

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING,

UNIVERSITY OF STAVANGER, NORWAY

Comprehensive Python Module for Computing

and Visualizing Dynamic Time Warping

Alignment: DTWPy

Hafiz Muhammad Gulzar

hmgulzar88@gmail.com

Student no. 228839

15-06-2015

i

This thesis is dedicated to my parents.

For their endless love, support and encouragement.

ii

Acknowledgement

I would like to express my special appreciation and thanks to my supervisor Associate Professor

Dr. Tomasz W. Wlodarczyk, you have been a tremendous mentor for me. I would like to thank

you for encouraging my research and for allowing me to grow as a Computer Science graduate.

Thank you,

Hafiz Muhammad Gulzar

iii

Table of Contents

Table of Contents ... iii

List of figures .. v

List of Tables ... vi

Abstract ... vii

Chapter 1: Introduction ... 1

1.1 Organization of this thesis ... 2

Chapter 2: Literature Review .. 3

2.1 Classical DTW Algorithm ... 3

2.1.1 Constraints .. 6

2.1.1.1 Boundary constraint .. 6

2.1.1.2 Continuity constraint ... 7

2.1.1.3 Monotonicity constraint .. 7

2.1.1.4 Slope weighting .. 8

2.1.1.5 Step patterns .. 9

2.1.1.6 Windowing functions .. 16

2.2 Classification of DTW .. 19

2.2.1 Constraints based .. 19

2.2.2 Data Abstraction based ... 19

2.2.3 Indexing based .. 19

2.3 Derivative Dynamic Time Warping .. 20

2.4 FastDTW ... 21

2.4.1 Coarsening .. 21

2.4.2 Projection .. 21

2.4.3 Refinement.. 22

2.4.4 Algorithm pseudocode .. 22

Chapter 3: The Python Module: DTWPy ... 24

3.1 Implementation Overview ... 25

3.1.1 Algorithms .. 25

3.1.1.7 Classical DTW .. 25

3.1.1.8 Derivative DTW (DDTW) .. 27

3.1.1.9 FastDTW ... 27

iv

3.1.2 Step Patterns in DTWPy ... 28

3.1.3 Windowing in DTWPy ... 29

3.1.4 Plotting in DTWPy ... 29

Chapter 4: Results ... 31

4.1 DTW Package in R .. 31

4.2 Mlpy .. 31

4.3 Correctness of DTWPy ... 31

4.4 Comparison of DTW implementations ... 38

4.5 Performance Analysis ... 39

Chapter 5: Conclusion... 42

Appendix ... 43

5.1 Distance measures ... 43

5.2 Step patterns .. 43

5.3 Plotting module ... 54

5.4 DTWPy.. 56

References ... 62

v

List of figures

Figure 1: Dynamic Time Warping .. 5

Figure 2: Boundary condition ... 6

Figure 3: Continuty constraint .. 7

Figure 4: Monotonicity constraint .. 8

Figure 5: SCband .. 17

Figure 6: Paliwal window ... 18

Figure 7: Itakura parallelogram .. 18

Figure 8: Alignment of two identical time series.. 20

Figure 9: Alignment of two time series, with a slight change in local slop of one time series 20

Figure 10: The fastDTW algorithm .. 22

Figure 11: Architecture of DTWPy .. 24

Figure 12: DTWPy classical DTW example .. 26

Figure 13: Usage of DDTW .. 27

Figure 14: Usage of fastDTW ... 28

Figure 15: Usage of step patterns.. 28

Figure 16: Usage of windowing functions .. 29

Figure 17: Alignment plot with query and template time series ... 30

Figure 18: Usage of windowing functions .. 30

Figure 19: Classical DTW with Sakoe-Shiba step pattern.. 32

Figure 20: DDTW with Sakoe-Shiba step pattern .. 33

Figure 21: FastDTW with Sakoe-Shiba step pattern .. 33

Figure 22: Classical DTW with Rabiner-Myers step patterns .. 34

Figure 23: DDTW with Rabiner-Myers step patterns... 34

Figure 24: FastDTW with Rabiner-Myers step patterns ... 35

Figure 25: Classical DTW with Rabiner-Myers step patterns and other 36

Figure 26: DDTW with Rabiner-Myers step patterns and other... 36

Figure 27: FastDTW with Rabiner-Myers step patterns and other ... 37

Figure 28: Execution time w.r.t lenght of time series ... 40

Figure 29: Execution time w.r.t length of time series ... 41

vi

List of Tables

Table 1: Detail of step patterns classified by Sakoe-Shiba ... 11

Table 2: Detail of step patterns classified by Rabiner-Myers ... 15

Table 3: Detail of commonly used step patterns ... 16

Table 4: Implementation of DTW algorithms .. 38

Table 5: Implementation of global constraints ... 38

Table 6: Implementation of local constraints.. 39

Table 7: System specifications.. 39

vii

Abstract

Dynamic Time Warping (DTW) is a well-known technique used to determine alignment between

two temporal sequences. DTW has been used in wide range of applications and it can be applied

on any data which can be represented as linear sequence. Existing DTW libraries have out dated

implementation of core DTW algorithm, which result in low performance or are inapplicable for

big sequences. The aim of this thesis is to present, a comprehensive DTW library, encapsulating t

implementation of DTW variants with recently proposed efficient algorithms. In this thesis I

presented a python module for computing and visualizing DTW alignment: DTWPy. DTWPy

has implementation of classical DTW, almost all the DTW variants proposed in literature to date,

with recently proposed performance efficient algorithms i.e. fastDTW and DDTW. Algorithms

implemented in DTWPy are tested thoroughly and give correct results. Correctness is verified by

comparing it with existing R implementation. Furthermore, I have compared algorithms

implemented, and performance of DTWPy with existing libraries. DTWPy have the most

comprehensive implementation of DTW algorithms present in literature to date, and is applicable

on large temporal sequence. The architecture of DTWPy is designed to be flexible, to scale and

accommodate possible future improvements.

1

Chapter 1: Introduction

Dynamic time warping (DTW) is an approach used to determine the similarity between two time

series by shrinking or expanding the selected time series. DTW [1] was introduced in 1960s,

which gain its popularity when it was further explored in 1970s under the umbrella of speech

recognition [2]. After that, improvements has been made on DTW and it has been used widely in

many computing applications of different domains like signature matching, gesture recognition,

data mining, computer vision, surveillance, chemical engineering, protein sequence alignment

[3] , human motion recognition [4], and in word recognition [5].

Existing DTW libraries cover only a limited subset of the DTW spectrum, typically providing

just the most basic functionality. A few libraries that cover most of step patterns and windowing

functions contain outdated implementation of the core algorithm, which leads to reduced

performance. R and Pandas[6] are the two most common tools used by data analysts. R provides

one comprehensive DTW library, though it does not yet contain the latest performance

improvements made possibly by current research. Pandas and Python in general, have multiple

minor and incomplete DTW implementations. There is clearly a need for such a comprehensive

library which contains performance improvements made by latest research work with all the

DTW variants, DTW algorithm vary on the basis of step patterns, windowing functions and

improvements made by research work.

Step patterns also referred as dynamic programming (DP) formulation and local constraints in

literature. Local constraints determine the contribution of adjacent cell to determine the warping

path between temporal sequences, whereas windowing functions limit overall search space to

calculate DTW alignment. In this thesis I presented a comprehensive DTW module DTWPy, for

computing and visualizing DTW alignments. DTWPy has Implemented classical DTW [2], with

latest efficient core DTW algorithms i.e. fastDTW [7] and DDTW [8]. DTWPy is fully equipped

with almost all the step patterns proposed in literature to date, and most commonly used

windowing functions. DTWPy has implementation of step patterns classified by Sakoe-Chiba

[2], Rabiner-Myers [5], with well know commonly used step patterns e.g. symmetric1 and

symmetric2. In windowing functions DTWPy implemented Itakura parallelogram [9] SCband [2]

and Paliwal window[10].

Moreover, I have tested the correctness, compared performance and DTW variants covered by

DTWPy with R package [11] and mlpy[12]. From the results it can be concluded that Algorithms

implemented by DTWPy, determine optimal alignment between two temporal sequences and

DTWPy is the most comprehensive implementation of core DTW algorithms and DTW variants

to date. The architecture of DTWPy is designed flexible so that possible future research work

improvements can be incorporated.

2

1.1 Organization of this thesis

Chapter 2 gives literature review in detail, classification of DTW algorithms, constraints which

have to follow in order to get optimal warping path between two time series. In addition to that,

it describes classical DTW and latest research work done in DTW domain to improve complexity

of DTW algorithms. In chapter 3, I discussed the usage of DTWpy, algorithms, step patterns,

windowing functions, and alignment visualization which are implemented by DTWPy. Chapter 4

describes the correctness of DTWPy and compares performance with R package. Finally in

Chapter 5 conclusion will be summarized and significance of DTW is evaluated.

3

Chapter 2: Literature Review

Dynamic Time warping is an algorithm, used to calculate the alignment between two temporal

sequences (query and a template). In the beginning it was only used for speech recognition.

Speech recognition typically referred to conversion of spoken words to textual words. In speech

recognition audio data is converted into templates, and to run the actual temporal signal against

each template by applying some constraints, to find the best match. Best match template always

have the minimum distance measure from query (input). The use of DTW is not limited to

speech recognition; in fact it can be applied on any type of temporal data, which can be

represented in linear sequence. Initially proposed DTW algorithm (referred as classical DTW in

this thesis) has quadratic time and space complexity. Let’s understand of classical DTW

algorithm in detail.

2.1 Classical DTW Algorithm

Classical DTW has quadratic time and space complexity and is explained eminently in

[8][13][3][7][14] literature. As mentioned earlier, DTW can be applied on any kind of temporal

data which can be presented in linear sequence, which can vary in time and speed. To understand

DTW let’s assume we have two time series X and Y of length n and m respectively, where:

 𝑋 = 𝑥1, 𝑥2, 𝑥3, 𝑥4, … , 𝑥𝑛 (1)

 𝑌 = 𝑦1, 𝑦2, 𝑦3, 𝑦4, … , 𝑦𝑚 (2)

Classical DTW uses dynamic programming approach to find the alignment between two time

series which align the time series based on minimized distance. Dynamic Programming (also

referred as DP) is a powerful approach which divides the big problem into smaller sub-problems.

The result of smaller sub-problems is calculated and then aggregated to calculate the solution of

the actual problem. Due to this property it is also known as divide and conquer approach, and

remember your past, since result of sub-problem contributes to solve original problem. It can be

achieved by using two different approaches i.e. top down and bottom up. In the top down

approach, problem is solved by breaking it down into sub-problems. Sub-problems are then

solved independently, and result of each sub problem is stored. This eventually contributed

towards overall solution. On the other hand DTW is a step by step, bottom up approach; where

the result of sub-problem is used to solve the given problem progressively. For example in DTW

sub-problems 𝐷(𝑖, 𝑗) is solved first as shown in equation 7, and used progressively to calculate

solution for 𝐷(𝑛, 𝑚) as shown in equation 3.

The first step to calculate DTW alignment between two time series, is to construct an n-by-m

cost matrix where each (𝑖𝑡ℎ, 𝑗𝑡ℎ) element corresponds to distance measured between 𝑥𝑖 and 𝑦𝑗.

