
DET TEKNISK-NATURVITENSKAPELIGE FAKULTET

BACHELOROPPGAVE

Studieprogram/spesialisering: Vårsemesteret 2022

Bachelor i ingeniørfag / Åpen

Datateknologi

Forfatter(e): Genette Våge og Mina Wøien

Fagansvarlig: Erlend Tøssebro

Veileder(e): Terje Strømstad

Tittel på bacheloroppgaven: Resourse management tool

Studiepoeng: 20

Emneord: Sidetall: 54

Online, Allocation tool, MVP, security, back-end, + vedlegg/annet: Zip-fil

front-end , user friendliness, programming Stavanger 15. mai 2022

Contents

Content i

Abstract vi

1 Introduction 1

1.1 Task background . 1

1.2 Implementation goal . 1

1.3 Motivation . 2

1.4 Workflow . 3

2 Background 5

2.1 “Previous work” . 5

2.2 Software technology background 5

2.3 Application Programming Interface 7

2.3.1 CV Partner . 7

i

CONTENTS

2.3.2 Resource Guru . 7

2.4 Azure Active Directory . 8

3 Construction 9

3.1 Data models . 9

3.1.1 Flowchart . 10

3.1.2 Stack diagram . 11

3.1.3 Site diagram . 12

3.2 Code structure . 14

3.2.1 Database structure 15

3.2.2 CV Partner API . 16

3.2.3 Resource Guru API 17

3.2.4 Updating consultants information automatically . . . 18

3.2.5 Azure Active Directory 19

3.2.6 Uploading an engagement 19

3.2.7 Match engagements with consultants 20

3.3 Data Security . 22

3.3.1 Storing secrets in Azure 22

3.3.2 Azure Active Directory 22

3.3.3 Validation of user input 23

ii

CONTENTS

3.3.4 Personal data . 24

3.4 User-friendliness . 25

3.4.1 Buttons . 25

3.4.2 Search . 26

3.4.3 Sort instead of filtering 26

3.4.4 Routing to match . 27

3.4.5 Skills view . 28

3.5 Evaluation consulting . 28

4 Results 30

4.1 Frontpage . 30

4.2 Consultants . 33

4.2.1 Consultant overview 33

4.2.2 Consultant information 33

4.2.3 Add new consultant 37

4.3 Engagement . 38

4.3.1 Engagement overview 38

4.3.2 Engagement information 39

4.3.3 Add new engagement 42

4.4 Match . 45

iii

CONTENTS

5 Discussion 47

5.1 Environmental accounts . 47

5.2 API . 48

5.3 Performance of the application 48

5.3.1 API calls . 48

5.3.2 Match function . 49

5.3.3 Database indexing 50

5.4 Further Work . 50

5.4.1 Evaluating consultants 50

5.4.2 Resource Guru API 52

5.4.3 Unassign consultants from engagements 52

5.4.4 Data security . 53

Bibliography 55

iv

Abstract

This thesis has been solved according to the need Cegal has. Cegal wanted
us to create a product as part of a Cegal internal improvement project.
The program should be able to assign resources to projects or engagements
based on the consultant’s availability and skills. In addition to these main
categories, Cegal asked for a possibility to get the name of the engagement
manager and a resource owner tied to engagement and resource. Cegal’s
last wish was to have the opportunity to add un-named consultants to the
program for employees who have not started yet. The security requirements
set by Cegal were that it should have strict access management, availability
to managers only and General Data Protection Regulation (GDPR) com-
pliance.

The main focus has been to streamline Cegal’s allocation processes by de-
veloping an application that compares consultants’ skills to skills needed in
a specific engagement. In addition to comparing skills, showing the consul-
tant’s utilization has been a high priority. This resource management tool
will help Cegal give the consultants the best-suited engagement and ensure
that all the consultants are given engagements.

The code was developed in systems within Cegal’s infrastructure. To de-
velop this tool, it has used external Application Programming Interfaces
(APIs) to collect information from already existing programs in Cegal, to-
gether with creating a solid and well-functioning code. The user experience
has also been essential to ensure that the resource management tool will be
used in the future.

Because this resource management tool contains personal data, security has

v

CONTENTS

been in focus from the beginning to the end. Azure Active Directory (Azure
AD) has been used to maintain Cegal’s login systems and especially for
protection. By using Azure AD, the application is protected as it includes
two-factor authentication. In addition, only the needed information is saved
in the database to secure the application even more.

vi

Chapter 1

Introduction

1.1 Task background

Cegal’s consultancy unit is growing and is expected to increase by 100-200%
in the number of resources in the coming years. Key stakeholders in sales,
business development, engagement management, and resource owners need
a unified tool to manage assignments and get transparency on returning
consultants. These are consultants returning from excused leave, contracted
duties, holidays, and sick leaves. To streamline resource allocation, Cegal
needs a way to search for consultants based on competency, location, and
availability.

1.2 Implementation goal

To simplify Cegal’s resource allocation, the goal is to be able to make a
program that assigns resources to projects or engagements. The managers
of Cegal would be able to add new engagements or choose an existing en-
gagement where consultants are needed. The engagements will be listed,
and the user will be able to use a sort function to find the engagement they
are looking for. The program will have a feature that matches the require-
ments from the demand with the consultants’ skills. Consultants can be

1

1.3 Motivation

allocated to several engagements. Because of this, the program will state
the availability and range them according to the number of matched skills.

The user can get more information about a consultant if needed. This could
be information like which engagements the consultant is allocated to and
how much they are utilized. By using Application Programming Interface
(API), the program will receive pieces of information from other applications
that Cegal already uses daily.

Cegal needed a way to know about new employees and have the ability to
allocate them to customers from the day they started. To safeguard privacy
requirements, these are entered with masking of names. Before these new
employees are included in Cegal’s systems, they are temporarily stored as
manually added consultants in the database. This is done to have them in
new projects quickly.

1.3 Motivation

Our motivation for this thesis is to help Cegal reduce their time finding
the correct consultant for the right engagement. The second thing that
motivates us is to make sure consultants are continuously assigned to en-
gagements and minimize the waiting time until they get assigned to a new
engagement. By doing this, our program will also help Cegal financially.
The more consultants who are out with clients, the more Cegal can invoice.

After our first meeting with Terje Strømstad, we felt this application was
something that would likely be beneficial for the business. Cegal just ac-
quired Sysco and Envision, and the number of employees has increased sig-
nificantly. Due to this, it has not been easy for the resource leaders to find
consultants and know about their skills. The leaders in Cegal noticed this
challenge and have since been committed to providing insights into business
needs for the product we developed. Their engagement has motivated us to
make an application that will cover the company’s challenges.

After speaking with the employees, it dawned on us that the employees can
also use this program in the future. But for them, the use of this program
would be a bit different. For example, the employees in the company could

2

1.4 Workflow

hopefully use the program to look up other employees to find out who to
ask for help when they need someone with a specific type of skill.

1.4 Workflow

Cegal works according to an agile framework called Scrum. This framework
helps teams to work better together. After getting an introduction to how
this worked, it got implemented into the workflow of this project. Scrum is a
workflow that divides more significant tasks into smaller tasks and presents
the projects more like an open book for those who work on that specific
project [7]. It’s normal to start building up a backlog with the Scrum team.
In this project, the Scrum team consists mainly of the students themselves
and the supervisors from Cegal. A backlog is a list of tasks required to
support a larger strategic plan [4]. Typical items in a backlog are user
stories, changes to existing feature, and bug fixes.

For our project, it was mainly user stories that were used, and the backlog
got finalized by the students with the help of the supervisors to prioritize
the items. The items ranked highest on the list represent the team’s most
important or urgent items to complete [4]. Target Process was used to
keep track of the backlog and user stories. Target Process is an application
that shows what you are working on and how far you have reached in your
project. It is a great tool to use for planning one week sprints. Sprints are
a short, time-boxed period where the Scrum team works to complete a set
amount of work. In Scrum, the sprints can last from 1 to 4 weeks, but it
was decided to work in one week sprints for this project.

