Subsea Tie-In Design Solutions and Optimisation Methods

Loyd Kjetil Helland Andersen IKM Ocean Design AS-2015

IKM OCEAN DESIGN AS

Subscription University of Stavanger Faculty of Science and Technology MASTER'S THESIS	
Study program/ Specialization: Master in Mechanical Engineering	Spring semester, 2015
	Restricted access
Writer: Loyd Kjetil Helland Andersen	Logd Getil H. Andener (Writer's signature)
Faculty supervisor: Hirpa G. Lemu, UIS External supervisor(s): Per Nystrøm, IKM Oce	an Design AS
Thesis title: Subsea Tie-in, Design Solutio	ons and Optimisation Methods
Credits (ECTS): 30	
Key words: -Tie-in System -Subsea installation -FE analysis	Pages: 184 + enclosure: 104
-Design methods -Pipe Spool	Stavanger,15.06.2015 Date/year

Front page for master thesis Faculty of Science and Technology Decision made by the Dean October 3^{0th} 2009

© 2015 Loyd Kjetil Helland Andersen ALL RIGHTS RESERVED

Abstract

Subsea Tie-in Systems is used to connect pipes between subsea structures in the offshore oil and gas industry. Subsea Tie-in system has been developed for many decades by the industry, and is used throughout the world in many subsea oil and gas fields of today. Industry experience and various piping codes have been developed and used in the design over the years. However there has been a lack of recommended standard practice and guideline for designing such systems. In this thesis two computer software analysis packages commonly used in the industry for structural analysis of piping systems is explored and compared. A vertical spool design case is investigated by the use of finite element analysis. Relevant design load cases are identified and a design basis is established for the analysis. Relevant piping codes such as ASME and DNV are used in the design. Some of the main challenges which have a great influence on rigid spool design are the fabrication tolerances and metrology, which has to be accounted for in the design. This thesis gives proposal on how to implement statistical distribution of tolerances in the analysis by use of design exploration tools included in the ANSYS Software package. Advantages and disadvantages are described.

The thesis will present some theory and examples to gain a general understanding about the content to be presented. An Introduction of the most common Tie-in Systems and their basic configurations and shape is presented. Advantages and limitations are described. Recommendations and suggestions for future spool design solutions and load mitigations are given.

In this thesis a vertical spool has been analysed with a statistical and probabilistic approach for the metrology and tolerances, the results shows that it is beneficial to include such method in order to better document the safety level and the conservatism in the spool design. The approach also allows the engineer to make a better decision towards the optimisation process of the spool.

The thesis also shows that simple mitigation measures for a vertical spool such as pre-bending and introduction of a seabed support and buoyancy onto the spool has positive effects by reducing the resulting bending moments at connector ends, and can reduce the total stresses in the spool. The results also show that the vertical spool design is is very sensitive to VIV and hence fatigue capacity governs the design.

The vertical spool design has also been checked by use of the commercial piping software package AutoPIPE from Bentley. The results compared to the ANSYS analysis shows that there is a minimal difference in utilisations when using pipe beam element technology. The software is found to be feasible for usage in subsea spool design for small to moderate displacements and deformations, however for an optimised weight design it is recommended to perform a FEA with solid element models in ANSYS.

Preface

This thesis summarizes my post graduate master's degree at the Dept. of Mechanical and Structural Engineering and Material Technology at the University of Stavanger during the spring of 2015. The Thesis has been written in co-operation with IKM Ocean Design A/S which has been my employer for the last 7 years where I have been working as a Structural and Mechanical Engineer. IKM Ocean Design Specializes in design and engineering of subsea pipelines, subsea structures and Tie-in solutions. The company is a sub company of the IKM Group in Norway which is a major sub supplier to the oil and gas industry. During the years working for IKM two vertical Tie-in Spool systems for deep water applications projects have been proven to be of great challenge when it comes to design optimization, analysis techniques and strength verification in the project. Hence a requirement for a more standardized route and methods for these types of spool would indeed benefit future projects. A new DNV guideline for structural design criteria for rigid tie-in spools has been developed by Statoil and DNV. This guideline is in a preliminary version and has not been available for the author of this thesis but it is expected that this guideline will be released during 2015. The main objective of this thesis is to investigate standard solution and identify main challenges for engineering of subsea Tie-in Spools, and propose possible new solutions and recommendations for the commencing of such projects.

My Intention for selecting this subject was to learn more about subsea systems and computer analysing techniques such as finite element programs, and to explore solutions and methods based upon my project experience in IKM within this topic. I hope that people who read it will find it interesting and inspiring, and that the work contributes to give information and advice for future projects and development in the industry.

I would like to thank the management and administration at IKM Ocean Design AS for the opportunity to work on this thesis. Special thanks go to *MD. Peder Hoås, Tech. Dir. Per Nystrøm* and former *Dept. Mngr. Helge Nesse*, who made it possible for me to post graduate with this thesis in the IKM Company.
I would also like to thank the *Dept. Mngr. Samson Katuramu* and my colleges at the *Dept. of Structures, Tiein and Pressurized components, Frode Tjelta, Asle Seim Johansen, Tomas Helleren and Valgerdur Fridriksdottir,* which have given me good ideas, valuable input, good discussion and support during this work.

I would also thank my supervisor *Dr. Hirpa G. Lemu* at *UIS* for given me guidance and comments on how to work with this thesis.

Finally I would like to give my *family* and my wife *Christina Andersen*, a special gratitude for being so patient and supportive for me during the working process over the years as a part time student at *UIS*.

Stavanger 12.06.2015

Table of contents

ABS	TRA	ICT	I
PRE	FAC	Ε	
LIST	OF	FIGURES	vı
LIST	OF	TABLES	XI
NO	MEN	ICLATURE	XIII
1.	INT		1
1.	.1	Historical	2
1	.2	PROBLEM DESCRIPTION	2
1	.3	Scope and Limitation	4
1	.4	REPORT STRUCTURE	5
2.	BA	CKGROUND AND THEORY	7
2.	.1	STRUCTURAL ANALYSIS OF PIPING	7
2	.2	WALL THICKNESS DESIGN	8
2	.3	COLLAPSE OF PIPE WALL UNDER EXTERNAL PRESSURE	11
2	.4	LONGITUDINAL STRESS	13
2	.5	COMBINED STRESS AND VON MISES EQUIVALENT STRESS	14
2	.6	PIPELINE EXPANSION	14
2.	.7	FLEXIBILITY OF PIPING SYSTEM	19
2.	.8	V.I.V IN PIPELINES	23
3.	TIE	-IN SPOOLS SYSTEMS	27
3	.1	OBJECTIVE AND FUNCTIONALITY	27
3	.2	CONFIGURATIONS AND GEOMETRICAL SHAPES OF SPOOLS	
3	.3	TIE-IN SYSTEM DETERMINATION	
3	.4	SPOOL FABRICATION	
3	.5	PIPING FABRICATION TOLERANCES	
3	.6	PROBABILISTIC ASSESSMENT OF FABRICATION TOLERANCES	35
3.	.7	SUMMARY	
4.	со	NNECTOR AND TIE-IN SYSTEMS	
4	.1	CONNECTORS	
4	.2	TIE-IN SYSTEMS	46
5.	DE	SIGN BASIS	51
5	.1	APPLICABLE CODES AND REGULATIONS	51
5	.2	Material Data	52
5	.3	PIPE DIMENSIONS	52
5.	.4	Environmental Data	

5.5	DESIGN PARAMETERS	53
5.6	SPOOL CONFIGURATION	54
5.7	INSTALLATION, SETTLEMENT, SPOOL FABRICATION AND METROLOGY TOLERANCES	55
5.8	LOAD CASES	56
5.9	DESIGN CODE CHECK	57
5.9.	1 Code formulas	57
5.9	2 HISC Stress limits	60
5.9.	3 Code Stress Limits	61
6. SPC	OOL OPTIMISATION AND STRENGTH VERIFICATION	63
6.1	FINITE ELEMENT PROGRAM ANSYS	63
6.2	Analysis Description	67
6.3	FINITE ELEMENT MODEL DESCRIPTION	70
6.4	MATERIAL PROPERTIES	74
6.5	Spool Loads	75
7. AN	ALYSIS RESULTS	79
7.1	ANSYS DESIGN EXPLORER RESULT OPERATIONAL LOADS	79
7.2	REACTION FORCES AND BENDING MOMENTS	84
7.3	Stress Response and Sensitivity	88
7.4	OPTIMAL SPOOL CONFIGURATION	92
7.5	ANALYSIS RESULTS OPERATIONAL	93
7.6	ANALYSIS RESULT FAT AND OFFSHORE HYDRO TESTING	
7.7	ANALYSIS RESULT SEAL REPLACEMENT	
7.8	SUMMARY	
8. VEF	RIFICATION AND COMPARISON OF RESULTS	
8.1	ANSYS PIPE BEAM ELEMENT MODEL	
8.2	ANSYS SOLID ELEMENT MODEL	116
8.3	BENTLEY AUTOPIPE MODEL	125
8.4	BENTLEY AUTOPIPE RESULTS	178
	DEMILET / KOTOT IT E RESOLTS	
8.5	SUMMARY	
		133
	SUMMARY	133 135
9. SPC	SUMMARY	
9. SPC 9.1	SUMMARY OOL WEIGHT AND LOAD MITIGATION BUOYANCY ELEMENTS	
9. SPC 9.1 9.2	SUMMARY DOL WEIGHT AND LOAD MITIGATION BUOYANCY ELEMENTS SEABED SUPPORT	
 9. SPC 9.1 9.2 9.3 9.4 	SUMMARY DOL WEIGHT AND LOAD MITIGATION BUOYANCY ELEMENTS SEABED SUPPORT PRE-BENDING OF SPOOL	
 9. SPC 9.1 9.2 9.3 9.4 	SUMMARY DOL WEIGHT AND LOAD MITIGATION BUOYANCY ELEMENTS SEABED SUPPORT PRE-BENDING OF SPOOL CHAPTER SUMMARY	
 9. SPC 9.1 9.2 9.3 9.4 10. V 	SUMMARY DOL WEIGHT AND LOAD MITIGATION BUOYANCY ELEMENTS SEABED SUPPORT PRE-BENDING OF SPOOL CHAPTER SUMMARY VIV CHECK OF SPOOL	
 9. SPC 9.1 9.2 9.3 9.4 10. V 	SUMMARY OOL WEIGHT AND LOAD MITIGATION BUOYANCY ELEMENTS SEABED SUPPORT PRE-BENDING OF SPOOL CHAPTER SUMMARY /IV CHECK OF SPOOL APPLICABLE CODES	

10.5	SUMMARY	
11.	FUTURE SOLUTIONS FOR SUBSEA TIE-IN	
11.1		
11.2 11.3		
12.	SUMMARY, CONCLUSION AND RECOMMENDATIONS	
12.1		
12.2		
12.3	B RECOMMENDATIONS	
REFER	ENCES	
APPEN	IDIX 1 PRE-STUDY MASTER THESIS	
APPEN	IDIX 2 ANSYS DESIGN EXPLORER SPOOL DEFLECTION COMBINATIONS	
APPEN	IDIX 3 HAND CALCULATIONS	213
A 3.1 A	ASME B31.8 SECTION VIII PIPE WALL CALCULATION	214
A 3.2 E	BUOYANCY CALCULATION	218
A 3.3 C	CURRENT FORCE CALCULATION	
A 3.4 THICK WALL VESSEL CALCULATION 22		
A 3.5 FATIGUE CALCULATION		
A 3.6 L	OCAL BUCKLING-EXTERNAL OVERPRESSURE	234
APPEN	IDIX 4 BENTLY AUTOPIPE	237
A 4.1 A	AUTOPIPE FEATURES	
A 4.2 A	AUTOPIPE STRESS OUTPUT	
APPEN	IDIX 5 ANSYS DESIGN EXPLORER FEATURES	279
APPEN	IDIX 6 SPOOL TYPE COMPARISON	

List of figures

Figure 2-1 Force balance in a pressurized pipe section pr. unit length	10
Figure 2-2 12" Pipe collapse curves and post collapse, Ref. /8/	11
Figure 2-3 Stress component in a pipe	13
Figure 2-4 End Cap Force	14
Figure 2-5 Pipeline end expansion	15
Figure 2-6 Frictional force from soil acting on pipeline	16
Figure 2-7 Anchor point of fully restrained pipeline	16
Figure 2-8 Deformed Pipe section with internal pressure and bending radius, Ref. /11/	17
Figure 2-9 Equivalent physical system for external pressure, Ref. /11/	18
Figure 2-10 Equivalent physical system –internal pressure Ref. /11/	18
Figure 2-11 Simplified system Effective force closed cylinder	19
Figure 2-12 Effective force for a long pipeline	19
Figure 2-13 simple restrained pipe flexibility design	20
Figure 2-14 beam element with 6 D.O.F	20
Figure 2-15 Bending and deflection diagram for frame	21
Figure 2-16 Vortex Induced Vibrations	23
Figure 2-17 Regimes of fluid flow across smooth circular cylinder Ref. /23/	24
Figure 2-18 In-line and cross-flow oscillations-in phase [SINTEF]	24
Figure 2-19 In-line and cross flow oscillations-out of phase [SINTEF]	25
Figure 3-1 Vertical spool jumper lift (Gulf Island Fabrication for BP)	27
Figure 3-2 Horizontal spool lift (Stord Leirvik-Thaijournal.wordpress.com)	28
Figure 3-3 Typical Gulf Of Mexico Subsea Tie-Back Ref. /5/	28
Figure 3-4 Typical Tie-Back in the Norwegian continental shelf Ref. /5/	29
Figure 3-5 Spool's connected to subsea structures (PLEM, X-tree and Tee'- FMC Technologies)	29
Figure 3-6 Tolerances for prefabricated piping assemblies, Ref. /27/	33
Figure 3-7 Tolerances for prefabricated piping assemblies, Ref. /27/	34
Figure 4-1 Bolted Flanged Connection (VECTOR SPO Compact Flange)	
Figure 4-2 Clamped Connection subjected to external forces (Techlok by VECTOR)	40
Figure 4-3 Clamp Connector (Techlok by VECTOR)	40
Figure 4-4 Clamp Connector (Grayloc)	41
Figure 4-5 Typical Hub Connection (FMC Design)	41
Figure 4-6 Hub located in Tombstone subjected to Spool Forces	42
Figure 4-7 ROV Operated Subsea Connector (Optima VECTOR)	43
Figure 4-8 ROV Operated Pipe clamp Connector (AKER)	43
Figure 4-9 Optima connector exploded view (Vector)	44
Figure 4-10 KC 4.2 Connector (FMC)	44
Figure 4-11 Collet Connector KC 4.2 high pressure and multibore (FMC)	45
Figure 4-12 Vertical connection collet connector (FMC)	45
Figure 4-13 Icarus Tie-in System step 1 to 4 (GE-Oil & Gas-Vetco)	46
Figure 4-14 Icarus Tie-in System step 5 to 8 (GE-Oil & gas-Vetco)	47

Figure 4-15 Installation sequence for Thor Tie-in System (FMC-NEMO)	49
Figure 5-1 Jumper Spool Shape	
Figure 5-2 Jumper spool tolerances	56
Figure 5-3 Impact of test pressure levels on margin of safety Ref. /34/	61
Figure 6-1 ANSYS Classic GUI	
Figure 6-2 ANSYS Workbench environment	64
Figure 6-3 ANSYS Workbench Pipe model	65
Figure 6-4 GUI ANSYS WB Design Explorer	
Figure 6-5 Boundary conditions spool "In-place model"	67
Figure 6-6 normal distributions for rotations	69
Figure 6-7 Linear max/min distribution of imposed deflections	69
Figure 6-8 ANSYS FEA Flow chart	70
Figure 6-9ANSYS FEA Model	71
Figure 6-10 Element quality metrics	72
Figure 6-11 ANSYS FEA model Shell Elements	
Figure 6-12 ANSYS SHELL181 Element	74
Figure 6-13 Spool End Constraints and Boundary Conditions	75
Figure 6-14 Spool Loads	
Figure 7-1 Max Reaction Forces (Abs values)	84
Figure 7-2 Max Reaction Moments (Abs. values)	85
Figure 7-3 Max Reaction Moments MY and MX (Abs. values)	
Figure 7-4 Mean reaction forces	
Figure 7-5 Mean reaction bending moment	87
Figure 7-6 Kriging Algorithm curve fit (Source ANSYS lectures)	
Figure 7-7 Stress Response "Max1" Configuration Dx _{Tree} versus Rz _{Manifold}	89
Figure 7-8 Stress response "Max 1" configuration Rotations Rx and Rz Manifold end	89
Figure 7-9 Stress response "Max 1" configuration Displacements Dx _{Tree} and Dy _{Manifold}	
Figure 7-10 Stress response "Max 1" configuration Displacements Rz _{Tree} and Dy _{Manifold}	90
Figure 7-11 Goodness of fit for response algorithm	91
Figure 7-12 von Mises Stress Sensitivity "Max 1" Configuration	
Figure 7-13 ANSYS Optimisation Results and candidates for "max 1" configuration	
Figure 7-14 Details of Mesh FE model	
Figure 7-15 Max von Mises stress-operational	95
Figure 7-16 Total deformation spool	95
Figure 7-17 location of max peak stress operational at MF end	
Figure 7-18 Max von Mises stress operational at MF end	97
Figure 7-19 Cross sectional von Mises stress operational at MF end	97
Figure 7-20 Cross sectional max longitudinal stress in pipe operational at MF-end	
Figure 7-21 Von Mises stress operational at intrados of bend	98
Figure 7-22 Cross sectional von Mises stress at bend	
Figure 7-23 Cross sectional longitudinal stress at bend	
Figure 7-24 Max von Mises stress - Subsea Hydro Test	
Figure 7-25 Max stress location- Subsea Hydro test	101

Figure 7-26 Cross sectional von Mises stress-Subsea Hydro Test at bend XT- end	102
Figure 7-27 Cross sectional longitudinal stress-Subsea Hydro Test at XT- end	102
Figure 7-28 Max von Mises stress - FAT	103
Figure 7-29 Max stress location- FAT	
Figure 7-30 Cross sectional longitudinal stress -FAT at XT- end	104
Figure 7-31 Cross sectional von Mises stress -FAT at bend XT- end	104
Figure 7-32 Stress in spool- seal replacement	105
Figure 7-33 Max stress at Seal Replacement sequence	
Figure 7-34 Max stress Seal Replacement stroking of MF end	106
Figure 7-35 Max stress Seal Replacement stroking of XT end	107
Figure 7-36 Max von Mises stress-Seal Replacement MF end	107
Figure 7-37 Max longitudinal stress-Seal Replacement MF end	108
Figure 8-1 ANSYS ELBOW290 and PIPE289 Elements	110
Figure 8-2 ANSYS WorkBench Pipe Model-Loads	111
Figure 8-3 ANSYS Workbench Mesh	
Figure 8-4 ANSYS Pipe Element model	112
Figure 8-5 Max von Mises stress Pipe Element model	113
Figure 8-6 Max displacement Pipe Element model	113
Figure 8-7 Max longitudinal stress Pipe Element model	114
Figure 8-8 Max von Mises Stress Pipe Element model-XT-End	114
Figure 8-9 Max longitudinal stress Pipe Element model-XT End	115
Figure 8-10 Max von Mises stress Pipe Element model at bend	115
Figure 8-11 Max Longitudinal Stress Pipe Model at Bend	116
Figure 8-12 ANSYS Sweep Meshing-Examples	117
Figure 8-13 Solid Mesh of Spool solid model	
Figure 8-14 ANSYS Workbench solid model-loads	118
Figure 8-15 Max von Mises stress solid model	
Figure 8-16 Area of max stress higher than 405 MPa	119
Figure 8-17 Max displacement solid model	120
Figure 8-18 Detail max von Mises stress solid model at MF end	120
Figure 8-19 Linearized von Mises stress through pipe wall solid model	121
Figure 8-20 Cross sectional von Mises stress solid model at MF end	121
Figure 8-21 Cross sectional longitudinal stress solid model at MF end	122
Figure 8-22 von Mises stress bend solid model –XT end	122
Figure 8-23 Max von Mises stress bend solid model between leg 2 and 3	123
Figure 8-24 Cross sectional longitudinal stress solid model bend between leg 2 and 3	123
Figure 8-25 Cross sectional von Mises stress solid model bend between leg 2 and 3	124
Figure 8-26 Cross sectional longitudinal stress solid model bend XT end	124
Figure 8-27 Cross sectional von Mises stress solid model bend XT end	125
Figure 8-28 AutoPIPE spool ASME B31.8 Code stress results corroded condition	
Figure 8-29 AutoPIPE spool displacement	130
Figure 8-30 AutoPIPE spool ASME B31.8 Code stress results nominal wallthickness	
Figure 9-1 Buoyancy Element for piping –(Trelleborg Systems)	136

Figure 9-2 VIV Strakes on buoyancy-(Balmoral-group)1	
Figure 9-3 VIV Strakes for subsea piping-(Trelleborg Systems)1	137
Figure 9-4 Three dimensional CFD flow around Riser (PRETech)1	
Figure 9-5 Three dimensional CFD flow around riser with strakes (PRETech)	138
Figure 9-6 Spool with buoyancy uplift force1	139
Figure 9-7 Max von Mises stress operational with buoyancy element	140
Figure 9-8 Max Displacement operational with buoyancy element	140
Figure 9-9 von Mises stress MF End operational with buoyancy element	141
Figure 9-10 longitudinal stress MF end operational with buoyancy element	141
Figure 9-11 Typical piping spring support–[Wermac.org]1	142
Figure 9-12 Spool with spring support loading1	143
Figure 9-13 Max von Mises stress spool with spring support1	144
Figure 9-14 Max displacement spool with spring support1	144
Figure 9-15 Max cross sectional von Mises stress at MF end	145
Figure 9-16 Max cross sectional longitudinal stress at MF end	145
Figure 9-17 Max 1 configuration spool with pre-bending1	146
Figure 9-18 Spool Pre-bending loading	147
Figure 9-19Max von Mises stress Pre-bending of spool1	147
Figure 9-20 Max deflection Pre-bending of spool1	148
Figure 9-21 Max cross sectional von Mises stress MF end1	148
Figure 9-22 Max Cross section longitudinal stress MF-end1	149
Figure 10-1 Free spanning pipeline	151
Figure 10-2 1'st mode frequency–spool with spring support1	155
Figure 10-3 2 nd mode frequency –spool without spring support1	155
Figure 10-4 2 nd mode frequency- spool with spring support1	156
Figure 10-5 Criteria for onset of the motion in the first in line instability region (1.0 <vr<2.2 and="" end="" of<="" td=""><td></td></vr<2.2>	
second instability region Ref. /25/1	158
Figure 10-6 Amplitude of in-line motion as a function of K_s Ref. /25/	159
Figure 10-7 Amplitude of crossflow motions as functions of K _s Ref. /25/1	159
Figure 10-8 Max principal stress 1 meter displacement at leg 4	162
Figure 10-9 Max principal stress 1 meter displacement at leg 2	162
Figure 11-1 sketch of reel ship and pipeline1	165
Figure 11-2 Typical Skuld Pipeline residual curvature sections	166
Figure 11-3 First End Direct Tie-in using the Residual Curvature Method	167
Figure 11-4 First End Direct Tie-in-Initiation overview1	167
Figure 11-5 2 nd Tie In laydown position, ready for Lift, Shift and Docking operation	168
Figure 11-6 2 nd end Tie-in Make up of clamp connector1	168
Figure 11-7 Stroke force versus distance1	168
Figure 11-8 Bending Moment vs Rotation Applied at the Pipeline End	169
Figure 11-9 Layers of Flexible Pipe (Wellstream)1	170
Figure 11-10 Installed flexibles in Norway Ref. /31/	171
Figure 11-11 Norway Riser failure data Ref. /31/1	172

Figure 11-13 Multilayer Composite flexible (DEEPFLEX)	174
Figure 11-14 IPB Flexible With heat tracing and gas lift (Technip)	174
Figure 11-15 Jumper Solution m-pipe [®] (magmaglobal)	175
Figure 11-16 m-pipe [®] spool	175

List of Tables

Table 3-1 Spool Shapes	30
Table 3-2 project risk classification	31
Table 3-3 fabrication design considerations	32
Table 4-1 Subsea Tie-In System's Manufacturing Companies	46
Table 4-2 Comparison Tie-in systems	47
Table 5-1 Codes, standards and regulations for pipes	51
Table 5-2 Piping material data	52
Table 5-3 Spool piping geometry	52
Table 5-4 Environmental data	53
Table 5-5 Design data	53
Table 5-6 Spool Jumper Configurations	54
Table 5-7 Installation Tolerances and Settlements	55
Table 5-8 Deflections and settlements	55
Table 5-9 fabrication and metrology tolerance	55
Table 5-10 Allowable stress piping X-65 grade	62
Table 5-11 Allowable stress Super Duplex piping	62
Table 6-1 Statistical Distributions	68
Table 6-2 Distribution values	68
Table 6-3 Analysis Material Properties	74
Table 6-4 Load description for jumper spool	76
Table 7-1 Spool configurations versus von Mises stress and probability level	79
Table 7-2 von Mises stress distribution "Max" configuration	80
Table 7-3 von Mises stress distribution "Nom" configuration	81
Table 7-4 von Mises stress distribution "Min" configuration	83
Table 7-5 Reaction Forces "Max 1" configuration 10 ⁻⁴ probability	85
Table 7-6 Reaction Forces "Min 3" configuration 10 ⁻⁴ probability	86
Table 7-7 Imposed spool end deformations (10 ⁻⁴ - Extremes)	92
Table 7-8 Optimal Geometry for 30m long spool	93
Table 7-9 Max Spool Stresses -operational	96
Table 7-10 Max Spool Reaction Forces -Operational	96
Table 7-11 Max Spool Stresses –FAT/Subsea test	100
Table 7-12 Reaction forces Subsea Test	100
Table 7-13 Reaction forces FAT Test	100
Table 7-14 Max Spool Stresses –Seal Replacement	105
Table 8-1 Max spool stress Pipe-Model	112
Table 8-2 Reaction forces beam model	112
Table 8-3 Max spool stress solid-Model	118
Table 8-4 Reaction forces solid model	118
Table 8-5 AutoPIPE ASME B31.8 code Load combinations	127
Table 8-6 AutoPIPE ASME B31.8 Code stress utilisations Corroded condition	128

Table 8-7 AutoPIPE ASME B31.8 Code stress utilisations nominal wall thickness	130
Table 8-8 AutoPIPE General stress report	132
Table 8-9 Max spool stress utilisation	132
Table 8-10 Reaction forces AutoPIPE	133
Table 8-11 Summary of stress results spool analysis verification	133
Table 8-12 Combined stress difference- Computer models	133
Table 8-13 Longitudinal stress difference- Computer models	134
Table 9-1 Buoyancy types versus water depth from DIAB	136
Table 9-2 Max spool stress element model with buoyancy	139
Table 9-3 Reaction forces with buoyancy	139
Table 9-4 Max spool stress element model with spring support	142
Table 9-5 Reaction forces with spring support	143
Table 9-6 Max spool stress pre-bending of spool	146
Table 9-7 Reaction forces pre-bending of spool	146
Table 9-8 Load mitigation effects on spool	149
Table 10-1 Spool Frequencies-without spring support	154
Table 10-2 Spool Frequencies-with spring support	154
Table 10-3 Spool Frequencies-with buoyancy uplift	154
Table 10-4 Lock on current speed's for spool with spring support	158
Table 10-5 Current velocities percent occurrence	160

Nomenclature

Latin symbols

- ā Intercept of the design SN-curve with the log N axis
- A Area
- A_i Internal area of pipe
- A_e External area of pipe
- A_s Cross sectional area of pipe
- b Constant polynomial
- c Corrosion allowance
- c Damping coeffcient
- c_c Critical damping
- D_i Inside diameter
- D_o Outer Diameter
- D Nominal diameter
- D Accumulated fatigue damage
- D_k Nodal Imposed displacement in k=x, y, z global direction
- d Distance
- E Young's Modulus
- F Force
- F_{axl} Axial force
- F₁ ASME design factor for hoop stress
- F₂ ASME design factor for longitudinal stress
- F₃ ASME design factor for combined stress
- *F*_{fric} Frictional force
- *f*_{osc} Frequency forced oscillation
- *f*₀ Eigen frequency
- *f*_i Natural frequency for i'th mode
- f_u Ultimate strength of material
- $f_{
 u}$ Shedding frequency
- f ASME Fatigue factor
- F_{wall} Axial pipe wall force due to pressure
- F_{endcap} Axial pipe endcap force due to pressure
 - g Dimensional errors
 - $i_{o,i}$ Stress intensification factor (SIF) out of plane or in plane
 - *I* Moment of inertia
 - K Stiffness
 - k Number of stress blocks
 - [K] Stiffness matrix
 - K_s Stability factor
 - L Length
 - M Bending moment
- M_{add} Added mass
- [M] Mass matrix

m	mass
m	negative inverse slope of the S-N curve
m _e	Effective mass
M_i	In plane bending moment
M_{o}	Out of plane bending moment
M_t	Torsional moment
N	Axial force
N	Number of cycles S-N Curves
n	Number of stress cycles
N _{eff}	Effective force in pipe
N _{true}	True force in pipe wall
P	Pressure
$P_c(t)$	Collapse pressure
Pe	External pressure
$P_{el}(t)$	Pressure at elastic capacity perfect tube
Pi	Internal pressure
P_{min}	Minimum internal pressure
Po	Outer pressure or external pressure
$P_p(t)$	Pressure at plastic capacity
P _n	Probability during n-years
R_{k}	Nodal imposed rotations k= x, y, z global axis
R_{e}	Reynolds number
R_p	Return period
R	Mean radius
R _i	Internal radius
R _o	Outer radius
S _A	ASME stress limit flexural stress
S _b	ASME Longitudinal bending stresses
S _c S _h	ASME Allowable stress at cold pipe ASME hoop stress
S _h	ASME Allowable stress at hot pipe
S _n	ASME longitudinal stress
S _P	ASME Longitudinal pressure stresses
Su	ASME Ultimate tensile strength
S _{axial}	ASME Axial stress
St	ASME Torsional stress
S	ASME Specified minimum yield strength
S	Sample standard deviation
т	ASME Temperature de-rating factor
t	Nominal pipe wall thickness
t1	DNV definition for minimum pipe wall thickness
t _{min}	Minimum wall thickness
t_{Corr}	Corrosion allowance
t _{fab}	Fabrication tolerance
U	Current speed
V	Flow velocity

- V_r Reduced velocity
- *W*_{sub} Weight of pipe pr. meter
- W_t Pipe wall thickness
- y Constant polynomial
- *Y* Population random variable
- Z Distance in meter
- Z_{nom} ASME Section modulus, nominal wall thickness

Greek Symbols

- lpha Thermal expansion coefficient or
- $\alpha_{\rm m}$ Allowable stress factor membrane stress
- α_{fab} fabrication factor
- ε_{el} Longitudinal strain
- Δ Displacement or difference
- σ_a Axial stress
- σ_b Bending stress
- σ_i Principal stress i=1,2,3
- σ_i 2D-Coordinate stress j=x, y, z
- σ_l Longitudinal stress
- σ_h Mean hoop stress or circumferential stress
- σ_{rr} Radial through wall stress
- $\sigma_{\theta\theta}$ Tangential stress or Circumferential stress
- σ_y Yield strength of material
- τ_{ij} Shear stress i=x, y, z j=x, y, z
- u Poisson's ratio
- *ν* Kinematic viscosity
- θ Temperature Difference
- μ Frictional coeffcient
- $\gamma_{HISC} \qquad \text{Material quality factor}$
 - ρ Mass density
 - η Usage factor
 - $\zeta_{ extsf{T}}$ Total modal damping ratio
 - ω Natural frequency

Abbreviations

AISC	American Institute of Steel construction
ANSI	American National Standards
APDL	ANSYS Parametric Design Language
API	American Petroleum Institute
ASD	Allowable Stress Design
ASME	American Society Of Mechanical Engineers
ASCE	American Society of Civil Engineers
BBRTS	Big Brother Remote Tie-In system
BPVC	Boiler pressure Vessel Code
BOP	Blow Out Preventer
CAD	Computer Assisted Drawing
CFD	Computational Fluid Dynamics
CFX	ANSYS computational fluid dynamics program
DNV	Det Norske Veritas
EQSLV	Equivalent Stress Level
DFF	Design Fatigue factor
DOE	Design Of Experiments
DOF	Degree Of freedom
DP	Design Pressure or Differential Pressure
FAT	Factory Acceptance Test
FEA	Finite Element Analysis
FEED	Front End Engineering and Design
FEM	Finite Element Method
FFRP	Flexible Fibre Reinforced Pipe
FMC	Food Machinery Corporation
GE	General Electric
GR	Gravity
GUI	Graphical user Interface
HCCS	Horizontal Clamp Connector System
HCS	Horizontal Clamp
HISC	Hydrogen Induced Stress Corrosion
ICCG	Incomplete Cholesky Conjugate Gradient
IPB	Integrated Production Bundle
ISO	International Organization for standardization
КС	Kollet Connector
КНК	Kouatsu-Gas Hoan Kyoukai, (The High Pressure Gas Safety Institute of Japan)
КР	Kilometer point
LRFD	Load Resistance Factoring Design
MAOP	Maximum Allowable Operating Pressure
Max	Maximum
MEG	Mono Ethylene Glycol

MF	Manifold
Min	Minimum
MIT	Massachusetts Institute of Technology
MOP	Maximum Operating Pressure
MSL	Mean Sea Level
Nom	Nominal
NEMA	National Electrical Manufacturers Association
NORSOK	Norsk Sokkels Konkurranseposisjon
NPD	Norwegian Petroleum Directorate
РС	Personal Computer
PCG	Preconditioned Conjugate Gradient Solver
PEEK	Polyetheretherketone
PLEM	Pipeline End Module
PLET	Pipeline End Termination
ROV	Remote Operated Vehicle
RP	Recommended practice
RTS	Remote Tie-In System
SCF	Stress Concentration Factor
SIF	Stress Intensification Factor
SMYS	Specified Minimum Yield Strength
SMTS	Specified Minimum Tensile Strength
TR	Technical Requirement
TFRP	Thermoplastic Reinforced Pipe
UBC	Uniform Building Code
ULS	Ultimate Limit State
UTIS	Universal Tie-in System
VIV	Vortex Induced Vibration
WB	Work Bench
WI	Water Injection
WRC	Welding Research Council
X-Tree	Wellhead "Christmas Tree"

1. INTRODUCTION

Subsea Tie-in solutions provided by most of the major actors in the subsea market provides various systems for connecting pipelines to manifolds, wells and Trunk pipe lines. These pipelines are usually called "spools" or tie in spool. This is usually a steel pipe oriented either vertically or horizontally with a connector system in each end, other types used is of a flexible types similar to what is used in risers. These spools are often designed to withstand large forces and displacements due to pressure and temperature in the pipeline during installation and operation; hence the requirement for flexibility and strength is one of the key design features. Various computer optimization techniques such as the use of FEA and CFD are utilized in order to analyse and verify strength of these spools towards numerous load combinations in order to document required design life and governing codes. Experience has shown that some of these solutions are sensitive to parameter changes such as:

- Flow and process data
- Material choice
- Metrology and fabrication tolerances
- Environmental factors.
- Size and shape
- Connector solutions

Typically main issues related to design of rigid spools can be listed as follows:

- Size
- Stresses
- Conflict between company standard and code requirements
- Lack of recommended practice
- Corrosion and (HISC) problems
- Insulation
- VIV
- Weight
- Fatigue
- Erosion
- Slugging
- Pressure loss
- Requirement for MEG inhibitors
- Sour service
- Seabed
- Size and limitation of connector systems
- Requirement for structural support equipment

In order to reduce project cost, time and complexity, (especially for deep water application and diver less tie-in system) the following topics should be studied such as:

- Efficient computer analysis and methods
- An early identification of critical values
- Alternative Tie-in solutions
- Reduction of complexity
- Reduction of vessel installation time.
- Reduction of cost by use of robust standard solutions.
- Better use and understanding of recommended design standards, company practices and codes.

1.1 Historical

Since the 1980's, when the subsea industry started moving into water depths where divers could not be used, the industry has been challenged to provide a simple cost effective method of connecting two lines without divers.

The industry has responded to this challenge providing innovative methods of doing first end and second end tie-in methods including:

- Stab & hinge-over',
- Rigid jumpers/spools
- Flexibles,
- Deflect and connect

A multitude of vertical and horizontal connectors & tools have been used. However, the use of rigid jumpers still remains the universal method of performing deep water pipeline connections, possibly due its extensive proven track record, its cost effectiveness and high reliability. However, this system still has significant drawbacks which include the requirement for metrology, topsides fabrication (which may or may not be on the critical path), installation with a multi-point lift and its limited capability to accommodate pipeline expansion and two tie-in operations. Ref. /1/

Some of the early projects during the 1980,s utilizing the deflect to connect approach was

- **East Frigg Project.** June 1988. Connection of 2 production manifolds to a central manifold by 2 bundles in 24" carrier pipes to provide buoyancy. Bundles connected by a first time diverless Deflect to connect method.
- **Troll Olje Project**. August 1995. Connection of 16" oil and gas export pipelines. First time diverless Deflect to Connect directly on pipelines by attaching weight and buoyancy.

1.2 **Problem Description**

A pipeline connection is normally used as a link between a pipeline, manifold, oil-well, storage tank, processing facility or other mechanical equipment used for the transportation of a fluid, gas, sand or a combination of all from one location to another. The pipeline link connection is called a spool which is an English terminology (in Norwegian it translates to "snelle", which is a device for reeling something on like a fishing reel). When we use the word spool in piping terminology it is understood as piece of pipe with necessary bends tees and flanges for connection to another system. In simple terms it is the pipe from flange to flange. The concept is relatively simple. As the pipes are heated and pressurized they expand and since the piping is restrained in some way in a piping system stresses are developed. For subsea

pipelines the spools is usually an infield pipeline connection to a trunk exporting pipeline, manifold, oil wells or other subsea facility. The transport medium is:

- Produced oil
- Gas injection
- Water injection
- Multiphase flow (oil, gas and water)

Spools must have enough flexibility to withstand the expansion deflection from facilities such as:

- Pipeline and Risers connected to subsea structures or other processing unit.
- Oil-wells and manifolds
- Environmental forces

Reference is also made to the Master thesis of 2012 made by Espen Slettebø Ref. /2/ the thesis assesses key requirements related to tie-in spools by a detailed review about issues related to the design, fabrication, installation and operation of tie-in spools here the definition of the Tie-in spool is described as.

"Essentially spool pieces are short sections of pipeline that:

- Provide an interface between the pipeline and its connection point that bridges the inaccuracies associated with pipeline installation. For a tie-in spool to serve as intended, it needs to satisfy numerous different criteria. Principally it needs to make up the connection between the pipeline and the interconnecting part. For pipelines that are transporting hydrocarbons it is crucial that the connections are sealed. Containment of hydrocarbons is crucial to reduce the risk of pollution and ensuring safe transportation of hydrocarbons. Tie-in spools are measured, fabricated and installed after the pipeline has been laid. Mechanisms related to these operations, makes the tie-in spool a key piece of equipment in offshore field developments
- Allow the pipeline to expand during operation but also allow these pipeline expansion forces to be dissipated/reduced at the associated connection point. The tie-in spool also needs to be a flexible element. Pipelines expand because of temperature and pressure differences between installation and operational conditions. This expansion may be in the order of several meters. Depending on how the pipeline is constrained, expansion may cause the pipeline to buckle or by it extending in axial direction. The expansion is taken up by deflection of the tie-in spool. Simultaneously as the pipeline expands, forces are induced into the tie-in spool and the connector. Making sure that induced loads are below material and connector limitations is critical in design of tie-in spools.

These key requirements can have a significant impact on the overall cost of a project. A too conservative design means an oversized tie-in spool. A too large tie-in spool increases the use of materials, hampers the manufacturing process and more importantly may limit the number of vessels that can install the spools resulting in a requirement for large costly heavy lift vessels or separate two vessels to transport the spools."

1.3 Scope and Limitation

This thesis major purpose is to investigate and present some of the standard solutions of the tie-in system as used by the major actors in the oil and gas industry. The thesis will utilize other studies, company experience, papers and thesis on this topic. The main objective is to analyse a vertical jumper spool by use of commercial finite element analysis software, and to study spool design such as:

- Investigate the effect of a flexible joint or seabed support in order to reduce moment and forces in a rigid spool.
- Optimize the computer analysis by parametric variation
- Comparison of computer models and software
- Study effects of statistical distribution of tolerances and deflections

The study will also include:

- Fabrication issues
- Development of design basis for analysis
- Theory
- Use of applicable standards and codes

Other topics such as:

- Conceptual ideas
- Further studies and development for Tie-in
- Limitations of Tie-in systems

The thesis will aim to propose recommendations for commencing of such projects and present the result of the case study. Engineering and analysis of subsea Tie in spools normally involves a large work scope to be investigated. In order to limit the work for this thesis, a limited number of load cases are checked, and the focus of the work presented here is mainly for vertical spool types.

1.4 Report Structure

Chapter 1 (Introduction)

The introduction contains the background information, to gain an illustrative understanding about the content of this thesis. The problem is stated followed by the purpose and scope of the thesis. A short thesis organization is also included (this section) to make navigation in the document simple for the reader.

Chapter 2 (Background and Theory)

This section contains presentations of some theory and examples as to gain an understanding of the basic principles and physical behaviour of piping system

Chapter 3 (Tie-in Spools System)

This section presents examples of typical subsea Tie-in systems. The section describes typical advantages and disadvantages for each system. Fabrication methods and considerations of tolerances are discussed.

Chapter 4 (Connector and Tie-in Systems)

This chapter describes the function of subsea connectors and the available tooling required for performing a subsea Tie-in. A general list of the most common systems used and the manufactures is given.

Chapter 5 (Design basis)

This chapter describes the basis for the design of the spool. The chapter describes data to be used in the design such as the use of governing codes and standards. The chapter also describes the important parameters such as materials, dimensions, loadings and limitations for the system.

Chapter 6 (Spool optimisation and strength verification)

This chapter describes the computer software tools used in the structural analysis of piping systems. The boundary condition and the computer model for the FEA are given and a description of the analysis method is outlined. Load cases for the spool is described and assigned to the analysis.

Chapter 7 (Analysis Results)

This chapter presents the analysis results from the ANSYS Design Explorer tool. Statistical distribution of the results are presented and discussed. An optimal configuration for the spool and sensitivity to imposed loading is studied

Chapter 8 (Verification and Comparison of Results)

This chapter investigates different computer models and compare results. The main purpose is to study if there are major differences between typical finite elements used in computer piping analysis. The chapter compares results from software typically used in the industry for piping analysis. (AutoPIPE).

Chapter 9 (Spool Weight and Load Mitigation)

In this chapter some ideas on how to minimize loading on the connectors for a vertical spool is investigated and results are presented. Typical subsea equipment used for mitigation of VIV and weight is presented.

Chapter 10 (VIV Check of Spool)

This chapter studies the effect and sensitivity of the spool to be excited by the sea current into a harmonic frequency with a spring seabed support. Modal analysis is performed by use of ANSYS. Typical recommended practice for the design check against VIV is discussed and a method for checking against fatigue is presented.

Chapter 11 (Future Solutions)

This chapter presents some developed and conceptual ideas for future subsea spool projects. The ideas are presented with the intention that it might have potential for cost savings

Chapter 12 (Summary and Conclusion)

The overall Summary, conclusion and recommendations from the work performed in this thesis are presented a recommended engineering practice based upon this thesis work is described. Suggestion for future studies on this topic is given.

2. BACKGROUND AND THEORY

2.1 Structural analysis of piping

Structural analysis of piping systems is of great importance to study as temperature, pressure and gravity forces is inducing stresses, strains and deformations in the pipe system when it is restrained. Furthermore as the piping system heats up and shuts down the piping system is exposed to changes in stresses, this causes a fatigue situation. For a piping system exposed to environmental forces such as current and waves typically for subsea pipes, VIV (Vortex Induced Vibration) can cause the pipeline to be excited into harmonic low frequency vibration. This can result in fatigue failure or unintentional high displacement ranges.

The designer must calculate the stresses allowed by a particular code. One of the significant differences between flexibility analysis and pressure design is that flexibility is related to stress range rather than a specific stress.

For subsea spool piping the most important parameters to study is the effect of:

- Pipeline expansion from pressure and temperature
- Tie-in forces
- Metrology and fabrication tolerances
- Environmental forces.
- Installation methodology

For pipelines which may vary from just a few hundred meters to several hundred kilometres it is also important to study the effects such as those listed below. These topics are thoroughly described in literature Ref. /10/.

- Pipeline lateral buckling
- Pipeline upheaval buckling
- Pipeline walking

For tie-in spools these effects are not relevant as the boundary conditions required for the phenomena is usually not present.

The pipelines are designed as to avoid buckle to be triggered at the end of a pipeline as this could potentially damage the spools. In theory the effects might be present in the spools if the effective force in a spool is of such a nature that large axial compression forces can be generated. Pipeline walking is a phenomena created by the in-balance of the effective axial force during start up and shut down and differences in the temperature gradient along the pipeline which changes the location of "virtual" anchor (restraining point) along the pipeline.

The acceptance criteria for both spools and pipelines are usually a strain and stress based criteria set forth by a piping code such as DNV, ISO or ASME.

2.2 Wall thickness design

Figure 2-1 Show the basic theory from solid mechanics. The figure shows the equilibrium balance for a pressurized pipe section exposed to internal and external pressure. The external pressure P_o plus the pipe wall tension force (2S_Ht) has to balance the internal force P_i . The so called "Hoop" stress or the tangential stress is the dimension criteria for pipe wall design. The mean hoop stress is expressed as:

$$\sigma_h = \frac{p_i D_i - P_o D_o}{2t} \tag{2.1}$$

Where

D _o = Outside diameter	P₀=External pressure
D _i = Inside diameter	P _i =Internal pressure
$\sigma_{\rm H}$ = Mean hoop Stress	t= pipe wall thickness

Other variants of the hoop stress can be found such as Barlow (2.2) and the DNV-OS-F101 (1996) formula (2.3):

$$\sigma_h = \frac{p_i D}{2t} \tag{2.2}$$

$$\sigma_h = \frac{(p_i - p_o)(D_o - t_1)}{2t_1}$$
(2.3)

Here t₁ = Thickness -corrosion -prefabrication tolerances at operation

The ASME B31.8 Hoop stress formula for D/t>30:

$$S_h = \frac{(p_i - p_e)D}{2t} \tag{2.4}$$

t= nominal wall thickness

And for D/t< 30

$$S_h = \frac{(p_i - p_e)(D - t)}{2t}$$
(2.5)

Thin wall vessel (R/t >10) Roark's formulas for stress and strain

$$\sigma_h = \frac{p_i R_i}{t} \tag{2.6}$$

Thick wall vessel Lamés equations

$$\sigma_{rr} = \frac{A}{r^2} + 2C \tag{2.7}$$

$$\sigma_{\theta\theta} = \frac{-A}{r^2} + 2C \tag{2.8}$$

Subjected to an internal pressure P gives the following solutions for the constants A and C

 $\sigma_{rr} = -P \text{ at inner radius r=R_i and} \\ \sigma_{rr} = 0 \text{ at outer radius r=R_o}$

$$A = \frac{PR_i^2}{(R_0^2 - R_i^2)}$$

$$C = \frac{PR_i^2 R_o^2}{(R_0^2 - R_i^2)}$$

So the expression becomes at given radius r:

Tensile hoop stress

$$\sigma_{\theta\theta} = \frac{PR_i^2}{\left(R_0^2 - R_i^2\right)} \left(1 + \frac{R_0^2}{r^2}\right)$$
(2.9)

Compressive radial stress:

$$\sigma_{rr} = \frac{PR_i^2}{\left(R_0^2 - R_i^2\right)} \left(1 - \frac{R_0^2}{r^2}\right)$$
(2.10)

A comparison of the formulas is calculated in Appendix A3.4

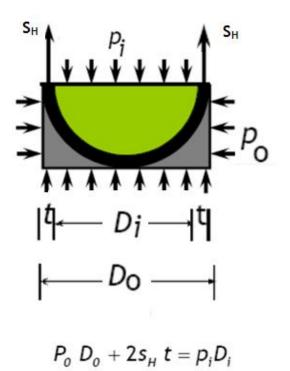


Figure 2-1 Force balance in a pressurized pipe section pr. unit length

Most of design codes require that the hoop stress is less than the yield stress with a safety factor SF or a fraction of the yield stress named F_1 often found in American piping codes. The factor is dependent upon several factors such as:

- The location of the system
- Pressure
- Fluid type and service
- Fabrication methods.

This factor is then multiplied with the yield strength to get the allowable stress (ASD).

- $F_1\sigma_y$
- $\sigma_h \leq F_1 \sigma_y$

The design factor or usage factor was taken as 0.72 for pipelines and 0.60 or less for risers. The figures date back 70 years to time when standards of pipe manufactures, welding and construction were of a less quality than what we have today Ref. /4/ .Today the limit in codes for utilising the material capacity in pipelines is much higher such as the plastic strain limit found in the DNV–OS-F101 code Ref. /7/.(It is here worth mention that the code does not give any limit state criteria for strain in pipe bends which is typical for spools).

The DNV code requires a strict control regime for the manufacturing and installation process. The formula used in the code for wall thickness design in the LRFD design method is considering first term of the equations in Sec 5 D200 of the code (the other terms is for test pressure and mill test pressure)

$$t = \frac{D}{1 + \frac{2}{\gamma_{sc}\gamma_m(P_{li} - P_e)} \cdot \frac{2}{\sqrt{3}} \cdot \min(f_y, \frac{f_u}{1.15})}$$
(2.11)

Where:

D= Outside diameter γ_{sc} = 1.138 (safety class normal) f_u=Ultimate strength

 $\gamma_{\rm m}$ =1.15 f_y=Yield strength t= pipe wall thickness

P_{li}=incidental pressure

P_e=External pressure

The minimum wall thickness is the subtraction of the following components:

 $t_{min} \text{=} t\text{-}t_{corr}\text{-}t_{fab}$

t_{corr} =Corrosion allowance

 t_{fab} = Manufacturing tolerance on wall thickness

2.3 Collapse of pipe wall under external pressure

In deep water, collapse under external pressure drives the wall thickness design. The theory of collapse mechanism is a complex interaction between elastic circumferential bending and plastic bending and initial out-of roundness. The theory for pipe wall or axisymmetric shell under external loading can be found in various literatures. A complete thesis on this topic can be found in the doctoral thesis of 2009 by Rita G. Toscano ref /8/.

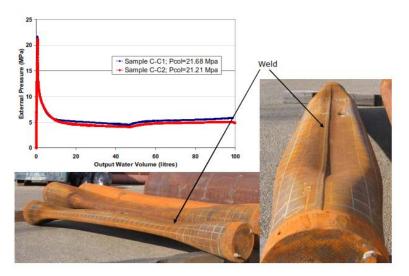


Figure 2-2 12" Pipe collapse curves and post collapse, Ref. /8/

Analytical solutions and investigation on this topic is also presented in the thesis of King, Ken Hiroshi Ref. /9/. In general FEA techniques are investigated with experimental test and analytical expression. For

practical engineering the most used formula for checking against collapse is the third degree polynominal expression presented in DNV-OS-F101 ref /7/.

External pressure shall meet the following criterion:

$$P_e - P_{min} \le \frac{P(t)}{1.1\gamma_{sc}\gamma_m} \tag{2.12}$$

Characteristic resistance:

$$(P_c(t) - P_{el}(t)) \cdot ((P_c(t)^2 - P_b(t)^2) = P_c(t) \cdot P_{el}(t) \cdot P_p(t) \cdot f_o \cdot \frac{D}{t}$$
(2.13))

Where:

$$P_{el}(t) = \frac{2 \cdot E \cdot \left(\frac{t}{D}\right)^3}{1 - \nu^2}$$
(2.14)

$$P_p(t) = f_y \cdot \alpha_{fab} \cdot \frac{2 \cdot t}{D}$$
(2.15)

$$f_o = \frac{D_{max} - D_{min}}{D} \ (>0.5\%) \tag{2.16}$$

Where:

$P_{el}(t)$ = Pressure at elastic capacity perfect tube	E =Youngs Modulus
$P_p(t)$ = Pressure at plastic capacity	$lpha_{fab}$ =fabrication factor
$P_c(t)$ =collapse pressure	u= poisson's ratio

The solution to the collapse pressure $P_c(t)$ is given in Sec 13 D700 of the code.

$$P_c(t) = y - \frac{1}{3}b$$
 (2.17)

Where the solution to the constants y and b is given in the code and can be calculated.

For local buckling collapse check with external pressure and bending moment strains the pipe must be checked in accordance with Sec 5. D600 in Ref. /7/

Other formulas for collapse due to external pressure can be found in the offshore code API RP111 section 4.3.2.1 Ref./32/

2.4 Longitudinal stress

Longitudinal stress is statically indeterminate and depends primarily from two effects which is the temperature and the poisson effect.

Longitudinal stress depends on how the pipeline moves longitudinally.

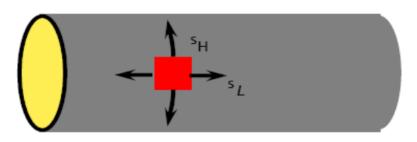


Figure 2-3 Stress component in a pipe

Note $S_{\rm H}{=}\sigma_{\rm h}\, {\rm and}\, S_{\rm L}{=}\sigma_{\rm L}$

The longitudinal strain is given by stress strain relation for a linear isotropic material:

$$\varepsilon_l = \frac{\sigma_l}{E} - \frac{\nu \sigma_h}{E} + \alpha \theta \tag{2.18}$$

The first term is the longitudinal strain and the second term is the hoop strain and the last term is the thermal strain.

Where

ε_{el} = Longitudinal strain	lpha =Thermal expansion coefficient
σ_h = Hoop stress	heta=Temperature Difference
σ_l = longitudinal stress	ν = poisson's ratio
E = Youngs Modulus	·

Considering a complete axial constraint (ε_{el} = 0) and the hoop stress for a thin wall pipe expressed as:

$$\sigma_h = \frac{PR}{t} \tag{2.19}$$

Where: R= mean radius t=wall thickness

Inserted into equation (2.18) and solved for the longitudinal stress gives the following expression:

$$\sigma_l = \frac{\nu PR}{t} - E\alpha\theta \tag{2.20}$$

As shown the longitudinal stress has two components the first is related to pressure and the second is related to temperature. The pressure component is positive (tensile) and temperature component is negative (Compressive). The nature of resultant longitudinal stress depends on the relative magnitudes of pressure and temperature increase.

2.5 Combined stress and von Mises Equivalent Stress

Most of the design codes in allowable stress design (ASD) use the von Mises yield criterion for checking against yielding. From solid mechanics we know that yielding in isotropic material occurs when the triaxial principal stress reaches the yield limit of the material expressed as:

$$\sigma_{eq} = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - \sigma_1 \sigma_2 - \sigma_2 \sigma_3 - \sigma_3 \sigma_1} = \frac{f_y}{\gamma_m}$$
(2.21)

Where f_y is the yield limit of the material and γ_m is a material factor larger than 1.0.

For a plane stress state where σ_3 =0 and the principal stress expressed in terms of coordinates stresses x, y the expression reduces to:

$$\sigma_{eq} = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau_{xy}^2}$$
(2.22)

The x-direction is the hoop stress and the y-direction is the longitudinal stress component and the last term is the shear stress. Maximum allowable combined stress varies with the codes and what type of operational phase. But normally 90% of SMYS (Specified Minimum Yield strength) is a common factor for allowable usage.

2.6 Pipeline expansion

Due to the operating temperature and operating pressure the pipeline will expand at its two ends. The three main reasons contributing to the end force and expansion leading to the lateral upheaval buckling and walking are:

- 1. Temperature
- 2. Pressure
- 3. Poisson contraction associated with pressure effects

The thermal strain and pressure difference between installation and operation in an unrestrained pipe causes expansion as given by equation (2.18). The end cap force occurs at any curvature along the pipeline and contributes to the longitudinal stress see Figure 2-4 and Figure 2-5 the force is expressed as:

$$F_{end} = p_i A_i - p_e A_e$$
(2.23)

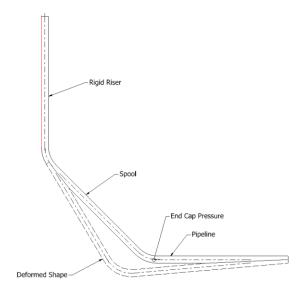

$$p_e A_e \xrightarrow{p_i A_i}$$

Figure 2-4 End Cap Force

Where:

p _i = internal pressure
A_i = Internal area of pipe

 p_e =External pressure A_e = External area

The effect of the end cap pressure is shown in the figure below where the pipeline expands and deflects the pipe spool.

Figure 2-5 Pipeline end expansion

At partially restrained area the longitudinal stress is dependent upon the soil friction acting on the pipe. The longitudinal stress then becomes:

$$\sigma_l A_s = F_{end} - F_{fric} \tag{2.24}$$

And the frictional force is given as:

$$F_{fric} = \mu W_{sub} Z \tag{2.25}$$

Where:

 F_{fric} = Frictional force $\sigma_l A_s$ = Pipe wall force μ =Soil frictional coefficient W_{sub} =Weight of pipe pr. meter Z =Distance in meter

Figure 2-6 illustrates the frictional force between the pipe and the soil.

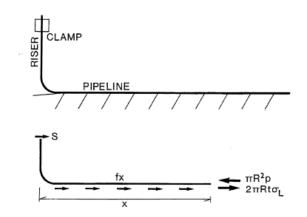


Figure 2-6 Frictional force from soil acting on pipeline

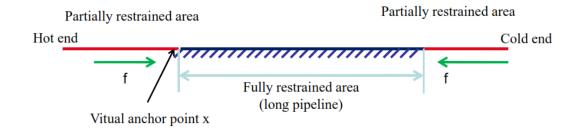


Figure 2-7 Anchor point of fully restrained pipeline

The distance required in order to make the pipeline fully restrained can now be calculated based upon (2.23),(2.24)and (2.25)and the following static equilibrium equation:

$$F_{wall} + F_{fric} - F_{endcap} = 0 \tag{2.26}$$

The distance to fully restrained pipe is called virtual anchor length and becomes:

$$Z = \frac{(F_{endcap} - F_{wall})}{F_{fric}}$$
(2.27)

Figure 2-7 shows a pipeline with a hot and cold ends, the distance between the hot and cold end is fully restrained.

The effective axial force is a very important concept in pipeline design. If the expansion is restricted an effective axial force will arise given by the following equation Ref. /10/and /11/:

$$N_{eff} = N_{true} - p_i A_i + p_e A_e \tag{2.28}$$

For a deformed pipe the governing differential equation for deformation is given as:

$$EI\frac{\partial^4 \nu}{\partial x^4} - (N - p_i A_i + p_e A_e)\frac{\partial^2 \nu}{\partial x^2} = 0$$
(2.29)

The effect of the lateral pressure can be seen as a lateral force as shown in the Figure 2-8.

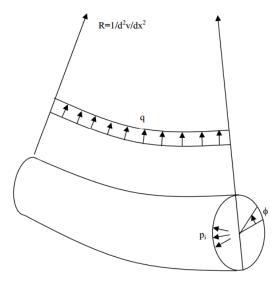


Figure 2-8 Deformed Pipe section with internal pressure and bending radius, Ref. /11/

This effective axial force is an equivalent force of the cross section including both pipe wall stress (true wall force) and the internal and external pressure; this governs the global structural behaviour buckling etc. The true force is the actual force as measured by a strain gauge or as by integrating the stress over the cross-section area. Other forces like bending moments and shear force are omitted for clarity as they will not enter the calculation of the effective axial force and the effect of the pressure

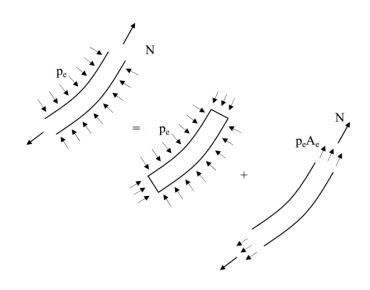


Figure 2-9 Equivalent physical system for external pressure, Ref. /11/

As seen from Figure 2-9 the section with an axial force, N, and the external pressure, p_e , (left figure) can be replaced by a section where the external pressure acts over a closed surface and gives the resulting force equal to the weight of the displaced water, the buoyancy of the pipe section (middle figure), and an axial force equal to N + p_eA_e . Considering the effect of the external pressure in the way as shown does not change the physics or add any forces to the pipe section. "However, it significantly simplifies the calculation. The alternative would be to integrate the pressure over the double curved pipe surface. Note also that the varying pressure due to varying water depth over the pipe surface needs to be accounted for in order to get the effect of the displaced water, the buoyancy".

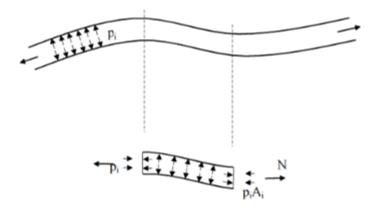


Figure 2-10 Equivalent physical system -internal pressure Ref. /11/

"A similar consideration, as for the external pressure, may be done for the internal pressure. As seen in Figure 2-10 considering a section of a pipeline with internal pressure, the external forces acting on this section is the axial force, N, and the "end cap" force, p_iA_i. Again other sectional forces like bending moment and shear forces are omitted for clarity. As the pressure acts in all direction in every point in the liquid, the internal pressure will always act on a closed surface. Further, the pressure at the cut away section ends will act as an external axial load in compression. From these considerations of the external and internal pressures acting on a pipeline section it becomes clear that the effect of these may be accounted for by the so-called effective axial force equation" Ref./11/:

Figure 2-11 Simplified system Effective force closed cylinder

Consider the simplified system of Figure 2-11 with a pipe of closed ends subjected to internal pressure and springs at each end then the relationship between the effective axial force and the true force becomes:

$\mathsf{F}_{eff}{=}\mathsf{F}_{true}{-}\mathsf{F}_{endcap}$

The effective force is governing the structural response of the system and is of great importance as to checking if the force is of a magnitude to trigger an upheaval or lateral buckle.

Figure 2-12 shows that the effective force varies with the pipeline length. One reason for this is that the temperature is not constant along the pipeline.

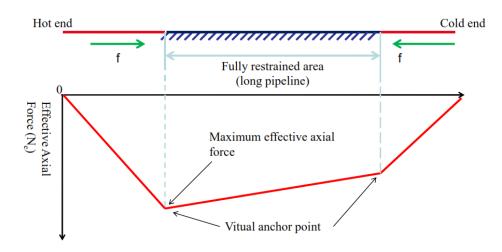


Figure 2-12 Effective force for a long pipeline

2.7 Flexibility of piping system

The flexibility of a piping system can be demonstrated with a simple calculation known as the "guided cantilever method" Ref. Pre-study Chapters 1.4". The principle is shown with beam theory.

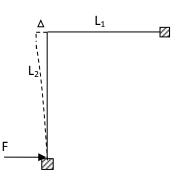


Figure 2-13 simple restrained pipe flexibility design

As the pipe heat up and is pressurized the expansion of the pipe induces stresses and forces due to its restrained boundary condition.

Figure 2-13 shows a simple 2D plane frame. The frame is a statically undetermined problem as there are 9 degrees of freedom (3 at each beam joint). The expansion is applied in the axial direction of L1 representing the heat up an imposed displacement of the pipe. The corner at the deformation is not allowed to be rotated (rigid corner). We wish to calculate the reaction length of leg L2 and the moment in order to check the stresses in the beam.

The solution for this problem can be solved by using the "direct method" with formulas for deformation for simple beams to establish a stiffness matrix for the beam element Ref. /13/. The beam element with 6 D.O.F for L_2 is shown in the following figure.

