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Summary

The goal of this thesis was to learn about the theory of Lie algebras,
Lie groups and some real geometric invariant theory, with emphasis
on semisimple Lie group theory. The material in this thesis was not
known to me beforehand, so the thesis represents the material which
I have learned from scratch. The main motivation for studying the
material in this thesis was to get insight into a problem in pseudo-
Riemannian geometry intersecting real geometric invariant theory.
This problem consists of classifying tensors under the action of a
semisimple Lie group. An important case is where the Lie group is
the orthogonal group O(n,C) and the real forms are O(p, q) where
p + q = n. We investigate some aspects of this problem at the end
of the thesis, where we consider O(n) (the compact real form) and
O(p, q) an arbitrary real form acting on their Lie algebras via the
adjoint action.

Consider a real semisimple matrix group G with real Lie algebra
g. Let GC and gC be the complexifications, i.e G is a real form of
GC and similarly g of gC. We let G̃ be another real form of GC, i.e
it’s Lie algebra g̃ is another real form of gC. Suppose GC acts on a
complex vector space V C, and that the action restricts to actions of
the real forms G, G̃ on real forms V, Ṽ of V C. An example of this
is the adjoint action where the Lie groups act on their Lie algebras.
We can ask questions about the relationship between the real orbits
contained in a complex orbit.

Suppose Gx ⊂ V and G̃x̃ ⊂ Ṽ are two real orbits contained in
the complex orbit GCx ⊂ V C. Do they intersect in general? What
if one of the real orbits is closed, do they intersect? If so is there
a relationship between the minimal vectors of one orbit to the other?

The adjoint action can be extended to an action on the vector
space of endomorphisms of the Lie algebra. Suppose G̃ is an arbi-
trary real form of GC and G is the compact real form chosen w.r.t
a Cartan involution θ̃ of G̃. We prove that if two real orbits GR
and G̃R̃ are conjugate, then the symmetric/antisymmetric parts of
R̃ w.r.t to the Killing form κ(−,−) must coincide with the symmet-
ric/antisymmetric parts w.r.t the inner product κθ̃(−,−).
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CHAPTER 1

The structure of a complex semisimple Lie algebra

1. Preliminaries

Most of what is written in this chapter is based on material from [1] and [3].

Definition 1.1. A Lie algebra L over a field K is a K-vector space equipped with a

Lie bracket [−,−] : L× L → L satisfying the following conditions:

(1) The Lie bracket [−,−] is bilinear.

(2) For all x ∈ L we have [x, x] = 0.

(3) The Jacobi identity holds, i.e [x, [y, z]]+[y, [z, x]]+[z, [x, y]] = 0 for all x, y, z ∈ L.

We assume throughout the chapter that our Lie algebra is finite dimensional and we

will always work over the fields R or C. Here is a list of some standard examples of

matrix Lie algebras equipped with the commutator bracket: [X, Y ] = XY − Y X for

square matrices X, Y .

Example 1.1.

• gl(n,C) = M(n,C) = { n× n square matrices over C}.
• sl(n,C) = {X ∈ gl(n,C)|tr(X) = 0}, this is called the special linear Lie algebra.

• b(k,C) = {X ∈ gl(k,C)|X is upper triangular}.
• n(k,C) = {X ∈ gl(k,C)|X is strictly upper triangular}.
• o(p, q) = {X ∈ gl(n,R)|X tIp,q = −Ip,qX} where p + q = n, this is called the

orthogonal Lie algebra.

In general if X ∈ gl(n,K) then the set glX(n,K) = {x ∈ gl(n,K)|xtX = −Xx} forms

a Lie subalgebra of gl(n,K), here are some important examples.

Definition 1.2. [Classical Lie algebras]. Let n ≥ 1 and S1 be the 2n× 2n matrix

in block form S1 =

(
0n In
−In 0n

)
, we define the symplectic Lie algebra

sp(2n,C) = {x ∈ gl(2n,C)|xtS1 = −S1x} = glS1
(2n,C).

1
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Similarly let S2 =

(
0n In
In 0n

)
be the 2n × 2n matrix then we define the special or-

thogonal Lie algebra to be:

so(2n,C) = glS2
(n,C).

Finally let S3 =




1 0 0

0 0 In
0 In 0



 be the 2n+ 1× 2n+ 1 matrix then we define

so(2n+ 1,C) = glS3
(n,C).

The classical Lie algebras are defined to be sl(n,C), so(n,C) and sp(2n,C).

Definition 1.3. Let L, L̃ be Lie algebras over K then a Lie homomorphism φ : L → L̃

is a linear map such that

φ([x, y]) = [φ(x), φ(y)]

for all x, y ∈ L. We say it is a Lie isomorphism if the map is also bijective.

For later notation we will refer to a surjective homomorphism of Lie algebras as an

epimorphism and an injective one as a monomorphism. We write Aut(L) for the

group of all automorphisms of L, i.e the group of all Lie isomorphisms L → L.

Now since our Lie algebra L is a finite dimensional vector space then given a basis

{ej}j of L we can write [ei, ej] =
∑

l C
l
ijel for suitable constants C

l
ij in our field. These

are called the structure constants of L w.r.t {ej}j. It is not difficult to see that in

order to have a Lie isomorphism L → L̃ for two Lie algebras, then there must be a

basis of L and a basis of L̃ such that their structure constants are the same.

Definition 1.4. A Lie algebra L is said to be semisimple if it has no non-zero abelian

ideals. Moreover we say that L is simple if L is non-abelian and has no non-trivial

proper ideals.

Let L, L̃ be Lie algebras then we define [L, L̃] to be the Lie algebra generated by the

set {[x, y]|x ∈ L, y ∈ L̃}. Define now Lk = [L,Lk] for k ≥ 1 and L(k) = [L(k−1), L(k−1)]

for k ≥ 1 where L(0) = L1 = L and set L′ = L(1). We say that L is nilpotent if

Lk = 0 for some k ≥ 1, similarly we say that L is solvable if L(k) = 0 for some k ≥ 0.

An example of a nilpotent Lie algebra is n(k,C), and a solvable one is b(k,C).

We also have the notion of an abelian Lie algebra L. This is one which the Lie

bracket is zero, i.e [x, y] = 0 for all x, y ∈ L. We note that the following inclusions

hold within Lie algebras which is analogous to groups:

{abelian} ⊂ {nilpotent} ⊂ {solvable}.
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Consider now a Lie algebra L then there is an ideal of L containing every solvable ideal

of L, denote by Rad(L) called the radical of L. To see this we note that if L does

not contain any non-trivial solvable ideals then clearly we can set Rad(L) = 0. So

assume 0 '= I!L is solvable and let Rad(L) be the maximal solvable ideal containing

I. Now if Ĩ is any other solvable ideal of L then obviously I + Ĩ is also solvable and

an ideal of L. So I + Ĩ = Rad(L) and Ĩ ⊂ Rad(L). This shows the existence of such

an ideal.

Proposition 1.1. Let L be a Lie algebra then the following are equivalent:

(1) Rad(L) = 0 where Rad(L) is the radical of L.

(2) L is semisimple.

(3) L contain no non-trivial solvable ideals.

Recall that a linear map f : V → V is said to be nilpotent if fk = 0 for a suitable

k ≥ 1. Now if V is complex then we can choose an eigenvalue of f and by an argument

using induction, we can show that f being nilpotent is equivalent to saying that there

is a basis of V in which the matrix representing f is strictly upper triangular.

The following theorem is important and generalizes nilpotency of maps to subalgebras

of maps in gl(n,C). It will be used throughout this chapter.

Theorem 1.1. [Engel’s Theorem] Let L ≤ gl(V ) be a Lie subalgebra of gl(V ) with

V a finite complex vector space. Assume that every element of L can be represented

by a strictly upper triangular matrix. Then there exist a basis of V such that every

element can be simultaneously represented by a strictly upper triangular matrix.

Proof. For proof see [3], section 6.1. "

Theorem 1.2. [Lie’s Theorem] Let L ≤ gl(V ) be a solvable Lie subalgebra where

V is a finite dimensional complex vector space. Then there exist a basis of V such that

every element of L can simultaneously be represented by a upper triangular matrix.

Proof. For proof see [3], section 6.4. "

So we see that if L ≤ gl(V ) satisfies the conditions in Engel’s theorem then L lives

in n(k,C), i.e there is an obvious monomorphism L ↪→ n(k,C) for k = Dim(V ).

This shows that L is nilpotent since n(k,C) is nilpotent. Similarly if L satisfies the

conditions in Lie’s theorem then there is a copy of L in b(k,C), so L is solvable.
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If L is a Lie algebra then we define ad(L) ≤ gl(L) to be the adjoint Lie algebra

consisting of all maps of the form ad(x) : L → L for a suitable x ∈ L where

ad(x)(y) = [x, y]

for all y ∈ L. By using the Jacobi identity we see that these maps are in fact Lie

homomorphisms of L. In fact there is a natural homomorphism Ad : L → gl(L)

defined by Ad(x) = ad(x) and we see that Z(L) = ker(Ad). This homomorphism is

called the adjoint representation. In particular if L is semisimple then the center

Z(L) must be trivial, i.e Ad is an isomorphism from L to ad(L) in this case.

Lemma 1.1. Let ψ : L → L̂ be an epimorphism of Lie algebras then L is nilpotent if

and only if L̂ is nilpotent. In particular L is nilpotent if and only if ad(L) is nilpotent.

Proof. For k ≥ 0 let Lk+1 = [L,Lk], we proceed by induction on k to show that

ψ(Lk) = L̂k. We note that since ψ is linear then it is enough to consider elements

of the form [x, y] for x, y ∈ L. For k = 0 then L1 = L′ and so if [x, y] ∈ L′ we have

ψ([x, y]) = [ψ(x), ψ(y)] ∈ L̂′, so ψ(L′) ⊂ L̂′. Moreover since ψ is an epimorphism then

any [x̂, ŷ] ∈ L̂′ has the form [ψ(x), ψ(y)] for suitable x, y ∈ L, hence ψ([x, y]) = [x̂, ŷ]

so L̂′ ⊂ ψ(L′) as required. Now if the statement holds for all k ≥ 0 then we need to

show that ψ(Lk+1+1) = L̂k+1+1. Indeed we have

ψ(Lk+1+1) = ψ([L,Lk+1]) = [L̂, ψ(Lk+1)] = [L̂, L̂k+1] = L̂k+1+1

as required. Now the second statement follows from the fact that the adjoint repre-

sentation L → ad(L) is an epimorphism. "

We note that the previous lemma also works for solvable Lie algebras as well. The

proof follows in a similar way.

Corollary 1.1. Let L be a nilpotent complex Lie algebra then every element of ad(L)′

is nilpotent. In particular L′ is nilpotent.

Proof. Since ad(L) is solvable then applying Lie’s theorem we can find a basis

such that every element of ad(L) can simultaneously be represented by an upper

triangular matrix. In particular for any x, y ∈ L the map [ad(x), ad(y)] is represented

by a strictly upper triangular matrix with respect to this basis, hence it is nilpotent.

Now apply Engel’s theorem to ad(L)′ to show that there is a monomorphism

ad(L)′ ↪→ n(Dim(L),C).