Distance can be measure in by using different distance metrics e.g. simple Manhattan difference

4

𝑑(𝑥𝑖 , 𝑦𝑗) = |𝑥𝑖 − 𝑦𝑗|, squared distance 𝑑(𝑥𝑖, 𝑦𝑗) = (𝑥𝑖, 𝑦𝑗)
2
 or Euclidian distance, or any other

1

distance measure which describes the alignment between the time series. Based on cumulative

distance for each path in the cost matrix, best match between time series can be found by using

Euclidian distance which is one of the most common methods for distance calculation in DTW

as shown in the following equation 3:

 𝐷𝑇𝑊(𝑋, 𝑌) = 𝑚𝑖𝑛 {∑ 𝑑(𝑤𝑘)
𝑘

𝑘=1
 (3)

Where 𝑑 the selected distance measure between two time series, and 𝑤𝑘 is the cost matrix

element that will be the 𝑘𝑡ℎ element of warping path 𝑊 as shown in equation 4

 𝑊 = 𝑤1, 𝑤2, 𝑤3, 𝑤4, … , 𝑤𝑘 (4)

The warping path can be found using dynamic programming formulation (also known as step

patterns, local constraints), which determine the contribution of neighboring cells in the cost

matrix to fill cell 𝐷(𝑖, 𝑗) as given in equation 7. DP formulation can be symmetric and

asymmetric. In asymmetric formulation one of the points around the diagonal i.e. 𝐷(𝑖 − 1, 𝑗) or

𝐷(𝑖, 𝑗 − 1) is skipped or given more weight. Table 1 contains various examples of different

symmetric and asymmetric DP algorithms used in DTW. However equation 7 can be termed as

a symmetric formulation, since both points around the diagonal of the current point, are used

with equal weights.

Research experiments reveals that symmetric formulation gives better results as compared to

asymmetric in speech recognition [14]. A DP formulation e.g. equation 7, in this context, gives

the cumulative distance for each point by taking sum of distance with the minimum of

cumulative distances of the adjacent diagonal points. It fills the global cost matrix D by first

filling the first column and first row of the matrix, in the following fashion as shown in equation

5,6 and 7 by initializing D(0,0) = 0

 𝐷(𝑖, 1) = 𝐷(𝑖 − 1,1) + 𝑑(𝑖, 1) (5)

 𝐷(1, 𝑗) = 𝐷(1, 𝑗 − 1) + 𝑑(1, 𝑗) (6)

 𝐷(𝑖, 𝑗) = 𝑑(𝑖, 𝑗) + 𝑚𝑖𝑛[𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖 − 1, 𝑗 − 1), 𝐷(𝑖, 𝑗 − 1)] (7)

Once the global cost matrix has been filled with accumulated distances, the next step is to find

the warping path between time series by using cost matrix. The warping path can found easily

with the help of greedy approach, by backtracking the cost matrix. A greedy approach in

algorithm theory makes the local optimal decisions, at the current position with assumption that

it will give global optimal at the end. The warp path search starts from 𝐷(𝑛, 𝑚) and backtracks

with the evaluation of all adjacent cells from left, down, diagonally to the bottom left. If any of

1
Akila and Chandra[15] contains the review of different distance functions which can be used in

DTW.

5

these adjacent cell contain the minimum values, it is then added to the start of the warping path

until 𝐷(1,1) is reached.

Figure 1: Dynamic Time Warping

Figure 1 shows the execution of DTW to calculate warping path between query and a template

time series. DTW algorithm starts from point 𝐷(0,0) till the end at the highest point i.e. 𝐷(𝑛, 𝑚).

At any point 𝐷(𝑖, 𝑗), cumulative distance for each point is calculated by taking sum of distance

𝑑(𝑖, 𝑗) with the minimum of cumulative distances of all the successor points as shown in

equation 7. However the number and contribution of successor points differ with respect to each

DP formulation, Table 1, 2 and 3 has almost all the DP formulations also known as step patterns;

I will further discuss step patterns in section 2.1.1.4 and 2.1.15 in detail.

For simplicity let’s assume a symmetric step pattern, where all the adjacent points participate on

equal basis. One DP formulation is evaluated for all the point, and cost matrix is filled with

accumulated distance measures. It is now possible to find optimal warping path by backtracking

from the 𝑝𝑜𝑖𝑛𝑡(𝑛, 𝑚), figure 1 shows possible warping path which can be obtained after

backtracking the cost matrix. From the careful observations over optimal warping path obtained

from the cost matrix, few improvements has been suggested in the literature and referred as

constraints.

6

2.1.1 Constraints

In order to find optimal warping path, from all possible warping paths few constraints must be

satisfied, while running the DTW algorithm. Constraints not only reduce the search space for

warping path but also increase the performance of the algorithm. Constraints can be divided into

two categories, local constraints and global constraints. Local constraints take care of the slope

when a step is made to in local path; hence contribute towards calculating the accurate path. On

the other hand global constraints reduce the search space for warping path, and improve overall

efficiency of DTW algorithm. All the global and local constraints are described as follow:

2.1.1.1 Boundary constraint

Boundary condition focuses on head and tail of the warping path. It states that the first point of

the warping point must be 𝑤1 = (1,1) and the last point should be 𝑤𝑘 = (𝑛, 𝑚), where 𝑛 and 𝑚

represent the length of query and template time series respectively. The warping paths which do

not satisfy boundary conditions are often referred as incorrect paths.

Figure 2: Boundary condition

Graphical representation of boundary constraint is shown in figure 2, where dashed line starts

from the first cell of the cost matrix and end on the last cell 𝑤𝑘 = (𝑛, 𝑚). On the other hand solid

line starts from initial cell but ends at 𝑤𝑘 = (𝑛, 𝑚 − 1), which violate the boundary constraint,

hence can be termed as incorrect warping path.

7

2.1.1.2 Continuity constraint

Continuity constraint makes sure that, a valid warping path must be continues. In other words it

makes sure the contribution of every point in both template and query sequences. It can also be

stated as; each cell in the cost matrix must the restricted to its neighboring cells, or the previous

point of any point in the cost matrix should be (𝑖𝑘 − 1, 𝑗𝑘), (𝑖𝑘, 𝑗𝑘 − 1), (𝑖𝑘 − 1, 𝑗𝑘 − 1).

Figure 3: Continuty constraint

Figure 3 elaborates continuity constraint, it can be seen that path represented by solid line is

fulfilling the boundary constraints but defying the continuity constraint. It is vital that an optimal

path must obey all the constraints at once.

2.1.1.3 Monotonicity constraint

A valid warping path must be continues, have valid boundary points and must be monotonic in

nature. Monotonicity constraint enforces that; the points of warping path must have increasing

trend. It can be stated as a warping path cannot decrease in time, it can be straight or can increase

i.e. for every 𝑖𝑘 ≥ 𝑖𝑘 − 1 and 𝑗𝑘 ≥ 𝑗𝑘 − 1.

8

Figure 4: Monotonicity constraint

The warping path represented by solid line in the figure 4, fulfill all other DTW constraint but

has decreases in time for a moment, which is enough to disregard. A valid warping path must

fulfill all three above mentioned constraints i.e. boundary constraint, continuity constraint and

monotonicity constraints. All three together, define the validity of warping path.

However there exist some other constraints but they are used either to increase overall

performance of DTW algorithm, or define the contribution of adjacent cells. Let’s discuss how

constraints contribute to improve time and space complexity of the DTW algorithm.

2.1.1.4 Slope weighting

In order to determine the optimal path it is necessary to apply certain local continuity constraints

on warping path, as mentioned above in continuity constraint, contribution of every legal point is

vital. Itakura [9] proposed four types of weighting function which can be applied on the arc to

make it biased towards the diagonal, further Sakoe-Chiba [2] suggested normalization function

to put equal weight on all segments of local path.

To understand slope weighting let’s update equation 7 to equation 8 (shown below) with the

addition of slope weight 𝜛, where 𝜛 is a positive real number. The value of 𝜛 effect the

warping path, to make it more biased towards the diagonal [8].

 𝐷(𝑖, 𝑗) = 𝑑(𝑖, 𝑗) + 𝑚𝑖𝑛[𝐷𝜛(𝑖 − 1, 𝑗), 𝐷(𝑖 − 1, 𝑗 − 1), 𝐷𝜛(𝑖, 𝑗 − 1)] (8)

9

If we give more weight to cell, it means, that cell is more likely not going to be part of warping

path. However selection of step pattern is not obvious, it depend on type of application where

DTW will be applied. It is seen symmetric step patterns gives better results in word recognition

then asymmetric, in the following section all the famous step patterns are discussed in detail.

2.1.1.5 Step patterns

As mentioned earlier, first step of DTW algorithm is to fill the cost matrix with the distance

according to dynamic programming formulation. In context of DTW dynamic programming

formulation is referred as step pattern. In literature step patterns also referred as local continuity

constraints and local constraints.

Step patterns define the value for 𝐷(𝑖, 𝑗) given the 𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖 − 1, 𝑗 − 1), 𝐷(𝑖, 𝑗 − 1) and it

is calculated progressively for all the cells in the cost matrix. In other words, it specify the

allowed steps for the warping on each moment, we can take equation 7 as an example of step

pattern where it determine the next point for the warping path.

In the literature[2][5][16] step patterns has been categorized into three different classifications.

The most famous classification is of Sakoe and Chiba[2], classified step patterns based on their

symmetry and slope constraints and proposed four step patterns, each step pattern has its

symmetric and asymmetric formulation. Detailed description of Sakoe-Chiba step patterns is

given in the following table 1.

Step Patterns Classified by Sakoe-Chiba

Name

DP-Algorithm Graphical representation Normalization

symmetricP0

g[i,j] = min(

 g[i-1,j-1] + 2 * d[i ,j] ,

 g[i ,j-1] + d[i ,j] ,

 g[i-1,j] + d[i ,j])

N+M

asymmetricP0

g[i,j] = min(

 g[i ,j-1] + 0 * d[i ,j] ,

 g[i-1,j-1] + d[i ,j] ,

 g[i-1,j] + d[i ,j])

N

10

symmetricP05

g[i,j] = min(

 g[i-1,j-3] + 2 * d[i ,j-2] + d[i ,j-1] + d[i

,j],

 g[i-1,j-2] + 2 * d[i ,j-1] + d[i ,j] ,

 g[i-1,j-1] + 2 * d[i ,j] ,

 g[i-2,j-1] + 2 * d[i-1,j] + d[i ,j] ,

 g[i-3,j-1] + 2 * d[i-2,j] + d[i-1,j] + d[i

,j])

N+M

asymmetricP05

g[i,j] = min(

 g[i-1,j-3] +0.33 * d[i ,j-2] +0.33 * d[i ,j-1]

+0.33 * d[i ,j] ,

 g[i-1,j-2] +0.5 * d[i ,j-1] +0.5 * d[i ,j] ,

 g[i-1,j-1] + d[i ,j] ,

 g[i-2,j-1] + d[i-1,j] + d[i ,j] ,

 g[i-3,j-1] + d[i-2,j] + d[i-1,j] + d[i

,j])

N

symmetricP1

g[i,j] = min(

 g[i-1,j-2] + 2 * d[i ,j-1] + d[i ,j] ,

 g[i-1,j-1] + 2 * d[i ,j] ,

 g[i-2,j-1] + 2 * d[i-1,j] + d[i ,j])

N+M

asymmetricP1

g[i,j] = min(

 g[i-1,j-2] +0.5 * d[i ,j-1] +0.5 * d[i ,j] ,

 g[i-1,j-1] + d[i ,j] ,

 g[i-2,j-1] + d[i-1,j] + d[i ,j])

N

symmetricP2

g[i,j] = min(

 g[i-2,j-3] + 2*d[i-1,j-2]+2*d[i ,j-1]+d[i,j] ,

 g[i-1,j-1] + 2*d[i ,j] ,

 g[i-3,j-2] + 2*d[i-2,j-1]+2*d[i-1,j]+d[i,j])

N+M

11

asymmetricP2

g[i,j] = min(

 g[i-2,j-3] +0.67 * d[i-1,j-2] +0.67 * d[i ,j-

1] +0.67 * d[i ,j] ,

 g[i-1,j-1] + d[i ,j] ,

 g[i-3,j-2] + d[i-2,j-1] + d[i-1,j] +

d[i ,j])

N

Table 1: Detail of step patterns classified by Sakoe-Shiba

Table 1 have all the step patterns classified by Sakoe-Shiba, however it can be further

categorized as symmetric-SC
2
 step patterns and asymmetric-SC step patterns. It is worth noticing

that all the asymmetric-SC step patterns have normalization factor N, where N is the length of

query temporal sequence. It is due to the fact that in asymmetric-SC step patterns, cells on the

right side (downside) of the diagonal has given less weight (shown as number on the arcs) as

compared to those on the left side (upside).