Figure 2-14 beam element with 6 D.O.F

Equation (2.30) shows that reaction force matrix [R] for the beam element is defined as the stiffness matrix [K] multiplied by the displacement vector [D]

$$[\mathbf{R}] = [\mathbf{K}] \cdot [\mathbf{D}] = \frac{E}{L^2} \begin{bmatrix} AL & 0 & 0 & -AL & 0 & 0\\ 0 & 12I/L & 6I & 0 & -12I/L & 6I\\ 0 & 6I & 4I & 0 & -6I & 2IL\\ -AL & 0 & 0 & AL & 0 & 0\\ 0 & -12I/L & 6I & 0 & -12I/L & -6I\\ 0 & 6I & 2IL & 0 & -6I & 4IL \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \\ \theta_1 \\ u_2 \\ v_2 \\ \theta_2 \end{bmatrix}$$
(2.30)

The column displacement vector [D] represents the degree of freedom at the nodes $(u_1, v_1, \theta_1, u_2, v_2, \theta_2)$ and by introducing the boundary condition for the beam $(u_1=0, v_1=0, u_2=0, u_2=0)$ and $v_2=\Delta$ and by eliminating the row and a column which are zero. The following stiffness of the beam then becomes:

$$K_{beam} = \frac{-12EI}{L^3} \tag{2.31}$$

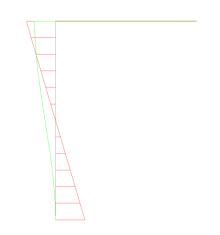


Figure 2-15 Bending and deflection diagram for frame

Figure 2-15 shows the resulting bending moment and the deflection diagram for the frame. Consider an example of a high temperature on $L_1(250^{\circ}C \text{ or an expansion rate of 4in/100ft})$ and an imposed axial displacement of 1.5 inches which results in a total expansion of Δ =2.3in=58.4mm. Introducing the pipe data (Ref. Pre-study to master thesis):

<u>Pipe data:</u>

Pipe outside diameter	D _o =4.5in (114.3mm)
Wall thickness	t = 0.237in (6mm)
Displacement	Δ=2.3in (58.4mm)
Young Modulus	E=27.9x10 ⁶ psi (1.924 x10 ⁵ MPa)
Stress limit	S _A =15000psi (103.4 Mpa)

$$F = K_{beam} \cdot \Delta \tag{2.32}$$

Bending stress:

$$\sigma = \frac{My}{I} \tag{2.33}$$

Where $y = D_o/2$ and M = FL/2

Inserting (2.31), (2.32) into (2.33) and rearranging for L gives the following equation for required length L_2 to be within the given stress limit and give adequate flexibility:

$$L = \sqrt{\frac{3E \cdot \Delta \cdot D}{\sigma}}$$
(2.34)

Inserting values as given above and $S_A = \sigma$, equation (2.34) then gives the following value:

$$L = \sqrt{\frac{3 \cdot 192400 \cdot 58.4 \cdot 114.3}{103.4}} = 6105mm \ (20.03ft)$$

And the reaction force then becomes:

$$F = \frac{2 \cdot \sigma \cdot I}{R \cdot L} = \frac{2 \cdot 103.4 \cdot 2.995 \cdot 10^6}{54.11 \cdot 6105} = 1875N \ (422lbf)$$

As seen from the calculations the flexibility of the piping is dependent upon geometry and the allowable stress in order to be within safe limits between the heat up and cool down cycles.

2.8 V.I.V in Pipelines

VIV or Vortex Induced Vibrations are common problems in offshore structures and often occur when structural components are in a free span and submitted to a flow from wind or seawater. When the flow separates from a large section of the structure surface due to its geometry (*bluff structure*), vortices are generated and shed alternately from one side to another side of the structure. This alternating shedding of vortices induces forces and can cause the structure to start oscillate. When the frequency of the vortex shedding is close to the natural frequency of the structure, large amplitude resonant oscillations may occur. This is a known problem for free spanning pipelines and risers. The VIV effect can generate large amplitude forces and this can lead to fatigue failure of the structural component. Figure 2-16 shows an illustration of how the pipe is displaced in the vertical and horizontal direction due to the vortex shedding generated from the sea current.

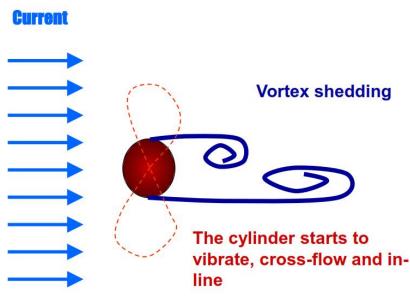


Figure 2-16 Vortex Induced Vibrations

The pipe can start to oscillate in the vertical direction (crossflow) and in the horizontal direction (In-line) in an \mathcal{B} number pattern. Figure 2-18, shows that the oscillation is in phase or it can have a D shape pattern as seen in Figure 2-19 where the oscillation is out of phase. The behaviour and the pattern of the vortices are very much dependent upon the flow regime. The Reynolds number R_e is often used as a measure between the laminar and turbulent flow, see Figure 2-17 and is given by equation (2.35). The eigenfrequency of the pipe is also influenced by the change of added mass of the displaced water and this will also influence the vortex shedding frequency. Three other important key parameters, each linked to the frequency is the Strouhal number St, the reduced velocity U_{R_e} and the non-dimensional frequency \hat{f} . Ref. equation (2.36) to (2.38).

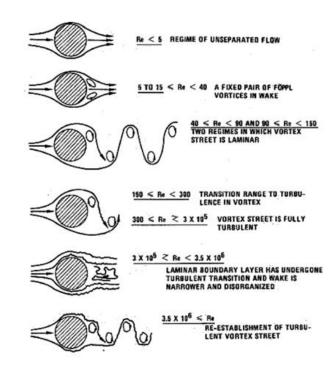


Figure 2-17 Regimes of fluid flow across smooth circular cylinder Ref. /23/

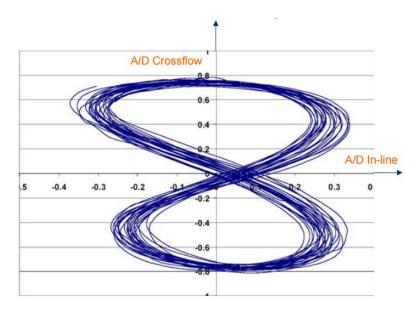


Figure 2-18 In-line and cross-flow oscillations-in phase [SINTEF]

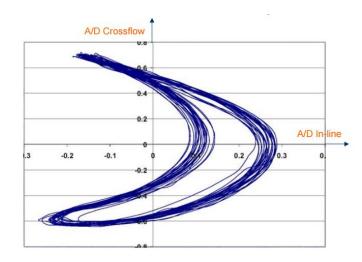


Figure 2-19 In-line and cross flow oscillations-out of phase [SINTEF]

From fluid dynamics theory the Reynolds number is defined as:

$$R_e = \frac{UD}{v} \tag{2.35}$$

And the Strouhal number:

$$S_t = \frac{f_v D}{U} \tag{2.36}$$

The Strouhal number is the frequency from a fixed cylinder.

Reduced velocity:

$$U_R = \frac{U}{Df_0} \tag{2.37}$$

The reduced velocity is from still water free oscillation tests Non-dimensional frequency:

$$\hat{f} = \frac{f_{osc}D}{U} \tag{2.38}$$

Which is a Oscillation (response) frequency for forced oscillation tests

The parameters in the above formulas are:

- U= Current speed f_{osc} =Frequency forced oscillationD= Diameter of pipe f_0 =EigenfrequencyVia and Via and
- u= Kinematic viscosity $f_{
 u}$ = Shedding frequency

These formulas are often found in design codes and recommended practices for checking pipes against VIV effects which can lead to fatigue failure.

3. TIE-IN SPOOLS SYSTEMS

3.1 Objective and functionality

A Tie-in spool is a prefabricated piece of pipe whose main objective is to act as a coupling between a pipe, manifold, wellhead, PLET, PLEM or other subsea structure. The main function is to transport hydrocarbons or other processed medium between the underwater facilities in an offshore oilfield area. The spools is designed with large flexibility, in order to withstand forces induced such as:

- Expansion from pipelines, wellheads, manifolds processing facilities etc.
- Installation loads.
- Fabrication tolerances and metrology
- Environmental loads

The spools are equipped with a mechanical connector system in each end either diver less or diver assisted system in order to mechanically seal the spool end.

A typical spool assembly is shown in Figure 3-1 and Figure 3-2.

Figure 3-1 Vertical spool jumper lift (Gulf Island Fabrication for BP)

Figure 3-2 Horizontal spool lift (Stord Leirvik-Thaijournal.wordpress.com)

Figure 3-1 shows a vertical spool configuration mainly used in waters with depth greater than 300m. These spools seldom protection from trawling, and are typically used in connection with X-trees, manifolds etc. Observe the difference for the installation spreader bar structure for the horizontal spool lift versus the vertical lift as shown in Figure 3-2. Typical subsea applications of vertical and horizontal Tie back spools are shown in Figure 3-3 to Figure 3-5.

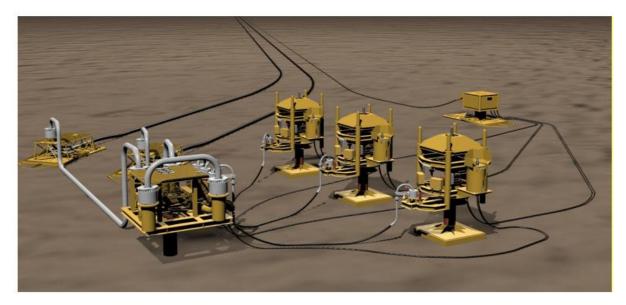


Figure 3-3 Typical Gulf Of Mexico Subsea Tie-Back Ref. /5/

Figure 3-4 Typical Tie-Back in the Norwegian continental shelf Ref. /5/

Figure 3-5 Spool's connected to subsea structures (PLEM, X-tree and Tee'- FMC Technologies)

3.2 Configurations and geometrical shapes of spools

Table 3-1 gives a rough classification for basic shape for rigid spools normally used in subsea spool design. A more detailed comparison with experience data is given in Table A6-1

Table 3-1 Spool Shapes

Name	L-Shape	Z-shape	U-shape	N-shape	M-shape
Shape					
Expansion range	≤0.5m	≤1m	≤1m	≤1.0m	≤2m
Area of	Horizontal spool	Horizontal spool	Horizontal	Deep water	Deep water
usage	resting on seabed	resting on seabed	spool resting	Vertical spool	vertical spool
	perpendicular	angular or	seabed	arrangement	arrangement
	connection between	perpendicular	parallel	with free	with free span
	hubs	connection	connection	span used	used between
		between hubs	between hubs	between up-	up-facing hubs.
				facing hubs.	
+/-	-Low flexibility	+Medium	+Medium	+ Medium	+ High flexibility
	+low weight	flexibility	flexibility	flexibility	-Heavy weight
	-High installation	+low weight	+low weight	-Heavy	-buoyancy
	cost	-High installation	-High	weight	required
	-Protection cover	cost	installation	-Buoyancy	-VIV Sensitive
	usually required	-Protection cover	cost	required	+ Low
		usually required	-Protection	-VIV Sensitive	installation cost
			cover usually	+ Low	-Snagging
			required	installation	potential
				cost	
				-Snagging	
				potential	

Horizontal spools are considered for applications within diving depth where snagging loads can be a threat (trawl or anchor etc.). It can also be used in region of significant hydrodynamic effects. Diver less horizontal Tie-in system can be used for the entire water depth range. Vertical systems are also available and are mainly used in deep water developments but have limitations on a max span range usually not more than 30 to 40meters.

3.3 Tie-in System Determination

When selecting and designing a Tie in system there are many considerations to be taken. Experience has shown that the following parameters are of great importance.

- Area location and water depths (diver assisted or diverless)
- Environmental loads
- Trawl frequency (protection requirements)
- Installation vessel (requirement for deck area and crane capacity)
- Connector system (Track record)
- Well stream and process data (medium, slugging, pressure and temperature profiles)
- Requirement for intervention and monitoring
- Weight limitations
- Hub to Hub distance
- Fabrication contractor
- Metrology contractor (Survey and measuring system)
- Design Code requirements
- Method of metrology
- Seabed condition
- Size of equipment and tools
- Tolerances
- Vessel limitations
- Pigging requirements
- No. of Tie-ins to be performed
- Pipeline expansion
- Material choice
- Region of the world for the installation
- Design life

When selecting a system some decision gates or risk description of each system can assist in the early planning of a project. JP Kenny presented a paper on this in 2008 at the OPT conference Ref. /6/ and presented risk evaluations according to criteria rated with colour code as shown in the Table 3-2.

Table 3-2 project risk classification

Risk Description
High-may limit the application of this system in some cases
Medium-risk needs to be assessed on project basis
Low-proven reliable services

IKM Ocean Design AS project experience is implemented into this comparison. The text is marked with a *cursive* text and the comparison is shown in Table A6-1. The evaluation shows that *vertical spools* are classified as *high risk* towards connector load capacity, increased complexity due to free span, can be sensitive to snagging, possible high risk for seal damage and it can be difficult to perform pigging operations.

For *horizontal spools* the limitation is as for vertical spools for the connector capacity towards bending moments and forces. However the spools are considered to have an overall lower risk compared with vertical spools. It is worth mention here that horizontals spools normally require longer offshore installation time and can give higher project costs.

3.4 Spool Fabrication

The fabrication of spools is normally based upon the metrology survey report which describes the location and required dimension between the two connecting hubs. The distance between the PLET and pipeline is measured and then the pipeline engineer designs a spool that will connect the two hubs.

Considerations relating to fabricating of spools are:

- Location of fabricator and yard size requirement
- Fabricator qualifications (ISO 9000 qualification, DNV OS-F101 approved, NORSOK Qualified, etc.)
- Material purchasing
- Production and standard requirement for testing.
- Lead time for special items
- Welding sequence
- Number of bends
- Coating methods
- Fabrication tolerances
- Size and weight
- Number of bends
- Requirement for fabrication stands
- Requirement for test stands and test equipment
- Requirement for lifting aids
- Logistics regarding shipping of spools
- Interface control

The above mentioned points are of importance to map and study in an early phase usually when fabrication specifications and procedures are developed for the project a comparative overview is given in Table 3-3.

Table 3	8-3 fabricatio	n design con	siderations

Issue	Horizontal Tie-in Spool	Vertical Tie-in spool
Size and weight	Large footprint, limits amount of	Small footprint, scaffolding
	spools to be transported to field.	requirement needed.
Geometry	General fewer bend on horizontal	Generally more bends are related
	spool but complexity varies	to vertical spool complexity varies
Fabrication and shipping stands	Usually less weight for support	Requirement for large weight of
	steel as stands do not need to	supporting steel as well as tilting
	support inboard test hub.	function of hub

3.5 **Piping Fabrication Tolerances**

There is a much stricter control requirement when it comes to pipe and riser fabrication versus ordinary steel constructions usually less than 0.1 x wall thickness or maximum 3mm Ref. /14/. The high demand for strict tolerances and dimensional requirement is usually set forth in the piping codes and is one of the keys to allow high utilisation of piping materials used in subsea pipe laying and subsea installation. Welds in pipelines are normally made with symmetrical weld groove with welding from the outside of the pipe. The pipes can be filled with shielding gas or backing rings can be used before welding the pipes. The main issues related to tolerances can be listed as:

- Wall thickness tolerance
- Out of roundness
- Weld offset
- Ovality
- Concentricity
- Angular tolerances
- Length tolerances
- Bend thinning from induction bending

Figure 3-6 and Figure 3-7 from the NORSOK Standard Ref./27/ shows tolerances for pipe spool fabrication typically found in offshore topside process applications. Stricter tolerances when required are usually specified in drawings and procedures.

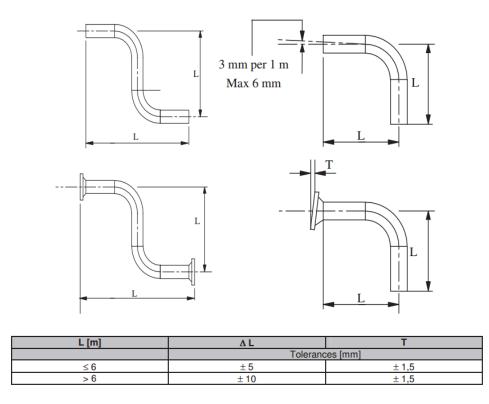
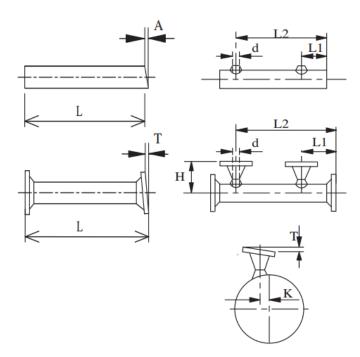
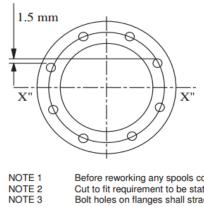




Figure 3-6 Tolerances for prefabricated piping assemblies, Ref. /27/

L [m]	L	Α	Т			2 in ≤ d ≤ 10 in	12 in ≤ d ≤ 20 in	d >20 in
	То	lerances [n	nm]				Tolerances [mm]	
≤ 6	± 3	± 1,5	± 1,5		L1	± 3	±5	±5
> 6	± 5	± 1,5	± 1,5		L2	± 3	± 5	± 5
					н	± 3	± 3	± 3
					Т	± 1,5	± 1,5	± 1,5
d = nominal diameter		K	± 2	± 3	± 3			

Before reworking any spools contact engineering department in order to check complete isometric. Cut to fit requirement to be stated on fabrication isometrics (typically 100 mm). Bolt holes on flanges shall straddle the horizontal or vertical lines or plant north/south centre lines when orientation is not given on drawings.

3.6 Probabilistic Assessment of Fabrication Tolerances

In this chapter we take a look at the engineering practice of using the fabrication tolerances in spool design. It is common in projects to include linear and angular tolerances of the spool in order to asses if the lock in of the connectors at the hub will generate large stresses in the spool. The question which arises is how much of the tolerances should be incorporated into the design and how much is taken care of by the governing piping codes. The answer to this is not straight forward for an optimised spool design. For normal topside or manifold piping design, the fabrication tolerances are usually incorporated into the piping design formulas. Such as the NORSOK standard Ref. /28/ and ASME B31.3 code Ref. /17/. Below is given some discussion from the book *guide to ASME B31.3* Ref. /26/ where the question regarding alignment of pipe flanges is discussed:

ASME B31.3 provides some good practice guidelines with respect to flange boltup in para. 335. This includes requiring repair or replacement of flanges with damaged gasket seating surfaces, uniformly compressing the gasket during flange boltup, and using only one gasket between seating surfaces.

Paragraph 335.2.3 requires that the bolts extend completely through their threads. However, it provides that the bolt is considered to be acceptably engaged if it is short of being completely through the nut by one thread or less. Thus, if the Owner wishes to have the nuts completely engaged, as many do, this would have to be specified in the engineering design.

Perhaps one of the most frequently violated provisions of the Code is the flange alignment tolerance in para. 335.1.1(c). This requires that, before bolting up, flange faces shall be aligned to the design plane within 1 mm in 200 mm (1/16 in./ft) measured across any diameter, and that bolt holes shall be aligned within 3 mm (1/8 in.) of maximum offset. The first requirement relates to cocking of one flange relative to the other and the second relates to offset or torsional misalignment. This means that each flange can be misaligned 1 mm in 200 mm relative to the design plane. Thus, the flanges could be misaligned relative to each other by as much as double the amount. Furthermore, the design plane is not required to be the same for each flange (e.g., in a system where there is intentional misalignment to achieve cold spring). However, this would have to be the intention of the engineering design.

This requirement became an issue on a project where the gaps between flanges for small-bore [e.g., DN 50 (NPS 2)] pipe flanges were being measured with feeler gages to check the misalignment. Interpretation 15-07 resulted, with the following question and reply:

"Question: In accordance with ASME B31.3c-1995 Addenda, para. 335.1.1(c), prior to bolting up a flanged joint, may the flange faces be out of alignment from the design plane by more that 1/16 in./ft (0.5%), provided the misalignment is considered in the design of the flanged assembly and attached piping in accordance with para. 300(c)(3)?" "Reply: Yes."

Reply. Ies.

Thus, some greater misalignment can be tolerated if it is provided for in the engineering design. It is quite reasonable to expect that greater misalignment than permitted by para. 335.1.1(c) can be accepted in small-bore piping, particularly if it is not connected to load-sensitive equipment. On the other hand, the Code alignment provisions are generally not tight enough for larger piping connected to load-sensitive equipment. An appropriate test of whether the alignment is acceptable is to check the machinery alignment with and without the piping bolted to it.

Based upon the above answer from the ASME Committee, larger misalignment is allowed as long as it is considered in the design. This would then have to be considered in the analysis. An interesting paper regarding fabrication tolerances is found in Ref./29/ here the following problem description is given:

"Structural reliability is normally assessed by considering its converse, failure probability. Analysts often qualify this by referring to "notional" failure probability. This is partly because the target values that designers aim for are generally so small that calculations are sensitive to assumptions about the forms of the

tails of the frequency distributions used in the mathematical models of loading and resistance variables, and these tails are usually poorly defined.

"Much of the complexity of reliability analysis methods arises from the fact that the contributions of uncertainties in all the design parameters are combined within complex engineering design equations. However, the basic principles can be used quite directly to address practical problems, such as assessing the magnitude of the locked-in stresses due to the interaction between fabrication tolerances and assembly methods. In this case, interest is focused towards the most likely outcome rather than on rare events, and the mathematical concept is therefore more robust."

The paper discusses the frequency distribution of dimensional errors such as the normal distribution the Central Limit theorem and the rectangular distribution, it concludes with that the outcome is normally distributed even if the input is of a rectangular distribution hence the total effect of the tolerances has uncertain bounds which can only be described probabilistically.

It further gives some guide on how to set the limits for the tolerances or dimensional errors by using the RMS or root mean square of the errors the following as the number of the variable X_i becomes large the frequency approaches the normal distribution. And if the un-factored design condition should be taken to be a characteristic value with 5% probability of exceedance this is obtained by taking a range between +/- 1.65 standard deviation from the mean position. Thus the characteristic effect of dimensional errors is given by the following equation.

$$1.65s[Y] \approx \frac{1.65}{\sqrt{3}} \sqrt{(\sum_{i=1}^{n} (\Delta g)^2)} \approx \sqrt{(\sum_{i=1}^{n} (\Delta g)^2)}$$
(3.1)

Imperfections in element dimensions can be introduced into the structural analysis models by means of member extensions or end rotations. These can be linearly superimposed on other structural effects, so the effects of dimensional errors can be analysed independently of permanent or transient loadings.

The paper presents an analysis of a roof where over 400 different locations with the effect of tolerance was analyzed. The results where compared to the structural building code and the ULS factor of 1.4. The result shows that the sagging moments was increased by 8% in the ULS case due to fabrication tolerances and considerably increase in the lateral moments by 100 %.

The paper concludes with the following:

"Computers allow us to compute load effects for structures that have much greater complexity and indeterminacy than those that were designed using traditional methods. There is a danger that engineers may lose sight of the important load paths when they refine their calculations to reduce apparent overdesign. In so doing, ductility and tolerance towards imperfect erection procedures may be reduced, and it may become increasingly unwise to trust that redistribution of local overloads will safely take care of fabrication tolerances.

No matter what the design specifications might state, the products of different fabricators will have different patterns of variation, and a realistic prediction of the overall effects of fabrication tolerances will require knowledge of real processes."

3.7 Summary

A shown in this chapter there are many parameters regarding spool and pipe design which must be considered. A Pre-Study of the planned project is advisable to commence in order to determine the best spool design. The Pre-study or FEED should focus on the following key topics:

- Subsea routing and location of spool
- Spool type
- Installation time and constraints
- Use conservative data, previous experience is important
- Define optimum spool lengths (minimum and maximum)
- Identify critical values early in the project small changes can give rise to high cost later in project

For detail design :

- Establish design basis for analysis and design
- Perform piping analysis (FEM)
- Evaluate the effect of environmental loading, process medium and flow data
- Methodology for fabrication and installation
- Operational aspects
- Installation analysis

For the piping analysis it is advisable to incorporate a statistical tool for assessing the fabrication tolerances in order to establish a reasonable safety level in-line with the code requirements. One question is on how the project should handle the standard deviation based upon the critically of the system i.e. should the level be in the range 1.65 - 3 times the standard deviation. How will the probability of exceedance be quantified (5% or 10%)? Most of the analyzed spools today are based upon "worst case" scenario which is a very rare event but should perhaps be analyzed with the most probably expected tolerances and loading. Different techniques for random probabilistic and parameter correlation effects are available and can be included in simulation software (Monte Carlo simulation is one example)

4. CONNECTOR AND TIE-IN SYSTEMS

This chapter is dedicated to an introduction of the different subsea connector designs which is used throughout the subsea industry today. The requirement for developing of remote connector systems for pipelines and spools has been a growing business, as the oil industry has moved into deeper waters.

4.1 Connectors

The principle of connecting a pressurized pipe end to another pipe end can be best demonstrated by the classical bolted flange to flange connection with a seal located between the flanges see Figure 4-1.

Figure 4-1 Bolted Flanged Connection (VECTOR SPO Compact Flange)

The connection between the pipe joints has to sustain in addition to the internal pressure also the external forces see Figure 4-2 such as:

- Bending moments
- Torsion
- Axial forces

The forces are generated in the piping system and the joint must be able to provide a leak free connection with a given design safety margin often dictated by standards service requirements and codes. Misalignments in angular and linear directions due to inaccuracy can occur during assembly and operation, it is important that the connector can handle the misalignments in order to maintain a tight seal.

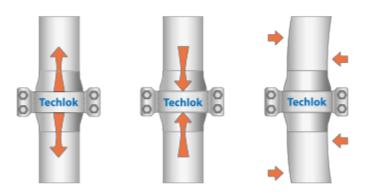
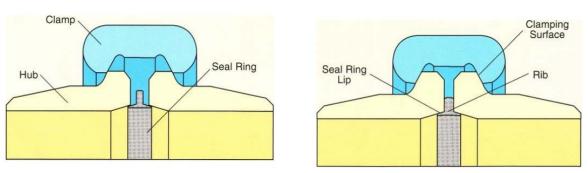



Figure 4-2 Clamped Connection subjected to external forces (Techlok by VECTOR)

Figure 4-3 Clamp Connector (Techlok by VECTOR)

The clamp connector see Figure 4-3 and Figure 4-4, uses the same principle as a bolted flanged connection. The gasket is placed between two flanges and an enclave is placed around it which is the tightened up by bolts the angled surface creates a compressional force against the seal surfaces. The internal pressure then energizes the seal lips

Rib of the seal ring is clamped between hub faces. Lips of The seal ring engage inner hub surface in an interference fit which deflects the lips to achieve a seal.

Figure 4-4 Clamp Connector (Grayloc)

The subsea connectors used for Tie-in spool applications needs to go through an extensive qualification programme in order to achieve correct certificates. Connectors need to be tested for all loading types that it might be subjected for typical capacity charts are developed for the specific connections. In a typical subsea connection a pipe piece called "Hub" is made to connect the ends together see Figure 4-5 the "Hubs" are divided into female and male hubs, the male connects the female and are machined to tight tolerances. A seal is placed between the hubs and the connection is tightened up by a mechanical external drive screw that energizes the connection. The hubs are welded to the pipe ends of the manifold and a transition piece called "pup-piece" is usually made as the transition between the hub and piping. The pup piece allows for final length adjustments.

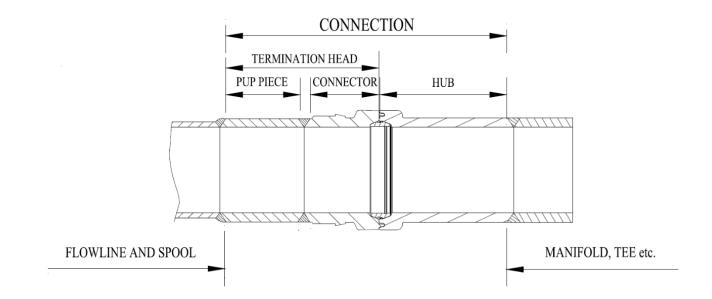


Figure 4-5 Typical Hub Connection (FMC Design)

The Hubs on the manifold subsea structure is typical connected to a stiff steel block called "Tombstone" see Figure 4-6, the tombstone's main purpose is to transfer most of the incoming spool forces into the subsea structure such that the process piping on the subsea structure is not overstressed by Tie-in loads.

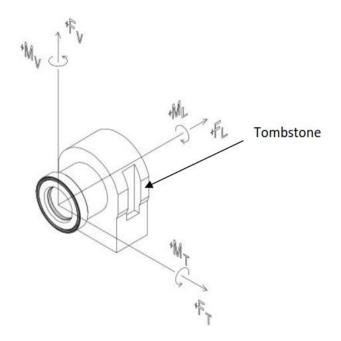


Figure 4-6 Hub located in Tombstone subjected to Spool Forces

The subsea connector is typically provided with an ROV operated external drive screw that energises the clamp. Here there are many suppliers (Vector, FMC, and Aker) see Figure 4-7 and Figure 4-8. The limiting factor of these clamps is often the misalignment capacity and the bending moment capacity. The Pipe size often dictates what type of connector to use in the design. An exploded view of the different main part in the optima connector is shown in Figure 4-9.

Figure 4-7 ROV Operated Subsea Connector (Optima VECTOR)

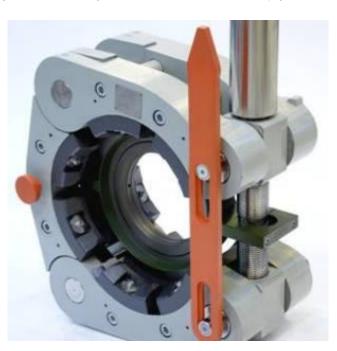


Figure 4-8 ROV Operated Pipe clamp Connector (AKER)

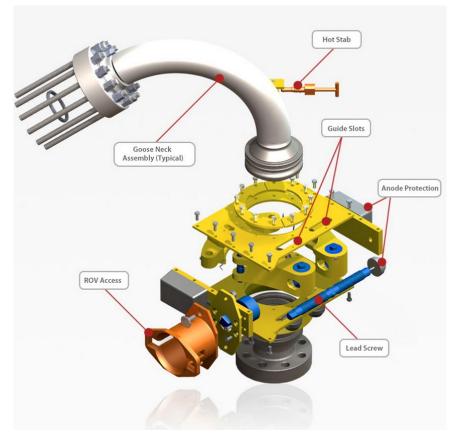


Figure 4-9 Optima connector exploded view (Vector)

The collet connector design is often found in vertical spool connections. The collet connector consists of a body and a hub. On the hub individual collets are mounted in a circular pattern. Figure 4-10 shows the FMC KC connector, outside the collets a cam ring slides axially along the collets length to either lock or unlock the connector. The seal is made by compression of a metal gasket between the body and the hub. The collet connector has the ability to align hubs that are misaligned

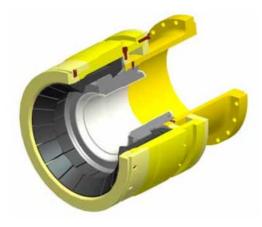
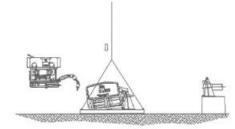


Figure 4-10 KC 4.2 Connector (FMC)

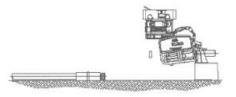
Figure 4-11 Collet Connector KC 4.2 high pressure and multibore (FMC)

Figure 4-12 Vertical connection collet connector (FMC)

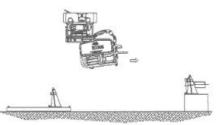
4.2 Tie-in Systems

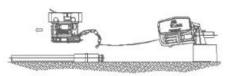

This chapter gives a brief description of the common types of Tie-in systems used in the subsea market of today. For horizontal tie-in connections, the pipeline spool has to be connected to the subsea structure by use of a connection system. Various techniques and systems are developed by different subsea companies over the years see table below:

FMC Technologies	Vetco (GE Oil & gas)	Aker Solutions	Nemo
 Rovcon MK.I UTIS. Ucon-H. 	Icarus.HCCS.	RTS.BBRTS.HCS.	• Thor.

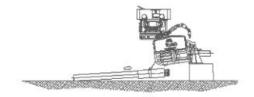

Table 4-1 Subsea Tie-In System's Manufacturing Companies

A comparison for each system based upon advantages and disadvantages is given in Table 4-2 The principle of each system is more or less the same. The pipe or spool is connected to the structure by means of hydraulic stroking/ winching or a combination of both. The system anchor's itself to the structure and pulls/pushes the pipe into position and then activates the mechanical connector clamp to make up the connection the old Icarus system uses a winch system which dock onto the porch see Figure 4-13and Figure 4-15.


STEP-BY-STEP ILLUSTRATION OF TIE-IN SEQUENCE:

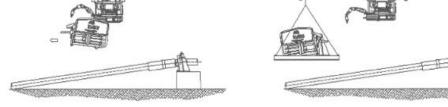

step 1. ICARUS lowered to seabed on the Launch and Recovery Skid (LRS)

step 3. ICARUS docks with tie-in parch and uses hydraulic cylinders to lower ICARUS on to inboard mini-posts and performs lockdown.



step 2. ROV pick's up ICARUS from LRS and swims in to tie-in porch.

step 4. ROV and interface-skid separates from ICARUS, and swims to flowline termination with pull-in line. (winch in freewheel mode)


Figure 4-13 Icarus Tie-in System step 1 to 4 (GE-Oil & Gas-Vetco)

step 5. ROV swims back and locks on to ICARUS, and starts the winch for pull-in. When flowline termination is pulled in, the mounted lock cylinders locks the termination to ICARUS.

step 6. Seal seat cleaning and inspection is performed, and a fresh seal is inserted prior to final stroke—in. The integral torque tool is used for make—up of the GSR Connector.

step 7. ROV swims back to the LRS with ICARUS. step 8. ICARUS and ROV returns to surface.

Figure 4-14 Icarus Tie-in System step 5 to 8 (GE-Oil & gas-Vetco)

Tie-in System	Advantages	Disadvantages
HCS	 Can perform all Tie-ins Compact Tie-in Interfaces Stroke-in tool very well suited for spool Tie-In. Well suited for tie-in of modules/integrated pig launchers etc. Inside structures 	 Stroking tool design may give higher risk of compression in flexibles Limited track record
BBRTS	 Long track record Can perform all Tie-ins Powerful 	 Heavy and large interfaces Tie-in Tool heavy Installation vessel has to be extremely close to platform due to installation method
RTS	 Long track record Lightweight tie-in interfaces Tool neutral in water 	 Limited force/moment capacity,

Table 4-2 Comparison Tie-in systems

Tie-in System	Advantages	Disadvantages
ROVCON MK.II	 Long track record Lightweight tie-in interfaces Can perform all infield tie-ins Tool neutral in water 	 Large overall tool size requires a high clearance, possible conflicts with existing infra structures. Requires a straight pipe section due to high lifting height of termination head. High seabed clearance can give challenges for long spool frespan.
UCON-H	 Can perform all tie-ins (infield and GEP) Powerful Stroke-in tool very well suited for spool tie-ins 	 Stroking tool design may give higher risk of compression in flexibles Limited track record
HCCS	 Can perform all Tie-ins Powerful Stroke-in tool very well suited for spool Tie-In Well suited for tie-in of modules/integrated pig launchers etc. Inside structures 	 Stroking tool design may give higher risk of compression in flexibles
ICARUS	 Long track record Lightweight tie-in interfaces Tool neutral in water Can perform all infield tie-in 	 Large overall tool size requires a high clearance, possible conflicts with existing infra structures. Requires a straight pipe section due to high lifting height of termination head. High seabed clearance can give challenges for long spool free span.

The most common used Tie-in Systems for new oil field developments used today is:

- HCS (Horizontal Connection System)-Aker Solutions
- HCCS (horizontal Clamp Connection System)-Vetco
- Ucon-H (Universal connection-Horizontal Tie-in)
- Thor –Nemo (Acquired by FMC Technologies)

Figure 4-15 shows the Thor tie-in System which is one of these newly developed systems used in subsea fields.

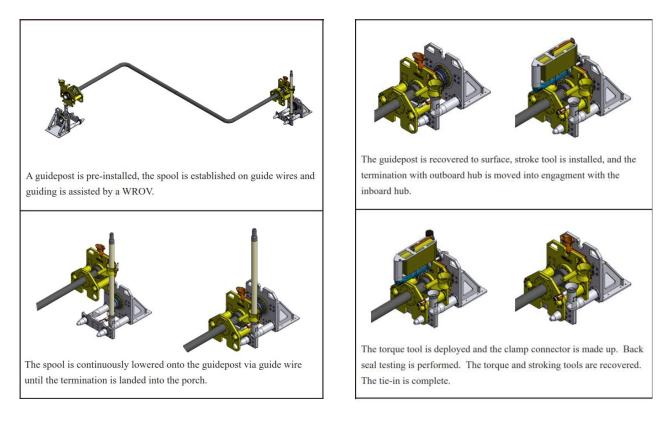


Figure 4-15 Installation sequence for Thor Tie-in System (FMC-NEMO)

5. DESIGN BASIS

The purpose of the design basis is to outline the general design premises for the piping design. The design basis identifies relevant standard codes and regulations to be followed. The design basis outlines the different design criteria for the piping analysis and spool design. It defines the basic load cases and load combination for the systems. The design basis in this thesis is based upon an earlier deep water subsea project.

5.1 Applicable codes and regulations

In the design basis it is common to list the governing standards and rules to be used in the pipe design. The use of standards and codes shall ensure that the requirements from governmental rules and laws is fulfilled and to give guidelines for a safe design., see Table 5-1 Codes, standards and regulations used for the design of spools and piping:

ltem	Standard / Regulation	Document Title
1.	Norwegian Petroleum Directorate (NPD)	Regulations to the Petroleum Act, FOR-1997-06-653
2.	ISO 13628-1 (API 17A)	Design and Operation of Subsea Production Systems - Part 1 general Requirements and Recommendations
3.	ISO 13628-6	Design and Operating of subsea Production Systems- part 6 : Subsea Production Control System
4.	ISO 13628-15	Petroleum and Natural Gas Industries Design and Operation of Subsea Production Systems part 15
5.	ASME B31.8	Gas Transmission and Distribution on Piping Systems(Chapter VIII) 2012
6.	ASME B31.3	Process Piping 2012
7.	API RP 1111	Design, Construction, Operation, and maintenance of Offshore Hydrocarbon Pipelines, API Recommended Practice 1111 ,fourth edition, December 2009
8.	DNV-RP-F112	Design Of Duplex Stainless Steel Subsea Equipment Exposed to Cathodic Protection 2008
9.	DNV-RP-C203	Fatigue Design of offshore Steel Structures
10.	DNV-OS-F101	Submarine Pipeline systems 2013
11.	DNV-RP-F105	Free Spanning Pipelines, 2006

The reference deep water subsea project for this thesis used the Allowable Stress Design method (ASD) instead of the Limit State Design (LRFD) as outlined in the DNV codes.

The spool design principles shall be based on requirements and recommendations described in *ISO 13628-1* The piping shall be designed according to *ASME B31.8 Gas transmission and distribution piping systems Chapter VIII offshore gas transmission*. This code is based upon the allowable stress design criteria and is applicable for systems with design temperatures in the range of -29°C to 232°C. For external pressure collapse check the pipe shall be checked against the limits as given in DNV-OS-F101 Submarine Pipeline systems 2013 or *API RP 1111 Design, Construction, Operation, and maintenance of Offshore Hydrocarbon Pipelines*. Piping material in Super Duplex shall be evaluated in accordance with DNV-RP-F112 Design Of Duplex Stainless Steel Subsea Equipment Exposed to Cathodic Protection, 2008

5.2 Material Data

Table 5-2 shows material values usually used for subsea spools the 25%Cr. Super duplex material has a far better corrosion, erosion resistance and a higher material strength than carbon steel pipe. The minor side of using super duplex is that the full capacity may not be fully utilized due to risk of hydrogen Induced stress corrosion cracking (HISC) caused mainly by cathodic protection on subsea systems. Other potential sources for corrosion such as sour environments with high content of hydrogen must be considered when a material choice is made. The choice of material for the analysis case is a 6 inch water injection pipe in *grade X65 material* which is a carbon steel pipe.

Parameter	25%Cr.Duplex - UNS S32750	X65
Yield strength (20 °C) SMYS	545 MPa	450
Tensile strength (20 °C) SMTS	750 MPa	531
Density	7850 kg/m ³	7870 kg/ m ³
Young's modulus	$2.0 \times 10^5 \text{ N/mm}^2$	2.0 x 10 ⁵ N/mm ²
Linear expansion	13.5 x10 ⁻⁶ /°C	16 x 10⁻ ⁶ /°C

Table 5-2 Piping material data

5.3 **Pipe Dimensions**

In addition to material data the design codes and standards define the applicable pipe dimensions for the spool, Table 5-3 shows the dimensions of the spool used in the reference project:

	Outer	Pipe wall	Cabadula	Inner	Bend	Bend wall	Wall
System	diameter	Thickness	Schedule	Diameter	Radius	thinning	thickness
	[mm]	[mm]	No.	[mm]	[mm]		tolerance
6" WI	168.3	18.3	160	131.7	457.2	10%	12.5%

The schedule No. is a number in accordance with ANSI standard for pipe wall thickness. The bend wall thinning values are typically given by the manufactures for induction bends and can vary between 2 to 20%

dependent upon size radius and wall thickness of the pipe bend. The wall thickness tolerance is according to ANSI and ASME standard for pipes.

5.4 Environmental Data

For the design case the following parameters for the subsea location yields:

Table 5-4 Environmental data

Parameter	Data
Subsea ambient temperature	4.3°C
Seawater density	1026 kg/m^3
Max Current speed (Operational)-Omnidirectional	0.7 m/s
Max. design water depth collapse	900 m
Min. design water depth to obtain design gauge pressure	700 m

Reference is also made to Table 10-5 for current distribution

5.5 **Design parameters**

For the design and analysis of the tie-in spool the applicable design parameters is given in Table 5-5 below and is based upon reference project values. In accordance to Statoil TR1230 Ref /19/ the test pressure requirements is given as:

- ASME B31.8 = 1.5 x (design pressure less the theoretical external pressure from static head at actual water depth (counted to MSL) but limited at maximum 1.4 x design pressure or
- ASME B31.4 = 1.25 x design pressure

Table 5-5 Design data

Parameters	6" Water Injection Jumper
Ambient temperature, subsea	Min 4.3° C, Max 21.5 ° C
Design temperature	Min -29 $^{\circ}$ C, Max 100 $^{\circ}$ C
Max operational temperature	34 ° C
Design collapse pressure 900 m water depth	90 bar
Density of water injection fluid	1026 kg/m ³
Internal differential design pressure (DP) at water depth 700m	345 bar
Corrosion allowance	3 mm
Erosion allowance	0 mm
Hydro test FAT pressure (1.5 x DP)	517.5 bar
Subsea Test pressure (1.25 x DP)at MSL -700m	431.3 bar
Design Life	25 years

5.6 Spool configuration

The spool configuration investigated is of the vertical ½ M type which has previous been used and installed in a deepwater project. The connector is of the vertical type landing on up-facing hubs and is closed by engaging the mechanical screw which clamps the hubs together against the seal. The configuration and the dimension of each leg is given in Table 5-6.

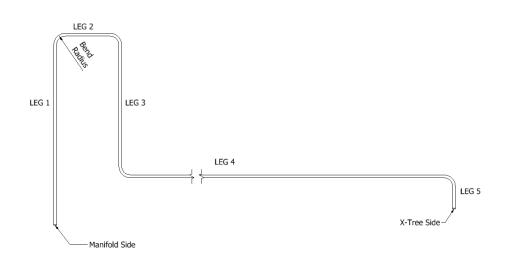


Figure 5-1 Jumper Spool Shape

The final geometry will vary within the range given by an installation tolerance and the field layout. A set of predefined length is chosen as to keep the required possible lengths to a minimum. The bend radius is R=457mm for all bends in the spool.

Туре	Spool	Leg 1	Leg 2	Leg 3	Leg 4	Leg 5	Height
	length	[mm]	[mm]	[mm]	[mm]	[mm]	Difference
	[m]						[mm]
	30	7267	3000	6510	27000	757	0
Max	30	8117	3000	6510	27000	757	850
	30	8767	3000	6510	27000	757	1500
	24	7267	3000	6510	21000	757	0
Nom	24	8117	3000	6510	21000	757	850
	24	8767	3000	6510	21000	757	1500
	18	7267	3000	6510	15000	757	0
Min	18	8117	3000	6510	15000	757	850
	18	8767	3000	6510	15000	757	1500

Table 5-6 Spool Jumper Configurations

5.7 Installation, settlement, Spool fabrication and Metrology Tolerances

The hub to hub fabrication and metrology tolerances given in Table 5-7 will be used in the jumper analyses based upon a deep sea water project. These variables tend to vary from project to project, and are dependent upon the measuring method used, contractor's fabrication quality and experience.

	Parameters	Data
	Position	2.0 m Radius
Manifold (MF)	Vertical Angle	± 2.5 °
	Vertical Position	+ 0.3 m
	Long Term Settlement	- 130 mm

Table 5-7 Installation Tolerances and Settlements

The jumpers will be fabricated based on the field metrology report after installation of the Manifold and X-Tree. Thus, the installation tolerances are covered for by changing the jumper geometry in the analyses to find the most unfavourable configuration, governing for the jumper design. However, the settlements and the fabrication and metrology tolerances will be unknown and will have to be considered in the jumper analyses by applying various load combinations to cover the worst, most unfavourable cases. Table 5-8 and Table 5-9 show the values to be used in the analysis of the spool.

Table 5-8 Deflections and settlements

Location	Value	Description
X-Tree Deflections - Horizontal	216 mm	Deflection when using BOP
X-Tree Deflections - Vertical	25 mm	Tree well expansion
Manifold Settlement - Vertical	130 mm	Assumed settlement

Table 5-9 fabrication and metrology tolerance

Tolerance	Translatio hub-to-hu (mm)	-	Rotation (deg)	
	ΔΧ	Δγ	Rx	Rz
Metrology	±25	±25	±0.25	±0.25
Inaccuracy	125			
Fabrication	±6	±6	±0.25	±0.25
Total Tolerances				
(Metrology +	±31	±31	±0.5	±0.5
Fabrication)				

Figure 5-2 shows the location of the spool tolerances

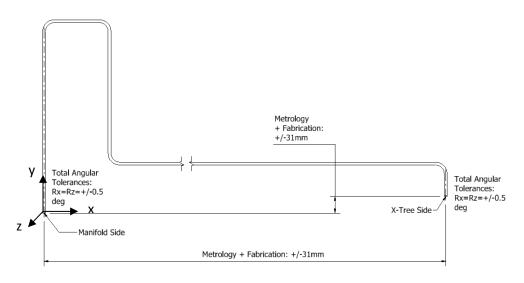


Figure 5-2 Jumper spool tolerances

In the analysis the longitudinal deflection and fabrication tolerances is assumed to be of a uniform distribution which is used when the only information known about the parameter variability is the upper and lower bounds. For the angular tolerances a normal statistical distribution is applied. (Refer to chapters 6.2). The reference project did not account for any statistical scatter in the tolerances and imposed deflections. A range of predetermined max/min for deflections and tolerances was combined and analysed together with the acting loads.

5.8 Load Cases

During the different phases from construction to the end of design life the jumper piping will be subject to different loads. The following loads and or load cases should be considered as potential loads during the jumper life cycle.

- Pressure testing (Onshore and subsea)
- Lifting/Lowering through splash zone
- Connection
- Operation
- Slug loads
- Shutdowns
- Snag loads
- Retrieval
- Earthquake
- Vortex Induced Vibration (VIV)
- Fatigue Evaluation
- Erosion
- Seal replacement
- Dropped object loads

However, the investigation of this study is limited to only the following cases:

- Pressure testing onshore and subsea
- Connection/operation and seal replacement (in-place)
- VIV fatigue evaluation

For a more comprehensive load investigation readers of this thesis are encouraged to study Jone Lutro's Master thesis Ref. /3/. In his thesis the main topic is a LRFD design of a vertical spool in accordance with DNV-OS-F101 Standard.

5.9 Design Code Check

5.9.1 Code formulas

Pipe wall thickness

In accordance to ASME B31.8 the allowable stress limits for Internal design pressure for the nominal wall thickness for a given design pressure is given by the following equation:

$$W_t = \frac{(P_i - P_e)}{2S} \cdot \frac{1}{FT} + c \tag{5.1}$$

Where:

Wt =Pipe wall thickness	[mm]
P _i =Internal design pressure	[N/mm ²]
P _e =External pressure	[N/mm ²]
S = Specified minimum yield strength	[N/mm ²]
F_1 = Design factor	[-]
T = Temperature de-rating factor	[-]
c = Corrosion allowance	[mm]

The design factor F1 depends on actual Location Class for the piping. The subsea manifold is defined as part of the pipeline and the design factor for hoop stress is F1 = 0.72 (Table A842.2.2-1). The temperature derating factor T is equal to 1 for temperatures up to 121° C (Table 841.1.8-1 for carbon steel only)

Hoop Stress

The hoop stress due to internal design pressure must fulfil the criteria given in ASME B31.8 section A842.2.2 for D/t \geq 30

$$S_H = (P_i - P_e)\frac{Dt}{2t} \le F_1 ST$$
(5.2)

And for D/t≤30:

$$S_H = (P_i - P_e) \frac{D - t}{2t} \le F_1 ST$$
 (5.3)

Where:

- p_i = Internal design pressure
- p_e = External pressure
- D = Outer diameter
- S = Specified minimum yield strength
- F1 = Hoop stress design factor, here F1 = 0.72
- T = Temperature de-rating factor
- t = Nominal wall thickness

In piping design usually the fabrication tolerances is to some degree accounted for in the stress limits and the stress intensification factors (SIF) as given in the piping code (Ref. /15/ Table E-1 and Table A842.2.2-1). The stress limit for wall thickness design in ASME was historically developed based upon the wall thickness tolerance of 12.5% and a safety margin for hydro testing of 1.25xMOP to achieve 90% of SMYS resulting in a max usage factor of 0.72.

Longitudinal stress

For subsea pipelines the longitudinal stress shall fulfil the following

$$|S_L| \le F_2 S \tag{5.4}$$

Where:

S = Specified minimum yield strength

F₂ = Longitudinal stress design factor (Table A842.2.2-1), here F2 = 0.8

S_L = Maximum longitudinal stress

The maximum longitudinal stress is given as the sum of the longitudinal pressure stress, the longitudinal bending stress and the axial stress due to sustained and thermal loads:

$$S_L = |S_P| + |S_b| + |S_{axial}|$$
(5.5)

Where:

- S_L = Longitudinal stresses
- S_P = Longitudinal pressure stresses
- S_b = Longitudinal bending stresses
- S_{axial}= Axial stress

The bending stress is calculated by use of the following formula:

$$\sigma_b = \frac{\sqrt{(i_i M_i)^2 + (i_o M_o)^2}}{Z_{nom}}$$
(5.6)

Where:

 M_i = In plane bending moment M_o = out of plane bending moment

 Z_{nom} = Section modulus, nominal wall thickness

 $i_{o,i}$ =Stress intensification factor (SIF) out of plane or in plane

Combined stress

The combined stress shall not exceed the value given by the maximum shear stress equation (Tresca combined stress) A842.2.2 (c)

$$2\left[\left(\frac{S_L - S_h}{2}\right)^2 + S_t^2\right]^{1/2} \le F_3 S$$
(5.7)

or alternatively, the value given by the Maximum distortional energy theory (von Mises combined stress)

$$\sqrt{S_h^2 - S_h S_L + S_L^2 + 3S_t^2} \le F_3 S \tag{5.8}$$

Where:

S _C =	Combined stress
S _{t =}	Torsional stress
S _L =	SL _{max} or SL _{min} , whichever is greater in magnitude
$SL_{max}=$	Maximum longitudinal stress (Sa+Sb) or (Sa-Sb),
S _b =	Bending stress

- S_t = Tangential stresses \approx Torsional stress=M_t/2Z (M_t= Torsional moment)
- Z = Section Modulus
- S_{H} = Hoop stress
- F_3 = Combined stress design factor (table A842.2.2-1), here F3 = 0.9

The wall thickness must be reduced with corrosion allowance, mill tolerance and erosion allowance for platform piping and risers when calculating combined stress. The spool is considered as part of the pipeline and hence the nominal pipe wall thickness is used in the combination stress check

5.9.2 HISC Stress limits

If a pipe is made from Duplex or Super Duplex then Hydrogen Stress Induced Cracking can be a potential problem and the pipe must be checked in accordance with Ref. /32/ Section Sec. 4, D302. The RP or recommended practice presents HISC as a separate failure mode, which should be analyzed for duplex components used subsea. The design requirements in the RP include stress and strain limits, as well as a number of other factors. It is Important to note that *the RP does not* give load factors to the design this must be considered separately.

The first step in evaluating protection against HISC is a screening criterion where the longitudinal stress from the piping analysis is used together with a calculated stress concentration factor. From this step it is possible to identify the most utilized spool configuration, and hence what type of geometry to use in further analysis in the event of this screening criterion should fail. The next step consists of a linear elastic analysis by use of FEA. Stress classification lines are added to the geometry. From the FEA analyses the membrane and membrane plus bending stresses are extracted and compared to given limits.

When the linear elastic analysis criterion is not met, a non-linear analysis is required. Here the Neuber's rule is used as a first approximation, and the corresponding non-linear stresses and strains are calculated and compared to given limits.

The final step in a detailed HISC evaluation should all above criterions fail is a full elastic plastic model with as close to real geometry as possible, and different material curve for all material used in the construction. This analysis would give a deeper insight in the structures true physical behavior. The first criterion to check for piping analysis is given by eq. (5.9) and is:

$$SCF \times \sigma_l < (SMYS - Derating) \times \gamma_{HISC} \times \alpha_m$$
(5.9)

Where:

SCF = Stress Concentration Factor (Welds, transitions, etc.)

 σ_l = Longitudinal stress extracted from the pipe element used in the analysis

SMYS = Specified Minimum yield Strength

De-rating =Temperature de-rating for yield strength at operational temperature

 γ_{HISC} =Coarse austenite spacing or fine (0.85 or 1.0 Table D.2)

 $\alpha_m = 0.8$, (Ref. /32/ Sec. 4, part 302)

A design where the membrane stress in the component is below 80% of $\gamma_{HISC} \cdot SMYS$ is acceptable. The peak stress can be disregarded. (Ref. /32/ figure 2). The criterion is for detailed FEA linear elastic analysis of the given geometry.

5.9.3 Code Stress Limits

The stress criteria are applicable for the jumper spool design see Table 5-10. The equivalent and the longitudinal stress criteria are applicable for smooth pipe cross sections without welds, grooves & fillets transitions etc. The stress intensification factors (SIF) are included in the code formulas and must always be checked where applicable. The HISC criterion is for the max allowable membrane stress Ref. Table 5-11 and section 5.9.2

For hydrostatic testing of pipe the ASME B31.8 code does not specify any stress limits and the committee is silent regarding this case see interpretations volume 16 in Ref. /15/. A factor of 0.96 x SMYS is used for the check towards the combination stress as described in Statoil specification given in Ref. /19/. The limit for hoop stress and combination stress is also given in Section 7 E100 of Ref. /7/. Here the min of (0.96xSMYS or 0.84xSMTS) is specified for hydrostatic mill pressure test which is based upon minimum wall thickness t_{min} . If a standard API pipe is purchased with the 12.5% fabrication tolerance on the wall thickness, it seems reasonable to use the 0.72xSMYS for the hoop stress criteria so that the pipe is not utilised more than 90% of SMYS during the test for the minimum wall thickness. However the benefit of raising the pressure test to 100% of SMYS is shown in Figure 5-3 and is given in publications published by John F. Kiefner and Willard A. Maxey found in the pipeline handbook Ref. /34/. Here curves for 9 flaws depth to wall ratios are given. For example consider the horizontal line in Figure 5-3 for 100% SMYS here the longest surviving defect that is 50% through the wall can only be about 3.5 inches. Compare that length to the length of the longest possible 50%-through flaw at the MAOP which is 10 inches.

Hence smaller flaws are assured by even higher pressure. In short the higher the test pressure is above MAOP the smaller the possible surviving flaws are.

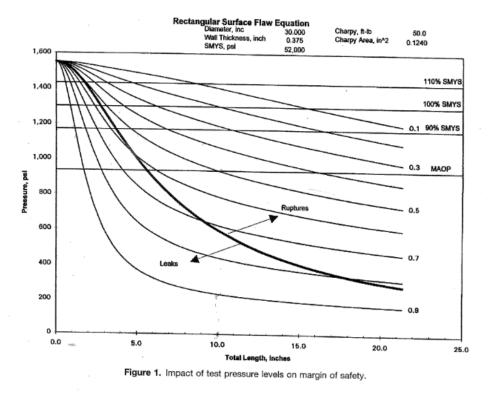


Figure 5-3 Impact of test pressure levels on margin of safety Ref. /34/

Table 5-10 and Table 5-11 list the allowable stresses for the spool design based upon the code formulas as given in this chapter. Table 5-11 is included as information only since the pipe in the analysis is of carbon steel *grade X65*.

Criterion	Reference	Temperature 0°C -121°C (250°F or less)
Yield Strength	ASME B31.8	450 MPa
Hoop Stress	ASME B31.8	324 MPa
Longitudinal Stress	ASME B31.8	360 MPa
Combination Stress- Operational	ASME B31.8	405 MPa
Combination Stress- Hydro testing	Statoil TR1230	432 MPa

Table 5-10 Allowable stress piping X-65 grade

Table 5-11 Allowable stress Super Duplex piping

		Temperature				
Criterion	Reference	20°C /25°C	30°C /44°C	70°C /75°C	105 °C /112°C	
Yield Strength	DNV-OS-F101	545 MPa	526 MPa	495 MPa	465 MPa	
Hoop Stress	ASME B31.8	392 MPa	379 MPa	356 MPa	335 MPa	
Longitudinal Stress	ASME B31.8	436 MPa	421 MPa	396 MPa	372 MPa	
Combination stress	ASME B31.8	491 MPa	473 MPa	446 MPa	419 MPa	
HISC	DNV-RP-F112	357 MPa	350 MPa	340 MPa	335 MPa	
Combination Stress-Hydro testing onshore	Statoil TR 1230	523 MPa	505 MPa	NA	NA	

6. SPOOL OPTIMISATION AND STRENGTH VERIFICATION

6.1 Finite element program ANSYS

For study of subsea flow lines and tie-in spools the most utilized FEA software used today is the ANSYS software package. The ANSYS software package is a large tool with many capabilities. The program offers many functions and can be used for many areas spanning from structural /mechanical fluid problems to advanced areas within physics. Readers can visit the ANSYS Website for a comprehensive description of each analysis packages

Some of the main products are:

Structural analysis:

- ANSYS- Multiphysics
- (Includes all of finite element disciplines)
- ANSYS Mechanical
- ANSYS Structural
- ANSYS Professional
- ANSYS DesignSpace
- ANSYS ACT
- ANSYS Rigid Body Dynamics
- ANSYS Composite PrepPost
- ANSYS nCode DesignLife
- Explicit Dynamics
- ANSYS Explicit STR
- ANSYS Autodyn
- ANSYS LS-DYNA

Fluid dynamics:

- ANSYS Fluent
- ANSYS CFX
- ANSYS CFD
- ANSYS CFD-Flo
- ANSYS CFD Professional
- FLUENT for CATIA V5
- ANSYS CFD-Post
- ANSYS Icepak
- ANSYS Polyflow
- ANSYS Vista TF
- ANSYS BladeModeler
- ANSYS TurboGrid

In this thesis the ANSYS Structural version 15 is used. This version has the capability to handle linear and non-linear analysis, buckling, contact and dynamic analysis problems. The package includes the ANSYS Workbench and ANSYS APDL classic graphical user interface. Several add-ins is provided to the package such as CAD interface with most of the common parametric design tools (Inventor, Solidworks, CATIA, Pro engineer etc.) in addition to the ANSYS Design modeller.

ANSYS has a large library of different element types with a variety of boundary conditions, material properties, and other relevant data. The user can determine to utilise the powerful APDL programming language and make scripts similar to what students learn by using the software CALFEM in finite elements topics. The APDL Programming language takes time to learn and to programme the input script, and has to some degree the disadvantages of being a source of programming error due a large number of options that has to be carefully checked towards the ANSYS documentation or other software. The benefit of APDL is that it is quick to change parameters, especially for simple beam and shell constructions and also to perform large numerous load combinations in one analysis run. That is also why most of the pipeline engineering is conducted with this type of programming. A simulation of a long pipeline uses contact elements and pipe elements typically CONTA175, PIPE288 PIPE289 (for Version 15 or higher). Figure 6-1 shows the vertical spool modelled in ANSYS Classic.

