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Abstract 

Prostate Cancer (PCa) is the second most commonly diagnosed cancer 

among men, with an estimated incidence of 1.3 million new cases 

worldwide in 2018. The current diagnostic pathway of PCa relies on 

prostate-specific antigen (PSA) levels in serum. Nevertheless, PSA 

testing comes at the cost of under-detection of malignant lesions and a 

substantial over-diagnosis of indolent ones, leading to unnecessary 

invasive testing such biopsies and treatment in indolent PCa lesions.  

Magnetic Resonance Imaging (MRI) is a non-invasive technique that 

has emerged as a valuable tool for PCa detection, staging, early 

screening, treatment planning and intervention. However, analysis of 

MRI relies on expertise, can be time-consuming, requires specialized 

training and in its absence suffers from inter and intra-reader variability 

and sub-optimal interpretations. 

Deep Learning (DL) techniques have the ability to recognize complex 

patterns in imaging data and are able to automatize certain assessments 

or tasks while offering a lesser degree of subjectiveness, providing a tool 

that can help clinicians in their daily tasks. In spite of it, DL success has 

traditionally relied on the availability of large amounts of labelled data, 

which are rarely available in the medical field and are costly and hard to 

obtain due to privacy regulations of patients’ data and required 

specialized training, among others.  

This work investigates DL algorithms specially tailored to work in a 

limited data regime with the final objective of improving the current 

prostate cancer diagnostic pathway by improving the performance of DL 

algorithms for PCa MRI applications in a limited data regime scenario.  

In particular, this thesis starts by exploring Generative Adversarial 

Networks (GAN) to generate synthetic samples and their effect on tasks 

such as prostate capsule segmentation and PCa lesion significance 

classification (triage). Following, we explore the use of Auto-encoders 
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(AEs) to exploit the data imbalance that is usually present in medical 

imaging datasets. Specifically, we propose a framework based on AEs to 

detect the presence of prostate lesions (tumours) by uniquely learning 

from control (healthy) data in an outlier detection-like fashion. This 

thesis also explores more recent DL paradigms that have shown 

promising results in natural images: generative and contrastive self-

supervised learning (SSL). In both cases, we propose specific prostate 

MRI image manipulations for a PCa lesion classification downstream 

task and show the improvements offered by the techniques when 

compared with other initialization methods such as ImageNet pre-

training. Finally, we explore data fusion techniques in order to leverage 

different data sources in the form of MRI sequences (orthogonal views) 

acquired by default during patient examinations and that are commonly 

ignored in DL systems. We show improvements in a PCa lesion 

significance classification when compared to a single input system (axial 

view). 
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1  Prostate Cancer  

Prostate Cancer (PCa) is the second most commonly diagnosed cancer [1] with 

an estimated incidence of 1.3 million new cases among men in 2018 [2], and 

the fifth leading cause of death worldwide [3]. Furthermore, global trends have 

shown that PCa incidence is expected to increase during the next years due to 

aging of the population [4].  

Treatments such as chemotherapy and immunotherapy cannot cure PCa 

once it has spread beyond the prostate gland [5]. Hereby, an early diagnosis and 

detection of PCa is crucial in order to be able to treat tumours when they are 

still confined to the prostate [6]. In spite of the urgency and the relevance of an 

accurate early diagnosis PCa screening in its current form remains as a 

controversial topic [5,7,8], with no clear benefits from it. 

1.1 Diagnostic pathway  

Traditionally, the diagnosis of PCa has been based on digital rectum 

examination (DRE). During DRE, the doctor inserts a gloved finger into the 

rectum and feels the prostate looking for hard, lumpy or abnormal areas (Figure 

1). DRE relies on the experience of the health personnel performing the 

procedure and is heavily limited in terms of tumour detection, as some prostate 

areas are not reachable by the procedure [9].  Moreover, the invasive nature of 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Blood sample extraction for PSA test (left) and digital rectum 

examination process (right). Image obtained from www.cancer.gov. 
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DRE results in an uncomfortable situation for the patient, which can lead to 

side effects such as bleeding [10]. 

Ever since the measurement of prostate-specific antigen (PSA) levels in 

serum (PSA testing) was approved as a screening test in the early 1990’s, it 

became the main tool for PCa diagnosis and management [11]. Prostate specific 

antigen made the detection of tumours possible before they become palpable 

on DRE. Nevertheless, the benefits of PSA as a main test to distinguish between 

indolent PCa tumours (ncS) and clinically significant tumours (cS) (or in other 

words, those with potential to become malignant or already malignant [12]) is 

unclear. Randomized trials have not shown any clear association between a 

decrease in mortality and PSA as a screening test [13,14,15]. Moreover, PSA 

testing comes at the cost of substantial under detection of cS tumours and 

overdiagnosis [16] of indolent tumours, which leads to overtreatment and 

further unnecessary screening practices [17, 18].  

 

Biopsies. Patients that are under the suspicion of suffering from PCa are 

referred to a biopsy, which is usually the last stage of the current screening 

practices. Biopsies are commonly used to confirm the stage of the patient and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Gleason scoring system for biopsy samples. Source: www.kreftlex.no 
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assess the aggressiveness of the tumour. They aim to collect tissue samples 

from the prostate by inserting needles through the rectum of the patient [19], to 

then grade the samples based on the Gleason Score (GS) [19, 20]. In essence, 

the GS is a scoring system in which a score from 3 to 5 is assigned to the biopsy 

sample depending on how the cancer cells are arranged in the prostate (Figure 

2). In order to obtain the final score, the two most prominent areas of tumour 

growth are determined and scored and then added together (i.e., 4+3 or 3+4). 

Based on the total sum of the scores, a grade group is assigned in relation to the 

patient risk (Table 1).  

 

Risk Group Grade group Gleason score 

Low Grade group 1 Score <= 6 

Intermediate (favourable) Grade group 2 Score = 7 (3+4) 

Intermediate (Unfavourable) Grade group 3 Score = 7 (4+3) 

High Grade group 4 Score = 8 

Very high Grade group 5 Score = 9 or 10 

Table 1. Gleason score risk stratification. 

Two types of biopsy procedures can be distinguished: trans-rectal 

ultrasound (TRUS) guided biopsy and transperineal biopsy, being the main 

difference between them the passage used to insert the needle [21]. In the first 

case, if no external guidance in the form of imaging is used around 10-12 

samples are extracted from different areas of the prostate. Some reports have 

highlighted that even after the repeated sampling, some non-indolent tumours 

might remain undetected [22, 23, 24, 25]. In addition to it, biopsies can cause 

pain or discomfort to the patient as well as adverse effects such as infections or 

rectal bleeding [26].  

All in all, the current diagnostic pathway and screening practices of PCa 

calls for different alternatives able to overcome the current difficulties and to 

better detect and characterize the potential non-indolent tumours, while 

reducing the overdiagnosis that populates current practices [27, 28]. In that 

regard, thanks to recent advances in image acquisition and interpretation, 

magnetic resonance imaging (MRI) has emerged as a valuable tool for PCa 

detection, staging, treatment planning and intervention [29, 30]. In particular, 
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multi-parametric MRI (mp-MRI) is already being adopted in clinical routine 

for PCa management, with positive results [31, 32] (Figure 3). 

 

 

1.2 Magnetic Resonance Imaging (MRI) in prostate cancer 

Multi-parametric MRI (mp-MRI) is a non-invasive technique that can be 

defined as the combination of several MRI modalities: T2-weighted (T2w), 

diffusion weighted (DW), dynamic contrast enhanced (DCE) and spectroscopy 

(MRS), if desired [27, 30] (Figure 4). In particular, T2w images are acquired 

preferably in three perpendicular planes: axial, coronal and sagittal, obtaining 

three different sequences for the modality. Furthermore, Apparent Diffusion 

Coefficient Maps (ADC) are usually automatically computed by a software 

station when acquiring DW and broadly speaking, provide an average measure 

Figure 3. Current PCa diagnostic pathway (lef side) and diagnostic pathway 

incorporating mp-MRI as a triage test (right side). 
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of the diffusion of a particular voxel in the image. Although many centres use 

the aforementioned combination of modalities, there is no standard 

combination yet, and on-going research is pointing in the direction that bi-

parametric MRI (bp-MRI) consisting of T2w and DW sequences (or ADC) is 

able to match the performance of a mp-MRI approach for the diagnostic and 

detection of PCa [33]. 

1.2.1 Multi-parametric MRI (mp-MRI)  

 
T2-weighted (T2w). T2-weighted MRI (T2w) shows anatomic-morphologic 

features of the prostate and morphologic-pathologic structures. Its acquisition 

in three perpendicular planes (axial, sagittal and coronal) shows the anatomic 

prostate zonal anatomy and the relation of the prostate to its surrounding 

structures. T2w allows to differentiate between the high-signal zone of the 

Figure 4. MRI sequences that commonly conform mp-MRI of the prostate. Top row: 

T2w and different acquisition views (from left to right: axial, coronal and sagittal), 

bottom row: DW (b value of 1400) and ADC and DCE. 
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prostate (peripheral), the mixed-signal zone (transition) and the low-signal zone 

(central) (Figure 5). Furthermore, it allows to anatomically localize lesions and 

assess their shape, form and size, thanks to its high inter-plane resolution [34] 

(Figure 4, top row). 

 
Diffusion-weighted (DWI). Diffusion-weighted MRI is the most important 

functional imaging technique because of its correspondence to 

histopathological findings which provides an improved evaluation of tissue 

characteristics and can be a useful tool for detection and staging of PCa in 

clinical practice [35]. In essence, DW MRI shows the velocity (diffusion) of 

intracellular water which is restricted for dense cellular tissue – which shows 

as a low signal (black) on the derived ADC map, whilst low cell density is 

represented as a high signal (white) on the ADC map [34, 36]. Diffusion-

weighted MRI (Figure 4, bottom row) can be obtained with different b values 

which measure the degree of diffusion weighting applied, being 𝑏 ∈

[0, 1000] 𝑠/𝑚𝑚2 the recommended values for prostate mp-MRI [37]. 

 
Dynamic contrast enhanced (DCE). Dynamic contrast enhanced MRI of the 

prostate show tissue enhancement (vascularization) after injection of an MR 

contrast agent. DCE-MRI brings out its potential for the detection of local 

recurrences (i.e., after radiotherapy or after radical prostatectomy). In the case 

of patients that have not undergone any treatment, DCE-MRI (Figure 4, bottom 

row) helps to identify potential prostatitis and is of value in findings that might 

be controversial in the peripheral zone (PZ) [34].  

 

Spectroscopy. MR-spectroscopy is sometimes included in prostate mp-MRI 

protocols depending upon 3rd party rules (such as hospitals or regions). Its value 

comes out when assessing the malignancy risk of a region of interest (ROI). Its 

utilization is usually reserved to research purposes as the process to obtain the 

image and analyse it is rather complex and time-intensive [27]. 

1.2.2 PI-RADS score 

With the introduction of mp-MRI in the PCa diagnostic pathway and 

management, a standardized methodology and terminology to translate findings 

in mp-MRI into clinical practice in an unequivocal way was required. The 
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Prostate Imaging-Reporting and Data System (PI-RADS) was developed in 

2013 in an effort to standardize mp-MRI evaluation of prostate MRI [38] and 

later updated in 2015 (PI-RADS v2) and 2019 (PI-RADS v2.1) [39]. The latest 

update introduced a sectoral map (Figure 5) for the prostate, redefined the 

scoring system aiming overcome conceptual confusion and differences present 

in the first PI-RAD scoring system and finally, relegated DCE to a minor 

classification role secondary to T2w and DW sequences [27, 40].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Sectoral map of the prostate according to PI-RADS v2. PZ: peripheral zone; 

CZ: central zone; TZ: Transition zone; US: urethral stroma; AFS: anterior fascial 

stroma. From American College of Radiology. MR Prostate Imaging Reporting and 

Data System version 2.0. http://www.acr.org/Quality-Safety/Resources/PIRADS/ 
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PI-RADS v2 scoring system can be summarized as follows (Figure 6): The 

images of different sequences are obtained and a score ranging from 1-5 is 

given, depending on several criteria such as homogeneity and encapsulation of 

the detected lesion. The sequence of reference (and their contribution to the 

overall evaluation) depends on whether the lesion is located in the transition or 

peripheral zone of the prostate (Figure 5). Finally, the case is assigned one of 

the 5 assessment categories (Table 2) [39]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  PI-RADS v2 flowchart to assign a category and grade the case. 

Case courtesy of Dr Francis Deng, Radiopaedia.org, rID: 70893 

Peripheral zone Transition zone 
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PI-RADS 

score 
T2w, DW and DCE score Definition 

1 3-4 Most probably benign 

2 5-6 Probably benign 

3 7-9 Indeterminate 

4 10-12 Probably malignant 

5 13-15 Most probably malignant 

 

Table 2. Assessment categories of PI-RADS scoring system. 

1.2.3 Impact of mp-MRI in PCa 

A major goal for PCa is more accurate disease characterization through the 

synthesis of anatomic (T2w), functional (DW) and molecular imaging 

information [41]. Arguably, such a characterization would improve the current 

diagnostic pathway by providing a tool that allows for a better patient 

management strategies and stratification in those who require an active 

surveillance strategy (“watchful waiting”) or those who require immediate 

action in the form of further testing and treatment. Such is the interest in mp-

MRI and its potential to improve the current practices, that its integration in the 

current diagnostic pathway is already gaining ground in different areas with 

positive outcomes for both the diagnosis and management of PCa [42]:  

 
Triage test for men at risk. There is uncertainty and controversy surrounding 

PSA testing as a screening test and the attribution of grade D by the U.S. 

Preventive Services Task Force against PSA screening [13, 42] (moderate or 

high uncertainty that the service has no net benefit or that PSA is not fit for the 

purpose [43]). Introducing imaging techniques in the diagnostic pathway as a 

support for PSA testing for those men with elevated levels of serum PSA (and 

thus, at risk of suffering PCa) and before TRUS guided biopsies could address 

the problem of overdiagnosis of PSA since mp-MRI has been found to have 

reduced sensitivity for low GS grade tumours, and might systematically 

overlook ncS lesions. In addition, evidence is starting to accumulate reporting 

a high negative predictive value when it comes to ruling out cS lesions [44, 45] 
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and similar approaches have already been successful when treating other solid 

organ cancers [46]. 

Disease characterization. Measures such as the prostate gland volume in vivo 

are commonly required in the management of prostate disorders, both benign 

and malignant. Knowledge of total prostatic volume is necessary in the 

calculation of PSA density (PSAD), a key indicator that elevated PSA is due to 

malignancy [47]. Fields such as radiomics [48] are rapidly evolving. Radiomics 

involves the extraction of quantitative features from images, that could, 

potentially, characterize the disease under consideration whilst enabling a more 

advanced understanding of it. Specifically, a high-quality delineation of the 

target area or region of interest (ROI) -such as the tumour or prostate gland- is 

the premise to ensure that the subsequent feature extraction is performed with 

acceptable quality. Imaging techniques such as T2w can delineate the normal 

prostate zonal anatomy, clearly showing the transition and peripheral zones 

[34] and hence playing a crucial role in the characterization of the disease. 

 
Lesion localization and focal therapy. Standard biopsy techniques suffer from 

inadequacy of sampling. Such is the inadequacy that approximately one-third 

of patients undergoing active surveillance see an upgrade of the disease when 

undergoing TRUS guided biopsies [49]. Mp-MRI provides an alternative that 

can be used to detect, localize and characterize tumours as well as to track their 

progression and the pathological changes of the patient associated to it over 

time. There is already evidence that mp-MRI can act as an accurate monitoring 

tool for PCa progression in men undergoing an active surveillance program 

[50]. Additionally, an accurate detection and cancer localization might also help 

overcoming secondary effects in certain PCa practices such as radical 

prostatectomy [51] and to improve treatments such as focal therapy [52]. 

 

Initial staging and active surveillance. Tumours, nodes and metastases (TNM) 

is the reference standard for staging PCa [41], that has as a primary goal to 

define the anatomic extent of the tumours and to distinguish patients with 

organ-confined, locally invasive or metastatic disease. Staging contains 4 main 

subcategories (T1-T4) which are mainly based on a combination of findings 

obtained via palpability and after assessment of resected glandular tissue. 

Detecting extracapsular extension and locating the intraprostatic extent of the 

disease are important issues in the management of the disease and in the staging 
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phase of it. Due to the difficulties in providing an accurate TNM staging, older 

men and men with significant health problems were traditionally diagnosed 

with stage A1 PCa and considered for an active surveillance program. Thanks 

to improved tumour localization and lymph node staging, a more optimal and 

tailored TNM assessment can be achieved along with an improved active 

surveillance program [53]. In that regard, contemporary active surveillance 

programs include low-risk patients with low tumour volumes, determined 

through imaging techniques. 

 

Guided biopsies. To increase biopsy sensitivity and reduce the number of core 

biopsies required to detect cS PCa lesions, several technologies have been 

explored along with ultrasound [54]. Nevertheless, the ability of the explored 

techniques to discriminate benign from malignant tissue is low [55], and thus 

its application in guiding biopsies is compromised. Conventional MRI provides 

higher spatial and contrast resolution than ultrasound or computed tomography 

(CT), showing potential to be a suitable option to be used to guide prostate 

biopsies [56].  

 

PCa management (recurrence of the disease). Once a patient has undergone 

radical prostatectomy or radiation therapy, a rise in PSA is commonly an 

indication of cancer recurrence. When a rise in PSA levels is observed in 

patients after radical prostatectomy or radiation therapy the next step is usually 

to determine whether cancer recurs locally or in distant organs. An accurate 

localization and determination of the extent of cancer is critical in selecting an 

appropriate treatment (local salvage therapy or systematic therapy). Hence, the 

primary role of MRI imaging in this kind of settings is to help distinguish local 

recurrence from distant metastatic diseases [43]. 

 

“Triage” test for men with confirmed lesions and test for negative first 

biopsies. One of the main reasons of why TRUS biopsies usually fail to sample 

the right location is because of their “blind” nature to the cancer location within 

the prostate. Specifically, cancers in the anterior prostate, apex and midline are 

either under-sampled (or never sampled) resulting in cS cancers going 

undetected [57]. Imaging can be used to assess the risk status of men with a 

previous negative biopsy and perform a follow-up biopsy that can be targeted 

to visible MRI lesions. Evidence has shown that when this strategy was 
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adopted, 2/3 of men with 2 or more previous negative TRUS biopsies were 

diagnosed with cancer [58]. In addition, providing a timely treatment, further 

testing or active surveillance program is of crucial relevance for patient 

management. Imaging provides a way to perform targeted biopsies and 

determine the significance of the lesion under consideration, allowing for 

tailored feedback to the patient and improving the quality of life and outcomes 

of the disease by “triaging” the lesions based on their significance (GS) [59]. 

 

Therapy response & drug development. The role of imaging is not limited to 

delineating and localizing organs and structures but to detect at an early-stage 

changes occurring in tissues, enabling a tailored patient management including 

changes in real time and facilitating drug development. Specifically, data has 

already shown that DWI is able to show in a quantitative way the response of 

PCa bone metastases to treatment [60, 61]. 

1.2.4 Radiological workflow in PCa  

Ever since the guidelines for PCa diagnostic and management were updated by 

the European Association of Urology (EAU) and the American College of 

Radiology (ACR), prostate MRI has been advised to be taken before a biopsy, 

instead of being relegated to a secondary role after undergoing a biopsy. But 

what exactly does an MRI exam in PCa entail for the specialist in charge of 

carrying it out? A patient exam takes in average, from 20 to 45 minutes during 

which the sequences conforming the mp-MRI (Section 1.1.2) are acquired [62]. 

Usually, after the image acquisition, a radiologist evaluates the obtained 

scans by performing anatomical measurements of the prostate (dimensions and 

volume) followed by calculations of PSAD [47]. Report and acquisition of the 

anatomical measurements used to include a manual delineation process of 

anatomic structures such as the gland of the prostate [63, 64], which was subject 

to high inter-reader variability and was a time-intensive task. Current 

approaches include semi-automatic tools that aid with the delineation of the 

ROIs. In spite of it, human interaction is still expected to some degree to 

provide points of interest (starting points to begin the delineation), guiding 

points or review the final results obtained by the tool (Figure 7).  
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Following, the radiologist assesses the MRI scans using a hanging protocol 

which usually includes T2w, DWI and ADC maps (Section 1.1.2). During the 

assessment, different zones of the prostate (Figure 3) are taken into 

consideration and DWI and ADC sequences lead if the peripheral zone is being 

assessed whilst T2w is the leading one if the transition one is under analysis 

and used as an additional input in case of doubt when analysing the peripheral 

zone. After assessment, all the derived information is put together to determine 

the PI-RADS score (Section 1.1.2) and the radiologist is in charge of creating 

a report to communicate the findings to the urologist and, if relevant, to be 

discussed with the rest of the team [65]. Assessment of the sequences and 

subsequent PI-RADS score assignment has been shown to be a time-intensive 

task which is subject to high inter-reader variability and the amount of 

experience of the radiologist, which can have a negative impact and 

consequences for the patient [66]. 

 

 

 

 

 

Figure 7.  Example of a semi-automatic tool to delineate anatomical 

ROIs and to guide biopsies in prostate MRIs. Image obtained and 

reprinted from https://wiki.cancerimagingarchive.net/. 

https://wiki.cancerimagingarchive.net/


2. Artificial intelligence in radiology 

2 Artificial intelligence in radiology 

The convergence of complex data (such as imaging) with artificial intelligence 

(AI) is leading to major advances in applications that range from self-driving 

vehicles to natural language processing (NLP) and computer vision (CV). The 

ability to better represent and interpret such complex data has allowed machines 

to automatize tasks that have, traditionally, been carried out by humans [67]. 

AI is becoming a major constituent of many applications within healthcare, 

including drug discovery, medical diagnostics and imaging, risk management, 

wearables, virtual assistants, virtual reality and patient monitoring, among 

others [68, 69]. Medical fields such as radiology, which rely on imaging data, 

are already seeing benefits from the implementation of AI methods [70, 71, 72].  

Within radiology, physicians require specialized training to assess and 

analyse medical images and report findings to detect, characterize and monitor 

diseases. Such an assessment is often based on experience (along with many 

years of specialized training and education) and can be, at times, subjective. On 

the other hand, AI algorithms have the ability to recognize complex patterns in 

imaging data and are able to automatize certain assessments or tasks while 

offering a lesser degree of subjectiveness (subject to the ground truth it was 

trained on), as opposed to human-based assessment. Furthermore, with the 

proper deployment and when the right actions are in place, AI can also benefit 

the reproducibility of the results when integrated into the clinical workflow as 

a tool to assist physicians [67]. 

2.1 Artificial intelligence in medical imaging 

One of the main driving factors behind the growth of AI in the medical imaging 

domain has been the search for greater efficacy and efficiency in clinical care. 

The disproportionate rate at which radiological data keeps growing coupled 

with an increasing lack of availability in specialized readers [73, 74], has forced 

health-care providers to dramatically increase radiologists’ workload [75]. 

Such is the increase that in some cases, a radiologist must interpret one image 

every 3-4 seconds in an 8-hour workday to meet work demands [76]. As the 

workload demands increases it is inevitably that errors in the assessment arise, 
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especially in a field like radiology where visual perception and decision making 

under uncertainty are particularly relevant [77]. 

Integrating AI within the imaging workflow of radiologists can increase 

efficiency, reduce errors and achieve the proposed objectives while reducing 

the manual input of the radiologist thanks to pre-screened images and identified 

features [78]. Furthermore, AI could aid with the increasing workload in the 

field due to the shortage of specialists. Hereby, a substantial effort is being 

made and policies are being put forward to facilitate the transition to a scenario 

in which AI helps and supports radiologists to carry out their duties.  

2.1.1  Deep learning for medical imaging 

We can mainly differentiate between two types of AI approaches that are 

widely used nowadays for radiology (Figure 8): traditional machine learning 

(ML) and deep learning (DL), respectively. The first one aims to extract 

handcrafted features that are defined from a mathematical point of view (such 

as image texture) and can be quantified in an automatic or semi-automatic way 

by computer software [79] and that is usually followed by a feature selection 

step and a ML-based algorithm [80]. Although the extracted features are 

perceived to be discriminative for the tasks under consideration, they 

commonly rely on expert definition and hence, are subject to the limitations of 

their knowledge. Hereby, those features might not necessarily represent the 

most optimal feature quantification approach for the task at hand. Furthermore, 

features are usually “static” -specific to their imaging modality- and unable to 

adapt nor have the same success and impact with other imaging modalities with 

different signal-to-noise characteristics [67].  

DL methods can automatically learn feature representations while 

suppressing the need for a human-expert intervention. Thanks to their data-

driven approach, more general and informative features can be extracted. 

