

Figure 28: Mean and one standard deviation.

As observed from figure 28, there is a larger error at 0.5 m/s compared to 0.25 m/s. Most of
the error occurs while the marker changes position. As expected, when the marker changes
position in a given direction, the error in this dimension increases while the movements occur.
A probable reason for this might be motion blur, where the center of the marker is not as easy
to identify while moving. While there is no movement in a given direction, there is no motion
blur, and the deviation drops.

44

Figure 29: Mean and one standard deviation.

45

The same characteristics are observed from figure 29, where the test is performed at higher
velocities. (0.75 m/s and 1 m/s respectively) There is a general increase in deviation errors,
and the fast-changing sections of the path are not as well represented at higher velocities.

This is somewhat expected, as the sampling rate remains constant while the velocity increases.
Sharp edges will not be represented as they should, at higher velocities. This is illustrated
in figure 30, where the y-component of the path is displayed. The graph representing the
slowest velocity, follows the intended trajectory better than the path representing the faster
tests. When examining these graphs, it is important to keep in mind that the robot will round
corners, which will result in a rounded edge on the graphs, even at low velocity.

Figure 30: Comparison of paths captured at varying velocities

Lastly, an illustration of the standard deviation will be presented, in figure 31. As referenced
earlier, this is an illustration of the mean standard deviation for every point in the recorded
path. The standard deviation is calculated for each of the four velocities. It shows a small
increase standard deviation for x and y, and a larger increase and overall value for z. The
relationship between x and y is as expected, as they utilize the same measurement technique.
The depth measurement uses time-of-flight technology and can be expected to show different
characteristics. A contributing factor to the large deviation of z can be attributed to the
shape of the marker. Had the marker been flat, a small change in x or y would not be of any
significance, as the depth would be the same over a larger area. However, the marker used is
spherical, meaning any deviation in x or y will also cause a deviation in z, as the surface of the
sphere would be measured in different locations.

46

Figure 31: Average standard deviation at different velocities

To summarize, the observations made from the dynamic test at slow velocities indicated an
average error of under 1 cm for both depth and height/width measurements. At higher velocities
this deviation increased to approximately 2 cm and 1 cm for depth and height/with respectively.
The systems ability to recreate a path proved best at slow speeds, as expected, but also showed
satisfactory results, even at higher speeds. The system showed no significant indications of
distortions or disturbances, except those likely caused by the marker. The results observed
from these experiments show resemblance to other research done on the same subject.19

19First experiences with Kinect v2 Sensor for Close Range 3D Modelling
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-5-W4/93/2015/

isprsarchives-XL-5-W4-93-2015.pdf

47

http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-5-W4/93/2015/isprsarchives-XL-5-W4-93-2015.pdf
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-5-W4/93/2015/isprsarchives-XL-5-W4-93-2015.pdf

5 Conclusion

The measurement aspect of the Kinect device worked with high precision and accuracy. The
static and dynamic tests provided satisfactory results indicating that the Kinect device is indeed
well suited for precise and accurate three-dimensional measurements in an ideal environment.

However, even though the measurements made by the Kinect were good, the sensor will only
provide a positional measurement (3 degrees of freedom). No orientation is measured from
this implementation, which is vital to motion capture applications. Another downside is the
problem of occlusion. As long as a single device is used, it will not be possible to cover the
entire scene, as the user will occlude the marker.

To summarize, the Kinect provided satisfactory measurements, and fulfilled its purpose as
a depth measurement sensor to a very high degree. With the addition of multiple sensors to
cover a larger area of the scene and the implementation of an inertial measurement sensor,
the Kinect is a very good, and well suited candidate for positional measurement in a motion
capture system.

Advantages

– Provides highly accurate and
precise measurements, well
suited for SRP applications.

– Covers a large area of the scene,
compared to the current Polhe-
mus system.

– Unaffected by metallic objects,
unlike the Polhemus system.

– Customizable by Kinect SDK,
and can accept any color-based
optical marker.

– Very low cost compared to cur-
rent motion capture systems.

Disadvantages

– Only provides 3DOF measure-
ments in this current implemen-
tation.

– Dependent on a suitable scene,
to eliminate interfering objects.

– Problem with occlusion, as the
user can block the line of sight
to the marker.

– Currently no official support
for cooperation between multi-
ple sensors.

48

6 Improvements and Further Work

The current implementation of a motion capture system, with the Kinect as the only sensor,
provided positional data only. As the marker consist of a single identifiable object (the blue
ping-pong ball), any data regarding orientation is unobtainable.

There are multiple efficient solutions to this problem. The simplest might be the use of an
inertial measurement unit (IMU), as an addition to the optical marker. By incorporating an
IMU into the marker, it would give real-time orientational data, while the optical aspect of the
motion capture system would provide positional data.

A well-suited device for this particular purpose could be the PlayStation Move device, de-
veloped by Sony for the PlayStation gaming platform. The PlayStation Move controller is a
hand held device with an optical color-based marker, similar to the marker used in this imple-
mentation. In addition to possibly serving as a well-suited marker, the controller has a built-in
IMU to determine the orientation. This controller could be an excellent addition to the system,
as it might solve the orientation problem, as well as functioning as a commercial grade active
optical marker.

Figure 32: The PlayStation Move controller. 20

Another improvement would be the introduction of a second or third Kinect sensor. By adding
more sensors, the occlusion problem would be reduced as scene coverage would increase. The
Kinect sensor will currently interfere with each other, but to what degree has not yet been
pinpointed. To allow for more sensors covering the same area, the sensors could be multiplexed
if interference causes a problem. This feature is worked on for open source Kinect software but
has no official support from Microsoft as of this moment. Promising experiments have been
made by third parties.21

The additional sensors would have to be calibrated to use the same coordinate space, which
would only require proper TR matrices to be determined from the extrinsic parameters of the
setup.

20http://us.playstation.com/ps3/accessories/playstation-move-motion-controller-ps3.html
21http://brekel.com/multikinectv2/

49

http://us.playstation.com/ps3/accessories/playstation-move-motion-controller-ps3.html
http://brekel.com/multikinectv2/

Some small scale improvements could also be made. A growing region approach could be im-
plemented in the thresholding process. Instead of selecting a fixed range of colors, one color
could be chosen as a spawn point for the growing region algorithm. The area indicating the
marker would grow, pixel by pixel from the spawn point to the point where the color changes
drastically, which is the point where the marker ends. The span of color within the region could
serve as a reference for determining the thresholding values.

In this calculation, the velocity of the path has not been taken into account, as only the
spatial locations have been analyzed. However, each sample contains a timestamp, which will
easily allow for the implementation of velocity in the captured path.

50

7 References

[1] Emmanouil Z. Psarakis and Georgios D. Evangelidis
An Enhanced Correlation-Based Method for Stereo Correspondence with Sub-Pixel Accuracy
http://perception.inrialpes.fr/people/evangelidis/george_files/ICCV_2005.

pdf

[2] Hugh Liu, Grantham Pang
Accelerometer for Mobile Robot Positioning
http://biorobotics.ri.cmu.edu/papers/sbp_papers/integrated4/liu_accel_

position.pdf

[3] Latt WT, Veluvolu KC, Ang WT
Drift-Free Position Estimation of Periodic or Quasi-Periodic Motion Using Inertial Sensors
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231462/

[4] Emmanuelle Gouillart
Scikit-image: image processing
https://scipy-lectures.github.io/packages/scikit-image/

[5] Pedro Burmester Campos
Adaptive Controllers using E-Puck Robots
http://paginas.fe.up.pt/~ee06205/

[6] Image Recognition and Color Model
http://darkpgmr.tistory.com/66

[7] Mariano Alvira, MD, LifeSpan Biosciences Inc.,
Minimizing Electronic Noise in Digital Images: example cases of controversial prostatic
lesions.
http://conganat.uninet.edu/IVCVHAP/CONFERENCIAS/Alvira/index.html

[8] John Paul Caponigro
http://www.johnpaulcaponigro.com/blog/tag/noise/

[9] Johannes Kilian
Simple Image Analysis By Moments
http://breckon.eu/toby/teaching/dip/opencv/SimpleImageAnalysisbyMoments.pdf

[10] 3D Imaging with NI LabVIEW
http://www.ni.com/white-paper/14103/en/

[11] Kinect for Xbox One
http://commons.wikimedia.org/wiki/File:Xbox-One-Kinect.jpg

[12] Patent: US 20080106746 A1
Depth-varying light fields for three dimensional sensing
http://www.google.com.ar/patents/US20080106746

[13] Kinect for Windows features
https://www.microsoft.com/en-us/kinectforwindows/meetkinect/features.aspx

51

http://perception.inrialpes.fr/people/evangelidis/george_files/ICCV_2005.pdf
http://perception.inrialpes.fr/people/evangelidis/george_files/ICCV_2005.pdf
http://biorobotics.ri.cmu.edu/papers/sbp_papers/integrated4/liu_accel_position.pdf
http://biorobotics.ri.cmu.edu/papers/sbp_papers/integrated4/liu_accel_position.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231462/
https://scipy-lectures.github.io/packages/scikit-image/
http://paginas.fe.up.pt/~ee06205/
http://darkpgmr.tistory.com/66
http://conganat.uninet.edu/IVCVHAP/CONFERENCIAS/Alvira/index.html
http://www.johnpaulcaponigro.com/blog/tag/noise/
http://breckon.eu/toby/teaching/dip/opencv/SimpleImageAnalysisbyMoments.pdf
http://www.ni.com/white-paper/14103/en/
http://commons.wikimedia.org/wiki/File:Xbox-One-Kinect.jpg
http://www.google.com.ar/patents/US20080106746
https://www.microsoft.com/en-us/kinectforwindows/meetkinect/features.aspx

[14] Victor Castaneda, Nassir Navab
Time-of-Flight and Kinect Imaging
http://campar.in.tum.de/twiki/pub/Chair/TeachingSs11Kinect/2011-DSensors_

LabCourse_Kinect.pdf

[15] Simplified Robot Programming (SRP)
https://library.e.abb.com/public/8e8168587cb1ef4cc1257ddc0033de9f/SRP_

Final_external.pdf?filename=SRP_Final_external.pdf

[16] Simplified Robot Programming, Datasheet
https://library.e.abb.com/public/ba0082be61601cb9c1257ddc003ad796/

Simplified%20Robot%20Programming_data%20sheet.pdf?filename=Simplified%

20Robot%20Programming_data%20sheet.pdf

[17] Polhemus Liberty Brochure
http://polhemus.com/_assets/img/LIBERTY_Brochure.pdf

[18] Programming Guide: Coordinate mapping
https://msdn.microsoft.com/en-us/library/dn785530.aspx

[19] E. Lachat, H. Macher, M.-A. Mittet, T. Landes, P. Grussenmeyer
First experiences with Kinect v2 Sensor for Close Range 3D Modelling
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-5-W4/93/

2015/isprsarchives-XL-5-W4-93-2015.pdf

[20] PlayStationMove
http://us.playstation.com/ps3/accessories/playstation-move-motion-controller-ps3.

html

[21] Multi Kinect v2
http://brekel.com/multikinectv2/

[22] Tan U-X, Veluvolu KC, Latt WT, Shee CY, Riviere CN, Ang WT.
Estimating Displacement of Periodic Motion With Inertial Sensors.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778319/

[23] Khoshelham K, Elberink SO.
Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3304120/

[24] Computer Vision - A Modern Approach, 2nd Edition
By David A. Forsyth og Jean Ponce

52

http://campar.in.tum.de/twiki/pub/Chair/TeachingSs11Kinect/2011-DSensors_LabCourse_Kinect.pdf
http://campar.in.tum.de/twiki/pub/Chair/TeachingSs11Kinect/2011-DSensors_LabCourse_Kinect.pdf
https://library.e.abb.com/public/8e8168587cb1ef4cc1257ddc0033de9f/SRP_Final_external.pdf?filename=SRP_Final_external.pdf
https://library.e.abb.com/public/8e8168587cb1ef4cc1257ddc0033de9f/SRP_Final_external.pdf?filename=SRP_Final_external.pdf
https://library.e.abb.com/public/ba0082be61601cb9c1257ddc003ad796/Simplified%20Robot%20Programming_data%20sheet.pdf?filename=Simplified%20Robot%20Programming_data%20sheet.pdf
https://library.e.abb.com/public/ba0082be61601cb9c1257ddc003ad796/Simplified%20Robot%20Programming_data%20sheet.pdf?filename=Simplified%20Robot%20Programming_data%20sheet.pdf
https://library.e.abb.com/public/ba0082be61601cb9c1257ddc003ad796/Simplified%20Robot%20Programming_data%20sheet.pdf?filename=Simplified%20Robot%20Programming_data%20sheet.pdf
http://polhemus.com/_assets/img/LIBERTY_Brochure.pdf
https://msdn.microsoft.com/en-us/library/dn785530.aspx
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-5-W4/93/2015/isprsarchives-XL-5-W4-93-2015.pdf
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-5-W4/93/2015/isprsarchives-XL-5-W4-93-2015.pdf
http://us.playstation.com/ps3/accessories/playstation-move-motion-controller-ps3.html
http://us.playstation.com/ps3/accessories/playstation-move-motion-controller-ps3.html
http://brekel.com/multikinectv2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778319/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3304120/

8 Appendix

This short section will outline the miscellaneous source code for this project. There are two
distinct categories of software included, the C# files for the Kinect software, and the Python
and Matlab scripts for the processing part.

The source code files are integrated into this pdf as attachments. Two attachments are in-
cluded, where each use different compression formats (zip and 7-zip) to increase compatibility.

8.1 C# Files

The application made to capture data from the Kinect is written in Visual Studio Community
2013. There are some system requirements and dependencies which have to be met, these
are listed below. The source code can be downloaded from GitHub at https://github.com/

ynfin/Kinect_v1.

– Win 8 or Win 8.1
Kinect SDK requires Windows 8 / 8.1.

– Kinect SDK 2.0
The Kinect SDK 2.0 libraries needs to be downloaded and installed for the application
to run. This can be downloaded at https://www.microsoft.com/en-us/download/

details.aspx?id=44561

– EmguCV
EmguCV is the wrapper for OpenCV, which allows OpenCV functions to be used in a
C# environment. EmguCV can be downloaded at http://sourceforge.net/projects/
emgucv/

8.2 Python Files

The calculations and plots for the results section were done in a variety of Python scripts, each
will be listed below.

– KinectPlotter.py
This script will do the processing described in the results section (3.2.5). After pointing
to a logfile from within the script, the file will be processed, and produce a plot file.

– LineError.py
The algorithms described in 4.2.2 are done in this script. As these algorithms are replaced
by higher sampling rate, and a Matlab script, this is script will only compare algorithms.

8.3 Matlab Files

Matlab was used for much of the analysis in the results section.

– ShiftMatch.m A Matlab script was used to produce much of the results in the results
section. The algorithms for shifting the paths, and comparing them are located in this
script.

53

https://github.com/ynfin/Kinect_v1
https://github.com/ynfin/Kinect_v1
https://www.microsoft.com/en-us/download/details.aspx?id=44561
https://www.microsoft.com/en-us/download/details.aspx?id=44561
http://sourceforge.net/projects/emgucv/
http://sourceforge.net/projects/emgucv/

	Abstract
	Theory
	Motion Capture
	Optical Systems
	Non - Optical Systems

	Computer Vision
	Image Processing
	Aquiring Depth by Stereo Vision

	The Kinect Device
	3D Path Creation
	Simplified Robot Programming
	The SRP Process
	The Polhemus System

	Implementation
	System Setup
	Software Implementation
	Data Capture
	Image Segmentation
	Coordinate Mapping
	Data Logging
	Data Processing

	Hardware Implementation
	Marker

	Experiments and Results
	Static Tests
	Setup
	Results

	Dynamic Tests
	Setup
	Results

	Conclusion
	Improvements and Further Work
	References
	Appendix
	C# Files
	Python Files
	Matlab Files

Kinect_v1/emgu_dependencies1of2.PNG

Kinect_v1/emgu_dependencies2of2.PNG

Kinect_v1/Kinect_v1/redmarker.ico

Kinect_v1/Kinect_v1/yellowmarker.ico

Kinect_v1/Kinect_v1/App.xaml.cs

using System;
using System.Collections.Generic;
using System.Configuration;
using System.Data;
using System.Linq;
using System.Threading.Tasks;
using System.Windows;

namespace Kinect_v1
{
 /// <summary>
 /// Interaction logic for App.xaml
 /// </summary>
 public partial class App : Application
 {
 }
}

Kinect_v1/Kinect_v1/Properties/AssemblyInfo.cs

using System.Reflection;
using System.Resources;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Windows;

// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.
[assembly: AssemblyTitle("Kinect_v1")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("")]
[assembly: AssemblyProduct("Kinect_v1")]
[assembly: AssemblyCopyright("Copyright © 2015")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]

// Setting ComVisible to false makes the types in this assembly not visible
// to COM components. If you need to access a type in this assembly from
// COM, set the ComVisible attribute to true on that type.
[assembly: ComVisible(false)]

//In order to begin building localizable applications, set
//<UICulture>CultureYouAreCodingWith</UICulture> in your .csproj file
//inside a <PropertyGroup>. For example, if you are using US english
//in your source files, set the <UICulture> to en-US. Then uncomment
//the NeutralResourceLanguage attribute below. Update the "en-US" in
//the line below to match the UICulture setting in the project file.

//[assembly: NeutralResourcesLanguage("en-US", UltimateResourceFallbackLocation.Satellite)]

[assembly: ThemeInfo(
 ResourceDictionaryLocation.None, //where theme specific resource dictionaries are located
 //(used if a resource is not found in the page,
 // or application resource dictionaries)
 ResourceDictionaryLocation.SourceAssembly //where the generic resource dictionary is located
 //(used if a resource is not found in the page,
 // app, or any theme specific resource dictionaries)
)]

// Version information for an assembly consists of the following four values:
//
// Major Version
// Minor Version
// Build Number
// Revision
//
// You can specify all the values or you can default the Build and Revision Numbers
// by using the '*' as shown below:
// [assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]

Kinect_v1/Kinect_v1/Coordinates.cs

using Point = System.Drawing.Point;

namespace Kinect_v1
{
 class Coordinates
 {
 private int[] cameraCoordinateInts;
 private float[] cameraCoordinateFloat;
 private int[] colorCoordinateInts;

 public Coordinates()
 {
 colorCoordinateInts = new int[] { -1, -1 ,-1 };
 cameraCoordinateFloat = new float[] { -1, -1 };
 cameraCoordinateInts = new int[] { -1, -1, -1 };
 }

 public Coordinates(int[] colorCoords2D)
 {
 colorCoordinateInts = colorCoords2D;
 }

 public void setCameraCoords(float[] camCoords3D)
 {
 cameraCoordinateFloat = camCoords3D;
 }

 public Point getColorCoordinatesPoint()
 {
 return new Point(colorCoordinateInts[0], colorCoordinateInts[1]);
 }

 public int[] getCamCoords()
 {
 cameraCoordinateInts[0] = (int)(cameraCoordinateFloat[0] * 1000);
 cameraCoordinateInts[1] = (int)(cameraCoordinateFloat[1] * 1000);
 cameraCoordinateInts[2] = (int)(cameraCoordinateFloat[2] * 1000);

 return cameraCoordinateInts;
 }

 public float[] getCamCoordsFloat()
 {
 return cameraCoordinateFloat;
 }

 public int[] GetColorCoordinatesInts()
 {
 return colorCoordinateInts;
 }
 }
}

Kinect_v1/Kinect_v1/FormatConverter.cs

using System;
using System.Diagnostics;
using System.Drawing;
using System.IO;

using Emgu.CV;
using System.Runtime.InteropServices;
using System.Windows;
using System.Windows.Media.Imaging;

namespace Kinect_v1
{
 public class FormatConverter
 {
 // FROM http://www.emgu.com/wiki/index.php/WPF_in_CSharp

 // ---
 /// <summary>
 /// Delete a GDI object
 /// </summary>
 /// <param name="o">The poniter to the GDI object to be deleted</param>
 /// <returns></returns>
 [DllImport("gdi32")]
 public static extern bool DeleteObject(IntPtr hObject);

 /// <summary>
 /// Convert an IImage to a WPF BitmapSource. The result can be used in the Set Property of Image.Source
 /// </summary>
 /// <param name="image">The Emgu CV Image</param>
 /// <returns>The equivalent BitmapSource</returns>

 private static BitmapSource source;
 public static BitmapSource ToBitmapSourceFromBitmap(Bitmap bmpinput)
 {
 IntPtr hBitmap = bmpinput.GetHbitmap();
 try
 {
 source = System.Windows.Interop.Imaging.CreateBitmapSourceFromHBitmap(hBitmap, IntPtr.Zero, Int32Rect.Empty, BitmapSizeOptions.FromWidthAndHeight(bmpinput.Width, bmpinput.Height));
 }
 finally
 {
 DeleteObject(hBitmap);
 }
 return source;
 }

 /*
 public BitmapSource ToBitmapSourceFAIL(IImage image)
 {
 using (Bitmap source = image.Bitmap)
 {
 IntPtr ptr = source.GetHbitmap(); //obtain the Hbitmap

 BitmapSource bs = System.Windows.Interop.Imaging.CreateBitmapSourceFromHBitmap(
 ptr,
 IntPtr.Zero,
 Int32Rect.Empty,
 BitmapSizeOptions.FromEmptyOptions());

 DeleteObject(ptr); //release the HBitmap
 return bs;
 }
 }
 */
 //--
 }
}

Kinect_v1/Kinect_v1/Model/FpsCounter.cs

using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;

namespace Kinect_v1.Model
{

 class FpsCounter
 {
 Stopwatch watch = new Stopwatch();
 private Queue window;
 private int windowlength;

 public FpsCounter(int winsize)
 {
 windowlength = winsize;
 watch.Start();
 window = new Queue(winsize);
 }

 public void clear()
 {
 window.Clear();
 }

 public string RawTick()
 {
 long timein = watch.ElapsedMilliseconds;
 watch.Restart();

 return (1000/timein).ToString();
 }

 public void restart()
 {
 watch.Restart();
 }

 public string TickMs(bool fullcycle)
 {
 long timein = watch.ElapsedMilliseconds;

 System.Diagnostics.Debug.WriteLine(timein);

 if (fullcycle)
 watch.Restart();
 else
 watch.Reset();

 if (window.Count >= windowlength)
 window.Dequeue();

 window.Enqueue(timein);

 long sum = 0;

 foreach (long time in window)
 sum = sum + time;

 if (window.Count < windowlength)
 return "cal";

 if (sum != 0 && windowlength != 0 && (sum / windowlength) != 0)
 return ((sum / windowlength)).ToString();

 return "-1";
 }

 public string Tick()
 {
 long timein = watch.ElapsedMilliseconds;
 watch.Restart();

 if (window.Count >= windowlength)
 window.Dequeue();

 window.Enqueue(timein);

 long sum = 0;

 foreach (long time in window)
 sum = sum + time;

 if (window.Count < windowlength)
 return "cal";

 if (sum != 0 && windowlength != 0 && (sum/windowlength) != 0)
 return (1000/(sum/windowlength)).ToString();

 return "-1";
 }

 }
}

Kinect_v1/Kinect_v1/Model/ImageModel.cs

using System;
using System.Diagnostics;
using System.Drawing;
using System.Windows.Media.Imaging;
using Emgu.CV;
using Emgu.CV.Structure;
using System.Collections;
using System.Collections.Generic;

namespace Kinect_v1.Model
{
 class ImageModel
 {

 // Color related data
 private Image<Bgra, Byte> _colorImageBgra;// = new Image<Bgra, byte>("null_large_color.png");
 private Image<Gray, Byte> _colorProcessed;// = new Image<Gray, byte>(1920, 1080, new Gray(100));
 private Image<Gray, Byte> _depthImage;// = new Image<Gray, byte>("null_small.png");

 MCvScalar _lowerColorScalar = new MCvScalar(110 - 5, 242 - 20, 200 + 50); //145-20);
 MCvScalar _upperColorScalar = new MCvScalar(110 + 5, 242 + 20, 200 - 50); //145+60);

 MCvMoments moments = new MCvMoments();

 public bool fetchNextBinaryImage = false;
 public bool newBinaryReady = false;

 Image<Bgr, byte> imageBgr;
 Image<Hsv, byte> imageHsv;
 Image<Gray, byte> imageGray;

 IntPtr cvt = IntPtr.Zero;
 MCvMoments mom = new MCvMoments();

 public ImageModel()
 {
 imageBgr = new Image<Bgr, byte>(1920, 1080);
 imageHsv = new Image<Hsv, byte>(1920,1080);
 imageGray = new Image<Gray, byte>(1920, 1080);
 }

 private double getNormCentralMoment(int xOrder, int yOrder)
 {
 return CvInvoke.cvGetNormalizedCentralMoment(ref mom, xOrder, yOrder);
 }

 // PROCESSORS
 public int[] ProcesscolorReturnCoords()
 {
 int[] coordInts = new int[2];