An essential feature with Scrum is that you should be able to keep up with
the project and catch up if a person in your team is stuck and needs help.
That leads us to the daily stand-up meetings. Every morning fifteen minutes
were set aside to go through yesterday’s tasks and the plan for today.

At the beginning of the project, Monday, Tuesday, and Friday were set aside
to work on the project. Mainly work together in person as we both operate
better that way. It was decided to use LaTeX as the primary application
for writing the report.

3

1.4 Workflow

When making an application for a company, the company must be able to
develop the application further. Therefore, the GitHub placed in Cegals
infrastructure was used to develop our code. By using GitHub, it’s easier
for a developer to develop the application further.

4

Chapter 2

Background

2.1 “Previous work”

In a previous bachelor thesis, a group of students has created a searching tool
where a engagement demand is scanned and matched with the consultant’s
skills from Sysco’s CV program. Due to compatibility and completeness
issues, and different choices made for the software architecture, we chose
to build on some selected functions written by the former bachelor student
group. The inclusion of these accelerated our job, and freed time to solve
more tasks in the backlog.

2.2 Software technology background

The chosen stack for the program is a PostrgeSQL, Python, Vue and Node
stack, as shown in figure 2.1.

5

2.2 Software technology background

Figure 2.1: Development stack.

The thesis written by former bachelor students for Sysco, has used Python
and Python Flask for the backend. The programming language Python was
chosen because it contains good natural language processing libraries and
is quick in data analysis [8]. Because the resource management tool is built
on this code, it is natural to use the same programming language. Data
scientists in Cegal use mostly Python for programming, and for frontend,
developers use both React and Vue. In previous projects at the univer-
sity, Vue has been used frequently for frontend programming. Therefore,
it is a natural choice to use Vue in this project. Node is only used in the
development stage to build the frontend for deployment.

Relevant information about consultants is retrieved with API calls to CV
Partner and Resource Guru. The plan was to send API calls every time
the information was needed. However, because these calls take time, the
program required a database to store both the consultants and the en-
gagements. The database chosen is PostgreSQL because it is open-source
and contains many advanced features [19]. In addition, it is an accessible
database that is easy to use when writing queries.

One decision that had to be made early is how much of the code from the
previous project to use in the current project. As a result, only the most
necessary algorithms were used instead of working on the previous student’s
code. The old code was difficult to work with, and it used deprecated
Python packages. It would be very time-consuming to keep their code.
However, a keyword handler class, that matches text input to a list of
keywords, was made use of.

6

2.3 Application Programming Interface

2.3 Application Programming Interface

In order to integrate data from relevant programs, it was necessary to choose
the main API to receive data from to get started. Students from the previous
bachelor thesis only received the consultants from Sysco’s CV Partner. Due
to Cegal’s extensive use and integration of CV Partner, the best solution
for this project was to use an API from CV Partner. However, the API
from Resource Guru was needed to get the consultants’ utilization for a
new engagement. Both the product we developed, and all programs our
integrations connects to, are secured behind Cegal’s cloud portal which is
implemented in accordance with Cegal’s Information Security Management
System (ISMS).

2.3.1 CV Partner

The consultants are sourced with an API from Cegal’s CV Partner. It is an
application where the employees in Cegal can add their CVs. Each employee
is automatically added to CV Partner when they start, with name, email,
phone number, and department. The employees can also add a previous
project, education, skills, etc. CV Partner is used to choose consultants
for new engagements by looking at their skills, experience, and knowledge.
Since the resource management tool matches the consultants’ skills from
CV Partner with engagements, the employees in Cegal must update their
CVs regularly. Therefore, consultants should be motivated by the resource
management tool to update their CVs as the program is dependent on it to
work best.

2.3.2 Resource Guru

Previously when Cegal received an engagement demand for an engagement,
they used an excel sheet to control where consultants were allocated. All
the information about an engagement was written manually, and it was easy
to make mistakes. The resource owner wrote the consultants’ skills from
CV Partner in the excel sheet to match them with engagements manually.

7

2.4 Azure Active Directory

In matching processes today, the resource owner uses a combination of Re-
source Guru and CV partner. The matching process itself uses CV Partner
to look for which skills different consultants have that match the engagement
description. When a match is found, they need to check the consultant’s
availability in Resource Guru. The resource management tool is more user-
friendly and secure. It will make their allocation processes easier and less
time-consuming.

2.4 Azure Active Directory

Azure AD is a cloud-based identity and access management service [1].
Cegal uses Azure AD services to ensure that their employees can access
all external resources, such as Microsoft 365 and many other Software as a
Service applications. It also helps the employees to access internal resources
such as Cegal’s cloud portal.

Management of Azure’s services is restricted to IT admins. They will use
Azure AD to control the employees’ access to applications and applications
resources based on business requirements. Some employees are not supposed
to have access to specific programs, and an IT admin can control employee
access using the Azure AD portal. Cegal uses two-factor authentication
when accessing critical organizational resources.

App developers in Cegal use Azure AD as a standards-based approach for
adding single sign-on to the applications they develop or use, allowing it to
work with a user’s pre-existing credentials.

The resource management tool program will be connected to Azure AD to
make it easier for Cegal.

8

Chapter 3

Construction

This chapter considers the application’s structure, decisions made during
our work, and changes made.

It was decided to display and explain some data models to begin the con-
struction chapter. In the presentation of our code structure, both the
database structure and the different types of API will be explained. In
addition to this, the code structure, the security developed because of per-
sonal data, the functions behind the file uploading and the matching process,
will be described. By the end of the chapter, the decisions regarding user-
friendliness and feedback from our consulting meetings, will be described.

3.1 Data models

Data models are visual representations of data elements and the connec-
tions between them. Models support the development of effective informa-
tion systems by helping to define and structure data [5]. The data models
explained in this chapter are flow chart, site charts, and stack diagram.

9

3.1 Data models

3.1.1 Flowchart

With a flowchart, you will view the whole process of the application quickly
by using a few words and some figures. A flowchart will clearly show you
what happens at each stage and how this affects other decisions and actions
[2].

In the programs flow chart, as shown in figure 3.1, the application pages
are shown as gray rectangles, and the buttons on the pages are explained
as white rectangular boxes. Both form pages look like parallelograms. The
parallelograms indicate the pages where you will have some input and out-
put.

Figure 3.1: Flow Chart.

10

3.1 Data models

3.1.2 Stack diagram

In figure 3.2 we have visualized a frontend client that is communicating with
the backend through API calls. The backend fetches data from external
APIs, CV Partner and Resource Guru, and adds the needed data to the
database before serving it to the frontend. The diagram visualizes how
data moves around in the stack. It also pictures the responsibility of each
part of the stack.

Figure 3.2: Stack Diagram.

11

3.1 Data models

3.1.3 Site diagram

The application will be a user-friendly application. The first page is shown
to the left in figure 3.3. Here, the user has to log in to access the engagements
and consultants. After the user has logged in, a welcome page is shown, as
shown to the right in figure 3.3.

Figure 3.3: Site Chart for the Home page.

After the user has logged in, the user will access the engagement overview
page, as shown to the left in figure 3.4. The overview page will display
all the engagements the company has added. The plan for this page is to
make it easy and clear to read, to help the user navigate quickly to the
engagement it is looking for. From the overview page, the user will also be
able to navigate to the “Add new engagement” page, the “match” page, and
the “information about the engagement” page.

Figure 3.4: Site Chart for Engagements overview and Add engagement.

12

3.1 Data models

On the “Add new engagement” page, as shown to the right in figure 3.4,
the user will be able to upload a PDF file that automatically retrieves the
information about an engagement that is needed, or manually add the en-
gagement information. The engagement form to manually add engagements
are shown to the left in figure 3.5.