However Sakoe-Shiba classification is not the only classification of this kind. Rabiner and

Juang[16] also classified different step patterns, unlike Sakoe-Chiba this classification is based

on local continuity, slope weighting and smoothed. Following table 2 shows step patterns

classified by Rabiner-Myers.

Step Patterns classified by Rabiner-Myers

Name DP-Algorithm Graphical representation Normalization

typeIa

g[i,j] = min(

g[i-2,j-1] + d[i-1,j] + 0 * d[i ,j] ,

g[i-1,j-1] + d[i ,j] ,

g[i-1,j-2] + d[i ,j-1] + 0 * d[i ,j])

N/A

2
 SC stands for Sakoe-Shiba

12

typeIb

g[i,j] = min(

g[i-2,j-1] + d[i-1,j] + d[i ,j] ,

g[i-1,j-1] + d[i ,j] ,

g[i-1,j-2] + d[i ,j-1] + d[i ,j])

N/A

typeIc

g[i,j] = min(

 g[i-2,j-1] + d[i-1,j] + d[i ,j] ,

 g[i-1,j-1] + d[i ,j] ,

 g[i-1,j-2] + d[i ,j-1] + 0 * d[i ,j] ,

)

N

typeId

g[i,j] = min(

 g[i-2,j-1] + 2 * d[i-1,j] + d[i ,j] ,

 g[i-1,j-1] + 2 * d[i ,j] ,

 g[i-1,j-2] + 2 * d[i ,j-1] + d[i ,j] ,

)

N+M

typeIas

g[i,j] = min(

 g[i-2,j-1] +0.5 * d[i-1,j] +0.5 * d[i ,j] ,

 g[i-1,j-1] + d[i ,j] ,

 g[i-1,j-2] +0.5 * d[i ,j-1] +0.5 * d[i ,j])

NA

13

typeIbs

g[i,j] = min(

 g[i-2,j-1] + d[i-1,j] + d[i ,j] ,

 g[i-1,j-1] + d[i ,j] ,

 g[i-1,j-2] + d[i ,j-1] + d[i ,j])

NA

typeIcs

g[i,j] = min(

 g[i-2,j-1] + d[i-1,j] + d[i ,j] ,

 g[i-1,j-1] + d[i ,j] ,

 g[i-1,j-2] +0.5 * d[i ,j-1] +0.5 * d[i ,j])

N

typeIds

g[i,j] = min(

 g[i-2,j-1] +1.5 * d[i-1,j] +1.5 * d[i ,j] ,

 g[i-1,j-1] + 2 * d[i ,j] ,

 g[i-1,j-2] +1.5 * d[i ,j-1] +1.5 * d[i ,j])

N+M

typeIIa

g[i,j] = min(

 g[i-1,j-1] + d[i ,j] ,

 g[i-1,j-2] + d[i ,j] ,

 g[i-2,j-1] + d[i ,j])

NA

14

typeIIb

g[i,j] = min(

 g[i-1,j-1] + d[i ,j] ,

 g[i-1,j-2] + 2 * d[i ,j] ,

 g[i-2,j-1] + 2 * d[i ,j])

NA

typeIIc

g[i,j] = min(

 g[i-1,j-1] + d[i ,j] ,

 g[i-1,j-2] + 2 * d[i ,j] ,

 g[i-2,j-1] + 2 * d[i ,j])

NA

typeIId

g[i,j] = min(

 g[i-1,j-1] + 2 * d[i ,j] ,

 g[i-1,j-2] + 3 * d[i ,j] ,

 g[i-2,j-1] + 3 * d[i ,j])

N+M

typeIIIc

g[i,j] = min(

 g[i-1,j-2] + d[i ,j] ,

 g[i-1,j-1] + d[i ,j] ,

 g[i-2,j-1] + d[i-1,j] + d[i ,j] ,

 g[i-2,j-2] + d[i-1,j] + d[i ,j])

N

15

typeIVc

g[i,j] = min(

 g[i-1,j-1] + d[i ,j] ,

 g[i-1,j-2] + d[i ,j] ,

 g[i-1,j-3] + d[i ,j] ,

 g[i-2,j-1] + d[i-1,j] + d[i ,j] ,

 g[i-2,j-2] + d[i-1,j] + d[i ,j] ,

 g[i-2,j-3] + d[i-1,j] + d[i ,j] ,

 g[i-3,j-1] + d[i-2,j] + d[i-1,j] + d[i ,j] ,

 g[i-3,j-2] + d[i-2,j] + d[i-1,j] + d[i ,j] ,

 g[i-3,j-3] + d[i-2,j] + d[i-1,j] + d[i ,j])

N

Table 2: Detail of step patterns classified by Rabiner-Myers

It is worth noticing that in Rabiner-Myers classification they include smoothed factor in addition

to Sakoe-Chiba classification.

Other (commonly used step patterns)

Name

DP-Algorithm Graphical representation Normalization

symmetric1

g[i,j] = min(

g[i-1,j-1] + d[i ,j] ,

g[i ,j-1] + d[i ,j] ,

g[i-1,j] + d[i ,j])

N/A

symmetric2

g[i,j] = min(

g[i-1,j-1] + 2 * d[i ,j] ,

g[i ,j-1] + d[i ,j] ,

g[i-1,j] + d[i ,j])

N+M

16

asymmetric

g[i,j] = min(

g[i-1,j] + d[i ,j] ,

g[i-1,j-1] + d[i ,j] ,

g[i-1,j-2] + d[i ,j])

N

mori2006

g[i,j] = min(

g[i-2,j-1] + 2 * d[i-1,j] + d[i ,j] ,

g[i-1,j-1] + 3 * d[i ,j] ,

g[i-1,j-2] + 3 * d[i ,j-1] + 3 * d[i ,j])

M

Table 3: Detail of commonly used step patterns

Table 3 gives the list of most commonly used step patterns present in the literature except

mori2006[17]. As it can be seen in mori2006 step pattern, cells on right side have given weight

double then diagonal and those of on the left side of diagonal.

2.1.1.6 Windowing functions

Windowing functions also referred as global constraints and bands in literature. Unlike local

constraints i.e. mentioned in earlier section, global constraints define overall search space for

warping path in cost matrix. Global constraints improve the running time of DTW algorithm

from 𝑂(𝑛𝑚) to 𝑂(𝑛𝑘) where k is the window size. However it is fall in the category of quadratic

time complexity.

Global constraints[14] allow only those points from the cost matrix which falls into warping

window |𝑖𝑘 − 𝑗𝑘| ≤ 𝜔, where 𝜔 is the positive integer represent the width of the window. In

other words points which lie outside of the window are free from consideration. Local

constraints contribute to find accurate warping path, whereas global constraints

(windowing/band) speed up the calculation process by limiting the traversal of number of cells in

the cost matrix. Among various windowing schemes Sakoe-Chiba Band[2] and Itakura

Parallelogram [9] are widely used, Let’s see few examples of global constraints as follow:

17

Figure 5: SCband

Sakoe-Shiba band (SCband) is one of the simplest and most commonly used bands, used to limit

calculation of cells in the cost matrix. In the example figure we have used window size 𝜔 =10,

so points/cells whose absolute difference is less then 𝜔 i.e. |𝑖𝑘 − 𝑗𝑘| ≤ 10, will only be

evaluated. However the value of size parameter can only be calculated by training method i.e.

reducing the window size gradually and checking if it still gives optimal warping path.

Paliwal [10] suggested a modification over SCband, as it can be seen in figure 5, it is almost

similar to SCband. Unlike SCband, Paliwal window adapt itself to length of the temporal

sequence.

|𝑖𝑘 ∗ 𝐽/𝐼 − 𝑗𝑘| ≤ 𝜔

(9)

In Paliwal window, cells are limited according to above mentioned equation 9, where 𝐽 𝑎𝑛𝑑 𝐼 are

lengths of reference and query sequences.

18

Figure 6: Paliwal window

Figure 6 illustrate a warping path calculated with in Paliwal window. However it can be seen

from equation 9 that, the Paliwal window includes the boundary points in it only when the

window size 𝜔 is greater than the difference[10].

Figure 7: Itakura parallelogram

19

Itakura parallelogram [9] is one of the most common global constraint but it is not as simple as

SCband. As it can be seen from the graphical representation of Itakura parallelogram, from the

starting indices it is thin, so one can made an easy observation to set the boundary constraint for

warping path very carefully.

DTW algorithm has been applied in various computing domains and has a wide range of

applications. To make it more applicable many improvements has been proposed to classical

DTW, which produced numerous variants of DTW algorithms. In the following section, I have

discussed the classification of DTW algorithms.

2.2 Classification of DTW

As described earlier, DTW algorithms can be improved by implementing global constraints.

However it is not the only way to improve the performance of DTW algorithms, to expand the

application area of DTW algorithm, many attempts has been made to improve execution time of

DTW. Other than global constraints, techniques like data abstraction and indexing also used to

improvement successfully.

All the DTW algorithms present so far in literature classified on the basis of techniques used to

improve DTW algorithms. Stan and Philip[7] described the classification of DTW algorithms,

which is based on the techniques used to improve the complexity of DTW algorithms. According

to classification proposed, improvements which have been made to DTW algorithms, fall into

one of the following three categories.

2.2.1 Constraints based

Global constraints are used to speed up the DTW by means of restricting cells in the cost matrix

as described above in constraints section. However, constraints improves the execution time by

means of constant factor but overall it is still 𝑂(𝑁2) examples includes [2][9][8] which

implements windowing approach to find optimal warping path.

2.2.2 Data Abstraction based

The idea is to run DTW algorithm on low resolution time series data and scale up to full

resolution cost matrix, in order to find the optimal warping path. Using this technique speed up

the DTW algorithm by a constant factor but overall it is still 𝑂(𝑁2) examples of such work

includes Iterative Deepening Dynamic Time Warping for Time Series [18] and Scaling up

dynamic time warping for datamining applications [19].

Data abstraction improves the DTW execution time but it do not guarantee optimal warping path

due the fact that calculation of low resolution warping distance to higher resolution ignores the

local variations.

2.2.3 Indexing based

Indexing approach to speed up DTW algorithms, applied on lower bound function (LBF) rather

than applying on whole sequence. It improves the running time of DTW by limiting the number

20

of executions but do not improve DTW algorithm directly, [20][21] describes this approach for

DTW.

All three techniques mentioned above can be applied alone to improve DTW algorithm, or it can

be used together. I will discuss fastDTW algorithm which returns warping path in linear time and

space complexity, which uses the idea of constraints with data abstraction together.