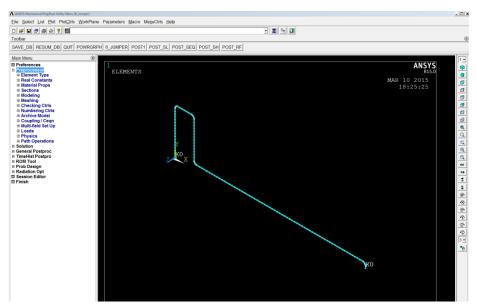


Figure 6-1 ANSYS Classic GUI

The other cousin of ANSYS shown in Figure 6-1 is the ANSYS Workbench shown in Figure 6-2 which allows a user to enter a more Windows operated GUI without the in depth knowledge of all the programming techniques. This GUI is quite Intuitive and is supplied with many advanced features including the advanced automatic mesh generator for complex shapes and constructions. This tool is highly utilised in mechanical and CFD analysis. The program allows the user to also include APDL Programming. The software includes all of the capabilities as listed above.

solow - 9 × Analysis Systems 2 Design Assessment 2 Elektric 3 Depict Dynemics 4 Harmaic Response 3 Lineer Buckling 9 Magnetostiski 9 Magnetostiski	Project	Schematic									
Design Assessment Electric Deplict Dynamics Harmonic Response Linear Buckling						- 0	X O				
Electric Diplicit Dynamics Harmonic Response Linear Buckling											
Electric Diplicit Dynamics Harmonic Response Linear Buckling											
Harmonic Response Linear Buckling		• A	-	8 C	-	D					
LinearBuckling		1 🥩 Georrett		atic Structural 1 🥩 Geometry	1 📴 S	tic Structural					
LinearBuckling		2 K Geometr	y 🗸 💦 2 🕑 try	gineering Data 🗸 🛛 🛛 🛛 🖉 Geometry 🗸 🚬	2 🛷 tr	pineering Data 🗹 🖌					
		Geometr	y 🚽 🖬 🖬 Ge	ometry V Geometry	💶 3 📕 G	ometry 🗸 🖌					
			4 🥥 Mo		4 🥩 M						
Modal Random Vibration			5 🍓 Sei		-s 🏟 s						
Response Spectrum			6 6 50		6 6 8						
Static Structural			7 🤿 Re		7 😏 R						
Steady-State Thermal											
Thermal-Electric			41NCH 066	Operational 255,5bar		Submodel					
Transient Structural											
Transient Thermal											
Component Systems											
Engineering Data											
External Data											
External Model											
Finite Element Model er											
Geometry Mechanical APDL											
Mechanical Model											
Mesh											
Microsoft OfficeExcel											
System Coupling Custom Systems											
System Coupling Custom Systems Pre-Stress Modal							P	hopenties of Schematic Bio: Solution			
System Coupling Custom Systems Pre-Stress Modal Random Vibration							P	hopentites of Schematic Bill Solution		8	
System Coupling Custom Systems Pre-Stress Model Random Vibration Response Spectrum							P	A		8 Value	
System Coupling Castom Systems Pre-Brass Model Random Vibraton Response Spectrum Thermal-Stress							12	A			
9 System Coupling Castom System Pre-Sirves Model Random Vibration Response Spectrum Thermal-Stress Design Exploration								A 1 Property 2 © General	Solution		
gystem Coupling Castom Systems Pre-Sites Modal Random Vibraton Raspona Spectrum Thermal-Stress Design Exploration Direct Optimization	-							A 1 Property 2 © General	Solution 915		
System Coupling Castom System Pre-Sizes Model Response Spectrum Thermal-Rizess Design Exposition Direct Optimization Direct Correlation	-	8					<u>.</u>	A 1 Property 2 C General 3 Component ID 4 Directory Name			
§ system Coupling Caston Systems Pre-Streas Modél Rasdom Vibraton Response Sportum Therma-Streas Design Epiloraton Direct Optimation Parameters Correlation Response Synthe	4 Messag	Hi a				* ģ	×	A 1 Property 2 Component ID 3 Component ID 4 Directory Name 5 C Notes			
System Coupling Coston System Pre-Drass Modd Random Vibration Rasponal Spectrum Thermal-Spectrum Direct Optimization Direct Optimization Parameters Correlation Response Sufface Optimization	Messag	15 A			c	- Q	> X	A 1 Property 2 C Component ID 3 Component ID 4 Directory Name 5 C Holes 6 Notes			
System Coupling Cattern System Res Deates Model Response Spectrum Thermal-Stress Design Exploration Design Exploration Direct Optimization Parameters Comelation Response Sufface Optimization Sci Signan Acaylisia	< <u>Messay</u> 1	A Tipe		Text	C Association	* ģ	×	A 1 Property 2 C General 3 Coregonent ID 4 Directory Name 5 C Roles 6 Notes 7 C Local Longes	515		_
System Cauding Catton System Pro-Dense Model Response Model Response Spectrum Thermal-Dense Design Exploration Design Exploration Design Exploration Parameters Cometion Response Suffrance Optimization Six Signan Ashysion Design Connection Systems	Messag	Type	C: VANSYS Protects 1601814 GRA	Text thave been backed up before it was modified: are WMP provided to the fore it was modified:		- Q	• ×	A 1 Property 2 Component ID 3 Component ID 4 Directory Name 5 Proper 6 Notes 7 C. Used Lonnes 8 Lest Lipdete Used Lonnes	515		
System Cauding Catton System Pro-Dense Model Response Model Response Spectrum Thermal-Dense Design Exploration Design Exploration Design Exploration Parameters Cometion Response Suffrance Optimization Six Signan Ashysion Design Connection Systems	Messaq 1		C: JANSYS Projects (1601814 GRA Jglobal JMECH (SYS) Contact Tool (S	Text thave been backed up before it was modified: NE WYC PIPING STRESS ANALISES - EGGP (-4INCH D88_files)dp0 Secliput.htt		v Q D Date/Time	×	A Property 2 - Greenel 3 Component ID 4 Directory Name 6 Notes 7 Citodal Common 8 Lest Lipdet Used Locenses 9 System Information	515 MIDTS Mechanical PrepPost		
System Coupling Coston System Pre-Drass Modd Random Vibration Rasponal Spectrum Thermal-Spectrum Direct Optimization Direct Optimization Parameters Correlation Response Sufface Optimization	1 2	Type Warning!	C: WNSYS Projects (1601814 GRA \global\MECH\SYS\Contact Tool\S The following project file may not	Text thave been backed up before it was modified: NE WYE PPIPING STRESS ANALYSES - ESCP (-BIXCH DBB_files)dp0 bachput.bt Thave been backed up before it was modified:		v 0 D Date/Time 09.12.2014 18:49:15	×	A 1 Property 2 0 Genetal 3 Component ID A 4 Directory Name B 5 C Notes 6 Notes Component ID 7 C Used Komes Component ID 8 Last Update Users Contexts 9 C System Information B 9 Physics Physics	SYS AVEYS Mechanical PrepPost Structural		
System Cauding Catton System Pro-Dense Model Response Model Response Spectrum Thermal-Dense Design Exploration Design Exploration Design Exploration Parameters Cometion Response Suffrance Optimization Six Signan Ashysion Design Connection Systems	Messaq 1	Type	C: WNSYS Projects (1601814 GRA \global\MECH\SYS\Contact Tool\S The following project file may not	Text have been backed up before it was modified: why the provide stress Annu rises - EGOP(AINCH DBB_files)gb0 Biodingut.txt have been backed up before it was modified: have the provide tables SANAURSE - BOOP(AINCH DBB_files)gb0		v Q D Date/Time	×	A 1 Pacetry 2 Composent ID 3 Composent ID 4 Directry Name 5 C. Notes 6 Noble 7 C. Modes 8 Last Lobalit Lobal Licenses 9 System Softmanann 10 Physics 11 Analysis	515 MIDTS Mechanical PrepPost		
System Cauding Catton System Pro-Dense Model Response Model Response Spectrum Thermal-Dense Design Exploration Design Exploration Design Exploration Parameters Cometion Response Suffrance Optimization Six Signan Ashysion Design Connection Systems	1 2 3	Type Warning!	C: WISHS Projects/1601814 GRA global/MECHISHS/Contact Tool/S The following project file may not C: WISHS Projects/1601814 GRA global/MECHISHS/Contact Tool/S	Text have been backed up before it was modified: why the provide stress Annu rises - EGOP(AINCH DBB_files)gb0 Biodingut.txt have been backed up before it was modified: have the provide tables SANAURSE - BOOP(AINCH DBB_files)gb0		v 0 D Date/Time 09.12.2014 18:49:15	×	A 1 Property 2 C General 3 Component ID 4 Directory Name 5 C Invites 6 Noles 7 C Used Ummos 9 System Information 9 System Information 9 System Information 11 Analysis 12 Solver	SYS AVGITS Mechanical PrepPost Structural Static Structural		
System Cauding Catton System Pro-Dense Model Response Model Response Spectrum Thermal-Dense Design Exploration Design Exploration Design Exploration Parameters Cometion Response Suffrance Optimization Six Signan Ashysion Design Connection Systems	1 2	Type Warning! Warning!	C: WASTS Projects/L601814 GRA lglobal/WECH(STS)Contact Tool/S The following project file may noti c: WASTS Projects/L600834 GRA lglobal/MECH(STS)Contact Tool/S Mechanical failed to open the dat	Text they been backed up before it was modified: we were prepix STESS ANALYSES - EGGPI (NINH DBB_files)uppo Baciliput.ht have been backed up before it was modified: NE WER PRPIX STRESS ANALYSES - EGGPI (NINH DBB_files)uppo Beciliput.ht		0 00 0 00 00 00 0 00 00 00 00 00 00 0 00 0	×	A Proofs Proofs Composed D Composed D	DYS ANDYS Mechanical PrepPost Stockaral Static Struckural Mechanical APDs.		
System Cauding Catton System Pro-Dense Model Response Model Response Spectrum Thermal-Dense Design Exploration Design Exploration Design Exploration Parameters Cometion Response Suffrance Optimization Six Signan Ashysion Design Connection Systems	1 2 3	Type Warning! Warning! Error!	C: WASTS Projects/L601814 GRA lglobal/WECH(STS)Contact Tool/S The following project file may noti c: WASTS Projects/L600834 GRA lglobal/MECH(STS)Contact Tool/S Mechanical failed to open the dat	Text transition of the first of two modified the two provides that the set of the two products activate the set of the set of the set of the set of the compared that the set of the set of the set of the set with the set of the set		0 00 0 00 00 00 0 00 00 00 00 00 00 0 00 0		A 2 C (General) 3 Component ID 4 Decloy Name 5 C (Moles) 6 Noles 7 C (Lucc) Lonnes 9 System Information 11 Analysis 12 Solver 13 Solver 13 Solver 13 Solver 14 Updeker Opden	SYS ANDYS Mechanical PropPost Structural Structural Mechanical APDL Use application default		
System Cauding Catton System Pro-Dense Model Response Model Response Spectrum Thermal-Dense Design Exploration Design Exploration Design Exploration Parameters Cometion Response Suffrance Optimization Six Signan Ashysion Design Connection Systems	1 2 3 4	Type Warning! Warning! Error!	C: WASTS Projects/L601814 GRA lglobal/WECH(STS)Contact Tool/S The following project file may noti c: WASTS Projects/L600834 GRA lglobal/MECH(STS)Contact Tool/S Mechanical failed to open the dat	Text transition of the first of two modified the two provides that the set of the two products activate the set of the set of the set of the set of the compared that the set of the set of the set of the set with the set of the set		09.12.2014 18:49:15 09.12.2014 18:49:15 09.12.2014 14:17:21:18		A Proofs Proofs Composed D Composed D	DYS ANDYS Mechanical PrepPost Stockaral Static Struckural Mechanical APDs.		

Figure 6-2 ANSYS Workbench environment

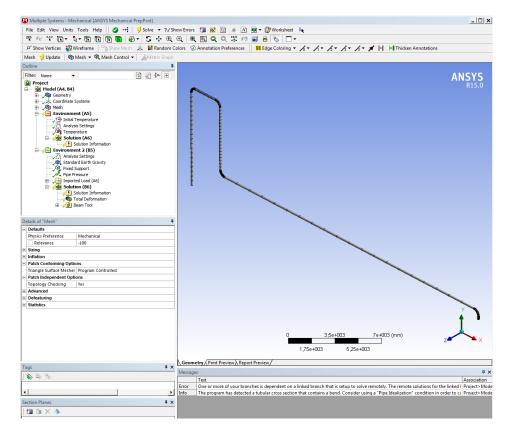


Figure 6-3 ANSYS Workbench Pipe model

In this thesis the add-in tool included in the ANSYS Workbench Environment called ANSYS DesignExplorer is used. This tool allows you to vary and study the effect and sensitivity of design and load parameters. Here the user can specify a type of probability function for each parameter and conduct design experiments and load combinations. The add-in also has a statistical feature named "six sigma analysis" a tool that allows the user to show probabilities for a safe design. The tool also includes response surfaces where sensitivities of parameters can be studied. An optimisation tool is also provided which lets the user explore the best candidates for the design within the user specified design limits. The graphical layout is shown in Figure 6-4

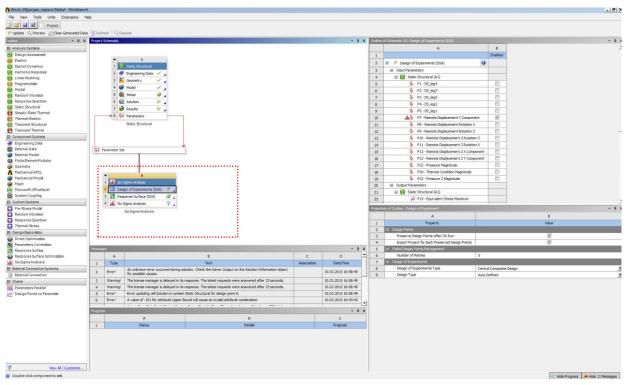


Figure 6-4 GUI ANSYS WB Design Explorer

The tool provides many advanced functionalities and is beyond the scope of this thesis but some of the features is mentioned here see (see Appendix 5) for a quick intro.

Useful tools utilised is:

• Design of experiments:

-Variables are assigned a statistical distribution (Normal, Uniform, log-normal, triangular, Weibull ,Beta etc.)

- Design points (combinations) are generated automatically to explore the parametric space efficiently

Six Sigma analysis:

-Probability distribution for the output parameter (stress, reaction forces etc.)

Response surface

-Which parameters contribute most and identification of sensitivities to input parameters

The optimisation tool is mainly to screen out the best candidates for the design based upon limit constraints such as safety factors, minimum stress and weight etc. For the spool the final dimension is unknown in the early phase of the project and hence a selected type and range of possible candidates needs to be checked.

6.2 Analysis Description

As described in chapters 5.6 and 5.7 the spool has to accommodate many possible deflections, lengths and rotation combinations. There are 6 DOF at each end with 2 possible variations. In theory this gives a total of 2^{12} =4096 combinations for the deflections and rotations. So for the predetermined length Max, Nom and Min, which is the target length range for the final geometry with 3 configurations each, results in a large amount of combinations. (4096 x 9 = 36864 possible combinations for each spool). Hence engineering judgment and experience is required in order to constrain some of the possibilities here.

The following assumptions for the boundary conditions are used for the "in-place model" in order to reduce the number of possibilities see Figure 6-5:

Dz=0, Since this spool is of the vertical type the main stiffness is in the x-y plane and hence the out of plane deviations and tolerances is assumed to have a minor influence on the spool.

Ry=0, Since the length dimension in the x-direction is much >> than the imposed tolerance rotation among Yaxes it is assumed to have a minor influence on the spool stresses.

 $Dx_{MF}=0$, The longitudinal variation of the spool is imposed at one end (X-tree end, Dx_{XT}) It is assumed that fixating one end and pulling the spool is the same as pulling two ends apart for the same amount of tolerance.

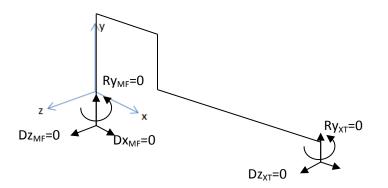


Figure 6-5 Boundary conditions spool "In-place model"

As a first step the analysis is divided into several sub cases in order to capture the sensitivity of the imposed deflections and rotations of the geometry. Here statistical distribution is given for the tolerances and deflections. The piping code specifies that production tolerances and installation tolerances always must be considered in the design calculations.

In accordance to chapter 3.6 a statistical distribution of the tolerances should be applied in the analysis. Table 6-1 and Table 6-2 show the distribution values used in the analysis.

Parameter	Distribution type	Commentary
Angular tolerances	Normal distribution	A mean value with a standard deviation is assumed. It is assumed that there is a 95% probability of hitting the max/min angular tolerances of +/- 0.5deg with a 100% dimensional control.
Imposed deflections and linear fabrication tolerances	Uniform distribution	Here a linear uniform distribution is assumed for the max and min limits. Deflection + linear fabrication tolerances are added as no information about the dimensions and deflection is given. The greatest uncertainty in this assumption is the expected imposed deflection.

Table 6-1 Statistical Distributions

Table 6-2 Distribution values

location	Dx	Dy	Rx	Rz
Manifold side	0=fixed	=-130mm +/-(25mm+6mm)	$\mu_{mean}=0$	μ_{mean} =0
		=-130+/-31mm	Std.=0.3	Std.=0.3
X-tree side	=+/-216mm+(25mm+6mm)	=-25mm +/-(25mm+6mm)	µ _{mean} =0	µ _{mean} =0
	= +/-247mm	=-25mm+/- 31mm	Std.=0.3	Std.=0.3
	,			

Figure 6-6 and Figure 6-7 shows the detail of the distributions for the rotations and deflections and their probability functions.

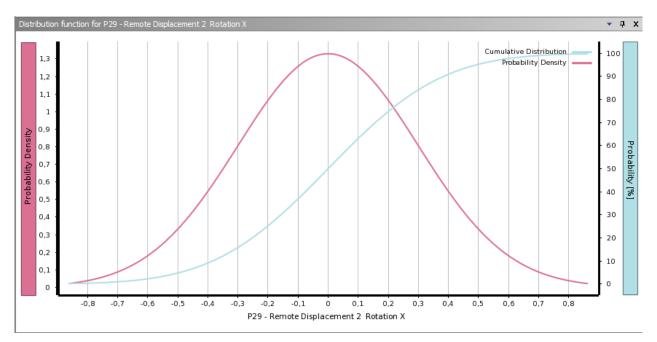


Figure 6-6 normal distributions for rotations

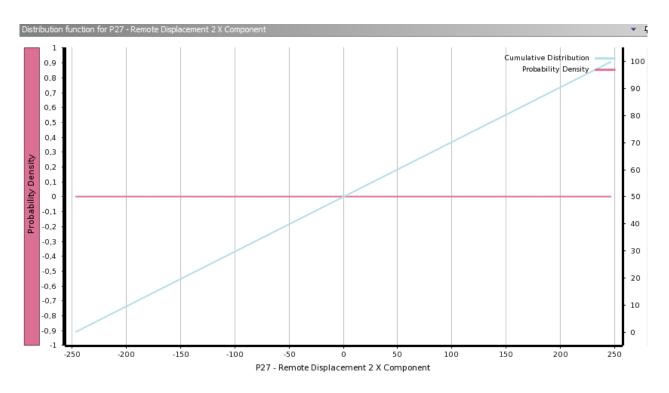


Figure 6-7 Linear max/min distribution of imposed deflections

6.3 Finite Element Model Description

The jumper spool geometry is modelled in Autodesk Inventor where a parametric setup has been established for the length of the legs. A surface is then extruded along the path with the pipe profile. In order to simulate the end cap effect of a pressurized system a solid lid is modelled in each end of the spool. This simulates the interfaces to the thick wall "hub" located in the connector which is welded onto the pipe. The assumption made here is that the stiffness of the "hub" and the connector is much larger than the spool pipe wall, and hence the boundary condition can be treated as approximately ridged.

The model is then transferred in to the ANSYS workbench environment see Figure 6-9, where a model is set up and meshed with shell elements and solid elements. A finer mesh in the contact area between the lid and the shell element is required to get sufficient contact nodes and to avoid errors and convergence problems. The meshing tool requires some trial and error in order to get an acceptable quality. The software provides many advanced settings for meshing and tools for checking the quality such as "mesh metrics". For the study of the spool a coarse model is chosen as to limit the amount of elements and time to run each analysis. The element property can be reached by the FE tool provided, and is described in the ANSYS documentation through the help menu. As an alternative to modelling in Autodesk Inventor for geometry, one could use either the ANSYS Design Modeller or construct the geometry in the ANSYS classic environment. The modelling process is shown in Figure 6-8.

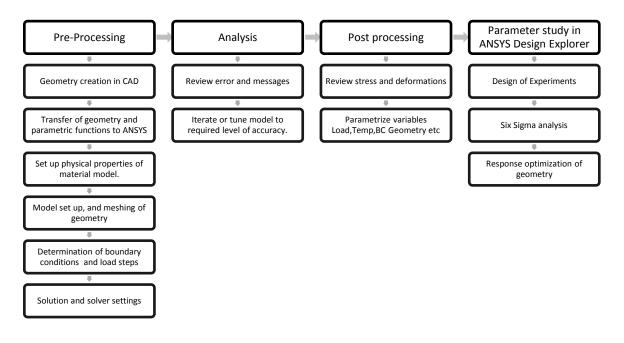


Figure 6-8 ANSYS FEA Flow chart

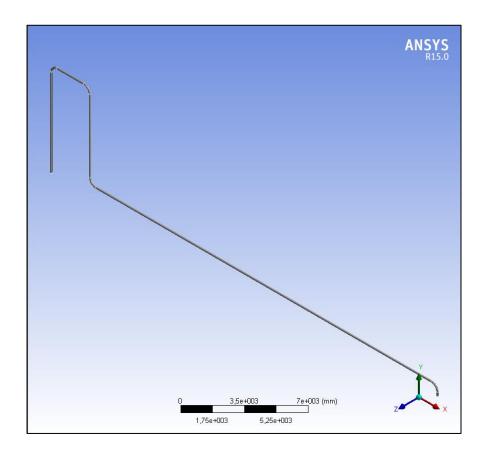


Figure 6-9ANSYS FEA Model

Figure 6-9 and Figure 6-11 shows the geometry and the mesh used in the analysis. Figure 6-10 shows the overall quality of the mesh in the model. The Element Quality option provides a composite quality metric that ranges between 0 and 1. This metric is based on the ratio of the volume to the sum of the square of the edge lengths for 2D quad/tri elements, or the square root of the cube of the sum of the square of the edge lengths for 3D elements. A value of **1** indicates a perfect cube or square while a value of **0** indicates that the element has a zero or negative volume. The shell element generated here is called Quadrilaterals with 4 nodes and has an overall quality of 0.95 to 0.98 which is considered to be very good. A total of **16565** nodes and **16241** elements are generated in the model.

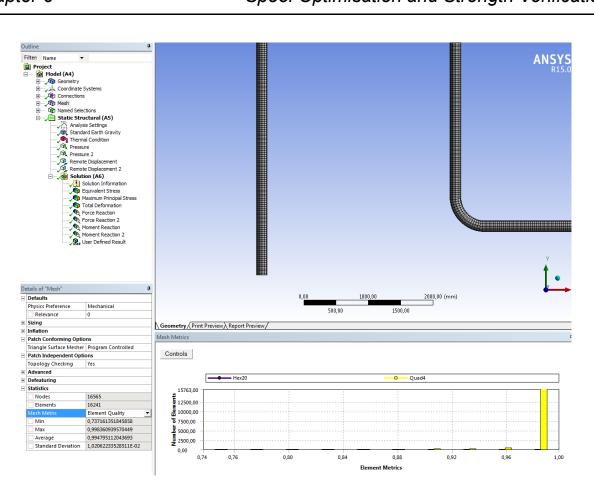


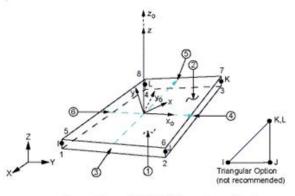
Figure 6-10 Element quality metrics

The element geometry is set up by ANSYS. ANSYS is using an MESH200 command (Ref. ANSYS documentation) to set up the geometric mesh without any element attributes such as material properties, real constant. Then the geometric mesh is automatically assigned element types. The following elements is used

- SHELL181
- SOLID186
- TARGET170
- CONTA174
- SURF184

Shell element property 181 is shown in Figure 6-12

		ANSY
		KIJ.
Details of "Mesh"		
 Defaults 		
Physics Preference	Mechanical	
Relevance	0	
Sizing		
Use Advanced Size Function	On: Curvature	
Relevance Center	Coarse	
Initial Size Seed	Active Assembly	
Smoothing	Medium	
Transition	Fast	
Span Angle Center	Coarse	
Curvature Normal Angle	Default (30,0 °)	
Min Size	Default (27,2090 mm)	
Max Face Size	Default (136,040 mm)	
Max Size	Default (136,040 mm)	
Growth Rate	Default	
Minimum Edge Length	413,750 mm	
Inflation		
Patch Conforming Options		
Triangle Surface Mesher	Program Controlled	
Patch Independent Options	1	
Topology Checking	Yes	
+ Advanced		
0,00 50	0,00 1000,00) (mm)
250,00	750,00	
200,00	10,00	


Figure 6-11 ANSYS FEA model Shell Elements

As seen from Figure 6-11 and details of "Mesh", minimum element size used by the software is 27 mm. Since this analysis is going to be repeated and there are some iteration processes, it is advisable not to use to fine mesh as this takes a longer computation time. The requirement for a fine mesh is not deemed applicable to a large structural global model. If there is a requirement to study local effects such as peak stress or stress raisers at discontinuities, welds or transition etc., a local detailed model is preferred with a finer mesh. ANSYS has the capability of doing sub modelling from a global local model to a local detail model with a finer mesh. Figure 6-12 shows the element description e from the ANSYS documentation. SHELL181 is suitable for analysing thin to moderately-thick shell structures. It is a four-node element with six degrees of freedom at each node: translations in the x, y, and z directions, and rotations about the x, y, and z-axes. (If the membrane option is used, the element has translational degrees of freedom only). The degenerate triangular option should only be used as filler elements in mesh generation. Through wall stress gradients has to be accounted for D/t<10 in accordance with thin wall theory. The ratio is 168.3/18.3=11 which is at the limit and hence the element is deemed suitable.

SHELL181 is well-suited for linear, large rotation, and/or large strain nonlinear applications. Change in shell thickness is accounted for in nonlinear analyses. In the element domain, both full and reduced integration schemes are supported. SHELL181 accounts for follower (load stiffness) effects of distributed pressures.

SHELL181 Input Data

The following figure shows the geometry, node locations, and the element coordinate system for this element. The element is defined by shell section information and by four nodes (I, J, K, and L).

 $x_o =$ Element x-axis if ESYS is not provided.

x = Element x-axis if ESYS is provided.

Figure 6-12 ANSYS SHELL181 Element

6.4 Material Properties

The analysis of the spool is a linear material model analysis. In order to compensate for the submerged flooded weight due to buoyancy forces, the density factor for the steel has been reduced by 15% (see Appendix 3 for calculations). In accordance with ASME B31.8 there is no temperature de-rating for steel pipe for temperatures up to and including 121°C Ref. /15/ Table 841.1.8-1. The physical properties at elevated temperature are extracted from tables given in at ASME BPVC Ref. /16/. The following values are used, see Table 6-3.

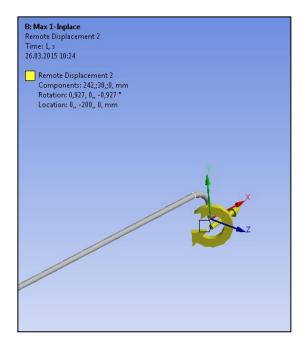

Material type	X65
Yield strength (20 °C)	450
Tensile strength (20 °C)	531
Density	6672 kg/ m ³
Young's modulus	$2.0 \times 10^5 \text{ N/mm}^2$
Linear expansion	16 x 10 ⁻⁶ /°C

Table 6-3 Analysis Material Properties

6.5 Spool Loads

The load cases for the spool are described in Table 6-4. Due to the amount of work involved in assessing and checking all load cases as described in chapter5.8, the analysis cases are limited to load cases 2, 3, and 4 in this chapter.

Figure 6-13 shows the imposed rotations and deflections which was produced by the DOE (Design Of Experiment) function within the ANSYS Design Explorer environment based upon the statistical distribution of the input parameters for all of the 9 configurations as described in chapter 5.6. ANSYS Design Explorer then creates a set of possible combinations of the imposed rotations and deflections based on type of experiment. Here the default value is used, which is called "Central composite design". The result of these set of combinations is shown in Table A2-1. This is then done for the 9 spool configurations. The combinations and the result are then used as basis for statistical calculations provided by the ANSYS "six sigma tool". The results of this is a probability distribution for stresses, loads and reaction forces which then can be evaluated and further assessed in the optimisation tool.

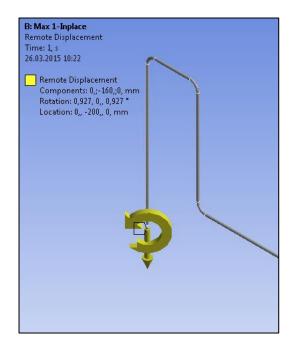


Figure 6-13 Spool End Constraints and Boundary Conditions

Load case	Load Description	Description
		The clamp connectors are closed. This will force the pipe hub
		ends into position and close the two hubs together and seal.
1	Connection	Hence many possible combinations of angular and linear
		tolerances from fabrication, metrology and height difference
		from settlements can occur. Drag loads from current is applied
		The subsea pressure test is simulated by applying the test
		pressure and the pipeline expansion. According to the subsea
	Cubaca Custom	test pressure defined in Sec. A847.2 in ASME B31.8, the installed
2	Subsea System	pipeline system shall be hydrostatically tested to at least 1.25
	Pressure Test	times the maximum allowable operating pressure. A value of
		1.25 x DP is applied. Drag loads from current is applied. BOP is
		inactive and no deflections from XT is applied
		The operational pressure, temperature and pipeline expansion is
3	Onemation	simulated. The settlements, XT-deflections and the linear
3	Operation	fabrication and metrology tolerances are applied as deflections
		at the jumper end nodes. Drag loads from current is applied
		Temperature and pressure is removed, and then the seal is
	Cool and a constant	replaced by un-clamping one of the hubs end. The jumper end is
4	Seal replacement	stroked 500mm in vertical direction. Drag loads from current is
		applied
-	Churching	Slug loads can occur from production wells. This is not
5	Slugging	considered applicable for water injection spools.
		VIV effect and fatigue assessment is checked in accordance with
6	VIV	Ref./25/

Table 6-4 Load o	description for	jumper spool
------------------	-----------------	--------------

The operational loadcase for the spool analysis is shown in Figure 6-14.

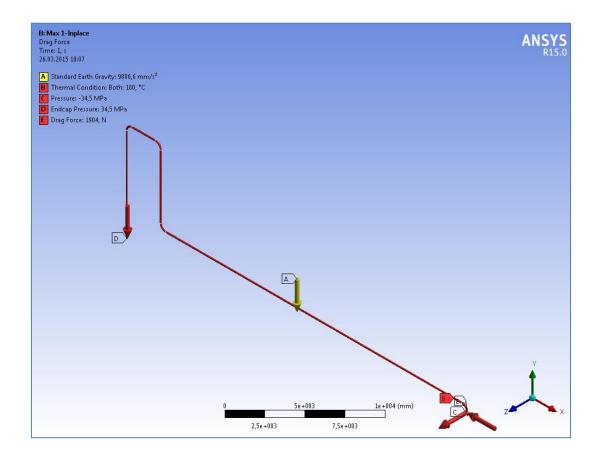


Figure 6-14 Spool Loads

7. ANALYSIS RESULTS

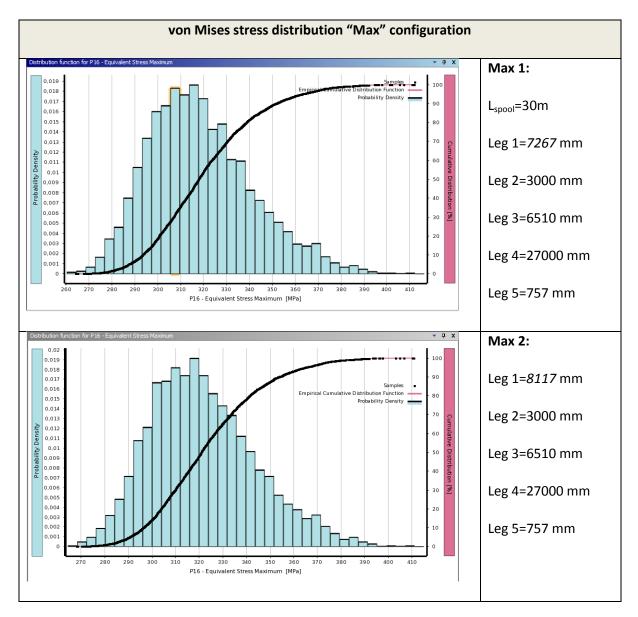
7.1 ANSYS Design Explorer Result Operational loads

The stress level from the ANSYS Six Sigma analysis is presented in the table below. As seen from the table column marked red the max/min search from the response surface algorithm calculates max stresses above the allowable stress limit for all configurations. However the probability of reaching theses stresses is very low. The highest probability of exceedance of the allowable stress limit as set forth in the code is the "Max 1" and "Max 2" configuration with a probability of exceedance of $4 \cdot 10^{-7}$, this equals 1 event out of 2.5 million (high Sigma level), events where the stress can rise at that level or higher with the imposed deformations at the given design pressure and temperature.

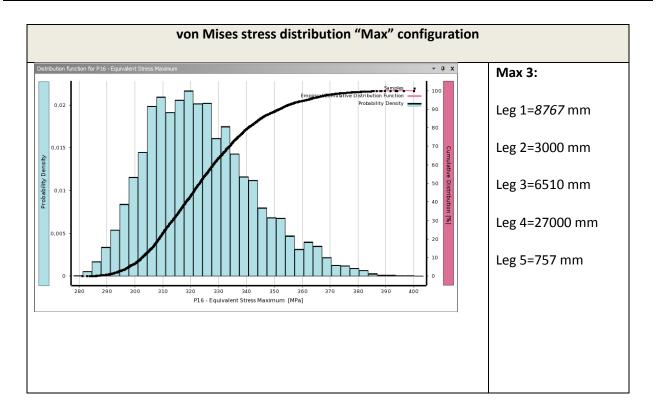
More interesting is the 10⁻⁴ probability which is marked green and yellow here the 2 configurations is slightly above code limit of 405MPa. The mean stress for all configurations is well below the allowable limit and the standard deviation is also in a narrow range within the acceptable code limit of 405 MPa for the Pipe.

Spoo	bl	Mean	Std.	Calculated	Probability	Sigma	10 ⁻⁴	Sigma
Туре	9	stress	Deviation	Max		level	probability	level
		[MPa]	[MPa]	Stress			Stress	
				[MPa]			[MPa]	
	1	321	23	451	4·10 ⁻⁷	4.9	415	3.7
Max	2	324	23	453	3·10 ⁻⁷	5.2	414	3.7
	3	325	19	456	2·10 ⁻⁹	5.9	402	3.7
	1	265	24	417	6·10 ⁻⁸	5.3	367	3.7
Nom	2	267	23	410	4·10 ⁻⁸	5.4	362	3.7
	3	263	22	461	8·10 ⁻¹⁴	7.3	364	3.7
	1	227	25	427	7·10 ⁻¹⁰	6.1	334	3.7
Min	2	227	25	440	1.10^{-10}	6.4	334	3.7
	3	226	24	433	1·10 ⁻¹⁰	6.3	335	3.7

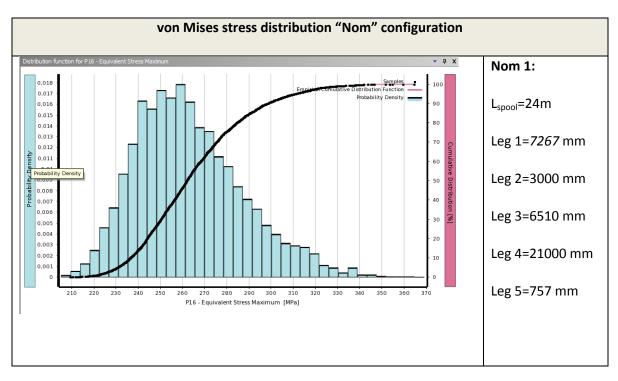
Table 7-1 Spool configurations versus von Mises stress and probability level

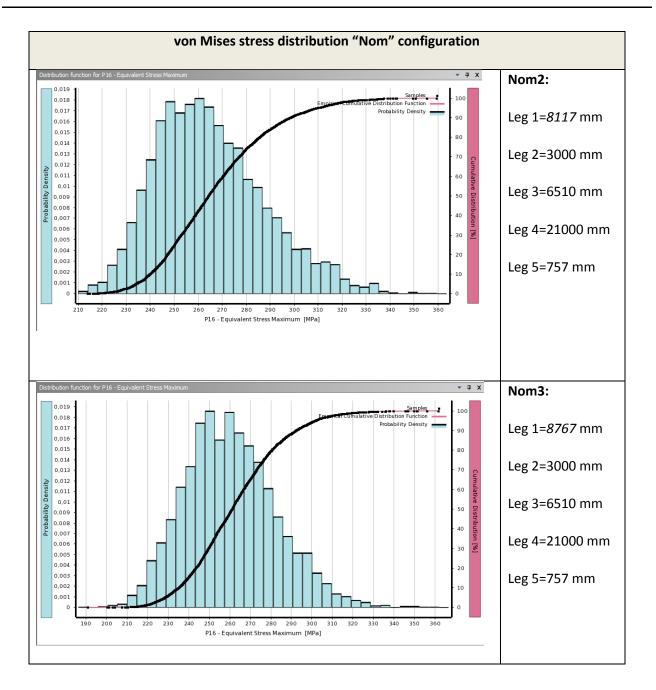

The 10^{-4} probability level is equal to a load or event with a return period of 1/10000 years. The probability that the given load will not be exceeded during n- years is $(1-1/R_p)^n$, Where R_p is the return period. Therefore the probability that the design load is to be exceeded at least once during n-years is:

$$P_n = 1 - (1 - 1/R_p)^n \tag{7.1}$$


So given a design life of 25 years this equals:

$$P_n = 1 - \left(1 - \frac{1}{10000}\right)^{25} = 0.0025 = 0.25\%$$
(7.2)


The frequency distribution and the probability density function for the resulting stress levels for all spool configurations is shown in Table 7-2 to Table 7-4. The results are calculated by the "six sigma" tool in ANSYS design explorer. The software calculates cumulative distributions and probability density functions. One can observe that the stress distributions are almost identical and is positive skewed to the right. This means that the mass of the distribution is concentrated on the left indicating that the probability of high stress levels is low. Table 7-2 shows that the probability of reaching stresses greater than 390 MPa is less than 0.1% for the Max1 configuration. This indicates that the safety level for the spool design is higher than required by governing codes.



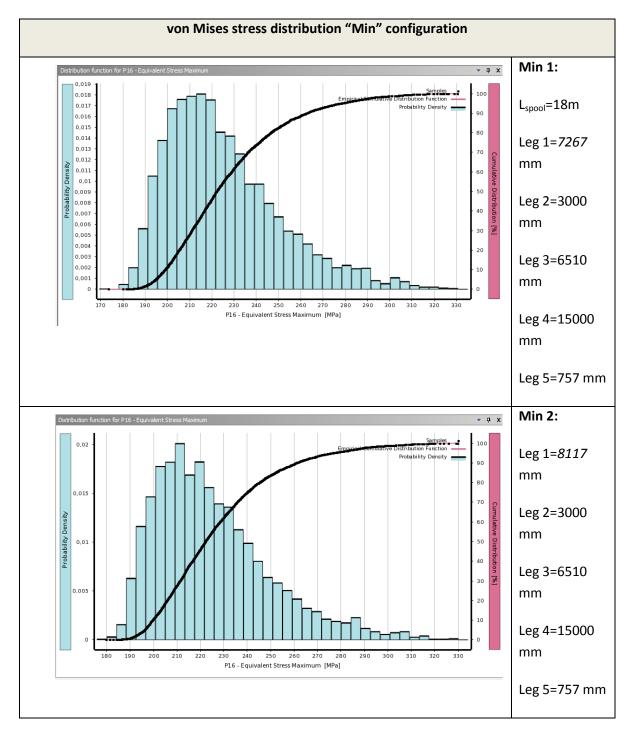
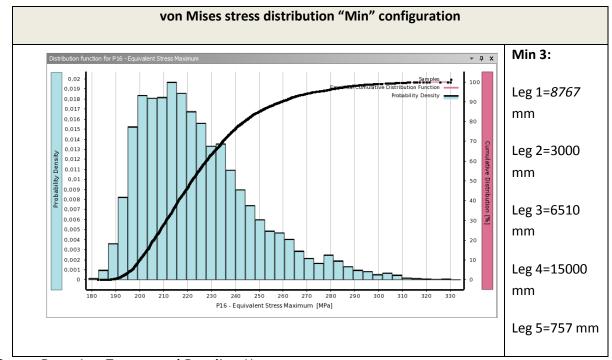



Table 7-4 von Mises stress distribution "Min" configuration

7.2 Reaction Forces and Bending Moments

The maximum and minimum values for the reaction forces can be extracted by use of the max/min tool. The values are shown in Figure 7-1, Figure 7-2 and Figure 7-3, the configurations are numbered from 1 to 9 representing 9 configurations (Max 1 to 3, Nom 1 to 3 and Min 1 to 3). Values for bending moments and reaction forces can also be extracted by use of the "Six Sigma" probability table. Here the values can be extracted from the Percentile-Quantile table for a specific parameter see Table 7-5 and Table 7-6 4-21 for Max1 and Min3 configuration. The reaction forces are of interest for the installation process and to the loads on the clamp connectors.

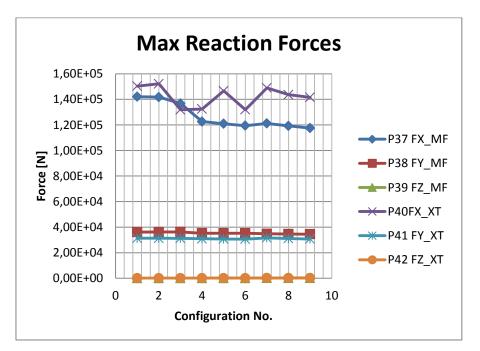


Figure 7-1 Max Reaction Forces (Abs values)

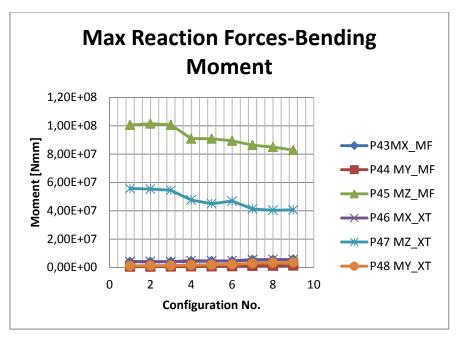


Figure 7-2 Max Reaction Moments (Abs. values)

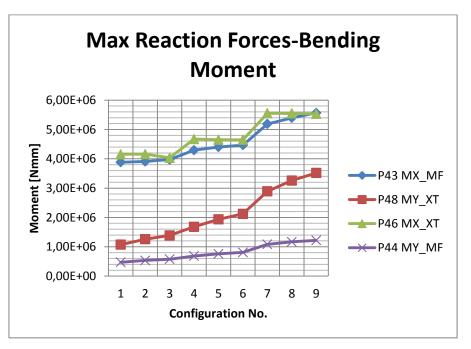


Figure 7-3 Max Reaction Moments MY and MX (Abs. values)

As seen from Figure 7-2 and Figure 7-3, the governing bending moments is the MZ bending moments which naturally increases with the length of the spool, (configuration Max). The other bending moments increases when the spool becomes shorter; this is due to and increased overall structural stiffness for the spool. The mean reaction force and moments are shown in Figure 7-4 and Figure 7-5.

Table 7-5 Reaction Forces "Max 1" configuration 10⁻⁴ probability

Manifold Side						
FY[kN]	FX [kN]	FZ [kN]	MX [kNm]	MY [kNm]	MZ [kNm]	

35,9	-93	0,04	3,3	-0,4	87,8			
X-tree Side								
FY [kN]	FX [kN]	FZ [kN]	MX [kNm]	MY [kNm]	MZ [kNm]			
31,0	143	-0,04	-3,8	0,9	-51,0			

Table 7-6 Reaction Forces	"Min	3" configuration	10 ⁻⁴	probability
---------------------------	------	------------------	------------------	-------------

Manifold Side										
FY[kN]	FX [kN]	FZ [kN]	MX [kNm]	MY [kNm]	MZ [kNm]					
33,9	91,8	0,023	5,0	1,1	68,6					
X-tree Side										
FY [kN]	FX [kN]	FZ [kN]	MX [kNm]	MY [kNm]	MZ [kNm]					
30,0	-94,0	-0,023	4,5	3,0	11,0					

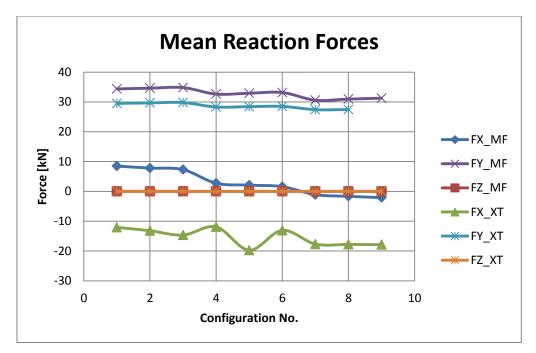
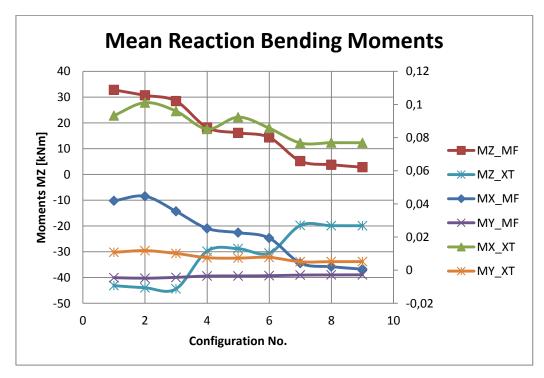



Figure 7-4 Mean reaction forces

7.3 Stress Response and Sensitivity

The sensitivity to stress increase imposed by the deformations is shown by the response plots in Figure 7-7 to Figure 7-10 for the "Max 1" configuration. One can observe how the response of stress is of a non-linear character towards these imposed deflections and rotations. Hence a small increase of these values gives a large stress increase.

It is important to remember that a response surface is a curve fit based on a set of data. If not enough design points were solved or if the response surface algorithm is not appropriate then the response surface will not be accurate. One can refine the response surface type to create a more accurate response surface based upon more design points or type of curve fit algorithm. The technique used here is called the Kriging algorithm see Figure 7-6. This is a multidimensional interpolation combining a polynomial model similar to the one of the standard response surface, which provides a "global" model of the design space, plus local deviations determined so that the Kriging model interpolates the DOE points. Output=f(inputs) + Z(inputs) ,where f is a second order polynomial (which dictates the "global" behavior of the model) and Z a perturbation term (which dictates the "local" behavior of the model)

Since Kriging fits the response surface through all design points the "Goodness of fit metrics" will always be good

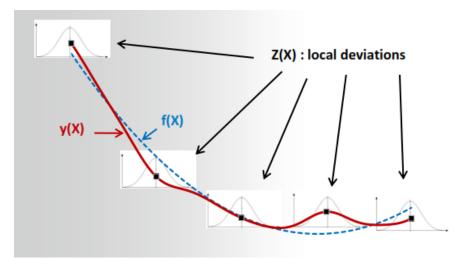


Figure 7-6 Kriging Algorithm curve fit (Source ANSYS lectures)

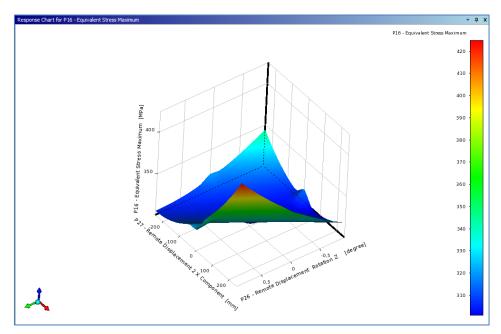


Figure 7-7 Stress Response "Max1" Configuration Dx_{Tree} versus Rz_{Manifold}

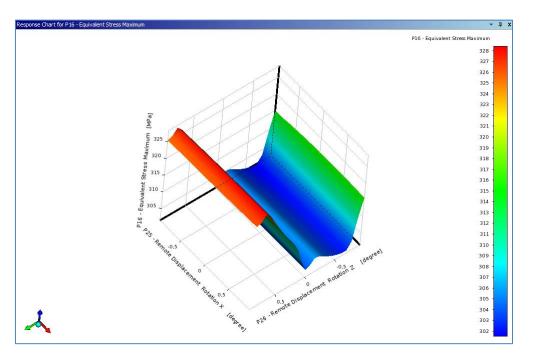


Figure 7-8 Stress response "Max 1" configuration Rotations Rx and Rz Manifold end

Figure 7-7 and Figure 7-8 shows the equivalent stress response for the imposed rotations and deformations at the spool ends. Figure 7-7 shows a non-linear response between positive displacements and rotations but less sensitive to negative displacements and positive rotations Figure 7-8 has a parabolic non-linear shape for two axis rotation.

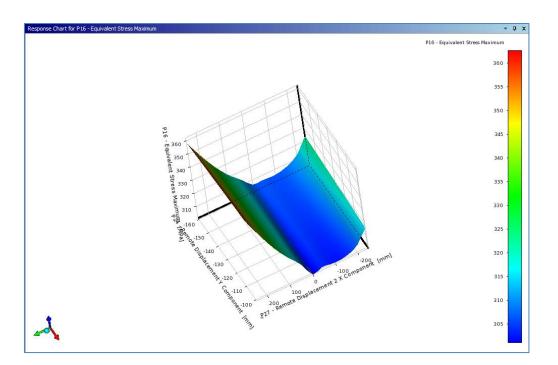


Figure 7-9 Stress response "Max 1" configuration Displacements Dx_{Tree} and Dy_{Manifold}

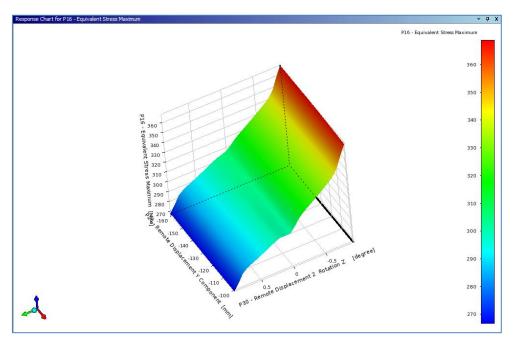


Figure 7-10 Stress response "Max 1" configuration Displacements Rz_{Tree} and $Dy_{Manifold}$

Figure 7-9 shows a non-linear response between the vertical and horizontal displacements at each spool end. Figure 7-10 shows an almost linear response between the rotation among Z- axis at XT end and the vertical displacement at the manifold end. The Software is provided with a tool for measuring the goodness of the curve fit as seen in Figure 7-11, most of the parameters lies within a straight line which is a measure of good fit.

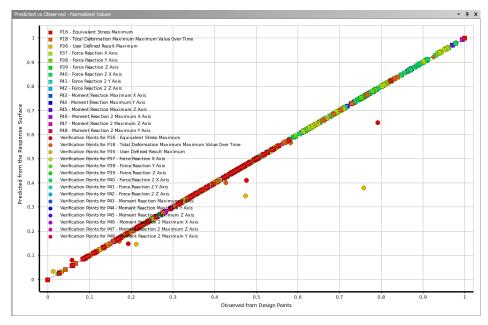


Figure 7-11 Goodness of fit for response algorithm

The sensitivity between the input variation parameter is shown Figure 7-12. It can be seen that the imposed rotations contributes to high stress level.

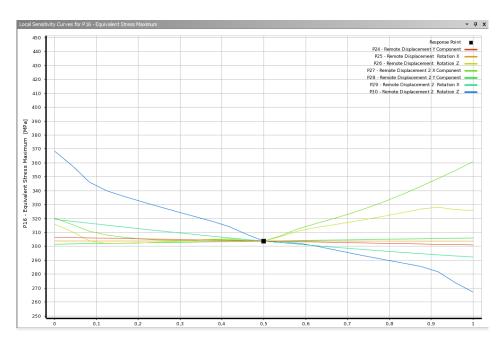


Figure 7-12 von Mises Stress Sensitivity "Max 1" Configuration

The results from the sensitivity analysis show that the spool design is sensitive to variation in displacements and rotations. This sensitivity must be taken into consideration when assessing the total safety levels for spool design. Especially angular deviation will require more attention during fabrication, methodology and quality control for the spools. If a Tie-in connection with large angular deviations outside the specification range for the tolerances is made up, then the strains in the spools is likely to reach levels beyond the yield point of the material and a redistribution of the stresses in the spool is likely to occur which in most cases is considered to be OK. But this may have an effect on the limits for number of start up and shut down cycles (hot and cold) for the spool as accumulation of plastic strains can occur. This must also be taken into considerations.

7.4 Optimal Spool Configuration

Table 7-7 shows a set of worst case rotations and displacements equivalent for 10^{-4} probability stress level that has been checked with the response surface optimization tool. A value for stresses between 380MPa and the design limit of 405 MPa, as given by the code was set as the target range. (A tolerance range for the stress target was used in order to allow for computation for more possible geometrical candidates). The software was also given a constraint to calculate candidates for geometrical shapes that would minimizing the bending moments for the 30m long spool. The analysis shows that in order to be within the stress limit for the 30meter long spool the geometry has to change to some of the candidates as suggested by the software algorithm.

Туре	Spool length [m]	Dy _{MF} [mm]	Rx _{MF} [Deg]	RZ _{MF} [Deg]	Dx _{xt} [mm]	Dy _{xт} [mm]	Rx _{xt} [Deg]	Rz _{xt} [Deg]
Max 1	30	-160	0.9	0.9	248	-30	0.9	0.9

Table 7-7 Imposed spool end deformations (10⁻⁴ - Extremes)

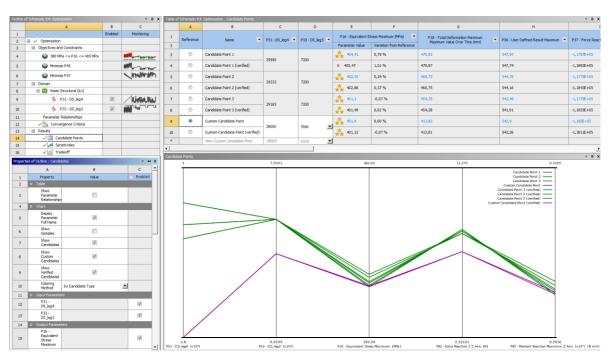


Figure 7-13 ANSYS Optimisation Results and candidates for "max 1" configuration

Figure 7-13 Show's the possible candidates as calculated and verified by the optimisation tool. The output is supplied with a samples chart, where each sample is displayed as a group of line curves where each point is the value of one input or output parameter. This is useful to find custom candidates. The optimisation method used is called MOGA or (Multi Objective Genetic Algorithm), which is an iterative multi objective algorithm. Benefits of method are:

- Helps identify global and local minima
- Provides several candidates in different regions
- Accurate solution
- Can handle multiple goals

The drawback of this method is that it might concentrate on a single region in the design space. Based upon the suggested candidates it seems that the custom candidate point is a good choice with a stress level of 401 MPa. The optimal dimensions for "Max 1" are given in Table 7-8

Туре	Spool	Leg 1	Leg 2	Leg 3	Leg 4	Leg 5	Height
	length	[mm]	[mm]	[mm]	[mm]	[mm]	Difference
	[m]						[mm]
Max 1	30	7227	2000	7000	28000	757	-530

Table 7-8 Optimal Geometry for 30m long spool

7.5 Analysis Results Operational

Based upon the results from ANSYS Design Explorer analysis the "Max 1" configuration is checked as this configuration has the highest stress level. The spool is checked with max corroded wall thickness (3mm) and the imposed displacement for 10^{-4} probability stress level. Maximum drag force from current is applied. The mesh used here is denser as shown in Figure 7-14. Note that ANSYS displays the shell as a thick solid wall. The user has the option to turn of this graphical feature and only show shell elements as thin elements. The end lid is solid elements.

The ANSYS stress plot shown in Figure 7-15 reports a high stress value of 501 MPa. By a close Inspection of the results shown in Figure 7-17 the high stress is caused by a peak value located at the contact area between the flat end lid and pipe wall of the spool at the Manifold end (MF). The end lid does not exist and is used as FEA modelling technique in order to transfer endcap forces to the boundary condition of the spool. In reality this pipe end is welded to a "Hub". Hence the peak stress between the end lid and pipe wall is ignored. The deformation plot in Figure 7-16 shows that the spool deflects or sags at the middle. This is mainly caused by the spool self-weight and is contributing to high stresses and moments in the spool.

The membrane and bending stresses in the shell in the pipe is extracted at a distance away from the structural discontinuity. Guidelines on how to extract stresses away from discontinuity and how to classify stresses, so called stress linearization in a FEA model can be found in the ASME BPVC Ref /16/ Chapters 5. Design by Analysis. A case study where this technique is discussed and analysed can be found in the INAC conference paper /18/.

This technique is very useful for solid elements and through wall stresses.

According to this code a stress is classified as local if the local stress of 1.1S does not extend in the meridian direction with a distance greater than \sqrt{Rt} , Ref /16/ Section 5.2.2.2. Here S is the allowable stress for the material at design temperature and R is the mean radius, t is the wall thickness.

Distance away from structural discontinuity can be assessed by use of equation (7.3) /18/.

$$d \le 2 \cdot \sqrt{R \cdot t} \tag{7.3}$$

This becomes:

$$d \le 2 \cdot \sqrt{\left(0.5 \cdot (168.3 - 15.3)\right) \cdot 15.3} = 68mm \tag{7.4}$$

Region of local stress then becomes $\sqrt{Rt} = 34mm$

The average values from the shell element Top/Bottom, across the section at a distance *d* from discontinuity is used for comparison towards the code stress limits see Figure 7-20.

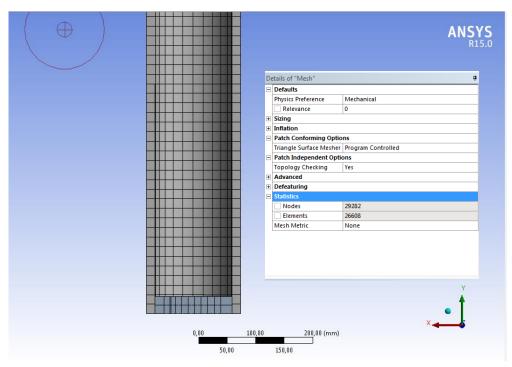


Figure 7-14 Details of Mesh FE model

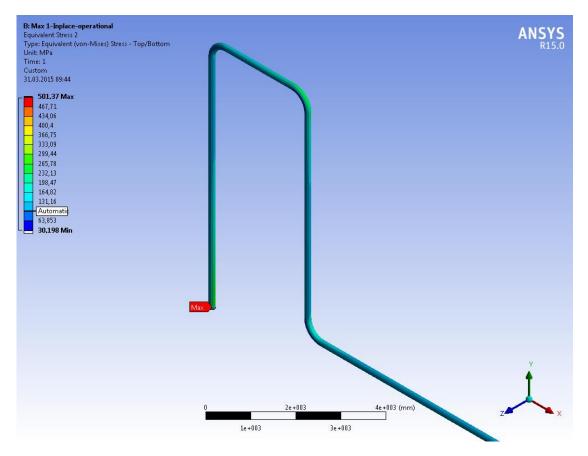


Figure 7-15 Max von Mises stress-operational

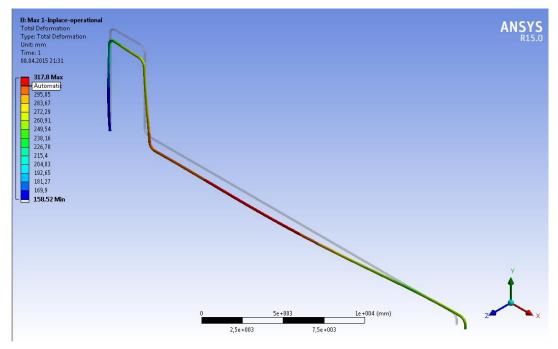


Figure 7-16 Total deformation spool

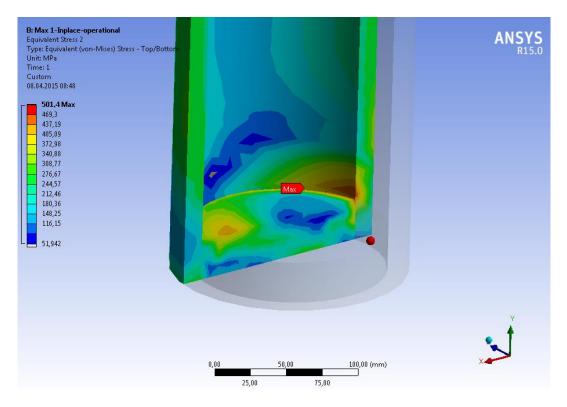


Figure 7-17 location of max peak stress operational at MF end

The stress utilisations (UF) towards the stress limits as described in chapter 5.9 is tabulated in Table 7-9. The ASME B31.8 code check is using formulas with bending moments, stress intensification factors (SIF) and then calculates the stresses based upon area and section modulus of the pipe. For comparison towards this limit the stresses tabulated in Table 7-9 is interpolated at cross sections by use of ANSYS surface tool.

Location	Combined stress S _c (von Mises)	Stress limit F3	UF	Longitudinal stress S _L	Stress limit F2	UF	Ref.
	[MPa]	[MPa]		[MPa]	[MPa]		
Manifold end	313	405	0.77	364	360	1.01	Figure 7-19 Figure 7-20
Bend between leg2 /leg3	315	405	0.78	300	360	0.83	Figure 7-22 Figure 7-23

Manifold Side							
FY[kN]	FX [kN]	FZ [kN]	MX [kNm]	MY [kNm]	MZ [kNm]		
18.3	33.7	-0.11	-3.8	1.6	64		
X-tree Side							
1.2	-38	0.8	-0,18	-4.6	-34		

The code hoop stress criteria, is given by an analytical formula (5.1) and (5.2), and is calculated in Appendix 3. Stress plots of longitudinal and von Mises stress are shown in Figure 7-18 to Figure 7-23.

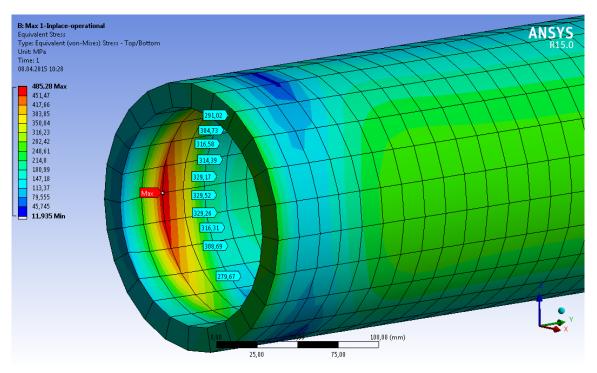


Figure 7-18 Max von Mises stress operational at MF end

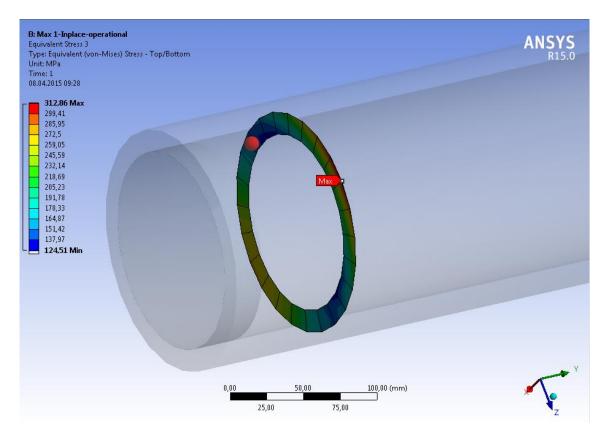


Figure 7-19 Cross sectional von Mises stress operational at MF end

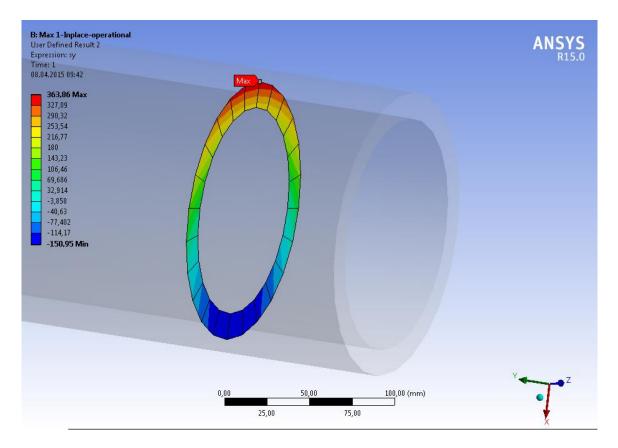


Figure 7-20 Cross sectional max longitudinal stress in pipe operational at MF-end

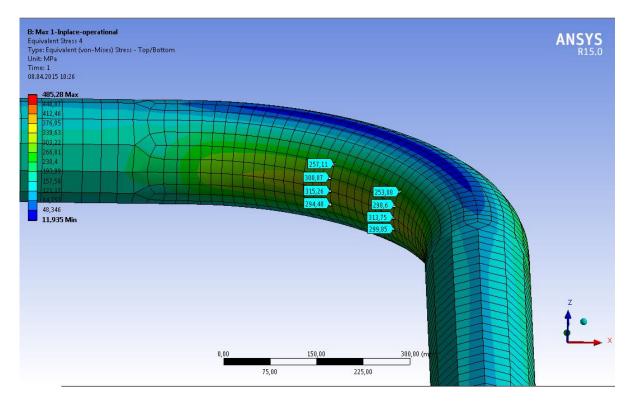


Figure 7-21 Von Mises stress operational at intrados of bend

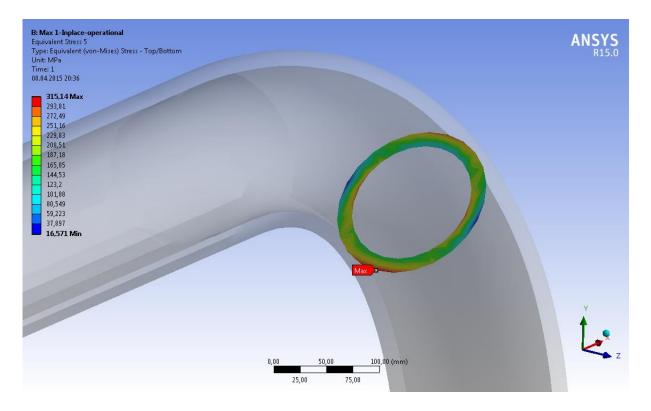


Figure 7-22 Cross sectional von Mises stress at bend

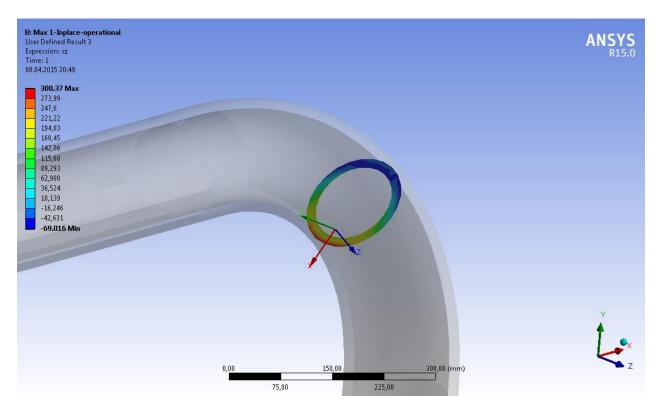


Figure 7-23 Cross sectional longitudinal stress at bend

7.6 Analysis Result FAT and Offshore Hydro testing

The result from the hydro testing of the spool on land and subsea is shown in Table 7-11. As seen from the stress plots the location of max stress is located at the XT end of the spool for the test load case.