Figure 3.5: Site Chart for Engagement form and engagement information.

The “information about the engagement” page will be a simple page that
contains all the information about the engagement, as shown to the right
in figure 3.5. The idea is to make a function so that it is possible to edit
the engagement information.

The matching itself will take place on the “match” page. On this page, you
will get a list of all the consultants with matching skills as the engagement
requires, as shown to the left in figure 3.6. The idea is that we add a type of
filtering function to help the user navigate its way to the suited consultant.

Figure 3.6: Site Chart for match page and Consultants overview.

13

3.2 Code structure

The consultant page will be roughly similar to the engagement page. In
addition, the overview page will contain an overview of all the consultants,
as shown to the right in figure 3.6, and there will be a search function to
help the user navigate. This page will also guide the user to the “Add new
consultant” page and the “information about the consultant” page, as shown
in figure 3.7.

Figure 3.7: Site Chart for Consultant form and Consultants information.

Usually, all the consultants will be imported from CV Partner, but Cegal
wanted a way to add and match so-called no-names consultants. No-name
consultants are consultants that might not have started yet, which means
they are not in Cegal’s systems yet. On the “Add new consultant” page,
the user can add new consultants, as shown to the left in figure 3.7.

On the “information about the consultant” page, the user will get a simpli-
fied version of the consultants’ CV, as shown to the right in figure 3.7.

3.2 Code structure

The backend is written in Python flask, which connects to a PostgreSQL
database, and serves a Vue frontend. To archive the information needed
about each consultant, the backend sends API calls to both CV Partner
and Resource Guru and stores the data in the database.

14

3.2 Code structure

3.2.1 Database structure

The database contains three tables, one table for consultants, one for en-
gagements, and a table that maps between consultants and engagements.
The last-mentioned table is required because consultants may have many
engagements, and an engagement may have several consultants. There-
fore, the many-to-many relationship between the two tables is split into the
“ConToEng” table, as shown in figure 3.8. Such that data can be stored
and retrieved without creating duplicates.

Consultants

cid SERIAL

name VARCHAR(50) NOT NULL

phone SERIAL PRIMARY KEY

mail VARCHAR(50)

position TEXT

skills TEXT[]

role TEXT[]

... ...

ConToEng

eid (FK) INTEGER

phone (FK) INTEGER

Engagement

eid SERIAL PRIMARY KEY

name VARCHAR(100) NOT NULL

compName TEXT

location TEXT

reply TIMESTAMP

workplace TEXT

... ...

Figure 3.8: Database structure.

Cegal users can see a list of all the assigned consultants on the engage-
ment information page. This list displays the consultant’s full name and
phone number. This is done by using an advanced Postgres feature that
aggregates table joins into a JSON object that can be directly sent to the
frontend. The same method is used on the consultant profile site. As you
can see in the figure 3.9, all the engagements a consultant is assigned to are
listed for the user to see. A consultant is retrieved from the “Consultants”
table in the database. By joining the “ConToEng” and the “Engagement”
table with the “Consultants” table, we can build a JSON object with the
information needed from the “Engagement” table. The engagements will be

15

3.2 Code structure

a list containing a JSON object for each engagement.

Figure 3.9: Consultant added to an engagement (Dummy data).

The best choice for the primary key in the “Consultant” table is phone
number because consultants can update their information at CV Partner,
and new consultants can be added. The user can manually add a consultant
to make it possible to match a consultant that has signed a contract but
has not started yet. This is to get the consultants an engagement quickly
after they have begun. Manually added no-name resources will eventually
have their first working day. Then they get registered in Cegal’s systems,
including CV Partner, the consultant will be recognized by its phone number
and updated in the database with the information from CV Partner.

Since the phone number and mail addresses are unique, they could be used
as the primary key. However, because the manually added consultants do
not have a Cegal mail address, it was more relevant to use their phone
number. In addition, the risk of typos when entering data is higher for long
strings. Therefore, it is also better to use phone numbers as the primary
key. Another benefit of using phone numbers instead of mail addresses is
that index structures for integers are more compact and faster.

3.2.2 CV Partner API

When data is retrieved from CV Partner, the backend will call the CV
Partner API and update the database. The Python package retrieves all

16

3.2 Code structure

the users and an ID to get their CVs. Therefore, the application sends
one API call to get all the users, and then another one for each user to
get their CVs. Because their CVs includes a lot of information, only the
information necessary for the application is stored in the database. It keeps,
for example, name, phone number, mail, workplace, skills, education, and
former projects.

When the frontend or backend needs data from the API, the backend serves
data from the database instead of calling the API. This is done to speed up
data retrieval and reduce the number of API calls.

3.2.3 Resource Guru API

Knowing whether consultants are available or not for new engagements on
a given date is mandatory for this application. The utilization for each
consultant is retrieved from Resource Guru.

When the consultants’ resource IDs are retrieved from Resource Guru, an
API call is first sent to Resource Guru to find all the resources. Afterwards,
the API call responds with a small summary from all the consultants, con-
taining the resource’s name and ID. Finally, after retrieving the ID, the ID
is used in an API call to fetch the consultant’s email. This has to be done
for each resource.

Many consultants have not registered their phone number at Resource Guru.
Therefore, the consultant’s utilization is added to the database by recog-
nizing the consultant’s mail address.

For each consultant that matches an engagement, an API call is sent. The
query parameters in the API calls are the start- and end date of the engage-
ment and the resource ID for each consultant. Finally, the request returns
a report for each consultant containing their utilization between the start-
and end date.

The manually added consultants are registered with 0% utilization from
their start date. They will not be updated with availability from Resource
Guru before they have received a Cegal mail and are added to all of their
systems.

17

3.2 Code structure

3.2.4 Updating consultants information automatically

Getting information with API calls from CV Partner and Resource Guru is
time-consuming. The data has to be updated regularly as the consultants
can edit their information at CV Partner, and new consultants can be added
to Cegal’s systems. Instead of having an update button as first planned, a
function that updates the database by sending API calls once a day where
created. With the use of the multiprocessing package in Python, the package
lets us use multiple processes simultaneously [15]. It is used to run the
update function for the API calls periodically. The API to CV Partner
that fetches the user will be called every 24th hour. Then a function checks
whether the user’s phone number is already added to the database. The
consultant will be updated if the phone number is in the database. However,
if a manager or a resource owner adds a new consultant to CV Partner, the
consultant will be added if the phone number is not in the database. As the
consultants have their phone number as the primary key in the database, no
consultant will be added twice. The manually added no-names consultants
will have their phone numbers in the database. Therefore, they will be
updated the same way as the other consultants retrieved from CV Partner.

Not all consultants have written their phone number with their country code
in CV Partner. As Cegal have offices in other countries, the country code
is necessary when the phone number is called. Since the phone number
is stored in the consultant table as an integer, the country code is saved
independently in the table. Phone numbers have to have a minimum length
of eight. However, it can be longer than eight integers as the code will check
whether the user added the country code or not. The phone number gets
stripped for spaces. When the length exceeds eight, it is split by leaving
the last eight characters as the phone number and letting the remaining in
front be the country code. However, if the length equals eight characters,
the country code is found in a function. With Python’s geopy package, their
office location discovers the consultants’ country. Then, the country is used
to match with the countries in a country code file, containing countries and
their country code. Finally, the phone number is converted to an integer
before being added to the database.

18

3.2 Code structure

3.2.5 Azure Active Directory

Before we could enable Azure AD in the resource management tool, we
needed to create a project in the portal of Azure AD. The site gave a client
ID, a client secret, and a code example for Python flask. However, as the
resource management tool uses Vue in the frontend, this code had to be
changed to support it. The client ID, client secret, and a redirect URI were
altered to be the same in the code as at the portal.

By redirecting to the login for Cegal, the managers can log in with their
Cegal account, and their user gets stored in a cookie session until they log
out. Then, when the site is loaded, a function will check if there is a user
in the session, and if not, the person will have to log in to access the other
sites.