Additionally, DL gets rid of manual steps such as the definition of a ROI, which 

requires manual delineation by experts of the diseased tissues [81]. Given the 

right amount of data, DL is also often robust to undesired variations such as the 

inter-reader variability present among experts. Algorithms based on DL have 

seen an unprecedented success in different healthcare applications with a 

continuously-growing amount of software and products available for healthcare 

and, in particular, radiology, getting approval by the U.S Food & drugs 
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administration (FDA) [82]. One could say that in some ways, DL is able to 

follow a similar process compared to the one radiologist’s follow, as opposed 

to traditional ML. That is, DL can identify parameters and features on the fly 

and assess their relevance on the basis of other factors to arrive at a clinical 

decision. When comparing DL models (deep models) with their ML-based 

counterparts, several studies have reported substantial improvements with DL 

methods [83, 84, 85]. Additionally, DL also has the benefit to have a faster 

development time as it only depends on curated data rather than domain 

expertise to extract useful features. ML methods have also reached a plateau in 

performance over the last years and generally speaking, they usually do not 

meet the minimum requirements for clinical utility and routine, resulting in only 

a few of the proposed systems to be translated into the clinic [86].  

 

 

 

 

Deep models 

The perceptron is the earliest trainable feed-forward neural network 

(FFNN) [87] with a single-layer architecture composed by an input layer and 

an output one, inspired by the structural elegance of the neural system. More 

complex architectures such as multi-layer perceptron (MLP) include a stack of 

layers composed by inputs, hidden layers and output layers. It is important to 

emphasize that in MLP the units (neurons) of neighbouring layers are fully  

Figure 8.  Radiomics vs DL approach for prostate MRI. 
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connected to one another, but there are no connections among units in the same 

layer (Figure 9).  In essence, each neuron performs three tasks: multiply each 

input with the respective weights, sum the resulting values of the previous step  

and apply an (non-linear) activation function to the result of the sum [88]. As it 

turns out, non-linear activation functions give us the power to represent 

arbitrary functions under certain technical conditions, even for a shallow MLP 

(i.e., with one single hidden layer). Hereby, they are regarded as universal 

approximators [89, 90]. Assuming a MLP with two hidden layers, we could 

represent the operations in a vectorized form as follows (Equation 1): 

      𝐡(1) =  𝜙(1) (∑ 𝐖(1)𝐱

𝑗

+ 𝐛(1)) 

               𝐡(2) =  𝜙(2) (∑ 𝐖(2)𝐡(1)

𝑗

+ 𝐛(2)) 

         𝐲 =  𝜙(3) (∑ 𝐖(3)𝐡(2)

𝑗

+ 𝐛(3)) 

 

where h(l) represents the activations of all the units of the layer l, each layer’s 

weights are represented by a weight matrix W(l), the bias vector of each layer is 

represented by b(l) and the activation function -assuming the most generic case, 

that is, different ones- is represented by 𝜙(𝑙).  Fully-connected MLP are not 

(1) 

Figure 9.  Multi-layer perceptron with two hidden layers. 

(1) 

(1) 
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optimal for the type of data highlighted in this thesis, that is, images. Since the 

resolution of an MRI can be of hundreds of pixels for each direction (for 

instance, 320x320), the use of MLP becomes impractical as the number of 

connections becomes extremely large and thus, the computational power 

required becomes exceedingly large too. 

 

Convolutional Neural Networks (CNNs). Convolutional neural networks 

(CNNs) [91] (Figure 8, bottom architecture) are conceived to better utilize 

spatial information from neighboring pixels -or voxels, if used in 3D- by taking 

the full picture as an input, as opposed to traditional ML methods where 

vectorized features are used. Such a feat is accomplished by using 

convolutional layers which encourage weight sharing, local receptive fields and 

spatial sub-sampling. Thanks to those characteristics, CNNs have the benefit 

of being invariant to affine transformations of images, allowing them to 

recognize patterns that are shifted or tilted within images.  

A typical CNN is composed by other layers besides convolutional ones, 

containing the classic CNN structure the following elements: multiple 

convolutional layers, non-linear activation functions and pooling layers [91]. In 

particular, VGG16 is a widely used CNN model based entirely on the 

previously defined layer structure [92]. Another remarkable CNN architecture 

is Residual Networks (ResNet) [93]. They follow a structure similar to VGG16 

with the addition of residual connections -otherwise called skip connections- 

and batch normalization [94], which enabled to train in an efficient way deeper 

network architectures without falling into previous training pitfalls. CNNs have 

seen success in a variety of medical imaging tasks, such as classification [95, 

96] and detection [97, 98]. 

 

Transformers. Transformers [99] are a sequence-to-sequence prediction 

architecture that has exhibited an outstanding performance in tasks such as 

natural language processing (NLP) [100, 101]. In particular, Transformers were 

designed to overcome the limitations in modeling explicit long-range relations 

of CNNs -due to their limited receptive field of convolution layers- and capture 

relations between arbitrary positions in the input sequence [99].  By using an 

entire sequence, in the form of image patches and relying on self-attention [99] 

the architecture is able to completely dispose of convolutions and model long-

range dependencies in the image (or text).  
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The key elements in a Transformer architecture are the image representation 

as a sequence of patches, learnable positional embeddings, multi-head attention 

(MHA) mechanism and layer normalization (LN) [102] (Figure 10).  In the first 

case, the concept of patch refers to p local areas of pixels (Figure 11) 

x1, x2 … x𝑝 ∈  ℝ𝐻x𝑊x𝐶, where H is the height of the patch, W is the width, C 

represents the number of channels and 𝑝 =  ⌊
𝐻

ℎ
x

𝑊

𝑤
⌋, with h and w representing 

the height and width of the original image that are commonly obtained without 

overlap. The learnable positional embeddings aim to capture the order 

relationships between the low-dimensional p patches (spatial information). 

Figure 10.  Transformer architecture. Figure reprinted with permission from [99]. 
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MHA is arguably the core of the Transformer architecture. In essence, runs the 

inputs through the self-attention mechanism several times in which each time 

the Key (𝚱 ϵ ℝ𝑚x𝑑), Query (𝐐 ϵ ℝ𝑛x𝑑) and Value (𝐕 ϵ ℝ𝑚x𝑓) matrices are 

mapped into different lower dimensional spaces and the attention is computed 

(commonly) with a scaled dot-product attention (Equation 2): 

 

attention(𝐐, 𝐊, 𝐕) = softmax (
𝐐𝐊t

√𝑑
) 𝐕 

 

Finally, LN [102] computes the mean 𝜇𝑛 and variance 𝜎𝑛
2 across channels and 

spatial dimensions (Equation 3). LN yields to better performance than other 

normalization approaches such as batch normalization (BN) [94], thanks to the 

control achieved in the gradient computation [103]. 

 

LN(𝑥𝑛, 𝜇𝑛, 𝜎𝑛
2) =  𝛾 (

𝑥𝑛 − 𝜇𝑛

√𝜎𝑛
2 + 𝜖

) + 𝛽 

 

where 𝛾 and 𝛽 are learnable parameters. Remarkable examples of specific 

Transformer architectures are ViT [104] and 3D ViT [105], which have seen 

success in a variety of medical imaging-based tasks such as classification and 

segmentation [106, 107]. 

 

 

 

 

 

 

 

(2) 

(3) 

Figure 11.  Patch extraction process. From left to right: 80x80, 64x64 and 32x32. 
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Auto-encoders (AEs). Auto-encoders (AEs) (Figure 12) are a type of neural 

network where the output layer has the same dimensionality as the input layer. 

An auto-encoder looks to replicate the data from the input to the output in an 

unsupervised manner (defined in the next sections) and is therefore, sometimes, 

it is referred as a replicator [108]. One of the most important characteristics of 

AEs is their ability to learn or discover highly non-linear and complex patterns, 

such as relations between the input values assuming that there is some sort of 

structure in the data. In particular, AEs look to project to a lower-dimension 

space ℝ𝑑 the original input x𝑖 ∈ ℝ𝐷 where d << D and obtain a reconstruction 

of the original input from the compressed version of the input. Such 

dimensionality reduction process is stored in the bottleneck component of AEs, 

which serves as a “bridge” between the two other main components of AEs: 

encoder and decoder. The first component, the encoder, can take the form of a 

deep neural network or its variants (i.e., FFNN, CNN or Transformer) and aims 

to compress the input into a latent space representation, obtaining a lower-

dimension representation. On the other hand, the decoder, commonly “mirrors” 

(i.e., if the encoder was a CNN the decoder will follow the same structure) the 

structure of the encoder and is responsible for reconstructing the input back to 

the original dimensions from the reduced representation obtained by the 

encoder [109].  

Figure 12.  Example of an auto-encoder architecture. 
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Some of the most iconic types of AEs are Convolutional Auto-Encoders 

(cAE) [110] and Variational Auto-Encoders (VAE) [111], which have been the 

predecessors of more advanced models such as Quantized-Variational Auto-

Encoder (VQ-VAE) [112]. cAE are based on encoder-decoder structures that 

exploit convolutional layers, such that a more optimal encoding is learnt for 

images. VAEs are conceived to learn the probability distribution 𝑝(𝑥𝑖) of the 

input image 𝑥𝑖 instead of learning the function 𝑓(·) that maps the input and the 

output. Thanks to that approach, VAEs are able to generate new images after 

successfully approximating 𝑝(𝑥𝑖). Some successful applications of AEs for 

medical imaging (based on their performance when compared with other 

methods) include detection and classification tasks [113, 114]. 

 

 

 

 
 

Generative Adversarial Networks (GAN). Generative Adversarial Networks 

(GAN) are party of the so-called data generation methods. GAN were 

conceived to be a generative method able to obtain higher quality synthetic 

samples with more diversity, compared to other generative methods such as 

VAE. The GAN architecture (Figure 13) is composed by two key elements: the 

generator (G) and the discriminator (D) [115]. The generator takes the form of 

a deep neural network (usually a CNN) and in its simplest form, the generator 

takes as a random vector 𝐳, that will help to obtain a non-deterministic output. 

Specifically, the output of the generator will be a synthetic sample (image) of a 

Figure 13.  Example of a GAN architecture. 
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specific distribution 𝑝(𝑥𝑖), where 𝑥𝑖 is the input image [115]. The discriminator 

is a classifier that instead of trying to classify an image in the correct class, 

focuses on learning the distribution of the class. In essence, it aims to quantify 

how representative the class is to the real class distribution.  Both elements are 

trained in a dynamic scheme in which the generator tries to produce fake 

examples that are close to the real distribution 𝑥𝑓𝑎𝑘𝑒~ 𝑝(𝑥𝑖) such that the 

discriminator is “fooled” into thinking that the sample is real and not generated 

in a 2-player minmax game fashion [115].  

Ever since their first appearance, GANs have seen how their design and 

applications became increasingly complex and some remarkable improvements 

were introduced. For instance, conditional GAN (cGAN) [116] lead to 

architectures such as pix2pix [116] and cycleGAN [117], which allow to learn 

a mapping 𝑓 between an input image and an output image. Such applications 

are particularly useful in the medical domain, where images can come from 

different machines with different characteristics and thus, a domain adaptation 

in which images are translated to the training domain might prove useful [118, 

119]. The generation of synthetic samples through GANs has also caught the 

interest of the medical imaging community, given the lack of annotated data 

and the difficulties to obtain them in the medical domain [120, 121, 122].  

 

Broad categories of DL and training of deep models 

Generally speaking, and from a classic perspective, DL models in medical 

imaging can be classified in two main different categories depending on the 

learning paradigm. Specifically, supervised learning is the most popular 

learning paradigm. Supervised learning is characterized by the availability of 

labeled data during the training process. In essence, given a training set 𝒟 =

{ (𝑥1, 𝑦1) … (𝑥𝑁 , 𝑦𝑁)} where (𝑥𝑖 , 𝑦𝑖) represent the pair of input images and their 

corresponding labels (ground truth), the supervised learning paradigm aims to 

learn a function to map the input to the outputs 𝑓: 𝑥 → 𝑦 [123]. The second 

learning paradigm is unsupervised learning, where the DL model learns to find 

hidden structure and relationships in the data by using a training set 𝒟 =

{ 𝑥1, . . , 𝑥𝑛} without labels [124]. Unsupervised learning has proven particularly 

useful in tasks such as dimensionality reduction and representation learning 

[125].  
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All in all, both learning paradigms require the definition and combination of 

an internal evaluation function (also called objective function or scoring 

function), external evaluation function (evaluation metric) and an optimization 

technique to search in the classifiers space the highest-scoring one in terms of 

the external evaluation score [126]. In particular, the internal evaluation 

function takes the form of a differentiable function that we commonly aim to 

minimize (i.e., cross-entropy [127]). The external evaluation function allows us 

to judge the performance of the model in the task under consideration (i.e., 

classification accuracy [128]). The most common choices for the optimizers are 

Adam [129] (and its variants [130]) and Stochastic Gradient Descent (SGD) 

[131]. 

2.2 Applications of DL in imaging data in PCa 

Reading radiographic images, such as MRI, comes down to recognizing 

complex patterns which computers can be trained to do efficiently, 

reproducibly and fast. DL offers an alternative to standard human-based and 

analysis for a variety of PCa imaging-based applications. The applications can 

be categorized into low-level processing methods and high-level image 

analysis. In the first case, the applications deal with the classification of pixels 

in basic image tasks such as segmentation and registration. On the other hand, 

high-level applications provide information such as PCa detection, diagnosis, 

characterization and grading.  

 

Segmentation. Prostate segmentation and accurate identification of the 

deformable prostate capsule (Figure 14) is important for a variety of 

applications such as radiation treatment planning, volume measurements, 

fusion-targeted biopsies or monitoring of the prostate disease over time [132]. 

Some examples of automatic segmentation of the prostate based on DL include 

the works of Li et al. [133] and Aldoj et al. [134] which make use of T2w MRI 

to segment in an automatic way the prostate in 2D (that is, making use of T2w 

slices). Other works have tried to exploit the inherent 3D nature of MRI in an 

isotropic way, with success such as in Meyer et al. [135]. Other remarkable 

examples include the work of Sanders et al. which evaluate in a prospective 

way the ability of DL algorithms to segment the prostate and organs at risk for 

radiation therapy assessment [136].  Some works have benefited from open  
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access databases (Table 3), which have played a key role in facilitating the 

research in prostate segmentation. For example, NCI-ISBI 2013 [137], 

PROMISE12 [138] and I2CVB [139] have allowed researchers to further 

develop prostate segmentation algorithms [140, 141]. 

 

Registration. Registration plays a crucial role for applications such as fusion 

biopsy with MRI and TRUS-targeted biopsy [132]. For example, registration 

of T2w and 3D TRUS volumes of the prostate through CNNs was proposed by 

Hu et al. [142]. Additionally, in the work of Haskins et al. [143] a DL approach 

to learn in an automatic way a similarity metric for MRI-TRUS registration 

such that an automatic registration and assessment of such a registration can be 

performed afterwards. 

 

Diagnosis and prognosis. DL algorithms offer the possibility of automatizing 

the diagnostic and prognostic of PCa patients based on MRI. They enable the 

creation of diagnostic probability maps and to extract prognostic features within 

the pixels that might correlate with histological grading and clinical outcomes.  

Figure 14.  Segmentation of prostate capsule in T2w MRI. First column: 

results in the T2w slice. Second column: Ground truth Third column: 

Segmentation overlayed on the ground truth. 
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Dataset Field strength (T) Manufactor Number of cases1 

NCI-ISBI 1.5 and 3 
Siemens and 

Philips 
60 

I2CVB 3 Siemens 20 

PROMISE12 1.5 and 3 Siemens and GE 37 

 

Table 3. Gleason score risk stratification. 

As in segmentation tasks, Open access data has greatly facilitated the creation 

and research of tools for the automatic diagnosis and prognosis of PCa patients. 

For example, the Prostate MRI Gleason Grade Group challenge (ProstateX) 

[138] provided the research community with > 300 000 MRI slices from 347 

patients who had MRI-guided biopsies. The “challenge” derived from that open 

access data obtained results that were similar to the ones obtained by human 

readers (radiologists), leading to the conclusion that DL methods were suitable 

to screen scans as a ‘first reader’ or act as an independent second reader in place 

of a review by a second radiologist [138].  

Works such as the from Wang et al. and Ishioka et al. [144, 145] present a 

2D lesion classification approach (slice level of the T2w MRI sequence), in 

which the different lesions -tumours- present in the radiographic images are 

classified depending on their GS in cS (GS ≥ 7) or ncS (GS < 7) using a CNN 

inspired by the VGG16 architecture. Other approaches such as the one 

presented in Le et al. [146] exploit bi-parametric MRI (ADC and T2w) and 2D 

patches extracted from them based on ROI around the tumour to, again, classify 

lesions based on their severity defined using the GS. Other approaches have 

tried to tackle the problem from a 3D perspective making full use of the 

volumetric information of MRI, such as the one presented in Mehrtash et al. 

and Saha et al. [147, 148] in which lesions are classified and detected, in the 

case of the work of Saha et al. 

 

Treatment intervention. Some of the previous approaches can be adapted and 

extended to plan for PCa treatment and interventions. For example, 

brachytherapy and external beam radiation therapy can benefit from automatic 

 
1 https://liuquande.github.io/SAML/ 



                             2. Artificial intelligence in radiology 

 42 

detection of PCa lesions followed by an automatic registration from mp-MRI 

to CT such that the cancer regions can be used to generate targeted treatments 

plans [149]. Other honourable mentions of examples of applications in 

treatment intervention include the prediction of seeds required for low-dose 

radiation brachytherapy given a prostate volume, as presented in the work of 

Boussion et al [150]. An overview of DL applications in PCa treatment can be 

found in the work of Almeida et al [151]. 

2.3 Obstacles and limitations of DL in medical imaging and PCa 

As highlighted in the previous section, DL has great potential to shape the 

future of radiology practices and alter the dynamics of it. The AI field is 

evolving at a really fast pace, with a huge support from industry in the form of 

heavy investments. Nevertheless, the success of DL is still hindered by several 

factors, including practices to ensure fairness and take into consideration ethics 

of data in the developed algorithms, the so-called black-box problem, and 

arguably the biggest problem of all – the lack of large amounts of annotated 

data and the difficulties associated to obtaining it.   

Data bias happens to some degree in any collected data [152], and it can be 

defined as the differences in performance of the algorithm when encountering 

subpopulations of different characteristics (e.g., ethnical, economical or 

technical). In particular, sampling bias is quite common and prevalent in 

radiology, resulting in data with certain characteristics that is only available 

during the training of the algorithm but does not accurately reflect the 

characteristics of the data used for the evaluation or even during the deployment 

of the system [153, 154]. A really common example of selection bias is when 

data coming from single institution is used to develop and train the DL-

algorithm resulting in an under-performing algorithm in the presence of other 

institutions populations’ [155]. In spite of the relevance of an external 

evaluation protocol using data from other institutions, only 6% of the recent 

medical DL-papers included validation on an independent external data set 

[155]. Data shift is a subset of selection bias and among the biggest threats to 

the generalization of DL-systems. Data shift commonly happens because the 

data used to train the DL-system does not accurately reflect the characteristics 

of the data that will be used in the future. Whilst for a radiologist is common to 

assess and take into account technical differences in the acquisition of the data 
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such as the scanner brand, the DL systems are not equipped, in general, to detect 

those differences if they have not been explicitly trained to take them int 

account the training phase of the model [152]. Radiology tools based on DL 

pose the risk to automatize and make biases invisible that are otherwise well-

known if rigorous analysis of data used to train the system is not in place. 

Questions remain regarding whether we can blindly trust a DL algorithm 

diagnosis. Historically, DL-systems have lacked mechanisms that allowed to 

understand why they reach certain decisions or make specific choices. The so-

called “black box” nature of DL systems can be especially problematic in 

radiology where a trained radiologist should, under normal conditions, provide 

an explanation of the train of thoughts behind a certain decision. In a similar 

way, mechanisms that allow, to some degree, have some traceability and 

explainability of the DL-systems decisions are required [156]. 

One of the most prevalent problems and the biggest burden to develop 

supervised DL algorithms are the difficulties associated to collecting 

annotated data. In particular, the first steps to proceed with data collection in 

radiology usually involve local institutional review board (IRB) approval along 

with ensuring that all ethical and legal procedures are in place such as patient 

consent and data protection practices [157]. Such a process usually has the 

result of long delays in data retrieval and meeting unexpected difficulties during 

the data collection, along with problems when sharing data with other 

institutions that could help with data biases and data shift. Practically speaking, 

it is almost impossible to label (annotate) and store all the available data in the 

radiology domain. Moreover, the specialized knowledge that is usually required 

to obtain the annotations that are commonly used as ground truth for the 

supervised learning approach makes it even harder to obtain such annotations 

due to the economic costs associated to obtaining them [158] and the lack of 

time of the specialists to dedicate themselves to such a burdensome task. All in 

all, annotating data is a nuance for specialists and a bottleneck for building DL 

models that could, potentially, be more intelligent and general without requiring 

massive amounts of data and by making use of the vast amounts of unlabelled 

data available in the medical domain or already available open access data sets 

[159].  
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3 Deep learning in data-limited scenarios 

In this chapter, we focus on the central topic of this thesis and lay the 

foundations of it: overcoming the lack of annotated data and the available 

techniques to accomplish it. As discussed in Section 2.3, the performance of 

supervised DL-based algorithms has a large dependency on the availability of 

large-scale annotated data [160, 161, 162, 163]. Given the difficulties 

associated to collecting large data-sets with enough diversity and high-quality 

images from multiple institutions to ensure the generalization of the model for 

clinical use and the limited radiologist availability, tedious annotation processes 

coupled with the complexities associated with data de-identification processes, 

alternative techniques able to deal with limited annotated training data are 

required. 

We focus on different strategies able to boost the performance of DL 

methods in data-limited scenarios. In particular, we discuss standard techniques 

such as data augmentation (e.g., rotate an image) or transfer learning (TL), 

which are the base for the techniques such as generative self-supervised 

learning (SSL). In that regard, we also discuss more advanced techniques such 

as synthetic data augmentation by leveraging GANs, representation learning 

through AEs, and SSL techniques, while differentiating between contrastive 

and generative approaches (Table 4). 

 

3.1 Data augmentation 

In a supervised learning paradigm, we are interested in mapping an image 

to some output (label) 𝑓: x → y through a DL model. Naturally, the number of 

samples is close to being proportional to the number of parameters of the model 

to get a good performance. In addition, the number of parameters needed is 

usually proportional to the complexity of the task the DL model has to perform. 

Moreover, to build a useful DL model we are interested in having a decreasing 

validation error along with the training error, ensuring the generalization ability 

of our model. With small data sets, we risk overfitting the model. That is, having 

a good performance with the data used to develop the model but not having a 

good generalization ability. 
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Technique Main components Explanation 

Synthetic augmentation GAN Generate new samples 

Representation learning AEs 

Learn how normal 

samples look like 

(distribution). 

Contrastive SSL 
Encoder, pre-text and 

downstream task  

Design a pre-text task 

to learn features via an 

AE that will be used 

in a down-stream task. 

Generative SSL 
AE, pre-text and 

downstream task 

Learn the concept of 

similarity through an 

encoder. 

Table 4. Summary of techniques for data-limited scenarios. 

Data augmentation (DA) is a technique that approaches the overfitting 

problem from the root, the training set. DA assumes that more information can 

be extracted from the original dataset through certain image manipulations or 

synthetic generation of data, such that these manipulations or synthetically 

generated data artificially inflate the training dataset size while preserving the 

label y associated to the original data. In particular, data augmentation based 

on basic manipulations works on the premise that CNNs are invariant to 

translation, viewpoint, size or illumination (or a combination of all of them). In 

a real-world scenario, we might have a dataset of images taken in a limited set 

of conditions but the targeted application may exist in a variety of conditions 

which can be accounted for by training our neural network with additional 

transformed data or synthetic samples. 

3.1.1 Basic image manipulations 

The first studies on the effectiveness of DA focused on simple image 

manipulations such as geometric transformations [164] (Figure 15). Both 

horizontal and vertical flipping are common geometric transformations that 

have proven useful on datasets such as CIFAR-10, ImageNet and medical 

image-based applications [165, 166]. Cropping can be used as a pre-processing  
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step in image-based analysis pipelines in which the data has mixed height and 

width dimensions by cropping a central patch (or around the ROI) for each 

image. In addition, random cropping can be used to provide a similar effect to 

augmentations such as translation. Both translation and random cropping can 

help to avoid positional bias in the data. Whilst translation preserve spatial 

dimensions, random cropping will reduce the size of the input. With rotation 

the image is rotated a certain degree. Random erasing [167] is inspired by other  

techniques such as dropout regularization. Random erasing forces the model 

to learn more descriptive features about an image by preventing it from 

overfitting to a certain visual feature in the image. The technique works by 

selecting a random patch of an image and masking it with either 0s, 255s or 

mean pixel intensity values. 

The concept of augmentation safety is especially relevant for medical 

imaging. Safety refers to the likelihood of preserving the label of the original 

image post-manipulation. For instance, some manipulations such as blurring 

might lead to distorted characteristics of the original MRI which might 

completely change the diagnosis (label) or distort properties such as boundaries 

of certain structures (prostate) associated to that particular picture, leading to a 

sub-optimal learning and performance of the DL algorithm. Hereby, it is of 

particular relevance to evaluate whether the transformation that is being applied 

is suitable for the task and imaging data under consideration [164]. 