 // using CVInvoke to gain major speed increases
 CvInvoke.cvCvtColor(_colorImageBgra.Ptr,imageBgr.Ptr,Emgu.CV.CvEnum.COLOR_CONVERSION.BGRA2BGR);
 CvInvoke.cvCvtColor(imageBgr.Ptr, imageHsv.Ptr, Emgu.CV.CvEnum.COLOR_CONVERSION.BGR2HSV);
 CvInvoke.cvInRangeS(imageHsv.Ptr,_lowerColorScalar,_upperColorScalar,imageGray.Ptr);
 //CvInvoke.cvSmooth(imageGray.Ptr, imageGray.Ptr, Emgu.CV.CvEnum.SMOOTH_TYPE.CV_GAUSSIAN, 9, 0, 0, 0);
 //CvInvoke.cvErode(imageGray.Ptr, imageGray.Ptr, IntPtr.Zero, 1);

 CvInvoke.cvMoments(imageGray.Ptr,ref mom,1);
 coordInts[0] = (int)(mom.m10 / mom.m00);
 coordInts[1] = (int)(mom.m01 / mom.m00);

 //Debug.WriteLine("m00: " + mom.m00 + " m01: " + mom.m01 + " m10: " + mom.m10);

 //moments = imageGray.GetMoments(true);
 //coordInts[0] = (int)(moments.GravityCenter.x);
 //coordInts[1] = (int)(moments.GravityCenter.y);

 if (fetchNextBinaryImage)
 {
 _colorProcessed = imageGray;
 newBinaryReady = true;
 fetchNextBinaryImage = false;
 }

 return coordInts;
 }

 public int[] getColorAtPixel(int x, int y, bool setcoloralso)
 {
 int[] hsvInts = new[] {0, 0, 0};

 using (Image<Hsv, byte> im = _colorImageBgra.Convert<Hsv, byte>())
 {
 hsvInts[0] = im.Data[y, x, 0]; //Read to the Red Spectrum
 hsvInts[1] = im.Data[y, x, 1]; //Read to the Green Spectrum
 hsvInts[2] = im.Data[y, x, 2]; //Read to the BlueSpectrum
 }

 if (setcoloralso)
 {
 _lowerColorScalar = new MCvScalar(hsvInts[0] - 5, hsvInts[1] - 10, hsvInts[2] - 10);
 _upperColorScalar = new MCvScalar(hsvInts[0] + 5, hsvInts[1] + 10, hsvInts[2] + 10);
 Debug.WriteLine("Color reference set to: [" + hsvInts[0] + "," + hsvInts[1] + "," + hsvInts[2] + "]");
 }
 return hsvInts;
 }

 // GETTERS AND SETTERS
 // setters

 public void createGrayImage(byte[] pixels, int width, int height)
 {
 using (Image<Gray, byte> im = new Image<Gray, byte>(width, height))
 {
 im.Bytes = pixels;
 _depthImage = im.Clone();
 }
 }

 public void createColorImage(byte[] pixels, int width, int height)
 {
 // kan det brukes pointer her???
 using (Image<Bgra, byte> im = new Image<Bgra, byte>(width, height))
 {
 im.Bytes = pixels;
 _colorImageBgra = im.Clone();
 }
 }

 //getters
 public Bitmap GetBinaryBitmap()
 {
 newBinaryReady = false;
 return _colorProcessed.ToBitmap();
 }

 public Bitmap GetDepthBitmap()
 {
 return _depthImage.ToBitmap();
 }

 public Bitmap GetColorBitmap()
 {
 return _colorImageBgra.ToBitmap();
 }

 }
}

Kinect_v1/Kinect_v1/Logger.cs

using System;
using System.IO;
using System.Text;

namespace Kinect_v1
{
 class Logger
 {
 string logPath = Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments)+@"\KinectLogs";
 private string _fullpath;
 private int framecount = 1;
 public bool fileisopen;

 StringBuilder mainstring = new StringBuilder();

 public void newLoggerFile()
 {
 initiateStringWithDetails();
 _fullpath = createFilePath(logPath);
 }

 private void initiateStringWithDetails()
 {
 mainstring.AppendLine("\n\nKinect Motion Capture Log - "+DateTime.Now.ToLongDateString() + " " + DateTime.Now.ToLongTimeString());
 mainstring.AppendLine("--");
 mainstring.AppendLine("MachineName: " + Environment.MachineName);
 mainstring.AppendLine("UserName: " + Environment.UserName);
 mainstring.AppendLine("OSVersion: " + Environment.OSVersion);
 mainstring.AppendLine("Runtime: " + Environment.Version);
 mainstring.AppendLine("Processors: " + Environment.ProcessorCount);
 mainstring.AppendLine("OS is 64bit: " + Environment.Is64BitOperatingSystem);
 mainstring.AppendLine("App is 64bit: " + Environment.Is64BitProcess);
 mainstring.AppendLine("--");
 mainstring.AppendLine("format:<frame #>,<X>,<Y>,<Z>,<Time>");
 mainstring.AppendLine("--\n");
 mainstring.AppendLine("<STARTLOG>");

 }

 public void appendLogline(int[] coords, TimeSpan timespan)
 {
 mainstring.AppendLine(framecount +"."+coords[0]+"."+coords[1]+"."+coords[2]+"."+timespan);
 framecount ++;

 //if ((framecount % 100) == 0)
 System.Diagnostics.Debug.WriteLine("Frames captured: " + framecount);
 }
 public void appendLogline(float[] coords, TimeSpan timespan)
 {
 mainstring.AppendLine(
 framecount + "," +
 coords[0].ToString(System.Globalization.CultureInfo.InvariantCulture) + "," +
 coords[1].ToString(System.Globalization.CultureInfo.InvariantCulture) + "," +
 coords[2].ToString(System.Globalization.CultureInfo.InvariantCulture) + "," +
 timespan);

 framecount++;

 if ((framecount % 100) == 0)
 System.Diagnostics.Debug.WriteLine("Frames captured: " + framecount);
 }

 private string createFilePath(string path)
 {
 return path+@"\KinectLog_" + DateTime.Now.ToString().Replace('/','_').Replace(':','_').Replace(' ','_') + ".txt";
 }

 public void dumpToFile()
 {
 if (!Directory.Exists(_fullpath))
 Directory.CreateDirectory(logPath);

 mainstring.AppendLine("<ENDLOG>");
 StreamWriter file = new StreamWriter(_fullpath);
 file.WriteLine(mainstring);
 file.Close();
 }

 public void clear()
 {
 mainstring.Clear();
 framecount = 0;
 }

 ~Logger()
 {
 mainstring.Clear();
 mainstring = null;
 }

 }
}

Kinect_v1/Kinect_v1/MainWindow.xaml.cs

using System;
using System.Windows;
using System.Windows.Data;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.ComponentModel;
using System.Diagnostics;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Threading.Tasks;
using Microsoft.Kinect;
using Brushes = System.Drawing.Brushes;
using Point = System.Drawing.Point;

namespace Kinect_v1
{
 public partial class MainWindow
 {
 private const int MapDepthToByte = 8000 / 256;

 private Logger _logger = new Logger();
 private Model.ImageModel _imageModel = new Model.ImageModel();
 private Model.FpsCounter _fpsCounter = new Model.FpsCounter(30);
 private Model.FpsCounter _fpsCounterColor = new Model.FpsCounter(30);
 private Model.FpsCounter _fpsCounterDepth = new Model.FpsCounter(30);

 private KinectSensor _kinectSensor;

 private MultiSourceFrameReader _multiFrameReader;
 private ColorFrameReader _colorFrameReader;

 private FrameDescription _depthFrameDescription;
 private FrameDescription _colorFrameDescription;

 private DepthFrame _depthframe;
 private ColorFrame _colorframe;

 private WriteableBitmap _depthBitmap;
 private WriteableBitmap _colorBitmap;
 private WriteableBitmap _binBitmap;

 private ImageSource _binaryImageSource = null;

 enum DisplaySource { ColorStream, DepthStream, InfraredStream, BinaryStream };
 DisplaySource _source = DisplaySource.ColorStream;

 private byte[] _depthPixels;
 private byte[] _rawColorPix;
 private ushort[] _rawDepthPix;

 private CameraSpacePoint[] _cameraSpacePoints;

 // Intermediate storage for the color to depth mapping
 private DepthSpacePoint[] _colorMappedToDepthPoints = null;
 //private CameraSpacePoint[] colorMappedToCameraPoints = null;
 private ushort[] framed;

 private TimeSpan _colorFrameCaptureTimeSpan;
 private TimeSpan DepthFrameCaptureTimeSpan;

 public bool DepthSet;
 public bool ColorSet;

 //private int[] rawCoords = new int[] { 0, 0, 0 }; //raw 2D colorspace coords
 //private int[] mapCoords = new int[] { 0, 0, 0 }; //mapped to 3D cameraspace coords
 private Coordinates _coordinates = new Coordinates();

 private int[] globalret;

 private TaskScheduler _scheduler;

 private int taskCounter = 0;

 private bool _recordEnabled;
 private int framecount = 0;

 private bool markdepth = false;

 public MainWindow()
 {
 _kinectSensor = KinectSensor.GetDefault();

 // streams
 _multiFrameReader = _kinectSensor.OpenMultiSourceFrameReader(FrameSourceTypes.Depth | FrameSourceTypes.Color);
 _colorFrameReader = _kinectSensor.ColorFrameSource.OpenReader();

 // handler
 _multiFrameReader.MultiSourceFrameArrived += Reader_MultiFrameReader;
 _colorFrameReader.FrameArrived += Reader_ColorFrameReader;

 // framedescriptions
 _depthFrameDescription = _kinectSensor.DepthFrameSource.FrameDescription;
 _colorFrameDescription = _kinectSensor.ColorFrameSource.CreateFrameDescription(ColorImageFormat.Bgra);

 //bitmaps
 _colorBitmap = new WriteableBitmap(_colorFrameDescription.Width, _colorFrameDescription.Height, 96.0, 96.0, PixelFormats.Bgr32, null);
 _depthBitmap = new WriteableBitmap(_depthFrameDescription.Width, _depthFrameDescription.Height, 96.0, 96.0, PixelFormats.Gray8, null);
 _binBitmap = new WriteableBitmap(_depthFrameDescription.Width, _depthFrameDescription.Height, 96.0, 96.0, PixelFormats.Gray8, null);

 // raw arrays
 _depthPixels = new byte[_depthFrameDescription.Width * _depthFrameDescription.Height];
 _rawColorPix = new byte[_colorFrameDescription.Width * _colorFrameDescription.Height * 4];
 _rawDepthPix = new ushort[_depthFrameDescription.Width * _depthFrameDescription.Height];

 // spaces
 _cameraSpacePoints = new CameraSpacePoint[_colorFrameDescription.Width * _colorFrameDescription.Height];
 _colorMappedToDepthPoints = new DepthSpacePoint[_colorFrameDescription.Width * _colorFrameDescription.Height];
 framed = new ushort[_depthFrameDescription.Width * _depthFrameDescription.Height];

 //threading
 _scheduler = TaskScheduler.FromCurrentSynchronizationContext();

 globalret = new int[]{0,0};

 // startup

 _kinectSensor.Open();
 DataContext = this;
 InitializeComponent();
 }

 // STREAM READERS METHODS ///

 private void Reader_ColorFrameReader(object sender, ColorFrameArrivedEventArgs e)
 {
 FpsDisplay2.Text = "C: " + _fpsCounterColor.Tick();
 }

 private void Reader_MultiFrameReader(object sender, MultiSourceFrameArrivedEventArgs e)
 {
 MultiSourceFrame multiSourceFrame = e.FrameReference.AcquireFrame();

 _colorframe = multiSourceFrame.ColorFrameReference.AcquireFrame();
 _depthframe = multiSourceFrame.DepthFrameReference.AcquireFrame();

 //using (ColorFrame colorFrame = multiSourceFrame.ColorFrameReference.AcquireFrame())
 using (_colorframe)
 {
 if (_colorframe != null)
 {
 // gather frame data
 _colorFrameDescription = _colorframe.FrameDescription;
 _colorFrameCaptureTimeSpan = _colorframe.RelativeTime;

 _colorBitmap.Lock();

 // verify data and write the new color frame data to the display bitmap
 if ((_colorFrameDescription.Width == _colorBitmap.PixelWidth) && (_colorFrameDescription.Height == _colorBitmap.PixelHeight))
 {
 _colorframe.CopyConvertedFrameDataToIntPtr(_colorBitmap.BackBuffer, (uint)(_colorFrameDescription.Width * _colorFrameDescription.Height * 4), ColorImageFormat.Bgra);
 _colorBitmap.AddDirtyRect(new Int32Rect(0, 0, _colorBitmap.PixelWidth, _colorBitmap.PixelHeight));

 // draw captured data on the bitmap
 //drawCoordsOnColorBitmap(new Point(rawCoords[0],rawCoords[1]), 64);
 drawCoordsOnColorBitmap(_coordinates.getColorCoordinatesPoint() ,64);

 IntPtr rc = IntPtr.Zero;
 // storage for imagemodel
 //_colorframe.CopyConvertedFrameDataToIntPtr(rc,1920*1080*4,ColorImageFormat.Bgra);
 _colorframe.CopyConvertedFrameDataToArray(_rawColorPix, ColorImageFormat.Bgra);
 //_imageModel.createColorImage(rc, _colorFrameDescription.Width, _colorFrameDescription.Height);
 _imageModel.createColorImage(_rawColorPix, _colorFrameDescription.Width, _colorFrameDescription.Height);

 ColorSet = true;
 }
 _colorBitmap.Unlock();
 }
 }

 bool depthFrameProcessed = false;

 if (_depthframe != null)
 {
 DepthFrameCaptureTimeSpan = _depthframe.RelativeTime;

 if (_source == DisplaySource.DepthStream)
 {
 // the fastest way to process the body index data is to directly access the underlying buffer
 using (KinectBuffer depthBuffer = _depthframe.LockImageBuffer())
 {
 // verify data and write the color data to the display bitmap
 if (((_depthFrameDescription.Width * _depthFrameDescription.Height) == (depthBuffer.Size / _depthFrameDescription.BytesPerPixel)) &&
 (_depthFrameDescription.Width == _depthBitmap.PixelWidth) && (_depthFrameDescription.Height == _depthBitmap.PixelHeight))
 {
 //ushort maxDepth = ushort.MaxValue;
 ushort maxDepth = _depthframe.DepthMaxReliableDistance;

 ProcessDepthFrameData(depthBuffer.UnderlyingBuffer, depthBuffer.Size, _depthframe.DepthMinReliableDistance, maxDepth);
 depthFrameProcessed = true;
 }
 }
 }
 else
 DepthSet = true;

 // thread will dispose depthframe when done with it
 Task.Factory.StartNew(() => MapColorToCameraInThread(_depthframe, _kinectSensor)).ContinueWith((i) => updateMappedCameraSpaces(i.Result), _scheduler);
 }

 if (depthFrameProcessed)
 RenderDepthPixels();

 if (DepthSet && ColorSet)
 {
 Task.Factory.StartNew(() => ProcessingMethod()).ContinueWith((i) => UpdateCoords(i.Result), _scheduler);
 }

 }

 // THREADING METHODS ///

 //-- MAP depthFrameData.UnderlyingBuffer -> _CameraSpacePoints ----------------------------------

 private CameraSpacePoint[] MapColorToCameraInThread(DepthFrame depthFrameInput, KinectSensor sensor)
 {
 CameraSpacePoint[] csp = new CameraSpacePoint[1920 * 1080];
 using (KinectBuffer depthFrameData = depthFrameInput.LockImageBuffer())
 {
 sensor.CoordinateMapper.MapColorFrameToCameraSpaceUsingIntPtr(depthFrameData.UnderlyingBuffer, depthFrameData.Size, csp);
 }
 return csp;
 }

 private void updateMappedCameraSpaces(CameraSpacePoint[] mappedCamSpacePoints)
 {
 _cameraSpacePoints = mappedCamSpacePoints;
 _depthframe.Dispose();
 }

 //-- OPEN CV PROSESSERING -> SET NY GLOBAL DATA ----------------------------------

 long accu = 0;
 int counter = 0;

 private Coordinates ProcessingMethod()
 {
 // store all coordinates into designated class for coordinate storage
 Stopwatch sw = new Stopwatch();

 sw.Start();

 Coordinates coordinateStorage = new Coordinates(_imageModel.ProcesscolorReturnCoords());
 float[] mappedCoords = (mapWithGivenCoords(coordinateStorage.GetColorCoordinatesInts()));
 coordinateStorage.setCameraCoords(mappedCoords);

 accu += sw.ElapsedMilliseconds;
 sw.Reset();
 counter++;
 if (counter == 1000)
 {
 counter = 0;
 Debug.WriteLine(accu / 1000.0);
 accu = 0;
 }

 return coordinateStorage;
 }

 private void UpdateCoords(Coordinates inputCoords)
 {

 //Findcoordinatesindepthspace(inputInts.GetColorCoordinatesInts());

 // add to log if recording
 if (_recordEnabled)
 {
 _logger.appendLogline(inputCoords.getCamCoordsFloat(), _colorFrameCaptureTimeSpan);
 framecount++;

 //////////////////// SAMPLE ABORT //////////////////////////
 if (framecount >= Convert.ToInt32(sampleBox.Text))
 if ((bool)sampleCheckBox.IsChecked)
 {
 {
 _recordEnabled = false;
 _logger.dumpToFile();
 _logger.clear();
 RecordButton.Background = System.Windows.Media.Brushes.SlateGray;
 RecordButton.Content = "Record";
 }
 }
 ///
 }

 //
 _coordinates = inputCoords;
 DepthSet = false;
 ColorSet = false;

 // get binary bitmap if requested
 if (_imageModel.newBinaryReady)
 _binBitmap = writableBitmapFromBitmap(_imageModel.GetBinaryBitmap());

 _coordinates = inputCoords;
 loggerDisplay.Text = (_colorFrameCaptureTimeSpan).ToString();
 FpsDisplay.Text = "CV: " + _fpsCounter.Tick();

 taskCounter--;
 }

 // MAPPING METHODS ///

 private float[] mapWithGivenCoords(int[] unmappedPoint2D)
 {
 float[] colorMappedToCamera = new float[3];

 unsafe
 {
 fixed (CameraSpacePoint* colorMappedToCamPointsPointer = _cameraSpacePoints)
 {

 if (unmappedPoint2D[0] < 0) unmappedPoint2D[0] = 0;
 if (unmappedPoint2D[1] < 0) unmappedPoint2D[1] = 0;

 int colorKndex = (unmappedPoint2D[1] * _colorFrameDescription.Width) + unmappedPoint2D[0];

 colorMappedToCamera[0] = colorMappedToCamPointsPointer[colorKndex].X;
 colorMappedToCamera[1] = colorMappedToCamPointsPointer[colorKndex].Y;
 colorMappedToCamera[2] = colorMappedToCamPointsPointer[colorKndex].Z;
 }
 }
 return colorMappedToCamera;
 }

 public int[] Findcoordinatesindepthspace(int[] c)
 {

 int[] ret = new int[2];

 unsafe
 {
 fixed (DepthSpacePoint* colorMappedToDepthPointsPointer = _colorMappedToDepthPoints)
 {
 int colorKndex = (c[1] * 1920) + c[0];

 float colorMappedToDepthX = colorMappedToDepthPointsPointer[colorKndex].X;
 float colorMappedToDepthY = colorMappedToDepthPointsPointer[colorKndex].Y;

 if (!float.IsNegativeInfinity(colorMappedToDepthX) &&
 !float.IsNegativeInfinity(colorMappedToDepthY))
 {
 // Make sure the depth pixel maps to a valid point in color space
 int depthX = (int) (colorMappedToDepthX + 0.5f);
 int depthY = (int) (colorMappedToDepthY + 0.5f);

 if ((depthX >= 0) && (depthX < _depthFrameDescription.Width) && (depthY >= 0) &&
 (depthY < _depthFrameDescription.Height))
 {
 ret[0] = (int) colorMappedToDepthX;
 ret[1] = (int) colorMappedToDepthY;
 }
 }
 }
 }
 Debug.WriteLine(ret[0]+","+ret[1]);
 globalret = ret;
 return ret;
 }

 private WriteableBitmap writableBitmapFromBitmap(Bitmap bmp)
 {
 // GDI HANDLE LEAK DO NOT AUTOMATE
 BitmapSource b = System.Windows.Interop.Imaging.CreateBitmapSourceFromHBitmap(bmp.GetHbitmap(), IntPtr.Zero, Int32Rect.Empty, BitmapSizeOptions.FromWidthAndHeight(bmp.Width, bmp.Height));
 WriteableBitmap wb = new WriteableBitmap(b);

 return wb;
 }

 // KINECT METHODS ///

 private void RenderDepthPixels()
 {
 if (markdepth)
 _depthPixels[(globalret[1] * 512) + globalret[0]] = byte.MaxValue;

 _depthBitmap.WritePixels(
 new Int32Rect(0, 0, _depthBitmap.PixelWidth, _depthBitmap.PixelHeight),
 _depthPixels,
 _depthBitmap.PixelWidth,
 0);
 }

 private unsafe void ProcessDepthFrameData(IntPtr depthFrameData, uint depthFrameDataSize, ushort minDepth, ushort maxDepth)
 {
 ushort* frameData = (ushort*)depthFrameData;

 for (int i = 0; i < (int)(depthFrameDataSize / _depthFrameDescription.BytesPerPixel); ++i)
 {
 ushort depth = frameData[i];
 _depthPixels[i] = (byte)(depth >= minDepth && depth <= maxDepth ? (depth / MapDepthToByte) : 0);
 }
 //_imageModel.createGrayImage(_depthPixels, _depthFrameDescription.Width, _depthFrameDescription.Height);
 DepthSet = true;
 }

 // GUI METHODS ///

 private void drawCoordsOnColorBitmap(Point coordPoint, int sizeD)
 {
 // inside bounds check

 if (coordPoint.X <= sizeD / 2 || coordPoint.X >= _colorFrameDescription.Width - sizeD / 2 ||
 coordPoint.Y <= sizeD / 2 || coordPoint.Y >= _colorFrameDescription.Height - sizeD / 2)
 return;

 // draw on bitmap
 var tempBitmap = new Bitmap(_colorBitmap.PixelWidth,
 _colorBitmap.PixelHeight,
 _colorBitmap.BackBufferStride,
 System.Drawing.Imaging.PixelFormat.Format32bppRgb,
 _colorBitmap.BackBuffer);

 using (var bitmapGraphics = Graphics.FromImage(tempBitmap))
 {
 bitmapGraphics.SmoothingMode = SmoothingMode.HighSpeed;
 bitmapGraphics.InterpolationMode = InterpolationMode.Low;
 bitmapGraphics.CompositingMode = CompositingMode.SourceOver;
 bitmapGraphics.CompositingQuality = CompositingQuality.HighSpeed;

 if (!_recordEnabled)
 {
 bitmapGraphics.DrawIcon(new Icon("yellowmarker.ico", new System.Drawing.Size(sizeD, sizeD)),
 new Rectangle(new Point(coordPoint.X - sizeD / 2, coordPoint.Y - sizeD / 2), new System.Drawing.Size(sizeD, sizeD)));

 bitmapGraphics.FillRectangle(new SolidBrush(System.Drawing.Color.FromArgb(150, 255, 255, 0)), new RectangleF(new Point(coordPoint.X + (sizeD / 2) + 10, coordPoint.Y - sizeD / 2 - 32), new System.Drawing.Size(130, 28)));
 bitmapGraphics.DrawString("colorspace", new Font(new System.Drawing.FontFamily("Arial"), 16), Brushes.Black, new RectangleF(new Point(coordPoint.X + (sizeD / 2) + 10, coordPoint.Y - sizeD / 2 - 35), new System.Drawing.Size(200, 30)));
 }
 else
 {
 bitmapGraphics.DrawIcon(new Icon("redmarker.ico", new System.Drawing.Size(sizeD, sizeD)),
 new Rectangle(new Point(coordPoint.X - sizeD / 2, coordPoint.Y - sizeD / 2), new System.Drawing.Size(sizeD, sizeD)));

 bitmapGraphics.FillRectangle(new SolidBrush(System.Drawing.Color.FromArgb(150, 255, 0, 0)), new RectangleF(new Point(coordPoint.X + (sizeD / 2) + 10, coordPoint.Y - sizeD / 2 - 32), new System.Drawing.Size(130, 28)));
 bitmapGraphics.DrawString("colorspace", new Font(new System.Drawing.FontFamily("Arial"), 16), Brushes.Black, new RectangleF(new Point(coordPoint.X + (sizeD / 2) + 10, coordPoint.Y - sizeD / 2 - 35), new System.Drawing.Size(200, 30)));
 }

 bitmapGraphics.FillRectangle(new SolidBrush(System.Drawing.Color.FromArgb(150, 0, 0, 0)), new RectangleF(new Point(10, 10), new System.Drawing.Size(200, 130)));
 bitmapGraphics.DrawString("X: " + _coordinates.getCamCoordsFloat()[0].ToString("#0.000"), new Font(new System.Drawing.FontFamily("Arial"), 18), Brushes.LawnGreen, new RectangleF(new Point(10, 10), new System.Drawing.Size(200, 40)));
 bitmapGraphics.DrawString("Y: " + _coordinates.getCamCoordsFloat()[1].ToString("#0.000"), new Font(new System.Drawing.FontFamily("Arial"), 18), Brushes.LawnGreen, new RectangleF(new Point(10, 50), new System.Drawing.Size(200, 40)));
 bitmapGraphics.DrawString("Z: " + _coordinates.getCamCoordsFloat()[2].ToString("#0.000"), new Font(new System.Drawing.FontFamily("Arial"), 18), Brushes.LawnGreen, new RectangleF(new Point(10, 90), new System.Drawing.Size(200, 40)));

 frameCountDisplay.Text = framecount.ToString();
 }
 tempBitmap.Dispose();
 }

 public ImageSource DepthSource
 {
 get
 {
 switch (_source)
 {
 case DisplaySource.DepthStream:
 return _depthBitmap;
 case DisplaySource.BinaryStream:
 return _binBitmap;
 default:
 return _colorBitmap;
 }
 }
 }

 private void MainWindow_Closing(object sender, CancelEventArgs e)
 {
 // shut down kinectsensor
 if (_kinectSensor != null)
 {
 _kinectSensor.Close();
 _kinectSensor = null;
 }