When a user uploads an engagement or adds a consultant to the program,
the logged-in user will be set as manager for the consultant and the re-
sponsible person for the engagement, as shown in figure 3.10. The user is
retrieved from the session and added to the database.

Figure 3.10: Responsible for the engagement.

3.2.6 Uploading an engagement

To find the best suited consultants for requested engagements, the sales
personnel can upload a PDF file and match it with the consultants’ skills.
To prevent Cross-site scripting [3], the extension check whether it is a PDF
or not. Cross-site scripting means that a possible attacker would not be
able to upload a malicious script [10]. Cross-site scripting can be avoided
by checking if the filename ends with ".pdf" and with python’s PDF2 PDF
File Reader package [17]. It checks if the file is a readable PDF file and
catches possible exceptions. If it is not legible, the user will get an error

19

3.2 Code structure

saying the file was not uploaded successfully.

The file is uploaded using FormData in Vue, which encrypts the file and
sends it to the backend. Then, by writing bits into another file on the local
server, the file can be stored as plain text in the database. Further, the
function opens the local file and uses the PYPDF2 Python package to read
the file. This package has a function that gets the number of pages, and by
looping over the pages, it can extract the text from each page.

The text gets translated to English, with the Translator class from google-
trans package, as the consultants’ skills are written in English. Before the
engagement is added to the database, a function finds the duration, start
date, location, and name of the company’s engagement. All this informa-
tion is retrieved by the “find()” function in python. The function searches
for common words that are placed in front of these variables. The function
used to find duration looks for the words “Months”, “Year”, “Duration”, “Du-
ration long” and “Contract Period”. Users can edit the engagements if this
function does not find the necessary information and add more information
about the engagement.

3.2.7 Match engagements with consultants

The application matches consultants’ skills, skills from previous projects,
and education degree with engagements. The match function checks whether
the engagement has a description or not for the manually added engagement,
as it is only required to add required skills for the engagement. If the en-
gagement has a description, the function will first find matching keywords
and then add the keywords that match the required skills.

Some engagements do not have education requirements, but for those en-
gagements that require a specific education degree, for example a bachelor
or master’s degree, the matching page will list whether the consultant fulfills
this requirement or not, as shown in the red square in figure 3.11. Consul-
tants education is retrieved from CV Partner, and if the engagements has
an education degree required, a function checks if the consultants’ have this
type of education degree. It will also say that the degree is satisfied if the
engagement requires a bachelor’s degree and the consultant have a master’s
degree.

20

3.2 Code structure

Figure 3.11: Consultants matched with an engagement (Dummy information).

The skills are displayed in numbers for user-friendliness as the consultants
can match many skills with the code from the previous bachelor thesis.
By clicking on the button “Show skills” as shown in the blue square in
figure 3.11, all the skills are displayed. These skills are both skills the con-
sultants have written at CV Partner and from previous projects. Because
skills can appear duplicated with the function from the previous bachelor
thesis, a function to remove the duplicates were created to save the skills
in a list without duplicates. Duplicates can happen if the consultants have
added skills in both CV Partner fields. Without removing the duplicates,
the number of skills on this page would be misleading.

Before an engagement can be matched with consultants, it needs a start
date and a duration. The Resource Guru API requires a start date and
an end date for the engagement to get the consultants’ utilization. The
start date for uploaded engagement can be found when the user uploads
a PDF or when the user manually adds the start date. If the engagement
does not have a start date or duration, an error message will be displayed
when a user tries to match the engagement. The end date is found in
a function using Python’s Dateutil Relativedelta package, using the start
date and the duration of the engagement. The function is called when a user
edits the engagements or when it matches the engagement with consultants.
Then it can use it to get the utilization from Resource Guru when the user
matches an engagement. For manually added engagements, the start date
and duration are required fields.

21

3.3 Data Security

Before matches are displayed, the match function checks whether the con-
sultants have started working at the company or not when the engagement
is about to begin. Then the matching page will only list the consultants that
have started working when the engagement begins. The manually added
consultants are displayed with a 0% utilization when they do not have any
engagements assigned.

3.3 Data Security

Since the resource management tool processes personal data about the con-
sultants in the company, the site has to be secure.

3.3.1 Storing secrets in Azure

Keys with identifying information are needed to be able to make APIs calls
[13]. For example, the CV Partner API requires only an API key. However,
the Resource Guru API needs both an API key and a secret key. The API
key is a public identifier for the application, and the secret key is used to
authenticate and make requests to the application. Both of these keys are
used to confirm the application’s identity. The secret key must not get
exposed, and storing secrets is risky [11]. These keys need to be stored and
used securely, and therefore, they are stored in the Azure AD Portal. Azure
Key Vault offers safe storage of secrets, and the application can easily and
securely access the keys without storing them in the source control [11].

3.3.2 Azure Active Directory

For authentication, Azure AD is used to identify the users. Since not all
employees at Cegal will have access to the resource management tool, Azure
AD only allows a restricted group to access the program. This restriction
is created by making a group in the Azure AD portal. This group only
contains the few users that have permission to use this program.

It is impossible to create a user at the website, as the user will use their

22

3.3 Data Security

Cegal account. Since Azure AD takes care of the login, the user password
does not have to be stored in the application. If we did not use Azure, we
would have to hash the password before storing it in the database to resist
possible attackers from accessing it.

Two-factor authentication prevents a possible attacker from getting the
same privileges as the users. Two-factor authentication is used in case an
attacker, for example, gets a hold of the passwords of one of the users [21].
The implementation of Azure AD includes a two-factor authentication with
the user’s password and the user’s phone. The two-factor authentication
helps to prevent an unauthorized person get access to the user accounts
[14].

3.3.3 Validation of user input

To prevent cross-site-scripting by a possible attacker, the user input gets
validated. By implementing Flask’s “escape()” function in all input fields at
the site, the special characters are converted into HTML-safe sequences [21].
However, since the escape function does not catch all the special characters,
the remaining ones are placed in a list, as shown in the code 3.1.

Kode 3.1: forms.py
8 avoid = ['$', '%', '=', '{', '}', '[', ']', '\\', '*', ...

'^', 'Â¨', '¬', '’]

Each input field in the application, that is not an integer, loops through
this list. If the input contains one of these characters an error message will
be shown, as shown in figure 3.12, and the user will have to fix the error
before sending the form.

Figure 3.12: Error message from validation of user input.

23

3.3 Data Security

Some of the input fields are required, as they are needed for the manually
added consultants or the manually added engagements. For example, the
start date and duration for engagements are fields that are required, as
explained in chapter 3.2.7. These fields are marked with a red star on the
form. If the user tries to submit the form before these fields are completed,
an error message will, in your computer language, appear at the required
input fields. All the input fields for integers do not allow numbers under
zero. The number of resources is needed, so the field is assigned to not allow
numbers under one, as shown in figure 3.13.

Figure 3.13: Error message when entering negative value.

3.3.4 Personal data

As the application stores personal data about the consultants in the database,
GDPR principles must be followed.

According to GDPR, information that can refer to a person, for example,
name, picture, email address, previous or current location, or health infor-
mation, is considered personal information [18]. Therefore, as the program
retrieves consultants from Cegal with CV Partner, information that can
relate to one of the consultants is removed from this report.

The program has been developed according to GDPR’s security of process-
ing personal data. Using Azure AD and only letting a few selected people
use the resource management tool makes sure that the program’s ongoing
confidentiality, integrity, availability, and resilience are secure [9].

Another way to improve security and comply with GDPR principles is by
pseudonymization and encrypting personal data [9]. Unfortunately, this has
not been done and is future work.

24

3.4 User-friendliness

Only the needed data is stored in the database, preventing possible attackers
from getting data that is not required. For example, no passwords are
stored in the database. The consultants in the company can also change
their information at CV Partner, and the information will be updated in
the database within 24 hours.