DA techniques based on basic image manipulations have been extensively 

studied for prostate MRI such as DWI. In the work of Ruqian et al. [168], where 

they are studied in the context of PCa detection and classification and evaluated 

based on AUC. In the study presented by Zia et al., the authors present an 

Figure 15.  Examples of basic image manipulations. From left 

to right: original MRI, vertical flipping and horizontal flipping. 
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evaluation of four AEs and different DA techniques in the context of semantic 

segmentation of the prostate in T2w [169]. In Cipollari et al., the authors 

experiment with different DA techniques to boost the performance of a CNN-

based system to determine the quality of MRI images that are subsequently used 

for other tasks, such that there is no degradation in that final task [170]. 

 

3.1.2 Synthetic data augmentation 

Generative modelling has arisen as an exciting and effective alternative for 

DA. Generally speaking, generative modelling is the practice of creating 

artificial instances (synthetic samples) from a dataset such that they retain 

similar (and fundamental) characteristics to the original set. Synthetic 

generation of samples (Figure 16) offers the benefit of higher variability and 

less correlated data when compared to techniques such as basic image 

manipulation, providing more information to the algorithm in the training phase 

[171]. Synthetic samples are commonly created using GANs [88].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 16.  Synthetic generation of samples via GAN. Top row:  

generation via synthesis. Bottom row: Generation via GAN. 
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In radiology, GANs have been used to synthesize medical images like chest 

radiographs [172], CT scans with lung nodules [173], images from brain MRI 

sequences [174] and prostate MRI scans [120] with improved performance in 

different applications. For instance, in [173] the DL algorithm achieved a better 

sensitivity and specificity through the addition of synthetic samples. Another 

interesting application of synthetic samples is its usage as an oversampling 

technique to solve problems with class imbalance [175]. In spite of its potential, 

GANs also have some downsides; they usually require large amounts of data to 

be synthesize realistic samples [176] and it is computationally expensive to 

obtain high-resolution samples. In particular, more studies and use cases are 

required to evaluate the model performance when abnormalities are found in 

the training data and how it compares with the training with authentic images 

[163]. Moreover, GANs, and DA techniques in general, can be an amplifier of 

biases and shifts presents in the dataset and a thorough evaluation of the original 

characteristics should be required before increasing the sample size based on 

that data. A comprehensive review on DA with GANs and its shortcomings can 

be found in [176, 177]. 

GAN-based generation has been studied and applied in diverse PCa 

applications. In the work of Yu et al. [178] the authors make use of a capsule 

network-based GAN to generate prostate MRI which are later used for the 

classification of images in PCa or no PCa. In Xiaodan et al. the authors generate 

prostate MRI with different GS grades associated to them in order to avoid data 

biases during the training of the network to classify images in their respective 

GS grade groups due to the unbalanced nature of the classes [179]. Zhiwei et 

al. propose a novel GAN model to synthesize high-quality ADC images of cS 

PCa to fight, again, against potential data biases due to data imbalance and the 

difficulties associated to obtain cS data [180]. 

 

3.2 Representation learning and the concept of learning the “normal” 

Generally speaking, in an annotated dataset the cases that present abnormalities 

(otherwise called positive) are generally scarce. As presented in Section 2.1.1, 

AEs are able to extract useful representations from the input data by 

reconstructing it from a compressed representation of it. By exploiting such an 

ability of AEs and abundant negative (controls, healthy or normal cases), the 

AE is able to learn the “concept of normal” and distinguish in an unsupervised 
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way those cases that greatly differ from that normality (Figure 17). In 

particular, AEs can be trained exclusively with normal cases such that 

representative features are learnt only from them and subsequently, they can be 

used to distinguish abnormal from normal findings on the basis of the 

deviations of the features from the learnt ones that correspond to the normal 

class [181]. This process can also be understood as outlier detection, which has 

been extensively researched in other areas [182]. 

 

 

 

 

 

In the work of Chen et al. [183] adversarial AEs are used with an extra 

regularization term to constrain the learnt representations in the embedding 

space. After being trained on healthy data exclusively, the authors show the 

usefulness of the trained model to detect out-of-distribution data and detect 

lesions in brain MRI with a performance that is on-pair with its supervised 

counterparts. On the other hand, in the work of Wong et al. [184] a CNN is 

trained using CT scans of a normal heart anatomy. The feature maps obtained 

through the CNN provide information to detect deviation from normal anatomy 

which can be further used to improve the detection performance in the presence 

of a limited number of positive samples. 

Some authors have applied the concept of normality or anomaly detection 

for PCa. In the work of Jingya et al. the authors develop an end-to-end 

unsupervised framework to estimate which samples might degrade the 

performance of a previously developed detection PCa model by detecting 

which samples are out-of-distribution (OOD) [185] by means of an AE- based 

reconstruction [185] process. Other approaches have focused on PET and CT 

Figure 17.  Learning the concept of normality through AEs. 

control data 
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images to extract features via AEs such that anomalies (tumours) can be 

detected in the feature space by means of density estimation [186]. 

 

3.3 Efficient use of different data sources and data fusion 

Information about the same phenomena can be acquired from different types 

of medical data. For example, the most common prostate MRI protocols include 

different MRI sequences and orthogonal views (for T2w) (Section 1.2.1). In the 

same way a human-based analysis usually requires or benefits from using data 

from different modalities, it is rare that a single modality or view provides 

complete knowledge or information of the phenomenon of interest [187]. Data 

fusion is particularly interesting in scenarios with a limited amount of data, as 

making use of all of the available sources in an efficient way virtually increases 

the amount of available data for the task under consideration whilst potentially 

improving the performance of the methodology under consideration. 

Generally speaking, in a DL framework fusion can be defined at different 

levels being early fusion and late fusion levels the most common ones [188] 

(Figure 18). Specifically, early fusion integrates the multi-modal or multi-view 

information from the original space of low-level features [189, 190], merging 

the data at the input of the network. However, this approach has some 

limitations as discussed in [191], as it is difficult to discover highly non-linear 

relationships between low-level features more so when the modalities have 

significantly different statistical properties. On the other hand, late fusion 

approaches can be implemented by means of independent CNNs (acting as an 

encoder) for each data source, and fusing the outputs of the different networks 

in higher-level layers, allowing the discovery of highly non-linear relationships 

between the data. Fusion methodologies commonly require other 

complementary operations in the form of pre-processing. For instance, 

registration procedures might be required when misalignment is present in the 

imaging data [192].  In spite of the efforts, data fusion remains as a challenging 

area in which further developments are required to make use of the available 

information in an optimal way [187].  

Fusion strategies have been employed for several PCa applications. For 

example, in the work of Meyer et al. [193] independent 3D CNNs are trained 

and fused at a late stage or ensembled to produce results that do not depend 

exclusively on axial plane but rather that exploit the information of the different 
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views with the objective of improving prostate segmentation results. In the 

works Le et al. [194] the authors present an early fusion approach for different 

modalities of prostate MRI with the objective of improving PCa lesion 

classification 3D.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Transfer learning 

Transfer learning (TL) remains as one of the most widely used techniques to 

overcome the limitations in the availability of annotated data in the medical 

image domain [161]. In TL, a DL model is trained on a large-scale and 

annotated dataset (pre-training), with the underlying assumption that the low-

level learned features are generic enough such that they can be applied to the 

concatenation 

Figure 18.  Early fusion (top row) and late fusion (bottom row) by concatenation. 
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target domain with a limited amount of data [195, 196]. Different strategies can 

be adopted in TL: fixing the early layers of the DL architecture, re-training the 

high layers (shallow tuning) or fine-tuning the whole architecture (deep tuning) 

(Figure 19). In particular, fine-tuning is one of the most common TL 

approaches which allows the learned features that were obtained in the pre-

training stage to adapt to the target domain. One of the critical factors in TL is 

the similarity between the source domain (the one from which the features were 

obtained in the pre-training stage) and the target domain. As shown in the work 

of Raghu et al., using an out-of-domain TL approach (that is, with large 

differences between the source and target domain) leads to sub-optimal results 

[197].  

 

 

 

 

Figure 19.  Shallow tuning (top) and fine-tuning (bottom) in transfer learning. 
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In spite of the sub-pair results obtained with out-of-domain TL, TL 

techniques have been widely adopted in 2D DL applications for radiologic 

images. For example, one of the first applications was a fine-tuned CNN that 

processed different views of mammographic images [198], which compared the 

performance with training from scratch. In the work of Aljundi et al. [199], a 

TL approach is applied to 2D MRI-based PCa screening with success, as shown 

by the gains in performance when compared to other approaches. More 

examples of successful applications of TL in radiological images can be found 

in the work of Shin et al. [171]. 

3D TL requires a special mention, as TL is easily applicable to 2D settings 

because of the abundance of pre-trained models but 3D models are not as 

established and hence, there is a limited amount of pre-trained models. In spite 

of it, several approaches have been proposed such as in Chen et al. [200], where 

they curated a large-scale 3D dataset and used it to train 3D CNNs that were 

later used as pre-trained models for lung segmentation and pulmonary nodule 

classification. Other works tried to accommodate 3D data into 2D to make use 

of existing pre-trained models, such as in Han et al. [201]. 

Transfer learning has been used extensively in 2D applications for PCa. For 

example, in the work of Yixuan et al. [202] the authors propose a three-branch 

architecture for mp-MRI images that make use of a pre-trained model to extract 

features that are concatenated in a late-fusion approach to classify PCa lesions. 

In Islam et al. the authors use TL to train two models based on VGG-like 

architectures to detect and identify lesions in PCa [203]. Finally, in the work of  

Hoar et al. TL (along with other techniques assumed to boost the performance 

of the model such as test-time augmentation and standard augmentation) is used 

in combination with mp-MRI data to boost the performance of the developed 

DL model for lesion segmentation [204].  

 

3.5 Self-supervised learning 

Self-supervised learning (SSL) made its first appearance in robotics, where 

labels are assigned to the training data by making use of the relations between 

the different inputs [205]. Broadly speaking, SSL methods gained popularity 

and raised as an alternative to mitigate the time-consuming and expensive data 

annotations process required to obtain large amounts of annotated data and keep 

improving the state-of-the-art results in computer vision tasks [206]. SSL falls 
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in the category of unsupervised learning and in essence, SSL methods aim to 

learn visual features from large-scale unlabelled data by obtaining a supervisory 

signal from the unlabelled data itself and hence, usually, being an in-domain 

initialization method (assuming the unlabelled data is from the same domain as 

the one that will be used later on to evaluate the quality of the representations 

obtained by means of the SSL method) [206].  

Some important concepts in SSL methods are the pre-text task and the 

downstream task. The pre-text task are pre-designed tasks which are designed 

for a certain deep network to solve with the objective of learning visual features 

by learning objective functions linked to the pre-text task. Pseudo-labels can 

be defined as labels that are automatically generated for a pre-defined pre-text 

task without involving any human annotation [206]. Downstream tasks are 

applications that are used to evaluate the quality of the features learned by 

means of the pre-text task, its associated objective function and pseudo-labels. 

Once the SSL training is finished, the learned features are transferred to the 

downstream task as pre-trained models to improve performance and overcome 

overfitting in the presence of small amounts of data. The general pipeline of 

SSL is shown in (Figure 20).  

 

 
Figure 20.  General framework of SSL methods. 
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SSL methods can be divided in contrastive and generative, depending on 

the nature of the pre-text task. As explained with more details in the next 

sections, the difference between the two categories lies in model architectures, 

pre-text task and objectives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21.  Contrastive SSL methodology. 

Transfer learning 
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3.5.1 Contrastive SSL  

Contrastive SSL (Figure 21) aims to train an encoder to encode an input x into 

an explicit vector z to measure the similarity based on some metric of choice 

(e.g., mutual information maximization). Commonly, contrastive SSL makes 

use of an encoder that explicitly models z while making use of a contrastive 

similarity metric, being Noise Contrastive Estimation (NCE) [207] and 

InfoNCE [208] two of the most common similarity metrics. The similarity 

measure and the encoder architecture might vary from task to task but the 

overall idea and framework remain the same for all contrastive SSL approaches. 

Overall, contrastive SSL frameworks can be divided between two types: 

context-instance and instance-instance [205]. 

Context-instance contrastive SSL aims to model the relationship between 

the local feature of a sample and its global context representation. For instance, 

images contain rich spatial relations between parts of it (the head of a human is 

on top of the neck, for instance). Some context-instance SSL models focused 

on recognizing relative positions between parts of it as a pretext task [205], such 

as predicting patches position [209] or to recover the positions of shuffled 

patches like a jigsaw puzzle [210, 211]. 

The alternative to context-instance SSL is instance-instance, where the 

direct relationships between different samples. In instance-level contrastive 

SSL the focus is on the main instance (for example, in an image classified as a 

dog we want to focus on the dog and not on the context such as grass), with the 

hypothesis that what matters the most for the downstream task is the instance 

itself rather than the context. One of the first ways to study instance-instance 

based methods is through clustering [212], being SwAV the most recent and 

successful implementations [213], which incorporates multi-view 

augmentation and aims to assign views of the same images to the same 

prototype (clusters). Besides cluster-based approaches, CMC [214] proposed to 

adopt multiple different views of an image. MoCo [215] draws inspiration from 

CMC and the idea is further developed via momentum contrast, which increases 

the number of negative samples during the SSL method training. Nevertheless, 

MoCo adopts a fairly easy strategy: a pair of positive representations come from 

the same sample without any transformation or augmentation which makes the 

positive pairs (similar ones) easy to distinguish. In SimCLR [216], the authors 
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introduce data augmentation to increase positive pairs whilst also introducing a 

learnable non-linear transformation between the representation and the 

contrastive loss [216]. 

Some remarkable examples of contrastive SSL techniques applied to 

medical imaging include the works of Tao et al. [217] in which a volume-wise 

transformation for context permutation is proposed and shown to offer 

improvements in tasks such as pancreas segmentation. In the work of 

Sowrirajan [218] et al. an existing SSL framework such as MoCo is used and 

shown to have a positive effect for downstream tasks in chest X-ray, obtaining 

better results than its counterparts in the presence of a limited amount of data.  

Azizi et al [219] propose a multi-instance contrastive learning (MICLe) 

partially based on SimCLR, in which multiple images of the same pathology of 

the same patient are leveraged during the SSL stage. With their approach, they 

show improvements in dermatology and chest X-ray classification tasks and 

outperforming supervised baselines pre-trained on ImageNet. In the work of Li 

et al. a contrastive SSL approach is proposed to detect lesions in mammograms  

 

 

Figure 22.  Generative SSL with a restoration pre-text task (occluded image). 
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and to learn invariant features to various vendor-styles [220]. When it comes 

to MRI and PCa, contrastive SSL remains as an unexplored field. 

 

3.5.2 Generative SSL 

In generative SSL (Figure 22), an encoder is trained to encode an input x into 

an explicit vector z and a decoder to reconstruct x from z. In contrast with 

contrastive SSL, generative SSL commonly makes use of a reconstruction loss 

[205]. The most common model used in generative SSL is the AE model, where 

the goal is to reconstruct (part of) inputs from corrupted versions of them 

(Figure 22). Some examples of generative SSL try to recover a partial input in 

which instead of asking the model to recover a whole input they provide models 

with a partial input and ask them to recover the rest of the parts. Some 

remarkable examples of applications that follow this principle are colorization 

[221, 222], inpainting [223] and super-resolution [224]. In some cases, the 

proposed methods leverage a discriminative loss function as the objective by 

making use of the idea of adversarial learning, which tries to reconstruct the 

original data distribution rather than the samples by minimizing the 

distributional divergence.  

Some remarkable examples of generative SSL in medical imaging are the 

works of Zhou et al. [225] in which different types of transformations are 

applied to 2D and 3D images and learning is accomplished by reconstruction. 

In the work of Taleb et al. different tasks such as relative patch location are 

presented and shown to be useful for 3D downstream tasks [226]. In Chen et 

al. [227] context restoration is applied for 2D medical imaging tasks, in which 

the position of patches is swapped and they aim to recover the information that 

was originally in that position. In a similar fashion, in another work of Taleb et 

al. [228] multi-modal medical images are mixed in a patch-based way and the 

original content is then reconstructed from the mixed image, which serves as a 

pre-text task.  

The examples of generative SSL applied to PCa are rather limited, but some 

of the most remarkable ones include the works of Bolus et al. [229] where a 

context restoration pre-text task is applied with “outer cuts” in the MRI and the 

process is shown to improve the ability to detect PCa with two different 

architectures. In the work of Qian et al. [230] a generative SSL approach is also 

applied where the input is distorted via injection of gaussian noise and then 
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denoised, with the objective of learning features that might be useful for the 

tested downstream tasks such as segmentation. Finally, the authors show 

improvements in the final results thanks to the SSL procedure. 

 



4. Materials 

4 Materials 

4.1 Data and Ethics 

The data used in this work was obtained from different sources depending 

on the task under consideration. All the sources have something in common: 

they are publicly available databases. Table 5 presents a summary of the data 

used for the project. In particular, we use the Prostate MR Image Segmentation 

challenge (PROMISE12) dataset [139]. The objective of the challenge and the 

dataset was to standardize the evaluation of the WG segmentation of the 

prostate and to objectively compare the performance of different algorithms. 

The dataset includes data from four different centres to account for the 

differences in pixel/voxel intensities due to different acquisition protocols: 

Haukeland University Hospital in Norway, Beth Israel Deaconess Medical 

Centre (BIDMC) in the US, University College London (UCL) in the United 

Kingdom and the Radboud University Nijmegen Medical Centre (RUNMC) in 

the Netherlands. Each of the centres provided 25 axial (transverse) T2-weighted 

MRI images, resulting in a total of 100 MRI sequences. Details of the 

acquisition protocols for the different centres can be found in Table 6. The 

acquisition plane was axial because of the number of anatomical details 

contained in it [231]. From those 100 MRI sequences, 50 are included as a 

training set, 30 as a test set and 20 for the live challenge. Each centre provided 

a reference segmentation performed on a slice-by-slice basis of the prostate WG 

provided by an experienced reader. The contouring required for the 

segmentation was performed in either 3DSlicer (www.slicer.org) or MeVisLab 

(www.mevislab.de). Following, the segmentations were double checked by a 

second expert that had no part in the initial segmentations.  

 

Dataset Subjects Field strength Task 

ProstateX [232] 204 3T Lesion classification  

Promise12 [139] 50 1.5 and 3T Prostate segmentation 

 

Table 5. Summary of datasets used in the work. 

http://www.slicer.org/
http://www.mevislab.de/
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Centre Field strength  Coil Manufacturer 

Haukeland 1.5T Yes Siemens  

BIDMC 3T Yes GE 

UCL 1.5 and 3T No Siemens 

RUNMC 3T No Siemens 

 

Table 6. Acquisition protocols for each center involved in PROMISE12. 

We have also used data from the ProstateX dataset [232], an open-access 

dataset that was the result of a collaborative effort sponsored by the SPIE, the 

AAPM and the NCI. In particular, we focus on the data from the first challenge 

“SPIE-AAPM-NCI Prostate MR Classification Challenge”. The dataset 

consisted of a prostate mp-MRI cohort acquired from a single centre (Radboud 

University Medical Centre) in which each mp-MRI scan was read or supervised 

by an expert radiologist (20 years’ experience) who indicated point-based 

suspicious findings and assigned a PI-RADS score. Findings with a PI-RADS 

score ≥ 3 were referred to a biopsy. Biopsy specimens were graded 

subsequently by a pathologist with over 20 years of experience, and these 

results were used as ground truth for the challenge [233]. Each mp-MRI scan 

included multiple orthogonal T2-weighted, dynamic contrast-enhanced (DCE) 

and diffusion-weighted imaging (DWI). Location and a reference thumbnail 

image were provided for each lesion, and each lesion had a known pathology-

defined GS group which defined the ground truth for the challenge.  

In particular, for the first challenge, those patients with a GS ≥ 7 were 

considered to have a clinically significant lesion while those with GS < 7 were 

considered to have a non-clinically significant lesion. The challenge contained 

mp-MRI scans of 300 prostate lesions corresponding to 204 patients for the 

training set and 208 lesions corresponding to 140 patients for the test set, along 

with spatial location coordinates, anatomic zone location and known clinical 

significance of each lesion. In spite of not being part of the original dataset, 

segmentations of the prostate can also be found for the first challenge. 

Specifically, 66 cases selected at random were segmented and high-resolution 
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segmentations were obtained by considering three scan directions: axial, 

sagittal and coronal [234]. The gland was manually delineated by a medical 

student, followed by a review and corrections of an expert urologist. 

Additionally, both lesion masks and prostate segmentations of the axial 

direction can be found on https://github.com/rcuocolo/PROSTATEx_masks. 

The segmentation data is the result of a lesion-by-lesion quality check 

conducted at the Department of Advanced Biomedical Sciences of the 

University of Naples “Federico II” for both T2-weighted and ADC images by 

two radiology residents and two experienced board-certified radiologists [235]. 

Finally, a special mention to datasets that are being used in our work in 

progress: PROSTATE-MRI [236], PROSTATE-DIAGNOSIS [237] and 

TCGA-PRAD [238]. In all cases, the nature of the studies is retrospective and 

consists of multi-view T2w MRI with different acquisition protocols. In the 

first case, the number of patients included in the study is 10, in the second case 

is 16 and in the last one is 10. All the data includes a significance level of the 

lesion based on GS from biopsy results analysed by an expert in pathology and 

urologist. Additionally, ground truth segmentations of the prostate WG are 

obtained for the multi-view data based on available software [234] and manual 

revision of the results. In all the cases, since the nature of the data was open 

access ethical approval was not required.  

 

4.2 Software 

 

3D Slicer. 3DSlicer is a widely used software package that provides automated 

and accurate analysis (including registration and interactive segmentation) and 

visualization (including volume rendering) of medical images and for research 

in image guided therapy [239]. Additionally, 3DSlicer is extensible as it has 

powerful plug-in capabilities for adding algorithms and applications.  

To obtain visualizations of the prostate MRI (volume rendering too) and run 

quality checks of some of our developed applications such as the ones focusing 

on segmentation, we used the latest version available of 3DSlicer. Additionally, 

3DSlicer is also been used to obtain in-house (Stavanger University Hospital) 

segmentations and will be the main tool to obtain the data used for future 

studies. 

 

https://github.com/rcuocolo/PROSTATEx_masks
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Python. The majority of the research carried out in this thesis has been based 

on code developed in Python. In particular, the development has been mainly 

supported on the basis of different libraries and frameworks: Numpy [240], 

Matplotlib [241], Tensorflow (Keras) [242], SimpleITK [243], classification 

models [244] and segmentation models [245], being the last two GitHub 

repositories, which host a variety of models ready to be deployed and tested in 

classification and segmentation applications that use a Tensorflow/Keras 

environment. 

 

 

 

 

 

 



5. Summary of contributions 

5 Summary of contributions 

In this chapter, we present a summary of the seven papers (either as a 

proceeding contribution or journal article) included in the thesis. Contributions 

A, B, C, D and E conform the first part of the thesis, in which we focus on how 

to tackle data scarcity for prostate MRI. In particular, contributions A and B 

focus on GAN-generated data (Section 3.1.2), whilst contribution C focus on 

anomaly detection with AEs (Section 3.2) and contribution D and E focus on 

SSL applications for PCa (Section 3.4). Contributions F and G are part of the 

second part of the work, in which we explore how to efficiently make use of 

different data sources (multi-planar) acquired during MRI acquisition. 

 

5.1 Contribution A: Improving prostate whole gland segmentation in T2-

weighted MRI with synthetically generated data. 

The main objective of contribution A [120] is to tackle the lack of 

segmentation annotations for the prostate capsule (data scarcity) and to provide 

an alternative to classic augmentation techniques (basic image manipulations). 

In particular, we argue that standard augmentation techniques produce highly 

correlated samples, limiting the variability of the data used to train the 

algorithm and the amount of information that the data can offer in the training 

process. We propose a framework based on GAN architectures that is able to 

generate prostate capsule (WG) masks and then synthesize T2-weighted MRI 

from them, obtaining paired synthetic samples in a semi-automatic way.  

The main application of the study is to segment the prostate capsule and 

show that we are able to improve the quality of the segmentation by 

incorporating synthetically generated data obtained with our proposed 

framework, as compared a baseline trained with standard augmentation 

techniques (image manipulation) and without any extra image manipulations 

during the training phase. We apply our proposed framework to a collection of 

T2-weighted MRI corresponding to 50 patients, that are part of the 

PROMISE12 challenge [139], a multi-institutional and multi-vendor dataset 

(more details in Section 4.1). 

We follow the steps depicted in Figure 23 to implement the framework and 

evaluate it. As we work in 2D (slice level) and the organizers of the challenge  
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kept the test set hidden for evaluation purposes, we divide the training set in a 

60%/20%/20% in a 2D-slice fashion (train, validation and test) and by patients, 

such that there is no patient data leakage between the different splits. We 

perform some pre-processing to the data such that we achieve a harmonization 

of the different scans coming from different centres and vendors. In particular, 

we resample the patients’ MRI to a resolution of 256x256 (lowest resolution 

present in the data set) by linear interpolation. Following, the intensity of the 

MRI is normalized to an interval of [0, 1] and outlier removal is applied by 

forcing the pixel intensity values of the MRI images between the 1st and 99th 

percentiles. Finally, a contrast limited adaptative histogram equalization 

(CLAHE) is applied to improve local contrast and enhance the edge definition 

of the MRI [246].  