2.3 Derivative Dynamic Time Warping

Derivative Dynamic Time Warping (DDTW)[8] is the modification of classical DTW and lies in

the category of constraints based DTW algorithm. The modification is made on distance

measure, as it’s described in earlier section, any distance measure can be used which gives

information about alignment of time series. If both time series X and Y are identical to each

other, the calculated distance between them should be zero. Keogh and Pazzani proposed to use

square of distances of estimated derivatives that in DDTW instead of using Euclidian distance as

given in equation 1 to construct n-by-m cost matrix, whereas derivative can be calculated as

given in following equation 10:

 𝐷𝑥[𝑌] =
(𝑌𝑖 − 𝑌𝑖−1) + ((𝑌𝑖+1 − 𝑌𝑖−1) 2⁄)

2
 𝑤ℎ𝑒𝑟𝑒 1 < 𝑖 < 𝑚

(10)

Use of derivative instead of Euclidian distance is recommended to avoid problem of singularities

(single point on one time series maps onto large subsection of another time series) to get optimal

path. Problem of singularity can be produced easily by change in y-axis of one time series as

depicted in the following figures:

Figure 8: Alignment of two identical time series

Figure 9: Alignment of two time series, with a

slight change in local slop of one time series

Keogh and Pazzani further performed some experiments on different EEG, exchange rate and

space shuttle datasets and shown that mean warping value calculated by DDTW is lesser then

calculated by DTW. However execution time for DDTW is same as of DTW which

is 𝑂(𝑁2) 𝑤ℎ𝑒𝑟𝑒 𝑛 = 𝑚, with the additional overhead of constant factor due to calculation of

derivatives.

21

In general DTW algorithm requires 𝑂(𝑁2) for computing warping path, however few efforts has

been made to improve execution time of DTW algorithm, among the improved versions of

DTW, SparseDTW[22] calculates optimal warping path faster than constrained DTW

algorithms
3
. fastDTW[7] (a multilevel approach) algorithm gives approximation to warping path

in linear time and space complexity.

2.4 FastDTW

As discussed in earlier section, classical DTW has quadratic time and space complexity, which

make it infeasible to apply classical DTW on large temporal sequence.

Therefor a lot of research work has been done to improve the complexity of DTW algorithm,

which includes SparseDTW[22], Exact indexing of dynamic time warping[21], Faster Retrieval

with a Two-Pass Dynamic-Time-Warping Lower Bound[23], and fastDTW[7]. Wang, Xiaoyue

et al. [24] have the review about different versions of improved DTW algorithms.

FastDTW is a multilevel technique used by Stan & Philip for DTW algorithm which is

influenced by graph bisection[7]. FastDTW use the concepts of constraints based DTW

algorithm and data abstraction together and calculate approximate warping path distance

between time series in linear time and space complexity. FastDTW algorithm solely comprise on

following three main phases, coarsening which shrunk the time series, projection takes shrunken

time series and calculate warping path at low resolution then project the warping path for high

resolution, finally refinement of the projected path occur in refinement phase. Following is the

brief overview of the phases.

2.4.1 Coarsening

Coarsening is the first step in multilevel approach, in coarsening time series is represented in

minimal points, preserving the same curve as the original time series; this is done by taking the

average of adjacent points in pairs or triplets depending upon the resolution factor
4
 for the

coarsening. Coarsening is called many times until the base condition is met, producing different

low level resolutions for time series. Each low level resolution is then used in projection phase.

2.4.2 Projection

In projection phase, warping path is calculated for low level resolution and used to project

warping path for next high level resolution. This means, each diagonal point in the low

resolution path will be mapped to at least four points of high resolution path, and possibly more

if it is not diagonal point provided that the resolution factor is two.

Projection phase creates a window, which includes projected path, calculated from low

resolution path. The window which contain possible warping path for high resolution is then

passed to refinement phase. It is worth noticing that output of the projection phase is a window,

where the width of the window is determined by the radius parameter, which is then promoted to

next phase for refinement.

3
 Constrained DTW algorithms are those which improve the execution time by implementing global constraints and

restrict the DTW to limit the computations.
4
 Recommended resolution factor is two for coarsening.

22

2.4.3 Refinement

Refinement is the final phase of fastDTW algorithm; it takes a window as an input, containing

possible warping path, calculated in previous phase. Refinement has nothing special, it is just

like classical DTW, where we evaluate dynamic programming formulation for each cell in the

window to calculate warping path. Calculated warp path, then used recursively for next

resolution until path is calculated for the whole time series.

Classical DTW algorithm has quadratic time and space complexity for calculating warping path.

This is because, in Classical DTW all the cells of 𝑁𝑥𝑀 matrix is populated with the distance.

However in fastDTW algorithm, number of cells is limited efficiently to N, by using data

abstraction concept and with the use of global constraint.

2.4.4 Algorithm pseudocode

FastDTW algorithm uses recursive approach to determine the warping path between two time

series. It takes a radius parameter with temporal sequences as input, which is used to apply a so

called radius window. Radius window used to restrict the calculation for warping path in cost

matrix, just like SCband and Itakura parallelogram.

input:

x – array - query time series

y – array - reference time series

radius – integer

output:

warping distance, warping path

def fastdtw(x, y, radius=1):

 min_time_size = radius + 2

 # Call classical dtw at lowest resolution

 if len(x)<min_time_size or len(y)< min_time_size:

 return dtw(x, y)

 # Coarsening phase

 x_shrinked = __reduce_by_half(x)

 y_shrinked = __reduce_by_half(y)

distance, path = fastdtw(x_shrinked,y_shrinked,

radius, dist, pattern)

 # Projection phase

 window = __expand_window(path, len(x),

 len(y),radius)

 # Refinement phase

 return constrained_dtw(x, y,window)

Figure 10: The fastDTW algorithm

23

Pseudocode of fastDTW algorithm is shown in table 4, it can be seen that in refinement phase,

variable window is passed as input; width of the widow depends on radius input parameter.

24

Chapter 3: The Python Module: DTWPy

DTW algorithms has been used in variety of applications, however DTW libraries has out dated

implementation of DTW algorithms. There exists only one comprehensive library in R, which is

not updated with current research made in DTW domain. DTW algorithms vary on the basis of

step patterns and windowing functions.

Step patterns define the contribution of neighboring cells in path calculation, whereas windowing

functions define overall search space for alignment path in DTW. Due to immense research,

huge variety of step pattern, windowing functions and DTW algorithms has been proposed. This

makes it arduous for time series analysts to use and test all the step patterns, windowing

functions and algorithms in order to find best alignment between time series.

To overcome this limitation I have developed a comprehensive module in python DTWPy,

which facilitate the use of different DTW algorithms with different step patterns and windowing

functions. Abstract level view of DTWPy is shown in the following figure.

Figure 11: Architecture of DTWPy

DTWPy expose three major functions named according to the algorithm implemented i.e. DTW,

fastDTW and DDTW for classical DTW, fastDTW and Derivative DTW respectively. Each

function in DTWPy requires distance function as input parameter with other DTW parameters

e.g. query and template time series, windowing functions.

25

3.1 Implementation Overview

DTWPy is implemented in Python programming language, and has dependency on numpy 1.9.2

[25] and matplotlib 1.4.3 [26]. Numpy is used to increase the performance of DTWpy, since

numpy array data structure is much faster than python list. Matplotlib is used to equip DTWPy

with plotting features.

DTWPy takes query and a template time series with distance function as compulsory parameters

to calculate best warping path between them. However number and type of parameters depend

on selected algorithm, which is described in detail in the following sections.

3.1.1 Algorithms

DTWPy has variety of algorithms, with the ability to fulfil demand of any application area.

Existing implementations of DTW has only classical DTW, and lack in latest algorithms which

have better performance than classical DTW. DTWPy implementation has algorithms which not

only calculates warping path in linear time and space complexity, but also avoid the problem on

singularity
5
. DTWPy following three different DTW algorithms which can be used with variety

of different distance metrics, step patterns and global constraints algorithms.

3.1.1.7 Classical DTW

Classical DTW calculates optimal warping path and warping distance between two time series in

𝑂(𝑁2) time and space complexity, I have explained classical DTW in earlier sections, here I will

discuss how to use classical DTW in DTWpy to calculate warping path between two time series.

In DTWPy classical DTW algorithm takes three compulsory parameters as input i.e. a query time

series, a template time series and distance metric, all input parameters are shown in the

following:

 x – query time series

 y – template time series

 dist – distance function received form distancefunc module by passing the distance name

 windowtype – string indicating the window type, see window section for detail

 windowsize – integer value for size of the selected window type

 pattern – name of the step pattern, see step patterns section for possible step patterns

 normalized – set to true to get normalized warping distance

 distance_only – set to true to get only warping distance, faster

Example usage of classical DTW algorithm is shown in the following, overall code will remain

same for other algorithm implementations, however function name is and parameters will vary

according to algorithm.

5
 Problem of singularities is explained in section 2.3 under the heading of derivative DTW.

26

‘’’

 Classical DTW usage, in DTWPy

‘’’

from pandas.io.data import DataReader

from datetime import datetime

import distance moduel of DTWPy module

from distance_measure import distancefunc

import dtwpy module

import dtwpy

import plot module of DTWPy

import plotDTWalignment

get pandas dataframe

f = DataReader("F", "yahoo", datetime(2000, 1, 1),

 datetime(2012, 1, 1))

f_2008 = f[f.index.year == 2008]

f_2009 = f[f.index.year == 2009]

query = f_2008.Volume.values

template = f_2009.Volume.values

get the distance function from distance measure

module

dist = distancefunc(name="manhattan")

find warping distance and warping path between

query and template time series using classical dtw

with no window and symmetic1 step pattern

distance, path = dtwpy.dtw(query, template,

 dist=dist, windowtype=”scband”,

 windowsize=50,pattern="symmetric1",

 normalized=False,dist_only=False)

Figure 12: DTWPy classical DTW example

Figure 12 shows the example for using classical DTW, in DTWPy. All the algorithms

implemented in DTWPy return warping path and warping distance. However path can be

visualized by using the plot module i.e. sub module of DTWPy, discussed later in plotting

section. Implementation code for classical DTW can be found in appendix.

27

3.1.1.8 Derivative DTW (DDTW)

DDTW calculates optimal warping path in 𝑂(𝑁2) in addition to some constant factor, due the

fact that it calculates the slope of the time series according to the equation 9 in this thesis.

DDTW is preferred when there are variations in local slope, in one of the time series. Slope

variation is referred as problem of singularities in literature, it is seen that problem of

singularities is ignored by other DTW algorithms[8]. Classical DTW and DDTW share the same

number and type of parameters in DTWPy as follow:

 x – query time series

 y – template time series

 dist – distance function received form distancefunc module by passing the distance name

 windowtype – string indicating the window type, see window section for detail

 windowsize – integer value for size of the selected window type

 pattern – name of the step pattern, see step patterns section for possible step patterns

 normalized – set to true to get normalized warping distance

 distance_only – set to true to get only warping distance, faster

get the distance function from distance measure

module

 dist = distancefunc(name=" euclidean")

 # call to derivative DTW

distance, path = dtwpy.ddtw(query, template,

 dist=dist,windowtype=”paliwal”,

 windowsize=10,pattern="symmetricp0",

 normalized=False, dist_only=False)

Figure 13: Usage of DDTW

Figure 13 shows example usage for DDTW in DTWPy module, with Paliwal window type and

Euclidian distance.

3.1.1.9 FastDTW

FastDTW calculates approximate warping path and warping distance in 𝑂(𝑁) time and space

complexity, between two time series. It projects warping path from low resolution to high

resolution and limits the calculation based on radius parameter. FastDTW implementation in

DTWPy has slightly different parameter than classical DTW and DDTW. As discussed earlier,

fastDTW uses so called radius window, Sakoe-Chiba window, Paliwal window[10] and Itakura

parallelogram cannot be used with fastDTW, however DTWPy implementation, support usage of

all step patterns with fastDTW algorithm.

28

FastDTW has four compulsory parameters as shown in bold font in the following:

 x – query time series

 y – template time series

 dist – distance function received form distancefunc module by passing the distance name

 radius – integer value implements so called radius window

 pattern – name of the step pattern, see step patterns section for names

 normalized – set to true to get normalized warping distance

get the distance function from distance measure

module

 dist = distancefunc(name=" euclidean")

distance, path = fastdtw(x, y, radius=1,dist=dist,

 pattern="symmetricP05",

 normalized=False)

Figure 14: Usage of fastDTW

As shown in the snippet a special parameter radius, is passed to fastDTW which limit the

contribution of neighboring cell, to calculate warping path and warping distance in linear time

and space complexity. By default radius is set to 1, increase in radius will increase the search

space for fastDTW.