Location	Combined stress S _c (von Mises) [MPa]	Stress limit [MPa]	UF	Longitudinal stress S _L [MPa]	Stress limit [MPa]	UF	Ref.
XT-end	306	432	0.70	302	432	0.70	Figure 7-26
Subsea Test							Figure 7-27
XT-end	378	432	0.86	373	432	0.86	Figure 7-30
FAT							Figure 7-31

Table 7-11 Max Spool Stresses -FAT/Subsea test

Table 7-12 Reaction forces Subsea Test

Manifold Side							
FY[kN]	FX [kN]	FZ [kN]	MX [kNm]	MY [kNm]	MZ [kNm]		
20.2	-6.0	-1.1	-3.9	1.5	-47.9		
	X-tree Side						
FY [kN]	FX [kN]	FZ [kN]	MX [kNm]	MY [kNm]	MZ [kNm]		
14.8	6.0	-0.8	-0.2	-4.7	-51.2		

Table 7-13 Reaction forces FAT Test

Manifold Side							
FY[kN]	FX [kN]	FZ [kN]	MX [kNm]	MY [kNm]	MZ [kNm]		
27.7	-6.2	0	0.01	0.0	59.5		
X-tree Side							
FY [kN]	FX [kN]	FZ [kN]	MX [kNm]	MY [kNm]	MZ [kNm]		
19.7	6.2	0	0.01	0.0	-63.1		

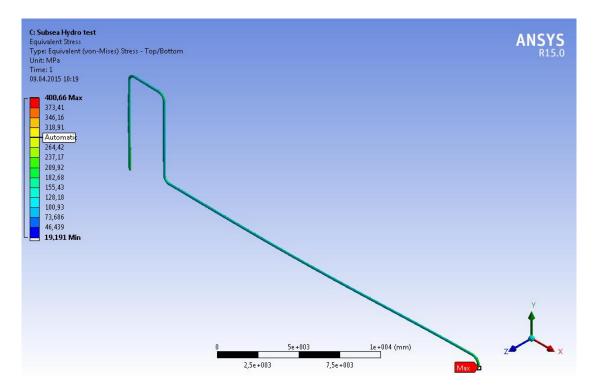


Figure 7-24 Max von Mises stress - Subsea Hydro Test

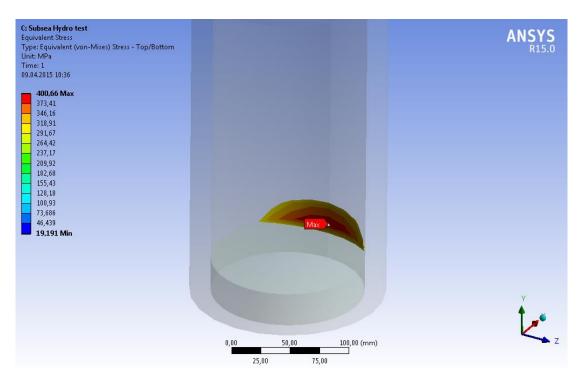


Figure 7-25 Max stress location- Subsea Hydro test

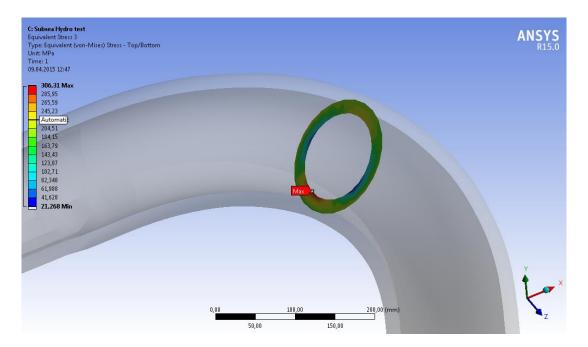


Figure 7-26 Cross sectional von Mises stress-Subsea Hydro Test at bend XT- end

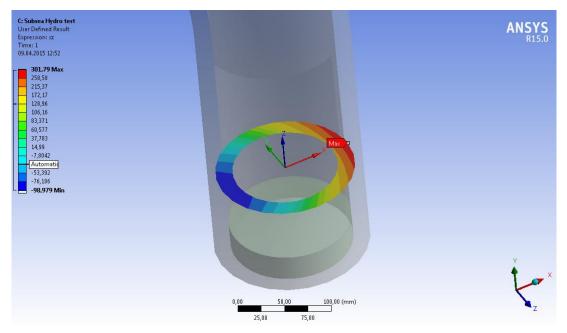


Figure 7-27 Cross sectional longitudinal stress-Subsea Hydro Test at XT- end

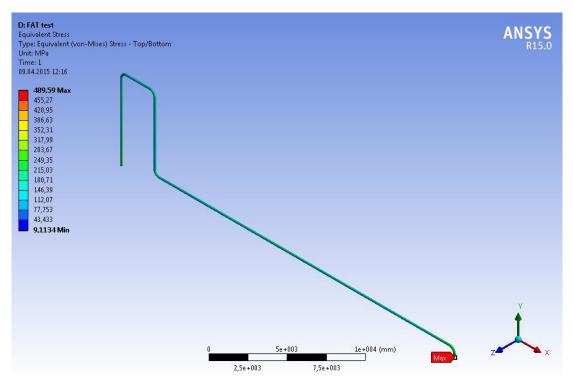


Figure 7-28 Max von Mises stress - FAT

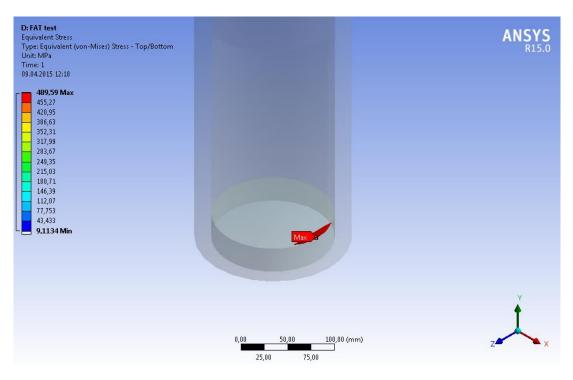


Figure 7-29 Max stress location- FAT

D: FAT test User Defined Result 2 Expression: sz Time: 1 09.04.2015 12:21		ANSYS R15.0
373,21 Max 317,86 262,51 207,16 151,81 96,46 71,929 47,398 22,867 -1,6645 -26,196 -50,727 -75,258 -93,789 -124,32 Min		
	0,00 <u>50,00 100</u> ,00 (mm) 25,00 75,00	Z X

Figure 7-30 Cross sectional longitudinal stress -FAT at XT- end

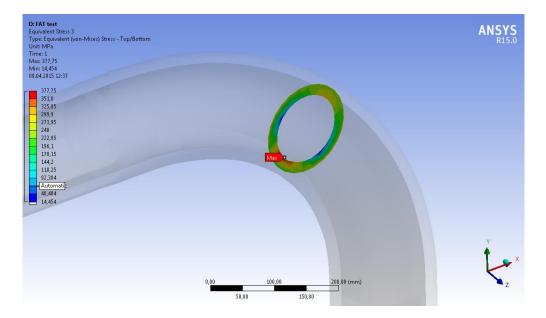


Figure 7-31 Cross sectional von Mises stress -FAT at bend XT- end

7.7 Analysis Result Seal Replacement

The stress results from the seal replacement load case are shown in Table 7-14. The load step applied is:

- 1. Stroke up of Manifold end and closing of connector
- 2. Stroke up of Christmas-tree end and closing of connector.

Imposed deformations and tolerances are applied when simulating the seal replacement cycle. Stress as a function of time during seal replacement is shown the figure below.

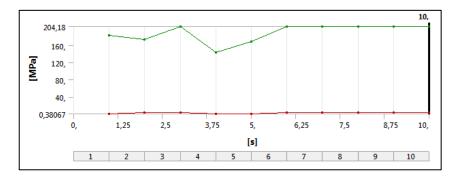


Figure 7-32 Stress in spool- seal replacement

Location	Combined stress S _c (von Mises)	Stress limit	UF	Longitudinal stress S _L	Stress limit	UF	Ref.
	[MPa]	[MPa]		[MPa]	[MPa]		
MF-end	204	432	0.47	-203	432	0.47	Figure 7-36
							Figure 7-37

Table 7-14 Max Spool Stresses -Seal Replacement

ANSYS Stress and deformation plots for the load sequence are shown in Figure 7-33 to Figure 7-37 on the next pages. All stresses and deformations are moderate and hence the spool has enough flexibility for the service load case.

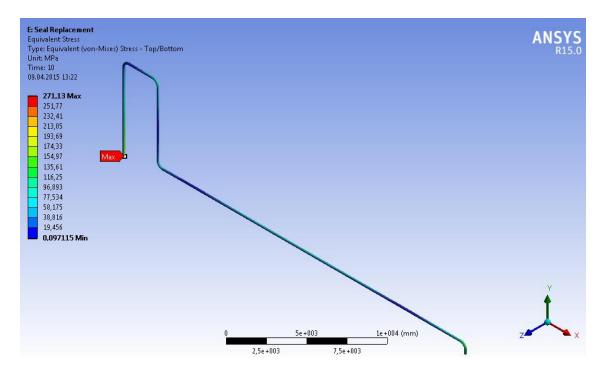


Figure 7-33 Max stress at Seal Replacement sequence

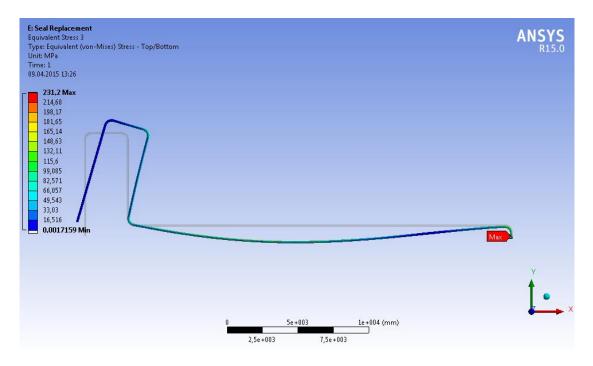


Figure 7-34 Max stress Seal Replacement stroking of MF end

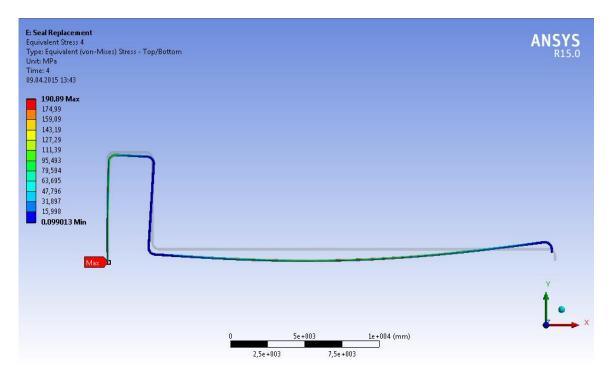


Figure 7-35 Max stress Seal Replacement stroking of XT end

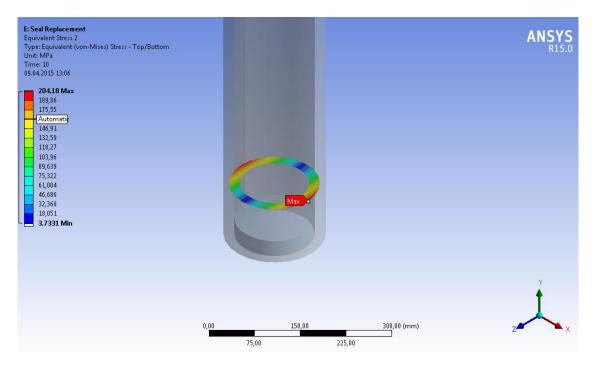


Figure 7-36 Max von Mises stress-Seal Replacement MF end

E: Seal Replacement User Defined Result Expression: sz Tirne: 10 09.04.2015 13:36		ANSYS R15.0
199,01 Max 170,28 141,55 112,82 84,084 55,352 26,62 -2,1118 -30,844 -59,576 -88,308 -117,04 -145,77 -174,5 - 203,24 Min	Mar -	
	0,00 50,00 100,00 (mm) 25,00 75,00	z ×

Figure 7-37 Max longitudinal stress-Seal Replacement MF end

7.8 Summary

The usage of the ANSYS design explorer tool shows that the spool is highly sensitive to variation in imposed end rotations and displacements. However the statistical analysis shows the probability of reaching these high stress levels above the allowable code limit is very low, $(1/10^4 \text{ events})$. The analysis also shows an alternative geometry for the max 1 configuration which will give lesser stress and forces at the connector ends Ref. Table 7-8.

The analysis of the spool also shows a highly utilised spool for the Max 1 configuration with a max **UF=1.01** toward the allowable stress limit of 405MPa, located at the manifold end for the operational load cases. The spool has been analysed with nominal wall thickness and shell elements. The other load cases such as hydro testing and seal replacement shows moderate stress levels with a max UF= 0.86 for the XT tree end.

8. VERIFICATION AND COMPARISON OF RESULTS

In order to check and compare the shell element results from the screening and optimisation process from ANSYS Design Explorer, three different models have been applied for the "Max1" configuration.

- Pipe Element model using ANSYS PIPE289 and ELBOW290 elements
- Solid Element model
- Autopipe Piping Software

8.1 ANSYS Pipe Beam Element Model

The classical way of checking spools was historically made with ANSYS beam Element type PIPE16 and PIPE18. These elements are no longer advised to use as they did not capture the thick wall effects and did not account for cross sectional distortion or non-linear material properties. PIPE18 had the option of using SIF factors and flexibility factors as given in Appendix E of Ref /15/. The elements are today replaced with PIPE288 (Two nodes), PIPE289 (three nodes) and ELBOW290. The following element description is from the ANSYS documentation.

- PIPE289 is a quadratic three-node pipe element in 3-D. The element has six degrees of freedom at each node (the translations in the x, y, and z directions and rotations about the x, y, and z directions). The element is well-suited for linear, large rotation, and/or large strain nonlinear applications. PIPE289 is based on Timoshenko beam theory, a first-order shear-deformation theory. Transverse-shear strain is constant through the cross-section; that is, cross-sections remain plane and undistorted after deformation. The element can be used for slender or stout pipes. Due to the limitations of first-order shear-deformation theory, only moderately "thick" pipes can be analyzed.
- ELBOW290 element is suitable for analyzing pipe structures with initially circular cross-sections and thin to moderately thick pipe walls. The element accounts for cross-section distortion, which can be commonly observed in curved pipe structures under loading. ELBOW290 is a quadratic (three-node) pipe element in 3-D. The element has six degrees of freedom at each node (the translations in the x, y, and z directions and rotations about the x, y, and z directions). The element is well-suited for linear, large rotation, and/or large strain nonlinear applications. Change in pipe thickness is accounted for in geometrically nonlinear analyses. The element accounts for follower (load stiffness) effects of distributed pressures. ELBOW290 can be used in layered applications for modeling laminated composite pipes. The accuracy in modeling composite pipes is governed by the first-order shear-deformation theory (generally referred to as Mindlin-Reissner shell theory).

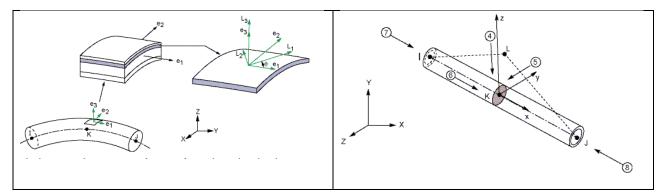


Figure 8-1 ANSYS ELBOW290 and PIPE289 Elements

PIPE 288 and PIPE 289 cannot model cross sectional distortion or collapse in the non-linear analysis. Element ELBOW290 is well-suited for linear and nonlinear applications with large deflection and/or large strain. Various plasticity models, including J2-plasticy, more advanced plasticity models and thermal-plastic-creep models are allowed. Furthermore, this element allows to be used for modelling multi layered composite pipes Ref /21/.

SIF effects at joints and weld transition is not included in these elements and this has to be accounted and evaluated for in the analysis where required. The flexibility related to bending stiffness effects can be accounted for by use of the SFLEX command for the PIPE288 and PIPE289 Elements.

The Pipe element model is constructed in ANSYS design modeller by use of line bodies and then meshed with beam elements Ref Figure 8-3. The beam elements is given pipe properties as for the shell element model with OD=168.3mm and corroded wall thickness Wt=15.3mm.

ANSYS APDL Commands is used for mesh refinement such as SECDATA, here number of cells along the circumference is determined default is 8 cells. Here we have used 16 cells for better accuracy and a meshing space of 100mm between each element Ref Figure 8-4. The pipe model is then transferred into ANSYS Classical GUI where stress components can be plotted and listed.

The pipe element function in ANSYS workbench and the default elements has the capability to model through wall gradient temperatures. Here the assumption is a uniform design temperature as for the shell models. In reality the fluid would take some time to heat up the pipe and hence one could argue that this effect should be accounted for, especially for thick pipes with large temperature gradients through the wall. Here the operational temperature is max 34° C for Water injection and will most likely settle to the ambient temperature subsea.

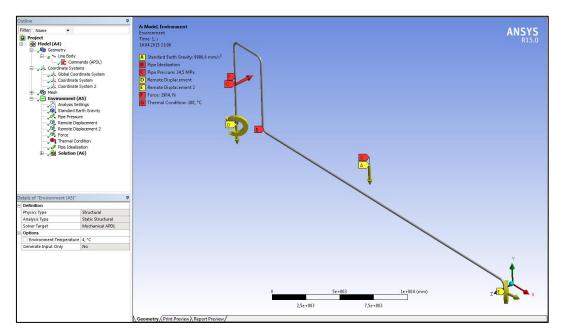


Figure 8-2 ANSYS WorkBench Pipe Model-Loads

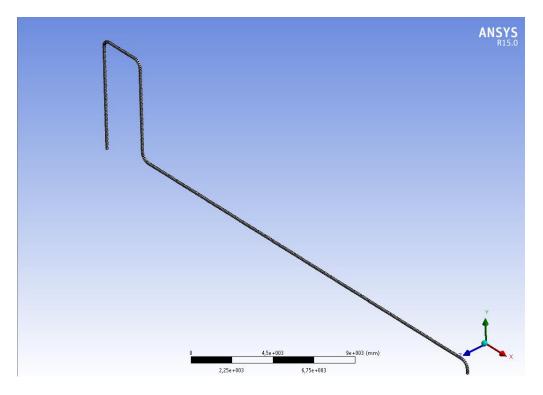
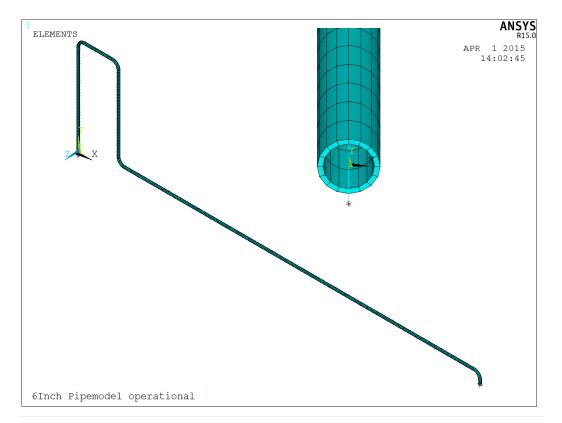


Figure 8-3 ANSYS Workbench Mesh


Table 8-1 list the results from the pipe element model. The analysis shows an over utilisation towards the code limit of 107 %. The pipe element model reports the max von Mises stresses at the bend in the XT-end. Max utilisation is towards the longitudinal stress criteria located at the bend between leg2 and 3.

Location	Combined stress S _c (von Mises) [MPa]	Stress limit F3 [MPa]	UF	Longitudinal stress S _L [MPa]	Stress limit F2 [MPa]	UF	Ref.
XT-end	400	405	0.99	302	360	0.84	Figure 8-8
Bend between	352	405	0.87	385	360	1.07	Figure 8-9 Figure 8-10 Figure 8-11
leg2 /leg3							Ŭ

Table 8-1 Max spool stress Pipe-Model

Table 8-2 Reaction forces beam model

Manifold Side							
FY[kN]	FX [kN]	FZ [kN]	MX [kNm]	MY [kNm]	MZ [kNm]		
13,9	-11,1	1,1	4,1	-1,7	66,9		
X-tree Side							
FY [kN]	FX [kN]	FZ [kN]	MX [kNm]	MY [kNm]	MZ [kNm]		
7,2	11,1	0,8	0,28	4,5	-49		

Figure 8-4 ANSYS Pipe Element model

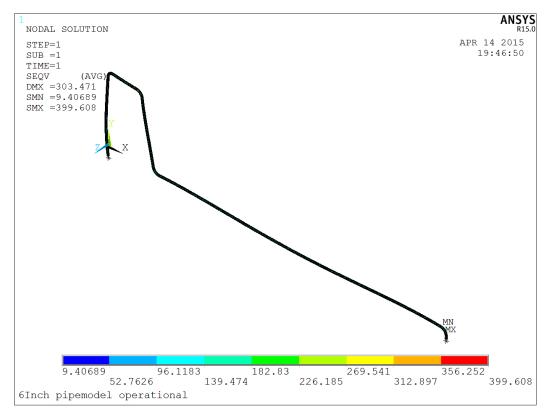
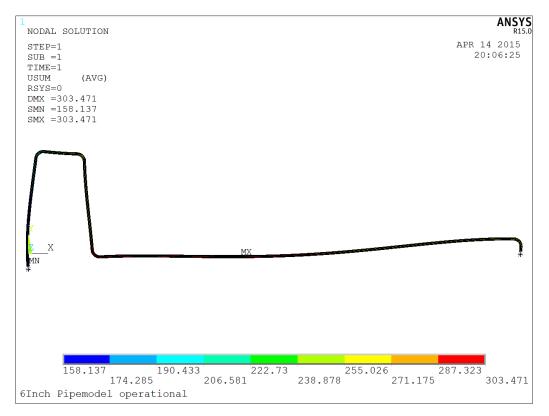



Figure 8-5 Max von Mises stress Pipe Element model

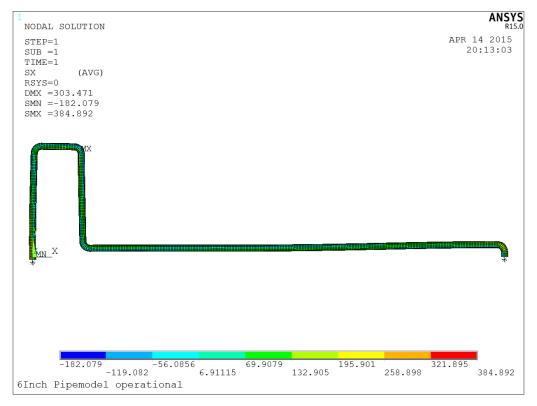


Figure 8-7 Max longitudinal stress Pipe Element model

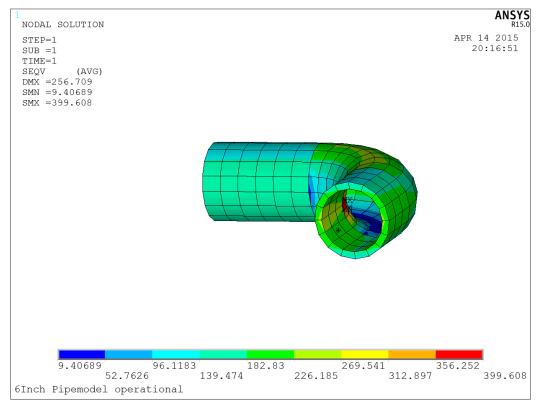


Figure 8-8 Max von Mises Stress Pipe Element model-XT-End

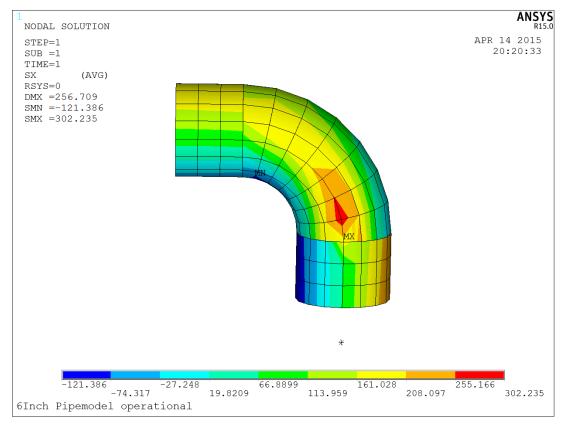


Figure 8-9 Max longitudinal stress Pipe Element model-XT End

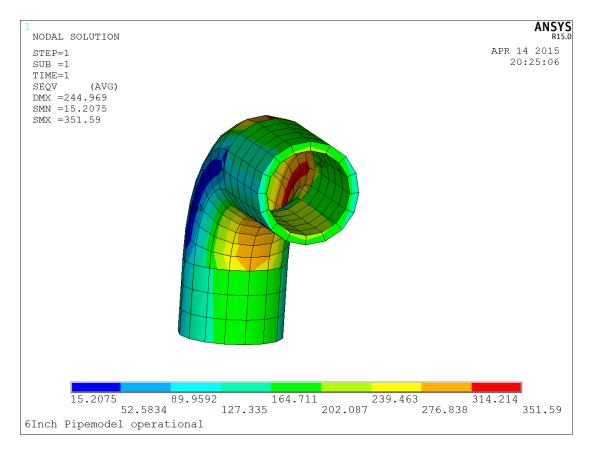


Figure 8-10 Max von Mises stress Pipe Element model at bend

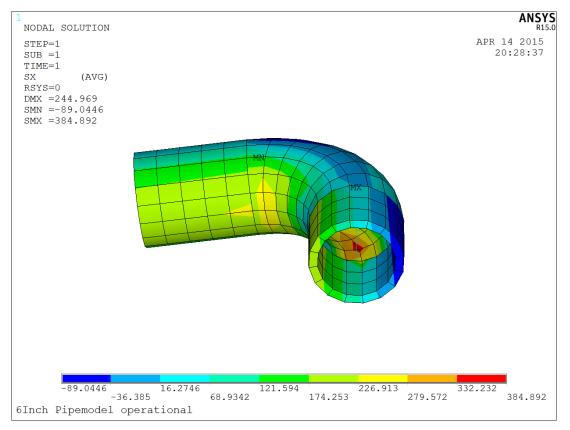


Figure 8-11 Max Longitudinal Stress Pipe Model at Bend

8.2 ANSYS Solid Element Model

A solid model has been developed for the "Max1" Configuration. The model input and boundary condition is equal to the shell model Ref 7.5. The advanced mesh generator in ANSYS workbench has a function called Sweep. For meshing through wall thickness with several elements this method is very feasible for pipes. There is 3 hex meshing or sweeping approaches in workbench. (For an in depth study to this technique, refer to the ANSYS help documentation).

Standard Sweep method

-When creating a hex mesh, a source face is meshed and then extruded to the target face. This method of meshing complements the free mesher. If a body's topology is recognized as sweepable, the body can be meshed very efficiently with hexahedral and wedge elements using this technique. The number of nodes and elements for a swept body is usually much smaller than ones meshed with the free mesher. In addition, the time to create these elements is much smaller.

• Thin Sweep method

-Good at handling multiple sources and targets for thin parts

Multizone

-Provides free decomposition approach: Attempts to slice up the model without having to do this manually to the geometry.

-Supports multi-source and multi target approach

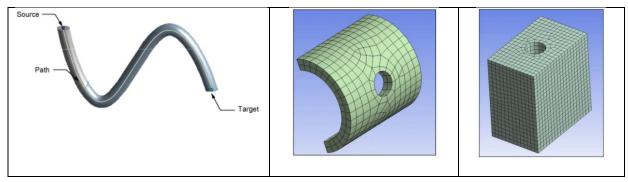


Figure 8-12 ANSYS Sweep Meshing-Examples

The solid mesh for the spool is shown Figure 8-13 and the applied loading is shown in Figure 8-14

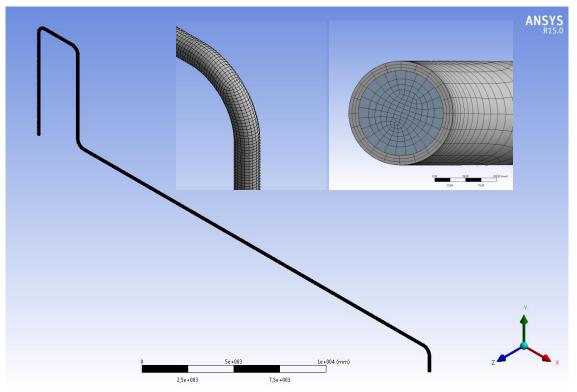


Figure 8-13 Solid Mesh of Spool solid model

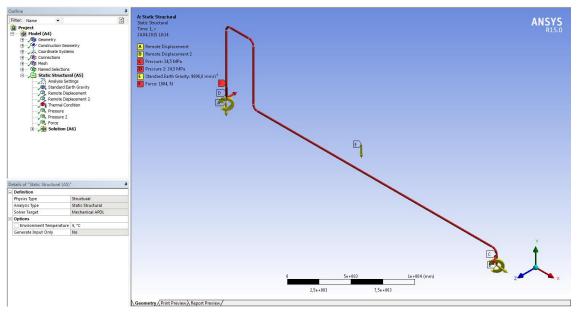


Figure 8-14 ANSYS Workbench solid model-loads

Table 8-3 list the results from the solid element model. The results are extracted in a distance *d* away from boundary conditions and structural discontinuity.

Location	Combined stress S _c (von Mises) [MPa]	Stress limit F3 [MPa]	UF	Longitudinal stress S _L [MPa]	Stress limit F2 [MPa]	UF	Ref.
MF end	337	405	0.83	384	360	1.07	Figure 8-20 Figure 8-21
Bend between leg2 /leg3	390	405	0.87	298	360	0.82	Figure 8-24 Figure 8-25
Bend XT- end	310	405	0.77	147	360	0.40	

Table 8-3 Max spool stress solid-Model

Table 8-4 Reaction forces solid model

Manifold Side								
FY[kN]	FX [kN]	FZ [kN]	MX [kNm]	MY [kNm]	MZ [kNm]			
14.7	11.5	1.7	4.2	-1.7	73			
X-tree Side								
FY [kN]	FX [kN]	FZ [kN]	MX [kNm]	MY [kNm]	MZ [kNm]			
-11.5	-0.81	-6.8	37	0.7	-4.2			

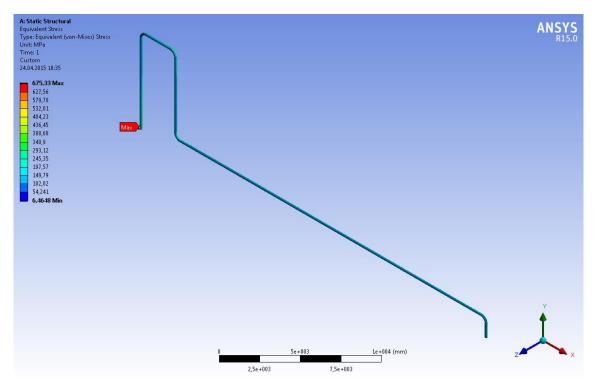


Figure 8-15 Max von Mises stress solid model

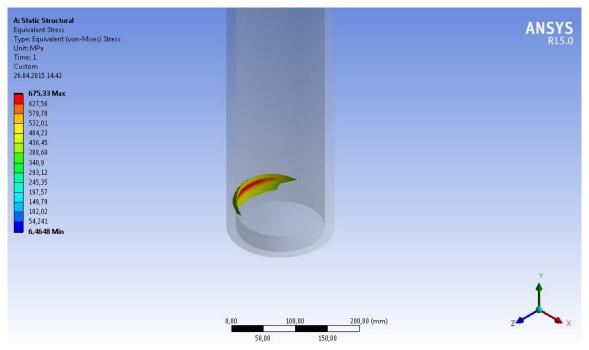


Figure 8-16 Area of max stress higher than 405 MPa

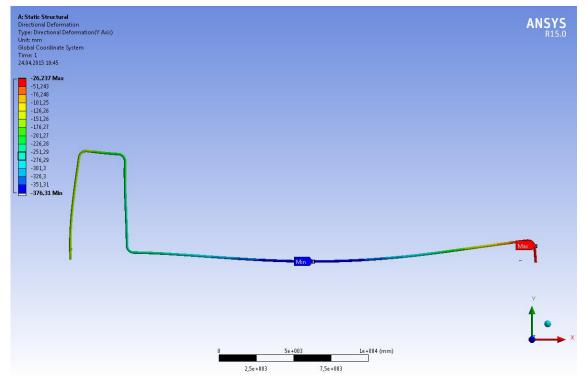


Figure 8-17 Max displacement solid model

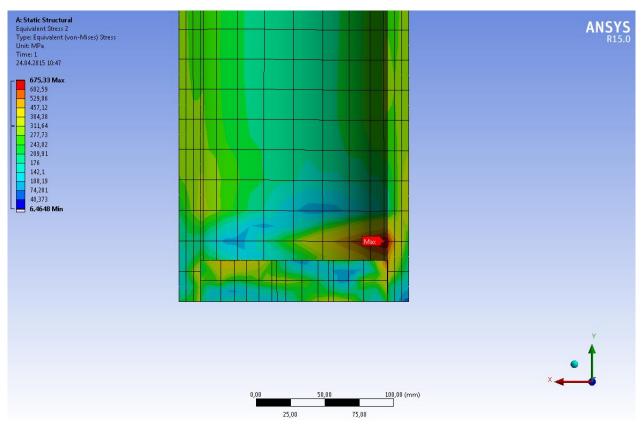


Figure 8-18 Detail max von Mises stress solid model at MF end

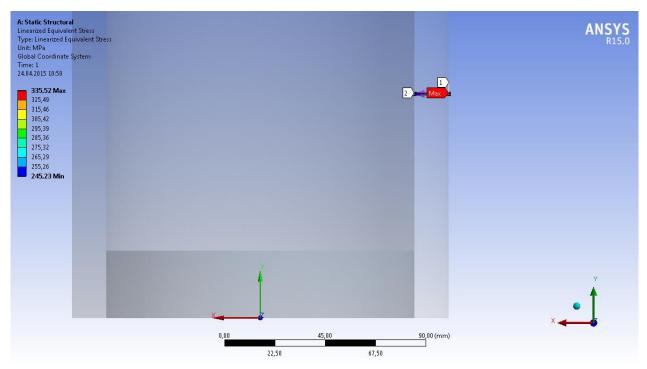


Figure 8-19 Linearized von Mises stress through pipe wall solid model

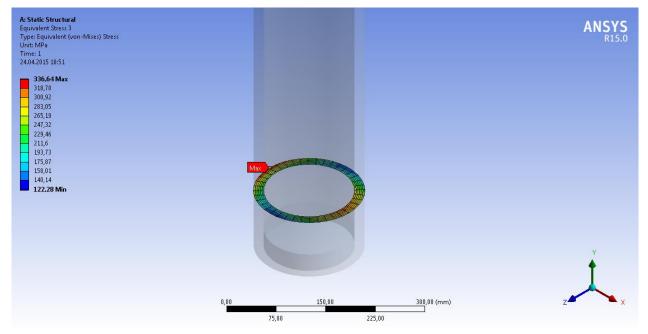


Figure 8-20 Cross sectional von Mises stress solid model at MF end

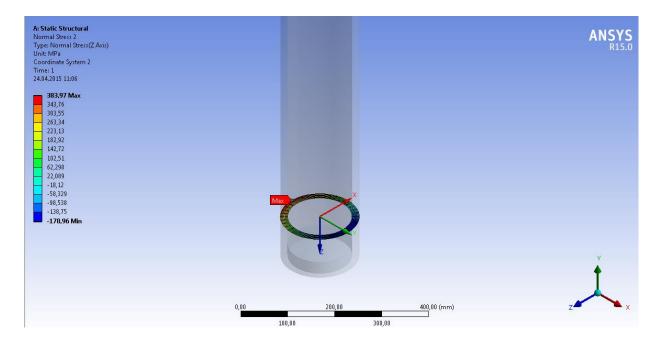


Figure 8-21 Cross sectional longitudinal stress solid model at MF end

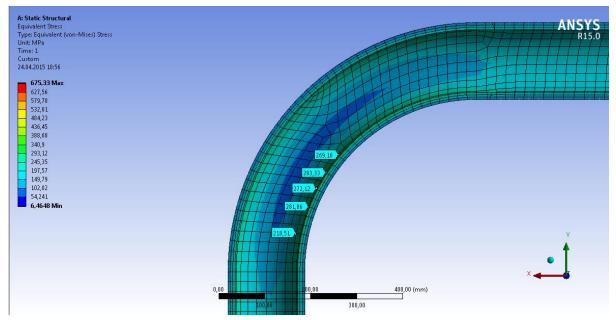


Figure 8-22 von Mises stress bend solid model -XT end

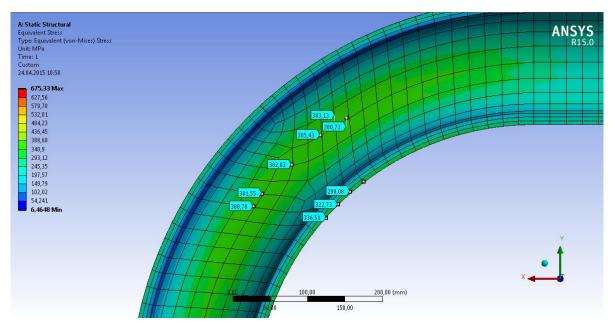


Figure 8-23 Max von Mises stress bend solid model between leg 2 and 3

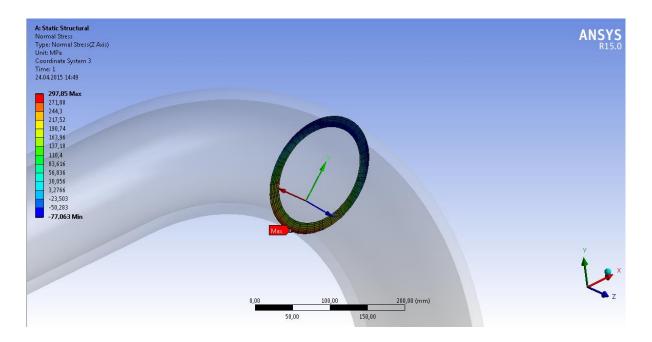


Figure 8-24 Cross sectional longitudinal stress solid model bend between leg 2 and 3

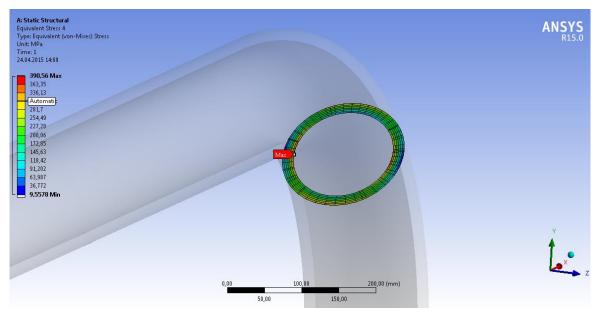


Figure 8-25 Cross sectional von Mises stress solid model bend between leg 2 and 3

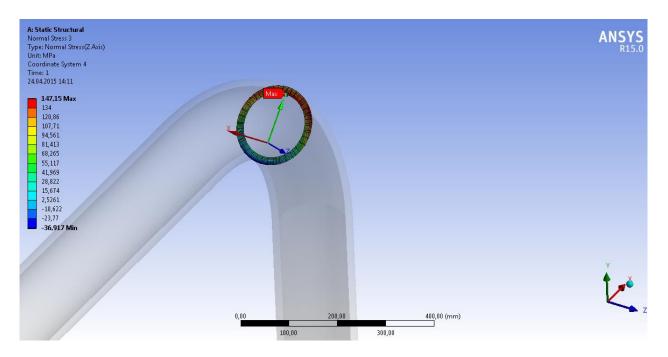


Figure 8-26 Cross sectional longitudinal stress solid model bend XT end

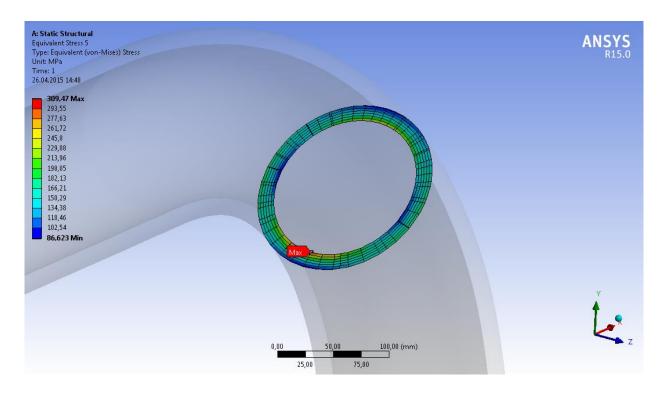


Figure 8-27 Cross sectional von Mises stress solid model bend XT end

8.3 Bentley AutoPIPE Model

One of the analysis software on the market for piping design and process industry is the Bentley AutoPIPE software. This software is tailor made for checking against code and fabrication of piping. This software is natural choice for piping engineers to use when modelling large complex piping system. It is very fast to use and has many features for pipe stress analysis and functions for generating stress isometrics. The three versions are:

- Standard
- AutoPIPE Plus
- AutoPIPE Nuclear

The following description is from the AutoPIPE software documentation:

Bentley AutoPIPE is a stand-alone computer aided engineering (CAE) program for calculation of piping stresses, flange analysis, pipe support design, and equipment nozzle loading analysis under static and dynamic loading conditions. In addition to 24 piping codes, AutoPIPE incorporates ASME, British Standard, API, NEMA, ANSI, ASCE, AISC, UBC, and WRC guidelines and design limits to provide a comprehensive analysis of the entire system. AutoPIPE is available for Windows XP/Vista and can be licensed across networks. The software uses a two node beam element for calculation of forces, displacements and stresses.

There are three versions of AutoPIPE: Standard, Plus, and Nuclear. The Plus version offers several advanced analysis capabilities not available in the Standard version. The Nuclear version offers all of the features of the Plus version with the addition of all the features for ASME class 1 design. A KHK2 Add-On option is also available for the Plus or Nuclear version that allows use of the Japanese KHK Level 2 piping code in addition to all the features of the Plus or Nuclear version. AutoPIPE is a proven, well established program which has

been commercially available since 1986. AutoPIPE's rigorous quality assurance practices have withstood numerous on-site audits, making AutoPIPE one of the few PC based piping programs approved for use in nuclear safety applications.

Since the spool is in elastic behaviour and there are no "large" non-linear effects for load and material, the software is very versatile for piping design. The ASME codes which are one of many codes incorporated into these softwares utilises that the goal is to ensure a safe design Ref /22/. In effect the code says that if we calculated the stresses using a *linear analysis* and if we design these piping systems so that these stresses are less than the allowable stresses, then the design has adequate factors of safety for both plastic collapse and fatigue. The calculated stresses are not real they are based upon nominal values which are used in the design

Piping systems can behave non-linearly because of yield and creep of the pipe, and because of non-linear behaviour of the supports. We do not need to account for pipe non-linearity in a structural analysis because the design procedures ensure that the pipe shakes down to elastic behaviour after one or at most a few thermal cycles. However to calculate the stresses accurately we may need to account for support nonlinearity.

For horizontal subsea spools the design utilises large non-linear displacements when stroking is applied and non-linear contact between spool and seabed hence here a non-liner analysis model is mostly used and real stresses and forces are reported and compared towards LRFD codes such as DNV-OS-F101. This feature is not available in AutoPIPE. The recommendation from Bentley is to check the feasibility of the software by using the following rule of thumb:

"As a check that AutoPIPE can handle large deformations, check that maximum slope angle in radians of the deformed pipe≈sin(slope angle), then the solution should be OK. For example 0.025 radians over a large span of 200m then the solution should be OK"

The software version which is used is the standard version. This version does not come with code check according to *ASME B31.8 2010 chapter VIII Offshore Gas Transmission Pipelines*. But the standard version does the code check in accordance with *ASME B31.8 2010 Onshore Pipelines*. This is the same code only different sections within the same code.

The difference is the load combinations and criteria for calculation of longitudinal stresses and allowable stresses. *Chapter VIII* specifies other loadings typical for offshore pipelines compared to onshore pipelines. The code operates with the terminology *restrained piping* and *unrestrained piping* this dictates how one should calculate stress and what limits to compare against.

The following table list the code load combinations for restrained piping according to the code. For the spool checking this becomes:

Load combination	Description
GR ¹ + Max P(1)	Sustained loading ,gravity + max pressure P=345 bar
	Imposed rotations and deflections at anchor points
Ambient to T(1)	Temperature expansion at ambient
	temperature=4°C T1=ambient
	gravity not included
Ambient to T(2)	Temperature expansion from ambient to T2=100 °C-
	Temperature
	gravity not included
Max P(1)	Max Pressure P=345bar
GR+T(1)+P(1)	Gravity + Temperature (1)+Pressure (1)
GR+T(2)+P(2)	Gravity + Temperature (2)+Pressure (2)

Table 8-5 AutoPIPE ASME B31.8 code Load combinations

In order to be able to compare the results from the ANSYS model, the documentation of the software and the understanding of how the program calculates stresses must be done. The software has many options which must be checked and understood before running analysis. The software is designed in such a way that it reflects the process from design to fabrication, control, testing and operating. The limit for longitudinal stresses and the setting for using the octahedral von Mises criteria for yield instead of using the Tresca criteria are changed from default values by the software. Stress Intensification factors (SIF) at transitions and welds is default by programme and is set equal to SIF=1.0. Here the software has the option to input user SIF and also to allow the software to calculate SIF by entering values at transitions such as weld eccentricity.

The stresses are calculated based upon the following formulas from the code (Equation 833.3a):

$$|S_L| = k S_y T \tag{8.1}$$

Here k is default to 0.75 for unrestrained piping but changed to 0.80 in accordance with *chapter VIII* of the code.

 S_L = Maximum longitudinal stress, psi (positive tensile or negative compressive) = combined axial and bending stress as $\sigma_a + \sigma_b$, or $\sigma_a - \sigma_b$ whichever results in the larger stress value.

Bending stress:

$$\sigma_b = \frac{\sqrt{(0.75i_i M_i)^2 + (0.75i_o M_o)^2 + M_t^2}}{Z_{nom}}$$
(8.2)

The SIF factors (*i*)are reduced with a factor of 0.75 according to code for sustained loads, this is not the case for the formula in *Section VIII* of the ASME B31.8 code Ref. equation (5.6) where there are no such reductions. The SIF factors are code SIF factors and are used for fatigue calculations based upon thermal expansions and are based upon tests towards commercial girth welded pipes Ref. Section 3 of Ref. /35/. These factors are not the same as geometrical stress concentration factors (SCF or theoretical SIF) and should not be used with fatigue curves from other codes. The usage of SIF factors can vary between the ASME codes.

The section modulus Z_{nom} is based upon the nominal wall thickness value. This is changed to the corroded wall thickness Wt=15.3mm as analysed in the ANSYS model. For Hoop stress the nominal wall thickness is used by default.

¹ Buoyancy force from submerged spool of 100N/m and Drag force of 46N/m is applied in the GR-Load case.

It should be noted that the AutoPIPE program calculates the code combination stresses with default section modulus (Z_{red}) based upon the reduced wall thickness which is equal to:

$$t_{red} = t_{nominal} - t_{corrosion} - t_{mill}$$
(8.3)

The mill tolerance is usually 12.5% of the wall thickness.

The mill tolerance is set to zero to achieve correct comparison

The axial stress is calculated as:

$$\sigma_a = \frac{F_{axl}}{A} = \frac{PD_o}{4t} = 0.5S_h \tag{8.4}$$

The axial stress includes the pressure term from endcap:

Where

 M_i = In plane bending moment M_o = out of plane bending moment M_t = Torsional moment Z_{nom} = Section modulus, nominal wall thickness D_o = Outer diameter A= Section area of pipe F_{axl} =Axial force including pressure term $i_{o,i}$ =Stress intensification factor (SIF) out of plane or in plane t= Nominal wall thickness P= Pressure S_h=Hoop stress

8.4 Bentley AutoPIPE Results

The stress results from the analysis is shown in Figure 8-28 the utilisations are in accordance with the code check towards the stress limits as described in chapters 5.9.3. The results are listed in Table 8-6

Load combination	Code Stress	Allowable	Location	Utilisation
	[MPa]	[MPa]		UF
Sustained loading	435	405	MF end-(A00)	1.07
Ambient to T(1)	NA	198	NA	NA
Ambient to T(2)	17	3	Bend between leg	5.0
			2 and 3	
Max P(1)	159	324	XT-end –(A05)	0.49
GR+T(1)+P(1)	404	405	MF end-(A00)	1.00
GR+T(1)+P(1)	470	360	MF end-(A00)	1.14
Longitudinal stress S_L				
GR+T(2)+P(2)	389	405	MF end-(A00)	0.96
GR+T(2)+P(2)	393	360	MF-end	1.09
Longitudinal stress				

As seen from Table 8-6 the software reports utilisations above 1. This means that the spool does not meet the code requirements in corroded condition. The thermal expansion cases ambient to T(1) or T(2) are related to *fatigue code limits based upon a minimum of 7000 thermal cycles*, and is given for unrestrained pipelines. The thermal expansion criteria are given by the following equation (Equation 833.8).

(8.5)

$$S_A = f[1.25(S_c + S_h) - S_L]$$

Where:

 $f = 6N^{-0.2} \le 1.0$, SN fatigue curve $S_c = 0.33S_uT$ at the minimum temperature $S_h = 0.33S_uT$ at the max temperature $S_L =$ Longitudinal stress $S_u =$ Ultimate tensile strength

T = Temperature derating factor N= equivalent number of cycles during the expected service life of the piping system (N_{min}= 7000)

The formula is very dependent upon the longitudinal stress and since the longitudinal stress ratio is over utilised there is basically no fatigue capacity left for thermal expansion stress cycles. The minimum value for the f factor is 1.0 which equals to 7000 thermal cycles and cannot be lower according to the code. Pressure and temperature fluctuations for subsea spools are very depend upon the production stream medium i.e multiphase well stream, produced gas, Injection water or oil. However one major difference is the amount of start-up and shut downs cycles. Normally the spools are connected to a subsea production pipeline or a well and experience less start up and shut downs (N<1000 cycles) during its lifetime compared to other piping systems. So this means that equation (8.5) cannot be used for cycles less than 7000. Equation (8.5) is not given in Section VIII of the ASME B31.8 code for offshore pipelines. ASME B31.8 section A842.2.5 refers to API RP 1111 for fatigue evaluation.

From project experience the DNV-RP-C203 Ref. /14/ for low cycle / high cycle fatigue and VIV assessment's (Miner summation) is often used.

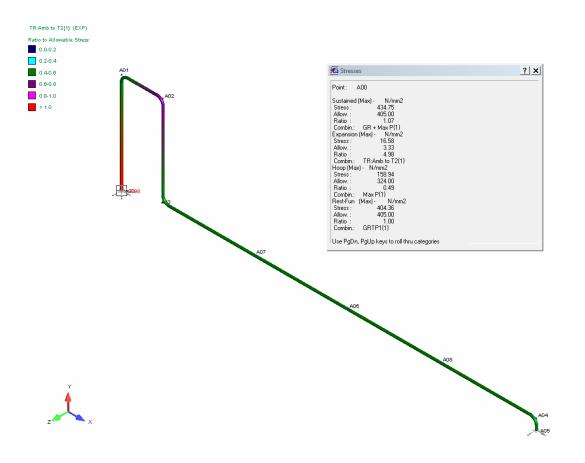


Figure 8-28 AutoPIPE spool ASME B31.8 Code stress results corroded condition

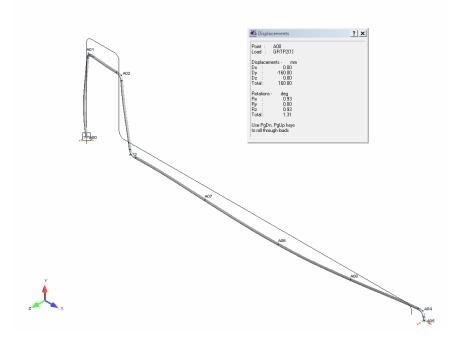


Figure 8-29 AutoPIPE spool displacement

By using the nominal wall thickness the following results are given by the program see Table 8-7

Load combination	Code Stress	Allowable	Location	Utilisation
	[MPa]	[MPa]		UF
Sustained loading	379	405	MF end-(A00)	0.94
Ambient to T(1)	NA	231	NA	NA
Ambient to T(2)	15	59	Bend between leg	0.25
			2 and 3	
Max P(1)	159	324	XT-end –(A05)	0.49
GR+T(1)+P(1)	356	405	MF end-(A00)	0.88
GR+T(1)+P(1)	355	360	MF end-(A00)	0.88
Longitudinal stress S _L				
GR+T(2)+P(2)	343	405	MF end-(A00)	0.85
GR+T(2)+P(2)	340	360	MF-end (A00)	0.94
Longitudinal stress				

As seen from the table above the spool passes the ASME B31.8 Code check for the nominal wall thickness of the pipe. Figure 8-30 shows the utilisations towards the code limit.

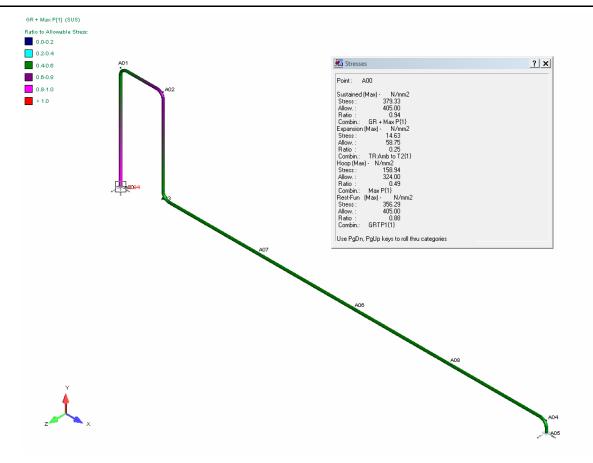


Figure 8-30 AutoPIPE spool ASME B31.8 Code stress results nominal wallthickness

General Stress Calculations-(Ref. AutoPIPE Documentation)

The General Pipe Stress Report, shown in Table 8-8 is produced by enabling the *General Stress* option. Since the bending and shear stresses vary around the cross section of the pipe, AutoPIPE looks at 15° intervals around the cross section to determine the maximum stresses. Only the total stress location is reported as a clockwise angle relative to the out-of-plane axis of the cross section. The total stress is user-specified as either the Max Shear stress or the Octahedral stress (von Mises stress).

Table 8-8 AutoPIPE General stress report

				n N/mm2					
		-	-	udinal			-		
name	combination	Stress	Max	Min 	Stress	Max	Min 	Stress	Loc
*** S	egment A begin ***								
00A	SIFI= 1.00 SIFO= 1.00								
	Gravity{1}	0.00	341.20	-345.90	3.39	341.24-3	345.93	345.95	93
	Thermal 1{1}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	270
	Thermal 2{1}	0.00	16.58	-16.54	0.00	16.58 -	-16.54	16.58	90
	Pressure 1{1}	190.19	71.70	68.46	0.00	190.19	68.46	166.85	270
	Pressure 2{1}	190.19	71.70	68.46	0.00	190.19	68.46	166.85	270
	GRTP1{1}	190.19	409.67	-274.20	3.39	409.72-2	274.23	404.40	93
	GRTP2{1}	190.19	393.15	-257.64	3.39	393.20-2	257.67	389.34	93
A02 N+	- SIFI= 1.00 SIFO= 1.00								
	Gravity{1}	0.00	223.53	-219.27	6.07	223.70	-219.44	223.78	0
	Thermal 1{1}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	270
	Thermal 2{1}	0.00	17.99	-18.31	0.00	17.99	-18.31	18.31	0
	Pressure 1{1}	190.19	71.84	68.29	0.00	190.19	68.29	166.87	0
	Pressure 2{1}	190.19	71.84	68.29	0.00	190.19	68.29	166.87	0
	GRTP1{1}	190.19	291.82	-147.43	6.07	292.18	-147.54	293.36	180
	GRTP2{1}	100 10	272 51	-120 44	6 07	273.95	120 55	270 66	100

The total stress report for the corroded condition is enclosed in Appendix A4.2

For comparison towards the ANSYS Pipe element model the general stress output is used. See Table 8-8 and Table 8-9. Max longitudinal and combined stress is reported for load case GR+T(2)+P(2). Reaction forces are reported for the same load case see Table 8-10.

Location	Combined stress S _c (von Mises) [MPa]	Stress limit F3 [MPa]	UF	Longitudinal stress S _L [MPa]	Stress limit F2 [MPa]	UF
MF-end (A00)	389	405	0.96	393	360	1.09
Bend between leg 2 and 3 (A02)	279	405	0.68	274	360	0.76

Table 8-9 Max spoo	l stress utilisation
--------------------	----------------------

Table 8-10 Reaction forces AutoPIPE

Manifold Side						
FY[kN] FX [kN] FZ [kN] MX [kNm] MY [kNm] MZ [kNm]						
17.1	-14.4	1.2	4.0	-1.8	84	
X-tree Side						
-7.6	-14.4	-0.8	-0.14	-4.8	37.8	

8.5 Summary

The results from the different FEA computer models for the same load case and condition are presented in the table below:

Table 8-11 Summary of stress results spool analysis verification

Computer model	Combined stress S _c (von Mises) [MPa]	Longitudinal stress S _L [MPa]	Max UF	Location
Shell Element model	313	360	1.01	MF-end
Pipe Element model	352	385	1.07	Bend between leg2 /leg3
Solid Element model	337	384	1.07	MF-end
AutoPIPE General stress GR+T(2)+P(2)	389	393	1.09	MF-end
AutoPIPE Code stress GR+T(2)+P(2)	389	393	1.09	MF-end

Table 8-12 Combined stress	difference- Computer models
----------------------------	-----------------------------

Computer model	Shell Element model [%]	Pipe Element model [%]	Solid Element model [%]	AutoPIPE General stress [%]	AutoPIPE Code stress [%]
Shell Element model	-	12.5	7.7	24	24
Pipe Element model	12.5	-	4.5	11	11
Solid Element model	7.7	4.5	-	15	15

Computer model	Shell Element model [%]	Pipe Element model [%]	Solid Element model [%]	AutoPIPE General stress [%]	AutoPIPE Code stress [%]
Shell Element model	-	7.0	6.6	9.2	9.2
Pipe Element model	7.0	-	0.26	2.1	2.1
Solid Element model	6.6	0.26	-	2.3	2.3

Commentary to results:

As seen from Table 8-12 the largest utilisation is the AutoPIPE code stress calculation with an utilisation factor of 109% towards the allowable ASME B31.8 code stress limit (9% above the limit of 405MPa). The ANSYS model's has an utilisation range between 101% - 107 %. The difference is the location of reported stress location where the pipe element model reports the max longitudinal stress at the bend between leg 2 and 3. Max bending stress is however reported at the same location (MF-end). Table 8-12 also shows that there is no difference between the calculated code stress and the general stress reported in AutoPIPE for this case.

All models however reports utilisation above the code limits for stress in corroded condition. The lowest element stress is the shell element model and the highest stress reported is the AutoPIPE beam element model with a difference of 24%. The longitudinal stress (see Table 8-13) has less difference in results with a maximum difference of 9.2 % between AutoPIPE model and the ANSYS shell model. The minimum difference found is 0.26% and is between the ANSYS solid model and the ANSYS pipe element model. The utilisation towards the code stress limits has a good match between all computer models except for the ANSYS shell model which seems to underreport the stress levels.

The spool however passes the ASME B31.8 Code check for *the nominal wall thickness* of the pipe max utilisation is *94%* for sustained loads and GR+T(2)+P(2). See results in Table 8-6

9. SPOOL WEIGHT AND LOAD MITIGATION

In order to minimize the loading from self-weight from a submerged free spanning spool, varies techniques can be performed such as:

- Buoyancy elements
- Seabed Support
- Pre-bending or mitigation of pipe

Each of the techniques is explained here.

9.1 Buoyancy Elements

The common way is to use high density polymeric foam buoyancy clamped onto the spools. Polymer foams are made up of a solid and gas phase mixed together to form a foam. The benefit of this is that the buoyancy can be mounted onto to areas of high weight. The main purpose of the buoyancy is to:

- Provide uplift buoyancy force and reduce submerged weight of the spool
- Reduce the force and bending moments into the connectors.
- Provide support for service lines
- Bending restrictor for pipelines and flexibles.

The buoyancy is clamped around the pipe with band straps which are mechanically locked.

The buoyancy has to withstand the pressure due to the water depth. This is can be a limitation for deep water application, as the weight of the buoyancy increases with the water depth see Table 9-1. This requires then that the volume of the buoyancy has to increase to sustain its weight. This usually means increasing the diameter of the buoyancy element. Drag forces increases with diameter increase and gives larger forces to the spool in the transverse direction and also increases the risk for larger VIV effects. One way to mitigate this is to apply so called "strakes" onto pipes and risers which reduces the VIV effects, See Figure 9-2 and Figure 9-3

GRADE	Operational depth	Depth rating	Crush depth	Bouyancy	Kg/m ³
H60	30		50	965	60
H80	40		65	945	80
H100	55		85	925	100
H130	75		120	895	130
HCP30	190		300	825	200
HCP50	300		500	775	250
HCP70	450		700	725	300
HCP90	550		900	665	360
HCP100	650		1000	625	400
LD1000		1000		635	390

Table 9-1 Buoyancy types versus water depth from DIAB

Figure 9-1 Buoyancy Element for piping -(Trelleborg Systems)

Figure 9-2 VIV Strakes on buoyancy-(Balmoral-group)

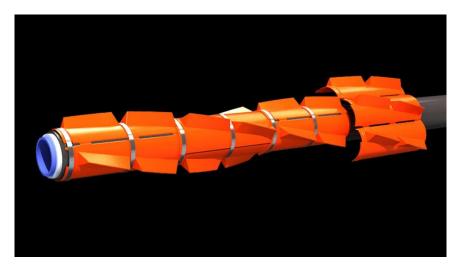


Figure 9-3 VIV Strakes for subsea piping-(Trelleborg Systems)

The effect of using strakes around a cylindrical object is shown in Figure 9-4. The figure shows a complex three dimensional flow around a bare riser Ref. *PRETechnologies.com*. The analysis shows high turbulent flow and high pressure regions, (right image) red areas shows high pressure. Figure 9-5 shows the resulting flow structures surrounding the riser with the helical strake installed. The flow is characterised by much smaller scale structures in the vicinity of the riser surface which are less correlated than in the bare riser configuration and hence less likely to lead to VIV. The riser surface pressures are also shown to be less correlated in the axial direction for the rake arrangement than with the bare riser configuration.

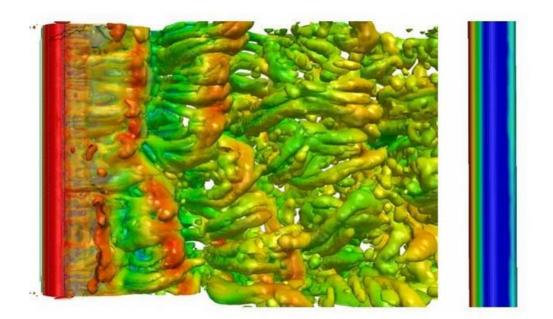


Figure 9-4 Three dimensional CFD flow around Riser (PRETech).

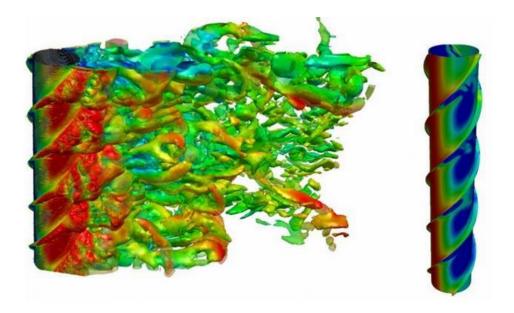


Figure 9-5 Three dimensional CFD flow around riser with strakes (PRETech).