3.4 User-friendliness

This application is built on the fact that it will make it easier and more user-
friendly for the engagement owners. However, as we have told previously,
Cegal uses multiple applications such as CV Partner and Resource Guru.
The goal of this application is to collect necessary information from the
different applications and integrate that into our application.

This application will, in the beginning, only be used by people who work
with sales and consultant allocations processes. That means that the ap-
plication has to be built for these people and their needs. Even though
this application has a scaled audience, there are some user experience (UX)
guidelines that we are encouraged to use. Therefore, it was decided that a
meeting with the UX responsible for Cegal was necessary to follow Cegal’s
policies. As a result, several decisions were taken to improve the applica-
tion’s user-friendliness.

3.4.1 Buttons

When you are working with user-friendliness, buttons are crucial. We did
not have a plan for when the buttons should look a certain way in the ap-
plication. The buttons were just styled and placed randomly, so to improve
the user-friendliness, it was decided that different meanings of the buttons
should have different styles.

Buttons that have a purpose of navigating you to other pages have a simple
design. These buttons are there to route you to other pages in the applica-
tions but are not to draw your attention to them, as shown in figure 3.14.
You will see them change color when you hover over them.

25

3.4 User-friendliness

Figure 3.14: Simple button.

As you can see on button in figure 3.15, the action button is there to draw
your attention towards them. These types of buttons are used on pages
where the next step should be to push these buttons. For example, upload-
ing an engagement manually or adding a new consultant.

Figure 3.15: Action button.

3.4.2 Search

To help the user easily navigate through all the engagements and consul-
tants, we added a search box on the three overview pages. One for con-
sultants where you can search among the consultant’s names, and the two
other search boxes are placed on the “Engagement Overview” page and the
“Match” page. On these pages, you can search through everything shown
in the overview, anything from the start date to the name of the resource
owner. Usually, the search box was placed in the main menu at the top of
the page. We decided to remove this box and have smaller containers on
each page to help the user understand the purpose of this search box.

3.4.3 Sort instead of filtering

At the beginning of the project, the plan was to apply and add filtering
features for the application. The goal was to make it possible to filter on
skills, location, education, and experience on the matching page. However,
after attending some resource management meetings with the leaders and
resources owners, which is the people that will use our application, we clearly

26

3.4 User-friendliness

saw that our goal with filtering would not match their needs. Therefore it
was decided to use a sorting function and add a search box on the matching
page. The sorting function sorts the number of skills and percent utilization
from highest to lowest. When entering the matching page, it is sorting from
highest to lowest number of skills a consultant has by default. The user
can also sort alphabetically on engagement name, location, education and
position.

3.4.4 Routing to match

After testing for some time, we quickly saw the need to have a “match with
consultant” button on the overview page, as shown in the red square in
figure 3.16.

Figure 3.16: Match button from engagement overview page (Dummy data).

The “match with consultant” button was initially only placed on the engage-
ment information page. However, instead of routing the user through two
pages, adding an extra button on the overview page was decided. Adding
this to the overview page will help the user understand the application bet-
ter and how it works. An error will occur at this page if the engagement do
not have a start date and/or a duration, as explained in chapter 3.2.7.

27

3.5 Evaluation consulting

3.4.5 Skills view

Some extra functionalities were added to the skills column for user-friendliness
and the program’s functionality. As explained in chapter 3.2.7, the skills
are sorted from highest to lowest by default. We integrated a button that
makes all the consultant’s skills visible to spare the user time, as shown in
figure 3.11. Our first layout showed all the skills a consultant matched with
on the overview site. This worked when there were no more than five skills
per consultant. As soon as this started to scale up and each consultant got
ten to fifteen, the overview page became disorganized and lost its intention.
To still give the user the option to view the consultants’ skills without go-
ing to the detriment of making the page unclean, we integrated this “show
skills” button.

3.5 Evaluation consulting

After observing a couple of Cegal’s regular resource and engagement meet-
ings, it is easy to see their need for a resource management tool. Today,
assigning and finding the most suited consultants to incoming engagements
is done mostly manually, as explained in chapter 2.3.2.

Several consultants have days where they aren’t fully exploited. This is
poor utilization of the consultants and leads to less income for the company.
The consultants that are first discussed are usually the consultants that are
already booked for other engagements. This problem demonstrates their
need for a resource management tool.

One of the improvements this meeting led to was the thought of giving the
engagement a resource owner, and a responsible person for the engagement.
The resource owner is the person accountable for the human resources. The
resource area where the resource owner primarily originates is where they
have an overview of all the competence and personnel. Resource managers
allocate according to development plans and strategic priorities. The person
responsible in this case is the person who uploaded the engagement to the
application. It was necessary to get information about who uploaded the
engagement in case of questions regarding it. To optimize this process and

28

3.5 Evaluation consulting

save the user some time, we decided to automate this process. When a user
is uploading or manually adding an engagement, their name and phone
number will automatically be retrieved from the profile logged in through
Azure AD, as explained in chapter 3.2.5. This contact information is placed
under the “responsible” section on the engagement information page, as
shown in figure 3.10. By doing it this way, missing contact information
from the person who uploaded the engagement will never be a problem.

For the matching process, it emerged that the person in charge of allocating
consultants to engagements would like to see the position of the consultant.
Showing if the consultant is a senior consultant or a trainee helps the alloca-
tor decide what type of resources they will use for that specific engagement.
For example, some engagements do not require senior technical input, which
means a senior consultant with a high average rate is not optimal for that
engagement. Instead, a trainee could get the opportunity to experience how
it is to work in the field. Another example is if the rate for the engagements
is low, it is not optimal to hire a senior consultant for this engagement.

The merger of Cegal, Envision and Sysco has led to a significant increase in
consultants. Going from knowing all the consultants in the company to not
having a complete overview of all the consultants and their skills puts an
end to the old allocation process. It was important for the people that work
in these processes to quickly get the information about who the manager of
the consultant was.

29

Chapter 4

Results

This chapter will explain the resource management tool application and
its use. To get a better overview and understanding, we will include some
illustrations of each page. Then, for each page, we will explain what it is
and the functions each particular page has.

4.1 Frontpage

The first page you will see when you enter the application is the home page,
as shown in figure 4.1. This page is a clean page with no particular info
other than that it asks you to log in. Because this application is only for
people who work in Cegal, as explained in chapter 3.3.2, there is no place
to register as a user. The only way to log in to this application is by using
your existing Cegal email and password.

30

4.1 Frontpage

Figure 4.1: Home page when the user is not logged in

After the user has pushed the “login” button, they will be redirected to an
Azure AD site, as seen in figure 4.2. If the user is registered in the group
for the people who will have access to this application, they will be able to
log in as if it was your everyday log-in routine. If they do not have access to
this application, they will get a message saying they do not have permission
to log in.

Figure 4.2: Azure AD Login

31

4.1 Frontpage

When the user has logged in, there will be more to see and buttons to push.
The home page contains the same illustration as the first homepage has, but
with some more information, as shown in figure 4.3. In a meeting with the
UX responsible at Cegal, we were told to insert some more details on this
application. The text we added was a short description of the application
and what the user will mainly use it for.

Figure 4.3: Home page when the user is logged in

The logged-in user will also get more options in the menu bar. For example,
the consultants and engagements options will be viable next to “home”, as
shown in figure 4.4. These buttons will guide you to either the consultant’s
overview page or the engagements overview page.

Figure 4.4: Menu bar

To the right in figure 4.4, the user gets the option to log out. In addition
to the “logout” button, a short text is added to show the logged-in user’s
name.

32

4.2 Consultants

4.2 Consultants

4.2.1 Consultant overview

The consultant’s button in the menu bar will guide you to an overview
page. This page contains a complete overview of all the consultants Cegal
has, as shown in figure 4.5. The information shown on the overview page
is a photo, either a picture of themself or a standard user picture, the
consultant’s name, department and location.