 // save loggs if recording
 if (_recordEnabled)
 _logger.dumpToFile();

 }

 private void Color_Click(object sender, RoutedEventArgs e)
 {
 buttonColor.BorderBrush = System.Windows.Media.Brushes.Red;
 buttonDepth.BorderBrush = System.Windows.Media.Brushes.White;

 _source = DisplaySource.ColorStream;
 BindingOperations.GetBindingExpressionBase(DisplayScreen, System.Windows.Controls.Image.SourceProperty).UpdateTarget();
 }

 private void Depth_Click(object sender, RoutedEventArgs e)
 {
 buttonDepth.BorderBrush = System.Windows.Media.Brushes.Red;
 buttonColor.BorderBrush = System.Windows.Media.Brushes.White;

 _source = DisplaySource.DepthStream;
 BindingOperations.GetBindingExpressionBase(DisplayScreen, System.Windows.Controls.Image.SourceProperty).UpdateTarget();
 }

 private void Binary_Click(object sender, RoutedEventArgs e)
 {
 buttonColor.BorderBrush = System.Windows.Media.Brushes.White;
 buttonDepth.BorderBrush = System.Windows.Media.Brushes.White;

 _imageModel.fetchNextBinaryImage = true;
 _source = DisplaySource.BinaryStream;
 BindingOperations.GetBindingExpressionBase(DisplayScreen, System.Windows.Controls.Image.SourceProperty).UpdateTarget();
 }

 private void DisplayScreen_MouseLeftButtonUp(object sender, System.Windows.Input.MouseButtonEventArgs e)
 {
 System.Windows.Point p = e.GetPosition(DisplayScreen);
 _imageModel.getColorAtPixel((int)p.X, (int)p.Y, true);
 }

 private void RecordButton_Click(object sender, RoutedEventArgs e)
 {
 _recordEnabled = !_recordEnabled;

 if (_recordEnabled)
 {
 _logger.newLoggerFile();
 RecordButton.Background = System.Windows.Media.Brushes.Red;
 RecordButton.Content = "Recording";
 framecount = 0;
 }
 else
 {
 _logger.dumpToFile();
 _logger.clear();
 RecordButton.Background = System.Windows.Media.Brushes.SlateGray;
 RecordButton.Content = "Record";
 }

 }
 }
}

Kinect_v1/Kinect_v1/Properties/Resources.Designer.cs

//--
// <auto-generated>
// This code was generated by a tool.
// Runtime Version:4.0.30319.34014
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </auto-generated>
//--

namespace Kinect_v1.Properties
{

 /// <summary>
 /// A strongly-typed resource class, for looking up localized strings, etc.
 /// </summary>
 // This class was auto-generated by the StronglyTypedResourceBuilder
 // class via a tool like ResGen or Visual Studio.
 // To add or remove a member, edit your .ResX file then rerun ResGen
 // with the /str option, or rebuild your VS project.
 [global::System.CodeDom.Compiler.GeneratedCodeAttribute("System.Resources.Tools.StronglyTypedResourceBuilder", "4.0.0.0")]
 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 [global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()]
 internal class Resources
 {

 private static global::System.Resources.ResourceManager resourceMan;

 private static global::System.Globalization.CultureInfo resourceCulture;

 [global::System.Diagnostics.CodeAnalysis.SuppressMessageAttribute("Microsoft.Performance", "CA1811:AvoidUncalledPrivateCode")]
 internal Resources()
 {
 }

 /// <summary>
 /// Returns the cached ResourceManager instance used by this class.
 /// </summary>
 [global::System.ComponentModel.EditorBrowsableAttribute(global::System.ComponentModel.EditorBrowsableState.Advanced)]
 internal static global::System.Resources.ResourceManager ResourceManager
 {
 get
 {
 if ((resourceMan == null))
 {
 global::System.Resources.ResourceManager temp = new global::System.Resources.ResourceManager("Kinect_v1.Properties.Resources", typeof(Resources).Assembly);
 resourceMan = temp;
 }
 return resourceMan;
 }
 }

 /// <summary>
 /// Overrides the current thread's CurrentUICulture property for all
 /// resource lookups using this strongly typed resource class.
 /// </summary>
 [global::System.ComponentModel.EditorBrowsableAttribute(global::System.ComponentModel.EditorBrowsableState.Advanced)]
 internal static global::System.Globalization.CultureInfo Culture
 {
 get
 {
 return resourceCulture;
 }
 set
 {
 resourceCulture = value;
 }
 }
 }
}

Kinect_v1/Kinect_v1/Properties/Settings.Designer.cs

//--
// <auto-generated>
// This code was generated by a tool.
// Runtime Version:4.0.30319.34014
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </auto-generated>
//--

namespace Kinect_v1.Properties
{

 [global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()]
 [global::System.CodeDom.Compiler.GeneratedCodeAttribute("Microsoft.VisualStudio.Editors.SettingsDesigner.SettingsSingleFileGenerator", "11.0.0.0")]
 internal sealed partial class Settings : global::System.Configuration.ApplicationSettingsBase
 {

 private static Settings defaultInstance = ((Settings)(global::System.Configuration.ApplicationSettingsBase.Synchronized(new Settings())));

 public static Settings Default
 {
 get
 {
 return defaultInstance;
 }
 }
 }
}

Kinect_v1/Kinect_v1/Kinect_v1.csproj

 Debug
 AnyCPU
 {06B571C8-38D6-4BD8-8524-60BA1DAC8322}
 WinExe
 Properties
 Kinect_v1
 Kinect_v1
 v4.5
 512
 {60dc8134-eba5-43b8-bcc9-bb4bc16c2548};{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}
 4

 x64
 true
 full
 false
 bin\Debug\
 DEBUG;TRACE
 prompt
 4
 true

 AnyCPU
 pdbonly
 true
 bin\Release\
 TRACE
 prompt
 4

 true
 bin\x64\Debug\
 DEBUG;TRACE
 true
 full
 x64
 prompt
 MinimumRecommendedRules.ruleset
 true

 bin\x64\Release\
 TRACE
 true
 pdbonly
 x64
 prompt
 MinimumRecommendedRules.ruleset
 true

 False
 bin\Debug\Emgu.CV.dll

 False
 bin\Debug\Emgu.CV.UI.dll

 False
 bin\Debug\Emgu.Util.dll

 False
 ..\..\..\..\..\..\..\Emgu\Coding4Fun\Microsoft.Expression.Drawing.dll

 4.0

 MSBuild:Compile
 Designer

 MSBuild:Compile
 Designer

 App.xaml
 Code

 MainWindow.xaml
 Code

 Code

 True
 True
 Resources.resx

 True
 Settings.settings
 True

 ResXFileCodeGenerator
 Resources.Designer.cs

 SettingsSingleFileGenerator
 Settings.Designer.cs

 Always

 Always

 Always

 Always

Kinect_v1/Kinect_v1.sln

Microsoft Visual Studio Solution File, Format Version 12.00
Visual Studio 2013
VisualStudioVersion = 12.0.31101.0
MinimumVisualStudioVersion = 10.0.40219.1
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "Kinect_v1", "Kinect_v1\Kinect_v1.csproj", "{06B571C8-38D6-4BD8-8524-60BA1DAC8322}"
EndProject
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "Solution Items", "Solution Items", "{F4652D8F-9D18-4E76-808D-BFCB1A997896}"
	ProjectSection(SolutionItems) = preProject
		Performance1.psess = Performance1.psess
	EndProjectSection
EndProject
Global
	GlobalSection(SolutionConfigurationPlatforms) = preSolution
		Debug|Any CPU = Debug|Any CPU
		Debug|x64 = Debug|x64
		Release|Any CPU = Release|Any CPU
		Release|x64 = Release|x64
	EndGlobalSection
	GlobalSection(ProjectConfigurationPlatforms) = postSolution
		{06B571C8-38D6-4BD8-8524-60BA1DAC8322}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
		{06B571C8-38D6-4BD8-8524-60BA1DAC8322}.Debug|Any CPU.Build.0 = Debug|Any CPU
		{06B571C8-38D6-4BD8-8524-60BA1DAC8322}.Debug|x64.ActiveCfg = Debug|x64
		{06B571C8-38D6-4BD8-8524-60BA1DAC8322}.Debug|x64.Build.0 = Debug|x64
		{06B571C8-38D6-4BD8-8524-60BA1DAC8322}.Release|Any CPU.ActiveCfg = Release|Any CPU
		{06B571C8-38D6-4BD8-8524-60BA1DAC8322}.Release|Any CPU.Build.0 = Release|Any CPU
		{06B571C8-38D6-4BD8-8524-60BA1DAC8322}.Release|x64.ActiveCfg = Release|x64
		{06B571C8-38D6-4BD8-8524-60BA1DAC8322}.Release|x64.Build.0 = Release|x64
	EndGlobalSection
	GlobalSection(SolutionProperties) = preSolution
		HideSolutionNode = FALSE
	EndGlobalSection
EndGlobal

KinectPlotter.py

from mpl_toolkits.mplot3d import Axes3D
from matplotlib import pyplot
import plotly.plotly as py
from plotly.graph_objs import *
import numpy as np
import os
import glob
import copy
import math
import time
import pylab

filtrer
interpoler hele sekvensen
finn distance mellom hvert p1 og p1'
forskyv en sti 1 sample, til den samlede error minimeres

--

global pList

class logLine():
 number = -1
 x = -1
 y = -1
 z = -1
 time = -1

class point():
 x = -1
 y = -1
 z = -1
 t = -1
 singleoutlier = False
 largedistance = False
 infinite = False
 distanceToPrev = -1
 inbridge = False
 markedForDeletion = False

def mapRB(scale):
 return([scale,0,1-scale,1])

def euclidianDistance(p1, p2):
 distance = math.sqrt(math.pow((p1[0]-p2[0]),2)+math.pow((p1[1]-p2[1]),2)+math.pow((p1[2]-p2[2]),2))
 return distance

def isInfinite(point):
 if "inf" in str(point.x) or "inf" in str(point.y) or "inf" in str(point.z):
 return True
 else:
 return False

def isOutlier(p1,p2,treshold):
 if euclidianDistance([p1.x,p1.y,p1.z],[p2.x,p2.y,p2.z]) > treshold:
 return True
 else:
 return False

def bridgePoint(startpoint,currentpoint,endpoint,length):
 bridgePointList = []
 for i in range(length):
 p = point()
 p.x = startpoint.x + (((endpoint.x - startpoint.x)/(length+1))*(i+1))
 p.y = startpoint.y + (((endpoint.y - startpoint.y)/(length+1))*(i+1))
 p.z = startpoint.z + (((endpoint.z - startpoint.z)/(length+1))*(i+1))
 p.inbridge = True
 p.t = currentpoint.t
 # ---- p.t = currentpoint.time
 bridgePointList.append(p)

 return bridgePointList

def passedChecklist(point):
 if isInfinite(point):
 return False
 else:
 return True

debuglevel = 2

--------------------------- load into arrays ------------------------------
path1 = '/Users/Yngve/Dropbox/workspaces/masterLogs/'
path2 = '/Users/Yngve/Documents/'

newest = max(glob.iglob(path1+'*.txt'), key=os.path.getctime)
if debuglevel > 0:
 print 'loading < ' + newest + ' >'

#specfile = "/Users/Yngve/Dropbox/workspaces/masterLogs/statistics_test.txt"
#specfile = "/Users/Yngve/Dropbox/workspaces/masterLogs/reference_path.txt"
#specfile = "/Users/Yngve/Dropbox/workspaces/masterLogs/reference_path.txt"

with open("bridge4.txt") as f:
#with open(newest) as f:
 content = f.readlines()

logLineList = []
startidx = 0

find startindex
for i in range(len(content)):
 if "<STARTLOG>" in content[i]:
 startidx = i + 1

if debuglevel > 2:
 print "Startindex: " + str(startidx)

for line in content[startidx:]:

 if "<ENDLOG>" in line:
 break

 lineclass = logLine()
 splittedLine = line.strip('\n\r').split(',')
 lineclass.number = splittedLine[0]
 lineclass.x = splittedLine[1]
 lineclass.y = splittedLine[2]
 lineclass.z = splittedLine[3]
 lineclass.time = splittedLine[4]
 logLineList.append(lineclass)

------- convert raw data to points -----
pList = [point] * len(logLineList)
pListClean = [point] * len(logLineList)

for i in range(len(logLineList)):
 p = point()
 # ------- calculations ------
 p.x = float(logLineList[i].x)
 p.y = float(logLineList[i].y)
 p.z = float(logLineList[i].z)
 p.t = logLineList[i].time

 # -- add to list of points --
 pList[i] = p

------- use pointList[i] to process points --------

clear infinite points at start and end

deletionList = []

fromstart = True
for i in range(len(pList)):
 if isInfinite(pList[i]) and fromstart:
 pList[i].markedForDeletion = True
 else:
 fromstart = False

fromend = True
for i, e in reversed(list(enumerate(pList))):
 if isInfinite(e) and fromend:
 pList[i].markedForDeletion = True
 else:
 fromend = False
shortList = []
for i in range(len(pList)):
 if not pList[i].markedForDeletion == True:
 shortList.append(pList[i])

del pList[:]
pList = copy.deepcopy(shortList)

if debuglevel > 2:
 for i in range(len(pList)):
 print str(i) + '\t['+str(pList[i].x)+',\t'+str(pList[i].y)+',\t'+str(pList[i].z)+']'

----------------------------- Bridge infinite points ------------------------------------
pListWithInfGaps = copy.deepcopy(pList)

if True:
 if debuglevel > 1:
 print 'bridging infinite gaps'
 for i in range(len(pList)):
 if isInfinite(pList[i]):
 # if there is an infinite point, build bridge
 if debuglevel > 2:
 print '---------- found infinite point at <'+str(i)+'>, building bridge -----------'
 firstindex = i
 lastindex = i + 1
 j = i + 1
 inf = True
 while inf:
 if isInfinite(pList[j]):
 inf = True
 j = j + 1
 else:
 inf = False
 lastindex = j

 bridgegap = lastindex - firstindex
 if debuglevel > 2:
 print 'bridging with ' + str(bridgegap) + ' point(s) between <'+str(firstindex-1)+'> to <'+ str(lastindex) + '>'
 bps = bridgePoint(pList[i-1],pList[i],pList[lastindex],bridgegap)
 #bps = bridgePoint(pList[i-1],pList[i],pList[i+1],bridgegap)

 for k in range(len(bps)):
 global pList
 pList[i+k] = bps[k]
 if debuglevel > 2:
 print '--> building [' + str(bps[k].x) + '\t' + str(bps[k].y)+ '\t' + str(bps[k].z) + ']\t at index <' + str(i+k) + '>'
 if debuglevel > 1:
 print '--'
 #print str(i) + '\t['+str(pList[i].x)+',\t'+str(pList[i].y)+',\t'+str(pList[i].z)+']'

---------- assign length to all points ------------
for i in range(len(pList)):
 # first point
 if i == 0:
 pList[i].distanceToPrev=0
 # check euclidian distance to previous point
 else:
 pList[i].distanceToPrev = euclidianDistance([pList[i].x,pList[i].y,pList[i].z],[pList[i-1].x,pList[i-1].y,pList[i-1].z])

----------------------------- Bridge outlier points ------------------------------------
pListWithOutliers = copy.deepcopy(pList)

if True:
 tresh = 0.5
 if debuglevel > 1:
 print 'bridging outlier gaps'
 for i in range(len(pList)-1):
 if isOutlier(pList[i],pList[i+1],tresh):
 # if there is an infinite point, build bridge
 if debuglevel > 2:
 print '---------- found outlier point at <'+str(i)+'>, building bridge -----------'
 firstindex = i
 j = i + 1
 inf = True
 while inf:
 if isOutlier(pList[i],pList[j],tresh):
 inf = True
 j = j + 1
 else:
 inf = False
 lastindex = j

 bridgegap = lastindex - firstindex
 if debuglevel > 2:
 print 'bridging with ' + str(bridgegap) + ' point(s) between <'+str(firstindex-1)+'> to <'+ str(lastindex) + '>'
 bps = bridgePoint(pList[i-1],pList[i],pList[lastindex],bridgegap)
 #bps = bridgePoint(pList[i-1],pList[i],pList[i+1],bridgegap)

 for k in range(len(bps)):
 global pList
 pList[i+k] = bps[k]
 if debuglevel > 2:
 print '--> building [' + str(bps[k].x) + '\t' + str(bps[k].y)+ '\t' + str(bps[k].z) + ']\t at index <' + str(i+k) + '>'
 if debuglevel > 2:
 print '--'
 #print str(i) + '\t['+str(pList[i].x)+',\t'+str(pList[i].y)+',\t'+str(pList[i].z)+']'

----------------Moving Window-----------------------------------

pListUnsmooth = copy.deepcopy(pList)

if True:
 if debuglevel > 2:
 print 'filtering with moving average'
 windowList = []
 windowsize =1

 for i in range(len(pList)):

 if len(windowList) >= windowsize:
 del windowList[0]

 windowList.append(pList[i])

 sumx = 0.0
 sumy = 0.0
 sumz = 0.0
 for j in range(len(windowList)):
 sumx = sumx + windowList[j].x
 sumy = sumy + windowList[j].y
 sumz = sumz + windowList[j].z
 if debuglevel > 3:
 print("%.2f" % windowList[j].x),
 if debuglevel > 3:
 print windowsize, len(windowList)

 #print '--> sumx: ' + str(sumx)

 #if (i >= (windowsize/2)) and (i < len(pList)-(windowsize/2)):
 if len(windowList) >= windowsize:
 pList[i].x = (sumx/windowsize)
 pList[i].y = (sumy/windowsize)
 pList[i].z = (sumz/windowsize)

#------------------print points ---------------------------------
if debuglevel > 2:
 for i in range(len(pList)):
 print str(i) + '\t['+str(pList[i].x)+',\t'+str(pList[i].y)+',\t'+str(pList[i].z)+']\t' + str(pList[i].t)

-------------- assign color to points --------------------------
colorList = [[0,1,0,1]]*len(pList)
for i in range(len(pList)):
 if pList[i].inbridge == True:
 colorList[i]=([1,0,0,1])
 else:
 colorList[i]=([0,0,1,1])

-------- convert processed points to numpy arrays -------
tempX = []
tempY = []
tempZ = []

for i in range(len(pList)):
 #if passedChecklist(pList[i]):
 tempX.append(pList[i].x)
 tempY.append(pList[i].y)
 tempZ.append(pList[i].z)

numpyarrayX = np.array(tempX,dtype=float)
numpyarrayY = np.array(tempY,dtype=float)
numpyarrayZ = np.array(tempZ,dtype=float)

for i in range(len(numpyarrayX)):
 numpyarrayX[i] = numpyarrayX[i] * -1

-------- convert processed points to numpy arrays -------
tempX = []
tempY = []
tempZ = []

for i in range(len(pListUnsmooth)):
 #if passedChecklist(pList[i]):
 tempX.append(pListUnsmooth[i].x)
 tempY.append(pListUnsmooth[i].y)
 tempZ.append(pListUnsmooth[i].z)

numpyarrayX_unsmooth = np.array(tempX,dtype=float)
numpyarrayY_unsmooth = np.array(tempY,dtype=float)
numpyarrayZ_unsmooth = np.array(tempZ,dtype=float)

for i in range(len(numpyarrayX_unsmooth)):
 numpyarrayX_unsmooth[i] = numpyarrayX_unsmooth[i] * -1

-------- convert processed points to numpy arrays -------
tempX = []
tempY = []
tempZ = []

for i in range(len(pListWithOutliers)):
 #if passedChecklist(pList[i]):
 tempX.append(pListWithOutliers[i].x)
 tempY.append(pListWithOutliers[i].y)
 tempZ.append(pListWithOutliers[i].z)

numpyarrayX_outliers = np.array(tempX,dtype=float)
numpyarrayY_outliers = np.array(tempY,dtype=float)
numpyarrayZ_outliers = np.array(tempZ,dtype=float)

for i in range(len(numpyarrayX_outliers)):
 numpyarrayX_outliers[i] = numpyarrayX_outliers[i] * -1

----------- plot the points ------------
fig = pylab.figure()
ax = Axes3D(fig,aspect='equal')#, axisbg='darkgray')

#ax.plot(numpyarrayX_outliers,numpyarrayZ_outliers,numpyarrayY_outliers,c=[0,1,0,1],linewidth=1)
#ax.plot(numpyarrayX_unsmooth,numpyarrayZ_unsmooth,numpyarrayY_unsmooth,c=[0,1,0,1],linewidth=1)
ax.plot(numpyarrayX,numpyarrayZ,numpyarrayY,c=[0,0,1,1],linewidth=1)
ax.scatter(numpyarrayX,numpyarrayZ,numpyarrayY,c=colorList,edgecolors='none')

ax.set_xlabel('X')
ax.set_ylabel('Z')
ax.set_zlabel('Y')

for axis in ax.w_xaxis, ax.w_yaxis, ax.w_zaxis:
 for elt in axis.get_ticklines() + axis.get_ticklabels():
 elt.set_visible(True)

 axis.pane.set_visible(False)
 axis.gridlines.set_visible(False)
 axis.line.set_visible(False)

ax.legend()
pyplot.show()

#
#f = open('/Users/Yngve/Dropbox/workspaces/masterLogs/reference_path_processed.txt','w')
#for i in range(len(numpyarrayX)):
f.write(str(numpyarrayX[i]) + ","+ str(numpyarrayY[i]) +","+ str(numpyarrayZ[i]) +'\n')
#f.close()

lineError.py

from mpl_toolkits.mplot3d import Axes3D
import random
from matplotlib import pyplot
import numpy as np
import pylab
import math

import plotly.plotly as py
from plotly.graph_objs import *

""" euclidian distance """
def euclidianDistance(p1, p2):
 distance = math.sqrt(math.pow((p1[0]-p2[0]),2)+math.pow((p1[1]-p2[1]),2)+math.pow((p1[2]-p2[2]),2))
 return distance

""" Moving average of array """
def moving_average(a, n=3) :
 ret = np.cumsum(a, dtype=float)
 ret[n:] = ret[n:] - ret[:-n]
 return ret[n - 1:] / n

""" Distance between Point and LineSegment """
def DLP(p_in,s0_in,s1_in):
 p = np.array(p_in)
 s0 = np.array(s0_in)
 s1 = np.array(s1_in)

 v = s1 - s0
 w = p - s0

 c1 = float(np.dot(w,v))
 if (c1 <= 0):
 return [float(np.linalg.norm(p-s0)),s0]

 c2 = float(np.dot(v,v))
 if (c2 <= c1):
 return [float(np.linalg.norm(p-s1)),s1]

 b = float(float(c1)/float(c2))
 Pb = s0 + (b * v)

 return [np.linalg.norm(p-Pb),Pb]

class logLine():
 number = -1
 x = -1
 y = -1
 z = -1
 time = -1

""" read files """
#with open(specfile) as f:
#with open(newest) as f:
content = f.readlines()

""" Declarations and variables """
samples = 3
offset = 0
fudge_test = 1
fudge_ref = 0

total_linalg_error = 0
total_timestamp_error = 0

refX = [None]*samples
refY = [None]*samples
refZ = [None]*samples

""" IMPORT POINTS """

specfile = "100_part32.txt"
with open(specfile) as f:
#with open(newest) as f:
 content = f.readlines()

logLineList = []
startidx = 0

find startindex
for i in range(len(content)):
 if "<STARTLOG>" in content[i]:
 startidx = i + 1

print "Startindex: " + str(startidx)

for line in content[startidx:]:

 if "<ENDLOG>" in line:
 break

 lineclass = logLine()
 splittedLine = line.strip('\n\r').split(',')
 #splittedLine = line.strip('\n\r').split()
 #print splittedLine

 #lineclass.number = splittedLine[0]
 #lineclass.x = splittedLine[0]
 #lineclass.y = splittedLine[1]
 #lineclass.z = splittedLine[2]

 #lineclass.number = splittedLine[0]
 lineclass.x = splittedLine[1]
 lineclass.y = splittedLine[2]
 lineclass.z = splittedLine[3]
 #lineclass.time = splittedLine[4]
 logLineList.append(lineclass)

print len(logLineList)

testX = [None]*len(logLineList)
testY = [None]*len(logLineList)
testZ = [None]*len(logLineList)

for i in range(len(logLineList)):
 testX[i] = float(logLineList[i].x)
 testY[i] = float(logLineList[i].y)
 testZ[i] = float(logLineList[i].z)