The spool is analysed with a total calculated buoyancy uplift force of $F_{buoyancy}=5105$ N, This reduces the spool weight by 25% Ref. Appendix 3 for hand calculations

Location	Combined stress S _c (von Mises) [MPa]	Stress limit F3 [MPa]	UF	Longitudinal stress S _L [MPa]	Stress limit F2 [MPa]	UF	Ref.
MF end	263	405	0.60	307	360	0.85	Figure 9-10 Figure 9-9

Table 9-2 Max spool stress element model with buoyancy

Table 9-3 Reaction forces with buoyancy

Manifold Side							
FY[kN]	FX [kN]	FZ [kN]	MX [kNm]	MY [kNm]	MZ [kNm]		
16.7	-99	1.4	4.9	-2.3	66		
	X-tree Side						
8.8	8.2	1.2	0.48	7.0	-9.1		

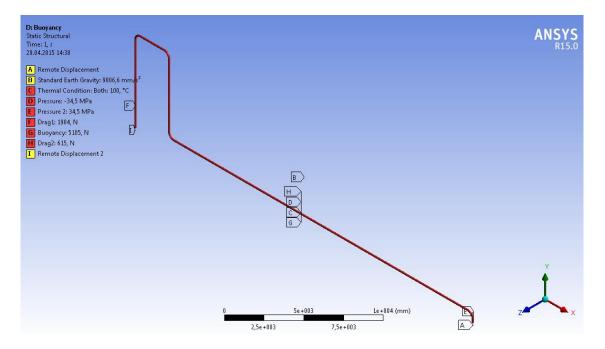


Figure 9-6 Spool with buoyancy uplift force

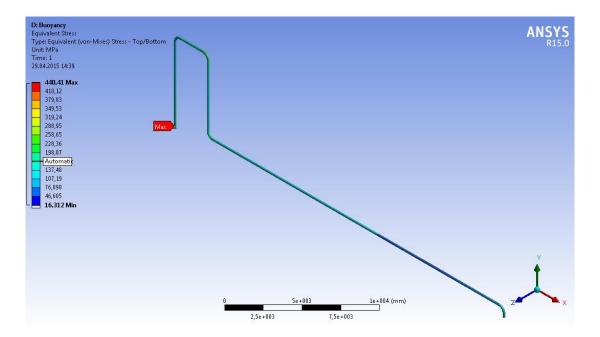


Figure 9-7 Max von Mises stress operational with buoyancy element

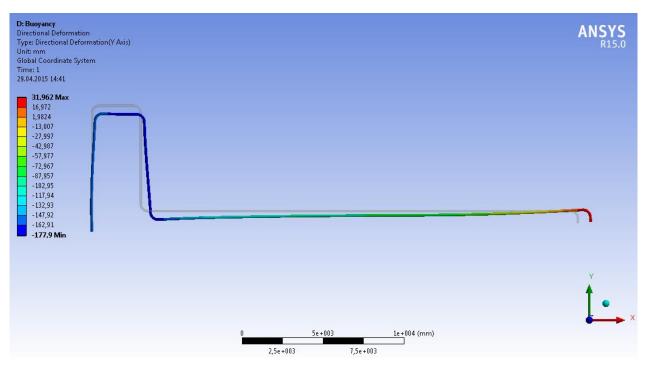


Figure 9-8 Max Displacement operational with buoyancy element

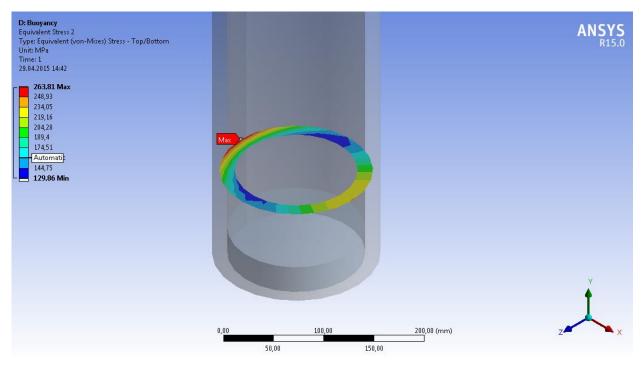


Figure 9-9 von Mises stress MF End operational with buoyancy element

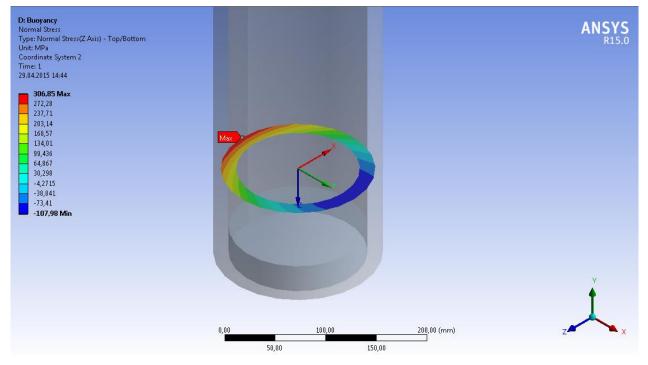


Figure 9-10 longitudinal stress MF end operational with buoyancy element

9.2 Seabed support

On way of reducing the forces and moments in the spool is to introduce a seabed mechanical spring support. This is traditionally used in topside piping (Ref. Figure 9-11 from wermac.org). This is not so common for subsea spools. A subsea spring design must be built to suit subsea environment. Such as:

- Corrosion resistant materials (Inconel-alloy spring or equivalent)
- Sliding seabed mudmat/anchored/clumpweights/suction anchor etc. onto seabed, dependent upon support condition required for spool.
- Protection from sand and debris.

During installation and handling the same amount of rigging equipment as for buoyancy mounted onto spool will be required, as the spring seabed support has to be clamped onto the spool prior to installation.

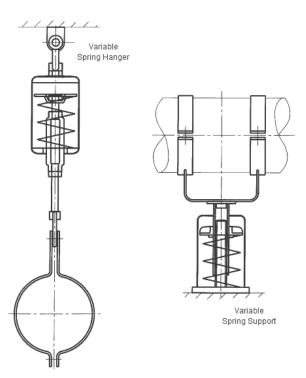


Figure 9-11 Typical piping spring support-[Wermac.org]

In the analysis of the spool a spring is positioned at the middle of the span of the spool. The stiffness of the spring is $k_{spring}=100N/mm$. The results are presented in Table 9-4 and Table 9-5

Location	Combined stress S _c (von Mises)	Stress limit F3	UF	Longitudinal stress S _L	Stress limit F2	UF	Ref.
	[MPa]	[MPa]		[MPa]	[MPa]		
MF end	248	405	0.61	288	360	0.88	Figure 9-10
							Figure 9-9

Table 9-4 Max spool stress element model with spring support

Manifold Side							
FY[kN]	FX [kN]	FZ [kN]	MX [kNm]	MY [kNm]	MZ [kNm]		
15.8	-100	1.4	4.1	-1.6	61		
	X-tree Side						
8.9	7.5	1.2	0.35	4.5	-8.2		
Spring Support							
-5.8	NA	NA	NA	NA	NA		

Table 9-5 Reaction forces with spring support

As seen from the table above a relative simple spring can achieve the same reaction forces level as for buoyancy modules, Ref.Table 9-2and Table 9-3.

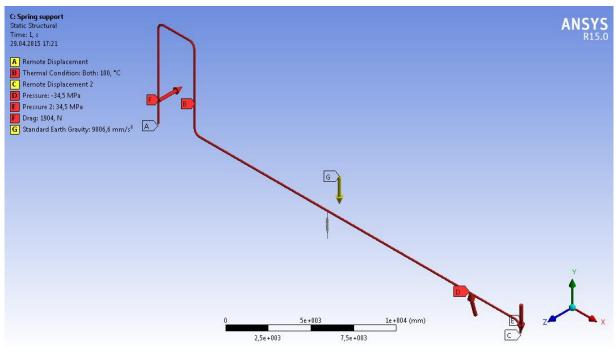


Figure 9-12 Spool with spring support loading

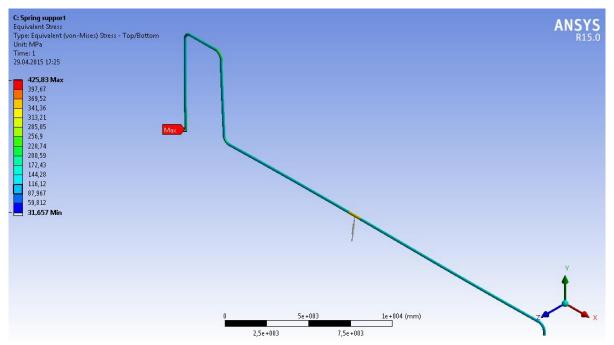


Figure 9-13 Max von Mises stress spool with spring support

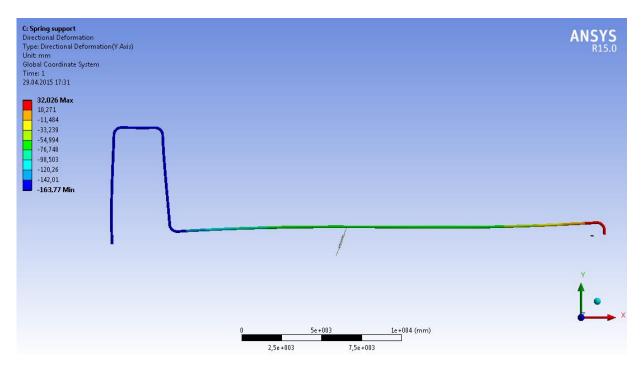


Figure 9-14 Max displacement spool with spring support

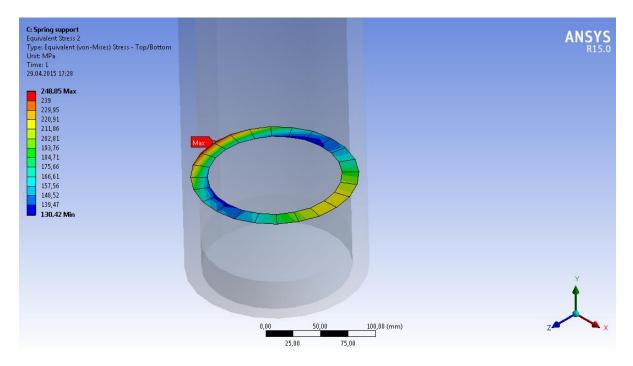


Figure 9-15 Max cross sectional von Mises stress at MF end

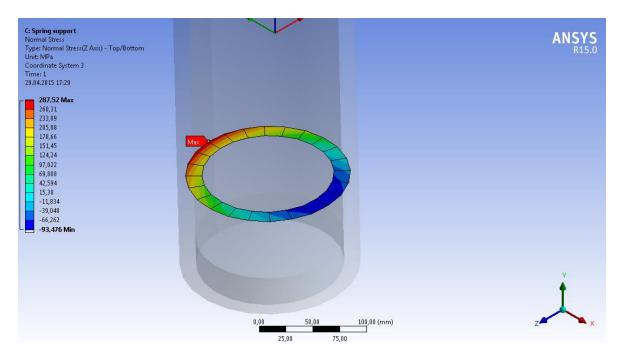
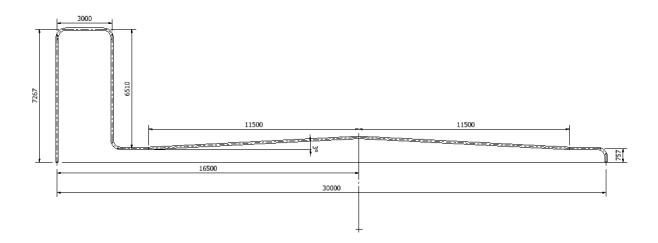



Figure 9-16 Max cross sectional longitudinal stress at MF end

9.3 **Pre-bending of spool**

Another way of reducing reaction bending forces in the spool is to pre-bend or initiate a positive upwards sagging of the spool. This can be achieved by mitigate the pipe at an angle of 3° which is the max allowance for bend mitigation according to ASME B31.8, the geometry is shown in Figure 9-17.

Figure 9-17 Max 1 configuration spool with pre-bending

The analysis result shows that the reaction forces have decreased for MF-end and XT tree end. The stresses however increased slightly compared to the results as presented in chapter 7.5.

Table 9-6 Max spool stress	pre-bending of spool
----------------------------	----------------------

Location	Combined stress S _c (von Mises)	Stress limit F3	UF	Longitudinal stress S _L	Stress limit F2	UF	Ref.
	[MPa]	[MPa]		[MPa]	[MPa]		
MF end	330	405	0.81	388	360	1.07	Figure 9-21
							Figure 9-22

Table 9-7 Reaction forces pre-bending of spool

Manifold Side							
FY[kN]	FX [kN]	FZ [kN]	MX [kNm]	MY [kNm]	MZ [kNm]		
18.8	32	1.1	4.3	-1.6	56		
X-tree Side							
11.9	-16.0	0.8	0.7	4.6	-29		

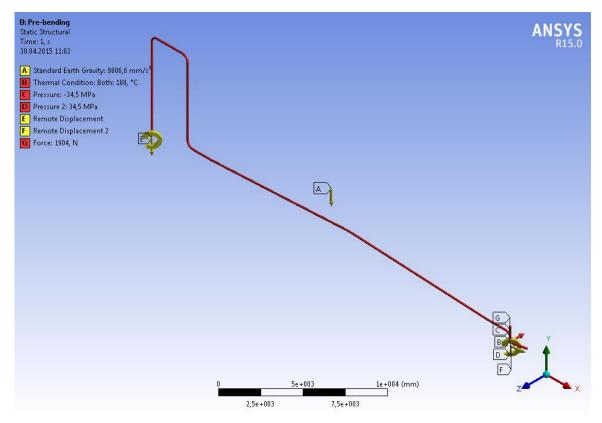


Figure 9-18 Spool Pre-bending loading

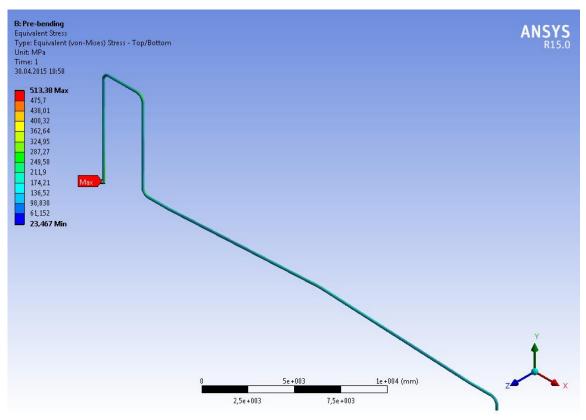


Figure 9-19Max von Mises stress Pre-bending of spool

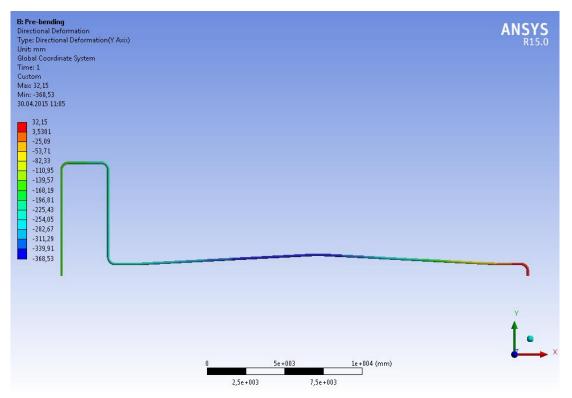


Figure 9-20 Max deflection Pre-bending of spool

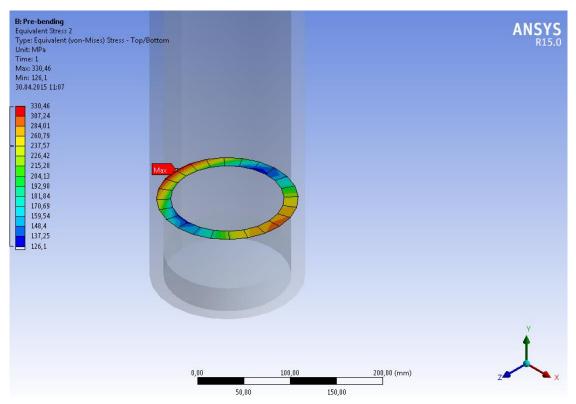


Figure 9-21 Max cross sectional von Mises stress MF end

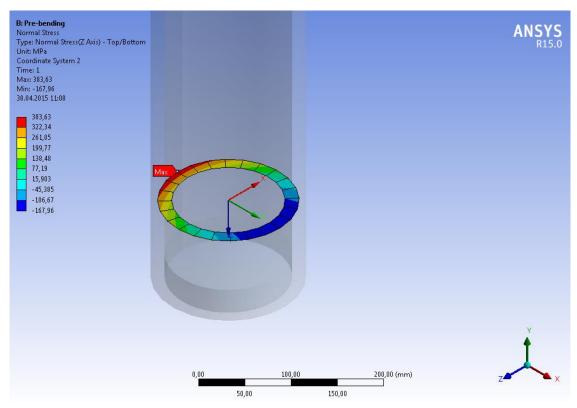


Figure 9-22 Max Cross section longitudinal stress MF-end

9.4 Chapter Summary

Table 9-8 shows the results from the load mitigation study. The result shows that by using a seabed support or a buoyancy element reduces the stresses in the spool by 25%. The largest effect was the reduction of bending moment at the *XT end with 76% reduction*. Hence this gave the best results. The pre-bending of the spool has a positive effect on the bending moments with a decrease of 30% for the bending moment on the XT tree side, but the utilisation for stresses at the manifold side was not largely effected in fact the stresses increased slightly by around~6%.

Table 9	9-8 Loa	d mitigat	ion effects	on spool
---------	---------	-----------	-------------	----------

Description	Max bending moment XT-end [kNm]	Reduction in bending moment [%]	Max UF
Spool without support operational case	-34.0	-	1.01
•			
Buoyancy elements	9.1	74	0.85
Seabed support	-8.2	76	0.88
Pre-bending of spool	-24	30	1.07

10. VIV CHECK OF SPOOL

As presented in chapter 2.8 the vertical spool is a free spanning pipe and can be subjected to vibrations induced by current and waves. From chapter 5.4 the spool is installed in a deep water location so the spool is mostly subjected to current forces and not affected largely by waves as for shallow pipelines. As a result wave effects are not accounted for.

The spool is analysed by determining the natural frequency computed by the ANSYS FEM software. The 6 lowest frequency modes are computed.

Three configurations are considered:

- Max 1 configuration with buoyancy
- Max 1 configuration with a spring support
- Max 1 configuration without a spring support

10.1 Applicable codes

According to DnV-OS-F101 /7/ and the ASME B31.8 /15/ the piping system shall have adequate safety against fatigue failure within the design life. The recommended practice for free spanning pipelines is the DnV-RP-F105 /24/. This is an extensive and recommended guideline and involves a lot of time consuming computations with many parameters depending upon each other. The response models presented in this recommended practice is for a straight free spanning pipeline, see Figure 10-1. This geometry differs from a vertical spool in shape. In real the response of the vertical spool has to be analysed by use of and established hydrodynamic software such as SHEAR7 (MIT Research Institute) or equivalent. For the long horizontal span of the jumper spool there are however similarities to a long free spanning pipeline and recent projects in IKM Ocean design AS has proven to some extent the feasibility of using Ref. /24/ and compare it to results obtained by the ANSYS and SHEAR7 software.

Other earlier applicable codes is the old DNV Classification note 30.5 /25/ In this thesis due to the limited time, the method used for calculation is based upon calculating the reduced velocity and compare this to the in-line response model presented in the DNV Classification note 30.5.

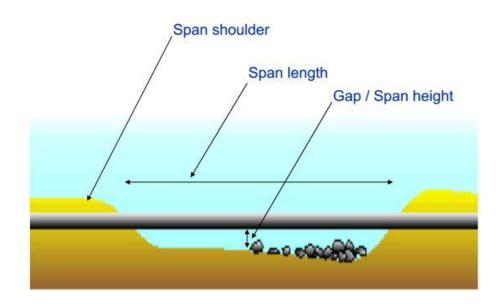


Figure 10-1 Free spanning pipeline

10.2 Modal Analysis

A modal analysis is carried out in the FE program ANSYS Workbench. ANSYS workbench uses a range of automatic solvers to establish the mode shapes. The ANSYS help documentation gives a detailed explanation about this. The subject is quite large and only a limited amount of the topic is given here:

For Static Structural and Transient Structural analysis types, by default, the Solver Type property is set to Program Controlled, which lets the program select the optimal solver. However you can manually select the Direct or Iterative solver. The Direct option uses the Sparse solver and the Iterative option uses the PCG or ICCG (for Electric and Electromagnetic analyses) solver. See the Help for the EQSLV command in the Mechanical APDL Command Reference for more information about solver selection.

For a modal analysis, additional solver type options are available and include:

- Unsymmetric
- Supernode
- Subspace

The Direct, Iterative, Unsymmetric, Supernode, and Subspace types are used to solve a modal system that does not include any damping effects During a Modal analysis, the Direct solver uses the Block Lanczos extraction method. The supernode solver is recommended for extracting a large number of modes.

Ansys Workbench has the feasibility of performing a static analysis, and then transfer's the results to a modal analysis. Damping effects can be incorporated in the analysis by setting the damping control values in the analysis setting or specify values in the materials setting. Here it is important to read the ANSYS help documentation in order to check some basics on how the software calculates the natural frequencies In general the natural frequencies from an undamped free vibration can be found by solving the eigenproblem in the following form:

$$|[K] - \omega^2[M]| = 0 \tag{10.1}$$

Where:

[K] is the stiffness matrix

[M] is the mass matrix

 ω^2 is an eigenvalue, and ω is a natural frequency.

The stability factor $K_{s.}$ Ref. 7.1.6 /25/, plays a major part in controlling the motions of the system and is given as:

$$K_s = \frac{2m_e\zeta_T}{\rho D^2} \tag{10.2}$$

Where:

 $ho\!=\!$ mass density of surrounding fluid

 $m_e\text{=}$ effective mass See 6.7.3 Ref /24/ and 7.1.6 /25/ .

 $\zeta_{ extsf{T}}=$ Total modal damping ratio.

D=diameter of pipe.

The total modal damping ratio ζ_{T} , comprises structural damping, soil damping and hydrodynamic damping. The recommended practice gives some guidelines here, for instance the hydrodynamic damping in the lock in range is set to zero and the soil damping can vary between 0,5% to 2%. Assuming a very stiff manifold and X-tree, the damping value is assumed and set to 0.3%.

Hence (10.2) then becomes: (Ref Appendix 3 for calculation of effective mass $m_e=82 \text{ kg/m}$)

$$K_s = \frac{2 \cdot 82 \cdot 0.03}{1026 \cdot 0.168^2} = 0.17 \tag{10.3}$$

The added mass from the surrounding water is dependent upon the frequency and the mode shape and are included in the in-line response models and cross flow response models, see section 6.7.3 in Ref. /24/, In accordance with Ref. /24/ a simplification for the added mass can also be computed as:

$$M_{added} = \rho \pi r^2 L \tag{10.4}$$

Where:

 $ho\!=\!$ mass density of surrounding fluid

L=length of span or unit length

The added mass is calculated to be 23 kg/m and is included in the analysis (Ref. Appendix 3 for calculations)

The 6 first natural frequencies from the ANSYS modal analysis is listed in the tables below since they are assumed to be the critical ones. The initial pre-stressing from the remote displacements at the MF end and XT end is included as a pre-stress effect. The Pre stress effect must be included in the modal analysis because they will affect the natural frequencies. The natural frequency is for an un-damped system, except for the spring support model where a damping coefficient for the spring is included: A more accurate analysis would be to include the structural stiffness damping effect. This is taken into account in the limits used in the response models by use of K_s Ref. /24/. The purpose of this exercise is to evaluate if the spring has a positive effect on the spool.

The damping ratio of the spring is calculated based upon the following formulas, from mechanical vibrations theory:

$$\zeta = \frac{C}{C_c} = \frac{c}{2m\omega_n} = \frac{c}{2\sqrt{mk}}$$
(10.5)

Where:

ω_n = natural frequency
m= mass of system
Cc=Critical damping
C= damping coefficient
k=stiffness of system/spring

The spring constant used here is k=100N/mm and the mass of the spring used is m=50kg. A typical value for springs with good damping ratio is in the range of ζ =0.2-0.4.

By solving for *c* in equation (10.5) gives the following damping coefficient for the spring used in the analysis:

$$C = 2\sqrt{mk}\zeta = 2\sqrt{0.05\frac{Ns^2}{mm} \cdot 100\frac{N}{mm}} \cdot 0.4 = 1.8\frac{Ns}{mm}$$
(10.6)

Note: The mass has been converted to Ns²/mm in order to match the units under the root

The following natural frequencies are computed by the ANSYS software:

Vertical spool without spring support			
Mode	Frequency value	Response	
	[Hz]		
1	0.63	In-line	
2	0.80	Cross flow	
3	1.32	In-line	
4	1.53	In-line	
5	1.64	Cross flow	
6	3.22	In-line	

Table 10-1 Spool Frequencies-without spring support

Table 10-2 Spool Frequencies-with spring support

Vertical spool with spring support			
Mode	Frequency value	Response	
	[Hz]		
1	0.61	In-line	
2	1.43	In-line	
3	1.50	In-line	
4	2.50	In-line	
5	2.70	Cross flow	
6	0	Damped out	

Table 10-3 Spool Frequencies-with buoyancy uplift

Vertical spool with buoyancy uplift force			
Mode	Frequency value	Response	
	[Hz]		
1	0.37	In-line	
2	0.63	Cross flow	
3	1.33	In-line	
4	1.64	In-line	
5	1.77	Cross flow	
6	3.92	In-line	

The analysis shows that the frequencies for 1 mode is almost equal for the two models with spring support and without support see Table 10-1 and Table 10-2. Since the spring used in the analysis acts in only in the vertical direction this seems natural. For the 2nd to 5th mode the spring support gave higher natural frequencies and for the 6th mode the spring has damped out the excitation. One important observation is that the amplitude of leg 2 and leg 3 seems to deflect at a higher value for the in-line response (mode2) with the spring support compared to the spool without any support see Figure 10-3 and Figure 10-4. The buoyancy case with an uplift force at the middle of the spool gave the lowest frequencies see Table 10-3 above.

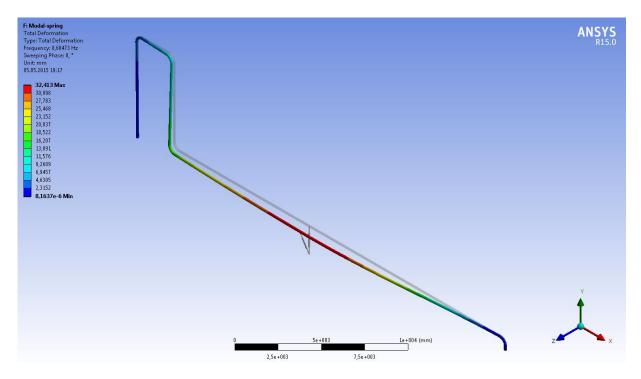


Figure 10-2 1'st mode frequency-spool with spring support

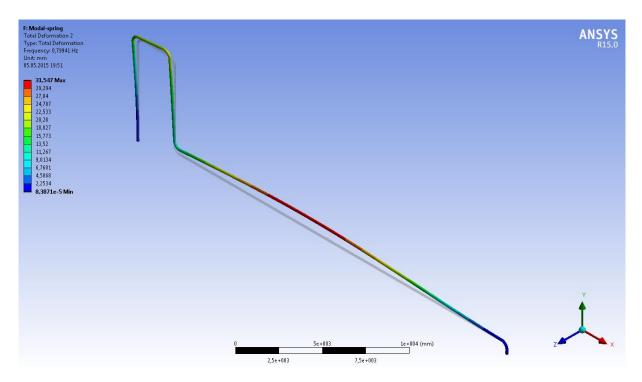


Figure 10-3 2nd mode frequency -spool without spring support

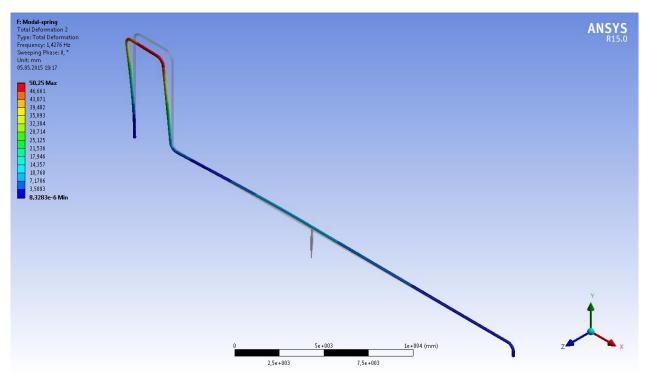


Figure 10-4 2nd mode frequency- spool with spring support

10.3 Code check Vortex Induced Vibrations (VIV)

A code check of the max 1 spool configuration supported with spring is checked here in accordance with/25/

According to this code the reduced velocity V_r shall be used to determine the velocity ranges where the vortex shedding induced oscillation may occur. The spool is located at height above seabed where the velocity and turbulence only slightly vary in the horizontal direction and is not influenced greatly by the seabed.

Reduced velocity is given by equation (2.37), here the code /25/operates with different notation and U_R is replaced with V_r :

$$V_r = \frac{V}{f_i \cdot D} \tag{10.7}$$

Where: V= flow velocity normal to the pipe axis f_i =natural frequency D= pipe diameter

According to 7.3.1 in reference /25/, in line (flow parallel) excitations will occur when

 $1.0 \le V_r \le 3.5$ And the stability parameter is $K_s \le 1.8$ When $1.0 \le V_r \le 2.2$, we have what is called the first instability region. The shedding will be symmetrical in this region and the max amplitude will be a function of the stability parameter K_s. For the spool in our case the first in-line oscillations of f=0.61 Hz See Table 10-2, in the first instability region will occur when the current velocity V is between:

0.11m/s≤V≤0.23m/s

Hence this range of currents speed is within the range of max current speed of 0.7 m/s given in the design basis so 1st in-line lock on frequency will occur for the spool.

For V_r >2.2 the shedding will be un-symmetric, the motion will take place in the second instability region for $K_s \le 1.8$

2.2≤V_r≤3.5

So for the next in-line mode the frequency is f= 1.5 Hz and this gives the following current speed range:

0.55m/s≤V≤0.88m/s

This current speed range is within the max current speed of 0.7 m/s so the spool is subjected to the second instability region for in line movement and the current will lock onto this mode.

Cross flow excitations may occur when:

3≤V_r≤16 for all Reynolds number

But the maximum response is found in the range:

4.8 ≤V_r≤8.

The first cross flow frequency is f=1.43Hz which will give a current speed range of:

1.15m/s ≤V≤ 1.92m/s.

For the next cross flow frequency f=2.7 Hz will give a current speed range of:

2.18/s≤V≤3.62m/s

And hence are out of range for the max current speed of 0.7 m/s

The results are tabulated in Table 10-4 on the next page

Mode	Lock on current speed V [m/s]	Response
1	0.11-0.23	In-line motion
3	0.55-0.88	In line motion
2	1.15-1.92	Cross flow
5	2.18-3.62	Cross flow

Table 10-4 Lock on current s	peed's for spool	with spring support
Tuble To T Even off current	peed 5 loi spool	mich spring support

By using the stability parameter K_s , which are given by Eq.(10.3) in Figure 10-5 we see that we will have inline motion for the reduced velocities in the range of $1.0 \le V_r \le 2.2$ and $2.2 \le V_r \le 3.5$, which are current speed of 0,11 m/s to 0,88 m/s.

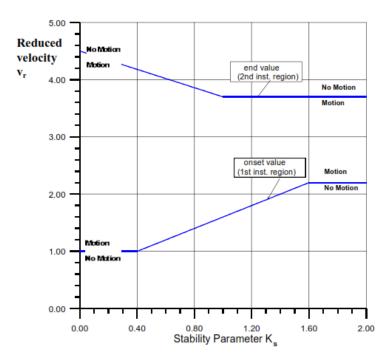


Figure 10-5 Criteria for onset of the motion in the first in line instability region (1.0<Vr<2.2 and end of second instability region Ref. /25/

Figure 10-6 shows the max amplitude to diameter A_{mpl}/D ratio for inline motions and Figure 10-7 shows the max amplitude to diameter ratio for cross flow motions as a function of the stability parameter K_s .

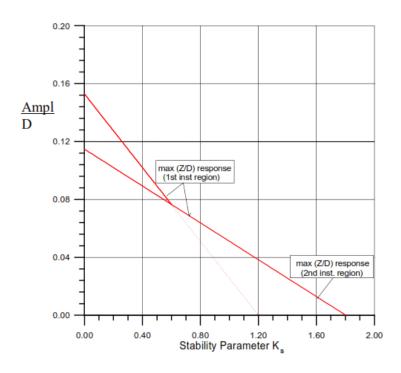


Figure 10-6 Amplitude of in-line motion as a function of K_s Ref. /25/

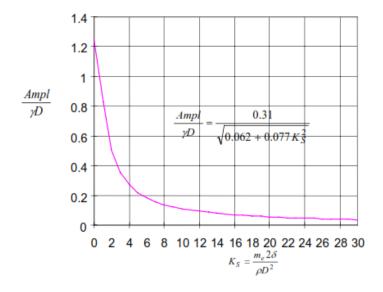


Figure 10-7 Amplitude of crossflow motions as functions of K_s Ref. /25/

Figure 10-7 has a mode shape parameter γ in the denominator of the amplitude ratio this value is listed in table 7.2 of Ref. /25/ for some typical structural elements. As seen from the figures above the cross flow motion gives the highest amplitude ratios.

10.4 Fatigue

So by applying this in a simplified fatigue evaluation of the spool due to VIV inline motion we get the following relation from Figure 10-7 with Ks=0.17 we get the following amplification ratio:

$$\frac{AMPL_1}{D} \approx 0.14 \tag{10.8}$$

$$\frac{AMPL_2}{D} \approx 0.11 \tag{10.9}$$

Where D=0.168m

The amplitude then becomes:

$$AMPL_1 = 0.14 \cdot 0.168m = 0.024 m$$
 for $1.0 \le Vr \le 2.2$

And:

$$AMPL_2 = 0.11 \cdot 0.168m = 0.018m$$
 for $2.2 \le Vr \le 3.5$

The annual distribution and the current direction is assumed to be omnidirectional this means that the current is likely to come from all directions. The onset for VIV in line motion will be for all currents in the range of 0.11-0.23 m/s and 0.55-0.88 m/s with different onset frequencies. Table 10-5 shows the percent occurrence for these currents and is from based upon values from a deep water project.

Current speed	Percent occurrence	
[m/s]	[%]	
0.1	16	
0.2	33	
0.3	29	
0.4	16	
0.5	5	
0.6	0.75	
0.7	0.14	
0.8	0.11	

Table 10-5 Current velocities percent occurrence

The number of stress cycles can be taken as:

$$n = frequency \cdot \frac{sec}{hour} \cdot hours \cdot days \cdot \frac{probabillity \cdot years}{year}$$
(10.10)

For the first onset with f=0.61 Hz which is in range of 0 m/s to 0.2 m/s the number of cycles then becomes:

$$n_1 = 0.61 \cdot 3600 \cdot 24 \cdot 365 \cdot (0.16 + 0.33) \cdot 25 = 2.4E8$$

And for the second frequency f=1.5 Hz and in the current is in the range of 0.55-0.88 m/s with a limit of max 0.7 m/s is:

$$n_2 = 1.5 \cdot 3600 \cdot 24 \cdot 365 \cdot (0.05 + 0.0075 + 0.0014) \cdot 25 = 2.8E7$$

To get the stress amplitude, the spool has been analysed with a unit displacement of 1 meter at mid span (leg 4) and at the top of the spool (leg2) see Figure 10-8 and Figure 10-9 with fixed constraints at the ends and zero pressure and temperature.

Max principal stress amplitude for the two conditions then becomes by multiplying with the amplitude from Eq.(10.8):

$$\sigma_{1} = \frac{Max \ stress}{1 \ unit \ meter \ displacement} \cdot AMPl_{1} = 1573 \cdot 0.024 = 38MPa$$
$$\sigma_{2} = \frac{Max \ stress}{1 \ unit \ meter \ displacement} \cdot AMPl_{2} = 605 \cdot 0.018 = 11MPa$$

So max stress range then becomes:

$$\Delta \sigma_1 = 2\sigma_1 = 76MPa$$
$$\Delta \sigma_2 = 2\sigma_2 = 22MPa$$

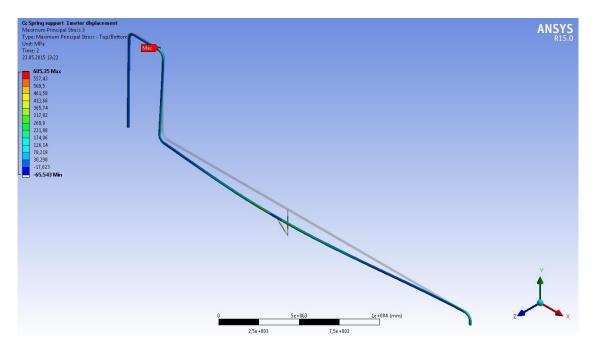


Figure 10-8 Max principal stress 1 meter displacement at leg 4

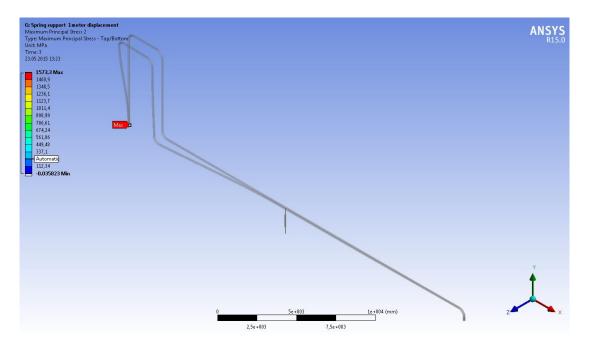


Figure 10-9 Max principal stress 1 meter displacement at leg 2

We have found the number of cycles for the lifetime and the stress range and can now compare with the S-N curves and perform a Miner summation for total cumulative damage for the spool

The fatigue life is based upon the S-N curves presented in DNV-RP-C203 Ref. /14/ section 2.2.

$$D = \sum_{i=1}^{k} \frac{n_i}{N_i} = \frac{1}{\bar{a}} \sum_{i=1}^{k} n_i \cdot (\Delta \sigma_i)^m \le \eta$$
(10.11)

Where:

D= Accumulated fatigue damage

ā = Intercept of the design SN-curve with the log N axis

m= negative inverse slope of the S-N curve

k=number of stress blocks

n_i= number of stress cycles in stress block 1

 $N_i\text{=}$ number of cycles to failure at constant stress range $\Delta\sigma_i$

η= usage factor , =1/ Design Fatigue Factor (DFF)

The DFF is set equal to 10 based upon a high risk classification as given in DNV –OS-F101.

The total accumulated fatigue damage D is calculated in appendix A 3.5. The calculation shows that **D=19>>** greater than 1/10, and hence the spool does not have sufficient fatigue capacity for the 25 year lifetime.

VIV suppression strakes or other aids are required for the spool. The reason for failure is the long free span of the spool which is very sensitive to in line 1st mode VIV motion. Hence the vertical support should also have lateral support in order to minimize these effects.

10.5 Summary

In this chapter a VIV check have been performed based upon a modal analysis in ANSYS. The spool have been checked for different cases of support types such as a spring located at the centre of leg 4 and by use of buoyancy elements. The results show that the vertical spring support had a positive effect on the cross flow response of the spool for leg 4. The eigenvalues was increased and hence the spool became less sensitive to this motion the vibrations was also damped out for higher modes. For the inline motion there were minimal effects of the support and buoyancy. The spool was checked for a fatigue lifetime of 25years and the results shows that the spool does not have sufficient capacity. Mitigation measures such as VIV suppression strakes must be included on the spool and the effect of this must be checked by new calculations.

11. FUTURE SOLUTIONS FOR SUBSEA TIE-IN

11.1 Direct Tie-in method

This new method is presented by IKM Ocean Design AS and Statoil in a paper Ref. /30/. The paper describes how it is possible to connect a pipeline directly to the subsea structure without the use of spools. This method is manly for developed with the intention of replacing horizontal spools between pipeline and subsea structure (1st Tie in point). it is also considered to be relevant for the 2nd Tie-in Point of the pipeline. "The background for proposing this is the reel lay method frequently used for installation of smaller diameter offshore pipelines. The installation process involves onshore fabrication of pipe sections, loading of the pipe onto the reel ship (spooling on), and finally unreeling during the offshore installation. The pipeline is normally plastically bent on the reel, and over the aligner, due to which the pipeline runs through a straightener system before leaving the reel ship, see Figure 11-1. The straightening scheme is usually a three point bending system, with the position setting of the system hydraulically adjustable. It can be quickly altered as required, e.g. by change in the pipeline outer diameter. The method is not intended to be used for short pipeline distances (<1 km) between subsea structures.

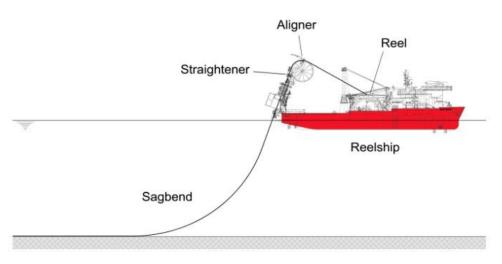


Figure 11-1 sketch of reel ship and pipeline

The quick, hydraulic adjustment of the straightener system can be utilized to create sections with residual curvature in the pipeline. This method was patented by Statoil in 2002 for thermal expansion and buckling control of reel-laid pipelines. The intention is that these residual curvature sections provide axial flexibility to accommodate thermal expansion effects.

The residual curvature method has been used successfully to control global buckling and expansion on the 14" - 16" dual diameter Skuld pipeline in the Norwegian Sea in 2012, Endal and Egeli (2014). The Skuld pipeline was installed by Subsea 7 using their reel ship "Seven Oceans". A total of 25 residual curvature sections were installed along the 26 km long route. Each section was 70 m long and had a residual

strain of approximately 0.2%. Figure 11-2shows the as-laid survey data from two of these sections (KP 13.1 and 15.1)."

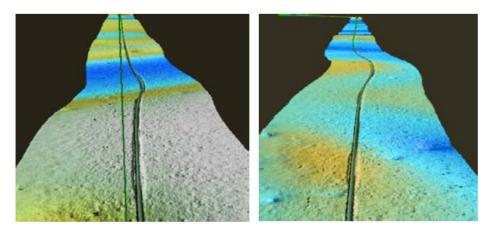
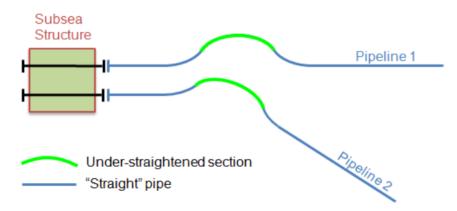
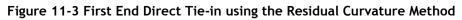


Figure 11-2 Typical Skuld Pipeline residual curvature sections

"In addition to showing the effectiveness of the method with regards to controlling global buckling, the Skuld project also demonstrated its installation friendliness.

General: The new direct tie-in method presented herein utilizes the reel-lay installation method to create local residual curvature in the pipeline, By installing such "prebent" sections at or close to the end of the pipeline, direct tie-in may be enabled without the need for tie-in spools or large start-up/lay-down areas while still achieving acceptably low tie-in and connection forces. It is believed that this approach has the potential to enable many more tie-ins by direct connection, hence permitting large cost and schedule savings for subsea development projects as separate spools or flexible jumpers become superfluous.


The same axial and lateral flexibility utilized for direct tie-in will be even more efficient when it comes to absorbing and controlling expansion forces/movements caused by pressure and temperature loads during the operating condition. In fact, pipeline expansion effects can be seen to neutralize the tie-in forces remaining in the system.


Advantages of the technique are considered to be:

- A residual curvature section can be quickly installed. Reference is made to the Skuld project where 25 pre-bent sections where installed with an average installation time of 10-20 minutes per location, Endal et al (2014).
- No straightening trials were found required, Endal et al (2014)
- Is considered a robust method even if residual strains vary.
- It will provide the means to efficiently reduce expansion forces for existing direct tie-in methods as well as spool tie-ins.

Figure 11-3 below shows the concept with implementing "tie-in and expansion loop" as an integrated part of the pipeline end section. 0.2 % to 0.3 % residual curvature strain can efficiently be created in the "tie-in and expansion loop" sections using the straightener system on the reel ship during installation.

Buoyancy and/or additional weight should be considered installed on or close to the pipeline end to ensure adequate rotation of the "tie-in and expansion loop", if required."

"A direct tie-in using the residual curvature method is considered to have more advantages at the pipelay initiation end (1st tie-in) compared to the second end. At the first end, the pipeline can for instance be initiated against a return sheave arrangement on the subsea structure an lowered/docked in a controlled manner onto a guide post/landing frame etc. depending on the tie-in system being employed, see Figure 11-4 The residual curvature section is introduced approximately 100 m away from the pipeline end

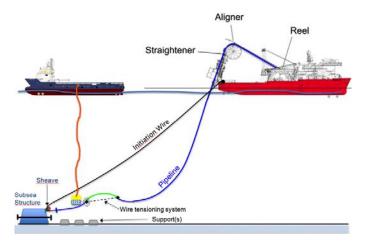


Figure 11-4 First End Direct Tie-in-Initiation overview

Hub capacity is often seen to be a governing factor for pipeline tie-ins using diver-less systems. Since hubs on subsea templates typically could be elevated 2.5 m above the seabed floor, vertical alignment between pipeline end and the hub is a key parameter. In order to compensate for this, the hub can typically be tilted slightly downwards, say 3°, 5° or 7°. However, further vertical alignment will in many cases be needed. This has on several projects been solved by introducing rock supports or adjustable mechanical supports in the adjacent free span.

After the pipeline is pulled down and safely landed in the tie-in porch/landing frame, the pipeline is ready for the final stroke-in and finally the clamp connector is made up and the seal can be tested".

"Even though the proposed method is considered more suitable for a first end tie-in, it is also considered relevant and suitable for a second end tie-in as well. Hence, the solution may be utilized generally on a project without having different solutions at first and second end tie-in points.

One feasible approach to a second end tie-in, is to install and lay down the pipeline end with a heading passing slightly on the outside of the subsea structure to be tied into with sufficient clearance, see Figure 11-5 and Figure 11-6."

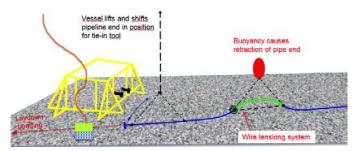


Figure 11-5 2nd Tie In laydown position, ready for Lift, Shift and Docking operation

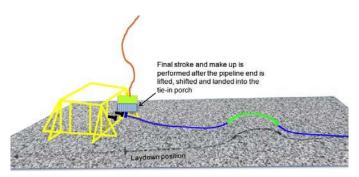


Figure 11-6 2nd end Tie-in Make up of clamp connector

The paper documents the method by use of FE model where the residual curvature is used. The paper concludes that the required stroke force is well within the capacity of applicable tie-in systems if buoyancy and/or a wire tensioning system are used see Figure 11-7 and Figure 11-8 (case *A* requires installation aids to be within the limits).

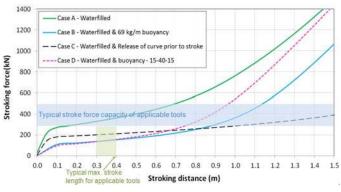


Figure 11-7 Stroke force versus distance

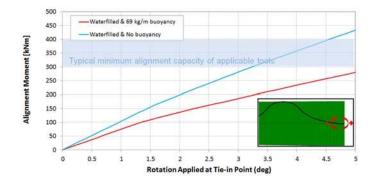


Figure 11-8 Bending Moment vs Rotation Applied at the Pipeline End

The second principal question to be checked is bending moment required for heading misalignment Figure 11-8 shows bending moment about the vertical axis as a function of rotation applied at the tie-in point. Most state-of-the-art tie-in tools have an alignment capacity of 300 kNm or more. Based on this, it can be seen that an alignment of more than 3.2° can be achieved for Case *A* (base case - waterfilled condition without buoyancy) and that more than 5°alignment can be achieved if buoyancy is used.

The paper Ref. /30/ highlights the following benefits with this method:

- All reel-lay contractors can do it.
- It also provides the means to efficiently reduce expansion forces for existing direct tie-in methods.
- The proposed method reduces the number of potential leak points in the pipeline system.
- The method allows one uniform pipeline code and criterion to be used throughout the entire pipeline system. In this paper the allowable bending moment criteria according to DNV OS-F101has been used.
- Construction vessel size may be reduced and schedule may be more relaxed (the need for spools are eliminated)
- Less parties involved (spool design, fabrication etc.).
- The proposed direct tie-in method will work very well in combination with residual curvature sections elsewhere along the route for free span reduction (Endal et al 2015).
- The method may be applicable for S-lay vessels as well.

Some of the challenges regarding this method are to achieve rotational control of the pipeline. When installing pipelines they tend to roll and twist, if the section does not roll over by a 90 deg angle and resting on the seabed the residual curvature section may be free spanning as well as being exposed to hydrodynamic loads trawl loads etc. By using the Direct Tie-in Method of the pipeline the following parameters must be considered:

- Torsional capacity of connectors
- The soil friction
- The size of the pipeline
- The length of the pipeline
- Roll angle versus touch down of pipeline

11.2 Flexible spools

Flexible spools is an alternative to rigid spools often utilised in subsea projects The main advantages of using a flexible tie in solution versus a rigid spool are the reduced tie-in forces, roomy installation tolerances, and no requirement for metrology and fabrication after pipeline/structure installation. On the negative side, industry experience indicates that flexible pipes, jumpers and tails are more vulnerable than rigid pipe solutions, and thus have a reduced lifetime compared to a rigid solution. In addition, flow assurance issues could also be a concern for flexible.

Figure 11-9 Layers of Flexible Pipe (Wellstream)

Figure 11-9 Show the typical layers of the flexible pipe. Each layer has its purpose:

- The inner steel Carcass protects against external overpressure
- The Internal fluid barrier consist of a thermoplastic sheath for sealing

- The Hoop stress layer (Zeta) spiral main function is to contain internal pressure
- Armour layer main function is to take the axial forces
- The Thermoplastic sheath (tape) main function is to reduce friction between tension layers and the zeta spiral
- The external sheet main function is to protect against outer forces such as abrasion protection

In the Norwegian offshore sector flexible pipes has been in use since the late 80's. Some of the first applications were already installed early in the 70's. The use of flexibles peaked between 1996 and 2000, the curve flattened out towards the year 2006. The Current status (2007) Ref. /31/ for the Norwegian Offshore Sector is still an increase in the total number of flexible pipes. See Figure 11-10

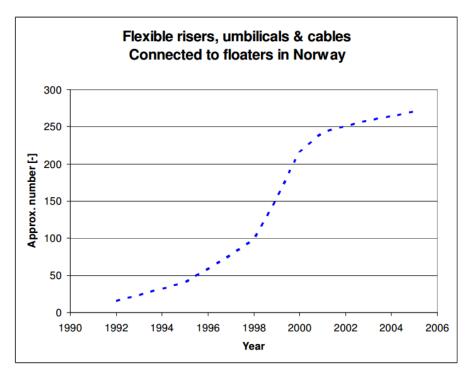


Figure 11-10 Installed flexibles in Norway Ref. /31/

For the Norwegian sector the report Ref. /31/ describes that over 200 flexibles has been installed in the Norwegian sector and the average servicetime for this has been 50% of its intended service life. However the technology has given cost effective solutions for a large number of field developments and the usage of flexibles is still growing. As of today there are several hundred kilometres of installed flexibles flowlines in the North Sea. Figure 11-11 gives an overview of the flexible riser incidents until 2007



Figure 11-11 Norway Riser failure data Ref. /31/

Some of the problems related to failure have been:

- End Fitting failure
- Carcass collapse
- External Sheet damage
- Flooded annulus
- Wire/armour corrosion and fatigue
- Nylon ageing
- PVDF (Plasticized Poly Vinyl Di Fluoride) Pull out
- Slippage of bend stiffeners
- Marine growth

Some of the major failure modes have been usage outside operation design limits and that some of these failure modes has been resolved by the industry.

Figure 11-12 shows the flexible spools and flow lines used on the Tordis Template. The project was set in production during 1998 -2001. In 2012 Statoil awarded DOFSubsea Norway AS a contract for replacement of the flexible jumper and flow lines.

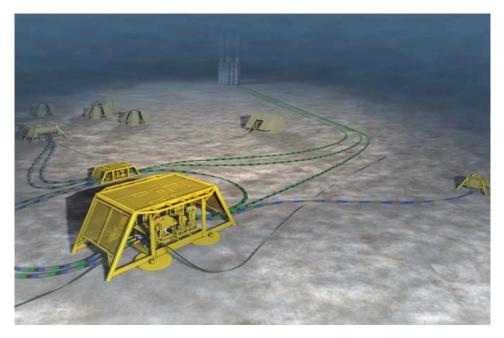


Figure 11-12 Tordis South East Field Flexible flow lines (Statoil)

The advancing technology of today offers more solutions for flexibles. Some of the new advancing products in flexibles are:

• DEEPFLEX Flexible Fibre Reinforced Pipe (FFRP) for deepwater applications Figure 11-13

Can be installed in water depths > 3000meters. It consists of a high strength to weight ratio composite mixture. The composite structure eliminates the steel corrosion problems and allows for better flow assurance with a smoother bore. The fatigue life is improve

• IPB (Integrated Production Bundle) Technip

This flexible provides active electrical heating and temperature monitoring. Used for ultra deep water applications. This allows for better control of hydrate and wax formations, developed for risers see Figure 11-14

• Magma m-pipe technology (TFRP) Thermoplastic Reinforced Pipe.

Is a high performance composite material that can be used for jumper spools and is qualified in accordance with DNV –RP-A203. The product is capable of high strains and provides a high degree of flexibility. The material consists of PEEK material as the core and combination of glass and carbon fibre as the reinforcement. See Figure 11-15 and Figure 11-16.

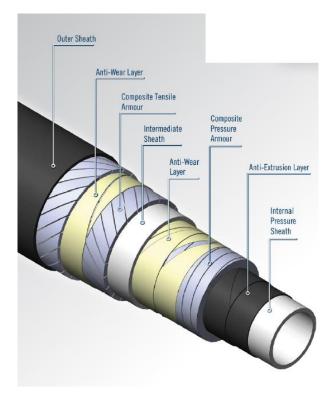


Figure 11-13 Multilayer Composite flexible (DEEPFLEX)

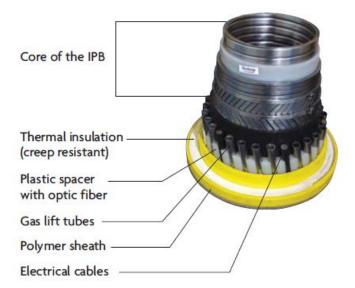


Figure 11-14 IPB Flexible With heat tracing and gas lift (Technip)

Figure 11-15 Jumper Solution m-pipe® (magmaglobal)

Figure 11-16 m-pipe[®] spool

The author of this thesis sees that for all composite flexibles it can be a challenge if the flow medium contains a high degree of sand content from the wells stream as this could lead to a faster abrasion of the product this should be consolidated with the manufactures of these flexibles

11.3 **Design Concept Ideas**

During the writing of this thesis some ideas regarding the improvement in the spool design has been proposed. Some of these concepts are:

• Introduction of a flexible joint at each end of a rigid spool

This could potentially reduce the requirement for high flexibility and number bends in a rigid spool due to less dependent upon metrology and manufacturing tolerances.

• Pre-bending of spools by weld mitigation Ref. chapters 9.3

This method is simple and reduces reaction forces at each end

• Develop lighter buoyancy material for deep water applications

The buoyancy material used today is ~ $\frac{1}{2}$ the density and of water and hence this causes the load mitigation aid to growth in diameter size due to increased submerged volume, this can give potential VIV issues for free span. By exploring the collapse limits for these materials or similar materials mixtures in order to optimize the density will benefit the spool design. The cost for buoyancy material may be reduced

• Introduce a spring seabed support

This method is utilised in topside process piping and reduces stresses bending moments and can have positive effects on VIV sensitivity. Ref. Chapter 9.2.

• Integrate flexibles on reel's as part of subsea structures

The idea is that an integrated flexible can be a part of the subsea structure. (It is the same principle as the house garden hose). This allows for installation cost savings. The principle is that the ROV only needs to perform a 1st Tie in operation to the other structure as the flexible is already connected and the ROV is basically flying out the other end to the tie-in point

- Integrate spool production facility and testing on board a pipe lay or installation vessels at regions in the world where there is lack of infrastructure for high quality pipe production. This could potentially save installation and transportation cost.
- Use of tension wires anchored to the sea bed can possibly reduce VIV effects for in-line motion
- Development of hybrid solutions between rigid and flexibles

12. SUMMARY, CONCLUSION AND RECOMMENDATIONS

12.1 Summary

In this thesis subsea Tie-in systems and spools used in the oil and gas market is studied. The purpose of this thesis was to explore the standard solutions used today and identify some of the main challenges regarding engineering of subsea Tie-in Spools. The other purpose was to perform strength verification of a spool by use of FEA. The study also explored and compared different computer software used in piping design. Another objective of the thesis is to propose possible new solutions and recommendations for Tie-in spool projects. An executive summary of the results is given here.

Tie-in Spool systems:

The study identified a variety of shapes and types used for spool design. When selecting and designing a Tie in system there are many considerations to be taken. A Pre-Study of the planned project is advisable to commence in order to determine the best spool design. The Pre-study or FEED should focus on the following key topics:

- Subsea routing and location of spool
- Spool type
- Installation time and constraints
- Use conservative data, previous experience is important
- Define optimum spool lengths (minimum and maximum)
- Identify critical values early in the project small changes can give rise to high cost later in project

For the North-Sea region most of the spools used today is of the horizontal type. Vertical spool type is most common for deepwater applications not exposed to risk of snagging or overtrawling. In this thesis industry experience is collected from publications and parent company. The evaluation shows that *vertical spools* are classified as *high risk* towards connector load capacity, increased complexity due to free span, can be sensitive to snagging, possible high risk for seal damage, and it can be difficult to perform pigging operations. For *horizontal spools* the limitation is as for vertical spools for the connector capacity towards bending moments and forces. However the spools are considered to have an overall lower risk compared with vertical spools. It is worth mention here that horizontals spools normally require longer offshore installation time and can give higher project costs.

Probabilistic assessment of fabrication tolerances and metrology used in spool design:

In this thesis the effect of fabrication, metrology tolerances and deformations is studied by use of ANSYS design explorer and the six sigma probabilistic tool. The statistical distribution of these effects has been discussed in chapters 3 and 7. Publications and recommendations on the topic have also been reviewed and discussed. The results in this thesis shows that the probability of reaching high stress levels due to the fabrication and metrology tolerance is very low given a normal statistical distribution for the variables and a uniform distribution for the displacements. It is assumed that there is a 95% probability of hitting the max and minimum angular tolerances with a 100% dimensional control. The analysis shows that the probability of reaching stress levels above the code allowable limits is equal or less to 10⁻⁴ (0.01%) or 1/10000 events (high

sigma level). However the sensitivity analysis shows that the spool response is sensitive to small changes in the tolerance and displacement values and the response is of a non-linear character. Hence this must also be considered when addressing the required safety levels for the spool design.

For the piping analysis it is advisable to incorporate a statistical tool for assessing the fabrication tolerances in order to establish a reasonable safety level in-line with the code requirements. One question is on how the project should handle the standard deviation based upon the critically of the system i.e. should the level be in the range 1.65 - 3 times the standard deviation. How will the probability of exceedance be quantified (5% or 10%)? Most of the analyzed spools today are based upon "worst case" scenario which is a very rare event but should perhaps be analyzed with the most probably expected tolerances and loading. Different techniques for random probabilistic and parameter correlation effects are available and can be included in simulation software (Monte Carlo simulation is one example)

The benefit of using the engineering tool ANSYS Design Explorer is that it is easier for projects to quantify the uncertainty and do an optimisation decision based on a better understanding of the results. Another benefit is that the tool also allows for "what if studies" .The ANSYS Design Explorer tool is user friendly and requires lesser time compared to performing tedious computer programming. This can contribute to a better quality check of the engineering work, since computer scripting is often performed by one engineer and can be a source of human errors.

FEA software comparison:

The traditional way of analysing subsea spools by use of the recently new ANSYS Pipe elements PIPE 288, 289 and ELBOW 290 is shown to be feasible for usage in designing spools, however in some cases it seems that max equivalent stress reported can differ in the location compared to other computer software and solid element models. The reason is not clear it could be that the ANSYS pipe elements reports higher stresses at bend locations due to sharp curvature or radius in pipe bends and that there is less flexibility in ELBOW290. Here it is advisable to study more comparative models in order to conclude. If the location is regarded as critical it is advisable to perform a finite element analysis using solid elements, fabrication tolerances and weld should be included in the analysis. The analysis also shows that use of shell elements in the finite element model of the spool can lead to underestimation of the reported stress levels. The AutoPIPE software usage is proven to be a good alternative for analysis of vertical spools the results are slightly more conservative and gives higher stress and utilisations compared to the ANSYS beam elements. The benefit of the software is that is very versatile to use for design code checks and it is by far superior to ANSYS when it comes to analysis time and design changes. In addition the user of the software is "forced" to learn the code and pipe fabrication more in depth by using this type of software. The minor side is that it does not seems to be suitable for strain based criteria's as given in the DNV-OS-F101Pipeline codes and for large non-linear displacements which is often used in horizontal spool design.

For the vertical spools check which was based upon the ASD criteria the utilisation towards the code stress limits has a good match between all computer models except for the ANSYS shell model which seems to underreport the stress levels.

Results from strength verification of vertical Tie-in spool

The vertical spool has been checked for the hydro testing operational and seal replacement load case. The analysis shows that the spool is utilised above the code stress limit *in corroded condition* with a *max utilisation of 109%* using the AutoPIPE piping analysis software and *max utilisation of 107%* using the ANSYS FEA software. The utilisation is largely influenced by the ASME B31.8 longitudinal stress limit criteria. The spool also fails for the minimum fatigue criteria for flexibility stress as given in the ASME B31.8 code. The spool however passes the ASME B31.8 Code check for *the nominal wall thickness* of the pipe, here max utilisation is *94%* for the sustained load case and GR+T(2)+P(2).

For the VIV and fatigue check the spool fails even with a vertical support and the accumulated damage is calculated to D=19>> greater than fatigue limit of 1/10, and hence the spool does not have sufficient fatigue capacity for the 25 year lifetime. The vertical support has a positive effect for the cross flow motion on leg 4 of the spool and the vibrations are damped out for higher modes. However since the VIV is dominated by inline motion, a possible seabed support must also include lateral support in order to reduce this motion. The spool will require mitigation measures such as VIV suppression strakes which must be included on the spool and the effect of this must be checked by new calculations and analysis. The spool is sensitive due to its long free span.

Results from load mitigation study

The result shows that by using a seabed support or a buoyancy element reduces the stresses in the spool by 25%. The largest effect was the reduction of bending moment at the *XT end with 76% reduction*. Hence this gave the best results. The pre-bending of the spool has a positive effect on the bending moments with a decrease of 30% for the bending moment on the XT tree side, but the utilisation for stresses at the manifold side was not largely effected in fact the stresses increased slightly by around~6%. The results are given in Table 9-8.

Future solutions for Subsea Tie-in

The subsea industry and the market have challenges due to a considerable drop in the oil prises. The industry has a large focus on how to reduce installation and development costs for future subsea oil and gas fields. An overview of alternative solutions which has potential to reduce cost is given in chapter 11. Direct Tie-in method for connection pipelines directly to subsea structures without the use of flow line spools is one example. New development of better materials and flexibles spools for smaller pipe sizes is also belived to enter the market in a larger scale. Rigid spools will however be a part of the industry for a long time due to its proven field of record and durability. The new tie-in Systems is less complex than the old ones and this should contribute to reduce costs. In this thesis simple measures which are adopted from the industry is proposed in order to reduce loading on vertical connectors and spool. Some conceptual ideas are presented which is believed to have a possibility of reducing the engineering, fabrication and installation scope such as

using flexible joints in spool design, this could reduce the sensitivity for angular tolerance deviations. This would again minimize subsea metrology and survey requirements.

12.2 Conclusion

Subsea spool design projects involve many tasks and considerations. It is important that issues related to the life time cycle of the spools is understood and mapped. Each phase from project concept to end of life time for the spool must be taken into consideration. The work requires in depth knowledge of spool design and fabrication methods from the project members.

In this thesis a vertical spool has been analysed with a statistical and probabilistic approach for the metrology and tolerances, the results shows that it is beneficial to include such method in order to better document the safety level and the conservatism in the spool design. The approach also allows the engineer to make a better decision towards the optimisation process. The ANSYS Design Explorer used in this thesis uses an algorithm for the parametric variations. The software tool generates many possible load combinations and gives output results based upon a statistical distribution of the input values. This results in a faster analysis time. Another positive feature is that it is capable to perform "what if analysis" for many design options and variations.