 We choose a 2D U-net architecture as our base segmentation architecture 

based on its popularity and previous results in the segmentation of different 

organs [134, 247]. As a first step to develop the framework to generate paired 

masks and T2-weighted MRI, we adopt the DCGAN architecture to generate 

synthetic WG prostate masks [248]. We observed disparities in the quality of 

the generated synthetic masks and hence, we applied a manual selection 

criterion of the generated masks based on the visual appearance of the image. 

For example, we observed that some synthetic masks contained disconnected 

objects (Figure 24), which is unrealistic. Following, the previously generated 

and selected masks are translated into a paired T2-weighted image, such that 

Figure 23.  Technical approach to the project. 
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we end up with a T2-weighted slice and its corresponding mask. We base the 

second part of our framework in the pix2pix architecture [117]. Details about 

the training of the different architectures can be found in [120]. 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, we evaluate our proposed framework by evaluating the quality of 

the segmentation results obtained by means of the U-net architecture, in the 

presence of synthetically generated samples, standard augmentation techniques 

and a plain U-net. Specifically, we evaluate the quality of the segmentation 

results based on dice score coefficient (DSC), mean volumetric (VDSC), mean 

surface distance (MSD) and mean Hausdorff distance (HD). The standard 

augmentation techniques included rotation (± 10 degrees), shifting (10 %), 

flipping and zooming ([1, 1.2 pixels] range). We generate 10000 synthetic T2-

weighted MRI images and their corresponding masks for evaluation purposes, 

which corresponds to approximately 8 times the amount of original data. 

 

 

 

         

Table 7. Results of simple augmentation and addition of synthetic samples. 
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Figure 24.  Mask generation and synthesis of new samples. 
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Our results show a considerable improvement in terms of all the metrics 

used to evaluate the quality of the segmentation when synthetic data is added 

to the training process. In particular, metrics such as HD present an 

improvement of over 8% when comparing the addition of synthetic data and 

the vanilla process. Furthermore, using synthetic samples also surpasses by a 

considerable margin the results obtained with standard augmentation (Table 7). 

Using a combination of synthetic data and standard augmentation techniques 

yields to an even larger improvement when compared to using both techniques 

independently (Table 8).  

 

 

 

 

 

 

 

 

 

 

 

Table 8. Results for synthetic samples combined with standard augmentation. 

 

5.2 Contribution B: Improving prostate cancer triage with GAN-based 

synthetically generated prostate ADC MRI. 

 

Contribution B [249] aims to tackle the data scarcity and lack of 

annotations in the context of lesion classification (clinical significance) 

and with ADC maps. In a similar fashion to Contribution A [120], we aim 

to provide an alternative to standard augmentation techniques (data 

manipulation) for PCa classification. We argue, again, that standard 

augmentation techniques might limit the amount of information provided 

to the final task under consideration and that even depending on the type 

of chosen basic manipulation the final results might not see any benefit 

from it but rather the opposite, the augmentations might distort the image 

in a way that the label (ground truth) might be distorted as well (Section 

3.1.1, augmentation safety). To solve it, we propose a synthetic data 

generation pipeline based on conditional GAN (cGAN) [115] and 
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DCGAN and explore the effects of both of them on the chosen PCa 

application. 

The main focus of the study is PCa triage, defined as the classification 

of the clinical significance (GS ≥ 7 or GS < 7) of PCa lesions such that 

patients can be sorted based on their treatment or further intervention 

(testing) needs. In particular, we aim to show that by using synthetically 

generated data during the training of the classification architectures we are 

able to improve the performance of them. Furthermore, we aim to compare 

cGAN and DCGAN generation with standard augmentation techniques 

and no extra manipulations, based on the classification performance 

results. To accomplish it, we make use of the ProstateX dataset [218] 

(Section 4.1) consisting of 204 patients diagnosed with PCa and 330 

lesions. Among those lesions, 76 lesions are cS (GS ≥ 7) and 254 are ncS 

(GS < 7).  

The technical approach to the project is depicted in Figure 25. We 

work on a 2D level (slice level). We start by applying some standard pre-

processing to the data: re-sampling to an image size of 128x128 and 

normalization of the MRI intensities to a range of [0, 1]. 

 

 

 

 

 

 

 

Figure 25.  Technical approach for contribution B. 
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 In order to evaluate the classification architectures, we split the 

original dataset in 70%/10%/20%, corresponding to training, validation 

and test set, respectively. Specifically, the splitting is done in a slice 

fashion (2D) and by patients, such that the resulting splits have no data 

leakage. When it comes to data generation, we make use of the full dataset, 

as the evaluation of the generation is considered to be implicit in the final 

classification task. 

We choose a VGG16 [92] architecture as the classification 

architecture, based on previous results. As for the GAN architectures, we 

follow standard implementations described on original sources with small 

modifications based on experimentation with the architectures [115]. As a 

first step, we train both DCGAN and cGAN architectures to generate cS 

and ncS prostate ADC slices (2D) with the training protocol defined in 

Fernandez-Quilez et al. [235]. More specifically, two DCGAN are trained 

to generate samples for each class whilst one cGAN able to generate both 

types of samples (conditioned by the user) is trained. Examples of the 

generated samples with both architectures are shown in Figure 26. 

 

 

We evaluate the quality of the synthetic samples based on the final 

classification results obtained with the VGG16 architecture. We compare 

the performance of the DCGAN samples with cGAN ones, standard 

augmentation and a plain VGG16 with no extra data manipulation. 

Specifically, we evaluate the effect of rotation (±25 degrees), translation 

Figure 26.  Examples of generate ADC samples with cGAN and DCGAN. 
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(±0.4 pixels) and vertical flipping. Following, we evaluate the effect of 

using synthetic samples along with data manipulation during the training  

 

Table 9. Results of simple augmentation and addition of synthetic samples. 

 

of the architecture. We test different amounts of generated data for 

every experiment that incorporates synthetic data: 50% of the original 

amount of data, 100% of the original amount of data and balanced classes 

(adding as many samples as needed to balance the number of samples of 

each class during training). The final PCa lesion classification results are 

evaluated base on AUC, accuracy, sensitivity and specificity and averaged 

over 5 independent runs with different partitions for training, validation 

and test sets. 

As shown in Table 9, both cGAN and DCGAN synthetic samples 

have a positive effect on the final classification results. Larger 

improvements are obtained when more synthetic data is used. In particular, 

we can observe how DCGAN obtains slightly better results than cGAN at 

the expense of requiring two architectures: one for each class. We observe 

an even larger improvement when combining synthetic samples with basic 

data manipulation, as depicted in Table 10. The result highlights the add-

on nature of synthetic samples, showing that can be added on top of other 

methodologies to improve the final results.  
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Table 10. Results of simple augmentation along with synthetic samples. 

 

5.3 Contribution C: One class to rule them all: Detection and classification 

of prostate tumours presence in bi-parametric MRI based on auto-

encoders. 

In contribution C [250] we tackle a similar problem as in contribution B 

[249]: prostate cancer lesion classification but from a different perspective 

(different approach): outlier detection with AEs. In addition, we also detect 

tumours besides classifying them. In particular, in this contribution we 

approach the data scarcity issue along with the imbalanced nature that is 

usually present in medical data (Section 2.3). In order to accomplish it, we 

Figure 27.  Learning the concept of normality with AEs. 
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exploit AEs to learn in an unsupervised way and based on the concept of 

“normal” to detect lesions and classify whether a prostate MRI slice 

contains one or not.  We argue that specialists such as a radiologist are able 

to discern between normal (controls) and unhealthy cases after seeing a 

handful of normal cases (Figure 27) and even when no extensive training 

is present. Hereby, we aim to mimic that behaviour by exploiting the 

unbalanced nature of the data where a larger number of normal cases are 

available when compared to unhealthy ones.  

We make use of the ProstateX [232] (Section 4.1) dataset with the 

same number of patients and lesions described in contribution B. In 

addition, we also make use of the masks provided in [221] for the detection 

task.  The proposed framework for contribution C makes use of two types 

of AEs: convolutional auto-encoder (cAE) and VAE to exploit the 

prevalence of slices without a lesion in the dataset. The general steps of 

the framework are depicted in Figure 27. 

In this contribution, we work at the slice level (2D) with T2w and ADC 

prostate MRI. We start by applying some standard pre-processing to the 

data: re-sampling to 384x384 for T2w and 128x128 for ADC and 

normalization of the MRI intensities to a range of [0, 1]. In order to 

evaluate the detection and classification performance of the framework, 

we split the dataset in 70%/20%/10% by patients for training, validation 

and testing, respectively. We make use of all the “normal” (healthy or 

otherwise controls) cases available among the patients to train the AEs.  

  

 

 

 

 

 

 

 

 

 

 

 
Figure 28.  Lesion detection in prostate ADC MRI after thresholding. 
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As depicted in Figure 27, our framework consists of an AE (either 

cAE or VAE, we experiment with both) trained with “normal” cases such 

that the distribution of the normal slices is learnt. Once the distribution is 

learnt, we employ the previously trained AE architecture to obtain 

reconstructions of both healthy (no lesion present) and unhealthy (lesion 

present) prostate MRI slices. As the AE has only been trained on normal 

cases, we expect the reconstruction error of the unhealthy (non-normal) 

cases to be larger in the areas that are less similar to the healthy cases. That 

is, areas in which the lesion is located. Hence, we first conduct a 

classification of the slices based on the reconstruction error and those 

deemed as “unhealthy” are further analysed to find the areas in which the 

error is larger than another threshold (where the tumour is located). We 

compute the thresholds based on an interquartile range rule [251], which 

is commonly used in anomaly (outlier) detection works. Figure M shows 

an example of a lesion detected after applying a threshold found by means 

of IQR. 

We evaluate our proposed framework in a quantitative way for the 

classification ability of it and in a qualitative way for the detection ability. 

In particular, we make use of AUC, sensitivity and accuracy as our metrics 

for the classification ability of the system. The same type of evaluation is 

carried out for both ADC and T2w, in addition to the investigation of the 

effect of cAE and VAE in the final results as well as the use of mean 

squared error (MSE) or structural similarity index (SSIM) as 

reconstruction metrics. As depicted in Table 11 and as shown in [251], our 

framework achieves a good balance between false positives and false 

negatives and a higher AUC for T2w but competitive results for both MRI 

sequences when compared to other fully supervised approaches, as argued 

in [250]. Finally, our qualitative results show that the quality of the 

detection is reasonably good for the cases that are classified as unhealthy 

in the first step of the framework. An example of a correctly classified and 

further detected lesion is shown in Figure 28. 
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Table 11. Results of the proposed AE-based framework to detect and classify 

prostate lesions. 

 

5.4 Contribution D: Learning to triage by learning to reconstruct: A 

generative self-supervised learning approach for prostate cancer based 

on axial T2w MRI. 

Contribution D [252] is the first of the two contributions focusing on SSL 

to offer alternatives to the lack of annotated data. In particular, the main 

objective of the work is to stratify PCa lesions between ncS and cS (GS <

7 or GS ≥ 7) in the presence of small amounts of labelled MRI data. To 

accomplish it, we propose a framework based on a generative SSL 

methodology in which the pre-text task is a reconstruction task (Section 

3.4.2) from different image distortions applied at the patch level. As 

previously mentioned, the downstream task is a binary classification task 

aiming to discern between cS and ncS lesions. 
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To develop our generative SSL framework, we make use of the 

ProstateX [232] (Section 4.1) dataset with the same number of patients and 

lesions described in contribution B and contribution C. Nevertheless, in 

this contribution we start by using all the available data without any 

annotation for the SSL approach, aiming to exploit the commonly 

available non-annotated data in the medical domain and, in particular, in 

PCa MRI. The general steps of the proposed generative SSL framework 

are depicted in Figure 29. 

 

 

 

As shown in Figure 29, we work at the slice level (2D) with T2w 

prostate MRI. As in previous contributions, we start by applying some pre-

processing in the form of re-sampling to a common coordinate system with 

the desired dimensions (320x320) and normalization of the MRI 

intensities to a range of [0, 1]. In order to perform the evaluation of our 

proposed framework (downstream task), we split the original dataset 

following a 60%/20%/20% for training, validation and testing, 

respectively. The splitting is done by patients, such that no data leakage is 

present in our splits. 

Figure 29.  Proposed generative SSL framework. 
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Our proposed framework consists of an AE which projects a distorted 

version of a T2w slice into a low-dimensional space through the encoder 

and tries to recover the original T2w MRI slice from that low-dimensional 

representation. Specifically, we obtain the distorted versions by sampling 

a transformation function from the following available ones: patch 

histogram matching, patch rotation, patch occlusion and patch 

translation. It is worth noting all the transformations are applied at the 

patch level (blocks of 64x64). All the transformations are applied to N = 2 

randomly selected patches with a probability of 𝑝 = 0.5. The different 

transformations are chosen on the basis of previous works [200] and 

thought to be useful for the final downstream task. That is, transformations 

that might preserve to some degree the label associated to the data in the 

supervised evaluation. Once the framework has been trained, we transfer 

the weights to perform the evaluation in the downstream task. 

 

 

 

Table 12. Results of the proposed SSL generative framework in a linear 

evaluation setting. 

We evaluate our framework in a linear evaluation setting. That is, we 

keep the transferred weights frozen such that we can obtain a proxy of the 

quality of the obtained representations during the training of the SSL 

framework. Furthermore, we evaluate the results with different % of 

labelled data to assess the robustness of the presented methodology in the 

presence of heavily scarce datasets. As depicted in Table 12, our proposed 

methodology achieves better results than both random initialization and 

ImageNet initialization for different fractions of labelled data and in a 

linear setting. Specifically, our method outperforms both initializations in 

the presence of extremely scarce datasets (1%) and when the original 
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number of small amounts of labelled data is present (100%), showing the 

quality of the representations learnt by the generative SSL method. Both 

translation and histogram matching are the best performing patch 

manipulations overall, depicting the relevance of the patch position and 

pixel intensities for the lesion classification task. 

 

5.5 Contribution E: Contrasting axial T2w MRI for prostate cancer triage: 

A self-supervised learning approach. 

 

In contribution E [253] we approach the data scarcity problem with 

another SSL-based framework. In this case, we move on from “manually 

defined” pre-text tasks (contribution D [252]) and apply a contrastive 

approach. That is, we aim to learn the concept of similarity among 

samples. Specifically, the application of this contribution is PCa lesion 

classification at the slice level (2D) between cS and ncS (GS < 7 or GS ≥

7), defined as the downstream task of the contribution. 

We develop the contrastive SSL framework depicted in Figure 30 by 

making use of T2w ProstateX [232] (Section 4.1) dataset with the same 

number of patients and lesions described in contribution B and 

contribution C. Nevertheless, in this contribution we start by using all the 

available data without any annotation for the SSL approach, aiming to 

exploit the commonly available non-annotated data in the medical domain 

and, in particular, in PCa MRI. 

 
Figure 30.  Proposed contrastive SSL framework. 
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The general steps of the SSL contrastive framework are depicted in 

Figure 30. In a similar fashion to contribution D [252], we apply some 

pre-processing in the form of re-sampling (resolution of 0.5 x 0.5 x 0.5 

mm), normalization of MRI intensities to a range of [0,1] and outlier 

removal.  We work, again, at the slice level (2D) with T2w MRI sequences 

of the prostate. To evaluate our proposed contrastive SSL framework in 

terms of the performance in the downstream task we split the original 

labelled dataset by patients following a 60%/20%/20% for training, 

validation and testing, respectively.   

      The contrastive SSL framework consists of an encoder (VGG16) that 

maximizes the agreement between different augmented views of the same 

data example using a contrastive loss [216] in the embedding space. To 

obtain the augmented views, we choose a family of image manipulations 

which we deem suitable to generate views without losing the 

interpretability of the diagnosis in the MRI slice under consideration. In 

particular, we make use of rotation (50 degrees), translation (range of 0.32 

pixels), vertical flipping and cropping. We also experiment with different 

embedding dimensions (Figure 30) and different image resolutions.  

We evaluate our framework in a linear evaluation setting and in a fine-

tuning setting. In the first case, the pre-trained weights obtained from the 

contrastive approach are kept frozen and a randomly initialized linear head 

is trained for the task under consideration. This particular evaluation 

protocol is intended to give an idea of the quality of the learned features 

and their re-usability. On the other hand, in the fine-tuning scenario the 

whole encoder is unfrozen and the entire model is fine-tuned end-to-end. 

Both evaluation protocols are carried out with different fractions of 

labelled data in order to test the robustness of the approach when dealing 

with a limited amount of data, as a proxy for the real world. 
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Table 13. Results of the proposed SSL contrastive framework in a linear 

evaluation setting and fine-tuning one. 

As depicted in Table 13, our contrastive SSL approach outperforms 

both ImageNet and random initialization for the different fractions of 

labelled data. Specifically, we can observe that our contrastive SSL 

approach outperforms the other initialization methods in the presence of 

really small amounts of data, supporting the hypothesis that the 

representations obtained with the SSL approach benefit the training of the 

downstream task in small data regimes. Regarding end-to-end fine-tuning, 

the proposed methodology outperforms by a large margin both ImageNet 

and random initializations and obtains better results than the linear setting 

for all the configurations.  

 

5.6 Contribution F: Multi-planar T2w MRI for an improved prostate cancer 

lesion classification. 

In contribution F [254], we tackle the data scarcity issue by making 

use of all the available data sources that are commonly acquired by default 

during MRI examination of the patients in PCa. Specifically, we argue that 

most of the works in PCa focus exclusively on the axial view of T2w whilst 

both coronal and sagittal are also available. Hence, we aim to exploit those 

views along with the axial one to improve the task under consideration. In 

this case, we focus on lesion classification and discriminating between cS 

and ncS cases, in a similar fashion to previous contributions.  
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We propose two different methodologies to make use in an efficient 

way of the different orthogonal views: simple multi-stream fusion (siMS) 

and inter-connected multi-stream (icMS), as depicted in Figure 31. 

Specifically, in the first case we propose three independent encoders to 

process the different views and a late fusion approach (by concatenation of 

the feature maps) once they have been processed. In the second case [254], 

dense connections are added to the chosen architectures along with 

connections between the convolutional blocks of each stream such that the 

fusion of information does not  only happen at an early or late stage but 

rather  in the whole architecture, allowing the network to have more freedom 

to learn more complex and abstract combinations between the sequences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

We develop the fusion framework depicted in Figure 31 by making use 

of all the views available for T2w prostate MRI of the ProstateX dataset 

[232] (Section 4.1). The number of patients and lesions is the same as the 

one described in previous contributions. We apply some pre-processing in 

the form of data normalization, outlier removal and cropping along with re-

sampling. Following, the original dataset is split by patients following a 

60%/20%/20% for training, validation and testing.  

We evaluate our results based on 95% confidence intervals (CI) 

obtained with n = 100 bootstrap replicates and quantify the different found 

Figure 31.  Proposed simple late fusion multi-stream approach. 
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between the results with Wilcoxon signed-rank test. Specifically, we 

compare the performance of our siMS approach against an axial-only 

approach and a multi-channel one (accommodating the different views in a 

3-channel way) for different convolutional architectures. Our results 

showcase that by making use of all the available directions and siMS 

approach we are able to improve the performance of PCa lesion 

classification for diverse architectures (Table 14). In addition, we find out 

that for the best architectures (Table 14) fusing the features at different 

levels outperforms a simple late fusion approach showing the potential for 

multi-view data. 

 

 

 

 

Table 14. Results of the multi-stream approach (siMS) compared against 

axial only and multi-channel input. 



6. Discussion, future work, work in progress and conclusions 

6 Discussion, future work, work in 

progress and conclusions 

6.1 Discussion 

The common underlying factor of all the contributions presented in this work 

is the data scarcity issue, tackled from different angles. In spite of the 

differences between the different methodologies presented in this work, my 

belief is that it is relevant to put all the work in a general context and add a 

general discussion evaluating the different contributions and their impact from 

the common factor perspective: data scarcity in DL and PCa. Hence, in this 

section, I will present a specific discussion for each of the contributions and 

then build on that to present a general discussion. 

 
Synthetic data augmentation: In contribution A [120] and contribution B 

[249], we focus on synthetic data augmentation by making use of GANs. In 

both cases, our results show a positive effect of the synthetic augmentation at 

training time by obtaining better results in terms of segmentation quality and 

classification ability, respectively. We develop both works with open access 

data (PROMISE12 and ProstateX, respectively – Section 4.1) which were made 

available with the main objective of providing a forum and a common ground 

to compare results for different PCa applications in the form of a challenge 

(competition). In particular, both challenges have a publicly accessible leader 

board which showcases the scores obtained from all the submitted solutions to 

the challenges2. When evaluating our results based on the public scores that can 

be found in such resources, we can observe that both leading scores (91.90 DSC 

and 0.95 AUC) are significantly larger than the best results presented in our 

contributions (73.90 DSC [120] and 0.79 AUC [249], respectively). 

Nevertheless, it is important to keep in mind when comparing the results that 

in our contributions the test set provided by the competition -and the one used 

by the competitors to obtain the results of the challenge board- which remains 

hidden until a formal evaluation of the method is performed by the organizers 

of the challenge has not been used but rather, we used an internal test set 

 
2 https://prostatex.grand-challenge.org/evaluation/challenge/leaderboard/ 

https://promise12.grand-challenge.org/evaluation/challenge/leaderboard/ 

https://prostatex.grand-challenge.org/evaluation/challenge/leaderboard/
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extracted by dividing the training set provided by the competition. Hence, even 

if all the appropriate tools were applied to avoid big deviations of the results in 

the test set, small variations should be expected if the hidden test was used. 

Moreover, as the test set is not exactly the same, the results of the other 

participants could also differ from the ones presented in the board.   

The results presented in our work can also be put into a more general context 

by comparing them with different approaches found in the literature and that 

might, potentially, not have submitted their solution to the challenge or used 

internal datasets to develop and test the methodologies. In that regard, Aldoj et 

al. [255] present a solution based on U-net with dense connections which 

obtains a final DSC of 92.1 ± 0.8 (four-fold cross-validation results) in an in-

house dataset. In the work of Tian et al. [256] the authors fine-tune a fully CNN 

and reach a final DSC of 85.3 ± 3.2, by means of a cross-validation procedure. 

Other works such as the Wang et al. [257] present an architecture able to 

process 3D data along with some modifications such as strided convolutions. 

The final results show improvements over the introduced baselines on an 

internal dataset, reaching a DSC of 86.12 ± 0.4 an of  88.02 ± 0.5 for 

PROMISE12. In the work of Zhu et al [258] the authors introduce deep 

supervision in a standard U-net architecture, reaching a mean DSC of 88.5 and 

showing improvements over a standard U-net architecture.  

Lesion classification approaches have also been proposed in the literature: 

Ishioka et al. [259] make use of a ResNet-like architectures to classify PCa 

lesions in 2D, reaching an AUC of 0.777 and 0.793 in two different external 

data-sets (available for in-house development). In Wang et al. [260] the authors 

use a VGG-like architecture and obtain an AUC of 0.84 in the lesion 

classification task, with significant differences (p < 0.001) when compared to 

other non-DL-based methods.  

We can clearly observe how the different approaches presented in the 

literature obtain better results than our proposed approach. Nevertheless, once 

again, stablishing fair comparisons is hard based on the fact that most of the 

works use internal (in-house) data to develop and validate their methodology, 

making the comparison unfair as there is no common quantification (based on 

the same data) on how the methods perform under the same conditions. 

Nevertheless, the proposed methodology is intended to have a generic nature. 

That is, we move away from specific architecture modifications [255, 256] and 
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instead, we propose an improvement that arguably, has an “add-on” capability 

which makes it suitable for a wide range of architectures in both contribution 

A [120] and contribution B [249]. Specifically, our proposed frameworks could 

be integrated in the previously presented works and potentially boost the final 

results thanks to the increase in data availability.  

In terms of alternative approaches based on GAN generation for PCa, few 

alternatives have been proposed. Yu et al. [261] propose a GAN-based 

architecture to generate diverse prostate MRI images (T2w, DCE and ADC). 

The proposed GAN architecture introduces a modified discriminator which 

aims to obtain more equivariant features. The authors evaluate the quality of 

the generated images based on a divergence metric as well as in terms of a 

classification task. In particular, the authors extract features from the generated 

images and use them as an input for a ML classifier, showing improvements in 

the final results thanks to the generated images. In the work of Hu et al. [262] 

the authors combine a cGAN and DCGAN to generate DWI prostate MRI of 

different GS, in order to mitigate data bias in prostate applications. The authors 

provide a qualitative analysis of the results, showing from a visual perspective 

the generated images have a reasonable quality and have characteristics that are 

comparable to the original images used to train the architecture. Finally, in 

Wang et al. [263] the authors propose a GAN-based framework to generate cS 

and ncS prostate ADC. In particular, a novel layer is introduced in the 

framework to boost the quality of the final results. The authors quantify the 

quality of the generated pictures by means of classification accuracy in the 

discrimination ability of a CNN between cS and ncS prostate ADC MRI.  