3.1.2 Step Patterns in DTWPy

Step patterns are discussed in detail in section 2.1.1.5; hence in this section I will only discuss

the usage of step patterns. DTWPy uses naming convention for step pattern according to

classification group, as the same naming convention is used in R package[11]. DTWPy has

almost all the step patterns present in literature to date, to use specific step pattern, name
6
 of the

step pattern have to pass in the algorithm, to get alignment accordingly. All the algorithms

present in DTWPy module, support all the step patterns. However symmetric1 step pattern is

implemented by default, following code snippet shows the usage of step pattern in DTWPy:

All the step patterns are supported by all the

#algorithms implemented in DTWPy

distance, path = dtwpy.ddtw(query, template,

dist=dist,windowtype=”paliwal”,

windowsize=10,pattern="symmetricP0",

normalized=False, dist_only=False)

Figure 15: Usage of step patterns

6
 See table 1, 2, and 3 for names, DTWPy uses same names as given in tables.

29

3.1.3 Windowing in DTWPy

Windowing/global constraints used to minimize the number of calculations yet targeting the

optimal path in DTW algorithms. Sakoe-Chiba band and Itakura parallelogram are the most

common windows used to improve DTW algorithm as shown in Figure 5 and Figure 6

respectively. DTWPy gives the implementation of both windows; in addition DTWPy has

implementation of Paliwal window which is a modification of Sakoe-Chiba window. All three

can be used with any step pattern mentioned above, but only in Classical DTW or DDTW. This

is due to the fact that, fastDTW uses its own radius window to optimize the running time of

DTW algorithm, following code snippet shows the usage of all three windows in DTWPy.

usage of scband

distance, path = dtwpy.ddtw(query, template,

dist=dist,windowtype=”scband”,

windowsize=10,pattern="symmetricP0",

normalized=False, dist_only=False)

usage of Paliwal window

distance, path = dtwpy.ddtw(query, template,

dist=dist,windowtype=”paliwal”,

windowsize=10,pattern="symmetricP0",

normalized=False, dist_only=False)

usage of Itakura parallelogram

cost_matrix, distance, path = dtwpy.ddtw(query,

template,

dist=dist,windowtype=”itakura”,

windowsize=10,pattern="symmetricP0",

normalized=False, dist_only=False,cost_matrix=True)

Figure 16: Usage of windowing functions

3.1.4 Plotting in DTWPy

Matplotlib library is used in DTWPy, to facilitate DTW alignment visualization, between two

time series. Plotting module in DTWPy uses warping path variable returned from DTWPy as it

can be depicted in architecture figure 11. There are three types of plotting available in DTWPy.

Visualization of warping path with query and template sequences as shown in figure 17 in the

following.

30

Plotting module in DTWPy is kept separate, so new visualization features can be added in future.

Figure 17: Alignment plot with query and template time series

It is very easy to plot alignment using DTWPy’s plotting module, it require warping path with

both time series, in order to visualize with query and template sequences.

import plotDTWalignment

to plot with query and template sequence

plotDTWalignment.plotwithQT(x, y, path,title)

to plot with alignment with window

plotDTWalignment.plotalignment_with_window(window,path,title)

to plot with simple alignment

plotDTWalignment.plotalignment(path, title="")

Figure 18: Usage of windowing functions

In the following chapter 4, I will describe the correctness and comparison of DTWPy module

with other existing implementations.

31

Chapter 4: Results

As discussed in earlier sections, DTW has been used in wide range of applications and there is

not any comprehensive implementation which covers all the DTW variants. However there exists

a very few basic implementations of classical DTW e.g. mlpy[12].

4.1 DTW Package in R

Toni Giorgino developed a package of DTW algorithms in R [11]. The R package gives option to

use different local constraints, and global constraints to run with classical DTW algorithm. The R

package implemented well known symmetric1, symmetric2 and asymmetric with all types of

step patterns (referred as slop constraints, local constraints and DP-recursion rules in literature)

classified by Rabinar-Juang [16], Sakoe-Chiba [2], and Rabiner-Myers[5]. Moreover in global

constraints R package includes Sakoe-Chiba band, and Itakura parallelogram [9]. In addition to

most common distance functions the R package also has implementations to Levenshtein's

distance and Needleman-Wunsch algorithm[27], which is used to calculate alignments of strings.

In R package the kernel of DTW function is written in C programming language to speed up the

execution however, as it still has 𝑂(𝑁2) time and space complexity, and not updated with recent

research, which makes it limited to larger problems.

4.2 Mlpy

Mlpy[12] is a Python module for machine learning, have very basic and outdated implementation

of DTW. It has implemented classical DTW with SCband and Itakura parallelogram windowing

functions.

In the following section, table 4, 5 and 6 compare functionality provided by DTWPy, R and

mlpy for DTW algorithms.

4.3 Correctness of DTWPy

Every warping path must satisfy continuity, monotonicity and boundary conditions, as described

in chapter 2. Every step pattern, windowing function and algorithm in DTWPy is tested

thoroughly. I have compared the results with R implementation, which is the only

comprehensive implementation, exist after DTWPy. Figure 19, 20 and 21 shows warping path

obtained by using step patterns classified by Sakoe-Shiba with the classical DTW, DDTW and

fastDTW respectively. Following results verify the correctness of the implemented algorithms.

32

Figure 19: Classical DTW with Sakoe-Shiba step pattern

It can be seen easily that, warping paths in figure 19 and 20 are identical i.e. calculated by using

classical DTW and fastDTW algorithm respectively. I used radius = 10 for fastDTW algorithm

and it can be concluded that on radius = 10 fastDTW algorithm give optimal results, in linear

time and space complexity.

33

Figure 20: DDTW with Sakoe-Shiba step pattern

Figure 21: FastDTW with Sakoe-Shiba step pattern

34

Figure 22: Classical DTW with Rabiner-Myers step patterns

Figure 23: DDTW with Rabiner-Myers step patterns

35

Figure 24: FastDTW with Rabiner-Myers step patterns

Figure 22, 23 and 24 shows warping paths obtained by using typeI step patterns classified by

Rabiner-Myers with the classical DTW, DDTW and fastDTW respectively. All the algorithms

implemented in DTWPy give correct results, if we compare with R implementation.

36

Figure 25: Classical DTW with Rabiner-Myers step patterns and other

Figure 26: DDTW with Rabiner-Myers step patterns and other

37

Figure 27: FastDTW with Rabiner-Myers step patterns and other

Figure 25, 26 and 27 shows the warping path obtained by using step patterns typeII, typeIII and

typeIV classified by Rabiner-Myers whereas and most commonly used step patterns in the

literature.

It is worth noticing that the alignments calculated by classical DTW and fastDTW are identical

to each other. Whereas alignments calculated by using DDTW are different and paths are tend to

be toward diagonal , it is due to the fact that DDTW uses derivatives instead of original values

and determine the warping path accordingly.

38

4.4 Comparison of DTW implementations

Classical DTW algorithm calculates alignment in quadratic time and space complexity Mlpy and

R package only provide implementation of classical DTW, which do not scale well for large time

series, following table 4, 5 and 6 gives an overview of different implementations which I found

the most comprehensive.

Algorithms DTWPy R Package Mlpy

Classical DTW Yes Yes Yes

FastDTW Yes No No

Derivative DTW Yes No No

Table 4: Implementation of DTW algorithms

As it can be seen from table 4, R package and Mlpy module for DTW gives implementation only

for classical DTW. On the other hand DTWPy has the most comprehensive implementation of

DTW algorithms. DTWPy leverages fastDTW and DDTW, which determines the alignment in

linear time and space complexity, and gives better results when time series has local shifts in

the slope[8] respectively.

Global Constraints DTWPy R Package Mlpy

SCband Yes Yes Yes

Itakura parallelogram Yes Yes Yes

Slantedband
7
 No Yes Yes

Paliwal window Yes No No

Table 5: Implementation of global constraints

To improve the performance of classical DTW Sakeo-Shiba, Iakura and Paliwal proposed

SCband, Itakura parallelogram and Paliwal window[10] respectively. Global constraints reduce

the search space of cost matrix, which result in slight improvement in performance. Slantedband

(R package specific) is a modification over SCband, which is not much different from Paliwal

window, and is not commonly used in literature. Table 5 shows the implementation of global

constraints which can be used to improve performance of classical DTW. It clearly shows

DTWPy has upper hand to all other DTW libraries, in terms of windowing functions.

7
 Slanted window is R package specific, have no confirmation about author.

39

Step Patterns DTWPy R Package Mlpy

SC step patterns Yes Yes No

Rabiner-Myers Yes Yes No

Rabiner-Juang No Yes No

symmetric1 Yes Yes No

symmetric2 Yes Yes Yes

asymmetric Yes Yes No

mori2006 Yes Yes No

Table 6: Implementation of local constraints

Apart from global constraints, local constraints (step patterns) also play vital roles to find the

optimal path in DTW
8
, table 6 present overview of step pattern implemented by DTWpy, R

package and Mlpy. In the coming section I will discuss about performance of DTWPy.

4.5 Performance Analysis

In section 4.3, I have discussed correctness i.e. DTWPy gives correct results on any combination

of DTW algorithms. End results i.e. warping distance and warping path, of each step pattern with

windowing functions have been verified with mlpy and R implementation of DTW. DTWPy is

thoroughly tested. Moreover graphs in section 3.2 also conveys that warping path obtained by

DTWPy fulfill all the compulsory constraints (described in section 2.2.1) which need to be met

to get optimal warping path.

In addition to correctness I analyzed the execution time of algorithms DTWPy, in contrast to R

package implementation, system specifications are listed in table 7 as follow:

System Specifications

Operating System Ubuntu 14.04 LTS

Operating System Type 64bit

Processor Intel® Core™ i7-3612QM CPU @ 2.10GHz × 8

Memory 7.7 GiB

Swap 14.9 GiB

Model Lenovo-G500s

Table 7: System specifications

8
 Described in section 3.4 in detail

40

To analyze the execution time on both environments R and Python, I have used Rprof and

Cprofile respectively on the same dataset. At first I performed a test with classical DTW of R

package and DTWPy module, the result is shown in figure 21, on the y axis time taken in

seconds and on the x-axis I placed length of time series.

Several observations were made and it shows DTWPy has visible high execution time as

compared to R, the main reason of this difference is that, kernel of R DTW package’s is written

in C programming language, and use matrix implementation under the hood, which make it

faster than DTWpy. On the other hand DTWPy is implemented in python programming

language. Python is referred as a scripting language and dynamically typed, which implies that

python’s code is interpreted rather than compiled. Therefore python’s code is translated to

machine language at run time, thus python has to pay overhead of translation with execution at

run time.

However, dynamic typing in python makes development easier and flexible, which allows

scientists to use development time more efficiently. This is because python has been used

intensively for scientific purposes, and communities have been continuously growing. Summing-

up, python is an efficient language for doing scientific research with code.

Figure 28: Execution time w.r.t lenght of time series

41

As in above comparison of classical DTW between DTWPy and R package has measureable

difference besides the fact both algorithms share the same time and space complexity. It was

quite compelling to do performance comparison of R implementation against fastDTW.

Figure 29: Execution time w.r.t length of time series

To compare the execution time of fastDTW implementation with R, I have taken time in seconds

on y-axis and length of time series on x-axis. Same environment and dataset has been provided

to both implementations. The result was quite convincing. As it can be seen from figure 22 with

shorter length of time series R implementation of DTW has almost same execution time. But

with the increase in length of time series, R implementation shows notable increase in execution

time. It is due to the fact that fastDTW has linear time and space complexity whereas Classical

DTW bears the quadratic time complexity to calculate warping path between two time series. It

is worth noticing that even on radius= 10 fastDTW has clear difference in time, and on

radius=10.