Other applicable software analysis program is also feasible to use such as the AutoPIPE software from Bentley. The difference compared to ANSYS is small when it comes to piping design using beam element technology and formulas found in a piping code such as the ASME B31.8 Ref. /15/.For a more optimised spool design approach ANSYS solid element modelling is found to give less conservative results. The AutoPIPE does not have the capability for strain based LRFD design according to DNV pipeline code Ref. /7/; hence this also limits the possibility for further optimisation work. Another limitation is the software capability to perform large non-linear displacements which is often the case for horizontal spools which relay on stroking capability, however the software has an advantage when it comes to linking the engineering process and the requirements given in the piping code, the software may be used in an early screening process prior to a more optimised work by use of ANSYS.

Vertical spools have a more challenging design and gives larger engineering and fabrication scope since there are many more considerations to be taken. This gives a higher risk level compared to horizontal spools. The vertical spools have had a traditional advantage that they can be installed faster than horizontal spool and require less deck space which influences the total vessel time used in an offshore campaign. When it comes to installation time subsea this might not be true for the recently developed horizontal spool connectors, as they have become much simpler and would logically give less subsea installation time. Documentation regarding this has not been available and can be difficult to retrieve. An economical and technical analysis of each system prior to a subsea field development is recommended.

The thesis also shows that simple mitigation measures for a vertical spool such as pre-bending and introduction of a seabed support and buoyancy onto the spool has positive effects by reducing the resulting bending moments at connector ends, and can reduce the total stresses in the spool. The result also shows that vertical spool design is very sensitive to VIV, and hence fatigue capacity governs the design.

12.3 **Recommendations**

For future subsea projects involving spool design the following practice is recommended for the design work and optimisation process.

- Develop design basis
- Use conservative data, previous experience is important
- Identify critical values early in the project small changes can give rise to high cost later in project
- Determine which FEA software is most applicable for usage regarding spool design
- Use pipe beam element technology as far as possible this reduces the amount of analysis time. For a more optimised and requirement for detailed analysis of the spool, design solid element modelling is recommended.
- Implement a statistical and a probabilistic tool (such as ANSYS design Explorer) for assessing the distribution of tolerances, deflections and metrology, and load combinations.
- Perform parameter study and sensitivity study to changes.
- The spool should be analysed for the whole life cycle.
- Define optimum spool lengths (minimum and maximum)
- Perform manual calculations as a benchmark and for checking results

Proposal for future studies:

- Development of hybrid solutions between rigid and flexibles
- Integrate spool production facility and testing on board a pipe lay or installation vessels at regions in the world where there is lack of infrastructure for high quality pipe production. This could potentially save installation and transportation cost.
- Development of lighter or alternative and cheaper buoyancy material for deep water applications
- Develop a software tool that integrates DNV OS-F101 LRFD design into an typical piping software such as the AutoPIPE or similar.
- Perform further studies for the Direct Tie-in method for pipelines.

REFERENCES

/1/	Per Richard Nystrøm and Gawain Langford, "Jumper Arch System", OPT-2002- 03, ABB Offshore systems presented at the Offshore Pipeline Technology
	Conference, 2002
/2/	Espen Slettebø, "Tie-in Spools-A verification study", Master Thesis , Institute of Offshore Technology and Marine and Subsea Technology, University of Stavanger,2012
/3/	Jone Lutro ,"Tie-in Jumper System", Master Thesis , Institute of Offshore Technology and Offshore Construction, College of Stavanger,2003
/4/	Dr. Phil Hopkins "High Design factor pipelines integrity issues", Penspen Integrity, Newcastle upon Tyne UK, Presented at the WTIA Conference ,Wollongong Australia, December2004
/5/	"Subsea Facilities Technology Developments, Incidents and Future Trends", 2014, DNV-GL Report 2014-0113 Rev. 03, for Petroleumstilsynet
/6/	JP Kenny, "Advanced Deepwater Spools", Analysis paper presented at OPT 2008 27-02-08
/7/	Submarine Pipeline Systems, DNV-OS-F101, October 2013
/8/	Rita G. Toscano, "Collapse and post-collapse behaviour of steel pipes under external pressure and bending. Application to deep water pipelines", Doctoral
/9/	Thesis Universidad de Buenos Aires- Facultad de Ingeniería, Argentina ,2009 Ken Hiroshi and O.Kenko- Waseda,-"Buckling behaviour and design of steel liner encased in deep water tunnel under external hydrostatic pressure", Doctoral Thesis University of Tokyo, 2008
/10/	Andrew C. Palmer and Roger A.King - <i>Subsea Pipeline Engineering</i> . Tulsa Oklahoma: PennWell Corporation, 2004
/11/	Olav Fyrileiv and Leif Collberg, "Influence of pressure in pipeline design-effective axial force", Presented at OMAE2005-67502 ,Det Norske Veritas ,2005
/12/	Sparks C.P, "The Influence of Tension, Pressure and Weight on Pipe and Riser Deformations and Stresses", Proceedings of OMAE, 1983.
/13/	Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, <i>Concepts and Applications of Finite Element Analysis</i> . Madison: John Wiley &Sons,2002
/14/	Fatigue design of Offshore Steel Structures, DNV-RP-C203,2011
/15/	Gas Transmission and Distribution Piping Systems, ASME B31.8 , 2012
/16/	Boiler Pressure Vessel Code (BPVC) VIII div 2- Alternative rules, ASME, 2013 and Section II-D materials , ASME,2007
/17/	Process Piping, ASME B31.3, 2012
/18/	Carlos A. de J. Miranda, Altair A. Faloppa, Miguel Mattar Neto, Gerson Fainer "ASME Stress linearization and classification-A Discussion Based on a Case Study" Presented at the International Nuclear Atlantic Conference, INAC 2011

Brazil, October 24-28, 2011

- /19/ Subsea Structures, Manifolds and Choke Modules, Statoil TR1230 Ver.5
- /20/ Robert D. Blevins, *Flow Induced vibrations second edition*, Malabar: Krieger Pub.,2001
- /21/ Lingfu Zeng, Lennart G. Jansson, "On Pipe Elements Currently Available for Nuclear Power Piping Analysis And Their Benchmark Test", Presented at ASME Pressure vessels & Piping Conference, Toronto Ontario Canada ,July 15-19 2012
- (22/
 G.H. Powell, Phd. Dept. of Structural Engineering, University of California & O.
 Ashraf, Msc. Engineering Design Automation, Berkley, California USA
 "Nonlinear effects in piping system analysis", Paper C459/042, Presented at the IMechE Conference, 1993
- /23/ Lienhard John H. Ass. Professor. "Synopsis of Lift, Drag and Vortex Frequency for Rigid Circular Cylinders", Washington State University 1966
- /24/ Free Spanning pipelines, DNV-RP-F105 February 2006
- /25/ Environmental Conditions and Loads, DNV Classification note 30.5 (March 2000)
- /26/ Charles Becht IV, The complete guide to ASME B 31.3 third edition, ASME PressNew York, 2009
- /27/ Piping Fabrication, Installation, Flushing and Testing, NORSOK L-004 Sept 2010
- /28/ Piping System Layout, Design and Structural Analysis, NORSOK L-002, July 2009
- /29/ David Copper MA (Cantab) CEng MICE Flint and Neil partnership London
 SE1ODB" Probabilistic Assessment of the Effects of Fabrication Tolerances".
 Presented at, Maritime Conference ASRANet , 2010
- /30/ Per R. Nystrøm IKM Ocean Design AS, Geir Endal, Odd M. Lyngsaunet Statoil ASA "Lay Method for direct Tie-in of Pipelines", To be presented at ISOPE Conference, Maui, Hawaii, USA, 2015.
- /31/ Petroleumstilsynet-PTIL "PSA NORWAY Flexible Pipes Failure modes, inspection, testing and monitoring",2007.[online] available at: <u>http://www.ptil.no/getfile.php/PDF/P5996RPT01REV02cSeaflex_JanMuren.pdf</u> Accessed:[20.05.2015]
- /32/ Design, Construction, Operation, and maintenance of Offshore Hydrocarbon Pipelines, API Recommended Practice 1111, fourth edition, December 2009
- /33/ Design Of Duplex Stainless Steel Subsea Equipment Exposed to Cathodic Protection, DNV-RP-F112, 2008
- /34/ E.W. Mc Allister *Pipeline Rules of Thumb*. Burlington MA 01803 USA : Elsevier Inc., 2005
- /35/ Liang Chaun, Tsen-Loong *Pipe Stress Engineering*. Houston Texas USA ASME Press,2009

Appendix 1 Pre-Study Master Thesis

University of Stavanger Faculty of Science and Technology					
Study program/ Specialization: Spring semester, 2015 Master in Mechanical Engineering Open					
Writer: Loyd Kjetil Helland Andersen Faculty supervisor: Hirpa G. Lemu, UIS (Writer's signature)					
External supervisor(s): Per Nystrøm, IKM Ocean Design AS Thesis title: Subsea Tie-in, Design Solutions and Optimisation Methods					
Credits (ECTS): 30 Key words:					
-Tie-in System -Subsea installation -FE analysis -Design methods -Pipe Spool	Pages: 23 + enclosure: 0 Stavanger, 14.02.2015				

Preface

This is a pre-study to the Master's Thesis to be conducted at UIS, department of Mechanical and Structural Engineering and Material Science during spring 2015. The Pre-study report is made with the intention to define the scope of work for this thesis. Key words are Subsea Tie-in spools and design methods used in the gas and oil industry. The design route for Tie-in spool used today is either the DNV-OS-F101 Submarine Pipeline Systems or the ASME Code for Pressure Piping, B31.8, B31.4 Pipeline Transportation. A recommended practice for the design of rigid spools is not yet set forth. According to the DNV list of Joint industry project (JIPS) a project for these types of spools was completed in 2013. The result of this project is not known to author at present day. This Thesis main objective is to investigate standard solutions, identify main challenges for Tie-in Spools, perform a spool analysis, and propose possible new solutions and recommendations for the commencing of such projects.

The Thesis is written in co-operation with IKM Ocean Design A/S, which has been my employer for the last 7 years where I have been working as a Structural and Mechanical Engineer. IKM Ocean Design Specializes in design and engineering of subsea pipelines, subsea structures and Tie-in solutions. The company is a sub company of the IKM Group in Norway which is a major sub supplier to the oil and gas industry.

During the years working for IKM two vertical Tie-in Spool systems for deepwater applications projects has been proven to be of great challenge when it comes to design optimization, analysis techniques and strength verification. Hence a requirement for a more standardized route and methods for these types of spool would indeed benefit future projects.

Table of contents

PRE	FA	ACE		. I
ТАВ	LE		NTENTS	11
1.	1	NTRODU	JCTION	1
1.	_		ORICAL	
1.	.2		(GROUND	
1.	.3	SCOP	PE OF WORK	3
1.	4	FLEXI	IBILITY IN PIPING DESIGN	3
1.	.5	Anal	LYSIS SOFTWARE	6
2.	V	NORK BF	REAK DOWN STRUCTURE (WBS)1	1
2.	.1	Pre-	STUDY AND INTRODUCTION TO MASTER THESIS	2
2.	.2	INTRO	ODUCTION1	3
2.	.3	TIE-II	N SPOOL SYSTEMS	4
2.	4	CON	NECTOR SYSTEMS	5
2.	.5	CASE	STUDY SPOOL OPTIMIZATION FEA	6
2.	.6	Futu	JRE SOLUTIONS FOR TIE-IN SYSTEMS	7
2.	.7	Engi	INEERING ROUTE SUBSEA SPOOLS	8
3.	S	CHEDUL	.E1	9
4.	R	REFEREN	CES2	0

1. Introduction

A pipeline connection is normally used as a link between a pipeline, manifold, oil-well, storage tank, processing facility or other mechanical equipment used for the transportation of a fluid, gas, sand or a combination of all from one location to another. The pipeline link connection is called a spool which is an English terminology (in Norwegian it translates to "snelle", which is a device for reeling something on like a fishing reel). When we use the word spool in piping terminology it is understood as piece of pipe with necessary bends tees and flanges for connection to another system. In simple terms it is the pipe from flange to flange. The concept is relatively simple. As the pipes are heated and pressurized they expand and since the piping is restrained in some way in a piping system stresses are developed. For subsea pipelines the spools is usually an infield pipeline connection to a trunk exporting pipeline, manifold, oil wells or other subsea facility. The transport medium is:

- Produced oil
- Gas injection
- Water injection
- Multiphase flow (oil, gas and water)

Spools must have enough flexibility to withstand the expansion deflection from facilities such as:

- Pipeline and Risers connected to subsea structures or other processing unit.
- Oil-wells and manifolds
- Environmental forces

1.1 Historical

Since the 1980's, when the subsea industry started moving into water depths where divers could not be used, the industry has been challenged to provide a simple cost effective method of connecting two lines without divers.

The industry has responded to this challenge providing innovative methods of doing first end and second end tie-in methods including:

- stab & hinge-over
- Rigid jumpers/spools
- Flexible
- Deflect and connect

A multitude of vertical and horizontal connectors & tools:

However, the use of rigid jumpers still remains the universal method of performing deepwater pipeline connections, possibly due its extensive proven track record, its cost effectiveness and high reliability. However, this system still has significant drawbacks which include the requirement for metrology, topsides fabrication (which may or may not be on the critical path), installation with a multipoint lift and its limited capability to accommodate pipeline expansion and two tie-in operations. Ref. /1/

Some of the early projects during the 1980,s utilizing the deflect to connect approach was

• East Frigg Project. June 1988. Connection of 2 production manifolds to a central manifold by 2 bundles in 24" carrier pipes to provide buoyancy.

Bundles connected by a first time diver less deflect to connect method.

• Troll Olje Project. August 1995. Connection of 16" oil and gas export pipelines. First time diver less "deflect to connect" directly on pipelines by attaching weight and buoyancy.

1.2 Background

Subsea Tie-in solutions provided by most of the major actors in the subsea market provides various systems for connecting pipelines to manifolds, wells and Trunk pipe lines. These pipelines are usually called "spools" or tie in spool. This is usually a steel pipe oriented either vertically or horizontally with a connector system in each end, other types used is of a flexible types similar to what is used in risers. These spools are often designed to withstand large forces and displacements due to pressure and temperature in the pipeline during installation and operation; hence the requirement for flexibility and strength is one of the key design features. Various computer optimization techniques such as the use of FEA and CFD are utilized in order to analyze and verify strength of these spools towards numerous load combinations in order to document required design life and governing codes. Experience has shown that some of these solutions are sensitive to parameter changes such as:

- Flow and process data
- Material choice
- Metrology and fabrication tolerances
- Environmental factors.
- Size and shape
- Connector solutions

Typically main issues related to design of rigid spools can be listed as follows:

- Size
- Stresses
- Conflict between company standard and code requirements
- Lack of recommended practice
- Corrosion and (HISC) problems
- Insulation
- VIV
- Weight
- Fatigue
- Erosion
- Slugging
- Pressure loss sour service
- Requirement for MEG inhibitors
- Sour service
- Seabed
- Size and limitation of connector systems
- Requirement for structural support equipment

In order to reduce project cost, time and complexity for subsea Tie-in projects the following areas are considered to be of interest to study in a FEED (Front End Engineering and Design) phase:

- 1. Computer analysis techniques and design methods
- 2. An early identification and mapping of critical design values and limitations
- 3. Other relevant Tie-in solutions
- 4. Mapping of complexity in the project
- 5. Vessel installation time.
- 6. Use of standard solutions and previous project experiences.
- 7. Usage of design standards, company practices and codes.

In order to limit the work in this Thesis, point 1, 3 and 7 is chosen as main areas to study.

1.3 Scope of work

This Thesis major purpose is to investigate some of the standard solutions of the tie-in system as used by the major actors in the oil and gas industry.

The Thesis will utilize other studies, company experience, papers and Master Thesis on this topic.

Main objective is to analyze a vertical jumper spool by use of a commercial Finite Element Analysis Software, and to study spool design such as:

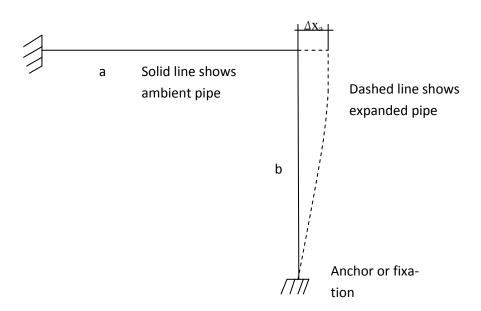
- Investigate the effect of a flexible joint or seabed support in order to reduce moment and forces in a rigid spool.
- Optimize the computer analysis by parametric variation

The study will include

- Development of design basis for analysis
- Theory
- Use of applicable standards

Other topics such as

- Conceptual ideas
- Further studies and development for Tie-in
- Limitations


Propose recommendations for commencing of such projects and the result of the case study

1.4 Flexibility in piping design

Flexibility design in piping systems is of great importance to study as temperature, pressure and gravity forces are inducing stresses, strains and deformations in the pipe system when it is restrained. Furthermore as the piping system heats up and shuts down the piping system is exposed to changes in stresses, this causes a fatigue situation. For a piping system exposed to environmental forces such as current and waves typically for subsea pipes, VIV (Vortex Induced Vibration) can cause the pipeline to be excited into harmonic low frequency vibration. This can result in fatigue failure or unintentional high displacement ranges. The designer must calculate the stresses allowed by a particular code. One of the significant dif-

ferences between flexibility analysis and pressure design is that flexibility is related to stress range rather than a specific stress. For subsea piping the requirement for flexibility is how to make a system flexible enough in order to be able to handle the deformations from pipeline expansion, Tie-in forces, metrology and fabrication tolerances environmental forces etc. The acceptance criteria are usually a strain and stress based criteria set forth by a piping code.

The principle for flexibility design is shown by a simplified calculation known as the guided cantilever approximation /2/. A pipe is restrained against axial movements causing a deformation shape as shown by the dotted line. The deflection is assumed to occur in a single plane system under the guided cantilever approximation.

Figure 1 simple Restrained pipe flexibility design

The deflection capacity of a cantilever under this assumption can be given by the following equation in (US customary units)

$$\Delta X_a = \frac{144L^2 S_A}{3ED_o} \tag{1}$$

Where

 Δ = permissible deflection

L= Length of pipe element to absorb the expansion

E=Youngs modulus at cold temperature

 D_o =Outside diameter of pipe

S_A=Allowable stress range

The limitation of the method is:

- The system has only two terminal points and is composed of straight legs of pipe with uniform size and thickness
- All legs are parallel to the coordinate axes
- Thermal expansion is absorbed only by legs in a perpendicular direction
- The amount of thermal expansion that a given leg can absorb is inversely proportional to its stiffness. Because the legs are of inverse value of the cube of their lengths.
- In accommodating thermal expansion the legs act as a guided cantilever, that is they are subjected to bending under end displacement no end rotation is permitted

Consider the following example as to calculate the required length of leg (b) if the system is exposed to a displacement in x direction of 2.3in (58mm) due to thermal expansion of leg (a).

Pipe data: $D_0=4.5$ in $\Delta_{xa}=2.3$ in $S_A=15000$ psi $E=29.7x10^6$ psi La=20ft

By rearranging Eq. 1.1 the required length for Leg (b) becomes in:

$$L_b = \sqrt{\frac{3ED_o \cdot \Delta xa}{144S_A}} = \sqrt{\frac{3 \cdot 29.7 \cdot 10^6 \cdot 4.5 \cdot 2.3}{144 \cdot 15000}} = 20.7 ft(6298mm)$$
(2)

This simple calculation shows that Leg (b) has to be longer than that of leg (a) in order to be within a safe stress limit for the pipe. By observing this formula one sees that the allowable deflection is depended upon the pipe length leg squared hence doubling the expansion Δ of pipe length L_a requires the other length L_b of the pipe to increase by a factor of: $\sqrt{2} = 1.41$, in order to maintain stresses within the limit.

Other flexibility criteria as given in ASME B31.4 Ref. /3/section 403.9 can also be used as a simplification. This formula is an empirical criteria for checking the expansion of unrestrained pipelines.

$$\frac{Dy}{(L-U)^2} \le K \tag{3}$$

Where

D= Outside Diameter of the pipe

L= Developed Length of the pipe between anchors

U=Straight line distance between anchors

K=numerical factor =208 (SI Units) and 0.03 for US customary units

y=Resultant of total displacement strains to be absorbed by the pipe ($U\alpha \Delta T$)

The code specifies the following criteria to be met

"Pipelines shall be designed to have sufficient flexibility to prevent expansion or contraction from causing stresses in the pipe material or pipeline components that exceed the allowable specified herein, including joints, connections, anchor points, or guide points. Note that allowable forces and moments on equipment may be less than for the connected pipe. Analysis of adequate flexibility of unrestrained pipe is not required for a pipeline that

(a) Has been previously analyzed

(b) Is of uniform size, has no more than two anchor points, no intermediate restraints, and falls Within the limitations of the following empirical formula given by (3):

Any pipeline not meeting the requirements given above shall be analyzed by a simplified, approximate,

or comprehensive method as appropriate. The effects of all parts of the pipeline and components and of all restraints, including friction, shall be accounted for."

By comparison to the example given by the cantilever method the calculation using formula (2) becomes:

ASME B31.4 Section 403.9 Check			
Outside diameter of pipe	D _{od} =	4,50	in
Length a	L _a =	30	ft
Length b	L _b =	34	ft
Length of spool	L _{spool} =	64	ft
Straight line distance between anchors	$U = (L_a^2 + L_b^2)^{0.5}$	45,3	ft
Total imposed displacement	y=	2,30	in
Numerical factor ASME B31.4	К=	0,03	
Criteria	$a=(D_{od}\cdot y)/(L_{spool}-U)^2$	0,030	
	Flexibillity Check a≤K	ОК	

Table 1-1 ASME B31.4 Flexibility Criteria

According to this empirical formula given by (3) the spool has to increase leg (a) to 30ft and leg (b) to 34ft in order to pass the criteria. There is no general proof of this formula as to its accuracy or conservatism. The formula might only be valid for temperature rise change and not imposed external displacements. As shown the simplified calculation has limitations and the designer must decide whether or not it is required to proceed to a more accurate analysis.

1.5 Analysis Software

Various methods exits such as simplified analysis, charts, graphical analysis, computer analysis tool such as Autopipe by Bentley Ref. Figure 2, CAESAR II from Intergraph and Triflex from piping solutions.com. The Software checks that stresses are within the code limit. The software usually has a limitation of number of load combinations and large non-linear displacement functions. The software is mostly utilized in topside /onshore process piping systems but is also feasible for process system used subsea

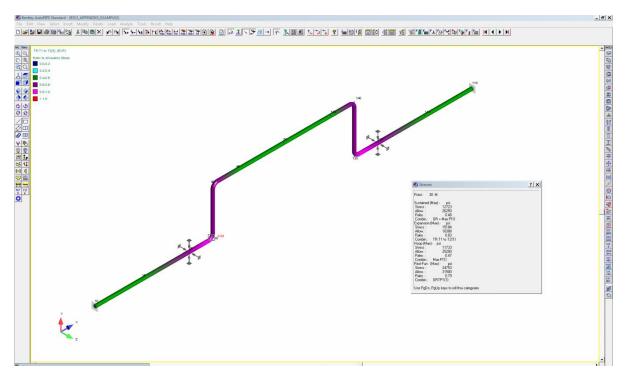


Figure 2 Autopipe typical Stress Analysis Software by Bentley

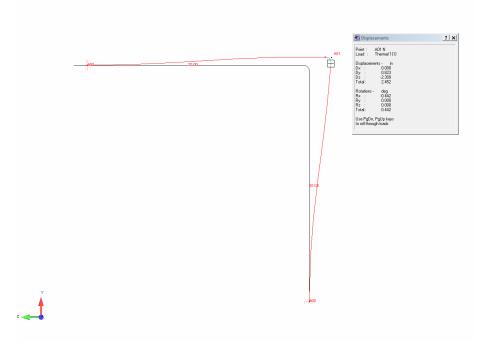


Figure 3 Autopipe Stress Analysis of 4"pipe spool-max deflection

Figure 3 and Figure 4 shows the result of the stress analysis for the guided cantilever method. For a max displacement of 2.3in (imposed +thermal expansion) and leg (b) equal to 20.03ft the software reports back a max utilization ratio of **UF= 1.07** towards <u>allowable stress ratio</u> which is almost identical to the analytical result (7% difference). This indicates that the guided cantilever method is a good approximation for simple calculation and estimation but lacks code approval given in the ASME codes.

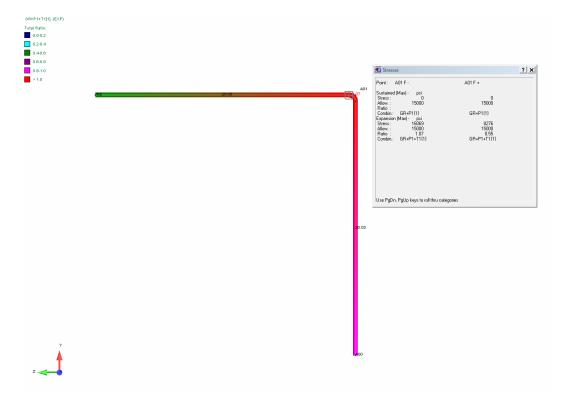


Figure 4 Autopipe Stress Analysis of 4"pipe spool-max stress ratio

For a more advanced study or special case such as subsea flow lines and tie-in spools the most utilized FEA software used today is the ANSYS software package. Here the pipe model can be set up by use of script commands in the APDL (ANSYS Parametric Design Language) and the whole sequence of installing and operation the pipe within many hundreds or thousands of load combinations can be run in a loop. The software also has the capability to model non-linear contact problems such as seabed friction. Figure 5 and Figure 6 shows a typical classic FEA model of a spool. Pipe elements with physical properties are meshed along a line element. The challenge is to vary the combinations of loads and to check that the configuration of the spool is within a safe stress and deflection limit. Examples of design data for a rigid spool is shown in Table 1-2to Table 1-4. The spool is normally fabricated based on the field metrology report after installation of the Manifold and PLET (Pipeline End Termination). The installation tolerances however are covered for by changing the jumper geometry in the analyses to find the most unfavorable configuration, governing for the spool design. However, the settlements and the fabrication and metrology tolerances will be unknown Project experience has shown that changing these values can have a major impact on the design hence giving rise to more uncertainties in combinations with all the other design parameters.

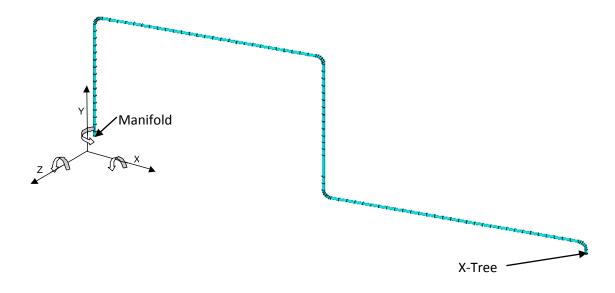


Figure 5 ANSYS Pipe element model vertical spool

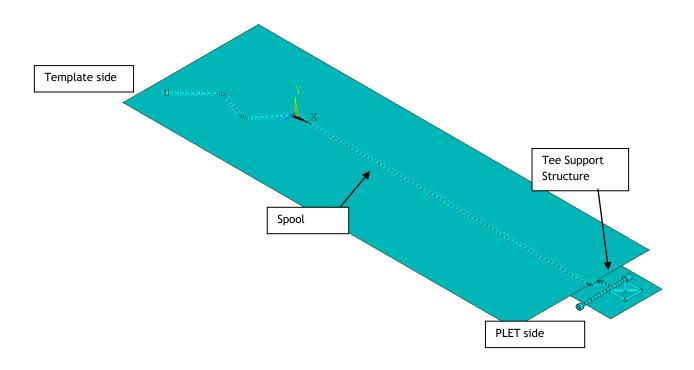


Figure 6 ANSYS Pipe element model horizontal spool with seabed

Design parameter	Value
Subsea ambient temperature	4.3°C
Density of fluid	747 kg/m ³
Seawater density	1026 kg/m ³
Current speed (Operational)	0.7 m/s
Max. design water depth collapse	914 m
Min. design water depth to obtain design gauge pres-	700 m
sure	
Max design pressure	5000 psi (345 bar)
Max temperature range	-29°C to +121°C
Slugging force from well stream flow (multiphase flow)	v _s =10 m/s density slug 900 kg/m ³
Pipe size	6 "ND Sch.120
Pipe material	25% Cr Super Duplex

Table 1-2 Design data for a typical deep water project

Table 1-3 Typical Installation, Tolerances and Settlements for a subsea project

Parameter	PLET	Manifold	X-tree	Spool/pipe
Position	± 3.0 m	2.0 m Radius		
Heading	±5°			
Vertical angle	±5°	± 2.5 °		
Long term settlement	- 200 mm	-130mm		
Short term settlement	- 20 mm			
Vertical position		+0.3m		
	Pipeline ex-			
Horizontal deflections	pansion		216 mm	
Vertical deflections	200 mm		25 mm	
Fabrication tolerance angular				±0.5°/±1°
Fabrication tolerance linear				5 to 10mm

Table 1-4 Typical Clamp Connector/Hub Capacities

Parameters	Data
Max axial force Tension	100 kN
Max bending Moment at max pressure	250 kNm
Max bending Moment clamp closing	260 kNm
Max allowable bending moment	200 kNm
Torsional capacity	109 kNm

2. Work Break down Structure (WBS)

Table 2-1 shows the WBS for this Thesis. The study is divided into chapters where each WBS reflects a topic. The objective and scope of each topic is described in a standard IKM CTR format (Cost, Time and, Resource). The cost estimate for this thesis is not necessary. The CTR is linked to the schedule given in chapters 3. The thesis is mainly one resource dedicated to the task. Some assistance of IKM engineers will be required during the period as to give input to software usage, technical advices checking of results and literature on the topic.

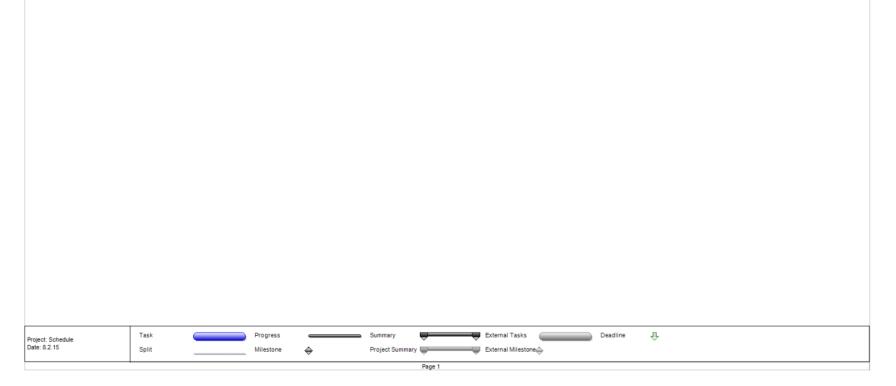
CTR No.	Description	Reference
E.1.0	Pre-study and Introduction to Master Thesis	2.1
E.1.1	Introduction	2.2
E.2.0	Tie-in Spool Systems	2.3
E.3.0	Connector Systems	2.4
E.4.0	Spool optimization FEA	2.5
E.5.0	Future solutions for Tie-in systems	2.6
E.6.0	Engineering Route Subsea Spools	2.7

COST, TIME, RESO	URCE				I·K·M IKM Ocean Design AS
Project	Master thesis S Design Solution			nods	
CTR No. E.1.0	Title :	2.1	Pre-study ar	nd Introc	luction to Master Thesis
Objective	Identify main ch	nallenges a	and technical is	sues relat	ed to subsea tie-in
Scope of work:	Pros and	d cons of o	ature review current subsea try technical ch		
Duration	: Ref. Schedule				
Estimate	:NA		Prepar	ed by	: LKHA
			Date		: 08.02.2015

COST, TIME, RES	DURCE			IKM Ocean Design AS
Project	Master thesis Solution		isation Methods	
CTR No. E.1.1	Title :	2.2 Ir	ntroduction	
Objective	Describe main p	urpose with	subsea Tie-in spools	
Scope :	BackgroHistorica	al developm		ystems
Duration	: Ref. Schedule			
Estimate	:NA		Prepared by	LKHA
	•		Date	08.02.2015

COST, TIME, RES	SOURCE			IKM Ocean Design AS
Project	Master thesis Sul Design Solutions		n nisation Methods	
CTR No. E.2.0	Title :	2.3	Tie-in Spool System	IS
Objective	Identify typical T	ie-in Syste	m used in today's indu	ıstry
Scope :	Main pu	ations and	stems I geometrical layouts	
Duration	: Ref. Schedule			
Estimate	NA		Prepared by	LKHA
	I		Date	08.02.2015

COST, TIME, RES	SOURCE			IKM Ocean Design AS
Project	Master thesis Subsea Design Solutions and (sation Methods	
CTR No. E.3.0	Title : 2.4	C	onnector Systems	
Objective	Identify typical Mecha	nical C	Connector Systems us	ed for Subsea Tie-Back
Scope :	 Major Supplie Differences Functionality a Limitations 		erability	
Duration	Ref. Schedule			
Estimate			Prepared by Date	LKHA 08.02.2015


COST, TIME, RES	OURCE			IKM Ocean Design AS
Project	Master thesis Su Design Solution		tion Methods	
CTR No. E.4.0	Title :	2.5 Sp c	ool optimization	FEA
Objective	Verify and optin	nize the struct	ural strength of a ty	pical spool by use of FEA
Scope :	 Design basis Identification of load cases Flexibility design Wall thickness design Perform computer analysis of spools Compare different solutions Establish criteria based upon industry standard such as ASME ,DNV 			
Duration	Ref Schedule			
Estimate	NA		Prepared by	LKHA
			Date	08.02.2015

COST, TIME, RES	OURCE			IKM Ocean Design AS
Project	Master thesis Su Design Solutions		ation Methods	
CTR No. E.5.0	Title :	2.6 Fu	uture solutions for	⁻ Tie-in systems
Objective	Propose	other possib	le Tie-in Solutions	
Scope :	Deflect t • Flexible	o connect et	с.	today such as Direct Tie-in
Duration	Ref. Schedule			
Estimate			Prepared by	LKHA
			Date	08.02.2015

COST, TIME, RES	OURCE			IKM Ocean Design AS
Project	Master thesis S Design Solution		isation Methods	
CTR No. E.6.0	Title :	2.7 E	Engineering Route S	ubsea Spools
Objective	Establish a best	practice rou	ite for Spools project	
Scope :		-	e from projects rt for choice of best s	uited spool type and configuration
Duration	Ref. Schedule			
Estimate			Prepared by	LKHA
	I		Date	08.02.2015

3. Schedule

	0	Name	Duration	Start	Finish			F	ebrua	iry			March	1			A	pril				May			Ju	ne	
						11.1 1	18.1 2	5.1 0	1.2	08.2	15.2	22.2	01.3	08.3	15.3	22.3	29.3	3 05.4	12.4	19.4	26.4	03.5	10.5	17.5 24	.5 31.	5 07.6 1	4.6 21
1	11	Master Thesis Subsea Tie-In Design Solutions and Optimisation Metho	107 days	15.1.15	15.6.15	-		-	-			_									-				-		1
2		Application delivered at UIS	12 days	15.1.15	2.2.15	, —		-	,																		
3	✓	Application Approved	0 days	15.1.15	15.1.15	\$ 1	5.1																				
4		Official Start of thesis	0 days	2.2.15	2.2.15			4	2.2																		
5		CTR E1.0 Prestudy	10 days	2.2.15	13.2.15					-	ı																
6		CTR E1.1 Introduction	1 wk	16.2.15	20.2.16						ò.	- L															
7		CTR E2.0 Tie-In Spool systems	1,5 wks	23.2.15	4.3.16							č –															
8		CTR E3.0 Connector systems	1 wk	4.3.15	11.3.16								č														
9		CTR E4.0 Case Study Spool Optimisation FEA	9 wks	11.3.15	13.5.16									č													
10		CTR E5.0 Future Solutions Tie-in	1,5 wks	13.5.15	22.5.16																		- č				
11		CTR E6.0 Engineering Route for Subsea Spools	1 wk	25.5.15	29.5.16																			č			
12		Draft Issue	10 days	1.6.15	12.6.15	5																			- -		
13	1	Include comments and finnish report and copies	2 wks	1.6.15	12.6.15																				- č		
14	11	Delivery of the master thesis	0 days	15.6.15	15.6.18																						15.6

4. References

/1/	Per Richard Nystrøm and Gawain Langford, "Jumper Arch System", OPT-2002-
	03, ABB Offshore systems presented at the Offshore Pipeline Technology Con-
	ference, 2002
/2/	Sam kannappan John Wiley & sons Inc. "Introduction to pipe stress analysis"
	Tennessee Valley Authority, Knoxville Tennessee 1986
/3/	Pipeline Transportation systems for liquids and Slurries ,ASME B31.4, 2012

Appendix 2 ANSYS Design Explorer Spool Deflection Combinations

Design	Dy1	Rx1 (degree)	Rz1	Dx2	Dy2	Rx2	Rz2
Point	(mm)	(degree)	(degree)	(mm)	(mm)	(degree)	(degree)
1	-130,00	0,00	0,00	0,00	-31,00	0,00	0,00
2	-160,94	0,00	0,00	0,00	-31,00	0,00	0,00
3	-99,06	0,00	0,00	0,00	-31,00	0,00	0,00
4	-130,00	-0,93	0,00	0,00	-31,00	0,00	0,00
5	-130,00	0,93	0,00	0,00	-31,00	0,00	0,00
6	-130,00	0,00	-0,93	0,00	-31,00	0,00	0,00
7	-130,00	0,00	0,93	0,00	-31,00	0,00	0,00
8	-130,00	0,00	0,00	-246,51	-31,00	0,00	0,00
9	-130,00	0,00	0,00	246,51	-31,00	0,00	0,00
10	-130,00	0,00	0,00	0,00	-55,95	0,00	0,00
11	-130,00	0,00	0,00	0,00	-6,05	0,00	0,00
12	-130,00	0,00	0,00	0,00	-31,00	-0,93	0,00
13	-130,00	0,00	0,00	0,00	-31,00	0,93	0,00
14	-130,00	0,00	0,00	0,00	-31,00	0,00	-0,93
15	-130,00	0,00	0,00	0,00	-31,00	0,00	0,93
16	-146,37	-0,49	-0,49	-130,42	-44,20	-0,49	0,49
17	-113,63	-0,49	-0,49	-130,42	-44,20	-0,49	-0,49
18	-146,37	0,49	-0,49	-130,42	-44,20	-0,49	-0,49
19	-113,63	0,49	-0,49	-130,42	-44,20	-0,49	0,49
20	-146,37	-0,49	0,49	-130,42	-44,20	-0,49	-0,49
21	-113,63	-0,49	0,49	-130,42	-44,20	-0,49	0,49
22	-146,37	0,49	0,49	-130,42	-44,20	-0,49	0,49
23	-113,63	0,49	0,49	-130,42	-44,20	-0,49	-0,49
24	-146,37	-0,49	-0,49	130,42	-44,20	-0,49	-0,49
25	-113,63	-0,49	-0,49	130,42	-44,20	-0,49	0,49
26	-146,37	0,49	-0,49	130,42	-44,20	-0,49	0,49
27	-113,63	0,49	-0,49	130,42	-44,20	-0,49	-0,49
28	-146,37	-0,49	0,49	130,42	-44,20	-0,49	0,49
29	-113,63	-0,49	0,49	130,42	-44,20	-0,49	-0,49
30	-146,37	0,49	0,49	130,42	-44,20	-0,49	-0,49
31	-113,63	0,49	0,49	130,42	-44,20	-0,49	0,49
32	-146,37	-0,49	-0,49	-130,42	-17,80	-0,49	-0,49
33	-113,63	-0,49	-0,49	-130,42	-17,80	-0,49	0,49
34	-146,37	0,49	-0,49	-130,42	-17,80	-0,49	0,49
35	-113,63	0,49	-0,49	-130,42	-17,80	-0,49	-0,49
36	-146,37	-0,49	0,49	-130,42	-17,80	-0,49	0,49
37	-113,63	-0,49	0,49	-130,42	-17,80	-0,49	-0,49
38	-146,37	0,49	0,49	-130,42	-17,80	-0,49	-0,49
39	-113,63	0,49	0,49	-130,42	-17,80	-0,49	0,49
40	-146,37	-0,49	-0,49	130,42	-17,80	-0,49	0,49
41	-113,63	-0,49	-0,49	130,42	-17,80	-0,49	-0,49
42	-146,37	0,49	-0,49	130,42	-17,80	-0,49	-0,49

Table A2-1 Spool Imposed Displacement and Rotation Combination's

Design	Dy1	Rx1	Rz1	Dx2	Dy2	Rx2	Rz2
Point	(mm)	(degree)	(degree)	(mm)	(mm)	(degree)	(degree)
43	-113,63	0,49	-0,49	130,42	-17,80	-0,49	0,49
44	-146,37	-0,49	0,49	130,42	-17,80	-0,49	-0,49
45	-113,63	-0,49	0,49	130,42	-17,80	-0,49	0,49
46	-146,37	0,49	0,49	130,42	-17,80	-0,49	0,49
47	-113,63	0,49	0,49	130,42	-17,80	-0,49	-0,49
48	-146,37	-0,49	-0,49	-130,42	-44,20	0,49	-0,49
49	-113,63	-0,49	-0,49	-130,42	-44,20	0,49	0,49
50	-146,37	0,49	-0,49	-130,42	-44,20	0,49	0,49
51	-113,63	0,49	-0,49	-130,42	-44,20	0,49	-0,49
52	-146,37	-0,49	0,49	-130,42	-44,20	0,49	0,49
53	-113,63	-0,49	0,49	-130,42	-44,20	0,49	-0,49
54	-146,37	0,49	0,49	-130,42	-44,20	0,49	-0,49
55	-113,63	0,49	0,49	-130,42	-44,20	0,49	0,49
56	-146,37	-0,49	-0,49	130,42	-44,20	0,49	0,49
57	-113,63	-0,49	-0,49	130,42	-44,20	0,49	-0,49
58	-146,37	0,49	-0,49	130,42	-44,20	0,49	-0,49
59	-113,63	0,49	-0,49	130,42	-44,20	0,49	0,49
60	-146,37	-0,49	0,49	130,42	-44,20	0,49	-0,49
61	-113,63	-0,49	0,49	130,42	-44,20	0,49	0,49
62	-146,37	0,49	0,49	130,42	-44,20	0,49	0,49
63	-113,63	0,49	0,49	130,42	-44,20	0,49	-0,49
64	-146,37	-0,49	-0,49	-130,42	-17,80	0,49	0,49
65	-113,63	-0,49	-0,49	-130,42	-17,80	0,49	-0,49
66	-146,37	0,49	-0,49	-130,42	-17,80	0,49	-0,49
67	-113,63	0,49	-0,49	-130,42	-17,80	0,49	0,49
68	-146,37	-0,49	0,49	-130,42	-17,80	0,49	-0,49
69	-113,63	-0,49	0,49	-130,42	-17,80	0,49	0,49
70	-146,37	0,49	0,49	-130,42	-17,80	0,49	0,49
71	-113,63	0,49	0,49	-130,42	-17,80	0,49	-0,49
72	-146,37	-0,49	-0,49	130,42	-17,80	0,49	-0,49
73	-113,63	-0,49	-0,49	130,42	-17,80	0,49	0,49
74	-146,37	0,49	-0,49	130,42	-17,80	0,49	0,49
75	-113,63	0,49	-0,49	130,42	-17,80	0,49	-0,49
76	-146,37	-0,49	0,49	130,42	-17,80	0,49	0,49
77	-113,63	-0,49	0,49	130,42	-17,80	0,49	-0,49
78	-146,37	0,49	0,49	130,42	-17,80	0,49	-0,49
79	-113,63	0,49	0,49	130,42	-17,80	0,49	0,49

Appendix 3 Hand Calculations

A 3.1 ASME B31.8 Section VIII Pipe wall calculation

User Input C	alculation						
Project Details							
Project Name:		Master Subsea Tie-in,	Design Solutions ar	nd Optimizatio	n Methods		
Project Numbe	r:	3200140					
Pipeline Compo	onent:	water injection spool					
Eingineer:		LKHA					
Calculation Dat	e:	31.03.2015					
Revision:		1					
Design Param	eters:						
Design Pressu		P _d =	345 bar	Differentia	l pressure at 700m Waterde		
External Press				Dijjerenda			
External Press	ure:	P _e =	<mark>0</mark> bar				
N	ote! FAT pressure (Re	f. Sec. A847.2):					
	d ·1.4 (Offshore platfor	-					
P	d ·1.25 (Offshore Pipel	ne system)					
Construction P	ressure 1: FAT	P _{c1} =	517,5 bar	Project valu	ies based upon old standar		
Construction P	ressure 2: Subsea Tes	-	431,3 bar		Ies based upon old standar		
Outside Diame		D =	168.3 mm	. reject van	'alues basea upon ola standari		
Corrosion/Eros		D = C =	168,3 mm 3 mm				
CONUSION/EIUS	Ion Allowance.	C=	5 11111				
Material:							
Material design	ation:		X65				
SMYS @ Cons	struction Temperature:	Sc	450 MPa				
Temperature de	erating factor:	т	1,0				
(Table 841.1.8-	1)						
SMYS @ Desi	gn Temperature:	Sd	450,0 MPa				
Allowable Stre							
	or (Ref. Table A842.2.2	2-1):					
Maximum Hoop	p Stress:	Fi	0,72	F _{itest}	0,72		
Maximum Long	itudinal Stress:	F ₂	0,80	F _{2test}	0,80		
Maximum Equi	valent Stress:	F3	0,90	F _{3test}	0,96 Ref. Statoil TR12		
Construction		Operatio	n an				
Fittert Sc	324,0 MPa	F ₁ · S _d	324,0 MPa				
itest c							
F _{2test} · S _C	360,0 MPa	F ₂ · S _d	360,0 MPa				
F _{3test} · S _C	432,0 MPa	F₃• S _d	405,0 MPa				
Note! Hoop st Note! If Pipe is F2 = 0.68 (Coa	ress limit for pressur		pon 0.96SMYS if t _{min}	is used	wance.		
Minimum Req	uired Nominal Wall 1	Thickness (Sec. A842.)	2.2):				
Based on cons (FAT)	truction pressure P _{C1} :	t = P _{c1} · D)/ 2· F ₁ ·S _c	t =	13,4 mm		
Based on cons (Subsea Test)	truction pressure P _{c2} :	t = (P _{c2} -	P _e) · D/ 2· F ₁ ·S _c	t =	11,2 mm		
Based on differ (Operation)	ensial pressure ΔP _d :	t = (P _d - P	P _e) · D/ 2· F ₁ ·S _d + C	t =	12,0 mm		
	Thickness:			t _{nom} =	18,3 mm		

Stress/Utilisations Calculations: Constructions Loads - Subsea Test :

Pipeline loads:

Axial Force:		F _A	14,80 kN		Reaction forces at XT side				
Shear Force:		Fs	6,05 kN		Sqrt(Fx ² +Fz ²)				
In-plane bending moment:		Mi	-51,20 kNm						
Out-of-plane bending morr	nent:	Mo	-0,2 kNm						
Torque:		M _A	-4,7 kNm						
Hoop Stress:	D/t _{nom} ≥ 30	St =(P.a-	P _e)·D/2·t _{nom}	S _h =	176,8 MPa				
Sec. A842.2.2	$D/t_{nom} < 30$	11 . 62	$(D - t_{nom})/2 \cdot t_{nom}$	°n	270)0 a				
		$UF = S_h/I$		UF =	0,55				
Longitudinal Stress (Unres	strained):	$S_{L1} = (P_{c2})^{-1}$	$\cdot d^{2} - P_{e} \cdot D^{2}) / (D^{2} - d^{2}) +$	+ F _A ·4/ π·(D	$^{2} - d^{2}) + (M_{i}^{2} + M_{o}^{2})/Z$				
Sec. 833.2/833.3/833.6		S _{L1} = 244,9 MPa							
		$S_{L2} = (P_{c2})$	$d^{2} - P_{e} D^{2} / (D^{2} - d^{2})$	⊦ F _A ·4/ π·(D	$^{2} - d^{2}) - (M_{i}^{2} + M_{o}^{2})/Z$				
		S _{L2} =	-128,4 MPa						
		UF = max	κ(S _{L1} , S _{L2})/F ₂ ·S _C	UF =	0,68				
Shear Stress:		S _S =	$M_A/2 \cdot Z + 2 \cdot F_s/A_s$						
Sec. A842.2.2		$S_S =$	-6,62996 MPa						
Equivalent stress:		S _{EQ1} =	$(S_{h}^{2} + S_{L1}^{2} - S_{h} \cdot S_{L1} +$	3⋅S _s ²) ^{0.5}					
		S _{EQ1} =	219,2 MPa						
Sec. A842.2.2		S _{EQ2} =	$(S_h^2 + S_{L2}^2 - S_h \cdot S_{L2} +$	3·S _s ²) ^{0.5}					
		S _{EQ2} =	265,6 MPa						
		UF = max	κ(S _{EQ1} , S _{EQ2})/F ₃ ·S _C						
		UF	0,61						

Stress/Utilisations Calculations: Operational Loads :

Pipeline loads:

Axial Force:		F _A	18,30 kN	Reactior	n forces at manifold side				
Shear Force:		Fs	33,70 kN	Sqrt(Fx ²	+Fz ²)				
In-plane bending mon	nent:	M _i	<mark>64</mark> kNm						
Out-of-plane bending	moment:	Mo	-3,8 kNm						
Torque:		M _A	<mark>1,6</mark> kNm						
Hoop Stress:	D/t _{nom} ≥30	S _h =(P _d -P	P _e)∙D/2∙(t _{nom} - C)	S _h =	169,1 MPa				
Sec. A842.2.2	$D/t_{nom} < 30$	$S_h = (P_d - H_d)$	P_e)·(D - t_{nom})/2·(t_{nom} ·	- C)					
		$UF = S_h / F$	₁·S _d	UF =	0,52				
Longitudinal Stress (I	Jnrestrained):	$S_{L1} = (P_d \cdot d^2 - P_e \cdot D^2) / (D^2 - d^2) + F_A \cdot 4 / \pi \cdot (D^2 - d^2) + (M_i^2 + M_o^2)^{1/2} / Z_C$							
Sec. 833.2/833.3/833	3.6/	S _{L1} =	304,8 MPa						
		$S_{L2} = (P_d \cdot c)$	$d^2 - P_e \cdot D^2) / (D^2 - d^2) +$	$F_A \cdot 4 / \pi \cdot (D^2$	$-d^{2}$) - ($M_{i}^{2} + M_{o}^{2}$) ^{1/2} / Z_{C}				
		S _{L2} =	-195,1 MPa						
		UF = max	$(S_{L1}, S_{L2})/F_2 \cdot S_d$	UF =	0,85				
Shear Stress:		S _S =	$M_A/2 \cdot Z_C + 2 \cdot F_s/A_s$	S _S =	10,91313672 MPa				
Sec. A842.2.2									
Equivalent stress:		S _{EQ1} =	$(S_{h}^{2} + S_{L1}^{2} - S_{h}S_{L1} + 3)$	3⋅S _S ²) ^{0.5}					
Sec. A842.2.2		S _{EQ1} =							
		S _{EQ2} =	$(S_h^2 + S_{L2}^2 - S_{h}S_{L2} + 3)$	$3 \cdot S_{s}^{2})^{0.5}$					
		$S_{EQ2} =$	316,2 MPa						
		UF = max	(S _{EQ1} , S _{EQ2})/F ₃ ·S _d	UF	0,78				

A 3.2 Buoyancy Calculation

Calculation of buoyancy force for spool

Buoyancy type HCP 100 depth rating 625 m, chrusing depth=1000m

 $\rho_{seawater} := 1026 \cdot \frac{kg}{m^3}$ Seawater density $\rho_{buoy} := 400 \cdot \frac{\text{kg}}{3}$ Density of buoyancy Length of spool L_{spool} := 44·m $m_{spool} := 68 \cdot \frac{kg}{m}$ Weight of spool pr length Dry weigth of spool without connectors M_{spool} := m_{spool}·L_{spool} M_{spool} = 2992·kg Wall thickness of pipe w_t := 18.3·mm $DO_{pipe} := 168.3 \cdot mm$ $DI_{pipe} := DO_{pipe} - 2w_t = 131.7 \cdot mm$ Outer/inner diameter of pipe $A_{cross} := \frac{\pi}{4} \cdot \left[DO_{pipe}^2 - \left(DO_{pipe} - 2 \cdot w_t \right)^2 \right] = 8624 \cdot mm^2$ Cross section area of pipe $V_{sub} := A_{cross} \cdot L_{spool} = 0.379 \cdot m^3$ Submerged volume Buoyancy force from submerged spool $F_{sub1} := V_{sub} \cdot \rho_{seawater} \cdot g = 3818 N$ $R_{sub} \coloneqq 1 - \frac{F_{sub1}}{(M_{spect} \cdot g)} = 0.87$ Ratio dry weight versus submerged weigth Submereged weight m_{spoolsub} := M_{spool}·R_{sub} = 2603 kg

In order to reduce the submerged weight by say 25% the following buoyancy force is required:

$$F_{sub2} := \frac{(M_{spool} \cdot R_{sub} \cdot g)}{1.25} = 20419 \text{ N}$$

$$F_{buoy} := (M_{spool} \cdot R_{sub} \cdot g - F_{sub2}) = 5105 N$$

Required buoyancy element diameter calculation:

 F_{sub}
 Submerged weight of element

 F_{buoy}
 Buoyancy force required

 F_{dry}
 Dry weigth of element

 V_{element}
 Volume of element

 L
 Length of element

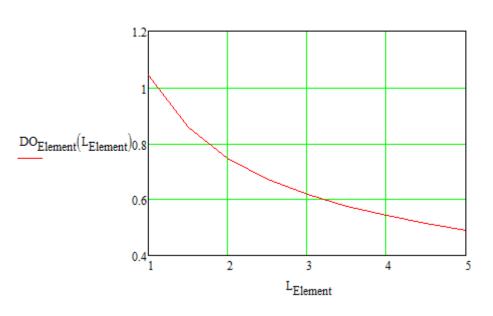
$$-F_{sub} = F_{buoy} - F_{dry}$$
(1)

$$-F_{buoy} = F_{sub} - F_{dry} = V_{Element} \cdot (\rho_{seawater} - \rho_{buoy}) \cdot g$$
 (2)

Solved for the element volume gives the following equation:

$$v_{element} = \frac{-F_{buoy}}{(\rho_{seawater} - \rho_{buoy}) \cdot g}$$

The volume is area x length. Use length L=1 meter


 $L_{Element} := 1 \cdot m, 1.5 \cdot m... 5 \cdot m$

(3)

Volume for element $V_{\text{Element}} = \frac{\pi}{4} \cdot \left(DO_{\text{Element}}^2 - DO_{\text{pipe}}^2 \right) \cdot L_{\text{Element}}$ (4)

By inserting (4) into equation (3) and solving for DO_{Element} gives the following equation for required diameter pr meter element for a required uplift buoyancy force

$$DO_{Element}(L_{Element}) := \sqrt{\left\lfloor \frac{F_{buoy} \cdot 4}{g \pi \cdot (\rho_{seawater} - \rho_{buoy}) \cdot L_{Element}} \right\rfloor + DO_{pipe}^{2}}$$

Graph showing buoyancy element diameter as a function of the length

 $DO_{Element}(5 \cdot m) = 0.49 m$ $D_o := DO_{Element}(5 \cdot m)$

Control of answer equation 2:

$$\mathbf{F}_{\text{buoy.check}} \coloneqq \left[\frac{\pi}{4} \cdot \left(\mathbf{D_o}^2 - \mathbf{DO_{pipe}}^2\right)\right] \cdot 5 \cdot \mathbf{m} \cdot \mathbf{g} \cdot \left(\rho_{\text{seawater}} - \rho_{\text{buoy}}\right) = 5105 \, \mathrm{N}$$

Which is eqaul to the required buoyancy uplift force hence OK

<u>Calculating effective mass for spool without buoyancy</u> <u>element</u>

The effective mass includes structural mass, added mass and the mass of the content

Added mass

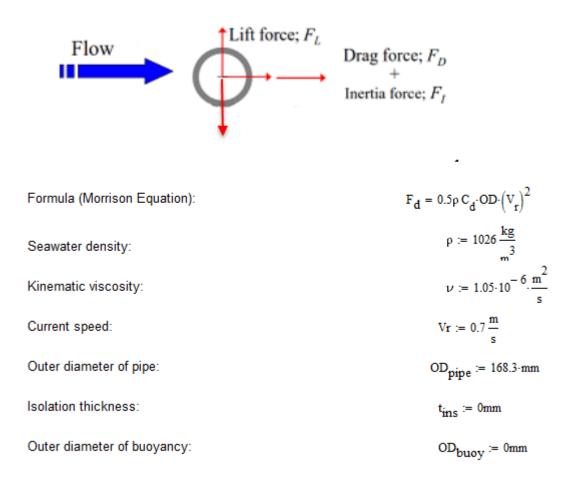
$$m_{add} := \rho_{seawater} \cdot \pi \cdot \left(\frac{DO_{pipe}}{2}\right)^{2}$$
$$m_{add} = 22.825 \frac{kg}{m}$$
$$m_{struct} := \frac{m_{spoolsub}}{L_{spool}}$$
$$m_{struct} = 59.152 \frac{kg}{m}$$

Structural mass-inclusive content

Effective mass
$$m_e := m_{struct} + m_{add} = 82 \frac{kg}{m}$$

A 3.3 Current Force Calculation

Drag force calculations


Note to calculations

-Inertia forces from waves is not included, as this is deepwater >700m and wave forces at this depth is assumed to have little effect.

-Lift force on pipe is assumed to be symmetrical on both sides of pipe and is neglected -This calculation calculates max static dragforce

-The drag force is assumed to be perpendicular to pipe- worst direction.

-Variations in current, inertia and lift force requires VIV Check (Vortex Induced Vibration)

NO STRAKES, INSULATION OR BUOYANCY APPLIED

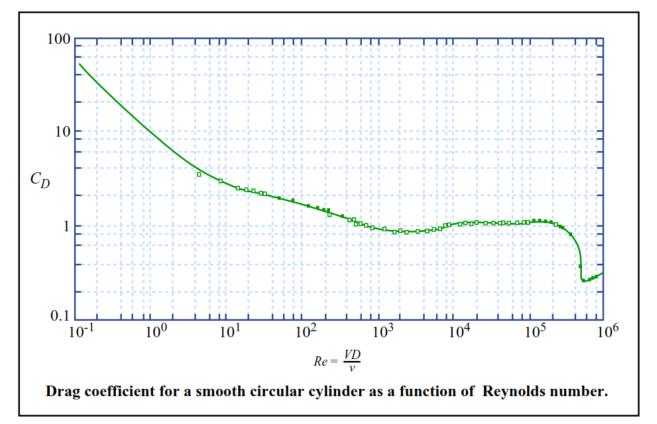


Figure by MIT OpenCourseWare.