But n(Dim(L),C) is nilpotent so therefore so is ad(L)′. This shows that L′ is nilpotent

as required. "
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2. The Killing form

Definition 1.5. Let L be a Lie algebra then the Killing form κ of L is defined to be

the map κ : L× L → K given by κ(x, y) = tr(ad(x) ◦ ad(y)) for all x, y ∈ L.

Occasionally we will write κL when referring to the Killing form of a Lie algebra L.

We also denote the orthogonal space L⊥ = {x ∈ L|κ(x, y) = 0, ∀y ∈ L} of L w.r.t κ.

This space is in fact an ideal of L, which is a consequence of the associative property

of κ, we will come back to this later.

We note that the Killing form κ of a Lie algebra L does not depend on a basis

chosen. To see this let x, y ∈ L and A be the matrix representing the linear map

ad(x) ◦ ad(y) : L → L. Then a change of basis leads to similarity of matrices. So if

Ã is the resulting matrix of ad(x) ◦ ad(y) after a basis change then Ã = S−1AS for a

suitable invertible matrix S. Hence

tr(Ã) = tr(S−1AS) = tr(ASS−1) = tr(A)

by symmetry of the trace.

Proposition 1.2. Given a Lie algebra L the Killing form κ is a symmetric associative

bilinear form on L.

Proof. We show associativity of κ. So let x, y, z ∈ L then

κ(x, [y, z]) = tr(ad(x) ◦ ad[y, z]) = tr(ad(x) ◦ (ad(y) ◦ ad(z)− ad(z) ◦ ad(y))) =

= tr(ad(x) ◦ ad(y) ◦ ad(z))− tr(ad(x) ◦ ad(z) ◦ ad(y)) =

= tr(ad(x) ◦ ad(y) ◦ ad(z))− tr(ad(y) ◦ ad(x) ◦ ad(z)) =

= tr(ad([x, y]) ◦ ad(z))) = κ([x, y], z).

All by the symmetry and linearity of the trace map, and since the adjoint represen-

tation ad is a Lie homomorphism. "

Proposition 1.3. If L is a Lie algebra and ψ ∈ Aut(L) then κ(ψ(x), ψ(y)) = κ(x, y)

for all x, y ∈ L. More generally if L ∼= L̂ with isomorphism L →ψ L̂ then κL(x, y) =

κL̂(ψ(x), ψ(y)) for all x, y ∈ L.

Proof. Assume ad(x) and ad(y) are represented by the matrices A,B respec-

tively with respect to a basis x1, x2, . . . , xn of L. We observe that ψ(x1), . . . ψ(xn) is

a basis for L as well because ψ is invertible. In particular with respect to this basis

ad(ψ(x)) and ad(ψ(y)) also have the matrices A,B respectively as ψ preserves the Lie
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bracket, and so the first statement follows. A similar argument holds for the second

statement. "

In particular if L and L̃ are two Lie algebras such that κL is negative semi definite

but κL̃ is not then L and L̃ cannot be isomorphic. The following is an example of

this.

Example 1.2. Consider sl(2,R) and R3
∧ which is the Lie algebra R3 with the Lie

bracket given by the cross product. They are clearly isomorphic as vector spaces since

they both have dimension 3, but they are not as Lie algebras. To see this an easy

calculation shows that the Killing form of R3
∧ is negative definite, which is not the

case for sl(2,R). In fact sl(2,R) with the standard basis

{h = e11 − e22, e = e12, f = e21}

have Killing form matrix given by:




0 4 0

2 0 0

0 0 8



 . So in particular κ(h, h) > 0. While

R3
∧ has Killing form matrix given by:




−1 0 0

0 −2 0

0 0 −2



 w.r.t the standard basis

{i, j, k}.

It turns out however that over C the Lie algebras sl(2,C) and C3
∧ are in fact isomor-

phic.

If L, L̃ have the same Killing form matrix then they need not be isomorphic, indeed

consider L any 1-dimensional Lie algebra and L̃ be trivial then their Killing form

matrices are both zero but L ! L̃.

It is clear that an abelian Lie algebra must have Killing form which is identically zero,

more generally we have.

Proposition 1.4. The Killing form of a nilpotent complex Lie algebra L is identically

zero. In particular L⊥ = L.

Proof. Let β, α ∈ L and suppose L has nilpotency class k ≥ 1, i.e Lk = 0 where

k is minimal. Consider the linear map f = ad(β)◦ad(α) then we begin by noting that

f 2(x) = [β, [α, [β, [α, x]]]] ∈ L4 for x ∈ L. So by induction we claim that fn(L) ⊂ L2n.

Indeed if n = 1 then f(L) = [β, [α, L]] ⊂ L2 as [α, L] ⊂ L1. Now if fn(L) ⊂ L2n holds

for all n ≥ 1 then

fn+1(L) = ad(β)◦ad(α)◦fn(L) = [β, [α, fn(L)]] ⊂ [β, [α, L2n]] ⊂ [β, L2n+1] ⊂ L2(n+1)
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as required. This shows that fk = 0 hence f is nilpotent and so can be represented

by a strictly upper triangular matrix, in particular

tr(ad(β) ◦ ad(α)) = κ(β, α) = 0.

Since this holds for any α, β ∈ L the proof is complete. "

Note that the previous proof also works over algebraically closed fields, since then a

nilpotent map can be represented by a strictly upper triangular matrix.

3. Cartan’s criteria

We assume now that our Lie algebra is over C. In this section we will see how the

Killing form is related to the semisimplicity of a Lie algebra. We will also see that in

order to classify the semisimple Lie algebras over C it is enough to classify the simple

ones.

Lemma 1.2. If L ⊂ gl(V ) is a Lie algebra such that tr(x ◦ y) = 0 for all x, y ∈ L

then L is solvable.

Proof. See for example [3], Proposition 9.3. "

The following lemma shows that the Killing form of L restricted to an ideal of L

coincides with Killing form of the ideal. If I ≤ L is a Lie subalgebra we will denote

the orthogonal subspace to I w.r.t κ by I⊥ = {x ∈ L|κ(x, y) = 0, ∀y ∈ I}.

Lemma 1.3. Let L be a Lie algebra and I # L then κI(I, I) = κL(I, I). Moreover

we have I⊥ # L, where I⊥ is the orthogonal subspace to I with respect to the Killing

form of L.

Proof. Let x, y ∈ I # L be given and suppose x1, . . . xn is a basis for I then we

can extend to a basis for L say x1, . . . xn, yn+1, . . . ym. So denote A,B for the matrices

which represents adI(x) and adI(y) w.r.t this basis respectively. Then ad(x)(xj) =

adI(x)(xj) for all j and ad(x)(yj) =
∑

l λlxl for some λj ∈ C, similarly for ad(y).

So that the matrix of ad(x) have the form

(
A S

0 0

)
and similarly ad(y) has matrix

(
B S̃

0 0

)
for some n× n matrices S, S̃. This shows that ad(x) ◦ ad(y) has matrix

(
AB AS̃

0 0

)
.
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So we get

κL(x, y) = tr(ad(x) ◦ ad(y)) = tr(AB) = tr(adI(x) ◦ adI(y)) = κI(x, y)

as required. For the second statement we observe that if x ∈ I⊥ with y ∈ L and γ ∈ I

then κ([y, x], γ) = κ(y, [x, γ]) = 0 by associativity of κ so that [x, y] ∈ I⊥, this shows

that I⊥ # L. "

Recall that if X, Y are upper triangular matrices then the Lie bracket [X, Y ] is strictly

upper triangular. Also we note that a product of a upper triangular matrix with a

strictly upper triangular matrix gives a strictly upper triangular matrix.

Theorem 1.3. [Cartan’s first criterion]. Let L be a Lie algebra with Killing

form κ then L is solvable if and only if (∀x ∈ L)(∀y ∈ L′)(κ(x, y) = 0).

Proof. (⇒). Suppose L is solvable then so is ad(L) hence by Lie’s theorem we

may choose a basis of L such that the matrix of ad(x) is upper triangular for every

choice of x ∈ L. So we note that if α, β ∈ ad(L) then with respect to this basis the

matrix of [α, β] is strictly upper triangular. In particular for x ∈ L and y ∈ L′ the

linear map ad(x) ◦ ad(y) is represented by a strictly upper triangular matrix as well.

This shows that κ(x, y) = 0 for any x ∈ L and y ∈ L′.

(⇐). Conversely suppose κ(x, y) = 0 for all x ∈ L and y ∈ L′ then in particular the

the Killing form on L′ satisfies

κL′(x, y) = 0 = tr(ad(x) ◦ ad(y))

for all x, y ∈ L′, since L′ is an ideal of L. So it follows that ad(L′) ⊂ gl(L) is solvable,

in particular since ad(L)′ = ad(L′) then ad(L) is solvable, hence so is L as required.

The theorem is proved. "

We now obtain a criterion for when a complex Lie algebra is semisimple, this is

strongly related to the Killing form in the following way.

Theorem 1.4. [Cartan’s second criterion]. A Lie algebra L is semisimple if and

only if κ is non-degenerate (i.e L⊥ = 0).

Proof. (⇒). Assume L is semisimple but κ is degenerate, then we can choose

x ∈ L such that κ(x, y) = 0 for any y ∈ L. In particular 0 '= L⊥ # L is a proper

non-zero ideal of L. Indeed if L⊥ = L then κ(L,L′) = 0 so L would be solvable and

so not semisimple. Moreover since κ(L⊥, L) = 0 then in particular

κ(L⊥, L⊥′
) = κL⊥(L⊥, L⊥′

) = 0
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since L⊥ # L. So that L⊥ is a solvable non-zero proper ideal of L, contradicting the

fact that L is semisimple.

(⇐). Conversely suppose κ is non-degenerate but L is not semisimple. So we may

choose a non-zero abelian ideal L̃ # L. So given any 0 '= x ∈ L̃ and any choice of

z ∈ L we have ad(x) ◦ ad(z) ◦ ad(x) ◦ ad(z) = 0 so that the map f = ad(x) ◦ ad(z) is
nilpotent, hence tr(ad(x) ◦ ad(z)) = 0 = κ(x, z) so that L⊥ '= 0 a contradiction. The

theorem is proved. "

We see that in the proof of Cartan’s second criterion that for Lie algebras over general

algebraically closed fields, the direction (⇐) will still hold, i.e if κ is non-degenerate

then L is semisimple. In fact we will see later when we discuss real forms, that

Cartan’s second criterion in fact holds for semisimple real Lie algebras as well.

The following corollary is immediate.

Corollary 1.2. A Lie algebra L is semisimple if and only if the matrix of κ is

invertible. "

The following is a standard result in linear algebra, we omit the proof.

Lemma 1.4. Let V be a vector space with non-degenerate bilinear form b then for a

subspace Ṽ ≤ V we have V = Ṽ ⊕ Ṽ ⊥.

In particular when L is a semisimple Lie algebra and I ! L then we can always

decompose L = I ⊕ I⊥ with respect to the Killing form κ on L. In fact a Lie algebra

L which has such a property is said to be reductive, i.e whenever I is an ideal of L

then L can be decomposed as L = I ⊕ Ĩ for some ideal Ĩ # L.

We recall how the Lie bracket is defined on a quotient. Suppose we have a Lie algebra

L with an ideal I, then the quotient is also a natural Lie algebra with Lie bracket

given by [x + I, y + I] = [x, y] + I for all x, y ∈ L. In particular the quotient map

p : L → L"I is naturally an epimorphism.