Our contributions differentiate from the presented ones in different ways: 

contribution A not only generates data but also synthesizes data from the 

generated masks, focusing on a segmentation task rather than classification 

(like most of the previously presented works). On the other hand, contribution 

B focuses on a classification task like the other works. However, our evaluation 

protocols are DL-based instead of radiomics-based [261]. Furthermore, our 

generated images are obtained with a higher resolution than the work presented 

in [263], hence avoiding up-sampling procedures and blurriness or lack of 

image quality derived from it. When compared to [262], we present a detailed 

evaluation based on classification results and not only visual quality of the 

generated images. 
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Our work presents several limitations. The first limitation comes from the 

nature of the data used to develop and evaluate both contributions: retrospective 

nature. Prospective studies should be carried out to verify the validity of the 

results and certify the usefulness of the approaches in real-world scenarios. 

Furthermore, in both cases, only one cohort has been used to quantify the 

results. External validation could enhance the study by providing proof of the 

robustness of the approach when tested with cohorts with different 

characteristics (i.e., acquisition parameters). In the same line, cross-validation 

or bootstrapping would also increase the quality of the study as of right now 

results are not averaged and based on one single split and no information about 

their variability is provided. Regarding the choice of metrics and quantification 

of the results, both methodologies present an indirect way of quantifying the 

quality of the generated synthetic samples via the final task (segmentation and 

classification) but a more direct and quantitively way of evaluating the results 

would most probably benefit the final results and the insights obtained from 

them (in order to improve the generation process).  

 

Learning the concept of normality: In contribution C [250] we focus on an 

application of AEs to learn to “detect outliers” (or the concept of normality) by 

exploiting the imbalance present in medical datasets, where control data 

(healthy) is commonly prevalent when compared to the data presenting a 

specific pathology (unhealthy). In a similar fashion to previous contributions 

(A and B) we make use of publicly available data (ProstateX) to develop the 

AE-based framework1. As such, we can stablish comparisons by making use of 

the challenge scoreboard. Nevertheless, in this case, the main objective is to 

detect and classify the presence of tumours in prostate MRI slices (2D) and as 

such, the comparisons with the submissions to the challenge do not apply, as 

they focus on a different task. Importantly, in the event that such a challenge 

provided results for a similar task to the one presented in the work, we would 

need to be careful when stablishing the comparisons as in a similar way to the 

previously presented discussions we do not make use of the hidden test set and 

hence, our results in an external set could deviate from the ones presented in 

the work.  

Looking at our results from a more general perspective, we can find several 

works in the literature focusing on the detection of prostate tumours and PCa 

classification from a supervised perspective. In particular, in the work of 
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Mehralivand et al. [264] a segmentation model is presented to obtain lesion 

segmentations with a DSC of 30.7 for the validation set compared to a plain U-

net that obtains a DSC of 28.7. Xu et al. [265] presents a study using a ResNet 

to classify the presence of tumours in a fully supervised way and by making 

use of a patch-based approach to train the network, obtaining an AUC of 0.97 

at the patch level. Aphinives et al. [266] present a study based on T2w prostate 

MRI in which they aim to detect prostate lesions in a fully supervised fashion 

and obtain a mean average precision of 13.1% and prediction rate of 31.58%. 

Finally, in the work of Saha et al. [267] the authors explore the effect of 

attention mechanisms, clinical priori and decoupled false positive reduction in 

PCa lesion detection, reaching a 0.882 ± 0.030 AUC in patient-based 

diagnosis (in 3D). 

Based on the results that we can find in the literature; our results are slightly 

worse than the worse AUC presented in the small literature review (0.81 vs 

0.882). In terms of lesion detection ability, as our work evaluates the task in a 

qualitative way instead of quantitative one it is hard to stablish a fair 

comparison between our results and the ones presented in the previous 

discussion (based on DSC or mean average precision). Similarly, to the 

previously presented discussion, it is hard to discuss and evaluate in a fair way 

our presented work in terms of the other contributions as most of them introduce 

in-house datasets for the development and validation of the algorithms. 

Nevertheless, in spite of the differences found in the final performance in terms 

of the metrics used to quantify them, an important factor to take into 

consideration is that our algorithm is trained exclusively on healthy (control) 

data and reaches the presented results in an unsupervised fashion (for the 

unseen class during training). Moreover, most of the previously discussed 

works require specialized architectures for both classification and detection, 

whilst our proposed framework is capable of obtaining both results with a single 

unspecialized AE-based architecture. The joint effect of both characteristics 

(single class training and single unspecialized architecture) is a large reduction 

in computational requirements, which can greatly benefit future real-world 

deployments of the application under consideration. 

In terms of alternatives in the literature, there are no alternatives following 

a similar procedure to the one presented in our work for PCa. The closer 

alternatives to the one presented in this study exploit AEs to extract features (as 
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a feature encoder) such as the one presented in the work of Abraham et al. 

[268]. Hence, our approach can be considered quite novel in the area of PCa 

and shows potential to be further developed.  

Our work presents several limitations, being the retrospective nature of the 

data used to develop the framework one of them. In a similar fashion to previous 

contributions, prospective studies would be required to verify the validity and 

usefulness of the presented approach in a real-world scenario. Additionally, 

only one cohort was used to develop and evaluate the developed framework 

and further evaluation with external datasets should be carried out to account 

for potential data drifts in the form of different acquisition protocols or 

population characteristics. A more robust evaluation process would strengthen 

the validation of the study by quantifying the variability of the results and the 

uncertainty around them. In terms of specific details of the work, a quantitative 

way of evaluating the detection of the PCa lesions could enhance the work by 

providing a way to compare our contribution with (potential) other 

contributions that make use of the same data and have the same objective as our 

work. Another potential limitation of our work is the threshold implementation, 

as the threshold is not chosen on the basis of the final objective (i.e. detection 

or classification) but rather only on a general rule (IQR) which might not be 

optimal of the specific objectives of the work.  

 

Self-supervised learning: Both contribution D [252] and contribution E [253] 

focus on SSL approaches to tackle the data scarcity issue in PCa applications. 

Specifically, contribution D focus on generative SSL whilst contribution E 

presents an approach based on contrastive SSL. In both cases, we aim to move 

away from traditional TL methods based on out-of-domain data (ImageNet) 

and instead, provide an in-domain initialization method based on the available 

unannotated data which might be robust for different applications and in the 

presence of small amounts of labelled data. In particular, we evaluate both 

applications in a 2D PCa lesion classification setting (Section 5). In both cases, 

we make use of the same publicly available dataset as in previous contributions: 

ProstateX (Section 4.1). As mentioned in previous contributions, the dataset has 

a public leaderboard for the task of lesion classification in cS and ncS1. The 

best score in the public leader board is of 0.95 (AUC), whilst we obtain an AUC 

score of 0.858 for contribution E [253] in a fine-tuning scenario and of 0.814 

for contribution D [252] in the best transformation scenario and without fine-
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tuning. The best scores are, as seen in the case of contribution B [249] 

significantly larger than the ones obtained in our proposed SSL frameworks. 

Nevertheless, as mentioned in previous discussions, the comparison needs to 

be taken with caution as we do not make use of the hidden testing set but rather 

only the fully available training set for evaluation purposes. Hence, the results 

obtained with the hidden test set could differ from the ones presented in the 

work whilst the ones presented by the different algorithms proposed for the 

challenge could also differ when evaluated with the same data as the one used 

in our work.  

When looking for contributions on PCa SSL applications to compare our 

work with, we find the work of Bolous et al. [269] which falls in the category 

of generative SSL. In particular, the authors present an SSL framework using 

context restoration as a pre-text task and evaluate the quality of the 

representations on a lesion detection task and showing improvements over a 

plain U-net trained from scratch in the presence of different % of labelled data, 

reaching a DSC of 0.57 and an AUC of 0.85. In the work of Qian et al. [270] 

the authors present a generative SSL approach based on reconstruction from a 

distorted version of the prostate MRI (by injecting noise) as previous step to 

the chosen downstream task: prostate segmentation. The results show an 

improvement by making use of the SSL approach in the detection of PCa lesion 

in T2w MRI, reaching a true positive ratio of 0.9182. 

Similarly to the contributions present in the literature, our work is also able 

to improve the final downstream task results. Nevertheless, the downstream 

task nature is different as in our contributions we aim to stratify prostate lesions 

depending on their clinical significance and the SSL contributions in PCa have 

as an ultimate objective the detection of prostate tumours. Hence, a direct 

comparison in terms of final results cannot be established. However, the 

approaches can be compared in terms of methodology. Our SSL generative 

framework differentiates from the other approaches by introducing a variety of 

image manipulations other than noise injection or corruption and therefore, 

having the ability to learn more general features. Specifically, our proposed 

generative SSL framework applies the image manipulations at the patch level 

under the assumption that operating at a “lower level” might help to learn more 

discriminative features for the downstream classification task as lesions present 

in the prostate are relatively small. In terms of the contrastive approach, we 



 6.  Discussion, future work, work in progress and conclusions 

 89 

present an SSL framework which does not depend on a “manually” designed 

pre-text task and hence, has a more generic nature than the contributions present 

in the literature and our generative SSL framework. In fact, when comparing 

our two SSL contributions that would be one of the key factors that 

differentiates them: the nature and design of the pre-text task, making the 

contrastive contribution more generic than the generative one where the pre-

text task is, in fact, “supervised” to be more efficient for the downstream task 

under consideration. 

In terms of limitations, both contributions present limitations due to the 

retrospective nature of the data used to develop the frameworks. Furthermore, 

both works lack external validation of the results to account for potential data 

shifts due to acquisition protocols or population characteristics. In addition, a 

more robust internal validation based on statistical testing and quantification of 

uncertainty around the results (see Contribution F) would strengthen the final 

results. In particular, for contribution D, we also miss a fine-tuning setting in 

which results are obtained when the weights are unfrozen. More 

experimentation with a different number of manipulated patches or other basic 

manipulations would also benefit the final work by providing more results in 

the form of a sensitivity analysis and the effect of the amount of distortion on 

the final task. A more extensive comparison with other SSL approaches (see 

MoCo [218]) would also help to understand the effect of the chosen SSL 

approach and strengthen the hypothesis of the effectiveness of the methods 

when compared to its counterparts (for both contrastive and generative SSL 

methods). 

Efficient use of different data sources & data fusion: In contribution F [254], 

we tackle the data scarcity issue from the point of view of an efficient use of 

the available data. In particular, we propose to make use of the different 

orthogonal views (axial, sagittal and coronal) which are acquired by default 

during the patients’ visit instead of making use of only the axial view, which is 

the one used by default. We test our approach in a lesion classification setting 

in 2D, as in previous contributions (contribution B, D, and E). In a similar 

fashion, we develop the work by making use of the ProstateX dataset. When 

comparing our results to the public leader board, we can see a considerable 

difference in terms of the final AUC: 0.854 vs 0.95. Nevertheless, as in previous 

works, we make use of the training set exclusively (after proper division in 
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training, validation and testing as explained in Section 5). Hence, a direct and 

fair comparison cannot be established due to validation differences in the 

dataset chosen for it. When compared to other lesion classification approaches 

present in the literature (discussion of contribution B) our fusion approach 

obtains competitive results, obtaining better results than the ones presented in 

[259, 260]. 

Different fusion approaches can be found in the literature for prostate MRI. 

For instance, in the work of Lozoya et al. [272] and in the work of Meyer et al. 

[135] independent 2D CNNs are trained and fused at a late stage or ensembled 

to produce results that do not depend exclusively on axial plane but rather that 

exploit the information of the different views with the objective of improving 

prostate segmentation results. In the works of Yuan et al. and Le et al. [273, 

274] the authors present early fusion approaches for different modalities of 

prostate MRI with the objective of improving PCa lesion classification results 

in 2D and 3D, respectively. In particular, in the work of Yuan et al. a final AUC 

of 0.89 is obtained whilst in the work of Le et al. a final AUC of 0.91 is 

obtained. 

When comparing our contribution with the ones found in the literature, our 

results are significantly lower than results obtained with the same dataset such 

as in Le et al. [274]. Nevertheless, our procedure to obtain the fusion approach 

is way simpler than the one presented in other works which incorporate extra 

elements in the training of the network and in the pre-processing steps, 

considerably increasing the required computational power. Specifically, we 

also propose an inter-connected approach which allows to share features at 

different levels of the network instead of just making use of the features at an 

early or late level, like the approaches presented in the literature. Our inter-

connected approach is generic enough such that it could be incorporated as an 

add-on to other fusion approaches (such as in Le et al.) potentially providing 

an extra improvement to the proposed solutions. 

In terms of limitations, the work suffers from the retrospective nature of the 

data used to develop and evaluate the model and prospective evaluations would 

be required to validate the presented results. External validation should also be 

performed to evaluate potential data shifts and biases due to different 

acquisition protocols or population characteristics. Additionally, our method 

requires some pre-processing steps such as non-rigid registration which limits 



 6.  Discussion, future work, work in progress and conclusions 

 91 

the generic and simplistic nature of the presented methodology. Hence, other 

fusion approaches which do not require any particular registration could be 

explored to further improve the final results. 

We have presented a specific discussion and review of each of the 

contributions included in the work. From a more general perspective, we tackle 

the data scarcity issue from different angles. In spite of focusing on the same 

final objective (boosting the results in the presence of small amounts of data) 

the approaches are significantly different. Contribution B, D, E and F evaluate 

the efficiency of the approach from the point of view of lesion classification. 

Comparing the final results, we can observe how both contribution E and F 

obtain the highest AUC (0.858 and 0.854) in the presence of all the available 

testing data. Nevertheless, as contribution F does not evaluate the final results 

in terms of different fractions of data it is hard to determine the effectiveness 

of the method when an extreme data scarcity is present in the application under 

consideration. When evaluating the approaches based on the methodology, 

GAN-based methodologies offer an interesting alternative to increase the 

amount of data by generating new samples but at the cost of significant 

computational resources and instability in training time (in terms of reaching 

an optimal point in the loss landscape) along with struggles to generate high-

resolution images, which is quite an important factor in the medical domain 

depending on the task under consideration [274].  

Given such limitations, one could argue that GANs are not ready for prime 

time in the radiological domain but offer a promising (and interesting) 

alternative in data-limited scenarios. AE approaches are an interesting 

alternative to exploit what could look as a weakness at first sight: data 

imbalance. Nevertheless, based on the results obtained by means of other 

approaches (SSL and data fusion) and the “manual design” of the threshold-

based methodology one can also argue that AE-based outlier detection is behind 

in terms of potential in data-limited scenarios when compared to approaches 

such as SSL. Furthermore, the principles applied in the AE scenario 

(reconstruction task and then detection and classification) form, in a way, the 

basis of the generative SSL approach presented in this thesis with the exception 

that they omit the “manual design” step and replace it with a TL approach. 

The two most promising research directions based on the results of this 

thesis and previous arguments are, therefore, SSL approaches and efficient use 
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of data by means of fusion. In particular, generative SSL approaches offer an 

interesting alternative by allowing to manually design a pre-text task which can, 

in a way, be conceived to be optimal for the final downstream task. In other 

words, the pre-text task can be “supervised” in terms of the evaluation task 

under consideration. Nevertheless, such a feature can be a double-edged sword 

as designing an optimal pre-text task might not be straightforward. The 

alternative are contrastive SSL approaches that have a “fixed” pre-text task and 

aim to learn the notion of similarity. Interestingly, in spite of having less 

degrees of freedom when it comes to the choice and design of a pre-text task, 

the efficiency of the approach is not compromised, as shown in our results and 

other results presented in the literature (Section 3.5). Nevertheless, further 

testing is required as contrastive SSL methods span a wide range and other 

methods might be more suitable for the context of medical images but might 

remain untested, as the field rapidly progresses. Finally, an efficient use of the 

available data is also a promising research direction as fusing different data 

sources (and even when the characteristics are similar) is challenging. 

However, as shown in our contribution [240] by moving away from simplistic 

fusion approaches such as early and late we can significantly improve the final 

results in the task under consideration. Furthermore, the fusion of information 

can be jointly used with SSL schemes making both approaches complementary 

and potentially improving the results obtained by making use of them in an 

independent way.  

6.2 Conclusions 

The common core of this thesis is the application of DL in data-limited 

scenarios in PCa. We present a variety of techniques to deal with the lack of 

annotations in the context of PCa and for different PCa applications: lesion 

classification, lesion detection and prostate segmentation. We show the 

effectiveness of the different approaches for data-limited situations in different 

applications and even in the presence of an extreme data scarcity (contributions 

D and E). Specifically, we provide some evidence that highlights the usefulness 

of alternatives that provide in-domain initializations for the medical imaging 

domain in PCa and that the findings and effects found and observed in natural 

images applications can also be translated to medical images, opening an 

interesting research path and laying the grounds for future research with more 
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complex and tailored methods for an efficient training and deployment of DL-

based systems in PCa based on MRI, moving away from the need of extremely 

large annotated datasets.  

6.3 Work in progress and future work  

Some of the future directions (and already work in progress) of the work based 

on this thesis are: 

• Researching multi-modal approaches (efficient data usage) in the 

context of SSL methods.  

• Research more complex fusion methodologies which, for instance, 

do not require previous registration steps. 

• Investigate simpler in-domain initialization methods based on 

patches, based on the effectivity of them when training architectures 

such as Transformers [275]. 

• Explore the effect of making use of the inherent 3D nature of MRI 

data in our already developed applications or new ones. 

• Improve evaluation protocols of the presented works by testing 

them with external data and in-house data. Include patient-level 

decisions, as they are the natural “dimension” in which radiologists 

work. 

• Translate our research into clinical practice and carry out 

prospective studies to validate our results in a clinical scenario. 

Finally, it is worth mentioning this work will continue during a postdoctoral 

position funded by HelseVest, as I obtained funding to continue working at the 

intersection of PCa and DL. Future work will include part of the future plans 

highlighted in this section along with the task of translating and evaluating the 

impact of DL applications in clinical (radiology) practice. Furthermore, we will 

have an in-house dataset (Stavanger university hospital), which will be used 

along with the ones that have already been used to develop this work and that 

has already been collected and will be ready to use in the Postdoc position. 
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ABSTRACT 

Whole gland (WG) segmentation of the prostate plays a crucial role in 

detection, staging and treatment planning of prostate cancer (PCa). Despite 

promise shown by deep learning (DL) methods, they rely on the availability 

of a considerable amount of annotated data. Augmentation techniques such as 

translation and rotation of images present an alternative to increase data 

availability. Nevertheless, the amount of information provided by the 

transformed data is limited due to the correlation between the generated data 

and the original. Based on the recent success of generative adversarial 

networks (GAN) in producing synthetic images for other domains as well as 

in the medical domain, we present a pipeline to generate WG segmentation 

masks and synthesize T2-weighted MRI of the prostate based on a publicly 

available multi-center dataset. Following, we use the generated data as a form 

of data augmentation. Results show an improvement in the quality of the WG 

segmentation when compared to standard augmentation techniques. 

Index Terms— MRI, prostate, segmentation, convolutional neural 

networks, generative adversarial networks 

 

1. INTRODUCTION 

Prostate cancer (PCa) is the second most common diagnosed cancer [1], with 

an estimated incidence of 1.3 million new cases among men worldwide in 

2018 [2, 3]. 

Thanks to recent advances in image acquisition and interpretation, MRI 

has proven to be a valuable tool for PCa detection, staging, treatment 

planning and intervention [4]. Segmentation of the prostate from MRI 

plays a crucial role. For instance, radiotherapy planning, MRI-transrectal 

ultra- sound fusion guided biopsy or radiation dose planning in 

brachytherapy are highly dependent on an accurate delineation of the 

prostate in imaging data [5]. Current practices include manual contouring 

by a specialist in a slice-by-slice basis, which is a time and labor-intensive 

task as well as susceptible to intra-observer and interobserver variability. 
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Fig. 1: Example of an original slice (left side) and preprocessed slice (right 

side). 

In recent years, convolutional neural networks (CNNs) have shown 

promise in segmentation, where U-net was a major breakthrough [6]. 

Nevertheless, without further refinement, the training of CNN-based 

methods require a considerable amount of data [7]. Moreover, imbalanced 

data or data with low variability might lead to sub-optimal results [8]. 

Augmentation techniques (e.g. translation and rotation) have proven useful 

but they also produce highly correlated data, limiting the amount of 

information provided to the algorithm in the training phase. 

Generative Adversarial Networks (GAN) [9] have gained a considerable 

amount of attention in the DL community. Several variations of these 

generative models have been developed, such as the deep convolutional GAN 

(DCGAN) [10] or pix2pix [11] which are able to generate realistic images 

after learning the distribution of the original dataset and have been used to 

generate T1-weighted brain MRI [12]. The pix2pix architecture has been 

used to translate brain masks to images [13]. We propose a pipeline to 

generate paired prostate masks and T2-weighted MRI of the prostate for data 

augmentation. Our contributions in this work are: 
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Fig. 2: Technical approach to the project. 

1. We propose a DCGAN-based architecture to generate whole gland 

prostate masks from T2-weighted MRI. 

2. We propose a pix2pix-based architecture to translate the synthetic WG 

prostate MRI masks into T2-weighted prostate MRI and to obtain paired 

training samples. 

3. We provide a comprehensive comparison of different data 

augmentation techniques and their effect on the WG segmentation of the 

prostate as well as the effect of adding synthetic data to those standard 

augmentation techniques. 

2. METHODS 

In this work, we propose a semi-automatic pipeline able to generate synthetic 

pairs of T2-weighted prostate MRI and their respective WG mask. Figure 2 

presents an overview of the steps followed in the work. First, we provide a 

description of the dataset, the pre-processing steps and the architectures 

training process. 

  2.1. Dataset 

We use the PROMISE12 data set [14], containing T2-weighted axial MRI of 

50 patients for training and 30 for testing. Ground truths of the WG of the 

prostate annotated by the experts are only available in the training set whilst 

the testing ones can only be accessed when submitting the results1. 
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2.1.1. Pre-processing and data splitting 

We perform four different steps. First, MRI are re-sampled by linear 

interpolation to 256x256, which is the lowest resolution present in the data 

set. Following, the intensity is then normalized to an interval of [0,1]. 

Outlier removal is performed by forcing the pixel intensity values of the 

im- age between the 1st and 99th percentiles. Finally, a contrast limited 

adaptative histogram equalization (CLAHE) is applied to improve local 

contrast and enhance the edge definition [15]. Figure 1 shows an example 

of the result obtained after applying the preprocessing steps. In order to 

evaluate the methods, we split the original dataset by patients following a 

60%/20%/20% split for the training, validation and testing set, respectively. 

Eventually, an independent assessment is done using the PROMISE12 test 

set. 

2.2. Segmentation architecture 

Our segmentation architecture is based on the original U-net architecture 

[6]. 

2.2.1. Training of the network 

Dice coefficient (DSC) [16] is used to evaluate the model performance 

during training. The architecture is trained for 200 epochs with a batch size 

of 32 on a 16gb NVIDIA Tesla P100, based on the validation set. Adam 

optimizer [17] is used with a learning rate scheduler. The learning rate 

started with a value of 1e-3 and reduced by a factor of 10 if the loss did not 

decrease during 10 epochs. 

  2.3. Generation of synthetic WG masks 

We adopt the DCGAN architecture [10] to generate synthetic WG prostate 

masks. The DCGAN consists of two main com- ponents, a generator (G) and 

a discriminator (D), where both G and D are CNNs. 

1For up-to-date information refer to https://promise12.grand- challenge.org/ 
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Fig. 3: Realistically-looking masks generated by DCGAN (top row) and a 

mask deemed as unrealistic (bottom). 

The generator G gets inputs samples z from a distribution which has a normal 

prior imposed to it 𝑝𝑧~ 𝑁(µ, σ2) . The role of G is to map such samples to the 

original data space while inducing a specific distribution pdata and thus 

synthesizing samples that follow such distribution 𝑥̂ = G(z)).  On the other 

hand, the role of D is to dis- criminate between real data samples x and 

generated ones 𝑥̂. 

2.3.1. Training of the network 

 

The generator network takes a vector z of 100 random numbers drawn from 

a normal distribution 𝑝𝑧~ 𝑁(µ, σ2)  as in- puts and outputs 256x256 WG 

segmentation masks. The generator architecture follows the one proposed in 

[10]. Nevertheless, after an extensive testing, we added two transposed 

convolutional layers. In addition, the original paper makes use of a rectified 

linear unit (ReLU) activation for all the generator layers except for the output 

whereas this work makes use of the LeakyReLU [18]. The discriminator 

implementation follows, again, the original one [10] with the addition of two 

extra convolutional layers. The architecture is trained for 1500 epochs on a 

16gb NVIDIA Tesla P100, based on the validation set. Each epoch took 

approximately 100 seconds to finish. The batch size used for the  
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Fig. 4: Synthesized T2 weighted MRI (bottom) from GAN- generated WG 

masks (top row). 

training was 32. Adam optimizer is used with default parameters and a 

learning rate of 0.0002. 

2.3.2. Mask selection 

The selection criteria for the synthetic masks is based on the visual 

appearance of the image and done in a manual way. For instance, some of 

the synthetic masks might contain disconnected prostate glands. Figure 3 

shows an example of realistic WG prostate masks as well as an unrealistic 

one. 