""" Import path 2 """
specfile = "100_part28.txt"
with open(specfile) as f:
#with open(newest) as f:
 content = f.readlines()

logLineList = []
startidx = 0

find startindex
for i in range(len(content)):
 if "<STARTLOG>" in content[i]:
 startidx = i + 1

print "Startindex: " + str(startidx)

for line in content[startidx:]:

 if "<ENDLOG>" in line:
 break

 lineclass = logLine()
 splittedLine = line.strip('\n\r').split(',')
 #splittedLine = line.strip('\n\r').split()
 #lineclass.number = splittedLine[0]
 #lineclass.x = splittedLine[0]
 #lineclass.y = splittedLine[1]
 #lineclass.z = splittedLine[2]

 #lineclass.number = splittedLine[0]
 lineclass.x = splittedLine[1]
 lineclass.y = splittedLine[2]
 lineclass.z = splittedLine[3]
 #lineclass.time = splittedLine[4]
 logLineList.append(lineclass)

refX = [None]*len(logLineList)
refY = [None]*len(logLineList)
refZ = [None]*len(logLineList)

for i in range(len(logLineList)):
 refX[i] = float(logLineList[i].x)
 refY[i] = float(logLineList[i].y)
 refZ[i] = float(logLineList[i].z)

""" Create sample arrays, ref for refeerence, test for test array """
#for i in range(samples):
 #testX[i] = random.uniform(i,i+fudge_test)
 #testY[i] = random.uniform(i,i+fudge_test)
 #testZ[i] = random.uniform(i,i+fudge_test)

 #refX[i] = random.uniform(offset + i,offset + (i+fudge_ref))
 #refY[i] = random.uniform(i,i+fudge_ref)
 #refZ[i] = random.uniform(i,i+fudge_ref)

""" Filter using Moving Average kernel, while creating Numpy arrays"""
avg_win = 1

#np_testX = np.array(testX,dtype=float)
#np_testY = np.array(testY,dtype=float)
#np_testZ = np.array(testZ,dtype=float)

np_testX = moving_average(np.array(testX,dtype=float),avg_win)
np_testY = moving_average(np.array(testY,dtype=float),avg_win)
np_testZ = moving_average(np.array(testZ,dtype=float),avg_win)

#np_refX = np.array(refX,dtype=float)
#np_refY = np.array(refY,dtype=float)
#np_refZ = np.array(refZ,dtype=float)

np_refX = moving_average(np.array(refX,dtype=float),avg_win)
np_refY = moving_average(np.array(refY,dtype=float),avg_win)
np_refZ = moving_average(np.array(refZ,dtype=float),avg_win)

samples = len(np_refX)

pairlist = [None]*samples
triplist = [None]*samples

""" Find two nearest neighbours, and store indexes in new array for further use """
for i in range(samples):
 current = 'inf'
 p_idx = -1
 l0_idx = -1
 l1_idx = -1

 rl = [None]*samples

 for j in range(samples):
 d = euclidianDistance([np_testX[i],np_testY[i],np_testZ[i]],[np_refX[j],np_refY[j],np_refZ[j]])
 rl[j] = [i,j,d]

 rl.sort(key=lambda x: x[2], reverse=False)
 triplist[i] = [[np_testX[i], np_testY[i], np_testZ[i]] , [np_refX[rl[0][1]], np_refY[rl[0][1]], np_refZ[rl[0][1]]] , [np_refX[rl[1][1]], np_refY[rl[1][1]], np_refZ[rl[1][1]]]]

""" Appends raw data to plot """
fig = pylab.figure()
ax = Axes3D(fig)

ax.scatter(np_testX,np_testY,np_testZ,edgecolors='none',s=2)
ax.scatter(np_refX,np_refY,np_refZ,edgecolors='none',s=2)

ax.plot(np_testX,np_testY,np_testZ,c='blue',linewidth=0.5)
ax.plot(np_refX,np_refY,np_refZ,c='green',linewidth=0.5)

#print ("NP TEST")
#print (np_testX,np_testY,np_testZ)
#print ('NP REF')
#print (np_refX,np_refY,np_refZ)

""" Searches for smallest distance between Line and Point """
for trip in triplist:
 p_in = np.array(trip[0])
 l1_in = np.array(trip[1])
 l2_in = np.array(trip[2])

 dist = DLP(p_in,l1_in,l2_in)
 total_linalg_error = total_linalg_error + dist[0]
 lvec = dist[1]

 ax.scatter([l1_in[0],l2_in[0],p_in[0]],[l1_in[1],l2_in[1],p_in[1]],[l1_in[2],l2_in[2],p_in[2]],edgecolors='none',s=2)
 ax.plot([p_in[0],lvec[0]],[p_in[1],lvec[1]],[p_in[2],lvec[2]], lw=0.5, c='lime')

""" Searches for the smallest Point to Point distance """
for i in range(samples):
 current = 'inf'
 t_idx = -1
 f_idx = -1

 for j in range(samples):
 d = euclidianDistance([np_testX[i],np_testY[i],np_testZ[i]],[np_refX[j],np_refY[j],np_refZ[j]])
 if (d < current):
 current = d
 t_idx = i
 f_idx = j

 pairlist[i] = [current,t_idx,f_idx]

""" Accumulates error measurements """
for p in pairlist:
 total_timestamp_error = total_timestamp_error + p[0]

""" Plots shortest Point to Point distance """
for i in range(samples):
 ax.plot([np_testX[pairlist[i][1]],np_refX[pairlist[i][2]]],[np_testY[pairlist[i][1]],np_refY[pairlist[i][2]]],[np_testZ[pairlist[i][1]],np_refZ[pairlist[i][2]]],c='red', lw=0.5)

#pyplot.facecolor="white"
#ax.axis('off')
#ax.frameon = False

for axis in ax.w_xaxis, ax.w_yaxis, ax.w_zaxis:
 for elt in axis.get_ticklines() + axis.get_ticklabels():
 elt.set_visible(True)

 axis.pane.set_visible(False)
 axis.gridlines.set_visible(True)
 axis.line.set_visible(False)

pyplot.savefig('destination_path.eps', format='eps', dpi=3000)
pyplot.show()

error_per_sample_timestamp = float(total_timestamp_error/float(len(np_refX)))
error_per_sample_timestamp_mm = float(total_timestamp_error/float(len(np_refX)))*(float(1000))
error_per_sample_linalg = float(total_linalg_error/float(len(np_refX)))
error_per_sample_linalg_mm = float(total_linalg_error/float(len(np_refX)))*(float(1000))

print "Processed " + str(samples) + " samples from reference file " + '<REFERENCE FILENAME>' + ", and testfile " + '<TESTFILE NAME>'
print "TOTAL LINEAR APROXIMATED PATH ERROR: \t" + str("%.5f" % total_linalg_error) +' --> ' + str("%.5f" % error_per_sample_linalg) + ' [m] ==> ' + str("%.5f" % error_per_sample_linalg_mm) + "[mm]"
print "TOTAL TIMESTAMP DEPENDENT PATH ERROR: \t" + str("%.5f" % total_timestamp_error) + ' --> ' + str("%.5f" % error_per_sample_timestamp) + ' [m] ==> ' + str("%.5f" % error_per_sample_timestamp_mm) + "[mm]"

Kinect_v1/README.txt.txt

EmguCV / OpenCV libraries needs to be added to the output folder.
After installing EmguCV, these files must be copied from the EmguCV install location
to the bin/debug folders of the project, as shown in the emgu_dependancies images.

Kinect_v1/Kinect_v1/App.config

Kinect_v1/.gitattributes

###
Set default behavior to automatically normalize line endings.
###
* text=auto

###
Set default behavior for command prompt diff.
#
This is need for earlier builds of msysgit that does not have it on by
default for csharp files.
Note: This is only used by command line
###
#*.cs diff=csharp

###
Set the merge driver for project and solution files
#
Merging from the command prompt will add diff markers to the files if there
are conflicts (Merging from VS is not affected by the settings below, in VS
the diff markers are never inserted). Diff markers may cause the following
file extensions to fail to load in VS. An alternative would be to treat
these files as binary and thus will always conflict and require user
intervention with every merge. To do so, just uncomment the entries below
###
#*.sln merge=binary
#*.csproj merge=binary
#*.vbproj merge=binary
#*.vcxproj merge=binary
#*.vcproj merge=binary
#*.dbproj merge=binary
#*.fsproj merge=binary
#*.lsproj merge=binary
#*.wixproj merge=binary
#*.modelproj merge=binary
#*.sqlproj merge=binary
#*.wwaproj merge=binary

###
behavior for image files
#
image files are treated as binary by default.
###
#*.jpg binary
#*.png binary
#*.gif binary

###
diff behavior for common document formats

Convert binary document formats to text before diffing them. This feature
is only available from the command line. Turn it on by uncommenting the
entries below.
###
#*.doc diff=astextplain
#*.DOC diff=astextplain
#*.docx diff=astextplain
#*.DOCX diff=astextplain
#*.dot diff=astextplain
#*.DOT diff=astextplain
#*.pdf diff=astextplain
#*.PDF diff=astextplain
#*.rtf diff=astextplain
#*.RTF diff=astextplain

Kinect_v1/.gitignore

Ignore Visual Studio temporary files, build results, and
files generated by popular Visual Studio add-ons.

User-specific files
*.suo
*.user
*.sln.docstates

Build results

[Dd]ebug/
[Rr]elease/
x64/
build/
[Bb]in/
[Oo]bj/

Enable "build/" folder in the NuGet Packages folder since NuGet packages use it for MSBuild targets
!packages/*/build/

MSTest test Results
[Tt]est[Rr]esult*/
[Bb]uild[Ll]og.*

*_i.c
*_p.c
*.ilk
*.meta
*.obj
*.pch
*.pdb
*.pgc
*.pgd
*.rsp
*.sbr
*.tlb
*.tli
*.tlh
*.tmp
*.tmp_proj
*.log
*.vspscc
*.vssscc
.builds
*.pidb
*.log
*.scc

Visual C++ cache files
ipch/
*.aps
*.ncb
*.opensdf
*.sdf
*.cachefile

Visual Studio profiler
*.psess
*.vsp
*.vspx

Guidance Automation Toolkit
*.gpState

ReSharper is a .NET coding add-in
_ReSharper*/
*.[Rr]e[Ss]harper

TeamCity is a build add-in
_TeamCity*

DotCover is a Code Coverage Tool
*.dotCover

NCrunch
.ncrunch
.*crunch*.local.xml

Installshield output folder
[Ee]xpress/

DocProject is a documentation generator add-in
DocProject/buildhelp/
DocProject/Help/*.HxT
DocProject/Help/*.HxC
DocProject/Help/*.hhc
DocProject/Help/*.hhk
DocProject/Help/*.hhp
DocProject/Help/Html2
DocProject/Help/html

Click-Once directory
publish/

Publish Web Output
*.Publish.xml

NuGet Packages Directory
TODO: If you have NuGet Package Restore enabled, uncomment the next line
#packages/

Windows Azure Build Output
csx
*.build.csdef

Windows Store app package directory
AppPackages/

Others
sql/
*.Cache
ClientBin/
[Ss]tyle[Cc]op.*
~$*
*~
*.dbmdl
*.[Pp]ublish.xml
*.pfx
*.publishsettings

RIA/Silverlight projects
Generated_Code/

Backup & report files from converting an old project file to a newer
Visual Studio version. Backup files are not needed, because we have git ;-)
_UpgradeReport_Files/
Backup*/
UpgradeLog*.XML
UpgradeLog*.htm

SQL Server files
App_Data/*.mdf
App_Data/*.ldf

#LightSwitch generated files
GeneratedArtifacts/
_Pvt_Extensions/
ModelManifest.xml

=========================
Windows detritus
=========================

Windows image file caches
Thumbs.db
ehthumbs.db

Folder config file
Desktop.ini

Recycle Bin used on file shares
$RECYCLE.BIN/

Mac desktop service store files
.DS_Store

shiftmatch.m

%% initialization
%cd 'C:\Users\stasjon\Documents\MATLAB'
cd '/Users/Yngve/Documents/MATLAB'
clear all
close all
fclose('all');
delete 'tempfiles*'
delete 'output_files*'

%%
samples = 500;
staticpoint = false;

d = dir(fullfile([pwd,'/currentpaths/*.txt']))
d = d(find(~cellfun(@isempty,{d(:).date})));

filepaths = cell(length(d(:,1)),1)

for i = 1:length(d(:,1))
 filepaths{i} = d(i,1).name
end

%% declare files
disp('loading path files...')

fileList = {};
for i = 1:length(filepaths)
 file{i} = fileread(['currentpaths/' filepaths{i}]);
end

%% Extract datalines
disp 'extracting relevant data from files...'

for i = 1:length(file)

 s = textscan(file{i}, '%s', 'delimiter', '\n');
 idx_start = find(strcmp(s{1}, '<STARTLOG>'), 1, 'first')+1;
 idx_stop = find(strcmp(s{1}, '<ENDLOG>'), 1, 'first')-1;

 fin = fopen(['currentpaths/' filepaths{i}]);
 fout = fopen(['tempfiles/path',num2str(i),'.txt'],'wt');
 for j = 1:idx_stop
 tline = fgetl(fin);
 if (j > idx_start)
 if isempty(strfind(tline,'Infinity'))
 fprintf(fout, '%s\n', tline);
 end
 end
 end
end

%% read timestamps
vectors = cell(length(file),1);
for i = 1:length(file)
 [n,x,y,z,t] = textread(['tempfiles/path',num2str(i),'.txt'],'%f,%f,%f,%f,%s');

 t = cell2mat(t);
 DT2 = datevec(strcat(t),'HH:MM:SS.FFF');
 t_zero = repmat([DT2(1,:)]', 1,numel(DT2(:,1)))';
 t = etime(DT2,t_zero);
 vectors{i} = [x,y,z,t];
end

%% remove duplicate timestamps

for i = 1:length(file)

 remove_idx = [];
 for j = 1:length(vectors{i,1}(:,4))
 if (j > 1)
 if vectors{i,1}(j,4) == vectors{i,1}((j-1),4)
 remove_idx(end+1) = j;
 end
 end
 end
 vectors{i,1}(remove_idx,:) = [];
end

%% \\\\\\\\\\\\\\\\ path points \\\\\\\\\\\\\\\\\\\\\\\\\\\\
if staticpoint == false
 % strip away edges based on perimiter

 startvector = [-0.55,NaN,NaN];
 endvector = [0.35,NaN,NaN];

 for i = 1:length(file)
 remove_idx = [];

 for j = 1:length(vectors{i}(:,1))
 if sum(vectors{i}(j,[1,2,3]) < startvector) > 0
 remove_idx(end+1) = j;
 elseif sum(vectors{i}(j,[1,2,3]) > endvector) > 0
 remove_idx(end+1) = j;
 end
 end
 vectors{i}(remove_idx,:) = [];
 end

 %% apply moving average filter
 disp 'Applying moving average filter to sequences...'
 window_size = 5;

 for i = 1:length(file)
 vectors{i} = [(tsmovavg(vectors{i}(:,[1,2,3]),'s',window_size,1)),vectors{i}(:,4)];
 end

 %% resample vectors by interpolation and extrapolation
 disp 'resampling sequences, to interpolate more points...'

 timeList = {}
 vectors_interpolated = cell(length(file),1);
 for i = 1:length(file)
 tnew{i} = linspace(0,vectors{i}(end,4),samples);
 vectors_interpolated{i}(:,1) = interp1(vectors{i}(:,4),vectors{i}(:,1),tnew{i},'linear','extrap')';
 vectors_interpolated{i}(:,2) = interp1(vectors{i}(:,4),vectors{i}(:,2),tnew{i},'linear','extrap')';
 vectors_interpolated{i}(:,3) = interp1(vectors{i}(:,4),vectors{i}(:,3),tnew{i},'linear','extrap')';
 end

 %% add time to position vector, for speed calculations
 pos_time_veloc_vector = {};
% dt = zeros(length(tnew{i},1));

 for k = 1:length(file)
 pos_time_veloc_vector{k} = [vectors_interpolated{k}, tnew{k}'];

 for i = 1:range(length(pos_time_veloc_vector{k}(:,4))-1)
 dt(i) = pos_time_veloc_vector{k}(i+1,4) - pos_time_veloc_vector{k}(i,4)
 pos_time_veloc_vector{k}(:,5) = dt
 %pos_time_veloc_vector{k}(:,5) = pos_time_veloc_vector{k}(:+1,4) - pos_time_veloc_vector{k}(:,4)
 end
 end

 %% shift to minimize error

 disp 'Finding error between correspondig points by shifting paths relative to reference path (file #1)...'

 error_list = {};
 D = zeros(samples,1);
 shift_error_list = nan(length(file)-1,2);

 % check error for each sample in the sequence by comparing all paths to #1
 figure('Name','Euclidian error','NumberTitle','off')
 for k = 1:length(file)-1

 for i = 1:samples
 % path 1 as reference
 D(i) = norm(vectors_interpolated{1}(i,:) - vectors_interpolated{k+1}(i,:),2);
 %plot(D,'Linewidth',2)
 %drawnow
 end

 D(isnan(D)) = [];
 D_sum = sum(D);
 D_avg = D_sum/length(D);

 shift_offset = samples / 2;

 reference_padded = [nan(shift_offset,3);vectors_interpolated{1};nan(shift_offset,3)];
 testpath_padded = vectors_interpolated{k+1};

 D_last = inf;

 for i = 1:samples
 testpath_padded = [nan(1,3); testpath_padded];

 for j = 1:length(testpath_padded(:,1))
 D(j) = norm(reference_padded(j,:) - testpath_padded(j,:),2);
 end

 D(isnan(D)) = [];
 D_sum = sum(D);
 D_avg = D_sum/length(D);

 current_shift = -shift_offset + i;
 if D_avg < D_last
 D_last = D_avg;
 best_shift = current_shift;
 best_error = D_avg;
 end

 figure(1)
 subplot(5,1,1);
 plot(reference_padded(:,1),'b','Linewidth',2), hold on
 plot(testpath_padded(:,1),'r','Linewidth',2), hold off

 subplot(5,1,2);
 plot(reference_padded(:,2),'b','Linewidth',2), hold on
 plot(testpath_padded(:,2),'r','Linewidth',2), hold off

 subplot(5,1,3);
 plot(reference_padded(:,3),'b','Linewidth',2), hold on
 plot(testpath_padded(:,3),'r','Linewidth',2), hold off

 subplot(5,1,[4,5]);
 plot(D,'Linewidth',2)
 %ylim([0,0.5])
 xlim([0,samples])
 drawnow
 end

 disp(['optimal shift index: ' num2str(best_shift)])
 disp(['optimal error value: ' num2str(best_error)])

 shift_error_list(k,:) = [best_shift,best_error];

 errormeasurements.norm2_sequetial_p2p = best_error;
 error_list{k} = errormeasurements;
 end
 close(1);

 %% pad and shift vectors

 disp(['shift value of ' num2str(best_shift) ', which minimizes error to avg [m] ' num2str(best_error)])

 for k = 1:length(file)
 vectors_padded{k} = [nan(abs(max(abs(shift_error_list(:,1)))),3);vectors_interpolated{k};nan(max(abs(shift_error_list(:,1))),3)];
 end

 vectors_final{1} = vectors_padded{1};

 for k = 2:length(file)
 if shift_error_list(k-1,1) >= 0
 % fjerner bak, legger til forran -> forskyves -->
 vectors_final{k} = [nan(abs(shift_error_list(k-1,1)),3);vectors_padded{k}(1:end-abs(shift_error_list(k-1,1)),:)]; % forskyver vha padding
 else
 % fjerner forran, legger til bak -> forskyves <--
 vectors_final{k} = [vectors_padded{k}(abs(shift_error_list(k-1,1)-1):end,:);nan(abs(shift_error_list(k-1,1)),3)]; % forskyver vha padding
 end
 end

 %% create mean vector
 x_temp = zeros(length(vectors_final{1}(:,1)),length(file));
 y_temp = zeros(length(vectors_final{1}(:,2)),length(file));
 z_temp = zeros(length(vectors_final{1}(:,3)),length(file));

 for k = 1:length(file)
 x_temp(:,k) = vectors_final{k}(:,1);
 y_temp(:,k) = vectors_final{k}(:,2);
 z_temp(:,k) = vectors_final{k}(:,3);

 end

 meanvector_nan = zeros(length(vectors_final{1}(:,1)),3);
 meanvector_nan(:,1) = mean(x_temp,2);
 meanvector_nan(:,2) = mean(y_temp,2);
 meanvector_nan(:,3) = mean(z_temp,2);

 x_temp(~any(~isnan(x_temp), 2),:)=[];
 y_temp(~any(~isnan(y_temp), 2),:)=[];
 z_temp(~any(~isnan(z_temp), 2),:)=[];

 %x_temp = x_temp(all(~isnan(x_temp),2),:);
 %y_temp = y_temp(all(~isnan(y_temp),2),:);
 %z_temp = z_temp(all(~isnan(z_temp),2),:);

 meanvector = zeros(length(x_temp(:,1)),3);
 meanvector(:,1) = nanmean(x_temp,2);
 meanvector(:,2) = nanmean(y_temp,2);
 meanvector(:,3) = nanmean(z_temp,2);

 varvector = zeros(length(x_temp(:,1)),3);
 varvector(:,1) = nanstd(x_temp,0,2);
 varvector(:,2) = nanstd(y_temp,0,2);
 varvector(:,3) = nanstd(z_temp,0,2);

 %% plot points
 figure('Name','Isolated path plots','NumberTitle','off')

 subplot(3,1,1);
 title('X');
 %plot(vectors_final{1}(:,1),'-b','Linewidth',2),hold on;
 %plot(meanvector_nan(:,1),'-g','Linewidth',2),hold on;
 for k = 1:length(file)
 plot(vectors_final{k}(:,1),':r','Linewidth',2),hold on;
 end

 subplot(3,1,2);
 hold on
 title('Y');
 %plot(vectors_final{1}(:,2),'b','Linewidth',2),hold on;
 %plot(meanvector_nan(:,2),'-g','Linewidth',2),hold on;
 for k = 1:length(file)
 plot(vectors_final{k}(:,2),':r','Linewidth',2),hold on;
 end

 subplot(3,1,3);
 hold on
 title('Z');
 %plot(vectors_final{1}(:,3),'-b','Linewidth',2),hold on;
 %plot(meanvector_nan(:,3),'-g','Linewidth',2),hold on;
 for k = 1:length(file)
 plot(vectors_final{k}(:,3),':r','Linewidth',2),hold on;
 end

 figure('Name','3D path plot','NumberTitle','off')
 hold on
 plot3(vectors_final{1}(:,1),vectors_final{1}(:,2),vectors_final{1}(:,3),'b','Linewidth',2),hold on;
 plot3(meanvector_nan(:,1),meanvector_nan(:,2),meanvector_nan(:,3),'g','Linewidth',2),hold on;
 title('3D path'),xlabel('X'),ylabel('Y'),zlabel('Z');
 for k = 2:length(file)
 plot3(vectors_final{k}(:,1),vectors_final{k}(:,2),vectors_final{k}(:,3),':r','Linewidth',2),hold on;
 disp(filepaths{k})
 end

 %% nearest neighbour search
 indexArray_list = {};

 for k = 2:length(file)

 indexArray = zeros(length(vectors_final{k}),3); %stores p1_idx, p2_idx, dist
 for i = 1:length(vectors_final{1}(:,1)) % always compare to first path
 d = inf;
 for j = 1:length(vectors_final{k}(:,1))
 n = norm((vectors_final{1}(i,:) - vectors_final{k}(j,:)),2);
 if n < d
 d = n;
 indexArray(i,:) = [i,j,d];
 end
 end
 display([num2str(i),' , ', num2str(j), ' --> ', num2str(floor(i/(length(vectors_final{1}(:,1)))*100)), '%'])
 end

 sum_all_nn = sum(indexArray(:,3));
 disp(['nearest neighbour euclidian error: ' num2str(sum_all_nn), ' -> avg [m] ' num2str(sum_all_nn/nnz(indexArray(:,1)))])

 indexArray_list{k-1} = indexArray;

 error_list{k-1}.nn_p2p = sum_all_nn/nnz(indexArray(:,1));
 end

 %% plotter
 figure('Name','3D path plot with samplepoints','NumberTitle','off')
 hold on

 for i = 1:size(vectors_final{1}(:,1))
 if indexArray_list{1}(i,2) ~= 0
 plot3(vectors_final{1}(:,1),vectors_final{1}(:,2),vectors_final{1}(:,3),'-xb','Linewidth',2);
 end
 end

 for k = 2:length(file)
 for i = 1:size(vectors_final{1}(:,1))
 if indexArray_list{k-1}(i,2) ~= 0
 plot3(vectors_final{k}(:,1),vectors_final{k}(:,2),vectors_final{k}(:,3),'-xr','Linewidth',2);
 plot3([vectors_final{1}(indexArray_list{k-1}(i,1),1);vectors_final{k}(indexArray_list{k-1}(i,2),1)],[vectors_final{1}(indexArray_list{k-1}(i,1),2);vectors_final{k}(indexArray_list{k-1}(i,2),2)],[vectors_final{1}(indexArray_list{k-1}(i,1),3);vectors_final{k}(indexArray_list{k-1}(i,2),3)],'g')
 end
 end
 end