Corollary 1.3. Any proper ideal I of a semisimple Lie algebra L is again semisimple.

Moreover any quotient of L is also semisimple. In particular L′ = L.

Proof. If I ! L is a proper ideal of L which is not semisimple then the Killing

form on I is degenerate hence choose x ∈ I such that κI(x, y) = 0 for any y ∈ I.

Now because I ! L we have κI(x, y) = κL(x, y) = 0. We claim that we can choose

0 '= y ∈ I such that [x, y] '= 0. Indeed if not then the center, Z(I) is non-trivial and
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by the Jacobi identity it is an abelian ideal of L. This contradicts our assumptions.

So choose any α ∈ L then

0 = κI([α, y], x) = κ([α, y], x) = κ(α, [y, x])

so 0 '= [x, y] ∈ L⊥, a contradiction. For the second statement let I ! L be non-zero

and proper then we know that L = I⊥ ⊕ I and we claim that L"I ∼= I⊥. Indeed

define a map ψ : I⊥ → L"I by

ψ(x) = x+ I

then ψ is clearly linear and it is injective, as I ∩ I⊥ = 0. Now since Dim(I⊥) =

Dim(L)−Dim(I) then ψ is also surjective. Finally

ψ([x, y]) = [x, y] + I = [x+ I, y + I] = [ψ(x), ψ(y)]

for all x, y ∈ L by definition of the Lie bracket on a quotient, so ψ is a Lie isomorphism.

Now since I⊥!L is proper then it is semisimple by the first part, but then so is L"I

as required. The last statement follows immediately from the fact that L"L′ is

abelian. "

Finally we derive the theorem which describes the structure of a semisimple complex

Lie algebra, and the meaning of the word “semisimple” becomes clear.

Theorem 1.5. A Lie algebra L is semisimple if and only if it is a direct sum of

simple ideals.

Proof. (⇒). First if L does not contain any proper non-zero ideals then L is

simple as L is non-abelian hence we are done. So we may assume that L contain a

non-zero proper ideal I ! L. In particular we know that L = I ⊕ I⊥ where I⊥ is

the orthogonal space to I with respect to the Killing form κ of L. But as I ! L and

I⊥ !L then they are both semisimple, so if they are both simple we are done. If not

we can extract non-zero proper ideals I1 ! I and I2 ! I⊥ so that

L = I1 ⊕ I⊥1 ⊕ I2 ⊕ I⊥2

where Dim(I1) < Dim(I) and Dim(I2) < Dim(I⊥). In particular I1, I2 are semisim-

ple, so we can repeat the procedure and eventually the process stops and L is a direct

sum of simple ideals.

(⇐). Assume that L is the direct sum ⊕n
jLj of simple ideals Lj ! L, and suppose

by contradiction that L is not semisimple. Then we can choose an abelian non-zero

ideal L̂! L. We note that

[L̂, L] = ⊕n
j [L̂, Lj]
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since the Lj are ideals of L. We also have [L̂, Lj]!Lj for all j by the Jacobi identity.

Now suppose [L̂, Lj] are all zero, then [L̂, L] = 0 hence L̂ ≤ Z(L). However we have

Z(L) ⊂ ⊕n
jZ(Lj), but this sum is trivial since the Lj are all simple. So that L̂ = 0,

this contradicts our assumptions. So there is some j such that [L̂, Lj] '= 0, but since

[L̂, Lj]!Lj then we have L̂ = Lj, so that Lj is abelian, which is again a contradiction.

This completes the proof. "

Corollary 1.4. If L is semisimple with decomposition ⊕1≤j≤nLj of simple ideals

lj ! L and I ! L is any simple ideal then I = Li for some 1 ≤ i ≤ n. In partic-

ular a decomposition of a semisimple Lie algebra into simple ideals is unique up to

rearrangement.

Proof. Note that [Li, I]# Li and [Li, I]# I together with [Li, I]! L all by the

Jacobi identity. So if [Lj, I] = 0 for all j then [L, I] = 0 so I would be abelian

hence not simple. So as Lj and I are simple for all j then it must be the case that

[Li, I] = Li = I for some i as required. "

4. Trace forms

In this section we will prove that any associative symmetric non-degenerate bilinear

form on a simple complex Lie algebra is just proportional to the Killing form. We

will use some elementary representation theory of Lie algebras (see appendix B for

details).

Let L be a Lie algebra and suppose we have a finite representation ψ : L → gl(V ).

Then we can naturally define a map b : L× L → C by

b(x, y) = tr(ψ(x) ◦ ψ(y))

for all x, y ∈ L. Analogous to the Killing form one can show that the trace form b is

a symmetric associative bilinear form on L. We call this form for a trace form on L.

Proposition 1.5. Let L be a complex semisimple Lie algebra with trace form b with

respect to a faithful representation L →ψ gl(V ) then b is non-degenerate.

Proof. Consider the space L⊥ = {x ∈ L|∀y ∈ L : b(x, y) = 0} of elements

perpendicular to L w.r.t b. Then this is an ideal of L by associativity of b, moreover

it is clear that

b(x, y) = 0 = tr(ψ(x) ◦ ψ(y))

for all x, y ∈ L⊥. So it follows that ψ(L⊥) must be a solvable ideal in gl(V ). Clearly

it is a proper ideal of gl(V ) since L is semisimple and ψ is faithful. However ψ(L) is
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also semisimple so we must have ψ(L⊥) = 0 which gives L⊥ = 0 as required. This

proves the result. "

We see that if we take the adjoint representation, Ad : L → gl(L) which is faithful

on a semisimple Lie algebra L, then we recover the Killing form.

Suppose now that V is an L-module, φ : L×V → V and write x · v = ψ(x, v) for this

action. We can consider the dual space V ∗ and a new map ψ : L× V ∗ → V ∗ defined

by

(x · α)(v) = −α(x · v)

for all x ∈ L, v ∈ V and α ∈ V ∗. It follows that V ∗ is also an L-module defined in

this way.

Lemma 1.5. V ∗ is an L-module.

Proof. We check the axioms for V ∗ to be an L-module. If x, y ∈ L and α ∈ V ∗

then

([x, y]·α)(*) = −α([x, y]·*) = −α(x(y·*)−y(x·*)) = −α(x(y·*))+α(y(x·*)) = x·(y·α)−y·(x·α)

using that α is linear and V is an L-module. Now given λ1, λ2 ∈ K and x, y ∈ L with

α ∈ V ∗ then

((λ1x+ λ2y) · α)(*) = −α((λ1x+ λ2y) · *)

so linearity of ψ follows from the fact that α is linear and V is an L-module. Similarly

(x · (λ1α + λ2β))(*) = −λ1α(x · *)− λ1β(x · *) = λ1(x · α) + λ2(x · β)

for every α, β ∈ V ∗. We deduce that V ∗ is an L-module as required. "

Theorem 1.6. Let L be a simple complex Lie algebra together with a symmetric

associative non-degenerate bilinear form b then b = λκ for a suitable λ ∈ C.

Proof. Let L →B L∗ be the linear map B(x) = b(x,−). We can view L as the

adjoint L-module given by x · y = [x, y] for x, y ∈ L. So consider L∗ as the L-module

described above, i.e it is given by (x ·α)(*) = −α(x · *) = −α([x, *]) for all x ∈ L and

α ∈ L∗. We claim that B is a homomorphism of L-modules. Indeed B is linear and

for x, y ∈ L we have

B(x · y)(*) = B([x, y])(*) = b([x, y], *) = −b([y, x], *) = −b(y, [x, *]) = x · b(y, *).

This shows that B is an homomorphism of L-modules as required. Now since the

kernel of B is L⊥ and b is non-degenerate then B is an isomorphism of L-modules.

Also since L is simple then it is semisimple and so κ is non-degenerate as well. Hence
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there is also an isomorphism L →K L∗ of L-modules where K(x) = κ(x,−), this

follows by the same argument as for B. Moreover since L is simple then the adjoint

module is irreducible (since all L-submodules are ideals of L). So the composition

L →B L∗ →K−1 L

is an isomorphism from the adjoint module to itself. By Schur’s lemma there is an

λ ∈ C such that

κ = λb

as required. "

We will see later when we discuss real forms that the previous result also hold for

semisimple real Lie algebras.

Corollary 1.5. If L is a complex simple Lie algebra with Killing form κ then there

exist a trace form b and some λ ∈ C such that b = λκ

Proof. Combine the previous results with Ado’s Theorem (appendix B). "

These results show that if L ⊂ gl(n,C) is a simple matrix Lie algebra then the Killing

from κ is given by κ(X, Y ) = λtr(XY ) for all X, Y ∈ L, for a suitable λ ∈ C. This

is because there is a natural faithful representation ψ : L ↪→ gl(V ) where V is an

n-dimensional complex vector space, given by sending X to the linear map V → V

represented by X. So we have a trace form b(X, Y ) = tr(ψ(X) ◦ ψ(Y )) = tr(XY ).

Example 1.3. One can show by an easy argument that sl(2,C) is simple. Consider

the standard basis {e, f, h} of sl(2,C). Now an easy calculation shows that κ(e, f) = 4

and tr(ef) = 1, so it follows that κ(X, Y ) = 4tr(XY ) for all X, Y ∈ sl(2,C).

From the results we have the following is an observation: A semisimple Lie algebra L

can be decomposed into a direct sum of ideals say L = ⊕jLj. Now since [Li, Lj] = 0

for all i '= j and [Li, Li] = Li, then clearly [Li, [Lj, Ls]] = 0 whenever i '= j. This

means that κ(Li, Lj) = 0 whenever i '= j. So if x =
∑

s xs and y =
∑

l x
′
l for x

′
l ∈ Ll

and xs ∈ Ls then we obtain that

κ(x, y) =
∑

k

κ(xk, x
′
k).

Hence if b is any symmetric, associative, non-degenerate bilinear form on L then

b(x, y) =
∑

k

λkκ(xk, x
′
k)

for suitable λk ∈ C.
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5. The root space decomposition

In this chapter we always assume L is a Lie algebra over C unless otherwise stated.

6. Cartan subalgebras

Definition 1.6. An element x ∈ L is said to have an abstract Jordan decomposition

if it is possible to decompose x = d+ n for elements d, n ∈ L such that ad(d) diago-

nalisable and ad(n) nilpotent. Moreover an element x ∈ L is said to be semisimple if

n = 0 in the decomposition.

We say that a Lie homomorphism φ : L → L is a derivation if φ([x, y]) = [x, φ(y)]+

[φ(x), y] for all x, y ∈ L. One may show that the set of all derivations, Der(L) is a Lie

algebra with the commutator bracket. In particular it is clear that ad(L) ≤ Der(L).

Theorem 1.7. Let L be a semisimple Lie algebra then ad(L) = Der(L).

Proof. We first claim that ad(L) # Der(L). Indeed if ad(x) ∈ Ad(L) and δ ∈
Der(L) then we have

[δ, ad(x)] = δ◦ad(x)−ad(x)◦δ = δ([x,−])− [x, δ(−)] = [δ(x),−] = ad(δ(x)) ∈ ad(L).