Reynolds numbers:

Reynolds number for buoyancy:

$$Re1 := \frac{OD_{buoy} Vr}{\nu}$$

$$Re1 = 0$$

Reynolds number for pipe:

$$\operatorname{Re2} := \frac{\operatorname{OD}_{\operatorname{pipe}} \cdot \operatorname{Vr}}{\nu} \qquad \qquad \operatorname{Re2} = 1.122 \times 10^5$$

Drag coefficients:

Drag coefficient for a smooth outer surface: C_{D1} := 1.0

Drag Force per unit length for different sections of pipe:

Bare pipe section:	$F1 := 0.5 \cdot \rho \cdot C_{D1} \cdot OD_{pipe} \cdot Vr^{2}$	$F1 = 42.306 \cdot \frac{N}{m}$
Insulated pipe section:	$F2 := 0.5 \cdot \rho \cdot C_{D1} \cdot \left(OD_{pipe} + 2 \cdot t_{ins} \right) \cdot Vr^{2}$	$F2 = 42.306 \cdot \frac{N}{m}$
Buoyancy section:	$F3 := 0.5 \cdot \rho \cdot C_{D1} \cdot OD_{buoy} \cdot Vr^2$	F3 = 0
Total length of pipe	L _{pipe} := 45m	
Total dragforce on pipesection	F _{dragpipe} := F1·L _{pipe}	F _{dragpipe} = 1.904·kN

A 3.4 Thick Wall Vessel Calculation

Calculation of hoop stress in thick cylindrical vessel based upon Lamès equations

Internal pressure	Pi := 345 bar
Wall thickness	t _{wall} := 18.3·mm
Outside and inside diameter	$D_o := 168.3 \cdot mm$ $D_i := D_o - 2 \cdot t_{wall}$
Outside radius	$R_o := \frac{D_o}{2} = 84.15 \cdot mm$
Inside radius	$R_{i} := \frac{\left(D_{o} - 2 \cdot t_{wall}\right)}{2} = 65.85 \cdot mm$
Thick wall check D/t<30	$\frac{D_o}{t_{wall}} = 9.197$ Less than 30 hence thick wall
$\mathbf{r}_1 := \mathbf{R}_i$	$\begin{bmatrix} p^2 \end{bmatrix} \begin{pmatrix} p^2 \end{pmatrix}$
Max stress Inside of vessel	$\sigma \theta \theta_{\text{inside}} := \text{Pi} \left[\frac{\text{R}_{i}^{2}}{\left(\text{R}_{o}^{2} - \text{R}_{i}^{2}\right)} \right] \left[\left(1 + \frac{\text{R}_{o}^{2}}{\text{r}_{1}^{2}}\right) = 143 \text{MPa}$
	$\sigma \mathbf{rr_{inside}} \coloneqq \mathbf{Pi} \left[\frac{\mathbf{R_i}^2}{\left(\mathbf{R_o}^2 - \mathbf{R_i}^2\right)} \right] \cdot \left(1 - \frac{\mathbf{R_o}^2}{\mathbf{r_1}^2}\right) = -34 \mathrm{MPa}$
$r_2 := R_o$	5 . 7 /
Max stress outside of vessel	$\sigma \theta \theta_{\text{otside2}} := \text{Pi} \left[\frac{R_i^2}{\left(R_o^2 - R_i^2\right)} \right] \left(1 + \frac{R_o^2}{r_2^2} \right) = 109 \text{MPa}$
	$\sigma \mathbf{r}_{outside2} := \operatorname{Pi} \left[\frac{\mathbf{R_i}^2}{\left(\mathbf{R_o}^2 - \mathbf{R_i}^2\right)} \right] \left(1 - \frac{\mathbf{R_o}^2}{\mathbf{r_2}^2} \right) = 0 \operatorname{MPa}$

Comparison hoop stress formula DNV 1996 and ASME B31.8

$$\sigma_{\text{mean}} \coloneqq \frac{(\text{Pi} - 0) \cdot (D_o - t_{wall})}{2t_{wall}} = 172.5 \cdot \text{MPa}$$

Comparison Barlow Equation

$$\sigma_{\text{barlow}} \coloneqq \text{Pi} \cdot \frac{D_0}{2t_{\text{wall}}} = 190 \cdot \text{MPa}$$

The calculation shows that the difference in hoop stress between the DNV/ASME mean stress formula and the Lamés equations for the given wallthickness is small for the max stress calculation the difference is largest for the barlow wall formula with 11% difference

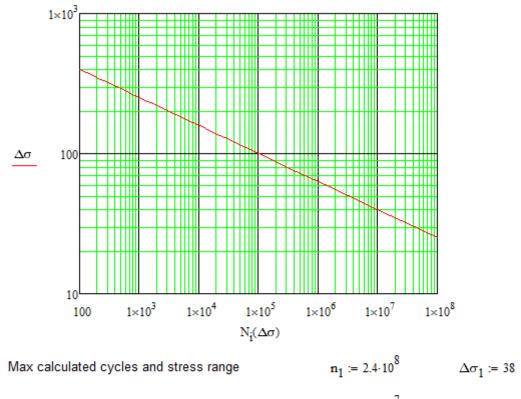
A 3.5 Fatigue calculation

DNV-RP-C203

In accordance to DNV-RP-C203 classification detail F1 is used for the SN-curve Figure 2-5 S-N Curve in seawater with cathodic protection Ref. Section 2.10 Pipelines and Risers for limitations on welding and geometry

Design Fatigue factorDFF := 10SN CurveParameters Design curve
$$a_1 := 10^{14.832}$$
 $m_1 := 5$ $t_{ref} := 25 \cdot mm$ $k := 0.25$

Pipe thickness


t := 18.3·mm

$$\Delta \sigma \coloneqq 10, 20..500 \qquad \qquad \log(N_i) = \log(a_1) - m_1 \cdot \log\left[\Delta \sigma \cdot \left(\frac{t}{t_{ref}}\right)^k\right]$$

Max allowable cycles

$$\begin{split} \mathrm{N}_{\mathbf{i}}(\Delta\sigma) \coloneqq \frac{\mathbf{a}_{1}}{\left[\Delta\sigma\cdot\left(\frac{\mathbf{t}}{\mathbf{t}_{\mathrm{ref}}}\right)^{\mathbf{k}}\right]^{\mathbf{m}_{1}}} \end{split}$$

S-N Curve

 $n_2 := 2.8 \cdot 10^7$ $\Delta \sigma_2 := 11$

Max allowable cycles from S-N curve

$$N_{1}(\Delta\sigma_{1}) := \frac{a_{1}}{\left[\Delta\sigma_{1} \cdot \left(\frac{t}{t_{ref}}\right)^{k}\right]^{m_{1}}} \qquad N_{1}(\Delta\sigma_{1}) = 1.27 \times 10^{7}$$

$$N_{2}(\Delta\sigma_{1}) := \frac{a_{1}}{\left[\Delta\sigma_{2} \cdot \left(\frac{t}{t_{ref}}\right)^{k}\right]^{m_{1}}} \qquad N_{2}(\Delta\sigma_{2}) = 6.23 \times 10^{9}$$

Summation of cummulative damage then becomes

$$\mathbf{D} := \left(\frac{\mathbf{n}_1}{\mathbf{N}_1(\Delta \sigma_1)}\right) + \left(\frac{\mathbf{n}_2}{\mathbf{N}_2(\Delta \sigma_2)}\right) = 19$$

The max allowable usage factor with a DFF of 10 equals:

$$\eta := \frac{1}{10} = 0.1 \qquad \qquad D < \eta = 0$$

Hence the spool fails for 25 years fatigue life

VIV suppresion strakes are required for the spool in order to supress the vibration

A 3.6 Local Buckling-External Overpressure

Local buckling collapse of a pipe in accodance with DNV-OS-F101,2013

$\underline{MPa} := 1 \cdot 10^6 \cdot \underline{Pa}$	Ref. Sec. 5 & 13 D400, D700
Youngs modulus	$E := 2.0 \cdot 10^5 \cdot MPa$
Yield strength at specified temp.	$f_y := 450 \cdot MPa$
Poisson ratio	v := 0.28
Material factor: (Table 5-2 and 5-3)	γ _m := 1.15
Safety class factor	γ _{SC} := 1.138
Load factors ULS (Table 4-4 and 4-5)	$\gamma_{\rm F} := 1.2$ $\gamma_{\rm c} := 1.07$ $\gamma_{\rm p} := 1.05$
Nominell Diameter of pipe and thickness Max and min measured diameter	$D := 168.3 \cdot mm$ $D_{max} := 172.9 \cdot mm$
	D _{min} := 167-mm
Ovality:	$\mathbf{f}_0 \coloneqq \frac{\left(\mathbf{D}_{\max} - \mathbf{D}_{\min}\right)}{\mathbf{D}} \qquad \mathbf{f}_0 = 0.04$
External over pressure	$\mathbf{p} := 9 \cdot \mathbf{MPa}$ $\mathbf{p}_{\mathbf{e}} := \mathbf{p} \cdot \boldsymbol{\gamma}_{\mathbf{p}}$
Bend wall thinning and tolerance	$t_{\text{thinning}} := t_{\text{nom}} \cdot (10\% + 12.5\%) = 4.12 \text{mm}$
Corrosion allowance	t _{corr} := 3-mm
Thickness of pipe t ₁ =t-t _{fab} -t _{corr} (Table 5-6)	$t_1 := t_{nom} - t_{thinning} - t_{corr} = 11.18 mm$
Fabrication factor (Table 5-5) (seamless pipe)	α _{fab} ≔ 1.0
Elastic capacity pressure:	$\mathbf{p_{el}} \coloneqq \frac{\left[2 \cdot \mathbf{E} \cdot \left(\frac{\mathbf{t_1}}{\mathbf{D}}\right)^3\right]}{\left(\frac{1}{2}\right)} \qquad \mathbf{p_{el}} = 127.32 \mathrm{MPa}$

Plastic capasity pressure

$$p_{el} := \frac{\left[\frac{2 \cdot E \cdot \left(\frac{D}{D}\right)}{\left(1 - \nu^{2}\right)}\right]}{\left(1 - \nu^{2}\right)} \qquad p_{el} = 127.32 \text{ MB}$$
$$p_{p} := 2 \cdot f_{y} \cdot \alpha_{fab} \cdot \left(\frac{t_{1}}{D}\right) \qquad p_{p} = 59.8 \text{ MPa}$$

The external collapse pressure are expressed as a 3'rd degre polynom and has the following expression:

$$(\mathbf{p_c} - \mathbf{p_{el}}) \cdot (\mathbf{p_c}^2 - \mathbf{P_p}^2) = \mathbf{p_c} \cdot \mathbf{p_{el}} \cdot \mathbf{p_p} \cdot \mathbf{f_0} \cdot \frac{\mathbf{D}}{\mathbf{t_1}}$$

The solution is as follows

$$p_{c} = y - \frac{b}{3}$$
 (Section 13 D700)

Where the following parameters apply:

$$b := -p_{el} \qquad g_{xx} := -\left(p_{p}^{2} + p_{p} \cdot p_{el} \cdot f_{0} \cdot \frac{D}{t_{1}}\right)$$

$$d := p_{el} \cdot p_{p}^{2} \qquad u := \frac{1}{3} \cdot \left(\frac{-1}{3} \cdot b^{2} + c\right) \qquad v_{2} := \frac{1}{2} \cdot \left(\frac{2}{27} \cdot b^{3} - \frac{1}{3} \cdot b \cdot c + d\right)$$

$$\bigoplus_{xxxx} := a \cos\left(\left(\frac{-v_{2}}{\sqrt{-u^{3}}}\right)\right) \qquad y := -2 \cdot \sqrt{-u} \cdot \cos\left(\left(\frac{\Phi}{3} + \frac{60}{180} \cdot \pi\right)\right)$$

$$p_{c} := y - \frac{b}{3} \qquad p_{c} = 41 \text{ MPa}$$

The external pressure at any point along the pipeline shall meet the following criteria:

$$p_e = 9 MPa$$
 $p_e \le \frac{p_c}{1.1 \cdot \gamma_m \cdot \gamma_{SC}} = 1$ 1 =True +

$$UF := \frac{\mathbf{p}_{e} \cdot (1.1 \cdot \gamma_{m} \cdot \gamma_{SC})}{\mathbf{p}_{c}} \qquad UF$$

= 0.33

Check := $|"OK" \text{ if } UF \leq 1$

Max Utilisation factor:

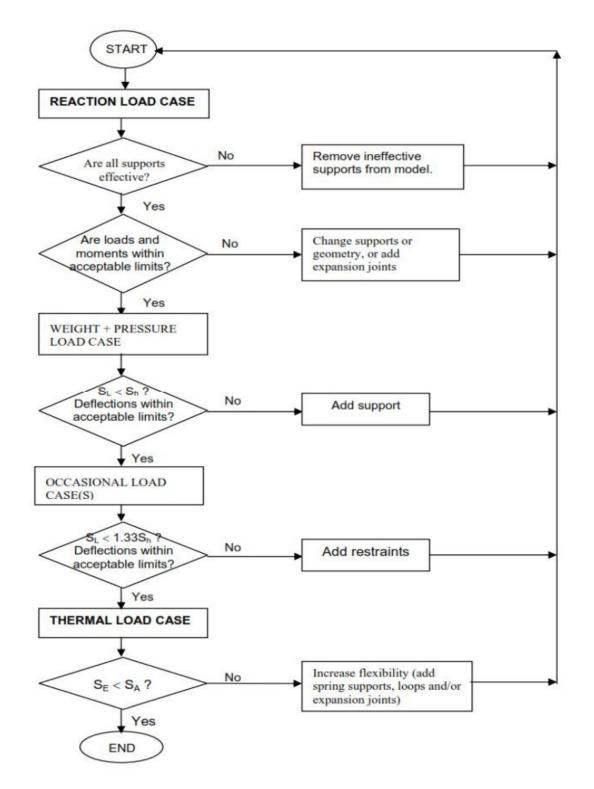
Appendix 4 Bently AutoPIPE

A 4.1 AutoPIPE Features

Feature	AutoPIPE	AutoPIPE Plus	Nuclear
Hanger	√	✓	\checkmark
Static Linear	√	✓	\checkmark
Static Nonlinear	\checkmark	✓	\checkmark
Modal	\checkmark	√	\checkmark
Response Spectrum (Uniform & Multiple Support) (SRSS combination method Standard version only)	✓ (Note 3)	×	\checkmark
Harmonic		\checkmark	\checkmark
Force Spectrum		✓	✓
Time History		✓	✓
SAM		\checkmark	\checkmark
Buried pipe		✓	\checkmark
NUREG combinations and		✓	\checkmark
Code case 411 spectrum			
Static correction -		\checkmark	\checkmark
Missing mass correction and ZPA			
50 Response Spectrum load cases		\checkmark	\checkmark
Static earthquake	✓	\checkmark	\checkmark
Wind - ASCE, UBC and User Profile	✓	\checkmark	\checkmark
Thermal Bowing	✓	✓	✓
Wave loading and buoyancy		\checkmark	✓
Fluid Transient Loads		\checkmark	\checkmark
Relief Valve Loads		✓	✓
Thermal Transient Analysis			\checkmark
Fatigue Analysis (class 1)			\checkmark
High Energy Leakage and Crack Criteria (ASME Class 1, 2, 3)			\checkmark
ASME B31.1, B31.3, B31.4, and B31.8	✓ (Note 2)	✓	\checkmark
European piping code EN13480	✓ (Note 2)	✓	\checkmark
B31.4 Offshore, A31.8 Offshore & CSA_Z662 Offshore codes		×	~
ASME III Class 2 and Class 3 (multiple years)			\checkmark
ASME III Class 1 (multiple years)			✓
JSME S NC1-PPC			✓
Canadian piping codes		✓	\checkmark
International piping codes		✓	✓
KHK Level 2 piping code		Note 1	✓
Analysis Sets for multiple static analyses	\checkmark	\checkmark	\checkmark
General piping code	\checkmark	\checkmark	\checkmark
Rotating Equipment reports	\checkmark	\checkmark	\checkmark
Large model size	\checkmark	\checkmark	\checkmark
Beam elements for modeling frames and supports	\checkmark	\checkmark	\checkmark
Material and Component Library utilities	\checkmark	\checkmark	\checkmark
STAAD Structural Libraries (17 countries)	√	\checkmark	\checkmark

Plus features only

Nuclear features only


Maximum defined static and dynamic load cases:

Load Cases	Standard 9.4	Plus 9.4	Nuclear 9.4
Gravity	1	1	1
Hydrotest	1	1	1
Thermal	5	100	100
Pressure	5	100	100
Static Earthquake	5	10	10
Wind	5	10	10
User	5	140	140
Response Spectrum	5	50	50
Harmonic	Not Available	10	10
Seismic Anchor Movement	Not Available	10	10
Force Spectrum	Not Available	10	10
Time History	Not Available	50	50
Static Analysis Cases	27 [Note 1]	82 [Note 1]	82 [Note 1]

Note 1: Maximum number of load cases that can be analyzed in a single analysis set during a static analysis run in v9.1 and later. However an unlimited number of analysis sets can be run in a single static analysis in v9.1 and later.

= Gravity (1) + Hydrotest (1) + Thermal (20) + Pressure (20) + Static Earthquake (10) + Wind (10) + User (20)
= 82 cases for Plus & Nuclear (27 for Standard)

Up to 100 different thermal loadings can be defined and analyzed in a single static analysis. Only 20 thermal load cases per analysis set e.g. if want to run 50 thermal cases then define across 3 analysis sets. Since each analysis set can have analyze up to 82 static cases, so literally 100's of loads can be analyzed in different scenarios with different options, linear, non-linear, hot or cold modulus etc in the same static analysis run.

GENERAL FLOW CHART FOR PIPING FLEXIBILITY ANALYSIS

A 4.2 AutoPIPE Stress output

6INCH SPOOL	
05/21/2015 6INCH SPOOL	BENTLEY
01:59 PM	AutoPIPE Standard 9.4.0.19 RESULT PAGE 1

*			* * * * * * *	* *	* * * * * * *	******
* * *	* *		** **	* *	** **	**
** **	****	**	** **	* *	** **	* *
** **	** ** **	* * * * *	* * * * * * *	* *	******	* * * * *
* * * * * * * * *	** ** **	** **	* *	* *	**	* *
** **	** ** **	** **	* *	* *	**	* *
** **	**** **	* * * * *	* *	* *	**	******

Pipe Stress Analysis and Design Program

Version: 09.04.00.19

Edition: Standard

Developed and Maintained by

BENTLEY SYSTEMS, INCORPORATED 1600 Riviera Ave., Suite 300 Walnut Creek, CA 94596

BENTLEY	
AutoPIPE Standard 9.4.0.19 RESULT PAGE 2	
-	

*****	*****	**
* *		* *
	IPE SYSTEM INFORMATION	**
**	*****	**
SYSTEM NAME : 6INCH S	POOL	
PROJECT ID : 6INCH S	POOL	
PREPARED BY :		
CHECKED BY :		
1ST APPROVER :		
2ND APPROVER :		
PIPING CODE	: ASME B31.8	
YEAR	: 2010	
VERTICAL AXIS	: Y	
AMBIENT TEMPERATURE	: 4.0 deg C	
COMPONENT LIBRARY	: AUTOPIPE	
MATERIAL LIBRARY	: AUTOB318	

31

MODEL REVISION NUMBER :

6INCH SPOOL	
05/21/2015 6INCH SPOOL	BENTLEY
01:59 PM	AutoPIPE Standard 9.4.0.19 RESULT PAGE 3

ANALYSIS SUMMARY

Current model revision number : 31

Static - Analysis set number 1 Date and Time of analysis 1 Model Revision Number 3 Number of load cases 3 Load cases analyzed 3 Description 4 Gaps/Friction/Soil considered 1 Hanger design run 1 Cut short included 1 Thermal bowing included 1 Pipe radius for Bourdon calculation 1 Weight of contents included 1 Hot modulus case 1 Water elevation for buoyancy loads 1	May 21, 2015 1:59 PM 31 5 GR T1 T2 P1 P2 Analysis Set No.1 No No No No Mean Yes None None
Water elevation for buoyancy loads N Use corroded thickness in analysis N Rigid stiffness factor	No

51NCH SPOOL 05/21/2015 61NCH SPOOL 01:59 PM				BENTLEY AutoPIPE Standard 9.4.(
		CODE C	OMPLIANCE COMBINATIONS			
<description> Combination</description>				Factor M/S K-Factor		D/A/P
GR + Max P{1}			GR[1] Max Long	1.00 1.00	405.00	
Max Range	Expansion	Sum	Temp. Range	1.00	Automatic	ҮҮҮ
Amb to T1{1}	Expansion	Sum	T1[1]	1.00	Automatic	Ү Ү Ү
Amb to T2{1}	Expansion	Sum	T2[1]	1.00	Automatic	Ү Ү Ү
Max P{1}	Ноор	Sum	Мах Ноор	1.00	Automatic	Ү Ү Ү
GRTP1{1}	Rest-Fun	Sum	Max Long Max Hoop GR[1] T1[1] P1[1]	1.00 1.00 1.00 1.00 1.00	Automatic	YNY
GRTP2{1}	Rest-Fun	Sum	Max Long Max Hoop GR[1] T2[1] P2[1]	1.00 1.00 1.00 1.00 1.00	Automatic	ΥΥΥ

Notes:

D/A/P: [D]efault/[A]uto-Update/[P]rint options (Y=Yes, N=No)

_

6INCH SPOOL		
05/21/2015	6INCH	SPOO

01:59 PM

OL

BENTLEY AutoPIPE Standard 9.4.0.19 RESULT PAGE 5 _____

	NON-CC	DDE COMBINATIONS		
<description> Combination</description>	Method	Case/Combination	Factor	D/A/P
Gravity{1}	Sum	GR[1]	1.00	ΥΥΥ
<4.00 deg C> Thermal 1{1}	Sum	T1[1]	1.00	YYY
<100.00 deg C> Thermal 2{1}	Sum	Т2[1]	1.00	YYY
Pressure 1{1}	Sum	P1[1]	1.00	ҮҮҮ
Pressure 2{1}	Sum	P2[1]	1.00	Ү Ү Ү
GRTP1{1}	Sum	GR[1] T1[1] P1[1]	1.00 1.00 1.00	ΥΥΥ
GRTP2 { 1 }	Sum	GR[1] T2[1] P2[1]	1.00 1.00 1.00	ΥΥΥ

Notes:

D/A/P: [D]efault/[A]uto-Update/[P]rint options (Y=Yes, N=No)

6INCH SPOOL 05/21/2015 6INCH SPOOL BENTLEY 01:59 PM AutoPIPE Standard 9.4.0.19 RESULT PAGE 6

CODE COMPLIANCE

6INCH SPOOL 05/21/2015 6INCH SPOOL 01:59 PM

BENTLEY

AutoPIPE Standard 9.4.0.19 RESULT PAGE 7 _____ _ _ _____

		DI	SPLAC	ЕМЕΝТ	S		
Point name	Load combination	TRANS X	LATIONS (Y	mm) Z	ROTATI X	ONS (deg Y) Z
*** Seg	gment A begin ***						
A00	<pre>Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}</pre>	0.00 0.00 0.00 0.00 0.00	0.00	0.00 0.00 0.00 0.00	0.93 0.00 0.00 0.00 0.00 0.93 0.93		0.93 0.00 0.00 0.00 0.00 0.93 0.93
A01 N	Thermal 1{1} Thermal 2{1} Pressure 1{1}	0.00 -7.41 -0.72 -0.72 133.85	7.45 0.73	0.00 0.00 0.00 0.00 102.76	0.89 0.00 0.00 0.00 0.00 0.89 0.89	0.18 0.00 0.00 0.00 0.00 0.18 0.18	-1.81 0.00 0.02 0.00 0.00 -1.81 -1.79
A01 F	Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}	0.00 -6.98 -0.68 -0.68 147.78		0.00 0.00 0.00 0.00 108.45	0.92 0.00 0.00 0.00 0.00 0.92 0.92	0.00 0.00 0.00 0.19	-1.58 0.00 -0.02 0.00 0.00 -1.59 -1.60
A02 N	Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}	0.00 -4.69 -0.46 -0.46 148.02	5.40 0.53	0.00 0.00 0.00 0.00 101.02	1.02 0.00 0.00 0.00 0.00 1.02 1.02	0.21 0.00 0.00 0.00 0.00 0.21 0.21	-0.53 0.00 -0.12 -0.01 -0.01 -0.54 -0.66
A02 F	Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}	0.00 -5.40 -0.53 -0.53 146.45	3.79 0.37	91.09 0.00 0.00 0.00 0.00 91.09 91.09	1.05 0.00 0.00 0.00 0.00 1.05 1.05	0.20 0.00 0.00 0.00 0.00 0.20 0.20	0.00 0.00 -0.17 -0.02 -0.02 -0.02 -0.18
A03 N	<pre>Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}</pre>	0.00 -27.86 -2.72 -2.72 225.77	-2.34 -0.23	0.00 0.00 0.00 0.00 -16.52	1.12 0.00 0.00 0.00 0.00 1.12 1.12	0.16 0.00 0.00 0.00 0.00 0.16 0.16	0.73 0.00 -0.22 -0.02 -0.02 0.71 0.49

Point name Load combination TRANSLATIONS (nm) X Y ROTATIONS (deg) X N Y N Z N Y Z A03 F Gravity(1) Thermal 1(1) 233,44 -212.34 -26.69 1.12 0.15 0.41 A03 F Gravity(1) Thermal 2(1) -23.09 -46.51 0.00 0.00 0.00 0.00 0.00 0.00 Pressure 1(1) -28.69 1.12 0.15 0.41 0.03 0.00 <	01:59 PM	015 6INCH SPOOL				Au			9.4.0.19 RESULT PAGE	
AOS F Gravity(1) 233.44 -212.34 -26.69 1.12 0.15 0.41 Thermal 1(1) 0.00 0.00 0.00 0.00 0.00 0.00 Thermal 2(1) -29.09 -4.51 0.00 0.00 0.00 -0.00 Pressure 1(1) -2.84 -0.44 0.00 0.00 0.00 -0.02 GRTP2(1) 201.50 -217.78 -26.69 1.12 0.15 0.39 GRTP2(1) 201.50 -217.78 -26.69 1.12 0.15 0.19 A07 Gravity(1) 233.49 -250.98 -37.82 1.07 0.03 -0.65 Thermal 1(1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Pressure 1(1) -2.17 -1.63 0.00 0.00 0.00 0.00 GRTP2(1) 231.32 -252.61 -37.82 1.07 0.03 -0.69 A06 Gravity(1) 233.55 -281.60 -30.76 1.03 -0.15 0.34 Thermal 1(1) 0.00 0.00 0.00 0.0			DIS	PLAC	EMENI	S				
AOS F Gravity(1) 233.44 -212.34 -26.69 1.12 0.15 0.41 Thermal 1(1) 0.00 0.00 0.00 0.00 0.00 0.00 Thermal 2(1) -29.09 -4.51 0.00 0.00 0.00 -0.00 Pressure 1(1) -2.84 -0.44 0.00 0.00 0.00 -0.02 GRTP2(1) 201.50 -217.78 -26.69 1.12 0.15 0.39 GRTP2(1) 201.50 -217.78 -26.69 1.12 0.15 0.19 A07 Gravity(1) 233.49 -250.98 -37.82 1.07 0.03 -0.65 Thermal 1(1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Pressure 1(1) -2.17 -1.63 0.00 0.00 0.00 0.00 GRTP2(1) 231.32 -252.61 -37.82 1.07 0.03 -0.69 A06 Gravity(1) 233.55 -281.60 -30.76 1.03 -0.15 0.34 Thermal 1(1) 0.00 0.00 0.00 0.0	Point	Load	TRANSL	ATIONS (mm)	ROTATI	ONS (de	g)		
AOS F Gravity(1) 233.44 -212.34 -26.69 1.12 0.15 0.41 Thermal 1(1) 0.00 0.00 0.00 0.00 0.00 0.00 Thermal 2(1) -29.09 -4.51 0.00 0.00 0.00 -0.00 Pressure 1(1) -2.84 -0.44 0.00 0.00 0.00 -0.02 GRTP2(1) 201.50 -217.78 -26.69 1.12 0.15 0.39 GRTP2(1) 201.50 -217.78 -26.69 1.12 0.15 0.19 A07 Gravity(1) 233.49 -250.98 -37.82 1.07 0.03 -0.65 Thermal 1(1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Pressure 1(1) -2.17 -1.63 0.00 0.00 0.00 0.00 GRTP2(1) 231.32 -252.61 -37.82 1.07 0.03 -0.69 A06 Gravity(1) 233.55 -281.60 -30.76 1.03 -0.15 0.34 Thermal 1(1) 0.00 0.00 0.00 0.0	name	combination	Х	Y	Ζ	Х	Y	Z		
A07 Gravity[1] 233.49 -250.98 -37.82 1.07 0.03 -0.65 Thermal 1[1] 0.00 0.00 0.00 0.00 0.00 0.00 Pressure 1[1] -2.17 -1.63 0.00 0.00 0.00 0.00 Pressure 2[1] -2.17 -1.63 0.00 0.00 0.00 0.00 GRTP1[1] 231.32 -252.61 -37.82 1.07 0.03 -0.65 GRTP2[1] 209.12 -269.27 -37.82 1.07 0.03 -0.65 GRTP2[1] 0.00 0.00 0.00 0.00 0.00 0.00 Thermal 2[1] -14.82 -14.05 0.00 0.00 0.00 0.00 Pressure 1[1] -1.45 -1.37 0.00 0.00 0.00 0.01 Pressure 2[1] -1.45 -1.37 0.00 0.00 0.01 0.01 GRTP1[1] 233.61 -159.75 -6.93 0.98 -0.23 1.61 Pressure 2[1] -0.73 -0.48 0.00 0.00 0.00 0.01 GRTP1[1]	703 F	Crowity(1)	233 11			1 1 2	0 15	0 41		
A07 Gravity[1] 233.49 -250.98 -37.82 1.07 0.03 -0.65 Thermal 1[1] 0.00 0.00 0.00 0.00 0.00 0.00 Pressure 1[1] -2.17 -1.63 0.00 0.00 0.00 0.00 Pressure 2[1] -2.17 -1.63 0.00 0.00 0.00 0.00 GRTP1[1] 231.32 -252.61 -37.82 1.07 0.03 -0.65 GRTP2[1] 209.12 -269.27 -37.82 1.07 0.03 -0.65 GRTP2[1] 0.00 0.00 0.00 0.00 0.00 0.00 Thermal 2[1] -14.82 -14.05 0.00 0.00 0.00 0.00 Pressure 1[1] -1.45 -1.37 0.00 0.00 0.00 0.01 Pressure 2[1] -1.45 -1.37 0.00 0.00 0.01 0.01 GRTP1[1] 233.61 -159.75 -6.93 0.98 -0.23 1.61 Pressure 2[1] -0.73 -0.48 0.00 0.00 0.00 0.01 GRTP1[1]	AUS I	Thermal 1{1}	0 00	0 00	0 00	0 00	0.10	0 00		
A07 Gravity[1] 233.49 -250.98 -37.82 1.07 0.03 -0.65 Thermal 1[1] 0.00 0.00 0.00 0.00 0.00 0.00 Pressure 1[1] -2.17 -1.63 0.00 0.00 0.00 0.00 Pressure 2[1] -2.17 -1.63 0.00 0.00 0.00 0.00 GRTP1[1] 231.32 -252.61 -37.82 1.07 0.03 -0.65 GRTP2[1] 209.12 -269.27 -37.82 1.07 0.03 -0.65 GRTP2[1] 0.00 0.00 0.00 0.00 0.00 0.00 Thermal 2[1] -14.82 -14.05 0.00 0.00 0.00 0.00 Pressure 1[1] -1.45 -1.37 0.00 0.00 0.00 0.01 Pressure 2[1] -1.45 -1.37 0.00 0.00 0.01 0.01 GRTP1[1] 233.61 -159.75 -6.93 0.98 -0.23 1.61 Pressure 2[1] -0.73 -0.48 0.00 0.00 0.00 0.01 GRTP1[1]		Thermal 2(1)	-29.09	-4.51	0.00	0.00	0.00	-0.20		
A07 Gravity[1] 233.49 -250.98 -37.82 1.07 0.03 -0.65 Thermal 1[1] 0.00 0.00 0.00 0.00 0.00 0.00 Pressure 1[1] -2.17 -1.63 0.00 0.00 0.00 0.00 Pressure 2[1] -2.17 -1.63 0.00 0.00 0.00 0.00 GRTP1[1] 231.32 -252.61 -37.82 1.07 0.03 -0.65 GRTP2[1] 209.12 -269.27 -37.82 1.07 0.03 -0.65 GRTP2[1] 0.00 0.00 0.00 0.00 0.00 0.00 Thermal 2[1] -14.82 -14.05 0.00 0.00 0.00 0.00 Pressure 1[1] -1.45 -1.37 0.00 0.00 0.00 0.01 Pressure 2[1] -1.45 -1.37 0.00 0.00 0.01 0.01 GRTP1[1] 233.61 -159.75 -6.93 0.98 -0.23 1.61 Pressure 2[1] -0.73 -0.48 0.00 0.00 0.00 0.01 GRTP1[1]		Pressure 1{1}	-2.84	-0.44	0.00	0.00	0.00	-0.02		
A07 Gravity[1] 233.49 -250.98 -37.82 1.07 0.03 -0.65 Thermal 1[1] 0.00 0.00 0.00 0.00 0.00 0.00 Pressure 1[1] -2.17 -1.63 0.00 0.00 0.00 0.00 Pressure 2[1] -2.17 -1.63 0.00 0.00 0.00 0.00 GRTP1[1] 231.32 -252.61 -37.82 1.07 0.03 -0.65 GRTP2[1] 209.12 -269.27 -37.82 1.07 0.03 -0.65 GRTP2[1] 0.00 0.00 0.00 0.00 0.00 0.00 Thermal 2[1] -14.82 -14.05 0.00 0.00 0.00 0.00 Pressure 1[1] -1.45 -1.37 0.00 0.00 0.00 0.01 Pressure 2[1] -1.45 -1.37 0.00 0.00 0.01 0.01 GRTP1[1] 233.61 -159.75 -6.93 0.98 -0.23 1.61 Pressure 2[1] -0.73 -0.48 0.00 0.00 0.00 0.01 GRTP1[1]		Pressure 2{1}	-2.84	-0.44	0.00	0.00	0.00	-0.02		
A07 Gravity[1] 233.49 -250.98 -37.82 1.07 0.03 -0.65 Thermal 1[1] 0.00 0.00 0.00 0.00 0.00 0.00 Pressure 1[1] -2.17 -1.63 0.00 0.00 0.00 0.00 Pressure 2[1] -2.17 -1.63 0.00 0.00 0.00 0.00 GRTP1[1] 231.32 -252.61 -37.82 1.07 0.03 -0.65 GRTP2[1] 209.12 -269.27 -37.82 1.07 0.03 -0.65 GRTP2[1] 0.00 0.00 0.00 0.00 0.00 0.00 Thermal 2[1] -14.82 -14.05 0.00 0.00 0.00 0.00 Pressure 1[1] -1.45 -1.37 0.00 0.00 0.00 0.01 Pressure 2[1] -1.45 -1.37 0.00 0.00 0.01 0.01 GRTP1[1] 233.61 -159.75 -6.93 0.98 -0.23 1.61 Pressure 2[1] -0.73 -0.48 0.00 0.00 0.00 0.01 GRTP1[1]		GRTP1{1}	230.59	-212.78	-26.69	1.12	0.15	0.39		
A07 Gravity[1] 233.49 -250.98 -37.82 1.07 0.03 -0.65 Thermal 1[1] 0.00 0.00 0.00 0.00 0.00 0.00 Pressure 1[1] -2.17 -1.63 0.00 0.00 0.00 0.00 Pressure 2[1] -2.17 -1.63 0.00 0.00 0.00 0.00 GRTP1[1] 231.32 -252.61 -37.82 1.07 0.03 -0.65 GRTP2[1] 209.12 -269.27 -37.82 1.07 0.03 -0.65 GRTP2[1] 0.00 0.00 0.00 0.00 0.00 0.00 Thermal 2[1] -14.82 -14.05 0.00 0.00 0.00 0.00 Pressure 1[1] -1.45 -1.37 0.00 0.00 0.00 0.01 Pressure 2[1] -1.45 -1.37 0.00 0.00 0.01 0.01 GRTP1[1] 233.61 -159.75 -6.93 0.98 -0.23 1.61 Pressure 2[1] -0.73 -0.48 0.00 0.00 0.00 0.01 GRTP1[1]		GRTP2{1}	201.50	-217.29	-26.69	1.12	0.15	0.19		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		Gravity[1]	233 19	-250 98	-37 82	1 07	0 03	-0 65		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	AU /	Thermal 1(1)	233.45	230.90	0 00	0.00	0.00	0.00		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		Thermal 2(1)	-22.20	-16.66	0.00	0.00	0.00	-0.03		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		Pressure 1{1}	-2.17	-1.63	0.00	0.00	0.00	0.00		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		Pressure 2{1}	-2.17	-1.63	0.00	0.00	0.00	0.00		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		GRTP1{1}	231.32	-252.61	-37.82	1.07	0.03	-0.65		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		GRTP2{1}	209.12	-269.27	-37.82	1.07	0.03	-0.69		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	A06	Gravity{1}	233 55	-281 60	-30 76	1 03	-0 15	0 34		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	110 0	Thermal 1{1}	0.00	0.00	0.00	0.00	0.00	0.00		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		Thermal 2{1}	-14.82	-14.05	0.00	0.00	0.00	0.06		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		Pressure 1{1}	-1.45	-1.37	0.00	0.00	0.00	0.01		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		Pressure 2{1}	-1.45	-1.37	0.00	0.00	0.00	0.01		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		GRTP1{1}	232.10	-282.98	-30.76	1.03	-0.15	0.35		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		GRTP2{1}	217.28	-297.02	-30.76	1.03	-0.15	0.41		
A04 N Gravity{1} 233.67 20.33 11.85 0.93 -0.07 1.29 Thermal 1{1} 0.00 0.00 0.00 0.00 0.00 0.00 Thermal 2{1} -0.55 0.75 0.00 0.00 0.00 0.01 Pressure 1{1} -0.05 0.07 0.00 0.00 0.00 0.00 Pressure 2{1} -0.05 0.07 0.00 0.00 0.00 0.00 GRTP1{1} 233.61 20.40 11.85 0.93 -0.07 1.29 GRTP2{1} 233.06 21.16 11.85 0.93 -0.07 1.31	A08	Gravity{1}	233.61	-159.75	-6.93	0.98	-0.23	1.61		
A04 N Gravity{1} 233.67 20.33 11.85 0.93 -0.07 1.29 Thermal 1{1} 0.00 0.00 0.00 0.00 0.00 0.00 Thermal 2{1} -0.55 0.75 0.00 0.00 0.00 0.01 Pressure 1{1} -0.05 0.07 0.00 0.00 0.00 0.00 Pressure 2{1} -0.05 0.07 0.00 0.00 0.00 0.00 GRTP1{1} 233.61 20.40 11.85 0.93 -0.07 1.29 GRTP2{1} 233.06 21.16 11.85 0.93 -0.07 1.31		Thermal 1{1}	0.00	0.00	0.00	0.00	0.00	0.00		
A04 N Gravity{1} 233.67 20.33 11.85 0.93 -0.07 1.29 Thermal 1{1} 0.00 0.00 0.00 0.00 0.00 0.00 Thermal 2{1} -0.55 0.75 0.00 0.00 0.00 0.01 Pressure 1{1} -0.05 0.07 0.00 0.00 0.00 0.00 Pressure 2{1} -0.05 0.07 0.00 0.00 0.00 0.00 GRTP1{1} 233.61 20.40 11.85 0.93 -0.07 1.29 GRTP2{1} 233.06 21.16 11.85 0.93 -0.07 1.31		Thermal 2{1}	-7.44	-4.92	0.00	0.00	0.00	0.08		
A04 N Gravity{1} 233.67 20.33 11.85 0.93 -0.07 1.29 Thermal 1{1} 0.00 0.00 0.00 0.00 0.00 0.00 Thermal 2{1} -0.55 0.75 0.00 0.00 0.00 0.01 Pressure 1{1} -0.05 0.07 0.00 0.00 0.00 0.00 Pressure 2{1} -0.05 0.07 0.00 0.00 0.00 0.00 GRTP1{1} 233.61 20.40 11.85 0.93 -0.07 1.29 GRTP2{1} 233.06 21.16 11.85 0.93 -0.07 1.31		Pressure 1{1}	-0.73	-0.48	0.00	0.00	0.00	0.01		
A04 N Gravity{1} 233.67 20.33 11.85 0.93 -0.07 1.29 Thermal 1{1} 0.00 0.00 0.00 0.00 0.00 0.00 Thermal 2{1} -0.55 0.75 0.00 0.00 0.00 0.01 Pressure 1{1} -0.05 0.07 0.00 0.00 0.00 0.00 Pressure 2{1} -0.05 0.07 0.00 0.00 0.00 0.00 GRTP1{1} 233.61 20.40 11.85 0.93 -0.07 1.29 GRTP2{1} 233.06 21.16 11.85 0.93 -0.07 1.31		Pressure 2{1}	-0.73	-0.48	0.00	0.00	0.00	0.01		
A04 N Gravity{1} 233.67 20.33 11.85 0.93 -0.07 1.29 Thermal 1{1} 0.00 0.00 0.00 0.00 0.00 0.00 Thermal 2{1} -0.55 0.75 0.00 0.00 0.00 0.01 Pressure 1{1} -0.05 0.07 0.00 0.00 0.00 0.00 Pressure 2{1} -0.05 0.07 0.00 0.00 0.00 0.00 GRTP1{1} 233.61 20.40 11.85 0.93 -0.07 1.29 GRTP2{1} 233.06 21.16 11.85 0.93 -0.07 1.31		GRTP1{1}	232.88	-160.23	-6.93	0.98	-0.23	1.61		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		GRTP2 {1}	225.45	-105.15	-6.93	0.98	-0.23	1.69		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A04 N	Gravity{1}	233.67	20.33	11.85	0.93	-0.07	1.29		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Thermal 1{1}	0.00	0.00	0.00	0.00	0.00	0.00		
Pressure 1{1} -0.05 0.07 0.00 0.00 0.00 Pressure 2{1} -0.05 0.07 0.00 0.00 0.00 GRTP1{1} 233.61 20.40 11.85 0.93 -0.07 1.29 GRTP2{1} 233.06 21.16 11.85 0.93 -0.07 1.31 A04 F Gravity{1} 242.81 30.00 4.85 0.93 -0.02 1.05 Thermal 1{1} 0.00 0.00 0.00 0.00 0.00 0.00 Pressure 1{1} 0.00 0.03 0.00 0.00 0.00 0.00 Pressure 2{1} 0.00 0.03 0.00 0.00 0.00 0.00 GRTP1{1} 242.81 30.36 4.85 0.93 -0.02 1.05		Thermal 2{1}	-0.55	0.75	0.00	0.00	0.00	0.01		
Pressure 2{1} -0.05 0.07 0.00 0.00 0.00 GRTP1{1} 233.61 20.40 11.85 0.93 -0.07 1.29 GRTP2{1} 233.06 21.16 11.85 0.93 -0.07 1.31 A04 F Gravity{1} 242.81 30.00 4.85 0.93 -0.02 1.05 Thermal 1{1} 0.00 0.00 0.00 0.00 0.00 0.00 Pressure 1{1} 0.00 0.33 0.00 0.00 0.00 0.00 Pressure 2{1} 0.00 0.03 0.00 0.00 0.00 0.00 GRTP1{1} 242.81 30.34 4.85 0.93 -0.02 1.05		Pressure 1{1}	-0.05	0.07	0.00	0.00	0.00	0.00		
GRTP1{1} 233.61 20.40 11.85 0.93 -0.07 1.29 GRTP2{1} 233.06 21.16 11.85 0.93 -0.07 1.31 A04 F Gravity{1} 242.81 30.00 4.85 0.93 -0.02 1.05 Thermal 1{1} 0.00 0.00 0.00 0.00 0.00 0.00 Pressure 1{1} -0.01 0.33 0.00 0.00 0.00 0.00 Pressure 2{1} 0.00 0.03 0.00 0.00 0.00 0.00 GRTP1{1} 242.81 30.36 4.85 0.93 -0.02 1.05		Pressure 2{1}	-0.05	0.07	0.00	0.00	0.00	0.00		
A04 F Gravity{1} 242.81 30.00 4.85 0.93 -0.02 1.05 Thermal 1{1} 0.00 0.00 0.00 0.00 0.00 0.00 Thermal 2{1} -0.01 0.33 0.00 0.00 0.00 0.00 Pressure 1{1} 0.00 0.03 0.00 0.00 0.00 0.00 Pressure 2{1} 0.00 0.03 0.00 0.00 0.00 0.00 GRTP1{1} 242.81 30.36 4.85 0.93 -0.02 1.05		GRTP1{1} GRTP2{1}	233.61 233.06	20.40 21.16	11.85	0.93	-0.07	1.29		
A04 F Gravity[1] 242.81 30.00 4.85 0.93 -0.02 1.05 Thermal 1{1} 0.00 0.00 0.00 0.00 0.00 0.00 Thermal 2{1} -0.01 0.33 0.00 0.00 0.00 0.00 Pressure 1{1} 0.00 0.03 0.00 0.00 0.00 0.00 Pressure 2{1} 0.00 0.03 0.00 0.00 0.00 0.00 GRTP1{1} 242.81 30.34 4.85 0.93 -0.02 1.05										
Thermal 1{1} 0.00 0.00 0.00 0.00 0.00 0.00 Thermal 2{1} -0.01 0.33 0.00 0.00 0.00 0.00 Pressure 1{1} 0.00 0.03 0.00 0.00 0.00 0.00 Pressure 2{1} 0.00 0.03 0.00 0.00 0.00 0.00 GRTP1{1} 242.81 30.36 4.85 0.93 -0.02 1.05	A04 F	Gravity{1}	242.81	30.00	4.85	0.93	-0.02	1.05		
Thermal 2{1} -0.01 0.33 0.00 0.00 0.00 0.00 Pressure 1{1} 0.00 0.03 0.00 0.00 0.00 0.00 Pressure 2{1} 0.00 0.03 0.00 0.00 0.00 0.00 GRTP1{1} 242.81 30.03 4.85 0.93 -0.02 1.05		Thermal 1(1)	0.00	0.00	0.00	0.00	0.00	0.00		
Pressure 1(1) 0.00 0.03 0.00 0.00 0.00 0.00 Pressure 2(1) 0.00 0.03 0.00 0.00 0.00 0.00 GRTP1{1} 242.81 30.36 4.85 0.93 -0.02 1.05		Thermal 2{1} Prossure 1(1)	-0.01	0.33	0.00	0.00	0.00	0.00		
GRTP1{1} 242.81 30.03 4.85 0.93 -0.02 1.05 CPTP2{1} 242.81 30.36 4.95 0.93 -0.02 1.05		FIESSULE I(I) Proceuro 2/11	0.00	0.03	0.00	0.00	0.00	0.00		
		GRTP1(1)	242 81	30.03	4 85	0.00	-0.02	1 05		
		GRTP2{1}	242.81	30.36	4 85	0.93	-0.02	1 05		

6INCH SE 05/21/20 01:59 PM	15 6INCH SPOOL					NTLEY toPIPE S	Standard 9.4.0.19 RESULT PAGE	9
				ЕМЕΝТ				
Point	Load	TRANSL	ATIONS (m	um)	ROTATI	ONS (deg	1)	
name	combination	Х	Y	Z	Х	Y	Z	
A05	Gravity{1}	248.00	30.00	0.00	0.93	0.00	0.93	
	Thermal 1{1}	0.00	0.00	0.00	0.00	0.00	0.00	
	Thermal 2{1}	0.00	0.00	0.00	0.00	0.00	0.00	
	Pressure 1{1}	0.00	0.00	0.00	0.00	0.00	0.00	
	Pressure 2{1}	0.00	0.00	0.00	0.00	0.00	0.00	
	GRTP1{1}	248.00	30.00	0.00	0.93	0.00	0.93	
	GRTP2{1}	248.00	30.00	0.00	0.93	0.00	0.93	

*** Segment A end ***

INCH S 5/21/2 1:59 P	015 6INCH SPOOL						BENTLEY AutoPIPE	Standa:	rd 9.4.0.	19 RESULT PAGE
		RE	STR	AINT	r rež	ACTI) N S			
Point	Load	E	ORCES (N))	MOI	MENTS (N	.m)		
name 	combination	х	Ч	Z	Result	х	Y	Z	Result	
A00	Anchor Tag No.: <	None>								
	Gravity{1}	15645	-17237	-1149	23307	-4018	1748	-88455	88564	
	Thermal 1{1}	0	0	0	0	0	0	0	0	
	Thermal 2{1} Pressure 1{1}	-1175	162	0	1186	0	0	4268	4268	
	Pressure 1{1}	-115	16	0	116	0	0	417	417	
	Pressure 2{1}	-115	16	0	116	0	0	417	417	
	GRTP1{1}	15530	-17221	-1149	23218	-4018	1748	-88038	88147	
	GRTP2{1}	14355	-17059	-1149	22325	-4018	1748	-83770	83885	
A05	Anchor Tag No.: <	None>								
	Gravity{1}									
	Thermal 1{1}									
	Thermal 2{1} Pressure 1{1}	1175	-162	0	1186	0	0	573	573	
	Pressure 2{1}									
	GRTP1 { 1 }							37236		
	GRTP2{1}	-14355	-7572	-833	16251	-138	-4756	37809	38107	

AutoPIPE Standard 9.4.0.19 RESULT PAGE 11

BENTLEY

6INCH SPOOL	_	
05/21/2015	6INCH	SPOOL
01:59 PM		

${\tt G \ L \ O \ B \ A \ L} \qquad {\tt F \ O \ R \ C \ E \ S} \qquad {\tt \&} \qquad {\tt M \ O \ M \ E \ N \ T \ S}$

Point	Load		ORCES (1)		MENTS (N	,	
name 	combination	Х	¥	Z 	Result	X	¥	Z 	Result
*** Seg	gment A begin ***								
A00	Gravity{1}	-15645	17237	1149	23307	4018	-1748	88455	88564
	Thermal 1{1}	0	0	0	0	0	0	0	(
	Thermal 2{1}	1175	-162	0	1186	0	0	-4268	426
	Pressure 1{1}	115	-16	0	116	0	0	-417	41
	Pressure 2{1}	115	-16	0	116	0	0	-417	41
	GRTP1{1}	-15530	17221	1149	23218	4018	-1748	88038	8814
	GRTP2{1}	-14355	17059	1149	22325	4018	-1748	83770	8388
A01 N-	Gravity{1}	-15645	13405	841	20620	-2751	-1748	-18011	1830
	Thermal 1{1}	0	0	0	0	0	0	0	
	Thermal 2{1}	1175	-162	0	1186	0	0	3731	373
	Pressure 1{1}	115	-16	0	116	0	0	365	36
	Pressure 2{1}	115	-16	0	116	0	0	365	36
	GRTP1{1}	-15530	13389	841	20522	-2751	-1748	-17646	1794
	GRTP2{1}	-14355	13228	841	19538	-2751	-1748	-13915	1429
401 N+	Gravity{1}	-15645	13405	841	20620	-2751	-1748	-18011	1830
	Thermal 1{1}	0	0	0	0	0	0	0	
	Thermal 2{1}	1175	-162	0	1186	0	0	3731	373
	Pressure 1{1}	115	-16	0	116	0	0	365	36
	Pressure 2{1}	115	-16	0	116	0	0	365	36
	GRTP1{1}	-15530	13389	841	20522	-2751	-1748	-17646	1794
	GRTP2{1}	-14355	13228	841	19538	-2751	-1748	-13915	1429
A01 F-	Gravity{1}	-15645	13001	808	20358	-3130	-1373	-31169	3135
	Thermal 1{1}	0	0	0	0	0	0	0	
	Thermal 2{1}	1175	-162	0	1186	0	0	4342	434
	Pressure 1{1}	115	-16	0	116	0	0	425	42
	Pressure 2{1}	115	-16	0	116	0	0	425	42
	GRTP1{1}	-15530	12985	808	20260	-3130	-1373	-30744	3093
	GRTP2{1}	-14355	12823	808	19265	-3130	-1373	-26403	2662
A01 F+	Gravity{1}	-15645	13001	808	20358	-3130	-1373	-31169	3135
	Thermal 1{1}	0	0	0	0	0	0	0	
	Thermal 2{1}	1175	-162	0	1186	0	0	4342	434
	Pressure 1{1}	115	-16	0	116	0	0	425	42
	Pressure 2{1}	115	-16	0	116	0	0	425	42
	GRTP1{1}	-15530	12985	808	20260	-3130	-1373	-30744	3093
	GRTP2{1}	-14355	12823	808	19265	-3130	-1373	-26403	2662
A02 N-	Gravity{1}	-15645	11826	714	19625	-3130	214	-57063	5715
	Thermal 1{1}	0	0	0	0	0	0	0	
	Thermal 2{1}	1175	-162	0	1186	0	0	4679	467
	Pressure 1{1}	115	-16	0	116	0	0	457	45
	Pressure 2{1}	115	-16	0	116	0	0	457	45
	GRTP1{1}	-15530	11810	714	19524	-3130	214	-56606	5669
	GRTP2{1}	-14355	11649	714	18500	-3130	214	-51927	5202

_ _

AutoPIPE Standard 9.4.0.19 RESULT PAGE 12

6INCH SPOO 05/21/2015 01:59 PM	L 6INCH SPOOL	BENTLEY AutoPIPE Standard 9.4.0.19 RESULT PAGE
		GLOBAL FORCES & MOMENTS
Point	Load	FORCES (N) MOMENTS (N m)

OBAL FORCES & MOMENTS

Point	Load	H	FORCES (N)	MC	MENTS (N	I.m)	
	combination	Х		Ζ		Х			Result
	Gravity{1}	-15645	11826		19625			-57063	
	Thermal 1{1}	0 1175	0	0	0	0	0	0	0
	Thermal 2{1}	1175	-162	0		0	-		
	Pressure 1{1}	115	-16 -16	0		0	0	457	457
	Pressure 2{1}	115	-16	0		0		457	
	GRTP1{1}	-15530	11810	714	19524	-3130	214	-56606	56693
	GRTP2{1}	-14355	11649	714	18500	-3130	214	-51927	52022
A02 F-	Gravity{1}	-15645	11422	681	19383	-2813	535	-55251	55325
	Thermal 1{1} Thermal 2{1}	0	0	0	0	0	0	0	0
	Thermal 2{1}	1175	-162	0	1186	0	0	4215	4215
	Pressure 1{1}	115	-16	0	116	0	0	412	412
	Pressure 2{1}	115	-16	0	116	0	0	412	412
	GRTP1{1}	-15530	11406	681	19281	-2813	535	-54839	54914
	GRTP2{1}	-14355	11245	681	18247	-2813	535	-50623	50704
A02 F+	Gravity{1} Thermal 1{1}	-15645	11422	681	19383	-2813	535	-55251	55325
	Thermal 1{1}	0	0	0	0	0	0	0	0
	Thermal 2{1}	1175	-162	0	1186	0	0	4215	4215
	Pressure 1{1}	115	-16	0	116	0	0	412	412
	Pressure 2{1}	115	-16	0	116	0		412	412
	GRTP1{1}	-15530	11406	681	19281	-2813	535	-54839	54914
	GRTP2{1}	-14355	11245	681	18247	-2813	535	-50623	50704
A03 N-	Gravity{1}	-15645		428	17702	289	535		
	Gravity{1} Thermal 1{1}	0	0	0	0	0	0	0	0
	Thermal 2{1}	1175	-162	0	1186	0	0	-2362	2362
	Pressure 1{1}	115	-16 -16	0	116	0	0	-231	231
	Pressure 1{1} Pressure 2{1} GRTP1{1}	115	-16	0		0			
		-15530			17593	289	535	32069	32075
	GRTP2{1}	-14355	8094	428	16485	289	535	29707	29713
A03 N+	Gravity{1} Thermal 1{1}	-15645	8271	428	17702	289	535	32300	32305
	Thermal 1{1}	0	0	0	0	0	0	0	0
	Thermal 2{1}	1175		0	1186	0	0		
	Pressure 1{1}	115 115	-16		116	0		-231	
	Pressure 2{1}			0	116	0	0	-231	231
	GRTP1{1}	-15530	8255	428	17593	289	535	32069	32075
	GRTP2{1}	-14355	8094	428	16485	289	535	29707	29713
A03 F-		-15645	7867		17516	479	721		35798
	Thermal 1{1}	0 1175	0	0		0			
	Thermal 2{1}	1175	-162	0		0			
	Pressure 1{1}	115	-16	0		0	-		
	Pressure 2{1}	TTD	- T O	0		0			
	GRTP1{1}	-15530 -14355	7851		17406	479	721	35511	
	GRTP2{1}	-14355	7689	395	16289	479	721	32686	32697

AutoPIPE Standard 9.4.0.19 RESULT PAGE 13

-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6	Ι	N	С	Н		S	Ρ	0	0	L													
~	-	1	~	1	1	0	~	-	-		c	-	• •	\sim	тт		~	-	~	~	-		

05/21/2015 6INCH SPOOL 01:59 PM

${\tt G \ L \ O \ B \ A \ L} \qquad {\tt F \ O \ R \ C \ E \ S} \qquad {\tt \&} \qquad {\tt M \ O \ M \ E \ N \ T \ S}$

BENTLEY

Point	Load	E	FORCES (N)	MOM	IENTS (N		
name	combination	Х	Y	Z	Result	Х	Y	Z	Result
A03 F+	Gravity{1}	-15645	7867	395	17516	479	721	35787	35798
	Thermal 1{1}	0	0	0	0	0	0	0	0
	Thermal 2{1}	1175	-162	0	1186	0	0	-2825	2825
	Pressure 1{1}	115	-16	0	116	0	0	-276	276
	Pressure 2{1}	115	-16	0	116	0	0	-276	276
	GRTP1{1}	-15530	7851	395	17406	479	721	35511	35522
	GRTP2{1}	-14355	7689	395	16289	479	721	32686	32697
A07 -	Gravity{1}	-15645	4323	110	16232	479	2309	-2569	3488
	Thermal 1{1}	0	0	0	0	0	0	0	0
	Thermal 2{1}	1175	-162	0	1186	0	0	-1809	
	Pressure 1{1}	115	-16	0	116	0	0	-177	177
	Pressure 2{1}	115	-16	0	116	0	0	-177	177
	GRTP1{1}	-15530	4308	110	16117	479	2309		3620
	GRTP2{1}	-14355	4146	110	14942	479	2309	-4555	5129
A07 +	Gravity{1}	-15645	4323	110	16232	479	2309	-2569	
	Thermal 1{1}	0	0	0	0	0	0	0	-
	Thermal 2{1}	1175	-162	0	1186	0	0	-1809	
	Pressure 1{1}	115	-16	0	116	0	0	-177	
	Pressure 2{1}	115	-16	0	116	0	0	-177	
	GRTP1{1}	-15530	4308		16117	479	2309		
	GRTP2{1}	-14355	4146	110	14942	479	2309	-4555	5129
A06 -		-15645	523	-196	15655	479	2019	-18925	
	Thermal 1{1}	0	0	0	0	0	0	0	-
	Thermal 2{1}	1175	-162	0	1186	0	0	-718	718
	Pressure 1{1}	115	-16	0	116	0	0	-70	
	Pressure 2{1}	115	-16	0		0	0	-70	
	GRTP1{1}	-15530			15540	479		-18995	
	GRTP2{1}	-14355	345	-196	14360	479	2019	-19713	19822
A06 +	Gravity{1}	-15645	523	-196	15655	479	2019	-18925	19038
	Thermal 1{1}	0	0	0	0	0	0	0	-
	Thermal 2{1}	1175	-162	0	1186	0	0	-718	
	Pressure 1{1}	115	-16	0	116	0	0	-70	
	Pressure 2{1}	115	-16	0		0	0	-70	
	GRTP1{1}	-15530	507	-196		479	2019		
	GRTP2{1}	-14355	345	-196	14360	479	2019	-19713	19822
A08 -	Gravity{1}	-15645	-3278	-502	15993	479	-336	-9626	9644
	Thermal 1{1}	0	0	0	0	0	0	0	-
	Thermal 2{1}	1175	-162	0	1186	0	0	372	
	Pressure 1{1}	115	-16	0	116	0	0	36	
	Pressure 2{1}	115	-16	0		0	0	36	
	GRTP1{1}	-15530		-502		479	-336	-9589	
	GRTP2{1}	-14355	-3455	-502	14773	479	-336	-9217	9236

--____

6INCH SPOOL			
05/21/2015	6INCH	SPOOL	

01:59 PM

BENTLEY

AutoPIPE Standard 9.4.0.19 RESULT PAGE 14 _____

		GLOBAI	FOF	R C E S	& M	ΟΜΕΝ	T S		
Point	Load		FORCES	(N)		MO	MENTS (N	.m)	
name	combination	Х	Y	Z	Result	Х	Y	Z	Result
A08 +	Gravity{1}	-15645		-502	15993	479	-336	-9626	9644
	Thermal 1{1}	(0	0	0	0	0	0
	Thermal 2{1}	1175		0	1186	0	0	372	372
	Pressure 1{1}	115		0	116	0	0	36	36
	Pressure 2{1}	115		0	116	0	0	36	36
	GRTP1{1}	-15530		-502	15884	479	-336	-9589	9607
	GRTP2{1}	-14355	5 -3455	-502	14773	479	-336	-9217	9236
A04 N-		-15645		-787	17086	479	-4391	22152	22588
	Thermal 1{1}	(0	0	0	0	0	0
	Thermal 2{1}	1175		0	1186	0	0	1389	1389
	Pressure 1{1}	115		0	116	0	0	136	136
	Pressure 2{1}	115		0	116	0	0	136	136
	GRTP1{1}	-15530		-787	16987	479	-4391	22288	22721
	GRTP2{1}	-14355	5 -6999	-787	15990	479	-4391	23677	24085
A04 N+	Gravity{1}	-15645		-787	17086	479	-4391	22152	22588
	Thermal 1{1}	(0	0	0	0	0	0
	Thermal 2{1}	1175		0	1186	0	0	1389	1389
	Pressure 1{1}	115		0	116	0	0	136	136
	Pressure 2{1}	115		0	116	0	0	136	136
	GRTP1{1}	-15530		-787	16987	479	-4391	22288	22721
	GRTP2{1}	-14355	5 -6999	-787	15990	479	-4391	23677	24085
A04 F-		-15645		-819	17253	110	-4756	32486	32833
	Thermal 1{1}	(0	0	0	0	0	0
	Thermal 2{1}	1175		0	1186	0	0	926	926
	Pressure 1{1}	115		0	116	0	0	91	91
	Pressure 2{1}	115		0	116	0	0	91	91
	GRTP1{1}	-15530		-819 -819	17155 16172	110 110	-4756 -4756	32577 33503	32922 33839
	GRTP2{1}	-14353	5 -/403	-819	101/2	110	-4/56	33503	33839
A04 F+		-15645		-819	17253	110	-4756	32486	32833
	Thermal 1{1}	(0	0	0	0	0	0
	Thermal 2{1}	1175		0	1186	0	0	926	926
	Pressure 1{1}	115		0	116	0	0	91	91
	Pressure 2{1}	115		0	116	0 110	0	91	91
	GRTP1{1}	-15530 -14355		-819 -819	17155 16172	110	-4756 -4756	32577 33503	32922 33839
	GRTP2{1}	-14353	-/403	-819	101/2	110	-4/36	33303	22022
A05	Gravity{1}	-15645		-833	17325	-138	-4756	37180	37483
	Thermal 1{1}	(0	0	0	0	0	0
	Thermal 2{1}	1175		0	1186	0	0	573	573
	Pressure 1{1}	115		0	116	0	0	56	56
	Pressure 2{1}	115 -15530		0	116 17228	0	0	56	56
	GRTP1{1} GRTP2{1}	-15530		-833 -833	16251	-138 -138	-4756 -4756	37236 37809	37539 38107
	GUILS	-14303	5 -1512	-000	TOZUI	-138	-4/00	31009	2010/

*** Segment A end ***

6INCH S	POOL 015 6INCH SPOOL M					BENTLEY AutoPIPE	Standard	9.4.0.19 RESULT PAGE 15
	GENERAL P	PIPE ST	rres S	SREE	PORT			
Deint	Taad		(Stress :	in N/mm2)	Duincincl	m = + = 1	
name	Load combination	HOOP Stress	Longi Max	Luqinal Min	Snear Stress	Max Min	Stress	Loc
*** Se	gment A begin ***							
A00	SIFI= 1.00 SIFO= 1.	00						
	Gravity{1}	0.00	341.20	-345.90	3.39	341.24-345.93	345.95	93
	Thermal 1{1}	0.00	0.00	0.00	0.00	0.00 0.00	0.00	270
	Thermal 2{1}	0.00	16.58	-16.54	0.00	16.58 -16.54	16.58	90
	Pressure 1{1}	190.19	71.70	68.46	0.00	190.19 68.46	166.85	270
	Pressure 2{1}	190.19	71.70	68.46	0.00	190.19 68.46	166.85	270
	GRTP1 {1}	190.19	409.67	-274.20	3.39	409.72-274.23	404.40	93
	<pre>SIFI= 1.00 SIFO= 1. Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}</pre>	190.19	393.15	-257.64	3.39	393.20-257.67	389.34	93
		~ ~						
	Gravity{1}	0.00	68.86	-72.52	3.39	69.03 -72.68	72.75	279
	Thermal 1{1}	0.00	0.00	0.00	0.00	0.00 0.00	0.00	270
	Thermal 2{1}	0.00	14.50	-14.45	0.00	14.50 -14.45	14.50	270
	Pressure 1{1}	190.19	71.50	68.67	0.00	190.19 68.67	166.81	90
	Pressure 2{1}	190.19	71.50	68.67	0.00	190.19 68.67	166.81	90
	GRTP1 {1}	190.19	137.54	-1.04	3.39	190.40 -1.10	190.80	279
	SIF1= 1.00 SIF0= 1. Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}	190.19	123.31	13.24	3.39	190.36 13.18	184.02	281
A01 N+	0757 1 00 0750 1	0.0						
	Gravity{1}	0.00	68.86	-72.52	3.39	69.03 -72.68	72.75	189
	Thermal 1{1}	0.00	0.00	0.00	0.00	0.00 0.00	0.00	270
	Thermal 2{1}	0.00	14.50	-14.45	0.00	14.50 -14.45	14.50	180
	Pressure 1{1}	190.19	71.50	68.67	0.00	190.19 68.67	166.81	0
	Pressure 2{1}	190.19	71.50	68.67	0.00	190.19 68.67	166.81	0
	GRTP1 {1}	190.19	137.54	-1.04	3.39	190.40 -1.10	190.80	189
	SIFIE 1.00 SIFUE 1. Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}	190.19	123.31	13.24	3.39	190.36 13.18	184.02	191
A01 F-	<pre>SIFI= 1.00 SIFO= 1. Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}</pre>	00						
	Gravity{1}	0.00	123.18	-118.92	6.07	123.48-119.23	123.63	357
	Thermal 1{1}	0.00	0.00	0.00	0.00	0.00 0.00	0.00	270
	Thermal 2{1}	0.00	16.69	-17.01	0.00	16.69 -17.01	17.01	0
	Pressure 1{1}	190.19	71.71	68.42	0.00	190.19 68.42	166.85	0
	Pressure 2{1}	190.19	71.71	68.42	0.00	190.19 68.42	166.85	0
	GRTP1 {1}	190.19	191.60	-47.21	6.07	197.01 -47.36	217.92	177
	GRTP2{1}	190.19	174.61	-30.54	6.07	192.27 -30.71	207.42	177
A01 F+	SIFI= 1.00 SIFO= 1.	00						
	Gravity{1}	0.00	123.18	-118.92	6.07	123.48-119.23	123.63	177
	Thermal 1{1}	0.00	0.00	0.00	0.00	0.00 0.00	0.00	270
	Thermal 2{1}	0.00	16.69	-17.01	0.00	16.69 -17.01	17.01	180
	Pressure 1{1}	190.19	71.71	68.42	0.00	190.19 68.42	166.85	180
	Pressure 2{1}	190.19	71.71	68.42	0.00	190.19 68.42	166.85	180
	GRTP1{1}	190.19	191.60	-47.21	6.07	197.01 -47.36	217.92	357
	<pre>SIFI= 1.00 SIFO= 1. Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}</pre>	190.19	174.61	-30.54	6.07	192.27 -30.71	207.42	357
A02 N-								
1102 11-	Gravity{1}	0 00	223 53	-219 27	6 07	223.70-219 44	223 78	180
	SIFI= 1.00 SIFO= 1. Gravity{1} Thermal 1{1} Thermal 2{1}	0.00	0.00	0.00	0.00	0.00 0.00	0.00	270
	Thermal 2{1}	0.00	17.99	-18.31	0.00	17.99 -18.31	18.31	180