 %% plot statistics
 %figure('Name','Variance and mean','NumberTitle','off')
 fig = figure(90);
 subplot(3,1,1);
 title('X');
 hold on
 plot(meanvector(:,1),'b','Linewidth',2)
 plot(meanvector(:,1)-varvector(:,1),':r')
 plot(meanvector(:,1)+varvector(:,1),':r')

 subplot(3,1,2);
 title('Y');
 hold on
 plot(meanvector(:,2),'b','Linewidth',2)
 plot(meanvector(:,2) - varvector(:,2),':r')
 plot(meanvector(:,2) + varvector(:,2),':r')

 subplot(3,1,3);
 title('Z');
 hold on
 plot(meanvector(:,3),'b','Linewidth',2)
 plot(meanvector(:,3) - varvector(:,3),':r')
 plot(meanvector(:,3) + varvector(:,3),':r')

 xlow = meanvector(:,1)-varvector(:,1)
 xhig = meanvector(:,1)+varvector(:,1)
 ylow = meanvector(:,2)-varvector(:,2)
 yhig = meanvector(:,2)+varvector(:,2)
 zlow = meanvector(:,3)-varvector(:,3)
 zhig = meanvector(:,3)+varvector(:,3)
 %p = fig2plotly(fig);

 avgstd = mean(varvector)

 %% save vectors for pyplot

 dlmwrite(['output_files/vector_mean'],meanvector)
 dlmwrite(['output_files/vector_std'],varvector)

 dlmwrite(['output_files/vector_xhi.txt'],xhig)
 dlmwrite(['output_files/vector_xlo.txt'],xlow)
 dlmwrite(['output_files/vector_yhi.txt'],yhig)
 dlmwrite(['output_files/vector_ylo.txt'],ylow)
 dlmwrite(['output_files/vector_zhi.txt'],zhig)
 dlmwrite(['output_files/vector_zlo.txt'],zlow)

 dlmwrite(['output_files/vector_',filepaths{k}],vectors_final{k})

 for k = 1:length(filepaths)
 dlmwrite(['output_files/vector_',filepaths{k}],vectors_final{k})
 end

else
 %% \\\\\\\\\\\\\\ Static statistics \\\\\\\\\\\\\\\\\\\\\
 stats_vec = vectors{1}
 stats_mean = mean(stats_vec(:,[1,2,3]),1)
 stats_var = var(stats_vec(:,[1,2,3]))
 stats_std = std(stats_vec(:,[1,2,3]))

 figure('Name','3D scatter plot','NumberTitle','off')
 scatter3(stats_vec(:,1),stats_vec(:,2),stats_vec(:,2));

end

%% destructor operations
fclose('all');

%%
% weakness:
% - may skip to nearest neighbour point, but to different pathsegment

%% add
% - average distance from mean

Kinect_v1/Kinect_v1/Properties/Resources.resx

 text/microsoft-resx

 2.0

 System.Resources.ResXResourceReader, System.Windows.Forms, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 System.Resources.ResXResourceWriter, System.Windows.Forms, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

Kinect_v1/Kinect_v1/Properties/Settings.settings

Kinect_v1/Kinect_v1/App.xaml

<Application x:Class="Kinect_v1.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="MainWindow.xaml">
 <Application.Resources>

 </Application.Resources>
</Application>

Kinect_v1/Kinect_v1/MainWindow.xaml

<Window x:Class="Kinect_v1.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Kinect Capture Master" Height="Auto" Width="800"
 SizeToContent="Height"
 Closing="MainWindow_Closing" Background="#FF373737" WindowStyle="ToolWindow">

 <Grid x:Name="Img" Margin="0,0,0,0" Background="#FF303030">
 <Grid.RowDefinitions>
 <RowDefinition Height="32"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Left" Width="531">
 <Button x:Name="buttonColor" Content="Color" Width="50" Height="20" Grid.Row="0" BorderBrush="White" Background="#FF4B4B4B" HorizontalAlignment="Left" Margin="5,0" Click="Color_Click" Foreground="White"/>
 <Button x:Name="buttonDepth" Content="Depth" Width="50" Height="20" Grid.Row="0" BorderBrush="White" Background="#FF4B4B4B" HorizontalAlignment="Left" Margin="5,0" Click="Depth_Click" Foreground="White"/>
 <Button Content="Binary" Width="50" Height="20" Grid.Row="0" BorderBrush="White" Background="#FF4B4B4B" HorizontalAlignment="Left" Margin="5,0" Click="Binary_Click" Foreground="White"/>
 <Button x:Name="RecordButton" Content="Record" Width="80" Height="20" Grid.Row="0" BorderBrush="White" Background="#FF4B4B4B" HorizontalAlignment="Left" Margin="25,0,10,0" Click="RecordButton_Click" Foreground="White"/>
 <CheckBox x:Name="sampleCheckBox" Content="Sample" Width="70" VerticalAlignment="Center" Margin="0,8" Foreground="White"/>
 <TextBox x:Name="sampleBox" TextWrapping="Wrap" Text="2000" Width="61" VerticalAlignment="Center" Background="#FFB8B8B8"/>
 </StackPanel>
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Right">
 <TextBlock x:Name="frameCountDisplay" TextWrapping="Wrap" Text="0" VerticalAlignment="Center" Margin="10,0,35,0" Foreground="White"/>
 <TextBlock x:Name="FpsDisplay" TextWrapping="Wrap" Text="Fps" HorizontalAlignment="Right" VerticalAlignment="Center" Margin="20,0,10,0" Foreground="White"/>
 <TextBlock x:Name="FpsDisplay2" TextWrapping="Wrap" Text="Fps" HorizontalAlignment="Right" VerticalAlignment="Center" Margin="20,0,10,0" Foreground="White"/>
 <TextBlock x:Name="loggerDisplay" TextWrapping="Wrap" Text="TimeStamp" HorizontalAlignment="Right" VerticalAlignment="Center" Margin="20,0,10,0" Foreground="White"/>
 </StackPanel>

 <Viewbox HorizontalAlignment="Center" Grid.Row="1">
 <Image x:Name="DisplayScreen" Source="{Binding DepthSource}" Stretch="UniformToFill" OpacityMask="#FFAA6565" MinHeight="26" MinWidth="26" MouseLeftButtonUp="DisplayScreen_MouseLeftButtonUp"/>
 </Viewbox>
 <Separator HorizontalAlignment="Stretch" Height="1" VerticalAlignment="Bottom" Grid.Row="0" Margin="0,1"/>
 </Grid>
</Window>

Kinect_v1/Kinect_v1/opencv_core2410.dll

Kinect_v1/Kinect_v1/opencv_imgproc2410.dll

Kinect_v1/.gitattributes

###
Set default behavior to automatically normalize line endings.
###
* text=auto

###
Set default behavior for command prompt diff.
#
This is need for earlier builds of msysgit that does not have it on by
default for csharp files.
Note: This is only used by command line
###
#*.cs diff=csharp

###
Set the merge driver for project and solution files
#
Merging from the command prompt will add diff markers to the files if there
are conflicts (Merging from VS is not affected by the settings below, in VS
the diff markers are never inserted). Diff markers may cause the following
file extensions to fail to load in VS. An alternative would be to treat
these files as binary and thus will always conflict and require user
intervention with every merge. To do so, just uncomment the entries below
###
#*.sln merge=binary
#*.csproj merge=binary
#*.vbproj merge=binary
#*.vcxproj merge=binary
#*.vcproj merge=binary
#*.dbproj merge=binary
#*.fsproj merge=binary
#*.lsproj merge=binary
#*.wixproj merge=binary
#*.modelproj merge=binary
#*.sqlproj merge=binary
#*.wwaproj merge=binary

###
behavior for image files
#
image files are treated as binary by default.
###
#*.jpg binary
#*.png binary
#*.gif binary

###
diff behavior for common document formats

Convert binary document formats to text before diffing them. This feature
is only available from the command line. Turn it on by uncommenting the
entries below.
###
#*.doc diff=astextplain
#*.DOC diff=astextplain
#*.docx diff=astextplain
#*.DOCX diff=astextplain
#*.dot diff=astextplain
#*.DOT diff=astextplain
#*.pdf diff=astextplain
#*.PDF diff=astextplain
#*.rtf diff=astextplain
#*.RTF diff=astextplain

__MACOSX/Kinect_v1/._.gitattributes

Kinect_v1/.gitignore

Ignore Visual Studio temporary files, build results, and
files generated by popular Visual Studio add-ons.

User-specific files
*.suo
*.user
*.sln.docstates

Build results

[Dd]ebug/
[Rr]elease/
x64/
build/
[Bb]in/
[Oo]bj/

Enable "build/" folder in the NuGet Packages folder since NuGet packages use it for MSBuild targets
!packages/*/build/

MSTest test Results
[Tt]est[Rr]esult*/
[Bb]uild[Ll]og.*

*_i.c
*_p.c
*.ilk
*.meta
*.obj
*.pch
*.pdb
*.pgc
*.pgd
*.rsp
*.sbr
*.tlb
*.tli
*.tlh
*.tmp
*.tmp_proj
*.log
*.vspscc
*.vssscc
.builds
*.pidb
*.log
*.scc

Visual C++ cache files
ipch/
*.aps
*.ncb
*.opensdf
*.sdf
*.cachefile

Visual Studio profiler
*.psess
*.vsp
*.vspx

Guidance Automation Toolkit
*.gpState

ReSharper is a .NET coding add-in
_ReSharper*/
*.[Rr]e[Ss]harper

TeamCity is a build add-in
_TeamCity*

DotCover is a Code Coverage Tool
*.dotCover

NCrunch
.ncrunch
.*crunch*.local.xml

Installshield output folder
[Ee]xpress/

DocProject is a documentation generator add-in
DocProject/buildhelp/
DocProject/Help/*.HxT
DocProject/Help/*.HxC
DocProject/Help/*.hhc
DocProject/Help/*.hhk
DocProject/Help/*.hhp
DocProject/Help/Html2
DocProject/Help/html

Click-Once directory
publish/

Publish Web Output
*.Publish.xml

NuGet Packages Directory
TODO: If you have NuGet Package Restore enabled, uncomment the next line
#packages/

Windows Azure Build Output
csx
*.build.csdef

Windows Store app package directory
AppPackages/

Others
sql/
*.Cache
ClientBin/
[Ss]tyle[Cc]op.*
~$*
*~
*.dbmdl
*.[Pp]ublish.xml
*.pfx
*.publishsettings

RIA/Silverlight projects
Generated_Code/

Backup & report files from converting an old project file to a newer
Visual Studio version. Backup files are not needed, because we have git ;-)
_UpgradeReport_Files/
Backup*/
UpgradeLog*.XML
UpgradeLog*.htm

SQL Server files
App_Data/*.mdf
App_Data/*.ldf

#LightSwitch generated files
GeneratedArtifacts/
_Pvt_Extensions/
ModelManifest.xml

=========================
Windows detritus
=========================

Windows image file caches
Thumbs.db
ehthumbs.db

Folder config file
Desktop.ini

Recycle Bin used on file shares
$RECYCLE.BIN/

Mac desktop service store files
.DS_Store

__MACOSX/Kinect_v1/._.gitignore

Kinect_v1/emgu_dependencies1of2.PNG

__MACOSX/Kinect_v1/._emgu_dependencies1of2.PNG

Kinect_v1/emgu_dependencies2of2.PNG

__MACOSX/Kinect_v1/._emgu_dependencies2of2.PNG

Kinect_v1/Kinect_v1/App.config

__MACOSX/Kinect_v1/Kinect_v1/._App.config

Kinect_v1/Kinect_v1/App.xaml

<Application x:Class="Kinect_v1.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 StartupUri="MainWindow.xaml">
 <Application.Resources>

 </Application.Resources>
</Application>

__MACOSX/Kinect_v1/Kinect_v1/._App.xaml

Kinect_v1/Kinect_v1/App.xaml.cs

using System;
using System.Collections.Generic;
using System.Configuration;
using System.Data;
using System.Linq;
using System.Threading.Tasks;
using System.Windows;

namespace Kinect_v1
{
 /// <summary>
 /// Interaction logic for App.xaml
 /// </summary>
 public partial class App : Application
 {
 }
}

__MACOSX/Kinect_v1/Kinect_v1/._App.xaml.cs

Kinect_v1/Kinect_v1/Coordinates.cs

using Point = System.Drawing.Point;

namespace Kinect_v1
{
 class Coordinates
 {
 private int[] cameraCoordinateInts;
 private float[] cameraCoordinateFloat;
 private int[] colorCoordinateInts;

 public Coordinates()
 {
 colorCoordinateInts = new int[] { -1, -1 ,-1 };
 cameraCoordinateFloat = new float[] { -1, -1 };
 cameraCoordinateInts = new int[] { -1, -1, -1 };
 }

 public Coordinates(int[] colorCoords2D)
 {
 colorCoordinateInts = colorCoords2D;
 }

 public void setCameraCoords(float[] camCoords3D)
 {
 cameraCoordinateFloat = camCoords3D;
 }

 public Point getColorCoordinatesPoint()
 {
 return new Point(colorCoordinateInts[0], colorCoordinateInts[1]);
 }

 public int[] getCamCoords()
 {
 cameraCoordinateInts[0] = (int)(cameraCoordinateFloat[0] * 1000);
 cameraCoordinateInts[1] = (int)(cameraCoordinateFloat[1] * 1000);
 cameraCoordinateInts[2] = (int)(cameraCoordinateFloat[2] * 1000);

 return cameraCoordinateInts;
 }

 public float[] getCamCoordsFloat()
 {
 return cameraCoordinateFloat;
 }

 public int[] GetColorCoordinatesInts()
 {
 return colorCoordinateInts;
 }
 }
}

__MACOSX/Kinect_v1/Kinect_v1/._Coordinates.cs

Kinect_v1/Kinect_v1/FormatConverter.cs

using System;
using System.Diagnostics;
using System.Drawing;
using System.IO;

using Emgu.CV;
using System.Runtime.InteropServices;
using System.Windows;
using System.Windows.Media.Imaging;

namespace Kinect_v1
{
 public class FormatConverter
 {
 // FROM http://www.emgu.com/wiki/index.php/WPF_in_CSharp

 // ---
 /// <summary>
 /// Delete a GDI object
 /// </summary>
 /// <param name="o">The poniter to the GDI object to be deleted</param>
 /// <returns></returns>
 [DllImport("gdi32")]
 public static extern bool DeleteObject(IntPtr hObject);

 /// <summary>
 /// Convert an IImage to a WPF BitmapSource. The result can be used in the Set Property of Image.Source
 /// </summary>
 /// <param name="image">The Emgu CV Image</param>
 /// <returns>The equivalent BitmapSource</returns>

 private static BitmapSource source;
 public static BitmapSource ToBitmapSourceFromBitmap(Bitmap bmpinput)
 {
 IntPtr hBitmap = bmpinput.GetHbitmap();
 try
 {
 source = System.Windows.Interop.Imaging.CreateBitmapSourceFromHBitmap(hBitmap, IntPtr.Zero, Int32Rect.Empty, BitmapSizeOptions.FromWidthAndHeight(bmpinput.Width, bmpinput.Height));
 }
 finally
 {
 DeleteObject(hBitmap);
 }
 return source;
 }

 /*
 public BitmapSource ToBitmapSourceFAIL(IImage image)
 {
 using (Bitmap source = image.Bitmap)
 {
 IntPtr ptr = source.GetHbitmap(); //obtain the Hbitmap

 BitmapSource bs = System.Windows.Interop.Imaging.CreateBitmapSourceFromHBitmap(
 ptr,
 IntPtr.Zero,
 Int32Rect.Empty,
 BitmapSizeOptions.FromEmptyOptions());

 DeleteObject(ptr); //release the HBitmap
 return bs;
 }
 }
 */
 //--
 }
}

__MACOSX/Kinect_v1/Kinect_v1/._FormatConverter.cs

Kinect_v1/Kinect_v1/Kinect_v1.csproj

 Debug
 AnyCPU
 {06B571C8-38D6-4BD8-8524-60BA1DAC8322}
 WinExe
 Properties
 Kinect_v1
 Kinect_v1
 v4.5
 512
 {60dc8134-eba5-43b8-bcc9-bb4bc16c2548};{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}
 4

 x64
 true
 full
 false
 bin\Debug\
 DEBUG;TRACE
 prompt
 4
 true

 AnyCPU
 pdbonly
 true
 bin\Release\
 TRACE
 prompt
 4

 true
 bin\x64\Debug\
 DEBUG;TRACE
 true
 full
 x64
 prompt
 MinimumRecommendedRules.ruleset
 true

 bin\x64\Release\
 TRACE
 true
 pdbonly
 x64
 prompt
 MinimumRecommendedRules.ruleset
 true

 False
 bin\Debug\Emgu.CV.dll

 False
 bin\Debug\Emgu.CV.UI.dll

 False
 bin\Debug\Emgu.Util.dll

 False
 ..\..\..\..\..\..\..\Emgu\Coding4Fun\Microsoft.Expression.Drawing.dll

 4.0

 MSBuild:Compile
 Designer

 MSBuild:Compile
 Designer

 App.xaml
 Code

 MainWindow.xaml
 Code

 Code

 True
 True
 Resources.resx

 True
 Settings.settings
 True

 ResXFileCodeGenerator
 Resources.Designer.cs

 SettingsSingleFileGenerator
 Settings.Designer.cs

 Always

 Always

 Always

 Always

__MACOSX/Kinect_v1/Kinect_v1/._Kinect_v1.csproj

Kinect_v1/Kinect_v1/Logger.cs

using System;
using System.IO;
using System.Text;

namespace Kinect_v1
{
 class Logger
 {
 string logPath = Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments)+@"\KinectLogs";
 private string _fullpath;
 private int framecount = 1;
 public bool fileisopen;

 StringBuilder mainstring = new StringBuilder();

 public void newLoggerFile()
 {
 initiateStringWithDetails();
 _fullpath = createFilePath(logPath);
 }

 private void initiateStringWithDetails()
 {
 mainstring.AppendLine("\n\nKinect Motion Capture Log - "+DateTime.Now.ToLongDateString() + " " + DateTime.Now.ToLongTimeString());
 mainstring.AppendLine("--");
 mainstring.AppendLine("MachineName: " + Environment.MachineName);
 mainstring.AppendLine("UserName: " + Environment.UserName);
 mainstring.AppendLine("OSVersion: " + Environment.OSVersion);
 mainstring.AppendLine("Runtime: " + Environment.Version);
 mainstring.AppendLine("Processors: " + Environment.ProcessorCount);
 mainstring.AppendLine("OS is 64bit: " + Environment.Is64BitOperatingSystem);
 mainstring.AppendLine("App is 64bit: " + Environment.Is64BitProcess);
 mainstring.AppendLine("--");
 mainstring.AppendLine("format:<frame #>,<X>,<Y>,<Z>,<Time>");
 mainstring.AppendLine("--\n");
 mainstring.AppendLine("<STARTLOG>");

 }

 public void appendLogline(int[] coords, TimeSpan timespan)
 {
 mainstring.AppendLine(framecount +"."+coords[0]+"."+coords[1]+"."+coords[2]+"."+timespan);
 framecount ++;

 //if ((framecount % 100) == 0)
 System.Diagnostics.Debug.WriteLine("Frames captured: " + framecount);
 }
 public void appendLogline(float[] coords, TimeSpan timespan)
 {
 mainstring.AppendLine(
 framecount + "," +
 coords[0].ToString(System.Globalization.CultureInfo.InvariantCulture) + "," +
 coords[1].ToString(System.Globalization.CultureInfo.InvariantCulture) + "," +
 coords[2].ToString(System.Globalization.CultureInfo.InvariantCulture) + "," +
 timespan);

 framecount++;

 if ((framecount % 100) == 0)
 System.Diagnostics.Debug.WriteLine("Frames captured: " + framecount);
 }

 private string createFilePath(string path)
 {
 return path+@"\KinectLog_" + DateTime.Now.ToString().Replace('/','_').Replace(':','_').Replace(' ','_') + ".txt";
 }

 public void dumpToFile()
 {
 if (!Directory.Exists(_fullpath))
 Directory.CreateDirectory(logPath);

 mainstring.AppendLine("<ENDLOG>");
 StreamWriter file = new StreamWriter(_fullpath);
 file.WriteLine(mainstring);
 file.Close();
 }

 public void clear()
 {
 mainstring.Clear();
 framecount = 0;
 }

 ~Logger()
 {
 mainstring.Clear();
 mainstring = null;
 }

 }
}

__MACOSX/Kinect_v1/Kinect_v1/._Logger.cs

Kinect_v1/Kinect_v1/MainWindow.xaml

<Window x:Class="Kinect_v1.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Kinect Capture Master" Height="Auto" Width="800"
 SizeToContent="Height"
 Closing="MainWindow_Closing" Background="#FF373737" WindowStyle="ToolWindow">

 <Grid x:Name="Img" Margin="0,0,0,0" Background="#FF303030">
 <Grid.RowDefinitions>
 <RowDefinition Height="32"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Left" Width="531">
 <Button x:Name="buttonColor" Content="Color" Width="50" Height="20" Grid.Row="0" BorderBrush="White" Background="#FF4B4B4B" HorizontalAlignment="Left" Margin="5,0" Click="Color_Click" Foreground="White"/>
 <Button x:Name="buttonDepth" Content="Depth" Width="50" Height="20" Grid.Row="0" BorderBrush="White" Background="#FF4B4B4B" HorizontalAlignment="Left" Margin="5,0" Click="Depth_Click" Foreground="White"/>
 <Button Content="Binary" Width="50" Height="20" Grid.Row="0" BorderBrush="White" Background="#FF4B4B4B" HorizontalAlignment="Left" Margin="5,0" Click="Binary_Click" Foreground="White"/>
 <Button x:Name="RecordButton" Content="Record" Width="80" Height="20" Grid.Row="0" BorderBrush="White" Background="#FF4B4B4B" HorizontalAlignment="Left" Margin="25,0,10,0" Click="RecordButton_Click" Foreground="White"/>
 <CheckBox x:Name="sampleCheckBox" Content="Sample" Width="70" VerticalAlignment="Center" Margin="0,8" Foreground="White"/>
 <TextBox x:Name="sampleBox" TextWrapping="Wrap" Text="2000" Width="61" VerticalAlignment="Center" Background="#FFB8B8B8"/>
 </StackPanel>
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Right">
 <TextBlock x:Name="frameCountDisplay" TextWrapping="Wrap" Text="0" VerticalAlignment="Center" Margin="10,0,35,0" Foreground="White"/>
 <TextBlock x:Name="FpsDisplay" TextWrapping="Wrap" Text="Fps" HorizontalAlignment="Right" VerticalAlignment="Center" Margin="20,0,10,0" Foreground="White"/>
 <TextBlock x:Name="FpsDisplay2" TextWrapping="Wrap" Text="Fps" HorizontalAlignment="Right" VerticalAlignment="Center" Margin="20,0,10,0" Foreground="White"/>
 <TextBlock x:Name="loggerDisplay" TextWrapping="Wrap" Text="TimeStamp" HorizontalAlignment="Right" VerticalAlignment="Center" Margin="20,0,10,0" Foreground="White"/>
 </StackPanel>

 <Viewbox HorizontalAlignment="Center" Grid.Row="1">
 <Image x:Name="DisplayScreen" Source="{Binding DepthSource}" Stretch="UniformToFill" OpacityMask="#FFAA6565" MinHeight="26" MinWidth="26" MouseLeftButtonUp="DisplayScreen_MouseLeftButtonUp"/>
 </Viewbox>
 <Separator HorizontalAlignment="Stretch" Height="1" VerticalAlignment="Bottom" Grid.Row="0" Margin="0,1"/>
 </Grid>
</Window>

__MACOSX/Kinect_v1/Kinect_v1/._MainWindow.xaml

Kinect_v1/Kinect_v1/MainWindow.xaml.cs

using System;
using System.Windows;
using System.Windows.Data;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.ComponentModel;
using System.Diagnostics;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Threading.Tasks;
using Microsoft.Kinect;
using Brushes = System.Drawing.Brushes;
using Point = System.Drawing.Point;

namespace Kinect_v1
{
 public partial class MainWindow
 {
 private const int MapDepthToByte = 8000 / 256;

 private Logger _logger = new Logger();
 private Model.ImageModel _imageModel = new Model.ImageModel();
 private Model.FpsCounter _fpsCounter = new Model.FpsCounter(30);
 private Model.FpsCounter _fpsCounterColor = new Model.FpsCounter(30);
 private Model.FpsCounter _fpsCounterDepth = new Model.FpsCounter(30);

 private KinectSensor _kinectSensor;

 private MultiSourceFrameReader _multiFrameReader;
 private ColorFrameReader _colorFrameReader;

 private FrameDescription _depthFrameDescription;
 private FrameDescription _colorFrameDescription;

 private DepthFrame _depthframe;
 private ColorFrame _colorframe;

 private WriteableBitmap _depthBitmap;
 private WriteableBitmap _colorBitmap;
 private WriteableBitmap _binBitmap;

 private ImageSource _binaryImageSource = null;

 enum DisplaySource { ColorStream, DepthStream, InfraredStream, BinaryStream };
 DisplaySource _source = DisplaySource.ColorStream;

 private byte[] _depthPixels;
 private byte[] _rawColorPix;
 private ushort[] _rawDepthPix;

 private CameraSpacePoint[] _cameraSpacePoints;