Figure 4.5: Consultant Overview page

A search box has been added to this overview page to make it easier to
navigate, as explained in chapter 3.4.2. The user can use this search box to
search for the consultant’s name.

4.2.2 Consultant information

The “Show more info” button in figure 4.5 redirects you to an information
page. This information page is a summary of the consultant’s CV, as shown
in figure 4.6.

33

4.2 Consultants

Figure 4.6: Consultant Information page

The information shown on this page is the most necessary information the
user would need when allocating the consultant to an engagement. However,
if the user wants to get more information, a button placed under the picture
and the consultant’s name will take you to the consultant’s profile at CV-
Partner, as shown in figure 4.7. In addition, a “Send email” button to make
it quick and easy for the user to contact the consultant.

34

4.2 Consultants

Figure 4.7: Profile picture with links on the Consultant Information page.

Under the two buttons, in figure 4.7, a section called assigned engagements
has been added. Whenever a consultant is assigned to an engagement, the
engagement will be added to this section, as shown in figure 4.8. It will
contain information like the engagement name, duration, start date, and
company name. In addition to the consultant information, there is also an
information page for engagements. To quickly navigate to the engagement
information, a “Show more info” button to guide the user to this site has
been added.

35

4.2 Consultants

Figure 4.8: Consultant assigned to an engagement on the Consultant Information
page (Dummy data).

In the top right area of the information page, some basic information like
the name, phone number, location, department, and manager is listed, as
shown in figure 4.9.

Figure 4.9: Consultants information (Dummy data).

The following section on the information page is the skills, education, and
experience, as shown in figure 4.10. The skills section will give the user a
good overview of all the skills a consultant has added so that it is easy for the
user to see if the consultant has the right skills. The different types of de-

36

4.2 Consultants

grees a consultant has are listed in the education section. It says what kind
of degree, which year the consultant studied, and the name of the college or
university. The last section on the information page shows the experience
a consultant has. These experiences are typical of previous projects they
have participated in, so it will show the name of the engagement and the
name of the company.

Figure 4.10: Consultant’s skills, education and experience on the Consultant
Information page.

4.2.3 Add new consultant

The consultant overview page can also direct you to a page where the user
can add a new consultant, as shown in figure 4.11. As explained in chap-
ter 3.1.3, these consultants are so-called no-name consultants. No-name
consultants are consultants that have signed a contract but have not yet
started. The user can manually add the consultant to include these consul-
tants in the matching process.

37

4.3 Engagement

Figure 4.11: Add new consultant page.

Some input fields are necessary for the user to fill in. These types of inputs
are marked with some small red stars. When all the required fields are
completed, the user pushes the “Add consultant” button, and the page will
redirect the user to the consultant overview page. An error message will
show if the required fields are not filled, as explained in chapter 3.3.3.

4.3 Engagement

4.3.1 Engagement overview

The engagement overview is almost identical to the consultant overview
page. The only difference is that all the engagements are listed downwards,
as shown in figure 4.12. It was essential to get some feedback from the po-
tential users about the most necessary information to see. The information
the potential users wanted to see was implemented into this overview table.

38

4.3 Engagement

Figure 4.12: The Engagement overview page (Dummy data).

Two buttons on the side for each engagement have also been added, as shown
in figure 4.12. The first button redirects the user to an information page
about the engagement. This page is in case the user needs more detailed
information about a specific engagement or wants to edit the engagement
information. The second button will redirect the user immediately to the
matching process for a better user experience, as explained in chapter 3.4.4.

Equal to the consultant page, a search box has been added. This will help
the user to navigate easier, as explained in chapter 3.4.2. In addition, some
more search options to this search box has been added. For example, the
user can use this search box to search for the engagement name, company,
location and start date.

4.3.2 Engagement information

If the user wants to get more information about a specific engagement,
they can press the button that guides them to the engagement information
page. This page contains all the information an engagement should have
or typically got, as shown in figure 4.12. The most necessary information
regarding the engagement is placed in the first white section box at the top.

39

4.3 Engagement

Figure 4.13: Engagement information page.

The following section box is for the requirements the engagement has, as
shown in figure 4.14. This requirement is typically how much a consultant
will be allocated, what education degree they require, and lastly, the skills
the company mandate.

Figure 4.14: Requirements on the Engagement information page (Dummy data).

Since more than one user will be using this application, it was essential
to have a section showing the responsible for a specific engagement. The
person responsible for the engagements is the person who uploaded the
engagement to the application. The user’s name and email is automatically
filled in when uploading an engagement, as shown in figure 4.15. A section
like this has been added to help the user know who to contact regarding

40

4.3 Engagement

questions related to the engagement.

Figure 4.15: Responsible for the engagement on the Engagement information
page.

Another section that has been added is the assigned people and resources.
This section will either tell you that there are no people or resources as-
signed, like in figure 4.16. Or it will show all the added consultants, as
shown in figure 4.17. When a consultant is added, it will show the user the
consultant’s name and phone number.

Figure 4.16: No resources assigned to the engagement.

Figure 4.17: Resources assigned to the engagement (Dummy data).

At the bottom of the information page, a details section is placed, as shown
in figure 4.18. This section contains a description of the engagement. That
will typically be the company’s whole description text in their engagement
requests. In addition to this, there is a small field called notes. Notes are
there to give the user a place to write down important info regarding this
engagement.

41

4.3 Engagement

Figure 4.18: The engagement’s description and notes (Dummy data).

Since there will always be discrepancies in the application when uploading
a program or misspelling when adding an engagement manually, the user
can edit the engagement information anytime, as shown in figure 4.19.

Figure 4.19: Possibility to edit the engagement (Dummy data).

4.3.3 Add new engagement

Because of multiple ways to receive an engagement, there are two ways to
upload an engagement, as shown in figure 4.20. You can either upload the
engagement manually or upload a file.

42

4.3 Engagement

Figure 4.20: Add new engagement page

Manually

When users get an engagement request over a phone call or oral and do
not have a file to upload, they can quickly enter the information they got
manually, as shown in figure 4.21. However, when the user is going to add an
engagement manually, some fields are required. These fields are marked with
small red stars to indicate that they are needed. After the user has added
all the required information, it will push the “Add engagement” button at
the bottom of the page and will be redirected to the engagement overview
page.

43

4.3 Engagement

Figure 4.21: Add engagement manually.

File upload

The file upload option is the primary option in this application. However,
after attending many meetings and getting a better insight into how Cegal
works, there is no doubt that they mostly get engagement per email. These
emails either explain the engagement in the actual mail or has a PDF or
a Docx attached. The file that is uploaded to the application must be a
PDF. The user will be redirected to the engagement overview page when
the PDF is uploaded.

44

4.4 Match

4.4 Match

The match page and match function is the heart of the task. When the
user enters the matching page, an overview of all the consultants matched
with this engagement will be visible, as shown in figure 4.22. The summary
will display the consultants with the highest skills score at the top and will
allow the user to decide if they want to sort by skills or other columns.

Figure 4.22: Match page.

To simplify the display of skills, we have added a “Show skills” button.
When the user pushes this button, the consultant’s skills will be displayed,
as shown in figure 4.23.

45

4.4 Match

Figure 4.23: Match page where skills are shown.

The utilization indicates how much the consultant is allocated to other en-
gagements in this period. So, for example, if the consultant is 100% utiliza-
tion, they do not have spare time for this engagement. If this consultant is
needed in this engagement, the user knows there has to be a reorganization
of consultants.

The overview also shows the consultant’s location and whether the consul-
tant has an education that satisfies the engagement requirements and the
consultant’s position.

On the right side on the match page, as shown in figure 4.23, there are two
buttons. The first button will redirect the user to the consultant information
page, and the other button will add the consultant to the engagement. After
the user has added the consultant to the engagement, it will show a text
saying “Consultant added”.