In short DTWPy covers all the DTW variants present in literature so far, and equipped with latest

performance improvements made on DTW algorithms. In general DTWPy has advantage on all

other implementations of DTW present so far.

42

Chapter 5: Conclusion

Dynamic Time warping is a famous technique to find optimal warping path between time series,

and has significance use in different research disciplines. However, there does not exist any of

such comprehensive library which covers maximum DTW variants. R DTW package facilitate

the data analyst up to some extent, but it do not scale well for time series of big length. This is

due to the fact that R only provides implementation of classical DTW which has (𝑁2) time and

space complexity.

In this thesis, I presented DTWPy; a python module for computing and visualizing Dynamic

Time Warping alignments, which have implementations of almost all local constraints and global

constraints present in the literature to date. DTWPy have clear advantage over all existing DTW

Implementations due to the fact that, unlike other implementations it is updated with recent

possible improvements made on DTW algorithm in the form of fastDTW and DDTW. DTWPy

architecture is designed in a way so that I can easily incorporate possible future improvements on

DTW.

At the present time, most of the data analysts are using Pandas[6] data set ,and python for time

series analysis. DTWPy is implemented in core python, which encourages python communities,

working on time series analysis to use DTWPy without any development cost. DTWPy module

can be used in any kind of application, keeping in mind the limitations of python and DTW

algorithm.

.

43

Appendix

5.1 Distance measures

#distance_measure.py

def distancefunc(name="manhattan"):

 if name=="manhattan":

 return lambda x, y:abs(x - y)

 elif name == "euclidean":

 return lambda x,y:pow(x-y, 2)

 elif name == "canberra":

 return lambda x,y:(abs(x - y) / (x + y))

 return lambda x, y:abs(x - y)

5.2 Step patterns

patterns.py

#!/usr/bin/env python

-*- coding: utf-8 -*-

import numpy as np

def symmetric1(ts_x, ts_y, window, dist, pattern,

 normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j] = min(cost_matrix[i][j

 - 1] + dt, cost_matrix[i - 1][j] + dt, cost_matrix[i -

 1][j - 1] + dt)

 if normalized:return cost_matrix

 return cost_matrix

def symmetric2(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.empty([ts_x.size, ts_y.size])

 cost_matrix[:] = float('inf')

 for i, j in np.nditer(window):

 dt = dist(ts_x[i], ts_y[j])

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j] = np.minimum(cost_matrix[i][j - 1] +

 dt, cost_matrix[i - 1][j] + dt, cost_matrix[i - 1][j -

44

 1] + 2 * dt)

 if normalized:cost_matrix[i][j] = (cost_matrix[i][j] /

 (len(ts_x) + len(ts_y)))

 return cost_matrix

def asymmetric(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j] = min(cost_matrix[i - 1][j - 2] + dt,

 cost_matrix[i-1][j] + dt, cost_matrix[i - 1][j - 1] + dt)

 if normalized:cost_matrix[i][j] = (cost_matrix[i][j] /

(len(ts_x)))

 return cost_matrix

def asymmetricP0(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 if i == j == 0:

 cost_matrix[i][j] = dt

 elif i == 0:

 cost_matrix[i][j] = cost_matrix[i][j - 1] + dt

 elif j == 0:

 cost_matrix[i][j] = cost_matrix[i - 1][j] + dt

 else:

 cost_matrix[i][j] = min(cost_matrix[i][j - 1],

 cost_matrix[i-1][j]+ dt, cost_matrix[i - 1][j - 1] + dt)

 if normalized:cost_matrix[i][j]=(cost_matrix[i][j] / (len(ts_x)))

 return cost_matrix

def symmetricVelichkoZagoruyko(ts_x, ts_y, window, dist, pattern,

normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 if i == j == 0:

 cost_matrix[i][j] = dt # 0#2 * dt #float('inf') #

 else:

 cost_matrix[i][j] = min(cost_matrix[i][j - 1] + dt,

 cost_matrix[i - 1][j - 1] + dt * .001, cost_matrix[i –

 1][j])

45

 return cost_matrix

def symmetricP1(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 dt1 = dist(ts_x[i], ts_y[j - 1])

 dt2 = dist(ts_x[i - 1], ts_y[j])

 if i - 1 < 0:

 dt2 = float('inf')

 if j - 1 < 0:

 dt1 = float('inf')

 if i == j == 0:

 cost_matrix[i][j] = dt # 0#2 * dt #float('inf') #

 else:

 cost_matrix[i][j] = min(cost_matrix[i - 1][j - 2] + 2 *

dt1 + dt, cost_matrix[i - 1][j - 1] + 2 * dt, cost_matrix[i - 2][j

- 1] + 2 * dt2 + dt)

 if normalized:cost_matrix[i][j] = (cost_matrix[i][j] /

(len(ts_x) + len(ts_y)))

 return cost_matrix

def asymmetricP1(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 dt1 = dist(ts_x[i], ts_y[j - 1])

 dt2 = dist(ts_x[i - 1], ts_y[j])

 if i - 1 < 0:

 dt2 = float('inf')

 if j - 1 < 0:

 dt1 = dist(ts_x[i], ts_y[j - 1])

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j] = min(cost_matrix[i - 1][j - 2] + dt1

/ 2 + dt / 2, cost_matrix[i - 1][j - 1] + dt, cost_matrix[i - 2][j

- 1] + dt2 + dt)

 if normalized:cost_matrix[i][j] = cost_matrix[i][j] /

(len(ts_x))

 return cost_matrix

def symmetricP2(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 dt1 = dist(ts_x[i], ts_y[j - 1])

 dt2 = dist(ts_x[i - 1], ts_y[j])

46

 dt3 = dist(ts_x[i - 1], ts_y[j - 2])

 dt4 = dist(ts_x[i - 2], ts_y[j - 1])

 if i - 1 < 0 :

 dt2 = float('inf')

 if j - 1 < 0 :

 dt2 = float('inf')

 if i - 2 < 0:

 dt4 = float('inf')

 if j - 2 < 0:

 dt3 = float('inf')

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j] = min(cost_matrix[i - 2][j - 3] + dt1

* 2 + dt + dt3 * 2, cost_matrix[i - 1][j - 1] + 2 * dt,

cost_matrix[i - 3][j - 2] + 2 * dt4 + 2 * dt2 + dt)

 if normalized:cost_matrix[i][j] = cost_matrix[i, j] / (len(ts_x)

+ len(ts_y))

 return cost_matrix

def asymmetricP2(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 dt1 = dist(ts_x[i], ts_y[j - 1])

 dt2 = dist(ts_x[i - 1], ts_y[j])

 dt3 = dist(ts_x[i - 1], ts_y[j - 2])

 dt4 = dist(ts_x[i - 2], ts_y[j - 1])

 if i - 1 < 0 :

 dt2 = float('inf')

 if j - 1 < 0 :

 dt2 = float('inf')

 if i - 2 < 0:

 dt4 = float('inf')

 if j - 2 < 0:

 dt3 = float('inf')

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j] = min(cost_matrix[i - 2][j - 3] + dt1

* (2 / 3) + dt * (2 / 3) + dt3 * (2 / 3), cost_matrix[i - 1][j - 1]

+ dt, cost_matrix[i - 3][j - 2] + dt4 + dt2 + dt)

 if normalized:cost_matrix[i][j] = cost_matrix[i][j] / (len(ts_x))

 return cost_matrix

def symmetricP05(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

47

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 dt1 = dist(ts_x[i], ts_y[j - 1])

 dt2 = dist(ts_x[i - 1], ts_y[j])

 dt3 = dist(ts_x[i], ts_y[j - 2])

 dt4 = dist(ts_x[i - 2], ts_y[j])

 if i - 1 < 0 :

 dt2 = float('inf')

 if j - 1 < 0 :

 dt2 = float('inf')

 if i - 2 < 0:

 dt4 = float('inf')

 if j - 2 < 0:

 dt3 = float('inf')

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j]=min(cost_matrix[i-1][j-3]

 +dt3*2+dt1+dt,

 cost_matrix[i - 1][j - 2] + dt1 * 2 + dt,

 cost_matrix[i - 1][j - 1] + 2 * dt,

 cost_matrix[i - 2][j - 1] + 2 * dt2 + dt,

 cost_matrix[i - 3][j - 1] + 2 * dt4 + dt2 + dt)

 if normalized:cost_matrix[i][j] = cost_matrix[i, j] / (len(ts_x)

 + len(ts_y))

 return cost_matrix

def asymmetricP05(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 dt1 = dist(ts_x[i], ts_y[j - 1])

 dt2 = dist(ts_x[i - 1], ts_y[j])

 dt3 = dist(ts_x[i], ts_y[j - 2])

 dt4 = dist(ts_x[i - 2], ts_y[j])

 if i - 1 < 0 :

 dt2 = float('inf')

 if j - 1 < 0 :

 dt2 = float('inf')

 if i - 2 < 0:

 dt4 = float('inf')

 if j - 2 < 0:

 dt3 = float('inf')

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j] = min(cost_matrix[i - 1][j - 3] + dt3

48

 * (1 / 3) + dt1 * (1 / 3) + dt * (1 / 3) ,

 cost_matrix[i-1][j-2]+dt1*(1 / 2) + dt * (1 / 2),

 cost_matrix[i - 1][j - 1] + dt,

 cost_matrix[i - 2][j - 1] + dt2 + dt,

 cost_matrix[i - 3][j - 1] + dt4 + dt2 + dt)

 if normalized:cost_matrix[i, j]=cost_matrix[i][j][0]/ (len(ts_x))

 return cost_matrix

def asymmetricItakura(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 dt2 = dist(ts_x[i - 1], ts_y[j])

 if j - 1 < 0 :

 dt2 = float('inf')

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j] = min(cost_matrix[i -1][j - 2] + dt ,

 cost_matrix[i - 1][j - 1] + dt,

 cost_matrix[i - 2][j - 1] + dt2 + dt,

 cost_matrix[i - 2][j - 2] + dt2 + dt)

 return cost_matrix

def typeIa(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 dt1 = dist(ts_x[i], ts_y[j - 1])

 dt2 = dist(ts_x[i - 1], ts_y[j])

 if i - 1 < 0 :

 dt2 = float('inf')

 if j - 1 < 0 :

 dt2 = float('inf')

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j] = min(cost_matrix[i - 2][j - 1] + dt2,

 cost_matrix[i - 1][j - 1] + dt,

 cost_matrix[i - 1][j - 2] + dt1)

 return cost_matrix

def typeIb(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

49

 dt1 = dist(ts_x[i], ts_y[j - 1])

 dt2 = dist(ts_x[i - 1], ts_y[j])

 if i - 1 < 0 :

 dt2 = float('inf')

 if j - 1 < 0 :

 dt2 = float('inf')

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j] = min(cost_matrix[i-2][j-1]+ dt2 + dt ,

 cost_matrix[i - 1][j - 1] + dt,

 cost_matrix[i - 1][j - 2] + dt1 + dt)

 return cost_matrix

def typeIc(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 dt1 = dist(ts_x[i], ts_y[j - 1])

 dt2 = dist(ts_x[i - 1], ts_y[j])

 if i - 1 < 0 :

 dt2 = float('inf')

 if j - 1 < 0 :

 dt2 = float('inf')

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j]=min(cost_matrix[i-2][j- 1] + dt2 + dt ,

 cost_matrix[i - 1][j - 1] + dt,

 cost_matrix[i - 1][j - 2] + dt1)

 if normalized:cost_matrix[i][j] = cost_matrix[i, j] / (len(ts_x))

 return cost_matrix

def typeId(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 dt1 = dist(ts_x[i], ts_y[j - 1])

 dt2 = dist(ts_x[i - 1], ts_y[j])

 if i - 1 < 0 :

 dt2 = float('inf')

 if j - 1 < 0 :

 dt2 = float('inf')