 // Intermediate storage for the color to depth mapping
 private DepthSpacePoint[] _colorMappedToDepthPoints = null;
 //private CameraSpacePoint[] colorMappedToCameraPoints = null;
 private ushort[] framed;

 private TimeSpan _colorFrameCaptureTimeSpan;
 private TimeSpan DepthFrameCaptureTimeSpan;

 public bool DepthSet;
 public bool ColorSet;

 //private int[] rawCoords = new int[] { 0, 0, 0 }; //raw 2D colorspace coords
 //private int[] mapCoords = new int[] { 0, 0, 0 }; //mapped to 3D cameraspace coords
 private Coordinates _coordinates = new Coordinates();

 private int[] globalret;

 private TaskScheduler _scheduler;

 private int taskCounter = 0;

 private bool _recordEnabled;
 private int framecount = 0;

 private bool markdepth = false;

 public MainWindow()
 {
 _kinectSensor = KinectSensor.GetDefault();

 // streams
 _multiFrameReader = _kinectSensor.OpenMultiSourceFrameReader(FrameSourceTypes.Depth | FrameSourceTypes.Color);
 _colorFrameReader = _kinectSensor.ColorFrameSource.OpenReader();

 // handler
 _multiFrameReader.MultiSourceFrameArrived += Reader_MultiFrameReader;
 _colorFrameReader.FrameArrived += Reader_ColorFrameReader;

 // framedescriptions
 _depthFrameDescription = _kinectSensor.DepthFrameSource.FrameDescription;
 _colorFrameDescription = _kinectSensor.ColorFrameSource.CreateFrameDescription(ColorImageFormat.Bgra);

 //bitmaps
 _colorBitmap = new WriteableBitmap(_colorFrameDescription.Width, _colorFrameDescription.Height, 96.0, 96.0, PixelFormats.Bgr32, null);
 _depthBitmap = new WriteableBitmap(_depthFrameDescription.Width, _depthFrameDescription.Height, 96.0, 96.0, PixelFormats.Gray8, null);
 _binBitmap = new WriteableBitmap(_depthFrameDescription.Width, _depthFrameDescription.Height, 96.0, 96.0, PixelFormats.Gray8, null);

 // raw arrays
 _depthPixels = new byte[_depthFrameDescription.Width * _depthFrameDescription.Height];
 _rawColorPix = new byte[_colorFrameDescription.Width * _colorFrameDescription.Height * 4];
 _rawDepthPix = new ushort[_depthFrameDescription.Width * _depthFrameDescription.Height];

 // spaces
 _cameraSpacePoints = new CameraSpacePoint[_colorFrameDescription.Width * _colorFrameDescription.Height];
 _colorMappedToDepthPoints = new DepthSpacePoint[_colorFrameDescription.Width * _colorFrameDescription.Height];
 framed = new ushort[_depthFrameDescription.Width * _depthFrameDescription.Height];

 //threading
 _scheduler = TaskScheduler.FromCurrentSynchronizationContext();

 globalret = new int[]{0,0};

 // startup

 _kinectSensor.Open();
 DataContext = this;
 InitializeComponent();
 }

 // STREAM READERS METHODS ///

 private void Reader_ColorFrameReader(object sender, ColorFrameArrivedEventArgs e)
 {
 FpsDisplay2.Text = "C: " + _fpsCounterColor.Tick();
 }

 private void Reader_MultiFrameReader(object sender, MultiSourceFrameArrivedEventArgs e)
 {
 MultiSourceFrame multiSourceFrame = e.FrameReference.AcquireFrame();

 _colorframe = multiSourceFrame.ColorFrameReference.AcquireFrame();
 _depthframe = multiSourceFrame.DepthFrameReference.AcquireFrame();

 //using (ColorFrame colorFrame = multiSourceFrame.ColorFrameReference.AcquireFrame())
 using (_colorframe)
 {
 if (_colorframe != null)
 {
 // gather frame data
 _colorFrameDescription = _colorframe.FrameDescription;
 _colorFrameCaptureTimeSpan = _colorframe.RelativeTime;

 _colorBitmap.Lock();

 // verify data and write the new color frame data to the display bitmap
 if ((_colorFrameDescription.Width == _colorBitmap.PixelWidth) && (_colorFrameDescription.Height == _colorBitmap.PixelHeight))
 {
 _colorframe.CopyConvertedFrameDataToIntPtr(_colorBitmap.BackBuffer, (uint)(_colorFrameDescription.Width * _colorFrameDescription.Height * 4), ColorImageFormat.Bgra);
 _colorBitmap.AddDirtyRect(new Int32Rect(0, 0, _colorBitmap.PixelWidth, _colorBitmap.PixelHeight));

 // draw captured data on the bitmap
 //drawCoordsOnColorBitmap(new Point(rawCoords[0],rawCoords[1]), 64);
 drawCoordsOnColorBitmap(_coordinates.getColorCoordinatesPoint() ,64);

 IntPtr rc = IntPtr.Zero;
 // storage for imagemodel
 //_colorframe.CopyConvertedFrameDataToIntPtr(rc,1920*1080*4,ColorImageFormat.Bgra);
 _colorframe.CopyConvertedFrameDataToArray(_rawColorPix, ColorImageFormat.Bgra);
 //_imageModel.createColorImage(rc, _colorFrameDescription.Width, _colorFrameDescription.Height);
 _imageModel.createColorImage(_rawColorPix, _colorFrameDescription.Width, _colorFrameDescription.Height);

 ColorSet = true;
 }
 _colorBitmap.Unlock();
 }
 }

 bool depthFrameProcessed = false;

 if (_depthframe != null)
 {
 DepthFrameCaptureTimeSpan = _depthframe.RelativeTime;

 if (_source == DisplaySource.DepthStream)
 {
 // the fastest way to process the body index data is to directly access the underlying buffer
 using (KinectBuffer depthBuffer = _depthframe.LockImageBuffer())
 {
 // verify data and write the color data to the display bitmap
 if (((_depthFrameDescription.Width * _depthFrameDescription.Height) == (depthBuffer.Size / _depthFrameDescription.BytesPerPixel)) &&
 (_depthFrameDescription.Width == _depthBitmap.PixelWidth) && (_depthFrameDescription.Height == _depthBitmap.PixelHeight))
 {
 //ushort maxDepth = ushort.MaxValue;
 ushort maxDepth = _depthframe.DepthMaxReliableDistance;

 ProcessDepthFrameData(depthBuffer.UnderlyingBuffer, depthBuffer.Size, _depthframe.DepthMinReliableDistance, maxDepth);
 depthFrameProcessed = true;
 }
 }
 }
 else
 DepthSet = true;

 // thread will dispose depthframe when done with it
 Task.Factory.StartNew(() => MapColorToCameraInThread(_depthframe, _kinectSensor)).ContinueWith((i) => updateMappedCameraSpaces(i.Result), _scheduler);
 }

 if (depthFrameProcessed)
 RenderDepthPixels();

 if (DepthSet && ColorSet)
 {
 Task.Factory.StartNew(() => ProcessingMethod()).ContinueWith((i) => UpdateCoords(i.Result), _scheduler);
 }

 }

 // THREADING METHODS ///

 //-- MAP depthFrameData.UnderlyingBuffer -> _CameraSpacePoints ----------------------------------

 private CameraSpacePoint[] MapColorToCameraInThread(DepthFrame depthFrameInput, KinectSensor sensor)
 {
 CameraSpacePoint[] csp = new CameraSpacePoint[1920 * 1080];
 using (KinectBuffer depthFrameData = depthFrameInput.LockImageBuffer())
 {
 sensor.CoordinateMapper.MapColorFrameToCameraSpaceUsingIntPtr(depthFrameData.UnderlyingBuffer, depthFrameData.Size, csp);
 }
 return csp;
 }

 private void updateMappedCameraSpaces(CameraSpacePoint[] mappedCamSpacePoints)
 {
 _cameraSpacePoints = mappedCamSpacePoints;
 _depthframe.Dispose();
 }

 //-- OPEN CV PROSESSERING -> SET NY GLOBAL DATA ----------------------------------

 long accu = 0;
 int counter = 0;

 private Coordinates ProcessingMethod()
 {
 // store all coordinates into designated class for coordinate storage
 Stopwatch sw = new Stopwatch();

 sw.Start();

 Coordinates coordinateStorage = new Coordinates(_imageModel.ProcesscolorReturnCoords());
 float[] mappedCoords = (mapWithGivenCoords(coordinateStorage.GetColorCoordinatesInts()));
 coordinateStorage.setCameraCoords(mappedCoords);

 accu += sw.ElapsedMilliseconds;
 sw.Reset();
 counter++;
 if (counter == 1000)
 {
 counter = 0;
 Debug.WriteLine(accu / 1000.0);
 accu = 0;
 }

 return coordinateStorage;
 }

 private void UpdateCoords(Coordinates inputCoords)
 {

 //Findcoordinatesindepthspace(inputInts.GetColorCoordinatesInts());

 // add to log if recording
 if (_recordEnabled)
 {
 _logger.appendLogline(inputCoords.getCamCoordsFloat(), _colorFrameCaptureTimeSpan);
 framecount++;

 //////////////////// SAMPLE ABORT //////////////////////////
 if (framecount >= Convert.ToInt32(sampleBox.Text))
 if ((bool)sampleCheckBox.IsChecked)
 {
 {
 _recordEnabled = false;
 _logger.dumpToFile();
 _logger.clear();
 RecordButton.Background = System.Windows.Media.Brushes.SlateGray;
 RecordButton.Content = "Record";
 }
 }
 ///
 }

 //
 _coordinates = inputCoords;
 DepthSet = false;
 ColorSet = false;

 // get binary bitmap if requested
 if (_imageModel.newBinaryReady)
 _binBitmap = writableBitmapFromBitmap(_imageModel.GetBinaryBitmap());

 _coordinates = inputCoords;
 loggerDisplay.Text = (_colorFrameCaptureTimeSpan).ToString();
 FpsDisplay.Text = "CV: " + _fpsCounter.Tick();

 taskCounter--;
 }

 // MAPPING METHODS ///

 private float[] mapWithGivenCoords(int[] unmappedPoint2D)
 {
 float[] colorMappedToCamera = new float[3];

 unsafe
 {
 fixed (CameraSpacePoint* colorMappedToCamPointsPointer = _cameraSpacePoints)
 {

 if (unmappedPoint2D[0] < 0) unmappedPoint2D[0] = 0;
 if (unmappedPoint2D[1] < 0) unmappedPoint2D[1] = 0;

 int colorKndex = (unmappedPoint2D[1] * _colorFrameDescription.Width) + unmappedPoint2D[0];

 colorMappedToCamera[0] = colorMappedToCamPointsPointer[colorKndex].X;
 colorMappedToCamera[1] = colorMappedToCamPointsPointer[colorKndex].Y;
 colorMappedToCamera[2] = colorMappedToCamPointsPointer[colorKndex].Z;
 }
 }
 return colorMappedToCamera;
 }

 public int[] Findcoordinatesindepthspace(int[] c)
 {

 int[] ret = new int[2];

 unsafe
 {
 fixed (DepthSpacePoint* colorMappedToDepthPointsPointer = _colorMappedToDepthPoints)
 {
 int colorKndex = (c[1] * 1920) + c[0];

 float colorMappedToDepthX = colorMappedToDepthPointsPointer[colorKndex].X;
 float colorMappedToDepthY = colorMappedToDepthPointsPointer[colorKndex].Y;

 if (!float.IsNegativeInfinity(colorMappedToDepthX) &&
 !float.IsNegativeInfinity(colorMappedToDepthY))
 {
 // Make sure the depth pixel maps to a valid point in color space
 int depthX = (int) (colorMappedToDepthX + 0.5f);
 int depthY = (int) (colorMappedToDepthY + 0.5f);

 if ((depthX >= 0) && (depthX < _depthFrameDescription.Width) && (depthY >= 0) &&
 (depthY < _depthFrameDescription.Height))
 {
 ret[0] = (int) colorMappedToDepthX;
 ret[1] = (int) colorMappedToDepthY;
 }
 }
 }
 }
 Debug.WriteLine(ret[0]+","+ret[1]);
 globalret = ret;
 return ret;
 }

 private WriteableBitmap writableBitmapFromBitmap(Bitmap bmp)
 {
 // GDI HANDLE LEAK DO NOT AUTOMATE
 BitmapSource b = System.Windows.Interop.Imaging.CreateBitmapSourceFromHBitmap(bmp.GetHbitmap(), IntPtr.Zero, Int32Rect.Empty, BitmapSizeOptions.FromWidthAndHeight(bmp.Width, bmp.Height));
 WriteableBitmap wb = new WriteableBitmap(b);

 return wb;
 }

 // KINECT METHODS ///

 private void RenderDepthPixels()
 {
 if (markdepth)
 _depthPixels[(globalret[1] * 512) + globalret[0]] = byte.MaxValue;

 _depthBitmap.WritePixels(
 new Int32Rect(0, 0, _depthBitmap.PixelWidth, _depthBitmap.PixelHeight),
 _depthPixels,
 _depthBitmap.PixelWidth,
 0);
 }

 private unsafe void ProcessDepthFrameData(IntPtr depthFrameData, uint depthFrameDataSize, ushort minDepth, ushort maxDepth)
 {
 ushort* frameData = (ushort*)depthFrameData;

 for (int i = 0; i < (int)(depthFrameDataSize / _depthFrameDescription.BytesPerPixel); ++i)
 {
 ushort depth = frameData[i];
 _depthPixels[i] = (byte)(depth >= minDepth && depth <= maxDepth ? (depth / MapDepthToByte) : 0);
 }
 //_imageModel.createGrayImage(_depthPixels, _depthFrameDescription.Width, _depthFrameDescription.Height);
 DepthSet = true;
 }

 // GUI METHODS ///

 private void drawCoordsOnColorBitmap(Point coordPoint, int sizeD)
 {
 // inside bounds check

 if (coordPoint.X <= sizeD / 2 || coordPoint.X >= _colorFrameDescription.Width - sizeD / 2 ||
 coordPoint.Y <= sizeD / 2 || coordPoint.Y >= _colorFrameDescription.Height - sizeD / 2)
 return;

 // draw on bitmap
 var tempBitmap = new Bitmap(_colorBitmap.PixelWidth,
 _colorBitmap.PixelHeight,
 _colorBitmap.BackBufferStride,
 System.Drawing.Imaging.PixelFormat.Format32bppRgb,
 _colorBitmap.BackBuffer);

 using (var bitmapGraphics = Graphics.FromImage(tempBitmap))
 {
 bitmapGraphics.SmoothingMode = SmoothingMode.HighSpeed;
 bitmapGraphics.InterpolationMode = InterpolationMode.Low;
 bitmapGraphics.CompositingMode = CompositingMode.SourceOver;
 bitmapGraphics.CompositingQuality = CompositingQuality.HighSpeed;

 if (!_recordEnabled)
 {
 bitmapGraphics.DrawIcon(new Icon("yellowmarker.ico", new System.Drawing.Size(sizeD, sizeD)),
 new Rectangle(new Point(coordPoint.X - sizeD / 2, coordPoint.Y - sizeD / 2), new System.Drawing.Size(sizeD, sizeD)));

 bitmapGraphics.FillRectangle(new SolidBrush(System.Drawing.Color.FromArgb(150, 255, 255, 0)), new RectangleF(new Point(coordPoint.X + (sizeD / 2) + 10, coordPoint.Y - sizeD / 2 - 32), new System.Drawing.Size(130, 28)));
 bitmapGraphics.DrawString("colorspace", new Font(new System.Drawing.FontFamily("Arial"), 16), Brushes.Black, new RectangleF(new Point(coordPoint.X + (sizeD / 2) + 10, coordPoint.Y - sizeD / 2 - 35), new System.Drawing.Size(200, 30)));
 }
 else
 {
 bitmapGraphics.DrawIcon(new Icon("redmarker.ico", new System.Drawing.Size(sizeD, sizeD)),
 new Rectangle(new Point(coordPoint.X - sizeD / 2, coordPoint.Y - sizeD / 2), new System.Drawing.Size(sizeD, sizeD)));

 bitmapGraphics.FillRectangle(new SolidBrush(System.Drawing.Color.FromArgb(150, 255, 0, 0)), new RectangleF(new Point(coordPoint.X + (sizeD / 2) + 10, coordPoint.Y - sizeD / 2 - 32), new System.Drawing.Size(130, 28)));
 bitmapGraphics.DrawString("colorspace", new Font(new System.Drawing.FontFamily("Arial"), 16), Brushes.Black, new RectangleF(new Point(coordPoint.X + (sizeD / 2) + 10, coordPoint.Y - sizeD / 2 - 35), new System.Drawing.Size(200, 30)));
 }

 bitmapGraphics.FillRectangle(new SolidBrush(System.Drawing.Color.FromArgb(150, 0, 0, 0)), new RectangleF(new Point(10, 10), new System.Drawing.Size(200, 130)));
 bitmapGraphics.DrawString("X: " + _coordinates.getCamCoordsFloat()[0].ToString("#0.000"), new Font(new System.Drawing.FontFamily("Arial"), 18), Brushes.LawnGreen, new RectangleF(new Point(10, 10), new System.Drawing.Size(200, 40)));
 bitmapGraphics.DrawString("Y: " + _coordinates.getCamCoordsFloat()[1].ToString("#0.000"), new Font(new System.Drawing.FontFamily("Arial"), 18), Brushes.LawnGreen, new RectangleF(new Point(10, 50), new System.Drawing.Size(200, 40)));
 bitmapGraphics.DrawString("Z: " + _coordinates.getCamCoordsFloat()[2].ToString("#0.000"), new Font(new System.Drawing.FontFamily("Arial"), 18), Brushes.LawnGreen, new RectangleF(new Point(10, 90), new System.Drawing.Size(200, 40)));

 frameCountDisplay.Text = framecount.ToString();
 }
 tempBitmap.Dispose();
 }

 public ImageSource DepthSource
 {
 get
 {
 switch (_source)
 {
 case DisplaySource.DepthStream:
 return _depthBitmap;
 case DisplaySource.BinaryStream:
 return _binBitmap;
 default:
 return _colorBitmap;
 }
 }
 }

 private void MainWindow_Closing(object sender, CancelEventArgs e)
 {
 // shut down kinectsensor
 if (_kinectSensor != null)
 {
 _kinectSensor.Close();
 _kinectSensor = null;
 }

 // save loggs if recording
 if (_recordEnabled)
 _logger.dumpToFile();

 }

 private void Color_Click(object sender, RoutedEventArgs e)
 {
 buttonColor.BorderBrush = System.Windows.Media.Brushes.Red;
 buttonDepth.BorderBrush = System.Windows.Media.Brushes.White;

 _source = DisplaySource.ColorStream;
 BindingOperations.GetBindingExpressionBase(DisplayScreen, System.Windows.Controls.Image.SourceProperty).UpdateTarget();
 }

 private void Depth_Click(object sender, RoutedEventArgs e)
 {
 buttonDepth.BorderBrush = System.Windows.Media.Brushes.Red;
 buttonColor.BorderBrush = System.Windows.Media.Brushes.White;

 _source = DisplaySource.DepthStream;
 BindingOperations.GetBindingExpressionBase(DisplayScreen, System.Windows.Controls.Image.SourceProperty).UpdateTarget();
 }

 private void Binary_Click(object sender, RoutedEventArgs e)
 {
 buttonColor.BorderBrush = System.Windows.Media.Brushes.White;
 buttonDepth.BorderBrush = System.Windows.Media.Brushes.White;

 _imageModel.fetchNextBinaryImage = true;
 _source = DisplaySource.BinaryStream;
 BindingOperations.GetBindingExpressionBase(DisplayScreen, System.Windows.Controls.Image.SourceProperty).UpdateTarget();
 }

 private void DisplayScreen_MouseLeftButtonUp(object sender, System.Windows.Input.MouseButtonEventArgs e)
 {
 System.Windows.Point p = e.GetPosition(DisplayScreen);
 _imageModel.getColorAtPixel((int)p.X, (int)p.Y, true);
 }

 private void RecordButton_Click(object sender, RoutedEventArgs e)
 {
 _recordEnabled = !_recordEnabled;

 if (_recordEnabled)
 {
 _logger.newLoggerFile();
 RecordButton.Background = System.Windows.Media.Brushes.Red;
 RecordButton.Content = "Recording";
 framecount = 0;
 }
 else
 {
 _logger.dumpToFile();
 _logger.clear();
 RecordButton.Background = System.Windows.Media.Brushes.SlateGray;
 RecordButton.Content = "Record";
 }

 }
 }
}

__MACOSX/Kinect_v1/Kinect_v1/._MainWindow.xaml.cs

Kinect_v1/Kinect_v1/Model/FpsCounter.cs

using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;

namespace Kinect_v1.Model
{

 class FpsCounter
 {
 Stopwatch watch = new Stopwatch();
 private Queue window;
 private int windowlength;

 public FpsCounter(int winsize)
 {
 windowlength = winsize;
 watch.Start();
 window = new Queue(winsize);
 }

 public void clear()
 {
 window.Clear();
 }

 public string RawTick()
 {
 long timein = watch.ElapsedMilliseconds;
 watch.Restart();

 return (1000/timein).ToString();
 }

 public void restart()
 {
 watch.Restart();
 }

 public string TickMs(bool fullcycle)
 {
 long timein = watch.ElapsedMilliseconds;

 System.Diagnostics.Debug.WriteLine(timein);

 if (fullcycle)
 watch.Restart();
 else
 watch.Reset();

 if (window.Count >= windowlength)
 window.Dequeue();

 window.Enqueue(timein);

 long sum = 0;

 foreach (long time in window)
 sum = sum + time;

 if (window.Count < windowlength)
 return "cal";

 if (sum != 0 && windowlength != 0 && (sum / windowlength) != 0)
 return ((sum / windowlength)).ToString();

 return "-1";
 }

 public string Tick()
 {
 long timein = watch.ElapsedMilliseconds;
 watch.Restart();

 if (window.Count >= windowlength)
 window.Dequeue();

 window.Enqueue(timein);

 long sum = 0;

 foreach (long time in window)
 sum = sum + time;

 if (window.Count < windowlength)
 return "cal";

 if (sum != 0 && windowlength != 0 && (sum/windowlength) != 0)
 return (1000/(sum/windowlength)).ToString();

 return "-1";
 }

 }
}

__MACOSX/Kinect_v1/Kinect_v1/Model/._FpsCounter.cs

Kinect_v1/Kinect_v1/Model/ImageModel.cs

using System;
using System.Diagnostics;
using System.Drawing;
using System.Windows.Media.Imaging;
using Emgu.CV;
using Emgu.CV.Structure;
using System.Collections;
using System.Collections.Generic;

namespace Kinect_v1.Model
{
 class ImageModel
 {

 // Color related data
 private Image<Bgra, Byte> _colorImageBgra;// = new Image<Bgra, byte>("null_large_color.png");
 private Image<Gray, Byte> _colorProcessed;// = new Image<Gray, byte>(1920, 1080, new Gray(100));
 private Image<Gray, Byte> _depthImage;// = new Image<Gray, byte>("null_small.png");

 MCvScalar _lowerColorScalar = new MCvScalar(110 - 5, 242 - 20, 200 + 50); //145-20);
 MCvScalar _upperColorScalar = new MCvScalar(110 + 5, 242 + 20, 200 - 50); //145+60);

 MCvMoments moments = new MCvMoments();

 public bool fetchNextBinaryImage = false;
 public bool newBinaryReady = false;

 Image<Bgr, byte> imageBgr;
 Image<Hsv, byte> imageHsv;
 Image<Gray, byte> imageGray;

 IntPtr cvt = IntPtr.Zero;
 MCvMoments mom = new MCvMoments();

 public ImageModel()
 {
 imageBgr = new Image<Bgr, byte>(1920, 1080);
 imageHsv = new Image<Hsv, byte>(1920,1080);
 imageGray = new Image<Gray, byte>(1920, 1080);
 }

 private double getNormCentralMoment(int xOrder, int yOrder)
 {
 return CvInvoke.cvGetNormalizedCentralMoment(ref mom, xOrder, yOrder);
 }

 // PROCESSORS
 public int[] ProcesscolorReturnCoords()
 {
 int[] coordInts = new int[2];

 // using CVInvoke to gain major speed increases
 CvInvoke.cvCvtColor(_colorImageBgra.Ptr,imageBgr.Ptr,Emgu.CV.CvEnum.COLOR_CONVERSION.BGRA2BGR);
 CvInvoke.cvCvtColor(imageBgr.Ptr, imageHsv.Ptr, Emgu.CV.CvEnum.COLOR_CONVERSION.BGR2HSV);
 CvInvoke.cvInRangeS(imageHsv.Ptr,_lowerColorScalar,_upperColorScalar,imageGray.Ptr);
 //CvInvoke.cvSmooth(imageGray.Ptr, imageGray.Ptr, Emgu.CV.CvEnum.SMOOTH_TYPE.CV_GAUSSIAN, 9, 0, 0, 0);
 //CvInvoke.cvErode(imageGray.Ptr, imageGray.Ptr, IntPtr.Zero, 1);