Now since L is semisimple then L ∼= ad(L) and so ad(L) is also semisimple. Now we

can write Der(L) = ad(L) ⊕ ad(L)⊥ where ad(L)⊥ is the orthogonal space to ad(L)

in Der(L) with respect to the Killing form κ on Der(L). Our aim is to show that

ad(L)⊥ = 0. Suppose not then there exist 0 '= δ ∈ Der(L) such that κ(δ, γ) = 0 for

every choice of γ ∈ ad(L). Note that if we can find α ∈ ad(L) such that [δ, α] '= 0

then we would have

κ(δ, [α, γ]) = 0 = κ([δ, α], γ) = κad(L)([δ, α], γ).

So we would contradict the fact that ad(L) is semisimple. We claim that we can find

such an element α. If not then [δ, ad(x)] = ad(δ(x)) = 0 for all x ∈ L. But because

the adjoint representation, Ad : L ↪→ ad(L) is an isomorphism, we have

(∀x ∈ L)(ad(δ(x)) = 0) ⇔ (∀x ∈ L)(δ(x) = 0) ⇔ δ = 0,

which contradicts our assumptions as δ '= 0. The theorem is proved. "

We will see that this theorem also hold for semisimple real Lie algebras, in fact one

can mimic the proof above.



Chapter 1 Page 15

Lemma 1.6. Let L be a Lie algebra and suppose x ∈ Der(L) can be expressed as the

sum x = z + y such that z ∈ gl(L) is diagonalisable and y ∈ gl(L) is nilpotent, then

z, y ∈ Der(L).

Proof. For proof see for example [3], chapter 9, Proposition 9.14. "

In turns out that every element of a semisimple Lie algebra has an abstract Jordan

decomposition. In fact it is not difficult to see that if a linear map V → V ∈ gl(V )

have an abstract Jordan decomposition, then it must coincide with the usual Jordan

decomposition by uniqueness.

Theorem 1.8. Every element x of a semisimple Lie algebra L has a unique abstract

Jordan decomposition, x = d+ n with [d, n] = 0.

Proof. Let x ∈ L be given then we can decompose ad(x) into it’s Jordan de-

composition: ad(x) = D+N for which D,N ∈ gl(L) are diagonalisable and nilpotent

respectively. In particular [D,N ] = 0 so it follows that D,N are both derivations

of L. So because ad(L) = Der(L) we must have ad(x) = ad(d) + ad(n) for suitable

d, n ∈ L. Now since the adjoint representation, Ad : L → ad(L) is a monomorphism

then result follows. "

Definition 1.7. A Cartan subalgebra H of a Lie algebra L is a Lie subalgebra of L

such that the following are satisfied:

(1) Every element in H is semisimple.

(2) H is abelian.

(3) H is maximal with properties (1) and (2).

Suppose we have a Cartan subalgebra H ≤ L. Now since H is abelian then ad(H) ⊂
gl(L) is also abelian. Moreover since every element in H is semisimple, then it is

possible to choose a basis {ej}j of H such that every map ad(x) is represented by a

diagonal matrix w.r.t {ej}j. We say the maps in ad(H) are simultaneously diagonal-

isable. This is a standard result in linear algebra and we omit the proof.

Lemma 1.7. Let V be a complex vector space and ψ1, . . . , ψn be linear diagonalisable

maps V → V . Then these maps commute pairwise if and only if there exist a basis

in which all the ψj are represented by a diagonal matrix.

Having a Cartan subalgebra H ≤ L we can choose a linear functional of H, say

α ∈ H∗, and define the following subspace of L:

Lα = {x ∈ L|[h, x] = α(h)x, (∀h ∈ H)}.
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If Lα '= 0 we call α a root of L, and Lα a root space of L. Consider the set

Ω = {0 '= α ∈ H∗|Lα '= 0}, then we observe that L = L0 +
∑

α∈Ω Lα. Indeed we can

choose a basis {ej}j of L such that every map in ad(H) is represented by a diagonal

matrix, so in particular if h ∈ H then ad(h)(ej) = λhej for suitable λh ∈ C. So define

a map αj : H → C taking h → λh. It is easy to check that this map is linear. So we

have ej ∈ Lαj .

We also claim that the sum is direct. To see this suppose that we have
∑

α∈Ω xα = 0

for a choice of xα ∈ Lα. Then pick any h ∈ H. A vector xα is contained in the

eigenspace of ad(h) corresponding to the eigenvalue α(h). So we must have xα = 0,

since a finite set of eigenvectors corresponding to distinct eigenvalues are linearly

independent.

Proposition 1.6. Any semisimple Lie algebra L contain a Cartan subalgebra H.

Proof. Since L is semisimple then every element of L has an abstract Jordan

decomposition. So given x ∈ L we can write x = d+n with ad(d) diagonalisable and

ad(n) nilpotent. Now suppose the diagonal part is alway zero for every x ∈ L then

ad(x) is nilpotent, so by Engel’s theorem there is a monomorphism L ↪→ n(k,C) with
k = Dim(L) where n(k,C) is the Lie algebra of strictly upper triangular matrices

over C. This shows that L is nilpotent, as n(k,C) is nilpotent. But this can not

happen as then L would not be semisimple. So L must contain semisimple elements,

in particular we can choose H of largest possible dimension such that it is abelian

and contain only semisimple elements. "

The previous results show that we can always decompose a semisimple Lie algebra L

into a direct sum:

L = L0 ⊕α∈Ω Lα

for a choice of Cartan subalgebra H ≤ L, where Lα are the root spaces of L w.r.t H.

We call such a decomposition a root decomposition of L.

We note that H is always contained in L0, in fact L0 coincides with H.

Theorem 1.9. Let L be a semisimple Lie algebra with Cartan subalgebra H and

denote L0 the zero root space, then H = L0 = CL(H).

Proof. For proof see for example [3], section 10.2. "

Example 1.4. One can easily show that the Lie algebra L = sl(n,C) with basis

S = {eij|i '= j} ∪ {eii − enn|1 ≤ i ≤ n} has root space decomposition

sl(n,C) = H ⊕i (=j Lhii−hjj ,
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where H = 〈eii−enn|1 ≤ i ≤ n−1〉 and the roots have have the form αij(h) = hii−hjj

for each h ∈ H and i '= j. We show that H is a Cartan subalgebra of L. It clear

that H is abelian and all elements are clearly semisimple, since we can show that

[h, eij] = (hii − hjj)eij (i '= j) for all h ∈ H. We show that it is maximal abelian

in L. Suppose there is an element x /∈ H such that [h, x] = 0 for every h ∈ H.

In particular there is some matrix entry xij '= 0 for i '= j, and an easy calculation

shows that [eii, x]ij = xij and [ejj, x]ij = −xij for i '= j. Now h = eii − ejj ∈ H

and [h, x]ij = 2xij '= 0 hence [h, x] '= 0, this contradicts our assumptions. So H is a

Cartan subalgebra of L as required.

We will investigate in the next section some properties which the root spaces must

have when L is semisimple. In fact if one can find a suitable root decomposition for a

Lie algebra L, such that the root spaces satisfy some of these properties, then this is

enough to determine the semisimplicity of the Lie algebra. So we can either use the

Killing form or find a root decomposition in order to determine the semisimplicity of

a Lie algebra.

7. The structure of the root spaces

Let L be a semisimple Lie algebra and H be a Cartan subalgebra and L = H⊕α∈ΩLα

be the corresponding root decomposition. In this section we study properties of the

root spaces.

Proposition 1.7. Let α, β ∈ Ω then the following hold:

(1) If α + β '= 0 then κ(Lα, Lβ) = 0.

(2) [Lα, Lβ] ⊂ Lα+β.

Proof. For (1) let α, β ∈ Ω be roots such that α+β '= 0, then given x ∈ Lα and

y ∈ Lβ we have for any h ∈ H such that α(h) + α(h) '= 0:

(α(h) + β(h))κ(x, y) = κ([h, x], y) + κ(x, [h, y]) =

= κ([h, x], y) + κ([x, h], y) = κ([h, x], y)− κ([h, x], y) = 0.

by associativity of κ. This proves (1). Now for (2) suppose x ∈ Lα and y ∈ Lβ then

for h ∈ H by the Jacobi identity:

[h, [x, y]] = −[x, [y, h]]− [y, [h, x]] = −[x,−β(h)y]− [y, α(h)x] = (β(h) + α(h))[x, y],

showing that [x, y] ∈ Lα+β as required. "
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We note if α is a root then so is −α. Indeed we can decompose any element z ∈ L as

z = h+
∑

β

xβ,

so if xα ∈ Lα is non-trivial then by the previous proposition κ(xα, z) = 0 unless there

exist γ ∈ Ω such that α + γ = 0. The same argument also shows that there is no

element 0 '= xα ∈ Lα such that κ(xα, x−α) = 0 for all x−α ∈ L−α. Hence the map

Lα → L∗
−α given by xα → κ(xα,−) is an injective linear map.

Proposition 1.8. The Killing form κ on L restricted to the Cartan subalgebra H is

non-degenerate and positive definite.

Proof. Suppose for a contradiction that there exist x ∈ H such that for all

y ∈ H we have κ(x, y) = 0. For any z ∈ L we can write

z = h0 +
∑

γ∈Ω

xγ

for h0 ∈ H. So κ(x, z) = κ(x, h) +
∑

γ κ(x, xγ) = 0 as κ(H,Lγ) = 0 because γ '= 0.

This shows that κ is degenerate, a contradiction as L is semisimple. Moreover if

h, h̃ ∈ H and x ∈ Lα then [h, [h̃, x]] = α(h)α(h̃)x, i.e

κ(h, h̃) =
∑

α∈Ω

α(h)α(h̃), ∀h, h̃ ∈ H.

This shows that κ is positive definite when restricted to H. The proposition is proved.

"

The proposition shows that the linear map H → H∗ given by h → κ(h,−) is an

isomorphism. Indeed the kernel is given by {h ∈ H|κ(h, h̃) = 0, ∀h̃ ∈ H}, which was

shown to be trivial. In particular for every root α ∈ Ω there is a unique element

h ∈ H such that α(−) = κ(h,−). For future references we will refer to this unique

element as tα for a root α ∈ Ω.

Corollary 1.6. Let α ∈ Ω be any root. If x ∈ Lα and y ∈ L−α then [x, y] = κ(x, y)tα.

Proof. Given an arbitrary h ∈ H we have by associativity of κ:

κ([x, y], h) = κ(x, [y, h]) = −α(h)κ(x, y) = κ(tα, h)κ(x, y)

in particular this shows that

κ([x, y], h)− κ(tακ(x, y), h) = 0 = κ([x, y]− tακ(x, y), h).

Note that [x, y] − tακ(x, y) ∈ H. But the restricted Killing form of L on H is non-

degenerate, so that [x, y] = tακ(x, y) as required. "
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Lemma 1.8. Let α be a root in Ω and suppose x ∈ Lα and y ∈ L−α is such that

0 '= [x, y] = h ∈ L0. Then α(h) '= 0.

Proof. Let β, α ∈ Ω be roots and consider the sum

L̃ =
∑

n

Lβ+nα

where n ∈ Z runs over all possibilities such that β + nα ∈ Ω. This is a non-zero

subspace of L and it is clear that [H, L̃] ⊂ L̃. So if x ∈ Lα and y ∈ L−α are non-zero

such that h '= 0 then by considering the trace of the map ad(h) restricted to L̃ we

obtain:

tr(ad(h)) = tr([ad(x), ad(y)]) = tr(ad(x) ◦ ad(y)− ad(y) ◦ ad(x)) = 0

but this is also equal to
∑

n

(β(h) + nα(h))Dim(Lβ+nα)

so we get the equality

β(h)
∑

n

Dim(Lβ+nα) = −α(h)
∑

n

nDim(Lβ+nα).