46

Chapter 5

Discussion

This chapter will discuss what has been challenging through the develop-
ment of the program, including the program’s speed and further work. It
will also contain the company’s evaluation of the program.

5.1 Environmental accounts

The resource management tool is made to increase Cegals income and pro-
ductivity. There is a potential of increasing the utilization of consultants,
and shortening the sales cycle for new hires and returning consultants.

For example, one "filtered" and relevant customer request for a consultant
leads to an email written and sent to three to five key stakeholders, spending
10-20 minutes each reading, processing, and responding. There might be a
lot of filtered and relevant customer requests across the company per month.
By introducing the resource management tool to Cegal, they will most likely
be able to halve the time they spend on these customer requests. That in
itself is a considerable cost reduction.

Not having consultants in projects is an undesired value leakage for Cegal.
If they do not start early enough, it is assumed it takes some weeks to find
a new assignment for a returning consultant. This means the consultant

47

5.2 API

will not have a project after finishing the current project. Therefore, Ce-
gal wants to make sure consultants avoid being “between projects” for two
months. It is generally hard to find billable assignments that cover the
residual percentage of a billable assignment less than 100% allocated. The
resource management tool will help Cegal minimize the number of con-
sultants that end up being between projects, and this will help Cegal in
enabling better revenue and higher productivity.

5.2 API

Due to our lack of experience with external API and poor documentation, it
was challenging to get started with the API. Through testing with python-
requests, we validated a single request to Resource Guru. Once we had
something that worked, we quickly managed to automate it. However,
since tokens need to be revalidated every week, we selected to store the
token refresh information in a JSON file. The program reads the JSON
file before an API call is done and creates a header with the access token.
The access token needs to be refreshed if expired, which is currently done
manually.

5.3 Performance of the application

While developing the program, it has been observed that some functions are
time-consuming. With Python’s performance counter, we could calculate
the time of the different functions.

5.3.1 API calls

The most time-consuming functions are the API calls to CV Partner and
Resource Guru when all the consultants are received. The program uses
almost 3.5 minutes on the update function that retrieves the consultants
automatically, as it gets all of the several hundred consultants from Resource
Guru.

48

5.3 Performance of the application

The CV Partner API gathers the user information about each consultant
and includes an individual ID to access each user’s CV. Therefore, the pro-
gram sends two API calls to CV Partner for each consultant, as explained
in chapter 3.2.2. The information is provided as a dictionary containing
several dictionaries and lists. The data had to be structured before being
stored in the database, as only the required data is stored. As the informa-
tion in each CV comes in a large data format, with lists inside lists, it was
hard to find a way to make the code faster.

For example, the function that collects the skills from previous projects.
To get these skills and store them in the database, first, the program loops
through each consultant. Second, it loops through their project experiences,
and finally, through skills before it can check whether the consultant has
written their skill in English or Norwegian. This looping made the function
a runtime of O(n3). A runtime with high O-notation for large data sets
makes the program slow [16].

There are around 800 people at Cegal’s CV Partner and at Resource Guru,
and to get 10 of their CVs from CV Partner took almost 7.8 seconds.

On the other hand, getting 28 consultants and their information from the
database takes only 0.1390 seconds. This is why we needed a table for
the consultants in the database, as explained in chapter 2.2. Then the
consultants could be retrieved from the database instead of retrieving them
with API calls every time they are needed.

5.3.2 Match function

Another time-consuming function is the match function. Some of this code
is from the previous bachelor thesis. They have used multiple for-loops.
To match an engagement with consultants when there are only ten consul-
tants in the database takes almost 3 seconds. When the number of con-
sultants in the database increases to 800, multiple for-loops will be more
time-consuming.

The goal for this task is that assigning consultants to engagements should
go faster. However, even though the match function takes more time than
wanted, the program makes the allocation process more efficient. Before,

49

5.4 Further Work

the matching process had to be done manually between the engagement,
Resource Guru, and CV partner, as explained in chapter 2.3.2.

5.3.3 Database indexing

A way to increase the speed of the code is by using database indexing.
However, in this application, the consultants get updated daily, and it is
not recommended to use indexing if the data gets often updated [20].

5.4 Further Work

While creating the resource management tool, the work has been introduced
to different people who will use the program at Cegal. They have come up
with various suggestions for changes and features they would like and can
benefit from. Due to the time limit and the importance of having a working
MVP in the end, some parts were prioritized. However, if the program
would be further developed or there was more time, the wishes for extra
features were written in the backlog.

5.4.1 Evaluating consultants

In one of Cegal’s weekly resource and engagement meetings, they needed
to find consultants with a particular skill or experience. A new feature
could manage this problem by adding a search function for skills on the
consultants’ overview page. Then it would probably be relevant to list all
consultants that match the skill and their availability.

Another possibility would be to show the skills the engagement requests
on the matching page, and be able to filter based on these. Then, only
the consultants that match the chosen skills would be listed. To integrate
this into the program, we would need a function that searches for skills
in the PDF files. The uploaded files match with consultants based on the
whole file, not skills from the file. A way to find the skills is to have a
list of common skills based on all the consultant’s skills from CV Partner,

50

5.4 Further Work

which could be extended if new skills were added. Then the skills in this
list could be searched for in the uploaded file, and the skills found could be
added as the engagements wanted skills. If each engagement had preferred
skills, a present match could also be added based on skills, as we planned
to implement at the beginning of the project.

At one of the meetings with the Sales department, a feature was requested.
The request was to be able to upload the CV for the consultants that
have not yet started, the so-called no-names. Now they have to be added
manually. However, this requires access to all new employees’ CVs. It would
have been possible with more time and the required permit. The CVs could
be handled as the uploaded engagements are handled. Then, the program
could search for the different categories needed, and the users could be able
to edit the information received from the file.

Another thing this person from Sales requested was an average rate on
consultants, as some engagements do not require a senior consultant. If
an average rate for a consultant were added, the company that demands
a consultant might not be willing to pay the rate set for the consultant.
As explained in chapter 3.5, the position of each consultant was added to
help the user decide what type of resources they will use for that specific
engagement. However, they suggested making a function that calculates
the average rate based on their position, such as a trainee, senior, etc.
This calculating function is a helpful feature that would be prioritized with
enough time. A list with the average rate for the different positions would
also be needed.

At another project presentation, a person was missing some of the categories
for the engagements. Therefore, he requested that the program could have
a link to SalesForce, where all the categories for Cegal’s sales are located.
To get this link between our program and SalesForce, we would have to
have the proper access to this site and include another API in the program.

There was also a request for a priority option on the match function. Then
the resource owners could prioritize a previous engagement similar to the
requested engagement. In the program now, the users have to view the
matched consultant’s profile to see their previous engagements. If an input
field was added to write in the name of a similar engagement, the match
function could sort out the people on this project. However, another way is

51

5.4 Further Work

to add previous engagement to the matching page and let the user search
for it.

5.4.2 Resource Guru API

As the access to Cegal’s Resource Guru account was not given to the appli-
cation before the end of the project, as explained in chapter 5.2, it was not
time to do the optimal approvements for the program’s speed.

All the resources are retrieved with the Resource Guru API every time the
update function runs. Then, another API call retrieves the email address for
each resource and updates the utilization ID in the database, as explained
in chapter 3.2.3. If there were more time, a function would be created to
check whether the utilization ID is added to the consultant table in the
database or not. The function would avoid the last-mentioned API call
for the consultants already added to the database and make the update
function quicker.

After the access token has expired, it has to be manually refreshed. The
access token received is short-lived, and the refresh token is long-lived [6].
The refresh token is the token we would use to refresh the access token.