2.4. Mask-to-image translation: T2-weighted MRI 

We base our architecture on [11]. In the particular case of translation, the 

generator (G) aims to map a source domain image xs ~ pxs into the 

corresponding target image xt ~ pxt via the mapping function G(xs, xt). In 

this case, the discriminator tries to discriminate between the source image 

and its corresponding ground truth by classifying them as real while 

classifying the input and the transformation as fake. 

2.4.1. Training of the network 

The input of the architecture is a 256x256 segmentation mask, while the 

output was a synthesized T2-weighted MRI from the input mask. Figure 4 

shows two examples of synthesized T2-weighted prostate MRI. We train 
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the network for 200 epochs with a batch size of 1 on an Nvidia Tesla P100 

16gb, based on the validation set. Each epoch took approximately 300 

seconds to finish. The optimizer is Adam with a learning rate of 0.0002. 

3. RESULTS 

We evaluate the segmentation results following the metrics used in the 

PROMISE12 challenge as well as additional ones: DSC, mean volumetric 

DSC (VDSC), mean surface distance (MSD) and mean hausdorff distance 

(HD). The quality of the synthetic data was manually evaluated in a visual 

way in an intermediate step. The segmentation metrics are both representative 

of slice-based metrics as well as volume-based. More details on the metrics 

can be found in [14, 19]. Standard augmentation included rotation (±10 

degrees), shifting (10%) total height and width), flipping and zooming ([1, 1.2] 

range). All results are based on U-net and the effect of the segmentation 

architecture was considered to be out of the scope of the paper. Generated data 

results are based on 10000 synthetic T2-weighted images and their 

corresponding masks, which is approximately 8 times the amount of original 

data. Quantitative results on the usage of synthetic data as well as standard 

augmentation techniques can be found in table 1 while table 2 depicts the effect 

of the combination of the standard augmentation techniques and synthetically 

generated data. 

A mean DSC of 73.77% was obtained for the WG of the prostate 

when adding synthetically generated data, both masks and the T2-weighted 

synthesized MRI. On the other hand, a DSC of 67.84% was obtained with 

a vanilla U-net without any augmentation. When comparing HD, the syn- 

thetically augmented dataset also improved the vanilla U-net results (8.86 

mm) by more than 8%. In addition, the MSD has also shown a considerable 

improvement when using a synthetically augmented dataset.  
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Table 1: Standard augmentation techniques and synthetic data effect on WG 

segmentation results. 

Finally, the volumetric DSC   also increased by more than 15% when using 

synthetic data. When comparing standard augmentation with the synthetic 

one, the latest surpasses by a considerable margin all the other techniques 

when it comes to MSD and VDSC as well as by a small margin the DSC. 

Amongst the standard augmentation techniques rotation obtained the best 

results. 

Using synthetic data in combination with standard augmentation 

techniques yield to a larger improvement over the previous results. The 

combination resulted in an improvement of the metrics for all the standard 

augmentation techniques with the exception of rotation. In particular, zoom 

showed the best results amongst all of them with improvements with 

respect to the standard augmentation as well as the baseline. 

Further experiments were performed to explore the effect of the synthetic 

sample size on the DSC value. Different % of synthetic data with respect to 

the size of the original sample were tested and we found out that the increase 

in the results was consistent with the amount of synthetic data used to augment 

the original set. In particular, we observed that every time the amount of 

synthetic data was doubled the DSC increased around 2%, reaching the peak 

with the largest amount of data tested (10000 cases). 

Transformatio
n 

DSC 
(%) 

MSD HD VDSC(%
) 

 

Original 67.84 3.61 8.86 54.30  
Vertical flip 66.93 18.5

2 
19.68 48.72  

Horizontal 
flip 

69.98 15.4
1 

13.47 50.86  

Rotation 73.07 3.59 8.53 59.78  
Shift 71.33 12.2

4 
9.44 56.16  

Zoom 70.69 7.31 7.74 55.21  
All 67.30 10.1

4 
12.36 51.23  

Synthetic data 73.77 1.16 8.10 69.36  
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Transformation DSC(%) MSD HD VDSC(%

) 
Original 67.84 3.61 8.86 54.30 

Vertical flip 67.50 0.92 12.8
0 

68.27 

Horizontal flip 72.84 1.40 7.02 69.79 
Rotation 68.01 1.93 9.93 68.06 

Shift 73.37 1.18 8.66 73.32 
Zoom 73.90 1.56 6.94 70.90 

All 69.81 1.60 7.99 66.83 
Synthetic data 73.77 1.16 8.10 69.36 

 

Table 2: Combination of standard augmentation techniques with synthetic 

data 

 

 

4. CONCLUSIONS 

The objective of this work is to provide a pipeline able to pro- vide an 

alternative to the standard augmentation techniques by making use of 

GAN-based architectures. We propose a GAN-based framework to 

generate prostate WG segmentation masks and synthesize T2-weighted 

MRI from them. We evaluate our method against the standard 

augmentation techniques while providing a comprehensive comparison of 

the effect of them in the prostate WG segmentation in T2 weighted MRI. 

Results have shown that our method was able to obtain better results when 

used as a standalone technique than the standard augmentation techniques 

whilst also im- proving the results of the standard augmentation techniques 

when used in combination with them. 

To the best of our knowledge, this is the first approach that makes use 

of generated synthetic T2 weighted prostate MRI and their generated 

paired WG masks to improve WG segmentation. Whilst our method 

showed promise improving WG prostate segmentation results, the 

framework would ben efit from inclusion of an automatic way to assess the 

quality of the generated images and select those deemed as more realistic. 

Furthermore, refinement of the synthesis architecture (pix2pix) could be 
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explored in order to have more realistic details and less blurriness around 

the gland boundary. 

5. COMPLIANCE WITH ETHICAL STANDARDS 

This research study was conducted retrospectively using data made 

available in open access by the PROMISE12 challenge organizers. Ethical 

approval was not required. 
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ABSTRACT 

Tumor classification in clinically significant (cS, Gleason score 7) or non-

clinically significant (ncS, Gleason score < 7) plays a crucial role in patient 

management of prostate cancer (PCa), allowing to triage those patients that 

might benefit from an active surveillance approach from those that require an 

immediate action in the form of further testing or treatment. In spite of it, the 

current diagnostic pathway of PCa is substantially hampered by over-

diagnosis of ncS lesions and under-detection of cS ones. Magnetic Resonance 

Imaging (MRI) has proven to be helpful in the stratification of tumors, but it 

relies on specialized training and experience. Despite the promise shown by 

deep learning (DL) methods, they are data-hungry approaches and rely on the 

availability of large amounts of annotated data. Standard augmentation 

techniques such as image translation have become the by default option to 

increase variability and data availability. However, the correlation between 

transformed data and original one limits the amount of information provided 

by them. Generative Adversarial Networks (GAN) present an alternative to 

classic augmentation techniques by creating synthetic samples. In this paper, 

we explore a conditional GAN (cGAN) architecture and a deep convolutional 

one (DCGAN) to generate synthetic apparent diffusion coefficient (ADC) 

prostate MRI. Following, we compare classic augmentation techniques with 

our GAN-based approach in a prostate cancer triage (classification of tumors) 

setting. We show that by adding synthetic ADC prostate MRI we are able to 

improve the final classification AUC of cS vs ncS tumors when compared to 

classic augmentation. 

Keywords: Prostate Cancer, MRI, GAN, Classification, ADC 

 

1. INTRODUCTION 

Prostate Cancer (PCa) is the third most commonly diagnosed cancer1 among 

men, with an estimated incidence of 1.3 million new cases worldwide in 2018.2, 

3 Current diagnostic and management methods of PCa rely on prostate-specific 

antigen (PSA) levels in serum. However, PSA testing comes at the cost of 



  Appendices: Articles 

 138 

substantial over- diagnosis of clinically significant (cS) lesions, which leads to 

unnecessary testing such as biopsies and treatment of indolent PCa lesions.4, 5 

Thanks to recent advances in medical image acquisition, magnetic 

resonance imaging (MRI) has been pro- posed as an alternative to classic 

diagnostic methods and found to be particularly useful for triage applications.6,7 

That is, to stratify PCa patients depending on the aggressiveness of the lesions 

to either provide further testing (or treatment) or to propose an active 

surveillance program. However, MRI analysis requires specialized training, 

suffers from inter-reader variability and depends on the reader experience. 

Moreover, in the absence of specialized training, the analysis of the MRI might 

be sub-optimal and time-expensive.8, 9 

Deep learning (DL) techniques have shown promise in tasks such as 

classification and detection, being successful in several medical applications.10 

Nevertheless, traditional DL-based applications rely on large amounts of 

annotated data which are rarely available on the medical domain and are 

expensive and hard to obtain. Moreover, imbalanced data or with low 

variability might lead to sub-optimal results11 highlighting even more the 

necessity for large amounts of annotated and high-quality data. Classic 

augmentation techniques such as translation and rotation have become the by 

default approach when dealing with a limited amount of data. However, such 

techniques produce highly correlated data, limiting the amount of information 

provided to the algorithm in the training phase.11 

Generative Adversarial Networks (GAN)12 have emerged as an alternative 

to standard augmentation techniques. In particular, conditional GAN (cGAN)13 

allows to generate synthetic data samples of a particular class, which results 

quite convenient for classification tasks. In addition, deep convolutional GAN 

(DCGAN)14  has also seen success in generating synthetic medical images.11 In 

this work, we exploit such an ability to generate synthetic samples of a 

particular class (cS or ncS) to improve the classification ability a DL 

architecture by increasing the amount and variability of ADC prostate MRI 

data. 
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Figure 1: Technical approach to the project. 

 

2. METHODS 

 

2.1 Task definition 

 

Our work is developed in two stages. In the first stage, we synthesize prostate 

ADC MRI slices with DCGAN or cGAN. In order to perform such a task, we 

assume an input (xu, yu) where yu are the associated labels to the ADC prostate 

MRI inputs denoted as xu. In the case of DCGAN, we train one model for each 

class. On the other hand, for cGAN, we train a single model able to generate a 

specific class given the right label. Following, we obtain a defined number of 

synthetic samples and their respective labels, denoted as (xs, ys). After visual 

inspection, we make use of the most realistic looking pictures xs, ys as an input 

for a VGG1615, with the objective of discriminating between cS and ncS 

prostate ADC MRI - a 2D classification task. We test a different number of 

generated images with respect to the original ones and their effect on the final 

results, quantified by the area under the curve (AUC), sensitivity, specificity 

and accuracy averaged over 3 independent runs. 

 

2.2 GAN augmentation for prostate cancer triage 

 

Our methodology is based on11, 16. Figure 1 shows the technical approach to the 

project. Labelled ADC prostate MRI xu are used to generate  𝑥𝑠~ 𝑝𝑥𝑢
 in which 

 𝑝𝑥𝑢
 is the distribution of the original data, by means of DCGAN and cGAN 

architectures. In particular, DCGAN aims to learn 𝑝𝑥𝑢
 where 𝑝𝑥𝑢

 is the 



  Appendices: Articles 

 140 

distribution of the data for a specific class, namely cS or ncS. On the other hand, 

cGAN aims to learn 𝑝𝑥𝑢|𝑦𝑢
that is, the conditional probability of the original 

data. Hereby, in the first case two architectures are trained to be able to generate 

samples from both classes whilst on the other case a single architecture is 

enough, since it is able to generate samples based on the selected class. Our loss 

function follows the standard two-player minimax game.13 

Once the DCGAN and cGAN architectures have been trained, we use the 

generated samples to train the classification model (VGG16). Examples of 

generated samples are shown in Figure 2. Following, we compare both 

architectures in terms of the quality of the generated pictures based on the final 

task: classification of prostate MRI tumors in cS and ncS, based on AUC, 

sensitivity, specificity and accuracy. 

2.3 Implementation and experiments 

 

2.3.1 Data pre-processing and splitting 

We make use of the ProstateX dataset,17 which is open source∗. The cohort 

included in the study consisted of 204 patients diagnosed with PCa and 330 

lesions. Among those lesions, 76 lesions were cS and 254 were ncS. The 

nature of the study is retrospective and includes different MRI modalities from 

which ADC is used in this work. Standard pre-processing is applied to the 

data, including re-sampling to a common coordinate system with the desired 

dimensions (128x128) and normalization of the MRI intensities to a range of 

[0, 1]. All the images are provided with results of patients’ biopsies, which are 

used as the reference standard for this work. The significance level of the 

lesions is based on the Gleason Score (GS) obtained from the biopsies. That 

is, if GS ≥7 the slice (2D) is classified as cS and if GS < 7 the slice (2D) is 

classified as ncS. The data-set is split following a 70%/10%/20% for training, 

validation and testing, respectively. The splitting is done by patients, avoiding 

cross-contamination in the form of data leakage. 

 

∗https://wiki.cancerimagingarchive.net/display/Public/SPIE-

AAPM-NCI+PROSTATEx+Challenges 

 

 

 

https://wiki.cancerimagingarchive.net/display/Public/SPIE-AAPM-NCI%2BPROSTATEx%2BChallenges
https://wiki.cancerimagingarchive.net/display/Public/SPIE-AAPM-NCI%2BPROSTATEx%2BChallenges
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2.3.2 Architectures and training 

 

We evaluate the performance of two different GAN-based architectures: 

DCGAN and cGAN. Both architectures follow a standard implementation, as 

explained in13 and,14 respectively. We experiment with different learning rates 

and number of iterations and evaluate the quality of the pictures in a 

qualitative way to determine the best training scheme for both architectures. 

After experimenting with different configurations, we obtain the final 

synthetic ADC MRI training for 5000 iterations the DCGAN architecture and 

for 6000 epochs the cGAN one. Both architectures use a learning rate of 

0.0002 and an Adam optimizer. All the training is carried out on a NVIDIA 

Tesla V100 GPU. 

As for the classification stage of the work, we make use of a VGG16 

architecture,15 based on previous results.18 The architecture is trained for 1000 

epochs with an early stopping mechanism of 20 epochs, which halts the 

training if no improvement is seen in the AUC for the previously defined 

number of epochs. We train the network with Adam optimizer and a learning 

rate of 0.001. The training and inference, are, again, carried out on a NVIDIA 

Tesla V100 GPU. 

 

 

Figure 2: Examples of a real ADC image (left), generated ADC MRI with 
cGAN (middle) and DCGAN (right). 
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2.3.3 Evaluation of the results 

 

Since the main objective of the work is to improve the lesion classification 

results by means of synthesized ADC maps, we evaluate the quality of the 

generated pictures by the different GAN architectures by means of the 

classification results obtained with them. In particular, we first train a plain 

VGG16 and use those results as the baseline for our work. Following, we 

experiment with different classic augmentation techniques, namely: rotation 

(25 degrees), translation (0.4 pixels) and vertical flipping, based on.18 The 

same configuration in terms of hyperparameters is used for all the 

comparisons. In the second evaluation stage we experiment with different 

amounts of generated data by the GAN architectures. That is, we increase the 

data available in the training set by a certain % (50 and 100). In the case of a 

50% increase we would generate half of the amount of cS and ncS data present 

in the original training set and add the generated samples to it whilst for 100% 

we would generate the same amount of cS and ncS samples present in the 

original training set and add them to it. Lastly, we evaluate a “balanced 

configuration” in which we generate and add the necessary amount of cS and 

ncS samples such that the presence of both classes is balanced in the training 

set. Finally, we present comparisons in terms of the results obtained with 

GAN-based augmentation (both DCGAN and cGAN), classic augmentation 

and a combination of both. The evaluation of the classic augmentation and 

GAN-based augmentation is carried out with the GAN architecture that 

obtained the best results as a standalone technique. All in all, the results are 

presented in terms of the following parameters: 

• Baseline: VGG16 without augmentation is considered to be the baseline of 

this work. Further experiments use the same configuration for the 

architecture and the same architecture choice. 

• Classic augmentation: We experiment with translation (0.4), rotation (25 

degrees) and vertical flipping. 

• GAN architectures: We experiment with cGAN and DCGAN. We 

evaluate the quality of the generated images based on the results obtained in 

the final 2D lesion classification task. 
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• % of generated data: We test different amounts of generated data with 

respect to the original one xu (i.e., 100% implies generating the same amount 

of data as the original amount present in the original training set and 50% 

would generate half of the amount present in the original training set), 

including a balanced configuration in which we generate the necessary 

amount of synthetic samples for each class such that we end up with the same 

amount of samples in both classes at training time. 

3. RESULTS 

In this section, we provide the results obtained with the proposed GAN-

augmentation technique. As shown in Table 1, both the cGAN and DCGAN-

generated synthethic samples have a positive effect on the final macro-AUC 

when using VGG16 as the classication architecture. We see an increase in 

the averaged macro-AUC for both DCGAN and cGAN. In particular, the 

increase becomes notably larger when more synthetic data is used (100%). 

We can also see the classifer struggles to classify cS lesions based on the 

sensitivity results but there is a considerable improvement when balancing 

the synthesis of classes. Generally speaking, DCGAN obtains slightly higher 

results in terms of macro-AUC when compared to cGAN ones. Nevertheless, 

the results com at the expense of the need of two specific DCGAN 

architectures: one for each lesion class. 

As Table 2 shows, combining both classic augmentation and synthetic 

samples further increases the final AUC, showing that both techniques can 

be used in a complementary way. The results also highlight the add-on nature 

of synthetic data, which can be added on top of more complex architectures 

and other methodologies. In particular, we observe how the combination of 

DCGAN and rotation outperforms all the other approaches by a considerable 

margin, whilst keeping a good balance in the classification of both classes. 

When comparing the final results presented in Table 2 with other 

approaches, we observe that our method, in spite of the simplicity of the 

architecture used to carry out all the testing reaches competitive results. 

Other works obtain an AUC of 0.78 with the same architecture and fine-

tuning,18 or AUC of 0.80 by combining different modalities and a 2D and 

3D approach,19 whilst the leading results in the ProstateX challenge reach 

AUC’s of 0.95 but make use of all the available data (that is, not only ADC). 

The results presented in this work show the usefulness of synthetic data as a 
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complementary approach to classic augmentation techniques and can be used 

as an extension of existing works, thus not being limited to the specific 

architecture used in this work. 

Table 1: Classic augmentation techniques and synthetic data effect on 

prostate triage results, based on 3 independent runs (training and testing) 

reported in terms of mean ± standard deviation. 

 

Table 2: Results for DCGAN synthetically generated data in combination 

with classic augmentation results. Results are presented in terms of average 

and standard deviation for 3 independent runs (training and testing). 

 

4. CONCLUSION 

We presented a GAN-based augmentation approach as an alternative to 

classic augmentation techniques. Our results show that our proposed 

approach outperforms classic augmentation in a 2D prostate cancer lesion 
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classification and when using VGG16 as the classification architecture 

choice. In particular, we observe that DCGAN- generated data produces 

better results in the final classification task at the cost of requiring two class-

specific architectures to generate samples for each class. Moreover, we show 

that classic augmentation and GAN-based augmentation can be used in a 

complementary way to improve the results obtained with classic 

augmentation techniques. Our results show that GAN-generated samples 

have the potential to help with data scarcity in medical applications and that 

can be used on top of a given architecture and task to improve the final results 

by increasing the amount of available data to train the model. 

5. ABOUT THE WORK 

The work has not been submitted nor is planned to be submitted anywhere 

else. 
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ABSTRACT 

Prostate Cancer (PCa) is the fifth leading cause of death and the second most 

common cancer diagnosed among men worldwide. Current diagnostic 

practices suffer from a substantial overdiagnosis of indolent tumors. Deep 

Learning (DL) holds promise in automatizing prostate MRI analysis and 

enabling computer-assisted systems able to improve current practices. 

Nevertheless, large amounts of annotated data are commonly required for DL 

systems success. On the other hand, an experienced clinician is typically able 

to discern between a normal (no lesion) and an abnormal (contains PCa 

lesions) case after seeing a few normal cases, ultimately reducing the amount 

of data required to detect abnormal cases. This work exploits such an ability 

by making use of normal cases at training time and learning their distribution 

through auto-encoder-based architectures. We propose to use a threshold 

approach based on interquartile range to discriminate between normal and 

abnormal cases at evaluation time, quantified through the area under the curve 

(AUC). Furthermore, we show the ability of our method to detect lesions in 

those cases deemed as abnormal in an unsupervised way in T2w and apparent 

diffusion coefficient maps (ADC) MRI modalities. 

Keywords: Auto-encoders, Prostate, Unsupervised, Detection, MRI 

 

 

1.  INTRODUCTION 

Prostate Cancer (PCa) is the second most commonly diagnosed cancer1 and 

one of the leading causes of death worldwide.2,3 Current diagnostic and 

management methods of PCa rely on prostate-specific antigen (PSA) levels 

in serum. However, PSA use remains as a controversial topic due to unclear 

benefits of it as a screening technique and a substantial under-diagnosis of 

aggressive tumors as well as over-diagnosis of indolent tumors, leading to 

unnecessary biopsies and treatment of the indolent lesions.4, 5 
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Figure 1: Technical approach to the project. 

Magnetic resonance imaging (MRI) id s non-invasive technique that has 

shown potential to improve the current PCa diagnostic and management 

pathway.6, 7 In addition, MRI has proven to be a highly valuable tool for lesion 

detection and treatment planning.8 Nevertheless, analysis of MRI suffers from 

inter-reader variability and sub-optimal interpretation in the absence of 

specialized training. Furthermore, it can be time-expensive.9 Deep learning 

(DL) techniques have emerged as an alternative able to automatize MRI 

analysis, showing its potential in other studies.10, 11 However, traditional DL-

based applications rely on large amounts of annotated data which are rarely 

available in the medical domain. On the other hand, experts are able discern 

abnormal (contains PCa lesion) cases from normal (no lesion) ones as well as 

to detect lesions after seeing a handful of control cases, just by mere 

comparison and even when no extensive specialized training is present.12 

Furthermore, the same expert is usually able to carry out several tasks such as 

detection and classification of MRI slices. Motivated by it, we focus on an 

unsupervised detection of tumors and classification of slices in abnormal or 

normal by learning the prior distribution of normal prostate MRI slices. 

Convolutional auto-encoders (cAE)13 and models related to it, such as 

variational auto-encoder (VAE)14 have been successful in tasks such as outlier 

detection and high-dimensional data compression,15 which are closely related 

to the task presented in this work. Auto-encoder models are of particular 
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interest in this work due to their ability of approximating the likelihood of a 

given data point with respect to the learnt distribution from the data points 

they were trained on. 

In an effort to palliate the lack of annotated data and mimic radiologists’ 

behavior, we investigate VAE and cAE architectures to detect prostate lesions 

and stratify between abnormal and normal cases in ADC and T2w MRI 

modalities, while exclusively making use of normal data at training time. 

Following, we make use of the learnt distributions and show in our 

experimental evaluation the potential of our approach for lesion presence 

classification and detection in both ADC and T2w prostate MRI slices. 

2. METHODS 

2.1 Task definition 

The unsupervised detection of lesions and classification between abnormal and 

normal MRI slices is performed in two stages using the same architecture for 

both tasks. We assume an input Xh = (𝑥ℎ1
 , 𝑥ℎ2

 ..., 𝑥ℎ𝑁
 ), where 𝑥ℎ𝑖

 , i = 1...N 

are normal (healthy) T2w or ADC prostate MRI slices (2D) with a fixed 

resolution. Our ultimate goal is to learn the distribution p(Xh) through an auto-

encoder architecture. The rationale behind the process is that we hypothesize 

that models will not be able to reconstruct abnormal images accurately, due to 

the fact that they have only been trained with control ones, hereby learning the 

non-anomalous data distribution as a prior p(Xh). 

Once the prior distribution has been learnt, we use a mix of 2D prostate MRI 

slices as an input for the already trained model. The data consists of slices that 

contain tumors, denoted as Xa = (𝑥𝑎1
, 𝑥𝑎2

 ..., 𝑥𝑎𝑁
) and normal images, which 

are only used for validation purposes. Such a process allows us to obtain an 

estimate of the mean squared error (MSE) or structural similarity index (SSIM) 

distribution of Xa and of Xh, which is further use to determine a classification 

threshold tMSE or tSSIM to distinguish between abnormal and normal prostate 

MRI slices. Following, lesion regions are detected through pixel-wise 

difference between the MRI slices deemed as abnormal and the reconstruction 

obtained after using them as an input for the already trained auto-encoder 

Finally, some post-processing is applied to the detected lesions in the form of 

threshold application, such that MSE <= ϵ is set to 0. The threshold is obtained, 
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again, using the MSE distribution of the difference between the original MRI 

slice and their reconstruction. 

2.2 Unsupervised detection and lesion presence classification 

Our methodology is based on.12 The technical approach to the project can be 

found in Figure 1. We perform the anomaly classification and lesion detection 

in two stages with the same architecture. In the first stage, normal ADC or T2w 

MRI slices of the prostate (2D) are used to learn the distribution p(Xh) through 

an auto-encoder, either VAE or cAE. In order to achieve such objective, we 

experiment with MSE (Equation 1) and SSIM (Equation 2)16 as our choice for 

the metrics used to quantify the quality of the reconstruction: 

 

𝑀𝑆𝐸 =  ∑ (𝑥ℎ𝑘
− 𝑥̂ℎ𝑘

)
2

𝑁

𝑘 =1

                (1) 

𝑆𝑆𝐼𝑀 =  ∑ 𝑙(𝑥ℎ𝑘
− 𝑥̂ℎ𝑘

)𝑐(𝑥ℎ𝑘
− 𝑥̂ℎ𝑘

)𝑠(𝑥ℎ𝑘
− 𝑥̂ℎ𝑘

)               (2)

𝑁

𝑘 =1

 

 

Where c represents the contrast, l the luminance, s the structure of the 

images, 𝑥̂ℎ𝑘
represents the kth reconstructed image and N is the number of 

images in the batch under consideration. 