Now since β can be any root then α(h) '= 0, indeed if this is the case then for any

root β we have β(h) = 0, because Dim(Lβ+nα) ≥ 1, and so h ∈ Z(L) = 0 as L is

semisimple, a contradiction. "

We observe the following. Choose x ∈ Lα and y ∈ L−α such that [x, y] '= 0 with

α([x, y]) '= 0. Consider the subspace L̃ = 〈x, y, [x, y]〉 of L. It is clear that this forms

a 3-dimensional Lie subalgebra of L. Moreover by comparing the structure constants

to that of sl(2,C) w.r.t the standard basis {e, f, h}, we see that L̃ ∼= sl(2,C). So for

each root α ∈ Ω we can find a copy of sl(2,C) in L. We will denote this copy by

sl(α), and we will set {eα, fα, hα} for a basis of sl(α) chosen such that

hα = [eα, fα], [hα, eα] = α(hα)eα, [hα, fα] = −α(hα)fα

with α(hα) = 2.

8. The root system of a semisimple Lie algebra

Our aim in this section is to show that the set of roots Ω of a semisimple Lie algebra

L with respect to a Cartan subalgebra H form a root system on a subspace of H∗ (see

appendix A for a definition). We begin by introducing a root string which is strongly
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related to the root decomposition of L. So as before we let L = H ⊕α∈Ω Lα be a root

decomposition of L throughout this section.

Given a root α ∈ Ω and β ∈ Ω ∪ {0} we define the α-root string through β to be

the subspace

⊕nLβ+nα ⊂ L

where n ∈ Z runs over all possibilities where: β+nα is a root of L, i.e β+nα ∈ Ω∪{0}.
Suppose a root string ⊕nLβ+nα has the form ⊕a≤n≤bLβ+nα for a suitable choice of

integers a, b ∈ Z such that β + (b+ 1)α and β + (a− 1)α are not roots. Then we say

that the α-root string through β is a maximal root string.

Clearly any root string can be decomposed into a sum of maximal root strings. This

follows because the set of roots Ω is finite, so we can start by choosing a minimal

a ∈ Z such that β + aα is a root. Let a ≤ b be the maximal integer such that β + bα

is a root. Choose a ≤ a1 ≤ b to be the largest integer such that β + kα are roots

for all a ≤ k ≤ a1. This gives the first maximal root string. Continue to choose the

minimal integer a1 + 1 < a2 ≤ b such that β + a2β is a root. So taking the largest

integer a1 ≤ a3 ≤ b such that β + kα are roots for all a1 ≤ k ≤ a3 we get a second

maximal root string. We continue until we reach b. This gives a decomposition into

maximal root strings.

Recall now the basis {eα, fα, hα} chosen for sl(α) where α is a root of L. We now

show that any root space Lα must have dimension 1.

Lemma 1.9. Dim(Lα) = 1 for every α ∈ Ω.

Proof. Consider the basis element hα = [eα, fα] ∈ sl(α) and the subspace

0 '= L̃ = ⊕n≥0Lnα

of the α-root string through 0 where nα is a root of L. We know L̃ has the form

⊕0≤n≤kLnα for some natural number k ≥ 1. Next consider the subspace

˜̃L = 〈fα〉 ⊕ L̃ ≤ L

then it is easy to check that [hα,
˜̃L] ⊂ ˜̃L. So we can consider the linear map ad(hα) :

˜̃L → ˜̃L, and computing the trace of ad(hα) restricted to ˜̃L we get:

tr(ad(hα)) = tr(ad([eα, fα])) = 0
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since the maps ad(eα) ◦ ad(fα) and ad(fα) ◦ ad(eα) are also linear maps on ˜̃L. But

the trace of ad(hα) is also equal to
∑

0≤n≤k

Dim(Lnα)nα(hα)− α(hα)

hence

1 =
∑

0≤n≤k

Dim(Lnα)n

as α(hα) '= 0. So if Dim(Lnα) > 1 for all k ≥ n ≥ 0 then 1 > k(k+1)
2 ≥ 1 as k ≥ 1,

not possible. So in particular Dim(Lα) = 1 as required. "

Following the previous proof we observe that if k > 1 then 1 = k(k+1)
2 ≥ 3 i.e we must

have k = 1. This proves that the only integers k such that kα is a root are k = ±1.

In fact if λ ∈ C and λα is a root then using the space ˜̃L as in the proof but with λα

instead of α we get that λ = 1
N for a natural number N . So N(λα) = α is a root, but

then N = ±1, hence λ = ±1. In particular we have proved:

Corollary 1.7. Let α be a root in Ω then the following hold.

(1) λα ∈ Ω for some λ ∈ C if and only λ ∈ {±1}.
(2) sl(α) = Lα ⊕ L−α ⊕ [Lα, L−α]. "

Recall the linear injective map Lα → L∗
−α given by x → κ(x,−). Since all root spaces

have dimension 1, it follows that this map is an isomorphism. We will use this in the

following corollary.

Corollary 1.8. We can find x ∈ Lα and y ∈ L−α such that [x, y] '= 0 and [x, y] = tα
where κ(tα,−) = α(−).

Proof. Consider the linear functional γ : L−α → L−α given by γ(x−α) = 1 where

{x−α} is a basis for L−α. Now there must be some 0 '= xα ∈ Lα with κ(xα,−) = γ(−)

as γ '= 0, hence κ(xα, x−α) = γ(x−α) = 1. Therefore [xα, x−α] = κ(xα, x−α)tα = tα
for the unique 0 '= tα ∈ H as required. "

It follows from our previous results that the α-root string through 0 is maximal, it

has the form L−α ⊕H ⊕ Lα. In fact it turns out that any α-root string L̃ through a

root β is a maximal root string, i.e: L̃ = ⊕a≤n≤bLβ+nα. Moreover the integers a, b ∈ Z
are strongly related to the basis element hα ∈ sl(α). We have the following.

Corollary 1.9. For any choice of a root α ∈ Ω and β ∈ Ω ∪ {0} the α-root string

through β is a maximal root string, i.e ⊕Lβ+nα = ⊕a≤n≤bLβ+nα for suitable a, b ∈ Z.
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In fact we have a + b = −β(hα) where hα is the basis element [eα, fα] of sl(α) for

which α(hα) = 2.

Proof. Let H be the Cartan subalgebra of L associated with the roots Ω. Let

L̃ be an α-root string through β of L written as a direct sum of maximal root strings

{L̃k}k. Then we note that ad(H)(L̃k) ⊂ L̃k since [H,Lβ+nα] ⊂ Lβ+nα for any root

β + nα ∈ Ω. Now we know that there exist 0 '= h = [x, y] for x ∈ Lα and y ∈ L−α

with α(h) '= 0. So we can consider the trace of the matrix of the map ad(h) restricted

to a maximal string root string of L̃, say L̃k. Write L̃k = ⊕a≤n≤bLβ+nα. Denote

adk(h) : L̃k → L̃k for the restriction. Hence we have

tr(adk(h)) =
∑

a≤n≤b

(β(h) + nα(h))Dim(Lβ+nα) =
∑

a≤n≤b

(β(h) + nα(h)),

as Dim(Lβ+nα) = 1 for β + nα ∈ Ω. But we also have

tr(adk(h)) = tr(adk([x, y])) = tr(ad(x) ◦ ad(y)− ad(y) ◦ ad(x)) = 0

so we deduce that

0 = β(h)(b−a+1)+α(h)
b−a∑

k=0

(n+a) = (b−a+1)β(h)+α(h)(a(b−a+1)+
(b− a)(b− a+ 1)

2
)

hence

0 = 2β(h) + α(h)(a+ b)

which gives

−2
β(h)

α(h)
= a+ b.

This shows that the α-root string through β is a maximal root string. In particular

if we set h = hα then as α(hα) = 2 we get the last statement. "

Recall that we can choose x ∈ Lα and y ∈ L−α such that [x, y] = tα where κ(tα,−) =

α(−). Let γ ∈ Ω then we can write −2 γ(tα)
α(tα)

= aγ + bγ where aγ, bγ ∈ Z. In particular

we have the following.

Corollary 1.10. β(tα) ∈ Q for all β ∈ Ω.

Proof. We note that

κ(tα, tα) =
∑

γ∈Ω

γ(tα)
2 = α(tα)

which is equivalent to

α(tα) =
∑

γ

α(tα)
2(−1

2
(aγ + bγ))

2 =
1

4
α(tα)

2
∑

γ

(aγ + bγ)
2.
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Now since α(tα) '= 0 this shows that α(tα) ∈ Q and is > 0. In particular β(tα) must

be in Q for every β ∈ Ω as well. The proof is complete. "

Consider now a vector space V and W ≤ V then we define the annihilator of W to

be the subspace

W ◦ = {α ∈ V ∗|α(W ) = 0} ≤ V ∗.

We can define a linear map W ◦ → (V"W )∗ by sending α → α + W where (α +

W )(x + W ) = α(x) for all x ∈ V . This is clearly an isomorphism, and we get the

result Dim(W ◦) = Dim(V )−Dim(W ). So in particular we can consider a subspace

W̃ ≤ V ∗ and the annihilator W̃ ◦ ≤ V ∗∗. Consider the isomorphism ε : V → V ∗∗

given by the evaluation map, i.e ε(v)(α) = α(v) for all v ∈ V and α ∈ V ∗. Then the

annihilator W̃ ◦ under ε−1 is identified with the set {v ∈ V |α(v) = 0, (∀α ∈ W̃ )}. We

will use this result in the next proposition.

Proposition 1.9. Ω spans H∗, i.e 〈Ω〉 = H∗. In particular |Ω| ≥ Dim(H).

Proof. Let 〈Ω〉◦ ∼= {h ∈ H|α(h) = 0, ∀α ∈ 〈Ω〉} ≤ H be the annihilator of 〈Ω〉
then 〈Ω〉◦ = 0. Indeed if not then for some 0 '= h we have α(h) = 0 for all α ∈ Ω.

Hence given any z ∈ L we can write [h, z] =
∑

α∈Ω α(h)xα = 0 where xα ∈ Lα, so that

h ∈ Z(L). But since L is semisimple then Z(L) = 0, a contradiction. In particular

Dim(〈Ω〉◦) +Dim(〈Ω〉) = Dim(H∗).

This shows that Dim(H∗) = Dim(〈Ω〉), hence Ω spans H∗ as required. "

Now since Ω spans H∗ we can choose a basis S ⊂ Ω of H∗ and consider the real span

of S, namely the real subspace V = 〈S〉 ≤ H∗. Moreover we can define an inner

product b on V as follows: Given α, β ∈ Ω set

b(α, β) = κ(tα, tβ) = α(tβ) ∈ R.

Here tβ, tα ∈ H are the unique elements such that κ(tα,−) = α(−) and κ(tβ,−) =

β(−). This is justified since the Killing form restricted to H is positive definite.

Lemma 1.10. Let α, β ∈ Ω then the following hold.

(1) β(hα) = 2 b(β,α)
b(α,α) ∈ Z.

(2) β − β(hα)α ∈ Ω where hα = [eα, fα] is the basis element of sl(α).

(3) If α + β ∈ Ω then [Lα, Lβ] = Lα+β.