5.4.3 Unassign consultants from engagements

As the users can assign consultants to engagement, they should have been
able to unassign them. Since it is easy to make a mistake or other users
may disagree with the user who assigned the consultant to an engagement.
For better user-friendliness, further work would be to unassign them from
engagements. A delete button could be added on the engagement and
consultant pages, which deletes the relationship between the engagement
and consultant in the database. An unassign button could also be added to
the matching page where the consultants get added as the users easily can
undo their assigning if they clicked in error.

52

5.4 Further Work

5.4.4 Data security

Security is more important than ever and especially when personal infor-
mation is involved. Only a small group of people will have access to the
site, and no one else must get their hands on this information. Therefore,
our priority in our future work would be to develop further and strengthen
security.

For example, to avoid the user’s profile being abused or the user’s session
being hijacked, an automatic logout function that logs the user out after a
specific time could be implemented [21].

Since Azure AD is used for log-in, this logout function has to be configured
in the Azure Portal. The web app session timeout is set to “rolling” as
default [12], which means that the user is stored in the cookie every time
the user refreshes the site unless the user logs out. By changing the web
app session timeout to “absolute”, we could set a time for when the user has
to re-authenticate.

53

Bibliography

[1] . Azuread. https://docs.microsoft.com/en-us/azure/
active-directory/fundamentals/active-directory-whatis.

[2] Flow charts, identify and communicate your optimal process. https:
//www.mindtools.com/pages/article/newTMC_97.htm.

[3] . Uploading files - flask documentation (2.0.x). https://flask.
palletsprojects.com/en/2.0.x/patterns/fileuploads/.

[4] What is a backlog? https://www.productplan.com/glossary/
backlog/.

[5] What is a data model? https://www.erwin.com/solutions/
data-modeling/data-model.aspx.

[6] Daniil Penkin. Refresh tokens using python requests.
https://community.atlassian.com/t5/Bitbucket-questions/
Refresh-Tokens-using-Python-requests/qaq-p/1213162, 28.okt
2019.

[7] Claire Drumond. What is scrum? https://www.atlassian.com/
agile/scrum.

[8] Høyvik, S. and Grimstad Lierstuen, J. Socmo - smart optimal consul-
tant matching and offering. [Unpublished bacehlor’s thesis]. University
of Agder, 2021.

[9] Intersoft Consulting. Security of processing. https://gdpr-info.eu/
art-32-gdpr//.

[10] KirstenS. Cross site scripting (xss). https://owasp.org/
www-community/attacks/xss/, 18.sep 2015.

54

https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-whatis
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-whatis
https://www.mindtools.com/pages/article/newTMC_97.htm
https://www.mindtools.com/pages/article/newTMC_97.htm
https://flask.palletsprojects.com/en/2.0.x/patterns/fileuploads/
https://flask.palletsprojects.com/en/2.0.x/patterns/fileuploads/
https://www.productplan.com/glossary/backlog/
https://www.productplan.com/glossary/backlog/
https://www.erwin.com/solutions/data-modeling/data-model.aspx
https://www.erwin.com/solutions/data-modeling/data-model.aspx
https://community.atlassian.com/t5/Bitbucket-questions/Refresh-Tokens-using-Python-requests/qaq-p/1213162
https://community.atlassian.com/t5/Bitbucket-questions/Refresh-Tokens-using-Python-requests/qaq-p/1213162
https://www.atlassian.com/agile/scrum
https://www.atlassian.com/agile/scrum
https://gdpr-info.eu/art-32-gdpr//
https://gdpr-info.eu/art-32-gdpr//
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/

BIBLIOGRAPHY

[11] Microsoft. Manage secrets in your server apps with azure
key vault. https://docs.microsoft.com/en-us/learn/modules/
manage-secrets-with-azure-key-vault/.

[12] Microsoft. Configure session behavior in azure ac-
tive directory b2c. https://docs.microsoft.com/en-us/
azure/active-directory-b2c/session-behavior?pivots=
b2c-user-flow, 14.mar 2022.

[13] Microsoft. Best practices for secure applications. https:
//docs.microsoft.com/en-us/linkedin/shared/api-guide/
best-practices/secure-applications, 4.jun 2022.

[14] NTNU. Two-factor authentication. https://i.ntnu.no/wiki/-/
wiki/English/Two-factor+authentication.

[15] Python. multiprocessing — process-based parallelism. https://docs.
python.org/3/library/multiprocessing.html.

[16] Semi Koen. The big o notation. https://towardsdatascience.com/
the-big-o-notation-d35d52f38134, 19.jun 2020.

[17] Stackoverflow. Check whether a pdf-file is valid with
python. https://stackoverflow.com/questions/559096/
check-whether-a-pdf-file-is-valid-with-python, 18.sep 2015.

[18] SuperOffice Norge AS. Hva er gdpr, og hva betyr det for din bedrift?
https://www.superoffice.no/ressurser/artikler/hva-er-gdpr/.

[19] The PostgreSQL Global Development Group. Postgresql: The
world’s most advanced open source relational database. https://www.
postgresql.org/.

[20] Wikipedia. Database index. https://en.wikipedia.org/wiki/
Database_index, 7.jan 2022.

[21] Åse J. Sagebakken and Liv Underhaug and Mina Wøien. Dat250 -
report. [Unpublished DAT250 report]. University of Stavanger, 15.apr
2020.

55

https://docs.microsoft.com/en-us/learn/modules/manage-secrets-with-azure-key-vault/
https://docs.microsoft.com/en-us/learn/modules/manage-secrets-with-azure-key-vault/
https://docs.microsoft.com/en-us/azure/active-directory-b2c/session-behavior?pivots=b2c-user-flow
https://docs.microsoft.com/en-us/azure/active-directory-b2c/session-behavior?pivots=b2c-user-flow
https://docs.microsoft.com/en-us/azure/active-directory-b2c/session-behavior?pivots=b2c-user-flow
https://docs.microsoft.com/en-us/linkedin/shared/api-guide/best-practices/secure-applications
https://docs.microsoft.com/en-us/linkedin/shared/api-guide/best-practices/secure-applications
https://docs.microsoft.com/en-us/linkedin/shared/api-guide/best-practices/secure-applications
https://i.ntnu.no/wiki/-/wiki/English/Two-factor+authentication
https://i.ntnu.no/wiki/-/wiki/English/Two-factor+authentication
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://towardsdatascience.com/the-big-o-notation-d35d52f38134
https://towardsdatascience.com/the-big-o-notation-d35d52f38134
https://stackoverflow.com/questions/559096/check-whether-a-pdf-file-is-valid-with-python
https://stackoverflow.com/questions/559096/check-whether-a-pdf-file-is-valid-with-python
https://www.superoffice.no/ressurser/artikler/hva-er-gdpr/
https://www.postgresql.org/
https://www.postgresql.org/
https://en.wikipedia.org/wiki/Database_index
https://en.wikipedia.org/wiki/Database_index

	Content
	Abstract
	Introduction
	Task background
	Implementation goal
	Motivation
	Workflow

	Background
	``Previous work''
	Software technology background
	Application Programming Interface
	CV Partner
	Resource Guru

	Azure Active Directory

	Construction
	Data models
	Flowchart
	Stack diagram
	Site diagram

	Code structure
	Database structure
	CV Partner API
	Resource Guru API
	Updating consultants information automatically
	Azure Active Directory
	Uploading an engagement
	Match engagements with consultants

	Data Security
	Storing secrets in Azure
	Azure Active Directory
	Validation of user input
	Personal data

	User-friendliness
	Buttons
	Search
	Sort instead of filtering
	Routing to match
	Skills view

	Evaluation consulting

	Results
	Frontpage
	Consultants
	Consultant overview
	Consultant information
	Add new consultant

	Engagement
	Engagement overview
	Engagement information
	Add new engagement

	Match

	Discussion
	Environmental accounts
	API
	Performance of the application
	API calls
	Match function
	Database indexing

	Further Work
	Evaluating consultants
	Resource Guru API
	Unassign consultants from engagements
	Data security

	Bibliography