 CvInvoke.cvMoments(imageGray.Ptr,ref mom,1);
 coordInts[0] = (int)(mom.m10 / mom.m00);
 coordInts[1] = (int)(mom.m01 / mom.m00);

 //Debug.WriteLine("m00: " + mom.m00 + " m01: " + mom.m01 + " m10: " + mom.m10);

 //moments = imageGray.GetMoments(true);
 //coordInts[0] = (int)(moments.GravityCenter.x);
 //coordInts[1] = (int)(moments.GravityCenter.y);

 if (fetchNextBinaryImage)
 {
 _colorProcessed = imageGray;
 newBinaryReady = true;
 fetchNextBinaryImage = false;
 }

 return coordInts;
 }

 public int[] getColorAtPixel(int x, int y, bool setcoloralso)
 {
 int[] hsvInts = new[] {0, 0, 0};

 using (Image<Hsv, byte> im = _colorImageBgra.Convert<Hsv, byte>())
 {
 hsvInts[0] = im.Data[y, x, 0]; //Read to the Red Spectrum
 hsvInts[1] = im.Data[y, x, 1]; //Read to the Green Spectrum
 hsvInts[2] = im.Data[y, x, 2]; //Read to the BlueSpectrum
 }

 if (setcoloralso)
 {
 _lowerColorScalar = new MCvScalar(hsvInts[0] - 5, hsvInts[1] - 10, hsvInts[2] - 10);
 _upperColorScalar = new MCvScalar(hsvInts[0] + 5, hsvInts[1] + 10, hsvInts[2] + 10);
 Debug.WriteLine("Color reference set to: [" + hsvInts[0] + "," + hsvInts[1] + "," + hsvInts[2] + "]");
 }
 return hsvInts;
 }

 // GETTERS AND SETTERS
 // setters

 public void createGrayImage(byte[] pixels, int width, int height)
 {
 using (Image<Gray, byte> im = new Image<Gray, byte>(width, height))
 {
 im.Bytes = pixels;
 _depthImage = im.Clone();
 }
 }

 public void createColorImage(byte[] pixels, int width, int height)
 {
 // kan det brukes pointer her???
 using (Image<Bgra, byte> im = new Image<Bgra, byte>(width, height))
 {
 im.Bytes = pixels;
 _colorImageBgra = im.Clone();
 }
 }

 //getters
 public Bitmap GetBinaryBitmap()
 {
 newBinaryReady = false;
 return _colorProcessed.ToBitmap();
 }

 public Bitmap GetDepthBitmap()
 {
 return _depthImage.ToBitmap();
 }

 public Bitmap GetColorBitmap()
 {
 return _colorImageBgra.ToBitmap();
 }

 }
}

__MACOSX/Kinect_v1/Kinect_v1/Model/._ImageModel.cs

__MACOSX/Kinect_v1/Kinect_v1/._Model

Kinect_v1/Kinect_v1/opencv_core2410.dll

__MACOSX/Kinect_v1/Kinect_v1/._opencv_core2410.dll

Kinect_v1/Kinect_v1/opencv_imgproc2410.dll

__MACOSX/Kinect_v1/Kinect_v1/._opencv_imgproc2410.dll

Kinect_v1/Kinect_v1/Properties/AssemblyInfo.cs

using System.Reflection;
using System.Resources;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Windows;

// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.
[assembly: AssemblyTitle("Kinect_v1")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("")]
[assembly: AssemblyProduct("Kinect_v1")]
[assembly: AssemblyCopyright("Copyright © 2015")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]

// Setting ComVisible to false makes the types in this assembly not visible
// to COM components. If you need to access a type in this assembly from
// COM, set the ComVisible attribute to true on that type.
[assembly: ComVisible(false)]

//In order to begin building localizable applications, set
//<UICulture>CultureYouAreCodingWith</UICulture> in your .csproj file
//inside a <PropertyGroup>. For example, if you are using US english
//in your source files, set the <UICulture> to en-US. Then uncomment
//the NeutralResourceLanguage attribute below. Update the "en-US" in
//the line below to match the UICulture setting in the project file.

//[assembly: NeutralResourcesLanguage("en-US", UltimateResourceFallbackLocation.Satellite)]

[assembly: ThemeInfo(
 ResourceDictionaryLocation.None, //where theme specific resource dictionaries are located
 //(used if a resource is not found in the page,
 // or application resource dictionaries)
 ResourceDictionaryLocation.SourceAssembly //where the generic resource dictionary is located
 //(used if a resource is not found in the page,
 // app, or any theme specific resource dictionaries)
)]

// Version information for an assembly consists of the following four values:
//
// Major Version
// Minor Version
// Build Number
// Revision
//
// You can specify all the values or you can default the Build and Revision Numbers
// by using the '*' as shown below:
// [assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]

__MACOSX/Kinect_v1/Kinect_v1/Properties/._AssemblyInfo.cs

Kinect_v1/Kinect_v1/Properties/Resources.Designer.cs

//--
// <auto-generated>
// This code was generated by a tool.
// Runtime Version:4.0.30319.34014
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </auto-generated>
//--

namespace Kinect_v1.Properties
{

 /// <summary>
 /// A strongly-typed resource class, for looking up localized strings, etc.
 /// </summary>
 // This class was auto-generated by the StronglyTypedResourceBuilder
 // class via a tool like ResGen or Visual Studio.
 // To add or remove a member, edit your .ResX file then rerun ResGen
 // with the /str option, or rebuild your VS project.
 [global::System.CodeDom.Compiler.GeneratedCodeAttribute("System.Resources.Tools.StronglyTypedResourceBuilder", "4.0.0.0")]
 [global::System.Diagnostics.DebuggerNonUserCodeAttribute()]
 [global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()]
 internal class Resources
 {

 private static global::System.Resources.ResourceManager resourceMan;

 private static global::System.Globalization.CultureInfo resourceCulture;

 [global::System.Diagnostics.CodeAnalysis.SuppressMessageAttribute("Microsoft.Performance", "CA1811:AvoidUncalledPrivateCode")]
 internal Resources()
 {
 }

 /// <summary>
 /// Returns the cached ResourceManager instance used by this class.
 /// </summary>
 [global::System.ComponentModel.EditorBrowsableAttribute(global::System.ComponentModel.EditorBrowsableState.Advanced)]
 internal static global::System.Resources.ResourceManager ResourceManager
 {
 get
 {
 if ((resourceMan == null))
 {
 global::System.Resources.ResourceManager temp = new global::System.Resources.ResourceManager("Kinect_v1.Properties.Resources", typeof(Resources).Assembly);
 resourceMan = temp;
 }
 return resourceMan;
 }
 }

 /// <summary>
 /// Overrides the current thread's CurrentUICulture property for all
 /// resource lookups using this strongly typed resource class.
 /// </summary>
 [global::System.ComponentModel.EditorBrowsableAttribute(global::System.ComponentModel.EditorBrowsableState.Advanced)]
 internal static global::System.Globalization.CultureInfo Culture
 {
 get
 {
 return resourceCulture;
 }
 set
 {
 resourceCulture = value;
 }
 }
 }
}

__MACOSX/Kinect_v1/Kinect_v1/Properties/._Resources.Designer.cs

Kinect_v1/Kinect_v1/Properties/Resources.resx

 text/microsoft-resx

 2.0

 System.Resources.ResXResourceReader, System.Windows.Forms, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 System.Resources.ResXResourceWriter, System.Windows.Forms, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

__MACOSX/Kinect_v1/Kinect_v1/Properties/._Resources.resx

Kinect_v1/Kinect_v1/Properties/Settings.Designer.cs

//--
// <auto-generated>
// This code was generated by a tool.
// Runtime Version:4.0.30319.34014
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </auto-generated>
//--

namespace Kinect_v1.Properties
{

 [global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()]
 [global::System.CodeDom.Compiler.GeneratedCodeAttribute("Microsoft.VisualStudio.Editors.SettingsDesigner.SettingsSingleFileGenerator", "11.0.0.0")]
 internal sealed partial class Settings : global::System.Configuration.ApplicationSettingsBase
 {

 private static Settings defaultInstance = ((Settings)(global::System.Configuration.ApplicationSettingsBase.Synchronized(new Settings())));

 public static Settings Default
 {
 get
 {
 return defaultInstance;
 }
 }
 }
}

__MACOSX/Kinect_v1/Kinect_v1/Properties/._Settings.Designer.cs

Kinect_v1/Kinect_v1/Properties/Settings.settings

__MACOSX/Kinect_v1/Kinect_v1/Properties/._Settings.settings

__MACOSX/Kinect_v1/Kinect_v1/._Properties

Kinect_v1/Kinect_v1/redmarker.ico

__MACOSX/Kinect_v1/Kinect_v1/._redmarker.ico

Kinect_v1/Kinect_v1/yellowmarker.ico

__MACOSX/Kinect_v1/Kinect_v1/._yellowmarker.ico

__MACOSX/Kinect_v1/._Kinect_v1

Kinect_v1/Kinect_v1.sln

Microsoft Visual Studio Solution File, Format Version 12.00
Visual Studio 2013
VisualStudioVersion = 12.0.31101.0
MinimumVisualStudioVersion = 10.0.40219.1
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "Kinect_v1", "Kinect_v1\Kinect_v1.csproj", "{06B571C8-38D6-4BD8-8524-60BA1DAC8322}"
EndProject
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "Solution Items", "Solution Items", "{F4652D8F-9D18-4E76-808D-BFCB1A997896}"
	ProjectSection(SolutionItems) = preProject
		Performance1.psess = Performance1.psess
	EndProjectSection
EndProject
Global
	GlobalSection(SolutionConfigurationPlatforms) = preSolution
		Debug|Any CPU = Debug|Any CPU
		Debug|x64 = Debug|x64
		Release|Any CPU = Release|Any CPU
		Release|x64 = Release|x64
	EndGlobalSection
	GlobalSection(ProjectConfigurationPlatforms) = postSolution
		{06B571C8-38D6-4BD8-8524-60BA1DAC8322}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
		{06B571C8-38D6-4BD8-8524-60BA1DAC8322}.Debug|Any CPU.Build.0 = Debug|Any CPU
		{06B571C8-38D6-4BD8-8524-60BA1DAC8322}.Debug|x64.ActiveCfg = Debug|x64
		{06B571C8-38D6-4BD8-8524-60BA1DAC8322}.Debug|x64.Build.0 = Debug|x64
		{06B571C8-38D6-4BD8-8524-60BA1DAC8322}.Release|Any CPU.ActiveCfg = Release|Any CPU
		{06B571C8-38D6-4BD8-8524-60BA1DAC8322}.Release|Any CPU.Build.0 = Release|Any CPU
		{06B571C8-38D6-4BD8-8524-60BA1DAC8322}.Release|x64.ActiveCfg = Release|x64
		{06B571C8-38D6-4BD8-8524-60BA1DAC8322}.Release|x64.Build.0 = Release|x64
	EndGlobalSection
	GlobalSection(SolutionProperties) = preSolution
		HideSolutionNode = FALSE
	EndGlobalSection
EndGlobal

__MACOSX/Kinect_v1/._Kinect_v1.sln

Kinect_v1/README.txt.txt

EmguCV / OpenCV libraries needs to be added to the output folder.
After installing EmguCV, these files must be copied from the EmguCV install location
to the bin/debug folders of the project, as shown in the emgu_dependancies images.

__MACOSX/Kinect_v1/._README.txt.txt

__MACOSX/._Kinect_v1

KinectPlotter.py

from mpl_toolkits.mplot3d import Axes3D
from matplotlib import pyplot
import plotly.plotly as py
from plotly.graph_objs import *
import numpy as np
import os
import glob
import copy
import math
import time
import pylab

filtrer
interpoler hele sekvensen
finn distance mellom hvert p1 og p1'
forskyv en sti 1 sample, til den samlede error minimeres

--

global pList

class logLine():
 number = -1
 x = -1
 y = -1
 z = -1
 time = -1

class point():
 x = -1
 y = -1
 z = -1
 t = -1
 singleoutlier = False
 largedistance = False
 infinite = False
 distanceToPrev = -1
 inbridge = False
 markedForDeletion = False

def mapRB(scale):
 return([scale,0,1-scale,1])

def euclidianDistance(p1, p2):
 distance = math.sqrt(math.pow((p1[0]-p2[0]),2)+math.pow((p1[1]-p2[1]),2)+math.pow((p1[2]-p2[2]),2))
 return distance

def isInfinite(point):
 if "inf" in str(point.x) or "inf" in str(point.y) or "inf" in str(point.z):
 return True
 else:
 return False

def isOutlier(p1,p2,treshold):
 if euclidianDistance([p1.x,p1.y,p1.z],[p2.x,p2.y,p2.z]) > treshold:
 return True
 else:
 return False

def bridgePoint(startpoint,currentpoint,endpoint,length):
 bridgePointList = []
 for i in range(length):
 p = point()
 p.x = startpoint.x + (((endpoint.x - startpoint.x)/(length+1))*(i+1))
 p.y = startpoint.y + (((endpoint.y - startpoint.y)/(length+1))*(i+1))
 p.z = startpoint.z + (((endpoint.z - startpoint.z)/(length+1))*(i+1))
 p.inbridge = True
 p.t = currentpoint.t
 # ---- p.t = currentpoint.time
 bridgePointList.append(p)

 return bridgePointList

def passedChecklist(point):
 if isInfinite(point):
 return False
 else:
 return True

debuglevel = 2

--------------------------- load into arrays ------------------------------
path1 = '/Users/Yngve/Dropbox/workspaces/masterLogs/'
path2 = '/Users/Yngve/Documents/'

newest = max(glob.iglob(path1+'*.txt'), key=os.path.getctime)
if debuglevel > 0:
 print 'loading < ' + newest + ' >'

#specfile = "/Users/Yngve/Dropbox/workspaces/masterLogs/statistics_test.txt"
#specfile = "/Users/Yngve/Dropbox/workspaces/masterLogs/reference_path.txt"
#specfile = "/Users/Yngve/Dropbox/workspaces/masterLogs/reference_path.txt"

with open("bridge4.txt") as f:
#with open(newest) as f:
 content = f.readlines()

logLineList = []
startidx = 0

find startindex
for i in range(len(content)):
 if "<STARTLOG>" in content[i]:
 startidx = i + 1

if debuglevel > 2:
 print "Startindex: " + str(startidx)

for line in content[startidx:]:

 if "<ENDLOG>" in line:
 break

 lineclass = logLine()
 splittedLine = line.strip('\n\r').split(',')
 lineclass.number = splittedLine[0]
 lineclass.x = splittedLine[1]
 lineclass.y = splittedLine[2]
 lineclass.z = splittedLine[3]
 lineclass.time = splittedLine[4]
 logLineList.append(lineclass)

------- convert raw data to points -----
pList = [point] * len(logLineList)
pListClean = [point] * len(logLineList)

for i in range(len(logLineList)):
 p = point()
 # ------- calculations ------
 p.x = float(logLineList[i].x)
 p.y = float(logLineList[i].y)
 p.z = float(logLineList[i].z)
 p.t = logLineList[i].time

 # -- add to list of points --
 pList[i] = p

------- use pointList[i] to process points --------

clear infinite points at start and end

deletionList = []

fromstart = True
for i in range(len(pList)):
 if isInfinite(pList[i]) and fromstart:
 pList[i].markedForDeletion = True
 else:
 fromstart = False

fromend = True
for i, e in reversed(list(enumerate(pList))):
 if isInfinite(e) and fromend:
 pList[i].markedForDeletion = True
 else:
 fromend = False
shortList = []
for i in range(len(pList)):
 if not pList[i].markedForDeletion == True:
 shortList.append(pList[i])

del pList[:]
pList = copy.deepcopy(shortList)

if debuglevel > 2:
 for i in range(len(pList)):
 print str(i) + '\t['+str(pList[i].x)+',\t'+str(pList[i].y)+',\t'+str(pList[i].z)+']'

----------------------------- Bridge infinite points ------------------------------------
pListWithInfGaps = copy.deepcopy(pList)

if True:
 if debuglevel > 1:
 print 'bridging infinite gaps'
 for i in range(len(pList)):
 if isInfinite(pList[i]):
 # if there is an infinite point, build bridge
 if debuglevel > 2:
 print '---------- found infinite point at <'+str(i)+'>, building bridge -----------'
 firstindex = i
 lastindex = i + 1
 j = i + 1
 inf = True
 while inf:
 if isInfinite(pList[j]):
 inf = True
 j = j + 1
 else:
 inf = False
 lastindex = j

 bridgegap = lastindex - firstindex
 if debuglevel > 2:
 print 'bridging with ' + str(bridgegap) + ' point(s) between <'+str(firstindex-1)+'> to <'+ str(lastindex) + '>'
 bps = bridgePoint(pList[i-1],pList[i],pList[lastindex],bridgegap)
 #bps = bridgePoint(pList[i-1],pList[i],pList[i+1],bridgegap)

 for k in range(len(bps)):
 global pList
 pList[i+k] = bps[k]
 if debuglevel > 2:
 print '--> building [' + str(bps[k].x) + '\t' + str(bps[k].y)+ '\t' + str(bps[k].z) + ']\t at index <' + str(i+k) + '>'
 if debuglevel > 1:
 print '--'
 #print str(i) + '\t['+str(pList[i].x)+',\t'+str(pList[i].y)+',\t'+str(pList[i].z)+']'

---------- assign length to all points ------------
for i in range(len(pList)):
 # first point
 if i == 0:
 pList[i].distanceToPrev=0
 # check euclidian distance to previous point
 else:
 pList[i].distanceToPrev = euclidianDistance([pList[i].x,pList[i].y,pList[i].z],[pList[i-1].x,pList[i-1].y,pList[i-1].z])

----------------------------- Bridge outlier points ------------------------------------
pListWithOutliers = copy.deepcopy(pList)

if True:
 tresh = 0.5
 if debuglevel > 1:
 print 'bridging outlier gaps'
 for i in range(len(pList)-1):
 if isOutlier(pList[i],pList[i+1],tresh):
 # if there is an infinite point, build bridge
 if debuglevel > 2:
 print '---------- found outlier point at <'+str(i)+'>, building bridge -----------'
 firstindex = i
 j = i + 1
 inf = True
 while inf:
 if isOutlier(pList[i],pList[j],tresh):
 inf = True
 j = j + 1
 else:
 inf = False
 lastindex = j

 bridgegap = lastindex - firstindex
 if debuglevel > 2:
 print 'bridging with ' + str(bridgegap) + ' point(s) between <'+str(firstindex-1)+'> to <'+ str(lastindex) + '>'
 bps = bridgePoint(pList[i-1],pList[i],pList[lastindex],bridgegap)
 #bps = bridgePoint(pList[i-1],pList[i],pList[i+1],bridgegap)

 for k in range(len(bps)):
 global pList
 pList[i+k] = bps[k]
 if debuglevel > 2:
 print '--> building [' + str(bps[k].x) + '\t' + str(bps[k].y)+ '\t' + str(bps[k].z) + ']\t at index <' + str(i+k) + '>'
 if debuglevel > 2:
 print '--'
 #print str(i) + '\t['+str(pList[i].x)+',\t'+str(pList[i].y)+',\t'+str(pList[i].z)+']'

----------------Moving Window-----------------------------------

pListUnsmooth = copy.deepcopy(pList)

if True:
 if debuglevel > 2:
 print 'filtering with moving average'
 windowList = []
 windowsize =1

 for i in range(len(pList)):

 if len(windowList) >= windowsize:
 del windowList[0]

 windowList.append(pList[i])

 sumx = 0.0
 sumy = 0.0
 sumz = 0.0
 for j in range(len(windowList)):
 sumx = sumx + windowList[j].x
 sumy = sumy + windowList[j].y
 sumz = sumz + windowList[j].z
 if debuglevel > 3:
 print("%.2f" % windowList[j].x),
 if debuglevel > 3:
 print windowsize, len(windowList)

 #print '--> sumx: ' + str(sumx)

 #if (i >= (windowsize/2)) and (i < len(pList)-(windowsize/2)):
 if len(windowList) >= windowsize:
 pList[i].x = (sumx/windowsize)
 pList[i].y = (sumy/windowsize)
 pList[i].z = (sumz/windowsize)

#------------------print points ---------------------------------
if debuglevel > 2:
 for i in range(len(pList)):
 print str(i) + '\t['+str(pList[i].x)+',\t'+str(pList[i].y)+',\t'+str(pList[i].z)+']\t' + str(pList[i].t)

-------------- assign color to points --------------------------
colorList = [[0,1,0,1]]*len(pList)
for i in range(len(pList)):
 if pList[i].inbridge == True:
 colorList[i]=([1,0,0,1])
 else:
 colorList[i]=([0,0,1,1])

-------- convert processed points to numpy arrays -------
tempX = []
tempY = []
tempZ = []

for i in range(len(pList)):
 #if passedChecklist(pList[i]):
 tempX.append(pList[i].x)
 tempY.append(pList[i].y)
 tempZ.append(pList[i].z)

numpyarrayX = np.array(tempX,dtype=float)
numpyarrayY = np.array(tempY,dtype=float)
numpyarrayZ = np.array(tempZ,dtype=float)

for i in range(len(numpyarrayX)):
 numpyarrayX[i] = numpyarrayX[i] * -1

-------- convert processed points to numpy arrays -------
tempX = []
tempY = []
tempZ = []

for i in range(len(pListUnsmooth)):
 #if passedChecklist(pList[i]):
 tempX.append(pListUnsmooth[i].x)
 tempY.append(pListUnsmooth[i].y)
 tempZ.append(pListUnsmooth[i].z)

numpyarrayX_unsmooth = np.array(tempX,dtype=float)
numpyarrayY_unsmooth = np.array(tempY,dtype=float)
numpyarrayZ_unsmooth = np.array(tempZ,dtype=float)

for i in range(len(numpyarrayX_unsmooth)):
 numpyarrayX_unsmooth[i] = numpyarrayX_unsmooth[i] * -1

-------- convert processed points to numpy arrays -------
tempX = []
tempY = []
tempZ = []

for i in range(len(pListWithOutliers)):
 #if passedChecklist(pList[i]):
 tempX.append(pListWithOutliers[i].x)
 tempY.append(pListWithOutliers[i].y)
 tempZ.append(pListWithOutliers[i].z)

numpyarrayX_outliers = np.array(tempX,dtype=float)
numpyarrayY_outliers = np.array(tempY,dtype=float)
numpyarrayZ_outliers = np.array(tempZ,dtype=float)

for i in range(len(numpyarrayX_outliers)):
 numpyarrayX_outliers[i] = numpyarrayX_outliers[i] * -1

----------- plot the points ------------
fig = pylab.figure()
ax = Axes3D(fig,aspect='equal')#, axisbg='darkgray')

#ax.plot(numpyarrayX_outliers,numpyarrayZ_outliers,numpyarrayY_outliers,c=[0,1,0,1],linewidth=1)
#ax.plot(numpyarrayX_unsmooth,numpyarrayZ_unsmooth,numpyarrayY_unsmooth,c=[0,1,0,1],linewidth=1)
ax.plot(numpyarrayX,numpyarrayZ,numpyarrayY,c=[0,0,1,1],linewidth=1)
ax.scatter(numpyarrayX,numpyarrayZ,numpyarrayY,c=colorList,edgecolors='none')

ax.set_xlabel('X')
ax.set_ylabel('Z')
ax.set_zlabel('Y')

for axis in ax.w_xaxis, ax.w_yaxis, ax.w_zaxis:
 for elt in axis.get_ticklines() + axis.get_ticklabels():
 elt.set_visible(True)

 axis.pane.set_visible(False)
 axis.gridlines.set_visible(False)
 axis.line.set_visible(False)

ax.legend()
pyplot.show()

#
#f = open('/Users/Yngve/Dropbox/workspaces/masterLogs/reference_path_processed.txt','w')
#for i in range(len(numpyarrayX)):
f.write(str(numpyarrayX[i]) + ","+ str(numpyarrayY[i]) +","+ str(numpyarrayZ[i]) +'\n')
#f.close()

__MACOSX/._KinectPlotter.py

lineError.py

from mpl_toolkits.mplot3d import Axes3D
import random
from matplotlib import pyplot
import numpy as np
import pylab
import math

import plotly.plotly as py
from plotly.graph_objs import *

""" euclidian distance """
def euclidianDistance(p1, p2):
 distance = math.sqrt(math.pow((p1[0]-p2[0]),2)+math.pow((p1[1]-p2[1]),2)+math.pow((p1[2]-p2[2]),2))
 return distance

""" Moving average of array """
def moving_average(a, n=3) :
 ret = np.cumsum(a, dtype=float)
 ret[n:] = ret[n:] - ret[:-n]
 return ret[n - 1:] / n

""" Distance between Point and LineSegment """
def DLP(p_in,s0_in,s1_in):
 p = np.array(p_in)
 s0 = np.array(s0_in)
 s1 = np.array(s1_in)

 v = s1 - s0
 w = p - s0

 c1 = float(np.dot(w,v))
 if (c1 <= 0):
 return [float(np.linalg.norm(p-s0)),s0]

 c2 = float(np.dot(v,v))
 if (c2 <= c1):
 return [float(np.linalg.norm(p-s1)),s1]

 b = float(float(c1)/float(c2))
 Pb = s0 + (b * v)

 return [np.linalg.norm(p-Pb),Pb]

class logLine():
 number = -1
 x = -1
 y = -1
 z = -1
 time = -1

""" read files """
#with open(specfile) as f:
#with open(newest) as f:
content = f.readlines()