Proof. We note that

β(hα) = −(a+ b) = 2
β(tα)

α(tα)
= 2

b(β, α)

b(α, α)
∈ Z
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where a, b are the integers corresponding to the α-root string through β namely,

⊕Lβ+nα = ⊕a≤n≤bLβ+nα. This shows case (1). Next we claim that a ≤ a + b ≤ b

as then (2) would follow. Note first that b ≥ 0 as β is a root of L, similarly a ≤ 0.

If a ≤ −1 then clearly it holds, since a ≤ a + b ≤ b − 1 < b. Now if a = 0 then it

also holds, since a ≤ a + b = b ≤ b. This proves (2). For the last case, we already

know that [Lα, Lβ] ⊂ Lα+β so it is enough to show that the space is non-zero, as

Dim(Lα+β) = 1. Now consider the subspace

L̂ = 〈fα〉 ⊕ [Lα, Lβ] ⊂ L

where β, α are non-zero. If one of them is zero then the result clearly follows. We

have that [hα, L̂] ⊂ L̂. So computing the trace of the map ad(hα) when restricted to

L̂ we get

tr(ad(hα)) = 0 = −α(hα) +Dim([Lα, Lβ])(α(hα) + β(hα)).

This shows that [Lα, Lβ] '= 0, since α(hα) '= 0. The proof of the lemma is complete.

"

Now let V ⊂ H∗ be a subspace for which Ω spans V , equipped with the inner product

b. Then part (2) of the previous lemma shows for each α ∈ Ω, that the image of

the reflection, sα : V → V , in the hyperplane normal to α when restricted to Ω is

contained in Ω. Moreover it is clear that it is a bijection since Lα '= Lβ for all roots

α '= β ∈ Ω. So finally we derive our theorem that Ω forms a root system on V .

Theorem 1.10. Ω forms a root system on V ≤ H∗ where V is equipped with the

inner product b : V × V → R given by

b(α, β) = κ(tα, tβ)

for all α, β ∈ Ω. "

Before we end this chapter we introduce a useful basis for L. We will use this basis

when we introduce real forms, in particular using the root decomposition of L, it will

reveal the existence of a compact and a split real form of L. These are special real

Lie algebras contained in L of the same dimension.

So consider now S ⊂ Ω, then the hull of S, Ŝ, is defined to be the set of all ±α

and ±(α + β) such that α, β ∈ Ω. Moreover let xα ∈ Lα and x−α ∈ L−α be chosen

such that κ(xα, x−α) = 1 for each α ∈ Ω. We define a function λ : Ŝ × Ŝ → C by

λ(α, β) = 0 if α + β /∈ Ω while [xα, xβ] = λ(α, β)xα+β if α + β ∈ Ŝ.

For a complete proof of the following theorem we refer to [1], chapter 3, section 5.
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Theorem 1.11. There exist for each root α ∈ Ω elements xα ∈ Lα satisfying the

following conditions.

(1) [xα, x−α] = tα for the unique κ(tα,−) = α(tα), so κ(xα, x−α) = 1.

(2) [xα, xβ] = λ(α, β)xα+β.

(3) λ(α, β) = −λ(−α,−β).

(4) λ(α, β) ∈ R.

We can choose a basis S = {tα|α ∈ Ω, α '= −α}∪{xα|α ∈ Ω} for L with the properties

of the previous theorem. This is often called a Cartan Weyl basis.

Consider now the real subalgebra HR ≤ H spanned by the set {tα|α ∈ Ω, α '= −α}.
Since the inner product b is defined by b(α, β) = κ(tα, tβ) for roots α, β ∈ Ω then it

follows that κ restricted to HR is clearly an inner product. In fact it turns out that

every element in the Cartan subalgebra H can be written uniquely as the sum h+ ih̃

where h, h̃ ∈ HR. We say H is the complexification of HR, this is written

H = HC
R = {h+ ih̃|h, h̃ ∈ HR}.

To see that this is true we note that if we consider HC
R as a real Lie algebra then it

is a direct sum HR ⊕ iHR. This follows because κ is real on HR. We call HR ⊕ iHR

the realification of H. It is therefore enough to show that H is equal to the set

HC
R . But this is clear since we have seen that H∗ is spanned by the set of roots Ω. In

particular since the map H → H∗ given by tα → κ(tα,−) = α(−) is an isomorphism,

then H is spanned by {tα|α ∈ Ω, α '= −α}.

So we have proved that:

Proposition 1.10. HC
R = H. "

We end the classification theory of semisimple complex Lie algebras by stating the

classification theorem of simple complex Lie algebras. This theorem is a consequence

of the root system constructed for semisimple complex Lie algebras. For a partial

proof of this theorem we refer to [3], chapters 11-14.

Theorem 1.12. The complete list of simple complex Lie algebras are:

(1)[Classical Lie algebras]: sl(n,C) for n > 1, so(2n,C) for n '= 1, 2,

so(2n+ 1,C) for n ≥ 1 and sp(2n,C) for n ≥ 1.

(2)[Exceptional Lie algebras]: e6, e7, e8, f4 and g2.



CHAPTER 2

Matrix groups

1. A matrix group

Most of this chapter is based on [4] and [1].

Let K be either the real or the complex numbers R,C. Throughout this chapter we

always assume M(n,K) is equipped with the usual norm metric ||, || where ||A|| =
sup{|Ax||x ∈ Kn, |x| = 1} for A ∈ M(n,K). So that we have a natural topology on

M(n,K).

In particular we note that a sequence (an)n∈N in M(n,C) converges to a matrix A if

and only if the matrix entries of (an)n∈N converges to the matrix entries of A. One

also see that the norm ||, || on M(n,C) extends the norm on M(n,R). Indeed let

A ∈ M(n,R) then clearly ||A||R ≤ ||A||C. But consider the standard basis {ej}j
of Cn. Then for v ∈ Cn with norm 1, we can write v =

∑
j λjej for |λj| ≤ 1. So

|Av|C ≤ |Aej|R ≤ ||A||R. This shows that ||A||C ≤ ||A||R.

Definition 2.1. A subgroup G ≤ GL(n,K) for some n ≥ 1 is said to be a matrix

group if G is closed with respect to the induced subspace topology.

Definition 2.2. Let G be a matrix group then a matrix subgroup H is a subgroup

H ≤ G which is closed with respect to the induced subspace topology.

Not every subgroup H of a matrix group G is a matrix subgroup. For instance we can

identify R as the matrix group consisting of diagonal entries in GL(2,R). Now the

subgroup Q of rational diagonal entries is clearly not closed in R. Take for instance

the sequence (an)n∈N =

(
[n
√
5]

n 0

0 [n
√
5]

n

)
in Q where [, ] is the floor function. Then

an →n→∞

(√
5 0

0
√
5

)
/∈ Q.

The following is immediate.

Proposition 2.1. If G is a matrix group and H is a matrix subgroup then H is also

a matrix group. "

Here are some examples of matrix groups:

26
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Example 2.1.

• The general linear group: GL(n,R).
• The special linear group: SL(n,R) = {X ∈ GL(n,R)|det(X) = 1}.
• The orthogonal group: O(n,R) = {X ∈ GL(n,R)|XX t = I}.
• The special orthogonal group: SO(n,R) = {X ∈ O(n,R)|det(X) = 1}.

Since we have the notion of convergence of matrices w.r.t to the norm ||, ||, then

we can consider power series of matrices s(X) =
∑

0≤n<∞ znXn where (zn)n∈N is a

sequence in C and X ∈ M(n,C). In particular we may define the exponential of a

matrix X ∈ M(n,C) to be the power series

eX =
∑

0≤n<∞

1

n!
Xn.

To see that it is well-defined, let AN =
∑

0≤n≤N
1
n!X

n then:

||AN − AM || ≤ |aN − aM |

where aN =
∑

0≤n≤N
1
n! ||X||n. So because aN → e||X|| as N → ∞ then AN is a

Cauchy sequence. The exponential function turns out to be a very important tool in

the theory of matrix groups, as we will see it will relate a matrix group G to a matrix

Lie algebra Lie(G) via the exponential map.

Proposition 2.2.

(1) If X, Y ∈ M(n,C) commute i.e [X, Y ] = 0 then eX+Y = eXeY .

(2) The exponential map exp : M(n,C) → M(n,C) by exp(X) = eX is continuous.

If [X, Y ] '= 0 then case (1) may fail, as the following example illustrates:

Take X =

(
1 1

0 1

)
then Xn =

(
1 n

0 1

)
for n > 0 and so eX =

(
1 + e 1 + e

1 1 + e

)
. Also

let Y =

(
0 −1

0 −1

)
then Y 2n =

(
0 1

0 1

)
and Y 2n+1 =

(
0 −1

0 −1

)
for n > 0, so eY = I.

Now [X, Y ] '= 0 and eX+Y =

(
1 + e 0

0 0

)
but eXeY = eX '= eX+Y .

We see that if X is any matrix in M(n,C) then X commutes with −X so that

I = eXe−X , hence the image under the exponential map is contained in GL(n,C).
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2. Differentiable curves and one parameter subgroups

Definition 2.3. Let G be a matrix group and 0 ∈ (a, b) be an open interval. Then

a differential curve in G is a map γ : (a, b) → G which is differentiable, i.e the limit

γ′(t0) = limt→t0

γ(t)− γ(t0)

t− t0

exists in M(n,K) for all t0 ∈ (a, b). A curve γ in G at X is a curve with γ(0) = X.

If X ∈ GL(n,C) then the map t → etX is a curve in GL(n,C). We show that the

map is differentiable at t = 0. By definition we have,

(etX)′(0) = limt→0
etX − I

t
= X + limt→0

∑

1≤n<∞

(tX)n

(n+ 1)!

but ||
∑

1≤n<∞
(tX)n

(n+1)! || ≤
∑

1≤n<∞
tn||X||n
(n+1)! → 0 as t → 0. This follows because the

power series S(t) =
∑

1≤n<∞
||X||n
(n+1)!t

n in R has radius of converge R = ∞, and so is

continuous with S(0) = 0. We deduce that (etX)′(0) = X.

It is worth noting that if γ is a map (a, b) → G then writing γ(t) = (γij(t))ij in

matrix form, γ is differentiable at t if and only if γij(t) are differentiable at t as maps

(a, b) → K. Also if γ′(t) exists then γ′(t) = (γ′
ij(t))ij.

Lemma 2.1. Let G be a matrix group and γ : (a, b) → G a map in G. Then γ is a

differentiable curve in G if and only if the following is satisfied: For any t0 ∈ (a, b)

we can find Y ∈ M(n,K) and a continuous map ε : (a, b) → M(n,K) such that

limt→t0ε(t) = 0 together with

γ(t) = γ(t0) + (t− t0)Y + (t− t0)ε(t)

for all t ∈ (a, b).

Proof. Suppose γ : (a, b) → G is a curve in G. Define the function ε : (a, b) →
M(n,K) by setting ε(t) = γ(t)−γ(t0)

t−t0
−Y where Y = γ′(t0) ∈ M(n,K). So the statement

follows. The converse is clear. "

Corollary 2.1. Let G be a matrix group and α, β : (a, b) → G be differentiable curves

in G then the following hold.

(1) (α + β)′(0) = α′(0) + β′(0) (Sum rule).