50

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j] = min(cost_matrix[i - 2][j - 1] + dt2

 * 2 + dt ,

 cost_matrix[i - 1][j - 1] + dt * 2,

 cost_matrix[i - 1][j - 2] + dt1 * 2 + dt)

 if normalized:cost_matrix[i][j] = cost_matrix[i][j] / (len(ts_x)

 + len(ts_y))

 return cost_matrix

def typeIas(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 dt1 = dist(ts_x[i], ts_y[j - 1])

 dt2 = dist(ts_x[i - 1], ts_y[j])

 if i - 1 < 0 :

 dt2 = float('inf')

 if j - 1 < 0 :

 dt2 = float('inf')

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j]=min(cost_matrix[i-2][j-1]+dt2/2+dt/ 2 ,

 cost_matrix[i - 1][j - 1] + dt,

 cost_matrix[i - 1][j - 2] + dt1 / 2 + dt / 2)

 if normalized:cost_matrix[i][j]= cost_matrix[i][j] / (len(ts_x))

 return cost_matrix

def typeIbs(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 dt1 = dist(ts_x[i], ts_y[j - 1])

 dt2 = dist(ts_x[i - 1], ts_y[j])

 if i - 1 < 0 :

 dt2 = float('inf')

 if j - 1 < 0 :

 dt2 = float('inf')

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j]=min(cost_matrix[i-2][j-1] + dt2 + dt ,

 cost_matrix[i - 1][j - 1] + dt,

51

 cost_matrix[i - 1][j - 2] + dt1 + dt)

 if normalized:cost_matrix[i][j]=cost_matrix[i][j] / (len(ts_x))

 return cost_matrix

def typeIcs(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 dt1 = dist(ts_x[i], ts_y[j - 1])

 dt2 = dist(ts_x[i - 1], ts_y[j])

 if i - 1 < 0 :

 dt2 = float('inf')

 if j - 1 < 0 :

 dt2 = float('inf')

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j] = min(cost_matrix[i - 2][j-1]+dt2 + dt,

 cost_matrix[i - 1][j - 1] + dt,

 cost_matrix[i - 1][j - 2] + dt1 / 2 + dt / 2)

 if normalized:cost_matrix[i][j] = cost_matrix[i][j] / (len(ts_x))

 return cost_matrix

def typeIds(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 dt1 = dist(ts_x[i], ts_y[j - 1])

 dt2 = dist(ts_x[i - 1], ts_y[j])

 if i - 1 < 0 :

 dt2 = float('inf')

 if j - 1 < 0 :

 dt2 = float('inf')

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j] = min(cost_matrix[i - 2][j - 1] + dt2

 * 1.5 + dt * 1.5 ,

 cost_matrix[i - 1][j - 1] + dt * 2,

 cost_matrix[i - 1][j - 2] + dt1 * 1.5 + dt * 1.5)

 if normalized:cost_matrix[i][j] = cost_matrix[i][j] / (len(ts_x)

 + len(ts_y))

 return cost_matrix

52

def typeIIa(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j] = min(cost_matrix[i - 1][j - 1] + dt,

 cost_matrix[i - 2][j - 1] + dt,

 cost_matrix[i - 1][j - 2] + dt)

 if normalized:cost_matrix[i][j] =cost_matrix[i][j] / (len(ts_x))

 return cost_matrix

def typeIIb(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j] = min(cost_matrix[i-1][j-1]+dt,

 cost_matrix[i - 2][j - 1] + dt * 2 ,

 cost_matrix[i - 1][j - 2] + dt * 2)

 if normalized:cost_matrix[i][j] = cost_matrix[i][j] / (len(ts_x))

 return cost_matrix

def typeIIc(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j] = min(cost_matrix[i - 1][j - 1] + dt,

 cost_matrix[i - 1][j - 2] + dt,

 cost_matrix[i - 2][j - 1] + dt * 2)

 if normalized:cost_matrix[i][j] = cost_matrix[i][j] / (len(ts_x))

 return cost_matrix

def typeIId(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j] = min(cost_matrix[i-1][j - 1] + dt * 2,

53

 cost_matrix[i - 1][j - 2] + dt * 3 ,

 cost_matrix[i - 2][j - 1] + dt * 3)

 if normalized:cost_matrix[i][j] = cost_matrix[i][j] /

 (len(ts_x) + len(ts_y))

 return cost_matrix

def typeIIIc(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 dt1 = dist(ts_x[i - 1], ts_y[j])

 if i - 1 < 0 :

 dt1 = float('inf')

 if i == j == 0:

 cost_matrix[i][j] = dt # 0#2 * dt #float('inf') #

 else:

 cost_matrix[i][j] = min(cost_matrix[i - 1][j - 2] + dt,

 cost_matrix[i - 1][j - 1] + dt,

 cost_matrix[i - 2][j - 1] + dt1 + dt,

 cost_matrix[i - 2][j - 2] + dt1 + dt)

 if normalized:cost_matrix[i][j] = cost_matrix[i][j] / (len(ts_x))

 return cost_matrix

def typeIVc(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 dt1 = dist(ts_x[i - 1], ts_y[j])

 dt2 = dist(ts_x[i - 2], ts_y[j])

 if i - 1 < 0 :

 dt1 = float('inf')

 if i - 2 < 0 :

 dt2 = float('inf')

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j] = min(cost_matrix[i - 1][j - 1] + dt,

 cost_matrix[i - 1][j - 2] + dt,

 cost_matrix[i - 1][j - 3] + dt ,

 cost_matrix[i - 2][j - 1] + dt1 + dt,

 cost_matrix[i - 2][j - 2] + dt1 + dt,

 cost_matrix[i - 2][j - 3] + dt1 + dt,

 cost_matrix[i - 3][j - 1] + dt2 + dt1 + dt,

 cost_matrix[i - 3][j - 2]+ dt2 + dt1 + dt,

 cost_matrix[i - 3][j - 3] + dt2 + dt1 + dt)

 if normalized:cost_matrix[i][j] = cost_matrix[i][j] / (len(ts_x))

 return cost_matrix

54

def mori2006(ts_x, ts_y, window, dist, pattern, normalized):

 cost_matrix = np.zeros([len(ts_x), len(ts_y)])

 cost_matrix[:] = float('inf')

 for i, j in window:

 dt = dist(ts_x[i], ts_y[j])

 dt1 = dist(ts_x[i - 1], ts_y[j])

 dt2 = dist(ts_x[i], ts_y[j - 1])

 if i - 1 < 0 :

 dt1 = float('inf')

 if j - 1 < 0 :

 dt2 = float('inf')

 if i == j == 0:

 cost_matrix[i][j] = dt

 else:

 cost_matrix[i][j] = min(cost_matrix[i-2][j-1]+dt1*2 + dt,

 cost_matrix[i - 1][j - 1]+dt* 3,

 cost_matrix[i - 1][j - 2] + dt2 * 3 + dt * 3)

 if normalized:cost_matrix[i][j] = cost_matrix[i][j]/ (len(ts_y))

 return cost_matrix

5.3 Plotting module

#plotDTWalignment.py

import matplotlib.pyplot as plt

import numpy as np

def plotwithQT(x, y, path,title):

 xaxis = [x1[0] for x1 in path]

 yaxis = [y1[1] for y1 in path]

 plt.figure(0)

 # plt.axes([0, x.size, 0, y.size])

 ax1 = plt.subplot2grid((5, 5), (0, 0), rowspan=4)

 x1 = np.arange(0, y.size)

 ax1.set_ylabel('Template axis')

 plt.setp(ax1.get_xticklabels(), visible=False)

 ax1.plot(y, x1, color='green')

 ax1.set_ylim([0, y.size])

 ax3 = plt.subplot2grid((5, 5), (4, 1), colspan=4)

 ax3.plot(x)

 plt.setp(ax3.get_yticklabels(), visible=False)

 ax3.set_xlabel('Query axis')

 ax3.set_xlim([0, x.size])

55

 ax2 = plt.subplot2grid((5, 5), (0, 1), colspan=4, rowspan=4)

 ax2.plot(xaxis,yaxis, label=r"symmetric1",color='red')

 # setp(ax2.get_xticklabels(), visible=False)

 plt.legend(loc="upper left", bbox_to_anchor=[0, 1], ncol=1,

 shadow=True, title="Step Pattern", fancybox=True)

 ax2.get_legend().get_title().set_color("purple")

 ax2.set_xlim([0, x.size])

 ax2.set_ylim([0, y.size])

 plt.setp(ax2.get_xticklabels(), visible=False)

 plt.setp(ax2.get_yticklabels(), visible=False)

 plt.suptitle("DTWPy: Time Series Alignment"+title)

 plt.show()

def plotalignment_with_window(window,path,title):

 plt.figure(num=None, figsize=(5, 5), dpi=80, facecolor='w',

 edgecolor='k')

 xlim,ylim = max(path,key=lambda item:item[1])

 wx = [x[0] for x in window]

 wy = [y[1] for y in window]

 x = [x[0] for x in path]

 y = [y[1] for y in path]

 plt.plot(wx,wy,color="gray")

 plt.plot(x,y,color="black")

 plt.ylabel('Template index')

 plt.xlabel('Query index')

 plt.axis([0, xlim, 0, ylim])

 plt.suptitle("Itakura-window"+title)

 plt.show()

def plotalignment(path,title):

 plt.figure(num=None, figsize=(5, 5), dpi=80, facecolor='w',

 edgecolor='k')

 xlim,ylim = max(path,key=lambda item:item[1])

 x = [x[0] for x in path]

 y = [y[1] for y in path]

 plt.plot(x,y,color="black")

 plt.ylabel('Template index')

 plt.xlabel('Query index')

 plt.axis([0, xlim, 0, ylim])

 plt.suptitle("Itakura-window"+title)

 plt.show()

def plotdetailalignment(query,template,path, title=''):

 coef=5

56

 xaxis = [x1[0] for x1 in path]

 yaxis = [y1[1] for y1 in path]

 for i in range(len(template)):

 template[i] += template[i]+coef

 plt.figure(1)

 plt.plot(template, lw=3)

 plt.plot(query, lw=3)

 for i in range(0,max(len(xaxis),len(yaxis))):

 plt.plot()

 #for val in path:

 #plt.plot([val[0], val[1]],[template[val[0]],

query[val[1]]], 'k', lw=0.5)

 plt.axis('off')

 plt.show()

5.4 DTWPy

#!/usr/bin/env python

-*- coding: utf-8 -*-

dtwpy.py

import patterns

import numpy as np

from memprof import *

def __derivation(ts):

 drts = []

 for i in range(1, len(ts) - 1):

 derived = (ts[i]-ts[i-1)+((ts[i+1]-ts[i-1])/2.0)/2.0

 drts.append(derived)

 return drts

def ddtw(x, y, dist=lambda a, b: abs(a - b), windowtype=None,

windowsize=None, pattern="symmetric1", normalized=False,

dist_only=False):

 x = __derivation(x)

 y = __derivation(y)

 len_x, len_y = len(x), len(y)

 window = ''

 if windowtype == "scband":

 window = __getSCwindow(windowsize, len_x, len_y)

57

 elif windowtype == "itakura":

 window = __getItakurawindow(len_x, len_y)

 elif windowtype == "paliwal":

 window = __getpaliwalwindow(windowsize, len_x, len_y)

 else:

 window = [(i, j) for i in range(len_x) for j in

 range(len_y)]