""" Declarations and variables """
samples = 3
offset = 0
fudge_test = 1
fudge_ref = 0

total_linalg_error = 0
total_timestamp_error = 0

refX = [None]*samples
refY = [None]*samples
refZ = [None]*samples

""" IMPORT POINTS """

specfile = "100_part32.txt"
with open(specfile) as f:
#with open(newest) as f:
 content = f.readlines()

logLineList = []
startidx = 0

find startindex
for i in range(len(content)):
 if "<STARTLOG>" in content[i]:
 startidx = i + 1

print "Startindex: " + str(startidx)

for line in content[startidx:]:

 if "<ENDLOG>" in line:
 break

 lineclass = logLine()
 splittedLine = line.strip('\n\r').split(',')
 #splittedLine = line.strip('\n\r').split()
 #print splittedLine

 #lineclass.number = splittedLine[0]
 #lineclass.x = splittedLine[0]
 #lineclass.y = splittedLine[1]
 #lineclass.z = splittedLine[2]

 #lineclass.number = splittedLine[0]
 lineclass.x = splittedLine[1]
 lineclass.y = splittedLine[2]
 lineclass.z = splittedLine[3]
 #lineclass.time = splittedLine[4]
 logLineList.append(lineclass)

print len(logLineList)

testX = [None]*len(logLineList)
testY = [None]*len(logLineList)
testZ = [None]*len(logLineList)

for i in range(len(logLineList)):
 testX[i] = float(logLineList[i].x)
 testY[i] = float(logLineList[i].y)
 testZ[i] = float(logLineList[i].z)

""" Import path 2 """
specfile = "100_part28.txt"
with open(specfile) as f:
#with open(newest) as f:
 content = f.readlines()

logLineList = []
startidx = 0

find startindex
for i in range(len(content)):
 if "<STARTLOG>" in content[i]:
 startidx = i + 1

print "Startindex: " + str(startidx)

for line in content[startidx:]:

 if "<ENDLOG>" in line:
 break

 lineclass = logLine()
 splittedLine = line.strip('\n\r').split(',')
 #splittedLine = line.strip('\n\r').split()
 #lineclass.number = splittedLine[0]
 #lineclass.x = splittedLine[0]
 #lineclass.y = splittedLine[1]
 #lineclass.z = splittedLine[2]

 #lineclass.number = splittedLine[0]
 lineclass.x = splittedLine[1]
 lineclass.y = splittedLine[2]
 lineclass.z = splittedLine[3]
 #lineclass.time = splittedLine[4]
 logLineList.append(lineclass)

refX = [None]*len(logLineList)
refY = [None]*len(logLineList)
refZ = [None]*len(logLineList)

for i in range(len(logLineList)):
 refX[i] = float(logLineList[i].x)
 refY[i] = float(logLineList[i].y)
 refZ[i] = float(logLineList[i].z)

""" Create sample arrays, ref for refeerence, test for test array """
#for i in range(samples):
 #testX[i] = random.uniform(i,i+fudge_test)
 #testY[i] = random.uniform(i,i+fudge_test)
 #testZ[i] = random.uniform(i,i+fudge_test)

 #refX[i] = random.uniform(offset + i,offset + (i+fudge_ref))
 #refY[i] = random.uniform(i,i+fudge_ref)
 #refZ[i] = random.uniform(i,i+fudge_ref)

""" Filter using Moving Average kernel, while creating Numpy arrays"""
avg_win = 1

#np_testX = np.array(testX,dtype=float)
#np_testY = np.array(testY,dtype=float)
#np_testZ = np.array(testZ,dtype=float)

np_testX = moving_average(np.array(testX,dtype=float),avg_win)
np_testY = moving_average(np.array(testY,dtype=float),avg_win)
np_testZ = moving_average(np.array(testZ,dtype=float),avg_win)

#np_refX = np.array(refX,dtype=float)
#np_refY = np.array(refY,dtype=float)
#np_refZ = np.array(refZ,dtype=float)

np_refX = moving_average(np.array(refX,dtype=float),avg_win)
np_refY = moving_average(np.array(refY,dtype=float),avg_win)
np_refZ = moving_average(np.array(refZ,dtype=float),avg_win)

samples = len(np_refX)

pairlist = [None]*samples
triplist = [None]*samples

""" Find two nearest neighbours, and store indexes in new array for further use """
for i in range(samples):
 current = 'inf'
 p_idx = -1
 l0_idx = -1
 l1_idx = -1

 rl = [None]*samples

 for j in range(samples):
 d = euclidianDistance([np_testX[i],np_testY[i],np_testZ[i]],[np_refX[j],np_refY[j],np_refZ[j]])
 rl[j] = [i,j,d]

 rl.sort(key=lambda x: x[2], reverse=False)
 triplist[i] = [[np_testX[i], np_testY[i], np_testZ[i]] , [np_refX[rl[0][1]], np_refY[rl[0][1]], np_refZ[rl[0][1]]] , [np_refX[rl[1][1]], np_refY[rl[1][1]], np_refZ[rl[1][1]]]]

""" Appends raw data to plot """
fig = pylab.figure()
ax = Axes3D(fig)

ax.scatter(np_testX,np_testY,np_testZ,edgecolors='none',s=2)
ax.scatter(np_refX,np_refY,np_refZ,edgecolors='none',s=2)

ax.plot(np_testX,np_testY,np_testZ,c='blue',linewidth=0.5)
ax.plot(np_refX,np_refY,np_refZ,c='green',linewidth=0.5)

#print ("NP TEST")
#print (np_testX,np_testY,np_testZ)
#print ('NP REF')
#print (np_refX,np_refY,np_refZ)

""" Searches for smallest distance between Line and Point """
for trip in triplist:
 p_in = np.array(trip[0])
 l1_in = np.array(trip[1])
 l2_in = np.array(trip[2])

 dist = DLP(p_in,l1_in,l2_in)
 total_linalg_error = total_linalg_error + dist[0]
 lvec = dist[1]

 ax.scatter([l1_in[0],l2_in[0],p_in[0]],[l1_in[1],l2_in[1],p_in[1]],[l1_in[2],l2_in[2],p_in[2]],edgecolors='none',s=2)
 ax.plot([p_in[0],lvec[0]],[p_in[1],lvec[1]],[p_in[2],lvec[2]], lw=0.5, c='lime')

""" Searches for the smallest Point to Point distance """
for i in range(samples):
 current = 'inf'
 t_idx = -1
 f_idx = -1

 for j in range(samples):
 d = euclidianDistance([np_testX[i],np_testY[i],np_testZ[i]],[np_refX[j],np_refY[j],np_refZ[j]])
 if (d < current):
 current = d
 t_idx = i
 f_idx = j

 pairlist[i] = [current,t_idx,f_idx]

""" Accumulates error measurements """
for p in pairlist:
 total_timestamp_error = total_timestamp_error + p[0]

""" Plots shortest Point to Point distance """
for i in range(samples):
 ax.plot([np_testX[pairlist[i][1]],np_refX[pairlist[i][2]]],[np_testY[pairlist[i][1]],np_refY[pairlist[i][2]]],[np_testZ[pairlist[i][1]],np_refZ[pairlist[i][2]]],c='red', lw=0.5)

#pyplot.facecolor="white"
#ax.axis('off')
#ax.frameon = False

for axis in ax.w_xaxis, ax.w_yaxis, ax.w_zaxis:
 for elt in axis.get_ticklines() + axis.get_ticklabels():
 elt.set_visible(True)

 axis.pane.set_visible(False)
 axis.gridlines.set_visible(True)
 axis.line.set_visible(False)

pyplot.savefig('destination_path.eps', format='eps', dpi=3000)
pyplot.show()

error_per_sample_timestamp = float(total_timestamp_error/float(len(np_refX)))
error_per_sample_timestamp_mm = float(total_timestamp_error/float(len(np_refX)))*(float(1000))
error_per_sample_linalg = float(total_linalg_error/float(len(np_refX)))
error_per_sample_linalg_mm = float(total_linalg_error/float(len(np_refX)))*(float(1000))

print "Processed " + str(samples) + " samples from reference file " + '<REFERENCE FILENAME>' + ", and testfile " + '<TESTFILE NAME>'
print "TOTAL LINEAR APROXIMATED PATH ERROR: \t" + str("%.5f" % total_linalg_error) +' --> ' + str("%.5f" % error_per_sample_linalg) + ' [m] ==> ' + str("%.5f" % error_per_sample_linalg_mm) + "[mm]"
print "TOTAL TIMESTAMP DEPENDENT PATH ERROR: \t" + str("%.5f" % total_timestamp_error) + ' --> ' + str("%.5f" % error_per_sample_timestamp) + ' [m] ==> ' + str("%.5f" % error_per_sample_timestamp_mm) + "[mm]"

__MACOSX/._lineError.py

shiftmatch.m

%% initialization
%cd 'C:\Users\stasjon\Documents\MATLAB'
cd '/Users/Yngve/Documents/MATLAB'
clear all
close all
fclose('all');
delete 'tempfiles*'
delete 'output_files*'

%%
samples = 500;
staticpoint = false;

d = dir(fullfile([pwd,'/currentpaths/*.txt']))
d = d(find(~cellfun(@isempty,{d(:).date})));

filepaths = cell(length(d(:,1)),1)

for i = 1:length(d(:,1))
 filepaths{i} = d(i,1).name
end

%% declare files
disp('loading path files...')

fileList = {};
for i = 1:length(filepaths)
 file{i} = fileread(['currentpaths/' filepaths{i}]);
end

%% Extract datalines
disp 'extracting relevant data from files...'

for i = 1:length(file)

 s = textscan(file{i}, '%s', 'delimiter', '\n');
 idx_start = find(strcmp(s{1}, '<STARTLOG>'), 1, 'first')+1;
 idx_stop = find(strcmp(s{1}, '<ENDLOG>'), 1, 'first')-1;

 fin = fopen(['currentpaths/' filepaths{i}]);
 fout = fopen(['tempfiles/path',num2str(i),'.txt'],'wt');
 for j = 1:idx_stop
 tline = fgetl(fin);
 if (j > idx_start)
 if isempty(strfind(tline,'Infinity'))
 fprintf(fout, '%s\n', tline);
 end
 end
 end
end

%% read timestamps
vectors = cell(length(file),1);
for i = 1:length(file)
 [n,x,y,z,t] = textread(['tempfiles/path',num2str(i),'.txt'],'%f,%f,%f,%f,%s');

 t = cell2mat(t);
 DT2 = datevec(strcat(t),'HH:MM:SS.FFF');
 t_zero = repmat([DT2(1,:)]', 1,numel(DT2(:,1)))';
 t = etime(DT2,t_zero);
 vectors{i} = [x,y,z,t];
end

%% remove duplicate timestamps

for i = 1:length(file)

 remove_idx = [];
 for j = 1:length(vectors{i,1}(:,4))
 if (j > 1)
 if vectors{i,1}(j,4) == vectors{i,1}((j-1),4)
 remove_idx(end+1) = j;
 end
 end
 end
 vectors{i,1}(remove_idx,:) = [];
end

%% \\\\\\\\\\\\\\\\ path points \\\\\\\\\\\\\\\\\\\\\\\\\\\\
if staticpoint == false
 % strip away edges based on perimiter

 startvector = [-0.55,NaN,NaN];
 endvector = [0.35,NaN,NaN];

 for i = 1:length(file)
 remove_idx = [];

 for j = 1:length(vectors{i}(:,1))
 if sum(vectors{i}(j,[1,2,3]) < startvector) > 0
 remove_idx(end+1) = j;
 elseif sum(vectors{i}(j,[1,2,3]) > endvector) > 0
 remove_idx(end+1) = j;
 end
 end
 vectors{i}(remove_idx,:) = [];
 end

 %% apply moving average filter
 disp 'Applying moving average filter to sequences...'
 window_size = 5;

 for i = 1:length(file)
 vectors{i} = [(tsmovavg(vectors{i}(:,[1,2,3]),'s',window_size,1)),vectors{i}(:,4)];
 end

 %% resample vectors by interpolation and extrapolation
 disp 'resampling sequences, to interpolate more points...'

 timeList = {}
 vectors_interpolated = cell(length(file),1);
 for i = 1:length(file)
 tnew{i} = linspace(0,vectors{i}(end,4),samples);
 vectors_interpolated{i}(:,1) = interp1(vectors{i}(:,4),vectors{i}(:,1),tnew{i},'linear','extrap')';
 vectors_interpolated{i}(:,2) = interp1(vectors{i}(:,4),vectors{i}(:,2),tnew{i},'linear','extrap')';
 vectors_interpolated{i}(:,3) = interp1(vectors{i}(:,4),vectors{i}(:,3),tnew{i},'linear','extrap')';
 end

 %% add time to position vector, for speed calculations
 pos_time_veloc_vector = {};
% dt = zeros(length(tnew{i},1));

 for k = 1:length(file)
 pos_time_veloc_vector{k} = [vectors_interpolated{k}, tnew{k}'];

 for i = 1:range(length(pos_time_veloc_vector{k}(:,4))-1)
 dt(i) = pos_time_veloc_vector{k}(i+1,4) - pos_time_veloc_vector{k}(i,4)
 pos_time_veloc_vector{k}(:,5) = dt
 %pos_time_veloc_vector{k}(:,5) = pos_time_veloc_vector{k}(:+1,4) - pos_time_veloc_vector{k}(:,4)
 end
 end

 %% shift to minimize error

 disp 'Finding error between correspondig points by shifting paths relative to reference path (file #1)...'

 error_list = {};
 D = zeros(samples,1);
 shift_error_list = nan(length(file)-1,2);

 % check error for each sample in the sequence by comparing all paths to #1
 figure('Name','Euclidian error','NumberTitle','off')
 for k = 1:length(file)-1

 for i = 1:samples
 % path 1 as reference
 D(i) = norm(vectors_interpolated{1}(i,:) - vectors_interpolated{k+1}(i,:),2);
 %plot(D,'Linewidth',2)
 %drawnow
 end

 D(isnan(D)) = [];
 D_sum = sum(D);
 D_avg = D_sum/length(D);

 shift_offset = samples / 2;

 reference_padded = [nan(shift_offset,3);vectors_interpolated{1};nan(shift_offset,3)];
 testpath_padded = vectors_interpolated{k+1};

 D_last = inf;

 for i = 1:samples
 testpath_padded = [nan(1,3); testpath_padded];

 for j = 1:length(testpath_padded(:,1))
 D(j) = norm(reference_padded(j,:) - testpath_padded(j,:),2);
 end

 D(isnan(D)) = [];
 D_sum = sum(D);
 D_avg = D_sum/length(D);

 current_shift = -shift_offset + i;
 if D_avg < D_last
 D_last = D_avg;
 best_shift = current_shift;
 best_error = D_avg;
 end

 figure(1)
 subplot(5,1,1);
 plot(reference_padded(:,1),'b','Linewidth',2), hold on
 plot(testpath_padded(:,1),'r','Linewidth',2), hold off

 subplot(5,1,2);
 plot(reference_padded(:,2),'b','Linewidth',2), hold on
 plot(testpath_padded(:,2),'r','Linewidth',2), hold off

 subplot(5,1,3);
 plot(reference_padded(:,3),'b','Linewidth',2), hold on
 plot(testpath_padded(:,3),'r','Linewidth',2), hold off

 subplot(5,1,[4,5]);
 plot(D,'Linewidth',2)
 %ylim([0,0.5])
 xlim([0,samples])
 drawnow
 end

 disp(['optimal shift index: ' num2str(best_shift)])
 disp(['optimal error value: ' num2str(best_error)])

 shift_error_list(k,:) = [best_shift,best_error];

 errormeasurements.norm2_sequetial_p2p = best_error;
 error_list{k} = errormeasurements;
 end
 close(1);

 %% pad and shift vectors

 disp(['shift value of ' num2str(best_shift) ', which minimizes error to avg [m] ' num2str(best_error)])

 for k = 1:length(file)
 vectors_padded{k} = [nan(abs(max(abs(shift_error_list(:,1)))),3);vectors_interpolated{k};nan(max(abs(shift_error_list(:,1))),3)];
 end

 vectors_final{1} = vectors_padded{1};

 for k = 2:length(file)
 if shift_error_list(k-1,1) >= 0
 % fjerner bak, legger til forran -> forskyves -->
 vectors_final{k} = [nan(abs(shift_error_list(k-1,1)),3);vectors_padded{k}(1:end-abs(shift_error_list(k-1,1)),:)]; % forskyver vha padding
 else
 % fjerner forran, legger til bak -> forskyves <--
 vectors_final{k} = [vectors_padded{k}(abs(shift_error_list(k-1,1)-1):end,:);nan(abs(shift_error_list(k-1,1)),3)]; % forskyver vha padding
 end
 end

 %% create mean vector
 x_temp = zeros(length(vectors_final{1}(:,1)),length(file));
 y_temp = zeros(length(vectors_final{1}(:,2)),length(file));
 z_temp = zeros(length(vectors_final{1}(:,3)),length(file));

 for k = 1:length(file)
 x_temp(:,k) = vectors_final{k}(:,1);
 y_temp(:,k) = vectors_final{k}(:,2);
 z_temp(:,k) = vectors_final{k}(:,3);

 end

 meanvector_nan = zeros(length(vectors_final{1}(:,1)),3);
 meanvector_nan(:,1) = mean(x_temp,2);
 meanvector_nan(:,2) = mean(y_temp,2);
 meanvector_nan(:,3) = mean(z_temp,2);

 x_temp(~any(~isnan(x_temp), 2),:)=[];
 y_temp(~any(~isnan(y_temp), 2),:)=[];
 z_temp(~any(~isnan(z_temp), 2),:)=[];

 %x_temp = x_temp(all(~isnan(x_temp),2),:);
 %y_temp = y_temp(all(~isnan(y_temp),2),:);
 %z_temp = z_temp(all(~isnan(z_temp),2),:);

 meanvector = zeros(length(x_temp(:,1)),3);
 meanvector(:,1) = nanmean(x_temp,2);
 meanvector(:,2) = nanmean(y_temp,2);
 meanvector(:,3) = nanmean(z_temp,2);

 varvector = zeros(length(x_temp(:,1)),3);
 varvector(:,1) = nanstd(x_temp,0,2);
 varvector(:,2) = nanstd(y_temp,0,2);
 varvector(:,3) = nanstd(z_temp,0,2);

 %% plot points
 figure('Name','Isolated path plots','NumberTitle','off')

 subplot(3,1,1);
 title('X');
 %plot(vectors_final{1}(:,1),'-b','Linewidth',2),hold on;
 %plot(meanvector_nan(:,1),'-g','Linewidth',2),hold on;
 for k = 1:length(file)
 plot(vectors_final{k}(:,1),':r','Linewidth',2),hold on;
 end

 subplot(3,1,2);
 hold on
 title('Y');
 %plot(vectors_final{1}(:,2),'b','Linewidth',2),hold on;
 %plot(meanvector_nan(:,2),'-g','Linewidth',2),hold on;
 for k = 1:length(file)
 plot(vectors_final{k}(:,2),':r','Linewidth',2),hold on;
 end

 subplot(3,1,3);
 hold on
 title('Z');
 %plot(vectors_final{1}(:,3),'-b','Linewidth',2),hold on;
 %plot(meanvector_nan(:,3),'-g','Linewidth',2),hold on;
 for k = 1:length(file)
 plot(vectors_final{k}(:,3),':r','Linewidth',2),hold on;
 end

 figure('Name','3D path plot','NumberTitle','off')
 hold on
 plot3(vectors_final{1}(:,1),vectors_final{1}(:,2),vectors_final{1}(:,3),'b','Linewidth',2),hold on;
 plot3(meanvector_nan(:,1),meanvector_nan(:,2),meanvector_nan(:,3),'g','Linewidth',2),hold on;
 title('3D path'),xlabel('X'),ylabel('Y'),zlabel('Z');
 for k = 2:length(file)
 plot3(vectors_final{k}(:,1),vectors_final{k}(:,2),vectors_final{k}(:,3),':r','Linewidth',2),hold on;
 disp(filepaths{k})
 end

 %% nearest neighbour search
 indexArray_list = {};

 for k = 2:length(file)

 indexArray = zeros(length(vectors_final{k}),3); %stores p1_idx, p2_idx, dist
 for i = 1:length(vectors_final{1}(:,1)) % always compare to first path
 d = inf;
 for j = 1:length(vectors_final{k}(:,1))
 n = norm((vectors_final{1}(i,:) - vectors_final{k}(j,:)),2);
 if n < d
 d = n;
 indexArray(i,:) = [i,j,d];
 end
 end
 display([num2str(i),' , ', num2str(j), ' --> ', num2str(floor(i/(length(vectors_final{1}(:,1)))*100)), '%'])
 end

 sum_all_nn = sum(indexArray(:,3));
 disp(['nearest neighbour euclidian error: ' num2str(sum_all_nn), ' -> avg [m] ' num2str(sum_all_nn/nnz(indexArray(:,1)))])

 indexArray_list{k-1} = indexArray;

 error_list{k-1}.nn_p2p = sum_all_nn/nnz(indexArray(:,1));
 end

 %% plotter
 figure('Name','3D path plot with samplepoints','NumberTitle','off')
 hold on

 for i = 1:size(vectors_final{1}(:,1))
 if indexArray_list{1}(i,2) ~= 0
 plot3(vectors_final{1}(:,1),vectors_final{1}(:,2),vectors_final{1}(:,3),'-xb','Linewidth',2);
 end
 end

 for k = 2:length(file)
 for i = 1:size(vectors_final{1}(:,1))
 if indexArray_list{k-1}(i,2) ~= 0
 plot3(vectors_final{k}(:,1),vectors_final{k}(:,2),vectors_final{k}(:,3),'-xr','Linewidth',2);
 plot3([vectors_final{1}(indexArray_list{k-1}(i,1),1);vectors_final{k}(indexArray_list{k-1}(i,2),1)],[vectors_final{1}(indexArray_list{k-1}(i,1),2);vectors_final{k}(indexArray_list{k-1}(i,2),2)],[vectors_final{1}(indexArray_list{k-1}(i,1),3);vectors_final{k}(indexArray_list{k-1}(i,2),3)],'g')
 end
 end
 end

 %% plot statistics
 %figure('Name','Variance and mean','NumberTitle','off')
 fig = figure(90);
 subplot(3,1,1);
 title('X');
 hold on
 plot(meanvector(:,1),'b','Linewidth',2)
 plot(meanvector(:,1)-varvector(:,1),':r')
 plot(meanvector(:,1)+varvector(:,1),':r')

 subplot(3,1,2);
 title('Y');
 hold on
 plot(meanvector(:,2),'b','Linewidth',2)
 plot(meanvector(:,2) - varvector(:,2),':r')
 plot(meanvector(:,2) + varvector(:,2),':r')

 subplot(3,1,3);
 title('Z');
 hold on
 plot(meanvector(:,3),'b','Linewidth',2)
 plot(meanvector(:,3) - varvector(:,3),':r')
 plot(meanvector(:,3) + varvector(:,3),':r')

 xlow = meanvector(:,1)-varvector(:,1)
 xhig = meanvector(:,1)+varvector(:,1)
 ylow = meanvector(:,2)-varvector(:,2)
 yhig = meanvector(:,2)+varvector(:,2)
 zlow = meanvector(:,3)-varvector(:,3)
 zhig = meanvector(:,3)+varvector(:,3)
 %p = fig2plotly(fig);

 avgstd = mean(varvector)

 %% save vectors for pyplot

 dlmwrite(['output_files/vector_mean'],meanvector)
 dlmwrite(['output_files/vector_std'],varvector)

 dlmwrite(['output_files/vector_xhi.txt'],xhig)
 dlmwrite(['output_files/vector_xlo.txt'],xlow)
 dlmwrite(['output_files/vector_yhi.txt'],yhig)
 dlmwrite(['output_files/vector_ylo.txt'],ylow)
 dlmwrite(['output_files/vector_zhi.txt'],zhig)
 dlmwrite(['output_files/vector_zlo.txt'],zlow)

 dlmwrite(['output_files/vector_',filepaths{k}],vectors_final{k})

 for k = 1:length(filepaths)
 dlmwrite(['output_files/vector_',filepaths{k}],vectors_final{k})
 end

else
 %% \\\\\\\\\\\\\\ Static statistics \\\\\\\\\\\\\\\\\\\\\
 stats_vec = vectors{1}
 stats_mean = mean(stats_vec(:,[1,2,3]),1)
 stats_var = var(stats_vec(:,[1,2,3]))
 stats_std = std(stats_vec(:,[1,2,3]))

 figure('Name','3D scatter plot','NumberTitle','off')
 scatter3(stats_vec(:,1),stats_vec(:,2),stats_vec(:,2));

end

%% destructor operations
fclose('all');

%%
% weakness:
% - may skip to nearest neighbour point, but to different pathsegment

%% add
% - average distance from mean

__MACOSX/._shiftmatch.m