(2) (αβ)′(t) = α′(t)β(t) + α(t)β′(t) (Product rule).

(3) (α−1)′(t) = −α(t)−1α′(t)α(t)−1 (Quotient rule).
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Proof. Since α, β are differentiable curves in G then given t0 ∈ (a, b) we can

write

α(t) = α(t0) + (t− t0)Y + (t− t0)ε(t)

and similarly

β(t) = β(t0) + (t− t0)Ỹ + (t− t0) ˜ε(t)

for suitable functions ε, ε̃ : (a, b) → M(n,K) which both tend to 0 as t → 0 and Y, Ỹ ∈
M(n,K). By taking the product and the sum of these equalities, cases (1) and (2)

follows immediately. Case (3) follows from case (2) by noting that (α(t)α(t)−1)′(0) =

0 = α′(t)α(t)−1 + α(t)(α−1)′(t). "

Definition 2.4. Let G be a matrix group and γ be a continuous homomorphism

R →γ G, differentiable at t = 0. Then γ is said to be a one parameter subgroup

of G. Moreover if R is replaced by an interval of the form (−ε, ε) for some ε > 0

and γ(t + s) = γ(t)γ(s) whenever |t + s| < ε then γ is said to be a one parameter

semi-subgroup of G.

Note that any one parameter subgroup is differentiable with derivative γ′(t) = γ(t)γ′(0).

As an example the exponential curve R → GL(n,K) by t → etX for any choice of

X ∈ GL(n,K) is a one parameter subgroup of GL(n,K). This is in fact the only one.

Theorem 2.1. Let G be a matrix group then any one parameter subgroup R →γ G

has the form γ(t) = eAt for some A ∈ G.

Proof. Suppose γ has initial value γ′(0) = A then it satisfies the differential

equation γ′(t) = γ′(0)γ(t), and so does the exponential curve β(t) = etA. We claim

that γ must be unique. To see this we note that d
dt |t=t0

e−Atα(t) = 0 at any choice of

t0 ∈ R. Hence e−Atα(t) = C for some C ∈ M(n,K), so as α(0) = I we get C = I and

uniqueness follows. This proves the result. "

Definition 2.5. LetG,H ⊆ GL(n,K) be matrix groups andG →ψ H be a continuous

group homomorphism. Then we say ψ is a Lie homomorphism or just smooth if

the following two conditions are satisfied:

(1) If I →γ G is a differentiable curve in G then the map ψ ◦ γ is a differentiable

curve in H.

(2) Given any two differentiable curves γ, α at X ∈ G such that γ′(0) = α′(0) then

(ψ ◦ γ)′(0) = (ψ ◦ α)′(0).

Moreover if ψ is in addition bijective and ψ−1 is also a Lie homomorphism then we

say that ψ is a Lie isomorphism. We write in this case G ∼= H, and say they are Lie

isomorphic.
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Consider the maps Rg, Lg, Cg : G → G given by Rg(h) = hg and Lg(h) = gh together

with Cg(h) = g−1hg. These are important examples of Lie isomorphisms of G. If γ

is a differentiable curve at 1 ∈ G then obviously we have:

(Rg ◦ γ)′(0) = γ′(0)g, (Lg ◦ γ)′(0) = gγ′(0), and (Cg ◦ γ)′(0) = g−1γ′(0)g.

Similarly the inverse map I : G → G by g → g−1 is also an example of a Lie

isomorphism of G with (I ◦ γ)′(0) = −γ′(0).

The following is immediate.

Corollary 2.2. Let G,H ⊆ GL(n,K) be matrix groups and G →ψ H be a continuous

group homomorphism. Then ψ is smooth if and only if for every differentiable curve

(a, b) →γ G the following is satisfied: For every a < t0 < b we can find Y ∈ M(n,K)

and a continuous map ε : (a, b) → M(n,K) such that ε(t) → 0 as t → t0 where

ψ(γ(t)) = ψ(γ(t0)) + (t− t0)Y + (t− t0)ε(t)

for all t ∈ (a, b). "

Corollary 2.3. If G,H ⊆ GL(n,K) are matrix groups and G →ψ H is a smooth

map and γ, α, β : (a, b) → G are differentiable curves then the following is true.

(1) If τ(t) = ψ(γ(λt)) where λt ∈ (a, b) then τ ′(t) = λ(ψ ◦ γ)′(t).
(2) If τ(t) = ψ(α(t)β(t)) then τ ′(0) = (ψ ◦ α)′(0) + (ψ ◦ β)′(0).

Now given matrix groups G,H ≤ GL(n,K) then G × H is also easily seen to be a

matrix group. Indeed let ψ : G → GL(n,K) and ψ̃ : H → GL(n,K) be continuous

monomorphisms of matrix groups. Then we can take a pair (g, h) ∈ G×H and send

it to the matrix

(
ψ(g) 0

0 ψ̃(h)

)
∈ GL(2n,K). This defines a group monomorphism

ψ × ψ̃ : G×H → GL(2n,K),

and if we equip the image of ψ × ψ̃ under G × H with the induced topology from

GL(2n,K) then the image is clearly closed. In particular G,H can be considered as

matrix subgroups of G×H.

Another observation is that the identity component G0 of a matrix group G is a

normal matrix subgroup of G. To see this we can make use of the Lie isomorphism

Lg : G → G for g ∈ G. So by continuity Lg(G0) = gG0 is a connected component ofG.

In particular if h, g ∈ G0 we have g−1G0 = G0 = h−1G0 and so (gh)G0 = gG0 = G0.

This shows that G0 is a subgroup of G. Now since G0 is a connected component of

G then it closed. Moreover if g ∈ G then using the conjugation map g−1G0g is a
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connected component of G. Moreover g−1G0g = G0 since 1 ∈ G0 which proves that

G0 #G. In particular we see that every connected component of G has the form gG0

for some g ∈ G0.

So we have shown that:

Proposition 2.3. The identity component G0 of a matrix group G is a normal matrix

subgroup of G. "

3. The Lie algebra of a matrix group

In this section we show that to every matrix group there is a Lie algebra attached to

it.

Definition 2.6. Let G ⊆ GL(n,K) be a matrix group and suppose x ∈ G. Then the

tangent space at x is defined to be the set

TxG = {γ′(0)|I →γ G is a differentiable curve at x} ⊂ M(n,K),

where 0 ∈ I is some open interval in R.

Proposition 2.4. Let G be a matrix group of GL(n,K) and suppose x ∈ G then the

tangent space TxG at x forms a real vector subspace of M(n,K).

Proof. Let α : I1 → G, β : I2 → G be differentiable curves at x in G with

α′(0) = a and β′(0) = b. Now consider γ : I → G to be the differentiable curve

γ(t) = α(t)β(0)−1β(t)

in G at x, where I is some interval contained in I1 ∩ I2 with o ∈ I. Then by the

product rule

γ′(0) = α′(0) + β′(0) = a+ b.

So that if a, b ∈ TxG then so is a + b. Let now λ ∈ R be given, and let (a, b) be

an interval such that λt ∈ I1 for all t ∈ (a, b). Define a new differentiable curve

τ : (a, b) → G by τ(t) = α(λt) at x. Then τ ′(0) = λγ′(0) = λa. Hence λa ∈ TxG.

Now the constant curve at x in G is clearly differentiable with derivative 0 at t = 0,

i.e 0 ∈ TxG. This shows that TxG ≤ M(n,K). "

Note that when G is a complex matrix group then the proof only show that TxG is a

real vector subspace of M(n,C). Since in the proof the curve τ(t) = γ(λt) for which

λ ∈ C does not make sense. There are in fact cases where TxG is only a real vector

space and not a complex one, we will see examples of this when we introduce real

forms.
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Lemma 2.2. Any vector subspace of a normed K-vector space is closed.

Proof. See for example [4], section 1.8. "

Proposition 2.5. Let G ⊆ GL(n,R) be a matrix group then the tangent space T1G

at the identity forms a real Lie subalgebra of gl(n,R). Moreover if G ⊆ GL(n,C)
is a complex matrix group and T1G is a complex subspace of M(n,C) then T1G is a

complex Lie subalgebra of gl(n,C).

Proof. Suppose I1 →α G and I2 →β G are curves at 1 in G with α′(0) = a and

β′(0) = b. Now define the curve τ = α(t)bα(t)−1 in M(n,K) at b on I1. Then τ has

derivative [a, b] at t = 0. Now fix any t ∈ (−ε, ε) ⊂ I1 ∩ I2 for some ε > 0. Then the

curve

γt(s) = α(t)β(s)α(t)−1

at 1 in G has derivative (γt)′(0) = α(t)β′(0)α(t)−1. Hence α(t)β′(0)α(t)−1−β′(0)
t ∈ T1G

for any t ∈ (−ε, ε) since T1G ≤ M(n,K). So it follows that

limt→0
α(t)β′(0)α(t)−1 − β′(0)

t
= limt→0

τ(t)− τ(0)

t
= τ ′(0) = [a, b].

But because T1G is closed in M(n,K) then [a, b] ∈ T1G as required. This shows that

T1G is a Lie subalgebra of gl(n,K). "

Observe even though the tangent space at the identity of a complex matrix group is

not necessarily complex, it will always be a real Lie subalgebra of gl(n,C). So we can

always think of a Lie algebra attached to a complex matrix group as well. We have

the following definition.

Definition 2.7. Let G be a matrix group then the tangent space T1G at 1 ∈ G is

defined to be the Lie algebra of the matrix group G, denoted Lie(G).

Example 2.2. The Lie algebra of GL(n,K) is just gl(n,K). Clearly Lie(GL(n,K)) ⊆
gl(n,K) by definition. Moreover if X ∈ gl(n,K) then consider the exponential curve

t → etX in GL(n,K). It has derivative X at t = 0. Hence gl(n,K) ⊆ Lie(GL(n,K).

Following the proof of the previous proposition we see that if our matrix group G is

abelian then so is the Lie algebra T1G. Indeed if α, β are curves at 1 ∈ G with α′(0) =

x and β′(0) = y ∈ Lie(G) then the curve τs(t) = α(s)β(t)α−1(s) has derivative

τ ′s(0) = α(s)yα(s)−1 ∈ Lie(G). But τ ′s(0) has derivative [x, y] at s = 0. So because G

is abelian then τs(t) = β(t) and τ ′s(0) = y therefore [x, y] = 0 as required. We state

this as a corollary.
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Corollary 2.4. If G ⊆ GL(n,K) is an abelian matrix group with Lie algebra Lie(G)

then Lie(G) is abelian. "

Consider the matrix group G × H ≤ GL(2n,K) described earlier. It is straight

forward to show that Lie(G × H) ∼= Lie(G) × Lie(H), here the Lie bracket on the

direct product is defined by: [(x, y), (a, b)] = ([x, a], [y, b]) for all x, a ∈ Lie(G) and

y, b ∈ Lie(H).

Definition 2.8. [Differential/pushforward]. Let G,H ⊆ GL(n,K) be matrix

groups and G →ψ H be a Lie homomorphism then we define the differential of ψ at

g ∈ G to be the map

dψg : TgG → Tψ(g)H

by dψg(γ′(0)) = (ψ ◦ γ)′(0). In the case of g = 1 we just write dψ for the differential.