 D = __cost_matrix(x, y, window, dist, pattern, normalized)

 if dist_only:

 return D[len_x - 1][len_y - 1]

 else:

 path = __backtrack(D, len_x - 1, len_y - 1)

 return (window,D[len_x - 1][len_y - 1], path)

def dtw(x, y, dist=lambda a, b: abs(a - b), windowtype=None,

windowsize=None, pattern="symmetric1",

normalized=False,dist_only=False,cost=False):

 len_x, len_y = x.size, y.size

 np.empty([len_x, len_y], dtype=float)

 if windowtype == "scband":

 window = __getSCwindow(windowsize, len_x, len_y)

 elif windowtype == "itakura":

 window = __getItakurawindow(len_x, len_y)

 elif windowtype == "paliwal":

 window = __getpaliwalwindow(windowsize, len_x, len_y)

 else:

 window = [(i, j) for i in np.arange(len_x) for j in

np.arange(len_y)]

 D = __cost_matrix(x, y, window, dist, pattern, normalized)

 if dist_only:

 return D[len_x - 1][len_y - 1]

 else:

 path = __backtrack(D, len_x - 1, len_y - 1)

 if cost == False:

 return (D[len_x - 1][len_y - 1], path)

 return (window,D[len_x - 1][len_y - 1], path)

def fastdtw(x, y, radius=1, dist=lambda x, y:abs(x - y),

pattern="symmetric1", normalized=False):

 min_time_size = radius + 2

 if len(x) < min_time_size or len(y) < min_time_size:

 return constrained_dtw(x, y, dist, pattern, normalized)

 x_shrinked = __reduce_by_half(x)

58

 y_shrinked = __reduce_by_half(y)

 _, path = fastdtw(x_shrinked, y_shrinked, radius, dist,

 pattern, normalized)

 window = __expand_window(path, len(x), len(y), radius)

 return constrained_dtw(x, y, dist, pattern, normalized,

window)

def constrained_dtw(x, y, dist, pattern, normalized,

window=None):

 len_x, len_y = len(x), len(y)

 if window is None:

 window = [(i, j) for i in range(len_x) for j in

range(len_y)]

 D = __cost_matrix(x, y, window, dist, pattern, normalized)

 path = __backtrack(D, len_x - 1, len_y - 1)

 return (D[len_x - 1][len_y - 1], path)

def __cost_matrix(ts_x, ts_y, window, dist, pattern,

normalized):

 if pattern == "symmetric1":

 return patterns.symmetric1(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "symmetric2" or pattern == "symmetricP0":

 return patterns.symmetric2(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "asymmetric":

 return patterns.asymmetric(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "symmetricP1":

 return patterns.symmetricP1(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "asymmetricP0":

 return patterns.asymmetricP0(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "asymmetricP1":

 return patterns.asymmetricP1(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "symmetricP2":

 return patterns.symmetricP2(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "asymmetricP2":

 return patterns.asymmetricP2(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "symmetricP05":

 return patterns.symmetricP05(ts_x, ts_y, window, dist,

59

pattern, normalized)

 elif pattern == "asymmetricP05":

 return patterns.asymmetricP05(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "asymmetricItakura":

 return patterns.asymmetricItakura(ts_x, ts_y, window,

dist, pattern, normalized)

 elif pattern == "typeIa":

 return patterns.typeIa(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "typeIb":

 return patterns.typeIb(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "typeIc":

 return patterns.typeIc(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "typeId":

 return patterns.typeId(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "typeIas":

 return patterns.typeIas(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "typeIbs":

 return patterns.typeIbs(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "typeIcs":

 return patterns.typeIcs(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "typeIds":

 return patterns.typeIds(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "typeIIa":

 return patterns.typeIIa(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "typeIIb":

 return patterns.typeIIb(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "typeIIc":

 return patterns.typeIIc(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "typeIId":

 return patterns.typeIId(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "typeIIIc":

 return patterns.typeIIIc(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "typeIVc":

60

 return patterns.typeIVc(ts_x, ts_y, window, dist,

pattern, normalized)

 elif pattern == "mori2006":

 return patterns.mori2006(ts_x, ts_y, window, dist,

pattern, normalized)

def __backtrack(D, max_x, max_y):

 path = []

 i, j = max_x, max_y

 path.append((i, j))

 while i > 0 or j > 0:

 diag_cost = float('inf')

 left_cost = float('inf')

 down_cost = float('inf')

 if (i > 0) and (j > 0):

 diag_cost = D[i - 1][j - 1]

 if i > 0:

 left_cost = D[i - 1][j]

 if j > 0:

 down_cost = D[i][j - 1]

 if (diag_cost <= left_cost and diag_cost <= down_cost):

 i, j = i - 1, j - 1

 elif (left_cost < diag_cost and left_cost < down_cost):

 i = i - 1

 elif (down_cost < diag_cost and down_cost < left_cost):

 j = j - 1

 elif i <= j:

 j = j - 1

 else:

 i = i - 1

 path.append((i, j))

 path.reverse()

 return path

def __reduce_by_half(x):

 return [(x[i // 2] + x[1 + i // 2]) / 2 for i in range(0,

len(x), 2)]

61

def __expand_window(path, len_x, len_y, radius):

 path_ = set(path)

 for i, j in path:

 for a, b in ((i + a, j + b) for a in range(-radius,

radius + 1) for b in range(-radius, radius + 1)):

 path_.add((a, b))

 window_ = set()

 for i, j in path_:

 for a, b in ((i * 2, j * 2), (i * 2, j * 2 + 1), (i * 2

+ 1, j * 2), (i * 2 + 1, j * 2 + 1)):

 window_.add((a, b))

 window = []

 start_j = 0

 for i in range(0, len_x):

 new_start_j = None

 for j in range(start_j, len_y):

 if (i, j) in window_:

 window.append((i, j))

 if new_start_j is None:

 new_start_j = j

 elif new_start_j is not None:

 break

 start_j = new_start_j

 return window

def __getSCwindow(windowsize, len_x, len_y):

 window = []

 for i in range(len_x):

 for j in range(len_y):

 if abs(i - j) < windowsize:

 window.append((i, j))

 return window

def __getItakurawindow(len_x, len_y):

 window = []

 for i in range(len_x):

 for j in range(len_y):

 if ((j < 2 * i) and (i <= 2 * j) and (i >= len_x -

1 - 2 * (len_y - j)) and (j > len_y - 1 - 2 * (len_x - i))):

 window.append((i, j))

 return window

def __getpaliwalwindow(windowsize, len_x, len_y):

 window = []

 for i in range(len_x):

62

 for j in range(len_y):

 if abs(i*len_y/len_x - j) < windowsize:

 window.append((i, j))

 return window

References

[1] T. K. Vintsyuk, “Speech discrimination by dynamic programming,” Cybernetics, vol. 4, no.

1, pp. 52–57, Jan. 1968.

[2] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for spoken word

recognition,” IEEE Trans. Acoust. Speech Signal Process., vol. 26, no. 1, pp. 43–49, Feb.

1978.

[3] P. Senin, “Dynamic time warping algorithm review,” Inf. Comput. Sci. Dep. Univ. Hawaii

Manoa Honol. USA, pp. 1–23, 2008.

[4] J. Blackburn and E. Ribeiro, “Human Motion Recognition Using Isomap and Dynamic Time

Warping,” in Human Motion – Understanding, Modeling, Capture and Animation, A.

Elgammal, B. Rosenhahn, and R. Klette, Eds. Springer Berlin Heidelberg, 2007, pp. 285–

298.

[5] C. S. Myers and L. R. Rabiner, “A Comparative Study of Several Dynamic Time-Warping

Algorithms for Connected-Word Recognition,” Bell Syst. Tech. J., vol. 60, no. 7, pp. 1389–

1409, Sep. 1981.

[6] “Python Data Analysis Library — pandas: Python Data Analysis Library.” [Online].

Available: http://pandas.pydata.org/. [Accessed: 03-Jun-2015].

[7] S. Salvador and P. Chan, “Toward accurate dynamic time warping in linear time and space,”

Intell. Data Anal., vol. 11, no. 5, pp. 561–580, Jan. 2007.

[8] E. Keogh and M. Pazzani, “Derivative Dynamic Time Warping,” in Proceedings of the 2001

SIAM International Conference on Data Mining, 0 vols., Society for Industrial and Applied

Mathematics, 2001, pp. 1–11.

[9] F. Itakura, “Minimum prediction residual principle applied to speech recognition,” IEEE

Trans. Acoust. Speech Signal Process., vol. 23, no. 1, pp. 67–72, Feb. 1975.

[10] K. K. Paliwal, A. Agarwal, and S. S. Sinha, “A modification over Sakoe and Chiba’s

dynamic time warping algorithm for isolated word recognition,” Signal Process., vol. 4, no.

4, pp. 329–333, 1982.

[11] T. Giorgino, “Computing and Visualizing Dynamic Time Warping Alignments in R: The

dtw Package,” J. Stat. Softw., vol. 31, no. 7, pp. 1–24, 2009.

[12] “mlpy - Machine Learning Python.” [Online]. Available: http://mlpy.sourceforge.net/.

[Accessed: 08-Jun-2015].

[13] C. A. Ratanamahatana and E. Keogh, “Everything you know about dynamic time

warping is wrong,” in Third Workshop on Mining Temporal and Sequential Data, 2004, pp.

22–25.

[14] D. J. Berndt and J. Clifford, “Using Dynamic Time Warping to Find Patterns in Time

Series.,” in KDD Workshop, 1994, pp. 359–370.

[15] A. Akila and E. Chandra, “Slope finder—a distance measure for DTW based isolated

word speech recognition,” Int J Eng Comput Sci, vol. 2, no. 12, pp. 3411–3417, 2013.

63

[16] L. R. B.-H. Juang, “Fundamentals of Speech Recognition Prentice Hall,” Englewood Cli

S, 1993.

[17] A. Mori, S. Uchida, R. Kurazume, R.-I. Taniguchi, T. Hasegawa, and H. Sakoe, “Early

Recognition and Prediction of Gestures,” in 18th International Conference on Pattern

Recognition, 2006. ICPR 2006, 2006, vol. 3, pp. 560–563.

[18] S. Chu, E. J. Keogh, D. M. Hart, M. J. Pazzani, and others, “Iterative Deepening

Dynamic Time Warping for Time Series.,” in SDM, 2002, pp. 195–212.

[19] E. J. Keogh and M. J. Pazzani, “Scaling up dynamic time warping for datamining

applications,” in Proceedings of the sixth ACM SIGKDD international conference on

Knowledge discovery and data mining, 2000, pp. 285–289.

[20] S.-W. Kim, S. Park, and W. W. Chu, “An Index-Based Approach for Similarity Search

Supporting Time Warping in Large Sequence Databases,” in Proceedings of the 17th

International Conference on Data Engineering, Washington, DC, USA, 2001, pp. 607–614.

[21] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic time warping,” Knowl.

Inf. Syst., vol. 7, no. 3, pp. 358–386, 2005.

[22] G. Al-Naymat, S. Chawla, and J. Taheri, “SparseDTW: A Novel Approach to Speed Up

Dynamic Time Warping,” in Proceedings of the Eighth Australasian Data Mining

Conference - Volume 101, Darlinghurst, Australia, Australia, 2009, pp. 117–127.

[23] D. Lemire, “Faster Retrieval with a Two-Pass Dynamic-Time-Warping Lower Bound,”

Pattern Recognit., vol. 42, no. 9, pp. 2169–2180, Sep. 2009.

[24] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh,

“Experimental comparison of representation methods and distance measures for time series

data,” Data Min. Knowl. Discov., vol. 26, no. 2, pp. 275–309, Feb. 2012.

[25] “NumPy — Numpy.” [Online]. Available: http://www.numpy.org/. [Accessed: 04-May-

2015].

[26] “matplotlib: python plotting — Matplotlib 1.4.3 documentation.” [Online]. Available:

http://matplotlib.org/. [Accessed: 04-May-2015].

[27] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for

similarities in the amino acid sequence of two proteins,” J. Mol. Biol., vol. 48, no. 3, pp.

443–453, Mar. 1970.