In the second stage, we make use of the already trained auto-encoder12 and 

the validation set composed by a mix of normal and abnormal cases with the 

objective of obtaining an estimate of the optimal threshold tMSE or tSSIM, based 

on the distribution of MSE or SSIM (Figure 2) for each MRI modality 

individually (ADC or T2w). In essence, such a threshold is ultimately used to 

distinguish prostate MRI slices that are normal from those that are abnormal so 

that we are able to further analyse the abnormal ones. The threshold value is 

obtained by means of interquartile range (IQR),17 which does not assume a 

specific underlying distribution. All the images with an associated MSE > tMSE 

or SSIM > tSSIM are deemed as abnormal (Figure 2). Finally, those cases deemed 

as abnormal are further analysed and a pixel-wise intensity difference is 

computed between the reconstructed and the original images, which were used 

as an input for the trained auto-encoder (Figure 3). Again, a threshold is 

computed by means of IQR and those regions where the error is larger than the 
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obtained threshold are considered to be abnormal regions and therefore, regions 

that might potentially contain a lesion. 

 

2.3 Implementation and experiments 

 

2.3.1 Data pre-processing and splitting 

 

We make use of the ProstateX dataset,18 which is open source∗. The cohort 

included in the study consisted of 204 patients diagnosed with PCa and 330 

lesions. Among those lesions, 76 lesions were aggressive and 254 were 

indolent. The nature of the study is retrospective and includes different MRI 

modalities from which axial T2w and ADC are used in this work. Standard pre-

processing is applied to the data, including re-sampling to a common coordinate 

system with the desired dimensions (384x384 for T2w and 128x128 for ADC, 

respectively) and normalization of the MRI intensities to a range of [0, 1].19 All 

the images are provided with results of the patients’ biopsies. We use publicly 

available lesion masks20 as the ground truth for the lesion detection and 

anomaly classification (slices are labelled as anomalous if they contain a lesion, 

otherwise they are considered normal). We split the original data-set by 

patients, avoiding cross-contamination in the form of data leakage. The data-

set is split following a 70%/10%/20% for training, validation and testing, 

respectively. It is worth mentioning that as stated in previous sections, only 

normal slices (without a lesion) are used during the training phase whilst both 

slices with lesions and without them are used for validation and testing phases. 

 

 

 

 
∗https://wiki.cancerimagingarchive.net/display/Public/SPIE

-AAPM-NCI+PROSTATEx+Challenges 

 

https://wiki.cancerimagingarchive.net/display/Public/SPIE-AAPM-NCI%2BPROSTATEx%2BChallenges
https://wiki.cancerimagingarchive.net/display/Public/SPIE-AAPM-NCI%2BPROSTATEx%2BChallenges
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Figure 2: Training and evaluation of the proposed methodology. 

 

2.3.2 Architectures and training 

We experiment with two auto-encoder-based architectures: cAE and VAE. 

Generally speaking, both architectures follow an encoder-decoder structure. In 

particular, cAE obtains a low-dimensional representation (embedding) of the 

input and tries to reconstruct the original image from its low-dimensional 

projection (Figure 2). Our cAE architecture follows a U-net like structure,21 

including 2D convolution filters followed by a rectified linear unit (ReLU), 

pooling operations and dense layers. The architecture is trained using a binary-

cross entropy loss function for both ADC and T2w, with a learning rate of 1e−4, 

1000 epochs and batch size of 32. 

Similarly to cAE, our VAE architecture follows a U-net-like architecture 

composed by 2D convolution filters, ReLU, pooling operations and dense 

layers. Nevertheless, VAE includes a latent inference enabled by stochastic 

sampling in the latent space. The model is trained by minimizing a Kullback-
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Leibler (KL) divergence with a learning rate of 1e−4, 1000 epochs and batch 

size of 32. All the architectures are trained using an NVIDIA v100 GPU. 

 

2.3.3 Evaluation of the results 

 

In order to evaluate our proposed methodology, we provide a comparison 

between SSIM and MAE as the choice for the image reconstruction quality and 

loss function for the proposed auto-encoder architectures. In addition to it, 

several configurations for the encoder-decoder structure of cAE and VAE are 

tested with different latent dimensions and convolutional layers, from which 

we report the results obtained with the best of them for every MRI modality. 

Final results are reported in terms of area under the curve (AUC), sensitivity 

and accuracy percentage to quantify the discrimination ability of our method 

and in terms of MSE and qualitative results to show the detection ability of it. 

All in all, the results are reported in terms of the following parameters: 

 

 

Figure 3: Example of threshold application with an MSE distribution and VAE 
architecture to obtain an ADC lesion 
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• Architectures: cAE and VAE are explored for both classification and 

detection in T2w and ADC modalities. Different encoder-decoder structures are 

also tested for both cAE and VAE, including but not limited to a different 

number of convolutional layers and dimensions of the embedding space. 

• Image reconstruction: We experiment with MSE and SSIM as the choice for 

the metrics to quantify the image reconstruction quality and as a loss function 

and report the results for both of them. 

 

Following, we provide some details on the effect of the chosen thresholds 

to classify MRI slices between abnormal (containing a PCa lesion) and normal 

(no lesion). It is worth insisting in the fact that the choice of the threshold is 

done using the validation set, which consists of a mix of normal and abnormal 

cases. Figure 4 shows some examples of threshold calculations. At testing time, 

we make use again of a mix of normal and abnormal cases whilst during 

training only healthy cases are used. 

 

3. RESULTS 

 

We start by evaluating our results in terms of the discrimination ability of both 

cAE and VAE with different reconstruction metrics (SSIM and MSE) in terms 

of AUC, accuracy and sensitivity.  

 

Table 1: Comparison between different unsupervised classification methods. 
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Figure 4: Threshold calculation using interquartile range for MSE error 

distribution (top row) and T2w (first column) and SSIM error distribution 

(bottom row) and ADC (second column). 

 

As it can be observed in Table 1, MSE obtains a better performance 

overall. Specifically, the best results are achieved with VAE: an AUC of 0.81 

for ADC and an AUC of 0.72 for T2w.  

Our method achieves a good balance between false positives and false 

negatives, as depicted in Figure 5. Regarding the effect of the threshold in the 

final results, we include a comparison of the different results obtained with a 

variation in increments (or decrements) of 0.0005 and0.002 of the optimal value 

in Figure 6 for MSE results. As depicted in the figure, both precision and recall 

are significantly affected by the threshold choice highlighting the importance 

of it in the design of our proposed solution, especially for PCa classification 

given the relevance of the false positives.  
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Figure 5:  Confusion matrix for the optimal classification threshold.  Left 

side depicts the results for ADC and right side for T2w 

 

Finally, we present qualitative results of the lesion detection obtained by 

the proposed system for both ADC and T2w, when the MRI slice under 

consideration is classified as anomalous. Figure 7 shows 3 examples (bottom 

row) of T2w lesion detection with VAE and MSE for cases that were correctly 

classified as anomalous whilst the top row shows 3 examples of ADC lesion 

detection for VAE and MSE. From a qualitative point of view, the detection 

quality is reasonably good after applying a threshold based, again, on MSE 

distribution and IQR. In our quantitative results we observe that the MSE 

distribution around the lesion area is notably higher than in the other areas of 

the MRI slices, being the averaged MSE of 0.687 for the lesion areas in T2w 

and of 0.167 for the rest of the slice whilst for ADC is of 0.727 for the lesion 

areas and of 0.172 for the rest of the slice. 

When compared to other approaches, our method presents the advantage 

of requiring only normal cases during training, which are easier to obtain in the 

medical domain. Moreover, we make use of the same architecture for both 

classification and detection, moving away from two-stage systems that require 

several specialized architectures to achieve the same objective. In particular, 

our method achieves competitive results when compared to fully supervised 

and with all classes available such as FocalNet 22 (0.81 AUC) or 2-stage 2D U-

net (0.86 AUC),23 but with the previously mentioned advantages. 
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Figure 6: Effect of classification threshold on precision and recall for ADC 

(left) and T2w (right), with a VAE architecture and MSE metric (top row). 

Bottom row depicts the AUC for the best cAE configuration and MSE along 

with VAE results for both modalities. 

 

4. CONCLUSIONS AND REMARKS 

 

We presented an unsupervised prostate lesion detection approach based on 

auto-encoders. Our VAE-based approach outperformed the cAE one by a large 

margin in both prostate MRI modalities: ADC and T2w. Our 

results show that our approach has the potential to reduce the amount of data 

needed to perform such tasks by making use of healthy data exclusively during 

training time, with competitive results when compared to their fully supervised 

counterpart. Our results suggest that  
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Figure 7: Lesion detection results after threshold application for slices that 

were correctly classified as abnormal. Top row depicts ADC and bottom row 

T2w, respectively. 

 

the methodology could be applied to a broader spectrum of MRI PCa 

applications, such as quality control of segmentation results in an unsupervised 

way or segmentation of the prostate gland. Our work presents several 

limitations, being the retrospective nature of the study one of them. 

Experimentation with more complex auto-encoder architectures and a 

quantitative way to evaluate the quality of the lesion detection is reserved for 

future work.  Additionally, a better assessment of the impact of the wrong slice 

classification and subsequent lesion detection will be carried out in future 

works. Moreover, a combination of both ADC and T2w modalities could be of 

interest, as other works have shown better results in different applications when 

using a combination of the MRI modalities instead of using them 

independently. 

 

5. ABOUT THE WORK 

The work has not been submitted nor is planned to be submitted anywhere else. 
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ABSTRACT 

Prostate cancer (PCa) is the second most commonly diagnosed cancer 

worldwide among men. In spite of it, its current diagnostic pathway is 

substantially hampered by over-diagnosis of indolent lesions and under-

detection of aggressive ones. Imaging techniques like magnetic resonance 

imaging (MRI) have proven to add additional value to the current diagnostic 

practices, but they rely on specialized training and can be time-intensive. Deep 

learning (DL) has arisen as an alternative to automatize tasks such as MRI 

analysis. Nevertheless, its success relies on large amounts of annotated data 

which are rarely available in the medical domain. Existing work tackling data 

scarcity commonly relies on ImageNet pre-training, which is sub-optimal due 

to the existing gap between the training and the task domain. We propose a 

generative self-supervised learning (SSL) approach to alleviate such issues. We 

show that by making use of an auto-encoder architecture and by applying 

different patch-level transformations such as pixel intensity or occlusion 

transformations to T2w MRI slices and then trying to recover the original T2w 

slice we are able to learn robust medical visual representations that are domain-

specific. Furthermore, we show the usefulness of our approach by making use 

of the representations as an initialization method for PCa lesion classification 

downstream task. Following, we show how our method outperforms ImageNet 

initialization and how the performance gap increases as the amount of the 

available labelled data decreases. Furthermore, we provide a detailed sensitivity 

analysis of the different pixel manipulation transformations and their effect on 

the downstream task performance. 

 

Keywords: Self-supervised, Prostate cancer, MRI, Classification 

 

 

1. INTRODUCTION 

Prostate Cancer (PCa) is the second most commonly diagnosed cancer,1 with 

an estimated incidence of 1.3 million new cases among men worldwide in 

2018.2, 3 The current diagnostic pathway of PCa relies on prostate- specific 

antigen (PSA) levels in serum. Nevertheless, PSA testing comes at the cost of 

substantial over-diagnosis of indolent PCa  
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Figure 1:  Proposed approach including pre-processing, the self-supervised 

approach, and evaluation methodology for prostate cancer lesion classification. 

 

lesions and under-detection of aggressive ones, leading to unnecessary biopsies 

and treatment of indolent PCa lesions.4, 5 

Magnetic resonance imaging (MRI) has arisen as a suitable option to be 

used in the current PCa diagnostic pathway and has been proposed as an 

alternative to current PCa diagnostic pathway approaches or as a support tool 

for them.6, 7 However, analysis of MRI requires specialized training and, in its 

absence, it suffers from inter-reader variability and sub-optimal interpretation.8, 

9 Deep learning (DL) techniques have shown potential in clinical applications.10 

However, traditional DL-based applications rely on large amounts of annotated 

data which are rarely available in the medical domain. 

With the objective to tackle the lack of annotated data, most works use a 

transfer learning approach from ImageNet weights.11 Such an approach has 

been shown to be sub-optimal, due to the existing gap between ImageNet 

domain and the targeted medical domain.12 Self-supervised learning (SSL) is a 

subset of DL techniques aiming to exploit unlabelled data in order to obtain a 

more efficient initialization method. Existing works have shown promising 

results when applying generative-based SSL approaches in chest CT and X-

ray.13, 14 In particular, generative SSL aims to offer an autodidactic framework 

that does not require labelled data as well as robust learning by making use of 

different self-supervised tasks. 

In light the results obtained by generative SSL approaches in other 

domains and with other types of data, we propose a generative SSL approach 

and test its robustness and performance in the presence of small amounts of 

data for PCa lesion classification, the downstream task. Furthermore, we 

propose different prostate MRI transformations aimed to exploit the 
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downstream task: pixel intensity manipulation. In addition, we test a variety of 

other transformations and compare them to our proposed one. 

 

2. METHODS 

2.1 Task definition 

 

We start by giving a formal description of our SSL generative methodology. 

We assume an input Xu = (𝑥𝑢1
, 𝑥𝑢2

, … , 𝑥𝑢𝑁
), where 𝑥𝑢𝑖

 , i = 1...N is the ith 

unlabelled T2w prostate MRI slice with a fixed resolution.  Our goal is to learn 

a parametrized encoder function fu that maps the input to a low-dimensional 

embedding zu and a parametrized decoder function gu that recovers the original 

input from the low-dimensional embedding zu. We are interested in transferring 

the encoder function fu into downstream tasks. In this particular case, a binary 

classification of PCa lesions.  For evaluation, we assume a labelled input {xl, 

yl} where yl are the associated labels to the T2w prostate MRI input slice xl. 

Figure 2 depicts our proposed SSL generative approach. 

 

2.1.1 Context encoding from T2w axial MRI 

 

Our methodology is based on.13 The technical approach to the project is 

depicted in Figure 1. We project every T2w prostate MRI slice into a low 

dimensional space through the encoder function fu, which results into an 

embedding zu ∈ ℝ𝑑. For each input sample we obtain a distorted version of it 

𝑥̂𝑢 from Xu with a sampled transformation function tu ∼ Γ, where Γ is a family 

of image transformations functions composed by the following 

transformations: Patch histogram matching, patch rotation, patch occlusion and 

patch translation. The transformations are applied at the patch level, that is, to 

small blocks xu ∈ ℝ64x64of the T2w slice under consideration, based on the 

results and procedures described in15 (Figure 2). The transformations are 

applied with a probability p = 0.5 for every image patch under consideration. 

In addition, if several transformations are applied at the same time, the order in 

which they are applied is randomized. Once zu has been obtained, the decoder 

function gu tries to recover the original T2w MRI slice, resulting in 𝑥̂𝑢 = 𝑔𝑢 

(zu). 
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Figure 2: Training and evaluation of our proposed generative self-

supervised approach. 

At training time, image views are obtained on the fly. The training loss of 

our methodology is a mean squared error loss: 

  

𝑙𝑢 =  ∑ (𝑥𝑢𝑘
− 𝑥̂𝑢𝑘

)
2

𝑁

𝑘 =1

                (1) 

 

where k indicates the sample under consideration for the calculation of the 

loss. 

 

2.2 Implementation and experiments 

 

We introduce the dataset used to carry out the SSL experiments and the 

downstream task.  Following, we introduce the baseline methods used for 

comparison purposes with our proposed SSL methodology. Finally, we provide 

an explanation of the different experiments and settings used in our work. 
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2.2.1 Data pre-processing and splitting 

 

We make use of the ProstateX dataset,16 which is open source∗. The cohort 

included in the study consisted of 204 patients diagnosed with PCa and 330 

lesions. Among those lesions, 76 lesions were clinically significant/aggressive 

(cS) and 254 were non-clinically significant/benign (ncS). The nature of the 

study is retrospective and includes different MRI modalities, from which axial 

T2w is used in this work. Standard pre-processing is applied to the data, 

including re-sampling to a common coordinate system with the desired 

dimensions (320x320) and normalization of the MRI intensities to a range of 

[0, 1]. All the images are provided with results of their biopsies, which is used 

as the reference standard to determine whether a lesion is cS or ncS (cS if 

Gleason score is ≥ 7, ncS otherwise). We split the original dataset following a 

60%/20%/20% for training, validation and testing, respectively. The splitting is 

done by patients, such that no data contamination in the form of leakage is 

present in our splits. respectively. The splitting is done by patients, such that no 

data contamination in the form of leakage is present in our splits. 

 

2.2.2 Evaluation of the downstream task 

 

We evaluate our pre-trained encoder in one specific downstream task: 2D PCa 

lesion classification. That is, we classify lesions present in T2w axial slices. 

We make use of a VGG16 architecture as the encoder of our proposed 

approach, based on previous results.15  

 

 

Figure 3: Image transformations from left to right: Patch translation, rotation, 

histogram matching and occlusion. 
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We use a linear evaluation protocol to evaluate our results, which consists 

in keeping the weights of the encoder frozen while training a randomly 

initialized linear head added on top of the VGG16 encoder. The linear 

evaluation setting serves the purpose of being a proxy to evaluate the re-

usability and quality of the learnt features by the SSL approach. We follow 

other works on representation learning to choose such an evaluation protocol.14 

The linear evaluation protocol is carried out with different fractions of 

labelled data, such that we test the robustness of our approach in a limited data 

regime. Specifically, we use 1%, 10%, 25%, 50% and 100% of the available 

T2w axial slice test labels in the evaluation of our approach. Two types of 

baselines in terms of initialization method are trained following the % reduction 

of labels approach: ImageNet pre-training and random initialization. In the first 

case, we initialize the network with weights obtained from training on the 

standard ImageNet ILSVRC-2012 task.17 In the second case, we train from 

scratch a randomly initialized network. The models and training are configured 

in the following way: batch size of 64, learning rate of 1e−5 and 500 epochs 

with early stopping if the validation loss does not improve over 40 epochs. All 

the training and evaluation is carried out on an NVIDIA v100 GPU. 

 

2.2.3 On image views and patch transformations 

 

In order to capture different T2w axial MRI characteristics during the pre-

training phase of our SSL approach, we leverage different transformations of 

the data at the patch level (Figure 2). Specifically, the transformations aim to 

capture robust image representations by restoring the original image from the 

family of transformations Γ. In particular, we propose patch translation, patch 

histogram matching, patch pixel occlusion and patch rotation (Figure 3). All the 

transformations are applied to N = 2 randomly selected patches and with a 

probability of occurrence of p = 0.5. 

 

• Translation: We shuffle N = 2 randomly selected patches, resulting in a 

change of position of the selected patches, which encourages the model to learn 

textures of objects. 

• Rotation: We rotate N = 2 randomly selected patches between 0 and 90 

degrees. We expect to encourage the model to learn the spatial layout of objects 

in medical images by restoring the rotated patches. 
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• Histogram matching: We apply histogram matching to N = 2 randomly 

selected patches, resulting in a change in the distribution of the pixel intensities 

of the selected patches. With this transformation we expect the model to learn 

appearance of anatomic structures that appear in the image 

 

• Occlusion: We occlude a randomly selected 16x16 region of N = 2 64x64 

randomly selected patches. The choice of occluding a sub-region of the patch 

is to be able to capture neighbouring details such that the auto-encoder 

architecture is able to learn the context of the patch under consideration. With 

the occlusion, we expect the model to learn local context of the image. 

 

3. RESULTS 

 

We start by evaluating our results in terms of the quality of the representations 

obtained by our SSL approach. We make use of a linear evaluation protocol 

(Section 2.2.2) and the area under the curve (AUC), specificity and sensitivity 

for different fractions of labels. We compare our initialization method against 

ImageNet and random initialization. Following, we provide a discussion on 

current lesion classification methods and our SSL approach. 

 

Table 1: Comparison between different initialization methods and different 

percentage of labelled data in a linear classification setting. 

 

 

As table 1 depicts, our SSL approach yields to better results in terms of 

AUC than ImageNet and random initialization. In particular, in reduced data 

regimes (lower than 50% of the original number of labelled T2w axial slices), 

the SSL method AUC is larger by a considerable margin when compared with 

the other initialization methods. Furthermore, we can also observe a better 

performance overall in the presence of the original amount of testing data 



  Appendices: Articles 

 172 

(fraction of 100%), showing the quality of the representations learnt by our SSL 

methodology. We can also observe that the different transformations yield to 

different result in terms of the different fractions of labelled data used to 

evaluate the methodology. As table 1 shows, translation and histogram 

matching are the best performing ones overall. Since the downstream task is 

lesion classification, one could argue that the relative position of the patch 

(translation) is an important factor when determining the severity of the lesion, 

as most severe lesions are located in specific zones of the prostate.15 The results 

obtained by histogram matching depict the relevance of the pixel intensity 

distribution and the anatomic and appearance structures of the prostate. 

When focusing on the 100% fraction of labelled axial T2w slices, we observe 

the best performance is an AUC of 0.814 (Table 1). When compared to other 

approaches tackling the same problem, our SSL approach reaches a similar 

level of AUC as of other methods such as FocalNet10 (0.81 AUC), 2-stage 2D 

U-net18 (0.86 AUC), a 2.5 HED architecture that reaches an AUC of 0.8019 or 

a multi-vendor architecture that reaches an AUC of 0.93,20 among others.  In 

spite of not reaching the same AUC as the best performing approaches, our 

method offers the advantage of requiring less data and being applied to a simple 

architecture (VGG16), whereas methods that evaluate on the same downstream 

task use bigger datasets or more complex architectures to reach similar or 

higher AUC scores. Furthermore, our method can be used as an add-on method 

in more complex architectures, potentially improving and obtaining higher 

AUC scores than the ones presented in this work. Finally, the leading methods 

in the AUC score board of the ProstateX challenge† reach AUC scores of 0.95, 

which are considerably larger to the one presented in this study. Nevertheless, 

based on the available details of such methodologies, the proposed architectures 

have higher complexity than the ones used in this study and our method could 

be used as an add-on to such methods, potentially improving the final results. 

 

4. CONCLUSION AND REMARKS 

In this work, we presented an SSL generative approach for PCa lesion 

classification. Our approach has consistently outperformed common  

 

 
†https://prostatex.grand-

challenge.org/evaluation/challenge/leaderboard/ 

https://prostatex.grand-challenge.org/evaluation/challenge/leaderboard/
https://prostatex.grand-challenge.org/evaluation/challenge/leaderboard/
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initialization methods used in the medical image domain such as ImageNet or 

random one, achieving good results even in settings with a highly reduced 

amount of labelled data. In particular, we observed our proposed methodology  

is able to obtain high quality and transferable representations by means of a 

linear evaluation protocol. Our results suggest the possibility of a broad 

application of SSL methods for prostate MRI applications in the presence of a 

limited amount of labelled data and the re-usability of our methodology as an 

add-on for models with higher complexity than the ones presented in this work. 

Patient-level classification and more experiments in terms of the proposed 

transformations will be carried out in the future, along with multi- parametric 

MRI data, with potential for further improvement and understanding of the 

effect of the different pre-text tasks. 

 

5. ABOUT THE WORK 

This work has not been submitted nor is planned to be submitted anywhere else. 
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ABSTRACT 

 

Current diagnostic practices for prostate cancer (PCa) suffer from over-

diagnosis of indolent lesions and under-detection of aggressive ones. Deep 

learning (DL) techniques have shown potential in automatizing tasks and 

helping clinicians. Nevertheless, their success depends on the availability of 

large amounts of labelled data, which are rarely available in the medical field. 

Hence, transfer learning using ImageNet has become the de facto approach but 

it has been shown to be sub- optimal for medical images. Contrastive learning 

is a form of self-supervised learning (SSL) that leverages unlabelled data to 

produce pre-trained models and has shown promising results on natural images. 

However, its application to MRI interpretation has been rather limited. In this 

work, we pro- pose a contrastive approach (SimCLR) to produce models with 

better initializations for 2D PCa lesion classification. Our results show that 

linear and end-to-end fine-tuned models trained on our SSL pre-trained 

representations outperform ImageNet and random initialization. 

 

Index Terms— Contrastive learning, Self-supervised learning, SimCLR, 

MRI, Prostate 

 

 

1. INTRODUCTION 

 

Prostate Cancer (PCa) is the second most commonly diagnosed cancer [1], with 

an estimated incidence of 1.3 million new cases among men worldwide in 2018 

[2, 3]. Current diagnostic and management methods of PCa rely on prostate- 

specific antigen (PSA) levels in serum. However, PSA testing comes at the cost 

of under-detection of aggressive lesions and over-diagnosis of indolent ones, 

leading to unnecessary biopsies and treatment of the indolent ones [4]. 