1:59 PI	015 6INCH SPOOL M 					BENTLEY AutoPIPE S				
	GENERAL PII	PE SI	RESS (Stress ir	REP n N/mm2	ORT)					
Point name	Load combination	Hoop Stress	Longitı Max	Idinal Min	Shear Stress	Principal Max Min	Total Stress	Loc		
	Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}	190.19	71.84	68.29	0.00	190.19 68.29	166.87	180		
	Pressure 2{1}	190.19	71.84	68.29	0.00	190.19 68.29	166.87	180		
	GRTP1{1}	190.19	291.82 -	-147.43	6.07	292.18-147.54	293.36	0		
	GRTP2{1}	190.19	273.51 -	-129.44	6.07	273.95-129.55	278.66	0		
.02 N+	SIFI= 1.00 SIFO= 1.00									
	SIFI= 1.00 SIFO= 1.00 Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}	0.00	223.53 -	-219.27	6.07	223.70-219.44	223.78	0		
	Thermal 1{1}	0.00	0.00	0.00	0.00	0.00 0.00	0.00	270		
	Thermal 2{1}	0.00	17.99	-18.31	0.00	17.99 -18.31	18.31	0		
	Pressure 1{1}	190.19	71.84	68.29	0.00	190.19 68.29	166.87	0		
	Pressure 2{1}	190.19	71.84	68.29	0.00	190.19 68.29	166.87	0		
	GRTP1 {1}	190.19	291.82 -	-147.43	6.07	292.18-147.54	293.36	180		
	GRTP2 { 1 }	190.19	2/3.51 -	-129.44	6.07	2/3.95-129.55	2/8.66	180		
02 F-	<pre>SIFI= 1.00 SIFO= 1.00 Gravity{1} Thermal 1(1) Thermal 2(1) Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}</pre>									
	Gravity{1}	0.00	216.20 -	-213.09	1.04	216.21-213.09	216.21	357		
	Thermal 1{1}	0.00	0.00	0.00	0.00	0.00 0.00	0.00	270		
	Thermal 2{1}	0.00	16.33	-16.38	0.00	16.33 -16.38	16.38	0		
	Pressure 1{1}	190.19	71.68	68.48	0.00	190.19 68.48	166.84	0		
	Pressure 2{1}	190.19	71.68	68.48	0.00	190.19 68.48	166.84	0		
	GRTP1 {1}	190.19	284.68 -	-141.42	1.04	284.69-141.42	288.22	177		
	GKITZ(I)	100.10	200.00	123.11	1.04	200.34 123.11	2/1.55	111		
A02 F+	<pre>SIFI= 1.00 SIFO= 1.00 Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}</pre>									
	Gravity{1}	0.00	216.20 -	-213.09	1.04	216.21-213.09	216.21	87		
	Thermal 1(1)	0.00	0.00	0.00	0.00	0.00 0.00	0.00	270		
	Thermal 2(1)	100.00	16.33	-16.38	0.00	10.33 -10.38	16.38	90		
	Pressure 2(1)	190.19	71.00	60.40	0.00	190.19 00.40	166 94	90		
	GRTP1(1)	190.19	284 68 -	-141 42	1 04	284 69-141 42	288 22	267		
	GRTP2 {1}	190.19	268.33 -	-125.11	1.04	268.34-125.11	274.99	267		
	1 00 1 00									
AU3 N-	SIF1= 1.00 SIF0= 1.00	0 00	126 45 -	124 20	1 04	126 46-124 21	126 46	269		
	Thermal 1(1)	0.00	0 00	0 00	0 00	0 00 0 00	0 00	200		
	Thermal 2{1}	0.00	9.14	-9.19	0.00	9.14 -9.19	9.19	270		
	Pressure 1{1}	190.19	70.97	69.18	0.00	190.19 69.18	166.73	270		
	Pressure 2{1}	190.19	70.97	69.18	0.00	190.19 69.18	166.73	270		
	GRTP1{1}	190.19	195.63	-53.22	1.04	195.82 -53.23	221.65	89		
	<pre>SIFI= 1.00 SIFO= 1.00 Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}</pre>	190.19	186.45	-44.08	1.04	190.46 -44.09	215.64	89		
A03 N+	<pre>SIFI= 1.00 SIFO= 1.00 Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}</pre>									
	Gravity{1}	0.00	126.45 -	-124.20	1.04	126.46-124.21	126.46	359		
	Thermal 1{1}	0.00	0.00	0.00	0.00	0.00 0.00	0.00	270		
	Thermal 2{1}	0.00	9.14	-9.19	0.00	9.14 -9.19	9.19	0		
	Pressure 1{1}	190.19	70.97	69.18	0.00	190.19 69.18	166.73	0		
	Pressure 2{1}	190.19	70.97	69.18	0.00	190.19 69.18	166.73	0		
	GRTP1{1}	190.19	195.63	-53.22	1.04	195.82 -53.23	221.65	179		
	GRTP2 { 1 }	190.19	186.45	-44.08	1.04	190.46 -44.09	215.64	179		

1:59 P	015 6INCH SPOOL					Aut			9.4.0.19 RESULT PAGE 1
	GENERAL PI	PE SI	RESS Stress	S REP in N/mm2	ORT)				
Point	Load	Ноор	Longit	tudinal	Shear	Princ	ipal	Total	_
name 	Load combination	Stress	Max	Min 	Stress	Max 	Min 	Stress	Loc
	Gravity{1}	0.00	141.01	-136.75	0.93	141.02-	136.75	141.02	359
	Thermal 1{1}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	270
	Thermal 2{1}	0.00	10.80	-11.12	0.00	10.80	-11.12	11.12	0
	Pressure 1{1}	190.19	71.13	68.99	0.00	190.19	68.99	166.76	0
	Pressure 2{1}	190.19	71.13	68.99	0.00	190.19	68.99	166.76	0
	GRTP1{1}	190.19	210.00	-65.61	0.93	210.05	-65.62	230.12	179
	SIFT= 1.00 SIFO= 1.00 Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}	190.19	198.88	-54.81	0.93	198.98	-54.82	222.72	179
403 F+	SIFI= 1.00 SIFO= 1.00								
	Gravity{1}	0.00	141.01	-136.75	0.93	141.02-	136.75	141.02	359
	Thermal 1{1}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	270
	Thermal 2{1}	0.00	10.80	-11.12	0.00	10.80	-11.12	11.12	0
	Pressure 1{1}	190.19	71.13	68.99	0.00	190.19	68.99	166.76	0
	Pressure 2{1}	190.19	71.13	68.99	0.00	190.19	68.99	166.76	0
	<pre>SIFI= 1.00 SIFO= 1.00 Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}</pre>	190.19	198.88	-54.81	0.93	210.05 198.98	-54.82	230.12	179
07	arer 1 00 area 1 00								
10 /	Gravitu(1)	0 00	15 54	-11 27	0 93	15 59	-11 35	15 62	222
	Thormal 1(1)	0.00	10.04	-11.27	0.95	13.39	-11.33	10.02	222
	Thermal 2(1)	0.00	6.86	-7 18	0.00	6.86	-7 18	7 18	0
	Pressure 1{1}	190 19	70 75	69 38	0.00	190 19	69 38	166 70	0
	Pressure 2{1}	190.19	70.75	69.38	0.00	190.19	69 38	166 70	0
	GRTP1 { 1 }	190.19	86 12	58 27	0.93	190.20	58 27	168 78	40
	SIFJ= 1.00 SIFO= 1.00 Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}	190.19	91.85	52.22	0.93	190.20	52.21	170.20	27
106	<pre>SIFI= 1.00 SIFO= 1.00 Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}</pre>								
	Gravity{1}	0.00	75.98	-71.71	0.93	75.99	-71.72	75.99	186
	Thermal 1{1}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	270
	Thermal 2{1}	0.00	2.63	-2.95	0.00	2.63	-2.95	2.95	0
	Pressure 1{1}	190.19	70.34	69.79	0.00	190.19	69.79	166.64	0
	Pressure 2{1}	190.19	70.34	69.79	0.00	190.19	69.79	166.64	0
	GRTP1 { 1 }	190.19	146.31	-1.92	0.93	190.21	-1.92	191.16	6
	GRTP2{1}	190.19	148.92	-4.85	0.93	190.21	-4.86	192.66	6
408									
	Gravity{1}	0.00	39.50	-35.24	0.93	39.52	-35.26	39.54	1/8
	Thermal 1(1)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	∠/∪
	Thermal 2{1}	0.00	1.28	-1.60	0.00	1.28	-1.60	1.60	180
	riessure 1(1)	100 10	70.20	69.92	0.00	100 10	69.92	166 60	100
	riessure 2(1)	100 10	100.20	09.92 31 07	0.00	190.19	31 00	175.02	10U 359
	<pre>SIFT= 1.00 SIFO= 1.00 Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}</pre>	190.19	109.42	36.25	0.93	190.20	36.24	174.91	358
.04 N-	SIFI= 1.00 STFO= 1 00								
	Gravity{1}	0.00	89.75	-85.49	0.93	89.76	-85.50	89.77	11
		0.00	0 00	0.00	0.00	0 00	0.00	0.00	270
	Thermal 1(1)								
	Thermal 1{1} Thermal 2{1}	0.00	5.23	-5.55	0.00	5.23	-5.55	5.55	180
	SIFI= 1.00 SIFO= 1.00 Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1}	0.00	5.23 70.59	-5.55 69.54	0.00	5.23 190.19	-5.55 69.54	5.55 166.68	180 180

	015 6INCH SPOOL						ITLEY COPIPE S	tandard	9.4.0.19 RESULT PAGE 18
	GENERAL P	IPE SI	RES	SREE in N/mm2	PORT				
Point name	Load combination	Hoop Stress	Longi Max	udinal Min	, Shear Stress	Princ Max	cipal Min	Total Stress	Loc
	GRTP1{1} GRTP2{1}	190.19 190.19	160.33 165.47	-15.94 -21.40	0.93 0.93	190.22 190.22	-15.95 -21.40	198.64 201.74	191 191
A04 N+	SIFI= 1.00 SIFO= 1.00 Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}	0 0.00 0.00 190.19 190.19 190.19 190.19	89.75 0.00 5.23 70.59 70.59 160.33 165.47	-85.49 0.00 -5.55 69.54 69.54 -15.94 -21.40	0.93 0.00 0.00 0.00 0.00 0.93 0.93	89.76 0.00 5.23 190.19 190.19 190.22 190.22	-85.50 0.00 -5.55 69.54 69.54 -15.95 -21.40	89.77 0.00 5.55 166.68 166.68 198.64 201.74	191 270 0 0 11 11
A04 F-	SIFI= 1.00 SIFO= 1.00 Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}	0.00 0.00 0.00 190.19 190.19 190.19	125.06 0.00 3.57 70.43 70.43 195.49	-127.03 0.00 -3.61 69.73 69.73 -57.30	9.23 0.00 0.00 0.00 0.00 9.23	125.74- 0.00 3.57 190.19 190.19 202.44	-127.70 0.00 -3.61 69.73 69.73 -57.65	128.03 0.00 3.61 166.65 166.65 224.96	360 270 0 0 360
A04 F+	SIFI= 1.00 SIFO= 1.00 Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}	0.00 0.00 0.00 190.19 190.19 190.19 190.19	125.06 0.00 3.57 70.43 70.43 195.49 199.06	-127.03 0.00 -3.61 69.73 69.73 -57.30 -60.92	9.23 0.00 0.00 0.00 9.23 9.23	125.74- 0.00 3.57 190.19 190.19 202.44 204.86	-127.70 0.00 -3.61 69.73 69.73 -57.65 -61.26	128.03 0.00 3.61 166.65 166.65 224.96 227.43	90 270 90 90 90 90 90
A05	SIFI= 1.00 SIFO= 1.00 Gravity{1} Thermal 1{1} Thermal 2{1} Pressure 1{1} Pressure 2{1} GRTP1{1} GRTP2{1}								

*** Segment A end ***

1:59 P	015 6INCH SPOOL M 					Au			rd 9.4.0.19		
name		Moment) Out-Pl. Moment	Shear Stress	(Stress Axial Stress	in N/mm2 Bending Stress	type	Code Stress	Allow.		
A00	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}	4018.38	88037.95	3.39	2.35	341.93	SUST	434.75	405.00**		
	TR:Amb to T2{1}	0.00	4267.86	0.00	0.02	16.56	DISP	16.58	3.33**		
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	3.33		
	Amb to T2{1}	0.00	4267.86	0.00	0.02	16.56	DISP	16.58	3.33**		
	Max P{1}						HOOP	158.94	324.00		
	GRTP1{1}	4018.38	88037.95	0.00	67.73				405.00 360.00**		
	GRTP2 { 1 }	4018.38	83770.08	0.00	67.75	325.39		389.29 393.15			
A02 N-	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}		214.04	6.07	-2.13	219.63	SUST	317.17	405.00		
	TR:Amb to T2{1}	4678.78	0.00	0.00	0.16	18.15	DISP	18.31	120.90		
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	120.90		
	Amb to T2{1}	4678.78	0.00	0.00	0.16	18.15	DISP	18.31	120.90		
	Max P{1}						HOOP	158.94	324.00		
	GRTP1{1}	56606.00	214.04	0.00	72.20			293.17 291.82			
	GRTP2{1}	51927.22	214.04	0.00	72.04			278.47 273.51			
A02 N+	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}		214.04	6.07	-2.13	219.63	SUST	317.17	405.00		
	TR:Amb to T2{1}	4678.78	0.00	0.00	0.16	18.15	DISP	18.31	120.90		
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	120.90		
	Amb to T2{1}	4678.78	0.00	0.00	0.16	18.15	DISP	18.31	120.90		
	Max P{1}						HOOP	158.94	324.00		
	GRTP1{1}	56606.00	214.04	0.00	72.20			293.17 291.82			
	GRTP2{1}	51927.22	214.04	0.00	72.04			278.47 273.51			

1:59 PI	015 6INCH SPOOL M 						NTLEY topipe	Standa	rd 9.4.0.19 RESULT PAGE
name	AS (Moments Load combination	In-Pl. Moment) Out-Pl. Moment	Shear Stress	(Stress Axial Stress		type	Code Stress	Allow.
A02 N-	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}		214.04	6.07	-2.13	219.63	SUST	317.17	405.00
	TR:Amb to T2{1}	4678.78	0.00	0.00	0.16	18.15	DISP	18.31	120.90
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	120.90
	Amb to T2{1}	4678.78	0.00	0.00	0.16	18.15	DISP	18.31	120.90
	Max P{1}						HOOP	158.94	324.00
	GRTP1{1}	56606.00	214.04	0.00	72.20			293.17 291.82	
	GRTP2{1}	51927.22	214.04	0.00	72.04			278.47 273.51	
A02 N+	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}		214.04	6.07	-2.13	219.63	SUST	317.17	405.00
	TR:Amb to T2{1}	4678.78	0.00	0.00	0.16	18.15	DISP	18.31	120.90
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	120.90
	Amb to T2{1}	4678.78	0.00	0.00	0.16	18.15	DISP	18.31	120.90
	Max P{1}						HOOP	158.94	324.00
	GRTP1{1}	56606.00	214.04	0.00	72.20			293.17 291.82	
	GRTP2 { 1 }	51927.22	214.04	0.00	72.04			278.47 273.51	
A02 F-	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}		2813.04	1.04	-1.56	213.05	SUST	309.71	405.00
	TR:Amb to T2{1}	4215.45	0.00	0.00	0.02	16.36	DISP	16.38	128.37
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	128.37
	Amb to T2{1}	4215.45	0.00	0.00	0.02	16.36	DISP	16.38	128.37
	Max P{1}						HOOP	158.94	324.00
	GRTP1{1}	54838.87	2813.04	0.00	71.63			288.21 284.68	
	GRTP2{1}	50623.42	2813.04	0.00	71.61			274.98 268.33	

1:59 PI	015 6INCH SPOOL M					Y PE Standard 9.4.0.19 RESULT PAGE
name			Shear Stress	(Stress Axial Stress	Bending Stress type	Code Code e Stress Allow.
A02 F+	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}	2813.0454838.87	1.04	-1.56	213.05 SUS	r 309.71 405.00
	TR:Amb to T2{1}	0.00 4215.45	0.00	0.02	16.36 DIS	2 16.38 128.37
	Amb to T1{1}	0.00 0.00	0.00	0.00	0.00 DIS	2 0.00 128.37
	Amb to T2{1}	0.00 4215.45	0.00	0.02	16.36 DIS	2 16.38 128.37
	Max P{1}				HOO	2 158.94 324.00
	GRTP1{1}	2813.0454838.87	0.00	71.63		n 288.21 405.00 G 284.68 360.00
	GRTP2 {1}	2813.0450623.42	0.00	71.61		n 274.98 405.00 G 268.33 405.00
A02 F-	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}		1.04	-1.56	213.05 SUS	5 309.71 405.00
	TR:Amb to T2{1}	4215.45 0.00	0.00	0.02	16.36 DIS	2 16.38 128.37
	Amb to T1{1}	0.00 0.00	0.00	0.00	0.00 DIS	2 0.00 128.37
	Amb to T2{1}	4215.45 0.00	0.00	0.02	16.36 DIS	2 16.38 128.37
	Max P{1}				HOO	2 158.94 324.00
	GRTP1{1}	54838.87 2813.04	0.00	71.63		n 288.21 405.00 G 284.68 360.00
	GRTP2 {1}	50623.42 2813.04	0.00	71.61		n 274.98 405.00 G 268.33 405.00
A02 F+	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}	2813.0454838.87	1.04	-1.56	213.05 SUS	5 309.71 405.00
	TR:Amb to T2{1}	0.00 4215.45	0.00	0.02	16.36 DIS	2 16.38 128.37
	Amb to T1{1}	0.00 0.00	0.00	0.00	0.00 DIS	2 0.00 128.37
	Amb to T2{1}	0.00 4215.45	0.00	0.02	16.36 DIS	2 16.38 128.37
	Max P{1}				HOO	2 158.94 324.00
	GRTP1{1}	2813.0454838.87	0.00	71.63		n 288.21 405.00 G 284.68 360.00
	GRTP2 { 1 }	2813.0450623.42	0.00	71.61		n 274.98 405.00 G 268.33 405.00

405	Load combination 	(Moments :	In-Pl. Moment 138.233 0.00) Out-P1. Moment 37236.07 573.09	Shear Stress 9.23	(Stress Axial Stress	in N/mm2 Bending Stress 	type	Code Stress	Allow.	
	<pre>GR + Max P{1} TR:Amb to T2{1} Amb to T1{1} Amb to T2{1}</pre>		0.00	573.09		1.01					
	Amb to T1{1} Amb to T2{1}				0.00		144.47	SUST	239.73	405.00	
	Amb to T2{1}		0.00	0 00		0.02	2.22	DISP	2.25	198.34	
				0.00	0.00	0.00	0.00	DISP	0.00	198.34	
	Max P{1}		0.00	573.09	0.00	0.02	2.22	DISP	2.25	198.34	
								HOOP	158.94	324.00	
	GRTP1{1}		138.233	37236.07	0.00	69.07			237.06 213.54		
	GRTP2{1}		138.233	37809.15	0.00	69.05	146.70		238.68 215.74		
	SIFI= 1.00 SIF GR + Max P{1}		35511.09	720.65	0.93	-2.13	137.81	SUST	235.03	405.00	
	TR:Amb to T2{1}		2825.44	0.00	0.00	0.16	10.96	DISP	11.12	203.04	
	Amb to T1{1}		0.00	0.00	0.00	0.00	0.00	DISP	0.00	203.04	
	Amb to T2{1}		2825.44	0.00	0.00	0.16	10.96	DISP	11.12	203.04	
	Max P{1}							HOOP	158.94	324.00	
	GRTP1{1}	:	35511.09	720.65	0.00	72.20			230.12 210.00		
	GRTP2 {1}	:	32685.64	720.65	0.00	72.04			222.71 198.88		
	SIFI= 1.00 SIF GR + Max P{1}		35511.09	720.65	0.93	-2.13	137.81	SUST	235.03	405.00	
	TR:Amb to T2{1}		2825.44	0.00	0.00	0.16	10.96	DISP	11.12	203.04	
	Amb to T1{1}		0.00	0.00	0.00	0.00	0.00	DISP	0.00	203.04	
	Amb to T2{1}		2825.44	0.00	0.00	0.16	10.96	DISP	11.12	203.04	
	Max P{1}							HOOP	158.94	324.00	
	GRTP1{1}	:	35511.09	720.65	0.00	72.20	137.81		230.12 210.00		
	GRTP2{1}	:	32685.64	720.65	0.00	72.04			222.71 198.88		

AutoPIPE Standard 9.4.0.19 RESULT PAGE 23

_ _

5INCH S 05/21/2 01:59 P	015 6INCH SPOOL						E Standard 9.4.0.19 H
	Load combination	Moment) Out-Pl. Moment	Shear Stress	(Stress Axial Stress	in N/mm2) Bending	Code Code Stress Allow.
A03 F-	SIFI= 1.00 SI GR + Max P{1}	FO= 1.00 35511.09	720.65	0.93	-2.13	137.81 SUST	235.03 405.00
	TR:Amb to T2{1}	2825.44	0.00	0.00	0.16	10.96 DISP	11.12 203.04
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00 DISP	0.00 203.04
	Amb to T2{1}	2825.44	0.00	0.00	0.16	10.96 DISP	11.12 203.04
	Max P{1}					HOOP	158.94 324.00
	GRTP1{1}	35511.09	720.65	0.00	72.20	137.81 RFun	230.12 405.00

	Amb to T2{1}	2825.44	0.00	0.00	0.16	10.96	DISP	11.12	203.04
	Max P{1}						HOOP	158.94	324.00
	GRTP1{1}	35511.09	720.65	0.00	72.20	137.81	RFun LONG	230.12 210.00	405.00 360.00
	GRTP2 {1}	32685.64	720.65	0.00	72.04	126.85	RFun LONG	222.71 198.88	
A03 F+	SIFI= 1.00 SIFO= 1.00								
	GR + Max P{1}	35511.09	720.65	0.93	-2.13	137.81	SUST	235.03	405.00
	TR:Amb to T2{1}	2825.44	0.00	0.00	0.16	10.96	DISP	11.12	203.04
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	203.04
	Amb to T2{1}	2825.44	0.00	0.00	0.16	10.96	DISP	11.12	203.04
	Max P{1}						HOOP	158.94	324.00
	GRTP1{1}	35511.09	720.65	0.00	72.20	137.81	RFun LONG	230.12 210.00	405.00 360.00
	GRTP2 {1}	32685.64	720.65	0.00	72.04	126.85	RFun LONG	222.71 198.88	
A04 F-	SIFI= 1.00 SIFO= 1.00								
	GR + Max P{1}	32576.97	109.61	9.23	0.98	126.40	SUST	221.84	405.00
	TR:Amb to T2{1}	925.71	0.00	0.00	0.02	3.59	DISP	3.61	216.23
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	216.23
	Amb to T2{1}	925.71	0.00	0.00	0.02	3.59	DISP	3.61	216.23
	Max P{1}						HOOP	158.94	324.00
	GRTP1{1}	32576.97	109.61	0.00	69.09	126.40	RFun LONG	224.40 195.49	
	GRTP2{1}	33502.68	109.61	0.00	69.07	129.99	RFun LONG	226.87 199.06	

1:59 PM	015 6INCH SPOOL					Au			rd 9.4.0.19 RESULT PAGE	
name) Out-Pl. Moment	Shear Stress	(Stress Axial Stress	in N/mm2 Bending Stress	type	Code Stress	Allow.	
	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}		32576.97	9.23	0.98	126.40	SUST	221.84	405.00	
	TR:Amb to T2{1}	0.00	925.71	0.00	0.02	3.59	DISP	3.61	216.23	
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	216.23	
	Amb to T2{1}	0.00	925.71	0.00	0.02	3.59	DISP	3.61	216.23	
	Max P{1}						HOOP	158.94	324.00	
	GRTP1{1}	109.633	32576.97	0.00	69.09			224.40 195.49		
	GRTP2{1}	109.633	33502.68	0.00	69.07	129.99		226.87 199.06		
A04 F-	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}		109.61	9.23	0.98	126.40	SUST	221.84	405.00	
	TR:Amb to T2{1}	925.71	0.00	0.00	0.02	3.59	DISP	3.61	216.23	
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	216.23	
	Amb to T2{1}	925.71	0.00	0.00	0.02	3.59	DISP	3.61	216.23	
	Max P{1}						HOOP	158.94	324.00	
	GRTP1{1}	32576.97	109.61	0.00	69.09			224.40 195.49		
	GRTP2{1}	33502.68	109.61	0.00	69.07			226.87 199.06		
A04 F+	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}	109.633	32576.97	9.23	0.98	126.40	SUST	221.84	405.00	
	TR:Amb to T2{1}	0.00	925.71	0.00	0.02	3.59	DISP	3.61	216.23	
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	216.23	
	Amb to T2{1}	0.00	925.71	0.00	0.02	3.59	DISP	3.61	216.23	
	Max P{1}						HOOP	158.94	324.00	
	GRTP1{1}	109.633	32576.97	0.00	69.09			224.40 195.49		
	GRTP2 { 1 }	109.633	33502.68	0.00	69.07			226.87 199.06		

1:59 P	015 6INCH SPOOL						Au			rd 9.4.0.1	
	Load combination	(Moments in	n N.m In-Pl. Moment	Out-Pl. Moment	Shear Stress	(Stress Axial Stress	in N/mm2 Bending Stress	type	Code Stress	Allow.	
	SIFI= 1.00 SIFC GR + Max P{1})= 1.00									
	TR:Amb to T2{1}		0.00	2362.11	0.00	0.02	9.16	DISP	9.19	217.41	
	Amb to T1{1}		0.00	0.00	0.00	0.00	0.00	DISP	0.00	217.41	
	Amb to T2{1}		0.00	2362.11	0.00	0.02	9.16	DISP	9.19	217.41	
	Max P{1}							HOOP	158.94	324.00	
	GRTP1{1}		288.713	32068.77	0.00	71.20			221.65 195.63		
	GRTP2{1}		288.712	29706.66	0.00	71.18	115.26		215.63 186.45		
403 N+	SIFI= 1.00 SIFC GR + Max P{1}		2068.77	288.71	1.04	-1.13	124.43	SUST	220.66	405.00	
	TR:Amb to T2{1}	2	2362.11	0.00	0.00	0.02	9.16	DISP	9.19	217.41	
	Amb to T1{1}		0.00	0.00	0.00	0.00	0.00	DISP	0.00	217.41	
	Amb to T2{1}	2	2362.11	0.00	0.00	0.02	9.16	DISP	9.19	217.41	
	Max P{1}							HOOP	158.94	324.00	
	GRTP1{1}	32	2068.77	288.71	0.00	71.20			221.65 195.63		
	GRTP2{1}	29	9706.66	288.71	0.00	71.18	115.26		215.63 186.45		
103 N-	SIFI= 1.00 SIFC GR + Max P{1})= 1.00	288.713	32068.77	1.04	-1.13	124.43	SUST	220.66	405.00	
	TR:Amb to T2{1}		0.00	2362.11	0.00	0.02	9.16	DISP	9.19	217.41	
	Amb to T1{1}		0.00	0.00	0.00	0.00	0.00	DISP	0.00	217.41	
	Amb to T2{1}		0.00	2362.11	0.00	0.02	9.16	DISP	9.19	217.41	
	Max P{1}							HOOP	158.94	324.00	
	GRTP1{1}		288.713	32068.77	0.00	71.20	124.43		221.65 195.63		
	GRTP2{1}		288.712	29706.66	0.00	71.18			215.63 186.45		

6INCH SPOOL			
05/21/2015	6INCH	SPOOL	

01:59 PM

BENTLEY

AutoPIPE Standard 9.4.0.19 RESULT PAGE 26

name	AS (Moments Load combination	In-Pl. Moment) Out-Pl. Moment	Shear Stress	(Stress Axial Stress	in N/mm2 Bending Stress	type	Code Stress	Allow.
	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}	32068.77	288.71	1.04	-1.13	124.43	SUST	220.66	405.00
	TR:Amb to T2{1}	2362.11	0.00	0.00	0.02	9.16	DISP	9.19	217.41
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	217.41
	Amb to T2{1}	2362.11	0.00	0.00	0.02	9.16	DISP	9.19	217.41
	Max P{1}						HOOP	158.94	324.00
	GRTP1{1}	32068.77	288.71	0.00	71.20			221.65 195.63	
	GRTP2 {1}	29706.66	288.71	0.00	71.18			215.63 186.45	
A01 F-	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}	30744.46	1373.04	6.07	-2.13	119.40	SUST	217.23	405.00
	TR:Amb to T2{1}	4341.76	0.00	0.00	0.16	16.85	DISP	17.01	220.84
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	220.84
	Amb to T2{1}	4341.76	0.00	0.00	0.16	16.85	DISP	17.01	220.84
	Max P{1}						HOOP	158.94	324.00
	GRTP1{1}	30744.46	1373.04	0.00	72.20			217.67 191.60	
	GRTP2{1}	26402.69	1373.04	0.00	72.04			207.15 174.61	
	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}	30744.46	1373.04	6.07	-2.13	119.40	SUST	217.23	405.00
	TR:Amb to T2{1}	4341.76	0.00	0.00	0.16	16.85	DISP	17.01	220.84
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	220.84
	Amb to T2{1}	4341.76	0.00	0.00	0.16	16.85	DISP	17.01	220.84
	Max P{1}						HOOP	158.94	324.00
	GRTP1{1}	30744.46	1373.04	0.00	72.20			217.67 191.60	
	GRTP2{1}	26402.69	1373.04	0.00	72.04			207.15 174.61	

1:59 PM	015 6INCH SPOOL					Aut			rd 9.4.0.19	AGE
	(1	ASME B31.8 Moments in N.m	(2010)	CODE COM	1PLIANCE (Stress	in N/mm2	2)			
Point name 	combination		Moment	Stress	Stress		type	Stress	Allow.	
A01 F-	SIFI= 1.00 SIFO: GR + Max P{1}	= 1.00 30744.46	1373.04	6.07	-2.13	119.40	SUST	217.23	405.00	
	TR:Amb to T2{1}	4341.76	0.00	0.00	0.16	16.85	DISP	17.01	220.84	
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	220.84	
	Amb to T2{1}	4341.76	0.00	0.00	0.16	16.85	DISP	17.01	220.84	
	Max P{1}						HOOP	158.94	324.00	
	GRTP1{1}	30744.46	1373.04	0.00	72.20			217.67 191.60		
	GRTP2 { 1 }	26402.69	1373.04	0.00	72.04			207.15 174.61		
01 F+	SIFI= 1.00 SIFO: GR + Max P{1}		1373.04	6.07	-2.13	119.40	SUST	217.23	405.00	
	TR:Amb to T2{1}	4341.76	0.00	0.00	0.16	16.85	DISP	17.01	220.84	
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	220.84	
	Amb to T2{1}	4341.76	0.00	0.00	0.16	16.85	DISP	17.01	220.84	
	Max P{1}						HOOP	158.94	324.00	
	GRTP1{1}	30744.46	1373.04	0.00	72.20			217.67 191.60		
	GRTP2{1}	26402.69	1373.04	0.00	72.04			207.15 174.61		
	SIFI= 1.00 SIFO: GR + Max P{1}	= 1.00 22287.91	4390.52	0.93	-2.13	88.14	SUST	185.37	405.00	
	TR:Amb to T2{1}	1389.03	0.00	0.00	0.16	5.39	DISP	5.55	252.71	
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	252.71	
	Amb to T2{1}	1389.03	0.00	0.00	0.16	5.39	DISP	5.55	252.71	
	Max P{1}						HOOP	158.94	324.00	
	GRTP1{1}	22287.91	4390.52	0.00	72.20			198.64 160.33		
	GRTP2 { 1 }	23676.94	4390.52	0.00	72.04			201.74 165.47		

1:59 PI	015 6INCH SPOOL						Aut				19 RESULT	
	(! Load combination	Moments	ME B31.8 in N.m In-Pl. Moment) Out-Pl.	Shear	(Stress Axial	Bending		Code	Code Allow.		
A04 N+	SIFI= 1.00 SIFO: GR + Max P{1}		22287.91	4390.52	0.93	-2.13	88.14	SUST	185.37	405.00		
	TR:Amb to T2{1}		1389.03	0.00	0.00	0.16	5.39	DISP	5.55	252.71		
	Amb to T1{1}		0.00	0.00	0.00	0.00	0.00	DISP	0.00	252.71		
	Amb to T2{1}		1389.03	0.00	0.00	0.16	5.39	DISP	5.55	252.71		
	Max P{1}							HOOP	158.94	324.00		
	GRTP1{1}		22287.91	4390.52	0.00	72.20			198.64 160.33			
	GRTP2 { 1 }		23676.94	4390.52	0.00	72.04			201.74 165.47			
A04 N-	SIFI= 1.00 SIFO GR + Max P{1}		22287.91	4390.52	0.93	-2.13	88.14	SUST	185.37	405.00		
	TR:Amb to T2{1}		1389.03	0.00	0.00	0.16	5.39	DISP	5.55	252.71		
	Amb to T1{1}		0.00	0.00	0.00	0.00	0.00	DISP	0.00	252.71		
	Amb to T2{1}		1389.03	0.00	0.00	0.16	5.39	DISP	5.55	252.71		
	Max P{1}							HOOP	158.94	324.00		

	TR:Amb to T2{1}	1389.03	0.00	0.00	0.16	5.39 DISP	5.55 252.71	
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00 DISP	0.00 252.71	
	Amb to T2{1}	1389.03	0.00	0.00	0.16	5.39 DISP	5.55 252.71	
	Max P{1}					HOOP	158.94 324.00	
	GRTP1{1}	22287.91	4390.52	0.00	72.20		198.64 405.00 160.33 360.00	
	GRTP2 {1}	23676.94	4390.52	0.00	72.04		201.74 405.00 165.47 405.00	
A04 N-	SIFI= 1.00 SIFO= 1.00	00007 01	4200 50	0 00	0.10	0.0 1.4 07707	105 27 405 00	
	GR + Max P{1}	22287.91	4390.52	0.93	-2.13	88.14 SUST	185.37 405.00	
	TR:Amb to T2{1}	1389.03	0.00	0.00	0.16	5.39 DISP	5.55 252.71	
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00 DISP	0.00 252.71	
	Amb to T2{1}	1389.03	0.00	0.00	0.16	5.39 DISP	5.55 252.71	
	Max P{1}					HOOP	158.94 324.00	
	GRTP1{1}	22287.91	4390.52	0.00	72.20		198.64 405.00 160.33 360.00	
	GRTP2{1}	23676.94	4390.52	0.00	72.04		201.74 405.00 165.47 405.00	
A04 N+	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}	22287 91	4390 52	0 93	-2 13	88 14 SUST	185.37 405.00	
	TR:Amb to T2{1}	1389.03	0.00	0.00	0.16	5.39 DISP	5.55 252.71	
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00 DISP	0.00 252.71	
	Amb to T2{1}	1389.03	0.00	0.00	0.16	5.39 DISP	5.55 252.71	
	Max P{1}					HOOP	158.94 324.00	
	GRTP1{1}	22287.91	4390.52	0.00	72.20		198.64 405.00 160.33 360.00	
	GRTP2 {1}	23676.94	4390.52	0.00	72.04		201.74 405.00 165.47 405.00	

							-	-	-
6INCH	SPOC)L							
05/21/	/2015	6	INC	Н	SP	00	L		

01:59 PM

INCH SPOOL	BENTLEY					
	AutoPIPE	Standard	9.4.0.19	RESULT	PAGE	29

name		Moment		Shear Stress	(Stress Axial Stress	Stress	type		Allow.
A06	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}	18995.27	2018.79	0.93	-2.13	74.11	SUST	171.35	405.00
	TR:Amb to T2{1}	718.21	0.00	0.00	0.16	2.79	DISP	2.95	266.73
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	266.73
	Amb to T2{1}	718.21	0.00	0.00	0.16	2.79	DISP	2.95	266.73
	Max P{1}						HOOP	158.94	324.00
	GRTP1{1}	18995.27	2018.79	0.00	72.20	74.11		191.15 146.31	
	GRTP2 {1}	19713.47	2018.79	0.00	72.04	76.89		192.66 148.92	
A06	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}	18995.27	2018.79	0.93	-2.13	74.11	SUST	171.35	405.00
	TR:Amb to T2{1}	718.21	0.00	0.00	0.16	2.79	DISP	2.95	266.73
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	266.73
	Amb to T2{1}	718.21	0.00	0.00	0.16	2.79	DISP	2.95	266.73
	Max P{1}						HOOP	158.94	324.00
	GRTP1{1}	18995.27	2018.79	0.00	72.20	74.11		191.15 146.31	
	GRTP2 {1}	19713.47	2018.79	0.00	72.04	76.89		192.66 148.92	
A01 N-	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}	2750.93	17645.86	3.39	1.83	69.29	SUST	162.89	405.00
	TR:Amb to T2{1}	0.00	3730.77	0.00	0.02	14.48	DISP	14.50	275.18
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	275.18
	Amb to T2{1}	0.00	3730.77	0.00	0.02	14.48	DISP	14.50	275.18
	Max P{1}						HOOP	158.94	324.00
	GRTP1{1}	2750.93	17645.86	0.00	68.25			190.71 137.54	
	GRTP2 {1}	2750.93	13915.08	0.00	68.28	55.03		183.92 123.31	

1:59 PM	015 6INCH SPOOL M						PE Standa	rd 9.4.0.19 RESULT PAGE
Point	Load	ASME B31.8 (Moments in N.m)		(Stress			Code
name	combination	Moment	Moment	Stress	Stress	Stress typ	e Stress	Allow.
A01 N+	SIFI= 1.00 SIN							
		17645.86	2750.93	3.39	1.83	69.29 SUS	r 162.89	405.00
	TR:Amb to T2{1}	3730.77	0.00	0.00	0.02	14.48 DIS	P 14.50	275.18
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00 DIS	P 0.00	275.18
	Amb to T2{1}	3730.77	0.00	0.00	0.02	14.48 DIS	P 14.50	275.18
	Max P{1}					НОО	P 158.94	324.00
	GRTP1{1}	17645.86	2750.93	0.00	68.25	69.29 RFu LON	n 190.71 G 137.54	
	GRTP2{1}	13915.08	2750.93	0.00	68.28		n 183.92 G 123.31	
A01 N-	SIFI= 1.00 SI GR + Max P{1}	FO= 1.00 2750.93	17645.86	3.39	1.83	69.29 SUS	r 162.89	405.00
	TR:Amb to T2{1}	0.00	3730.77	0.00	0.02	14.48 DIS	P 14.50	275.18
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00 DIS	P 0.00	275.18
	Amb to T2{1}	0.00	3730.77	0.00	0.02	14.48 DIS	P 14.50	275.18
	Max P{1}					НОО	P 158.94	324.00
	GRTP1{1}	2750.93	17645.86	0.00	68.25		n 190.71 G 137.54	
	GRTP2 { 1 }	2750.93	13915.08	0.00	68.28		n 183.92 G 123.31	
A01 N+	SIFI= 1.00 SI GR + Max P{1}		2750.93	3.39	1.83	69.29 SUS	r 162.89	405.00
	TR:Amb to T2{1}	3730.77	0.00	0.00	0.02	14.48 DIS	P 14.50	275.18
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00 DIS	P 0.00	275.18
	Amb to T2{1}	3730.77	0.00	0.00	0.02	14.48 DIS	P 14.50	275.18
	Max P{1}					HOO	P 158.94	324.00
	GRTP1{1}	17645.86	2750.93	0.00	68.25	69.29 RFu LON	n 190.71 G 137.54	
	GRTP2{1}	13915.08	2750.93	0.00	68.28		n 183.92 G 123.31	

GRTP2{1}

		- DO1 0	(0010)							
name	ASM (Moments Load combination	Moment) Out-Pl. Moment	Shear Stress	(Stress Axial Stress	in N/mm2 Bending Stress	type	Stress	Allow.	
A08	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}		335.90	0.93	-2.13	37.23	SUST	134.49	405.00	
	TR:Amb to T2{1}	372.33	0.00	0.00	0.16	1.44	DISP	1.60	303.59	
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	303.59	
	Amb to T2{1}	372.33	0.00	0.00	0.16	1.44	DISP	1.60	303.59	
	Max P{1}						HOOP	158.94	324.00	
	GRTP1{1}	9589.44	335.90	0.00	72.20			175.34 109.42		
	GRTP2{1}	9217.11	335.90	0.00	72.04			174.90 107.82		
A08	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}	9589.44	335.90	0.93	-2.13	37.23	SUST	134.49	405.00	
	TR:Amb to T2{1}	372.33	0.00	0.00	0.16	1.44	DISP	1.60	303.59	
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	303.59	
	Amb to T2{1}	372.33	0.00	0.00	0.16	1.44	DISP	1.60	303.59	
	Max P{1}						HOOP	158.94	324.00	
	<pre>GRTP1{1}</pre>	9589.44	335.90	0.00	72.20			175.34 109.42		
	GRTP2{1}	9217.11	335.90	0.00	72.04			174.90 107.82		
A07	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}	2746.19	2309.23	0.93	-2.13	13.92	SUST	111.25	405.00	
	TR:Amb to T2{1}	1808.74	0.00	0.00	0.16	7.02	DISP	7.18	326.82	
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00	DISP	0.00	326.82	
	Amb to T2{1}	1808.74	0.00	0.00	0.16	7.02	DISP	7.18	326.82	
	Max P{1}						HOOP	158.94	324.00	
	GRTP1{1}	2746.19	2309.23	0.00	72.20	13.92		168.77 86.12		

4554.93 2309.23 0.00 72.04 19.81 RFun 170.19 405.00 LONG 91.85 405.00

6INCH SPOOL	
05/21/2015 6INCH SPOOL	BENTLEY
US/21/2015 BINCH SPOOL	BENTLEY
01:59 PM	AutoPIPE Standard 9.4.0.19 RESULT PAGE 32

	(Moments Load	In-Pl.) Out-Pl.	Shear	(Stress Axial	in N/mm2) Bending Stress type	Code Code Stress Allow.
A07	SIFI= 1.00 SIFO= 1.00 GR + Max P{1}	2746.19	2309.23	0.93	-2.13	13.92 SUST	111.25 405.00
	TR:Amb to T2{1}	1808.74	0.00	0.00	0.16	7.02 DISP	7.18 326.82
	Amb to T1{1}	0.00	0.00	0.00	0.00	0.00 DISP	0.00 326.82
	Amb to T2{1}	1808.74	0.00	0.00	0.16	7.02 DISP	7.18 326.82
	Max P{1}					HOOP	158.94 324.00
	GRTP1{1}	2746.19	2309.23	0.00	72.20	13.92 RFun LONG	168.77 405.00 86.12 360.00
	GRTP2 {1}	4554.93	2309.23	0.00	72.04	19.81 RFun LONG	170.19 405.00 91.85 405.00

6INCH SPOOL 05/21/2015 6INCH SPOOL 01:59 PM			BENTLEY AutoPIPE Standard 9.4.0.19 RESULT PAGE
	RES	ULT SUMMA	РÝ
Maximum displacements			
Maximum X :	248.00	Point : A05	Load Comb.: Gravity{1}
Maximum Y :	-297.02	Point : A06	Load Comb.: Gravity{1} Load Comb.: GRTP2{1}
Maximum Z :	108.45	Point : A01 F	Load Comb.: Gravity{1}
Max. total:	369.30	Point : A06	Load Comb.: GRTP2{1}
Maximum rotations (de	g) 		
Mavimum X ·	1 12	Point · A03 N	Load Comb.: Gravity{1}
Maximum Y :	-0.23	Point : A08	Load Comb.: Gravity{1}
Maximum Z :	-1.81	Point : A01 N	Load Comb.: Gravity{1} Load Comb.: Gravity{1}
Max. total:			Load Comb.: Gravity{1}
Maximum restraint for	ces (N)		
Maximum X :	15645	Point : A00	Load Comb.: Gravity{1}
			Load Comb.: Gravity{1}
Maximum Z :	-1149	Point : A00	Load Comb.: Gravity{1}
Max. total:	23307	Point : A00	Load Comb.: Gravity{1}
Maximum restraint mom	ents (N.m)	_	
Maximum X :	-4018	Point : A00	Load Comb.: Gravity{1}
Maximum Y :	-4756	Point : A05	Load Comb.: Gravity{1}
Maximum Z :	-88455	Point : A00	Load Comb.: Gravity{1}
Max. total:		Point : A00	Load Comb.: Gravity{1}

6INCH SPOOL 05/21/2015 6INCH SPOOL 01:59 PM		BENTLEY AutoPIPE Standard 9.4.0.19 RESULT PAGE 34
	T SUMMARY	
Maximum pipe forces (N)		
 Maximum X : -15645 H	Point : A00 Load Comb.:	Gravity{1}

Maximum X : Maximum Y : Maximum Z : Max. total:	-15645 17237 1149 23307	Point : A00 Point : A00 Point : A00 Point : A00	Load Comb.: Gravity{1} Load Comb.: Gravity{1} Load Comb.: Gravity{1} Load Comb.: Gravity{1}
Maximum pipe moments	(N.m)		
Maximum X :	4018	Point : A00	Load Comb.: Gravity{1}
Maximum Y :	-4756	Point : A04 F	Load Comb.: Gravity{1}
Maximum Z :	88455	Point : A00	Load Comb.: Gravity{1}
Max. total:	88564	Point : A00	Load Comb.: Gravity{1}

_____ _____ 6INCH SPOOL 05/21/2015 6INCH SPOOL 01:59 PM

BENTLEY

AutoPIPE Standard 9.4.0.19 RESULT PAGE 35 ------

RESULT SUMMARY ____

Maximum sustained stress

Point		:	A00		
Stress	N/mm2	:	434.7	75	
Allowable	N/mm2	:	405.0	0 (
Ratio		:	1.07		
Load combi	nation	:	GR +	Max	P{1}

Maximum displacement stress

Point	:	A02	Ν
Stress N/m	nm2 :	18.3	31
Allowable N/m	nm2 :	120.	.90
Ratio	:	0.15	5
Load combinat	ion :	Max	Range

Maximum hoop stress

Point	:	:	A00	
Stress 1	N/mm2 :	:	158.	94
Allowable 1	N/mm2 :	:	324.	00
Ratio	:		0.49	
Load combin	nation :	:	Max	P{1}

Maximum Longitudinal stress

Point	:	A00
Stress N/mm2	:	409.67
Allowable N/mm2	:	360.00
Ratio	:	1.14
Load combination	:	GRTP1{1}

Maximum Combined stress

Point		:	A00
Stress	N/mm2	:	404.36
Allowable	N/mm2	:	405.00
Ratio		:	1.00
Load comb:	ination	:	GRTP1{1}

_____ 6INCH SPOOL 05/21/2015 6INCH SPOOL 01:59 PM _____

BENTLEY

AutoPIPE Standard 9.4.0.19 RESULT PAGE 36 ------

RESULT SUMMARY _____ _____

Maximum sustained stress ratio

Point		:	A00		
Stress	N/mm2	:	434.7	75	
Allowable	N/mm2	:	405.0	00	
Ratio		:	1.07		
Load combi	ination	:	GR +	Max	P{1}

Maximum displacement stress ratio

Point		:	A00
Stress	N/mm2	:	16.58
Allowable	N/mm2	:	3.33
Ratio		:	4.98
Load combi	ination	:	Max Range

Maximum hoop stress ratio

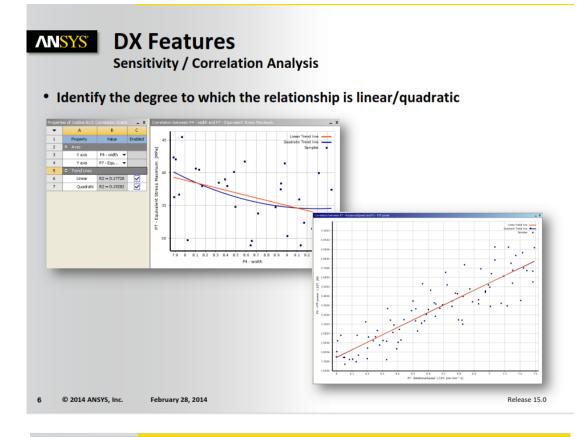
Point		:	A00	
Stress	N/mm2	:	158.	94
Allowable	N/mm2	:	324.	.00
Ratio		:	0.49	9
Load combi	ination	:	Max	P{1}

Maximum Longitudinal stress ratio

Point		:	A00
Stress	N/mm2	:	409.67
Allowable	N/mm2	:	360.00
Ratio		:	1.14
Load combi	nation	:	GRTP1{1}

Maximum Combined stress ratio

Point	:	A00
Stress N/mm2	:	404.36
Allowable N/mm2	:	405.00
Ratio	:	1.00
Load combination	:	GRTP1{1}

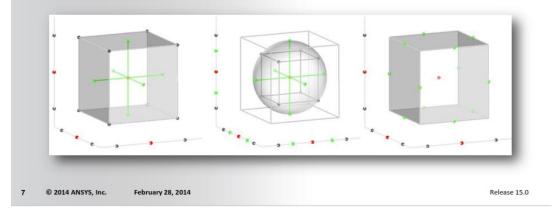

* * * The system does not satisfy ASME B31.8 (2010) code requirements * * * * * * for the selected options * * *

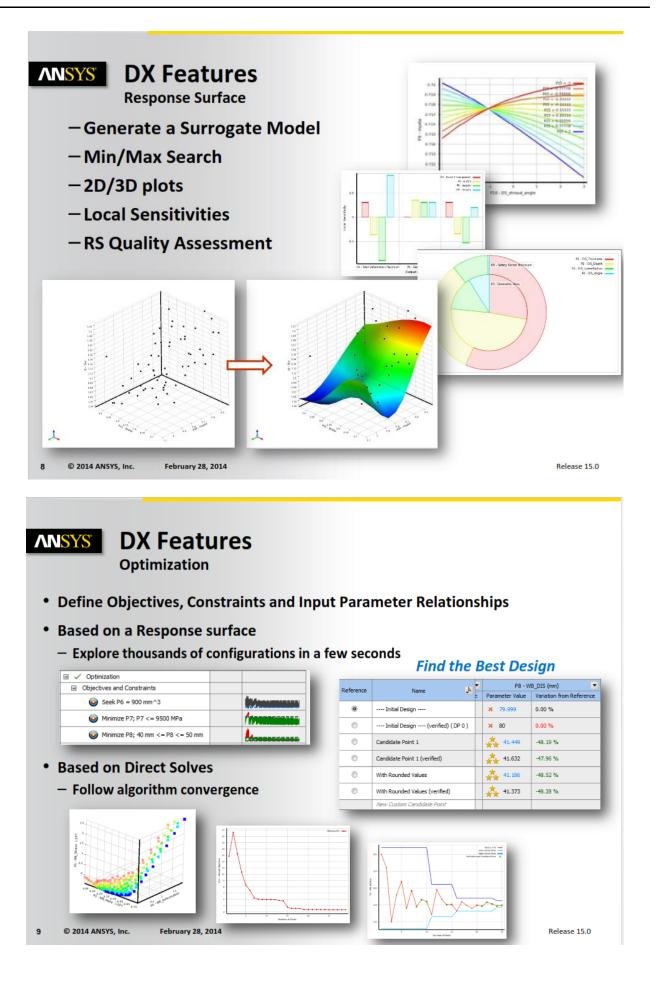
Appendix 5 Ansys Design Explorer Features

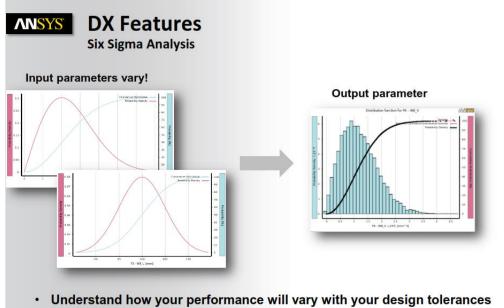
MNSYS What is DesignXplorer? DesignXplorer is a powerful approach to explore, understand and optimize your engineering challenges. - Determine the key parameters influencing the design - Explore and understand the performance at other design or operating conditions - Find the conditions which give the best performance - Explore the robustness of the design ? ? Response Single Point What If? Surface **DX** Features **NNSYS** What if Study Manual Search Sensitivity / Correlation Analysis Find the relevant parameters **Design of Experiments** Run a smart set of Design Points **Response Surface Build a Mathematical model** Optimization With or without a Response Surface **Robust Design** Six Sigma Analysis

Optimized and Robust Design

SV	C.	DX Fea	atures				
		What if' Si					
		What in S	iuuy				
			rough a list of n	nanually spe	ecified desig	gn points	
l	does	not requir	e a DX license]				
_	onnect <i>թ</i> of Design		pdate Project 🀬 Resume 💔 l	Jpdate All Design Points	G Return to Project	Compact Mode	_
	A	В	С	D	E	F	G
1	Name	 P1 - velocity-1 m s^-1 	P2 - Face Sizing Element Size	P4 - PipeLength	P3 - Solid Volume m^3	P5 - PressureDrop Pa	Exported
3	Current		0.001	1	^{™^3} [≁] 3.0844	Pa	
4	DP 1	2	0.001	1	7 5.0644 7	✓ 1.1146E+05	
5	DP 2	1	0.002	2	4	9	
6	DP 2		0.000	2	4	4	
*				-			
		Paste					
		Set Update Order b	by Row				
		Show Update Orde	er				
		Optimize Update O					
	~	Delete Design Point					
	43						
	77	Update Selected De	esign Points				
	1	Export Data (Beta)					
	24	Export Data (Deta)					
© 20	14 ANSYS,	Inc. Februar	y 28, 2014				Release 15.0
							Release 15.0
		DX Fea	atures	Analysis			Release 15.0
		DX Fea		Analysis			Release 15.0
VSY	7 S	DX Fea Sensitivity	atures	Analysis			Release 15.0
VSY	7 S	DX Fea Sensitivity	atures / / Correlation / nt parameters	Analysis aput Paramete	ers		Release 15.0
VSY	7 S	DX Fea Sensitivity	atures / / Correlation / nt parameters	nput Paramete			
VSY	7 S	DX Fea Sensitivity unimporta	atures / / Correlation / nt parameters	nput Paramete		10 12 12 12 12 12 12	
VSY	7 S	DX Fea Sensitivity unimporta	atures / / Correlation / nt parameters Ir	nput Paramete			
VSY	7 S	DX Fea Sensitivity unimporta	atures / / Correlation / nt parameters Ir	nput Paramete			
VSY	7 S	DX Fea Sensitivity unimporta	atures / / Correlation / nt parameters Ir	nput Paramete			
VSY	7 S	DX Fea Sensitivity unimporta	atures / / Correlation / nt parameters Ir	nput Paramete			
VSY	7 S	DX Fea Sensitivity unimporta	atures / / Correlation / nt parameters Ir	nput Paramete		13 12 12 12 12 12 12 12 12 12 12	
VSY	7 S	DX Fea Sensitivity unimporta	atures / / Correlation / nt parameters Ir	nput Paramete			
VSY	7 S	DX Fea Sensitivity unimporta	atures / / Correlation / nt parameters Ir				
VSY	7 S	DX Fea Sensitivity unimporta	atures / / Correlation / nt parameters Ir	a low		11 14 14 14 14 14 14 14 14 14	
VSY	7 S	DX Fea Sensitivity unimporta	atures / / Correlation / nt parameters Ir	a low		13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	
VSY	7 S	DX Fea Sensitivity unimporta	atures / / Correlation / nt parameters Ir	a low		814 814 814 814 814 814 814 814 814 814	
VSY	7 S	DX Fea Sensitivity unimporta	atures / / Correlation / nt parameters Ir	a low			
VSY	7 S	DX Fea Sensitivity unimporta	atures / / Correlation / nt parameters Ir	a low		11 12 13 14 14 15 15 15 15 15 15 15 15 15 15	
VSY	7 S	DX Fea Sensitivity unimporta	atures / / Correlation / nt parameters Ir	a low		11 12 12 12 12 12 12 12 12 12 12 12 12 1	
VSY	7 S	DX Fea Sensitivity unimporta	atures / / Correlation / nt parameters Ir	a low			
VSY	7 S	DX Fea Sensitivity unimporta	atures / / Correlation / nt parameters Ir	a low			
Ide	S ntify	DX Fea Sensitivity unimporta	atures / / Correlation / nt parameters Ir	a low			
Ide	7 S	DX Fea Sensitivity unimporta	atures / / Correlation / nt parameters Ir	a low			
Ide	S ntify	DX Fea Sensitivity unimporta	atures / / Correlation / nt parameters Ir	a low			






DX Features

Design of Experiments

- Specify the DOE Type
- Specify each parameter range and type (Continuous, Discrete, Manufacturable Values)
- Design Points are automatically chosen to explore the parametric space efficiently

- •
- Determine how many parts will likely fail Understand which inputs require the greatest control •

Appendix 6 Spool Type Comparison

Analysis Criteria	Vertical spool	Horizontal spool	
Ease of Installation	Vertical connectors are gravity deployed directly over the hub, connection tooling is simpler, lighter & cheaper, allows short hub-to-hub spacing, vertical connections can allow compact receiver assemblies, large rotation of hubs is not allowed.	Horizontal spools are gravity positioned and then controlled "make- up" is achieved by tooling, docking of hub on porch is vertical but stroking is horizontal, stroking generates deflection, so short jumpers difficult, thermal expansion can be accommodated via known pull-in loads and relative hub twist can be accommodated	
Controls Multibore and umbilical installation (e.g. tree jumpers)	Difficult / industry very little experience	Simple / lots industry experience – Horizontal connectors can accommodate multibore designs easier than vertical connectors due to better-controlled alignment systems. The vertical connector does not generally have a specific orientation whereas the receptacle and keys on the connector orientate the horizontal systems. If a multibore system is utilised there would be advantages in using it throughout on main connections and process connections alike. There has been very little utilisation of Multibore on vertical systems whereas multibore Horizontals have been used on the block 18, Girassol and Dalia projects amongst	
Landing and locking loads.	The vertical connector running tool has to control the landing loads and ensure they are not transferred into the locking function.	others. The horizontal system has distinctly different landing and locking operations thus giving a high level of control over these functions	
Seal replacement	Vertical connector has to be completely removed in order to replace a seal. With the vertical connector greater care is required to ensure the connector is not separated too far. Most of the vertical jumpers can accommodate flexible end stroking by up to 0.5m in vertical direction and access to seal can be achieved dependent upon connector type and flexibility of spool. Hence the requirement for total re- movement of spool is not necessarily required.	Seals (or seal plate, gasket) may be replaced by stroking back a horizontal connector.	
Torsional Load Capacity	Vertical connectors are generally exposed to higher torsional loads as a result of the connector orientation.	The torsional loads on horizontal connectors can be minimized by optimizing the spool geometry	
Turning moment	Because the vertical vonnector is fitted to taller structure there is an increase in the turning moment on the structure.	Simple	
Forces and moments on hub and connector	High bending moment on connectors due to jumpers geometry tolerances and make up of connection. Buoyancy elements may be required in order to keep within connector and pipe material capacity.	As for vertical spools, bending moments caused by weight and connection makeup limits the capacity of the system.	
Impact on structure design	Vertical connector spool configurations can result in significant loading of seabed structures.	Horizontal connectors require a greater degree of receiver structure and hub support than the more compact arrangement possible with vertical connectors,	
Hydrate avoidance	Vertical configured spool hampers free drainage of water	The horizontal connector more easily accommodates the retrofit of insulation in the form of "doghouses", these are more difficult to effectively design and deploy on vertical	

Table A6-1 Spool type comparison

Analysis Criteria	Vertical spool	Horizontal spool	
		connectors.	
Complexity	Simpler connection on trees and manifold Free span of vertical jumper may require buoyancy element and VIV strakes in order to avoid Vortex induced vibration and fatigue problems. complexity and cost increases	Requires more subsea complexity in connection system	
Maintenance	No difference Increased survey may be required in order to monitor vibrations, and system components	No difference	
Flow Assurance	Gas is more likely to collect within the jumper enabling hydrate to form in the jumper if hydrate mitigation procedure fail. Hydrate formation may become an issue at the top of the hairpin 'U' bends in vertical connectors, which is less of an issue with horizontal connection system	Pipework is less likely to collect gas pockets that causes hydrates	
Size and Weight Anti-Snagging Capability	Large, Heavy Pipe runs vertically out of the connector	Larger, Heavier Pipe runs horizontal out of the structure	
	Higher risk of snagging	Medium risk often protected by GRP covers	
Proven Technology	Yes	Yes	
Emergency Disconnection Feature	Yes	Yes	
Soft Landing System	Landing and locking loads, the vertical connector running tool has to control the landing loads and ensure they are not transferred into the locking function. System has soft landing system or controlled descent during final alignment of critical	Landing and locking loads, The horizontal system has distinctly different landing and locking operations thus giving a high level of control over these functions.	
Tolerance to Hydrodynamics	Low	as hubs stroked into contact as separate operation High	
induce Loads Controls Multibore and umbilical	Difficult I industry very little experience	Simple I lots industry experience	
installation (e.g. tree jumpers) Controlled connector landing and	Greater risk of seal damage or problems with	Lesser risk of seal damage or	
makeup	connector makeup	problems with connector makeup	
Decouple Schedule for spool handling and makeup	Difficult	Simple	
Retrieval of tree/manifold Connector stroking distance	Difficult Neutral on Spool design	Simple Can be used to advantage or neutralised (U spool)	
Pigging	The complexity (andrisk) is increased in the vertical connection system because of the extra 5D bends that have to be fitted to the Pigging loop. The Pig launcher receiver has to have a 90 degree bend fitted so that it does not interfere with the connector installation tooling.	Less risk of pig getting stuck due to horizontal orientation of spool.	
Loads on Horizontal vs. Vertical axis connections	Advantage for riser base	Advantage for FTA-manifold- tree	
insulation	For the vertical system there is a limit on the thickness of insulation so that the tool can still be placed on and taken off the connector. if additional insulation is required this would make the insulation doghouse large and difficult to install. A further consideration is plane of deploying the insulation doghouse, for verticals it has to be wrapped around the connector whereas for Horizontals it is lowered onto the connector and hence is easier.	Horizontal connectors can incorporate insulation requirements easier than vertical connectors due to the potential clash of the vertical tooling system.	
Metrology	Higher requirement Vertical connectors require more accurate metrology in order to accurately install both ends of a flowline spool. This is because the vertical connector is placed directly on the final alignment	Lower requirement	

Analysis Criteria	Vertical spool	Horizontal spool
	structure whereas the horizontal connector is	
	lowered into a receptacle that gives both coarse and final alignment as well as allowing an additional tolerance during the connector final make up.	
Multibore design	The vertical connector does not generally have a specific orientation whereas the receptacle and keyson the connector orientate the horizontal systems. if a multibore system is utilised there would be advantages in using it throughout on main connections and process connections alike. There has been very little utilisation of Multibore on vertical systems whereas	Horizontal connectors can accommodate multibore designs easier than vertical connectors due to better-controlled alignment systems.
	multibore Horizontals have been used on Greater Plutonio, Girassol and Dalia projects amongst others. IKM has participated in the ICHTHYS field in the	-
	NW of Australia. A multibore vertical connector design with piggyback was used here.	
Equipment Retrieval	Difficult The requirement to recover flowline / umbilical jumper in order to retrieve subsea production equipment, such as tree or manifold – horizontal connectors may be disconnected and stroked away from the equipment and left in the receptacle. Vertical connectors require to be lifted away from the equipment and either wet parked or retrieved to surface increasing total vessel time.	Simple
	Horizontal connectors only require one end of a flowline spool to be disconnected in order to retrieve an item of subsea equipment, whereas vertical connectors require both ends to be disconnected.	
	Requirement for additional structure – vertical connectors require a secondary receptacle in order to wet park the flowline spool after retrieval of the subsea equipment.	
	Alternatively a secondary connection system such as a flowbase could be utilised. A horizontal connector does not require any secondary equipment for wet parking but does require some form of structure to accommodate the guidance and/or pull in system.	
Deploy to place system	Not affected by seabed condition	
Buoyancy application	Buoyancy in some cases is required in order to reduce connector and spool stresses where nominal spools are particularly long, loads are particularly high due to structure movements and equipment are installed out with installation tolerances necessitating the design of special jumpers. <i>Ref. IKM Comments on requirement for buoyancy</i>	
Structural Requirements	The vertical structure has a slightly smaller footprint than the horizontal connector and this may result in a slightly reduced weight and footprint for structures using a vertical connector but they are slightly taller. Taller Structures however will mean higher moments that are acting to "turn" over the structures.	
	IKM experience: vertical Jumpers requires large structural test arrangement onshore and supporting equipment when deploying on barge as they need to be in an upraised position with support for lifting equipment hence required deck area increases and more labour for seafastening must be carried out.	Requires pecial installation lifting spreader which is costly, the spool requires often more deck space.
Seabed space requirement	Requires larger seabed area due to bends and flexibility requirements. Can interfer with other structures and subsea equipment	Less seabed area required as this spool is in the vertical position