Magnetic resonance imaging (MRI) has arisen as an alternative to the 

current diagnostic pathway tests thanks to recent advances in image acquisition 

and technology innovation. Nevertheless, MRI analysis requires expertise and 

specialized training, and in its absence, it suffers from inter- reader variability 

and sub-optimal interpretation [5]. Deep learning (DL) techniques have 

emerged as an alternative able to  
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Fig. 1. Proposed approach including pre-processing, self-supervised 

learning (SimCLR) and evaluation for prostate cancer triage. 

 

automatize and democratize applications. Its potential has already been proven 

with some successful applications in the medical domain [6]. However, 

traditional DL-based applications rely on large amounts of annotated data 

which are rarely available in the medical domain [7]. 

In order to palliate the lack of annotated data, existing works use a transfer 

learning approach using ImageNet weights [8]. Such an approach has been 

shown to be sub- optimal, due to the existing domain gap between ImageNet 

and the targeted medical domain (out-of-domain initialization) [9]. Self-

supervised learning (SSL) is a subset of DL techniques which exploit unlabelled 

data in order to obtain a more efficient initialization method (in-domain). In 

particular, SimCLR has been shown to obtain promising results when applied 

to natural images, even in a limited data regime [10, 11]. 

SimCLR uses a variety of data augmentations during its training; however, 

the nature of some of those augmentations such as blurring might perturb 

characteristics of the image that are disease-specific. In the light of it, we apply 

a similar method with data augmentations specially tailored to our down-stream 

application: prostate cancer triage. We show how our method outperforms other 

initialization strategies such as ImageNet or random initialization. Furthermore, 

we show how our method works well under small data regimes and evaluate its 

performance in terms of different parameters such as image resolution and 

embedding dimensions. 

2. METHODS 

 

We start by giving a formal description of our SSL contrastive methodology. 

Figure 1 presents an overview of the steps followed in the work. In terms of 

contrastive SSL, we assume an input Xu = (𝑥𝑢1
, 𝑥𝑢2

, … , 𝑥𝑢𝑁
), where xu are 
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unlabelled T2w prostate MRI slices (2D), with a pre-defined resolution. Our 

goal is to learn a parametrized encoder function fu that maps the input to a low-

dimensional embedding zu. After learning such a function, we are interested in 

transferring the learned function fu into PCa downstream tasks. In this 

particular case, a binary classification between indolent and non- indolent 

lesions (triage) task. For the evaluation of the task, we assume an input (xl, yl) 

where yl are the associated labels to the T2w prostate MRI input slices xl. 

 

2.1. Dataset: Prostate T2w axial MRI 

 

We make use of the ProstateX dataset [12], which is open source1. The cohort 

included in the study consisted of 204 patients diagnosed with PCa and 330 

lesions. Among those lesions, 76 lesions are clinically significant (cS) and 254 

are non-clinically significant (ncS). The nature of the study is retrospective and 

includes different MRI modalities from which axial T2w is used in this work. 

All images are provided with biopsy results, which are used to obtain the 

ground truth for the downstream task. The clinical significance label of the MRI 

slices is based on the Gleason score, where the lesion is considered cS if the 

score is 7 or higher and ncS otherwise. 

 

2.1.1. Pre-processing and data splitting 

 

Standard pre-processing is applied to the data, including re- sampling to a 

common coordinate system by linear interpolation with a resolution of 

0.5x0.5x0.5mm, normalization of the MRI intensities to a range of [0, 1] and 

outlier removal by forcing the intensity values of the image between the 1st and 

the 99th percentiles. In order to evaluate the downstream method, we split the 

original labelled dataset by patients following a 60%/20%/20% for training, 

validation and testing, respectively. 

 

 
1https://wiki.cancerimagingarchive.net/display/ 

Public/SPIE-AAPM-NCI+PROSTATEx+Challenges 
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Fig. 2. Contrastive learning using different augmentations of the same 

slice. Example with cropping and vertical flipping. 

 

2.2. SimCLR 

 

We adapt the SimCLR-pretraining procedure to prostate T2w axial MRI. 

SimCLR maximizes the agreement between different augmented views of the 

same data example using a contrastive loss (Equation 1) in the embedding space 

[10]. Figure 2 shows a schematic of how data augmentations are used to learn 

embeddings in an unsupervised fashion. Given a mini-batch of images, each 

image xu of the mini-batch is aug mented twice using a sampled augmentation 

tu ∼ Γ, where Γ is a family of image augmentations. Following, both views of 

xu are projected into a low-dimensional space through the encoder function fu, 

which results into an embedding zu ∈ ℝ𝑑for each of the two image views. Once 

zu has been obtained, a non-linear projection gu is applied through a projection 

head (multi-layer perceptron head)2, vu = gu(zu), vu ∈ ℝ𝐷, for both image views, 

which are used for the contrastive loss (Equation 1). 

With a mini-batch of N encoded examples, the contrastive loss for the ith 

a pair of embeddings can be defined as follows: 

 

𝑀𝑆𝐸 =  ∑ (𝑥ℎ𝑘
− 𝑥̂ℎ𝑘

)
2

𝑁

𝑘 =1

                (1) 
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where we use (𝑣𝑢𝑖, 𝑤𝑢𝑖 ) to denote the ith embedding pair and <· , ·> is used to 

denote the similarity measure used between the embeddings. In particular, a dot 

product similarity is assumed. 

2.2.1. Pre-training for 2D Prostate Cancer Triage 

 

SimCLR pre-training is performed on the entire ProstateX unlabelled dataset. 

We apply SimCLR on an encoder initialized with both ImageNet weights and 

random ones, with no extra cost due to the large availability of ImageNet-

pretrained models. Our choice to use SimCLR is driven by its previous success 

in both natural images [10] and medical images [13]. We choose a family of 

augmentations Γ which we deem suitable to generate views without losing the 

interpretability of the diagnosis in the MRI slice under consideration. In 

particular, we make use of random rotation (50 degrees), translation (range of 

0.32 pixels), vertical flipping and cropping, based on previous works [14]. The 

proposed cropping mechanism targets areas of the prostate in which lesions are 

commonly located by centre cropping the image. 

The overall training steps are depicted in Figure 2. We kept the 

hyperparameters used in the original work, with the exception of the batch size 

which is set to 512 [13] and a swish activation function in the projection head 

g(·)3. Additionally, we experiment with different embedding dimensions D = 

{128, 256, 512}. Furthermore, we test different image resolutions and evaluate 

their effect on the final performance of the linear evaluation. Checkpoints from 

the SimCLR pre- training of the top performing epochs are obtained and used 

for the downstream task evaluation. A VGG16 architecture is used as an 

encoder, based on previous works [14]. 

 

2.2.2. Linear and Fine-Tuning Evaluation 

 

We evaluate SimCLR pre-training following previous work on unsupervised 

visual representation learning [15]. The Sim- CLR pre-trained encoder is 

evaluated under two different set- tings for the downstream task: linear 

classification and fine- tuning. In the first case, the pre-trained weights obtained 

from SimCLR pre-training are frozen and a randomly initialized linear head is 

trained for the task under consideration. Linear evaluation is intended to give 

an idea about the quality of the learned features and their re-usability [16]. On 
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the other hand, in the fine-tuning scenario the whole encoder is unfrozen and 

the entire model is fine-tuned end-to-end. 

 

Table 1: Comparison between different initialization methods and different 

percentage of labelled data, in a linear classification setting. 

 

Both evaluation protocols are carried out with different fractions of 

labelled training data (xl, yl) in order to test the robustness of the approach when 

dealing with a limited amount of data and as a proxy for the real world, where 

only a small amount of labelled data is available. In particular, 1%, 10%, 25%, 

50% and 100% fraction of the labels are used in the evaluation protocols. Two 

types of baselines are trained fol lowing the reduced fraction protocol: 

ImageNet pre-training and random initialization. In the first case, we use an 

ImageNet pre-trained network which was not subject to SimCLR pre-training. 

In the second case, we train from scratch a randomly initialized network. 

We follow the same configuration for all the fine-tuned models: batch size 

of 64, learning rate of 1e−5 and 500 epochs with early stopping, which halted 

the training if the validation loss did not improve over 40 epochs. All the 

training and fine-tuning is carried out on an NVIDIA v100 GPU. 

 

2.2.3. On Image Size and Embedding Dimension 

 

SimCLR requires large batches to obtain good results [10]. Given that 

medical image sizes are commonly larger than natural ones, we explore the 

effect of reducing the image size on the SimCLR pre-training phase and on the 

down- stream one.  

 
2,3More details of the implementation on https://github.com/ alvfq/simclr-2D-

prostate-triage 
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The objective of such a test is to verify whether reducing the size of the 

images used to pre-train SimCLR can be beneficial in terms of final 

performance in the down- stream task and computational power requirements 

of Sim- CLR. Moreover, since the optimal embedding dimension D is related 

to the shape of the inputs, we also experiment with D = {128, 256, 512} for 

different image sizes. 

 

3. RESULTS 

 

We start by evaluating our results based on the quality of the representations 

obtained by SimCLR and comparing them against ImageNet pre-training and a 

random initialization of the weights. In order to evaluate the representations, 

we used a linear evaluation [16], where the base model is frozen (VGG16) and 

a linear classifier is trained on top of it. Following, the test performance is used 

as a proxy to evaluate 

the quality of the representations (Section 2.2.2). The results are quantified in 

terms of area under the curve (AUC) [17], at different label fractions (Table 1). 

Following, we investigate whether SimCLR pre-training is able to obtain a 

higher performance when fine-tuned end-to-end. Similarly to the first 

evaluation, we obtain the results for different label fractions (Table 2). Based 

on Table 1 we can observe how when trained on small label fractions, the 

SimCLR pre-training approach shows a significantly larger AUC than their 

counterparts; random initialization and ImageNet ones. In particular, we can 

see how when trained in a limited data regime (1% label fraction) the SimCLR-

based model achieves a 0.671 AUC whereas a random initialization obtains a 

0.590 and the ImageNet one a 0.598. Moreover, we can see how the drop in the 

AUC is not as drastic when moving from a 10% label fraction to a 1% as 

compared to ImageNet and random initialization, supporting the hypothesis that 

SimCLR pre-training benefits the quality of the obtained representations in 

small data regimes. 

Regarding end-to-end fine-tuning, as shown in Table 2 we found that 

SimCLR pre-training and fine-tuned end-to-end outperforms by a large margin 

ImageNet pre-training when working under really small label fractions or large 

ones (1% and 100%). In particular, for a label fraction of 1% the AUC of 

SimCLR end-to-end is 0.671 whilst ImageNet one is 0.589 and for a label 
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fraction of 100% SimCLR obtains an AUC of 0.858 whilst ImageNet obtains 

an AUC of 0.803. The results show  

 

Table 2. Comparison between different initialization methods and 

different percentage of labelled data, in a fine-tuning classification setting. 

Arrows (↑) indicates the improvement in % over the linear classification setting 

in Table 1. 

 

that SimCLR pre-training with an end-to-end fine- tuning yields a boost in 

performance for end-to-end training, even when the fraction of labels is small, 

which is consistent with previous findings [10, 11]. 

Finally, as explained in Section 2.2.3 we investigate the relationship 

between different image sizes and embedding dimension. Furthermore, we 

explore different initialization methods for the SimCLR framework. As 

depicted in Figure 3, a larger image size yields a better performance when 

paired with a larger embedding size for a VGG16 encoder. In particular, we 

found that a good compromise between image size, embedding dimension and 

training speed is accomplished at an image resolution of 256x256 with D = 256, 

which obtains the best AUC (Figure 3). Furthermore, our experiments revealed 

that ImageNet initialization obtained better results in terms of AUC and training 

speed when compared to random initialization in the SimCLR framework, 

being the differences of more than 30% difference in the final AUC in the linear 

and fine-tuning evaluation (Figure 1, contrastive SSL). 

 

4. CONCLUSIONS 

 

We found that SimCLR is able to obtain high quality representations for PCa 

triage based on T2w axial MRI. In particular, the initialization provided by 

SimCLR outperforms ImageNet and random ones in small data regimes, 

showing their quality even in situations where data is scarce. To the best of our 
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knowledge, this work is the first to highlight the benefit of SimCLR across label 

fractions for PCa triage. Limitations of the work include the retrospective 

nature of the data and the lack of more experimentation with other SSL 

methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Results with different image sizes and embedding dimensions. 

 

The results suggest the possibility for a broad application of SSL approaches 

beyond natural images. 
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ABSTRACT 

 

Prostate cancer (PCa) is the fifth leading cause of death worldwide. In spite of 

the urgency for a timely and accurate diag- nostic, the current PCa diagnostic 

pathway suffers from over- diagnosis of indolent lesions and under-diagnosis 

of highly invasive ones. The advent of deep learning (DL) techniques has 

enabled automatic and accurate computer-assisted systems that rival human 

performance. However, current approaches for PCa diagnostic are heavily 

reliant on T2w axial MRI, which suffer from low out-of-plane resolution. 

Sagittal and coronal MRI scans are usually acquired by default along with the 

axial one but are generally ignored by DL classification algorithms. We propose 

a multi-stream approach to accommodate sagittal, coronal and axial planes and 

improve the performance of PCa lesion classification. We evaluate our method 

on a publicly available dataset and demonstrate that it provides better results 

when compared with a single-plane approach over a range of different DL 

architectures. 

 

Index Terms— MRI, lesion classification, Multi-planar, Multi-stream, Prostate 

 

 

1. INTRODUCTION 

 

Prostate Cancer (PCa) is one of the most prevalent cancers in men and the fifth 

leading cause of death worldwide [1, 2]. Traditionally, the diagnostic of PCa 

was based on digital rectum examination (DRE) but ever since its approval as 

a screening test, prostate-specific antigen (PSA) levels in serum became the 

main tool for PCa diagnostic and man- agement [3]. However, its use remains 

as a controversial topic due to unclear benefits of it as a screening technique 

[4], over-diagnostic of indolent (non-clinically significant, ncS) lesions and 

under-detection of potentially lethal (clinically significant, cS) PCa lesions [5]. 

Magnetic resonance imaging (MRI) is a non-invasive technique that has shown 

potential to compensate for current main diagnostic tests shortcomings [6, 7]. 

In particular, T2-weighted MRI (T2w) shows anatomic-morphological features 

of the prostate and morphological-pathological  
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Fig. 1: Original axial, coronal and sagittal slice (top row) and cropped 

images after pre-processing (bottom row). 

 

structures and it is usually acquired in three planes: sagittal, coronal and axial 

[6]. In spite of its potential, MRI analysis requires specialized training and in 

the event of its absence, it suffers from sub-optimal interpretation and inter-

reader variability [8]. 

Deep learning (DL) models are becoming increasingly popular for PCa 

applications thanks to their ability to automatize time-intensive applications 

while requiring minimal human intervention [9]. In particular, models have 

been proposed for prostate segmentation [10], detection and lesion 

classification [11, 12, 13]. Nevertheless, the proposed methods purely rely on 

axial T2w MRI scans of the prostate. However, sagittal and coronal MRI scans 

are commonly avail- able, as multiple directions are acquired by default for 

better clinical interpretation and commonly taken into account by radiologists 

[14]. 

In this work, we propose a multi-stream approach to ex- ploit axial, coronal 

and sagittal prostate MRI scans such that better features are obtained for 2D 

PCa lesion classification. In addition to it, we propose to further improve the 

informa- tion sharing between the orthogonal scans by adding connections  
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Fig. 2: Exemplification of our proposed multi-stream approaches based on 

VGG16. 

 

between the different input streams [15]. We demonstrate the effectiveness of 

our approaches over a range of different DL architectures and that by 

incorporating information from the different scan directions we are able to 

substantially improve the performance of the different architectures for 2D PCa 

lesion classification when compared to training exclu- sively on T2w axial 

scans or a multi-channel approach. In particular, our contributions are: 

1. We propose a simple 2D multi-stream approach (siMS) to process 

orthogonal T2w scan directions simultaneously. 

2. We propose a 2D inter-connected multi-stream approach (icMS) to 

improve feature sharing and re-use between the different orthogonal 

scan direction streams. 

3. We demonstrate the effectiveness of our approaches over a range of 

different DL architectures, showing the generic nature of it. 

4. We provide a comprehensive comparison between single stream (for 

sagittal, coronal and axial), multi-stream (siMS and icMS) and multi-

channel approaches for a range of architectures. 

2. METHODS 

 

We propose a 2D multi-stream approach to accommodate the different T2w 

orthogonal scan directions to obtain better feature representations for 2D 

classification. Figure 2 presents our proposed multi-stream approaches. We 

start by providing a description of the dataset, the pre-processing steps and the 

architectures training process. 
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2.1.Dataset: Multi-planar prostate T2w MRI 

 

We use the ProstateX dataset [16], which is open source1. The nature of the 

study is retrospective and includes different MRI modalities from which axial, 

sagittal and coronal T2w are used in this work. The cohort included in the study 

consisted of 204 patients diagnosed with PCa and 330 lesions. Among those 

lesions, 76 lesions are clinically significant (cS) and 254 are non-clinically 

significant (ncS). All images are provided with biopsy results, serving as the 

reference standard. The significance level of the lesions is based on the Gleason 

score where the lesion is considered cS if the Gleason score is 7 or higher and 

ncS otherwise. In the case that a slice contains several lesions, we obtain the 

label from the dominant lesion (higher score) in terms of Gleason score. 

 

2.1.1. Pre-processing and data splitting 

 

Standard pre-processing is applied to the data, including resampling to a 

common coordinate system by linear interpolation with a resolution of 

0.5x0.5x0.5 mm, which is close to the 3mm slice thickness of the best single 

in-plane scans. Fol- lowing, the slices are cropped to the area corresponding to 

the intersection between the different scan directions, as Figure 1 exemplifies. 

By cropping following the intersection of the different directions, we have a 

flexible approach which can be used in different data-sets in contrast with hard-

cropping approaches. We apply normalization of the MRI intensities to a range 

of [0, 1] and outlier removal by forcing the intensity values between the 1st and 

the 99th percentiles as part of the pre-processing. We split the original dataset 

by patients following a 60%/20%/20% for training, validation and testing, 

respectively. 

2.1.2. Statistical analysis 

We compare the performance of the architectures trained with and without our 

proposed siMS and icMS along with multi- channel approaches using the area 

under the receiver oper- ating characteristic curve (AUC) [17]. In order to 

evaluate whether the differences between  

 

1https://wiki.cancerimagingarchive.net/display/ 

Public/SPIE-AAPM-NCI+PROSTATEx+Challenges 

https://wiki.cancerimagingarchive.net/display/Public/SPIE-AAPM-NCI%2BPROSTATEx%2BChallenges
https://wiki.cancerimagingarchive.net/display/Public/SPIE-AAPM-NCI%2BPROSTATEx%2BChallenges
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the performance of the models on the test set were significant, we used a non-

parametric bootstrap of n = 100 bootstrap replicates from the test set to estimate 

the variability of the model performance. Following this, we obtain the 95% 

bootstrap confidence intervals (95% CI) and assess the significance at the p = 

0.05 level by means of Wilcoxon signed-rank [18], which does not assume an 

underlying Gaussian distribution of the the bootstrap results. 

 

2.2. Classification architectures 

In this section, we provide a description of the trained ar- chitectures, 

considered to be the baseline of the work when trained with a single stream 

(input) which processes cropped 2D prostate slices. Additionally, we consider 

a multi-channel approach in which the three T2w directions are stacked and 

jointly processed in a 3 channel single stream-way. 

 

2.2.1. Baselines 

We choose VGG16, ResNet18, DensNet121 and the encoder part of the U-net 

architecture to evaluate the consistency of our findings across model 

architectures. Our choice of ar- chitectures is motivated by previous works [11, 

13, 19]. We provide more details of the implementations on the source code, 

available on GitHub2. In the following sections we provide a description of the 

implementation of our proposed multi-stream architectures: siMS and icMS. 

 

Training: We experiment with learning rates of 10−3, 10−4 and 10−5, and 

investigate their effect on the final classifi- cation performance. We train all the 

architectures for 200 epochs and saved the weights for the top performing 

epochs for subsequent model evaluation. We apply L2 regularizationwith a 

value of 1e−5 to avoid over-fitting of the architectures. We use online 

augmentation based on previous works [19]: rotation (50 degrees), translation 

(pixel range of 0.32) and vertical flipping. We run all the experiments on a Tesla 

V100 with 30GB of RAM. 
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Table 1: 2D PCa lesion classification results for different ar- chitectures and 

single plane (axial) or simple multi-stream (siMS). Results are shown in terms 

of mean (95% CI). 

 

2.2.2. Simple multi-stream classification 

We propose siMS architecture to accommodate the differ- ent scan directions 

and process them individually to extract direction-specific features in each 

stream. Figure 2a illustrates a triple-planar model which processes axial, 

coronal and sagittal scans. Once the scans have been processed by the chosen 

architecture, we perform a late fusion approach in which the feature maps 

extracted by each individual stream are concatenated. Following, we obtain the 

final classification of the PCa lesion. The training protocol follows the one 

described in Section 2.2.1. 

 

2.2.3. Inter-connected multi-stream classification 

We propose to improve the information flow and obtain more powerful 

representations by adding inter-connections between the different streams 

instead of processing them independently followed by a concatenation of the 

feature maps (Section 2.2.2). We extend the work of [15] to the best per- 

forming architecture (Table 1) in a multi-stream configuration among the ones 

tested in this work and to accommodate or- thogonal scans with different 

directions. In particular, in icMS, we include inter-connections in which we 

concate- nate the feature maps obtained by each individual stream in each block 

of the architecture under consideration (Figure 2 shows an example with two 

streams and VGG16) as opposed to only the concatenation of the final feature 
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maps obtained by each stream as in siMS. Finally, icMS also incorporates a late 

fusion of the final feature maps in the form of concatenation. 

 

Table 2: 2D PCa lesion classification results for different ar- chitectures and 

simple multi-stream (siMS) or multi-channel. Results are shown in terms of 

mean (95% CI). 

 

3. RESULTS 

 

We evaluated our proposed approach in terms of AUC and 95% CI, obtained 

with n = 100 bootstrap replicates. Figure 3 portrays the results for the different 

architectures and different T2w directions, when evaluated independently. In 

particular, Figure 3 depicts how the coronal and sagittal slices reached 

significantly lower average AUC when compared to the axial direction for 

VGG16, the best performing architecture for the siMS approach (0.794 axial vs 

0.765 coronal, p < 0.001 and 0.794 axial vs 0.761 sagittal, p < 0.001). The same 

trend was observed for ResNet18, DenseNet121 and U-net encoder (Figure 3), 

confirming the hypothesis that axial slices outper- form coronal and sagittal 

ones when used as a single input. 

Table 1 presents the quantitative results of our proposed multi-stream 

approach and axial T2w MRI for a range of ar- chitectures. For the sake of 

simplicity, we compare the siMS approach with axial direction only as it is the 

one that is pre- dominant in the literature. The siMS approach outperforms the 

axial-only based one for all the architectures tested in this work. In particular, 

VGG16 outperforms the rest of the ar- chitectures in a multi-planar setting, 

achieving an averaged AUC of 0.843 (vs 0.794 for the axial plane, p < 0.001) 

with the siMS approach. As table 2 shows, the siMS approach also 

outperformed the multi-channel one, showing that an independent processing 
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of the orthogonal planes provides richer features leading to improved lesion 

classification re- sults. All the computed differences were found to be signifi- 

cant (p < 0.05) except for ResNet18 (Table 2). 

In our second experiment, we compared the siMS approach (Figure 2) with 

icMS for VGG16, the best performing architecture based on AUC in the siMS 

set- ting (Table 1 and Table 2) and thus the preferred architecture for further 

comparisons. We found that the icMS approach achieved an averaged AUC of 

0.854 (0.838, 0.870) vs 0.843 (0.765, 0.913) of the siMS one. The difference 

between them was found to be statistically significant (p < 0.001). Addi- 

tionally, we can observe how the icMS approach seems to be more robust based 

on the variability around the 95% CI when compared to the siMS one. 

 

Fig. 3: Results for the different plane directions and different architectures. Bars 

represent the 95% CI. 

 

4. CONCLUSIONS 

 

We found that by making use of axial, coronal and sagittal MRI directions with 

multi-stream approaches (siMS and icMS) we are able to significantly improve 

the 2D lesion classification results in PCa when compared to axial and multi 

channel approaches for a range of architectures. To the best of our knowledge, 

the only works that make use of a multi- stream approach for prostate cancer 

have segmentation as a final objective. Moreover, icMS approaches have yet to 

be explored for PCa classification. Our work highlights the benefits of using a 

multi-stream approach for lesion classification without requiring any additional 

effort in terms of image ac- quisition, as the different orthogonal scan directions 

are usually acquired by default. Limitations of the work include the 

retrospective nature of the data and the criteria of the archi tecture choice, based 

solely on AUC instead of a combina- tion of metrics such as AUC and required 

computational resources. Future works will explore other types of fusion and 
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architectures (transformers) and their effect on the final performance along with 

their computational requirements. Finally, future developments will extend the 

work to a 3D setting, were richer features can be extracted from the whole 

volume of the patients. 
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