Note that by definition of a Lie homomorphism the differential is well defined. It

turns out that the differential is R-linear. Indeed if γ is a differentiable curve at

g in G, then we can adjust the interval such that τ = γ(λt) for λ ∈ R is a curve

in G at g. We have seen that ψ ◦ τ has derivative λ((ψ ◦ γ)′(0)), this shows that

λdψg(γ′(0)) = dψg(λγ′(0)). Similarly if β is another differentiable curve at g in G

then

ψ(γ′(0) + β′(0)) = (ψ ◦ γ(t)gβ(t)−1)′(0) =

= (ψ ◦ γ)′(0)ψ(g)ψ(β(0))−1 + ψ(γ(0))ψ(g)(ψ ◦ β)′(0) = (ψ ◦ γ)′(0) + (ψ ◦ β)′(0).

This shows that dψg is linear. So we have proved the following proposition.

Proposition 2.6. If ψ : G → H is a Lie homomorphism then dψg is a R-linear map

for each g ∈ G. "

Lemma 2.3. Let G,H,Z be matrix groups and G →ψ2 H →ψ1 Z be a composition

of Lie homomorphisms then the composition ψ1 ◦ ψ2 is also smooth.

Proof. Indeed if α is a curve in G then ψ2 ◦ α is a curve in H since ψ2 is

smooth, but ψ1 is also smooth hence ψ1(ψ2(α))′(0) exist. Moreover if β is another

curve in G such that β(0) = α(0) and α′(0) = β′(0) then ψ2(α(0)) = ψ2(β(0))

and (ψ2 ◦ α)′(0) = (ψ2 ◦ β)′(0) since ψ2 is smooth. Finally because ψ1 is smooth

(ψ1 ◦ ψ2 ◦ α)′(0) = (ψ1 ◦ ψ2 ◦ β)′(0) as required. "

Proposition 2.7. [Chain rule]. Let G,H,Z be matrix groups and G →ψ̃ H →ψ Z

be a composition of smooth maps. Then given any g ∈ G we have

d(ψ ◦ ψ̃)g = dψψ̃(g) ◦ dψ̃g.
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Proof. Let γ be a differentiable curve in G at g with γ′(0) = a then

d(ψ ◦ ψ̃)g(a) = (ψ ◦ (ψ̃ ◦ γ))′(0) = dψψ̃(g) ◦ dψ̃g(a).

"

The differential at the Lie algebra of a matrix group is not only linear but in fact also

a Lie homomorphism.

Theorem 2.2. Suppose G,H ⊆ GL(n,K) are matrix groups then given a Lie homo-

morphism G →ψ H the differential dψ : Lie(G) → Lie(H) is a real Lie homomor-

phism.

Proof. It remains to show that dψ([x, y]) = [dψ(x), dψ(y)] for all x, y ∈ Lie(G).

Let α, β : (a, b) → G be differentiable curves at 1 ∈ G with α′(0) = x and β′(0) = y.

Then the differentiable curve τs(t) = α(s)β(t)α(s)−1 has derivative α(s)yα(s)−1 ∈
Lie(G) at t = 0 for all s ∈ (a, b). We have seen that the derivative of τ ′s(0) at s = 0

is just [x, y]. Now

dψ(τ ′s(0)) = (ψ ◦ α)(s) · dψ(y) · (ψ ◦ α)−1(s)

and so the derivative of the curve dψ(τ ′s(0)) at s = 0 is just [dψ(x), dψ(y)]. But as

dψ is linear then it is also continuous, so the result follows since

lims→0
dψ(τ ′s(0))− dψ(τ ′0(0))

s
= dψ(lims→0

τ ′s(0)− τ ′0(0)

s
) = dψ([x, y]).

"

Observe that if G,H are complex matrix groups with complex Lie algebras Lie(G)

and Lie(H), then a Lie homomorphism ψ : G → H gives rise to a Lie homomorphism

dψ : Lie(G)R → Lie(H)R.

We define the dimension of a matrix group to be the dimension of the Lie algebra

as a vector space.

Corollary 2.5. Let G,H ⊆ GL(n,K) be matrix groups and Lie(G), Lie(H) be their

Lie algebras and suppose G is Lie isomorphic to H then Lie(G) ∼= Lie(H). In

particular Dim(G) = Dim(H).

Proof. Choose a Lie isomorphism G →ψ H, i.e ψ is smooth with smooth inverse

ψ−1. So by the chain rule d(ψ◦ψ−1) = 1Lie(G) = dψ◦dψ−1 and d(ψ−1 ◦ψ) = 1Lie(H) =

dψ−1◦dψ, hence the differential dψ is an isomorphism of Lie algebras as required. "
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The property for two matrix groups to be Lie isomorphic is a very strong property,

indeed if G ∼=Lie isomorphic H then:

G ∼=groups H , G ∼=topology H and Lie(G) ∼=Lie algebra Lie(H).

Example 2.3. Here is a nice application of the Lie algebra. Consider the special

orthogonal group SO(3,R) and the special linear group SL(2,R). One can show that

their Lie algebras are ∼= R3
∧(cross product on R3) and sl(2,R) = {x ∈ gl(2,R)|tr(x) =

0} respectively. Now if the matrix groups are Lie isomorphic then we can choose a Lie

isomorphism so(3,R) → sl(2,R). However this is impossible because the Killing form

is negative definite on so(3) while is not on sl(2,R). Hence SO(3,R) ! SL(2,R). In
fact one can also show that sl(2,C) ∼= so(3,C) by uniqueness of semisimple complex

Lie algebras of dimension 3. However in this case SL(2,C) ! SO(3,C) (they have

non-isomorphic fundamental groups). This shows that the Lie algebra does not encode

all the information about the matrix group.

The identity component of a matrix group G has the same Lie algebra as G. To see

this let L = Lie(G) then we note that if x ∈ L the map t → etx is a path in G from

1 → ex, hence ex ∈ G0 by definition. From this it is clear that L ⊆ Lie(G0), i.e

L = Lie(G).

4. The exponential map

We mention here that the theory of matrix groups is just a special case of a more

general construction, known as Lie groups. A Lie group G is a smooth manifold which

is also a group such that the group operations are smooth maps (see for instance [1]

for details). It can be shown that all matrix groups are Lie groups, and to any Lie

group one can attach a Lie algebra just as with matrix groups. One can also define

the exponential map as a map exp : Lie(G) → G. The advantage of starting from the

Lie group point of view is that the image of the exponential is by definition contained

in G. However from the matrix group point of view this takes a bit of work to prove.

We refer to [4], section 7.6 for details regarding the proof of the next theorem.

Theorem 2.3. If G ⊆ GL(n,K) is a matrix group with Lie algebra Lie(G) and

x ∈ Lie(G) then the exponential map exp : Lie(G) → GL(n,K) has image contained

in G.

Theorem 2.4. If G is a real matrix group and L ≤ Lie(G) is a Lie subalgebra. Then

the following hold.



Chapter 2 Page 36

(1) There is a unique connected matrix subgroup H ≤ G with Lie algebra L.

(2) H is generated by the image of L under the exponential map.

Proof. For proof see for example [1], chapter 2, section 2, Theorem 2.1. "

Proposition 2.8. Let G,H be matrix groups and G →ψ H be a smooth map then

ψ(ex) = edψ(x)

for every x ∈ Lie(G).

Proof. Let x ∈ Lie(G) and consider the exponential one parameter subgroup of

G: γ : R → G given by γ(t) = etx. Then

ψ(γ(t+ s)) = ψ(γ(t)γ(s)) = ψ(γ(t))ψ(γ(s))

for all t, s ∈ R. Hence ψ ◦ γ is a one parameter subgroup of H, but by uniqueness

ψ ◦ γ = eyt for a suitable y ∈ H. Now (ψ ◦ γ)′(0) = dψ(γ′(0)) = dψ(x) = y, i.e

ψ(etx) = etdψ(x)

for all t ∈ R. This proves the result. "

Let G ⊆ GL(n,K) be a matrix group with Lie algebra Lie(G) ⊆ gl(n,K). We now

show that if x ∈ Lie(G) then the determinant of ex is given by det(ex) = etr(x) where

tr(x) is the trace of x.

Lemma 2.4. Given a differentiable curve γ : (a, b) → G at 1 ∈ G then det(γ)′(0) =

tr(γ′(0)).

Proof. Write γ(t) = (aij(t))ij for the matrix entries of γ. Then by the cofactor

expansion along the first column we may write

det(γ(t)) =
∑

l

(−1)1+lal1(t)det(ml1(t))

so that

det(γ)′(0) =
∑

l

(−1)1+la′l1(0)det(ml1(0)) +
∑

l

(−1)l+1al1(0)det(ml1(t))
′(0)

here det(ml1(t)) is the (l, 1)-minor of the matrix γ(t). Now since γ(0) = In it follows

that al1(0) = 0 if l '= 1 and a11(0) = 1. Also note that det(ml1(0)) = 0 whenever

l '= 1 since there is a row of zeroes, and we have det(m11(0)) = 1. Hence

det(γ)′(0) = a′11(0) + det(m11(t))
′(0),
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but m11(0) = In−1 so we may proceed by induction over n. The case n = 1 is clear,

so assume now that it holds for all 1 ≤ k ≤ n − 1 over all curves in M(k,K) with

γ(0) = Ik. So by the induction hypothesis

det(γ)′(0) = a′11(0) + tr(m′
11(0)) = a′11(0) + a′22(0) + · · ·+ a′nn(0) = tr(γ′(0))

as required. "

Now by identifying x ∈ K× with the diagonal matrix

(
x 0

0 x

)
then K× is a ma-

trix group and we can define the determinant map: Det : G → K× by Det(g) =(
det(g) 0

0 det(g)

)
. By the argument above this is a Lie homomorphism and the

differential is given by:

γ′(0) →
(
tr(γ′(0)) 0

0 tr(γ′(0))

)

so that

Det(ex) =

(
etr(γ

′(0)) 0

0 etr(γ
′(0))

)
.

So finally we get,

Proposition 2.9. Let G ⊆ GL(n,K) be a matrix group and x ∈ Lie(G) then

det(ex) = etr(x). "

This result can be used to reveal the Lie algebras of many matrix groups. Indeed

to see the power, consider for instance SL(n,R) and a differentiable curve γ at 1.

Then by the result above det(eγ
′(0)) = 1 = etr(γ

′(0)) giving tr(γ′(0)) = 0. Hence

Lie(SL(n,R)) ⊆ sl(n,R). Similarly if X has trace zero then again by the result

above t → etX is a curve in SL(n,R). Hence it follows that SL(n,R) has Lie algebra
sl(n,R).

Here is a list of some matrix groups and their Lie algebras.

Example 2.4.

• SL(n,R) with Lie algebra sl(n,R).
• O(n,R) with Lie algebra o(n,R).

• H3(R) = {X ∈ gl(3,R)|X =




1 x z

0 1 y

0 0 1



} (Heisenberg group) with Heisenberg Lie

algebra n(3,R) (3× 3 strictly upper triangular matrices).
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• The circle S1 identified with SO(2,R) has Lie algebra ∼= R.
• The 3-sphere S3 identified with SU(2,C) = {X ∈ GL(2,C)|XX̄ t = I, det(X) = 1}
has Lie algebra su(2,C) = {X ∈ gl(2,C)|X̄ t = −X, tr(X) = 0}.

Given a matrix group with a certain group property one may ask how this transfers

to a property of the Lie algebra. For instance if we have an abelian matrix group G

then we have seen that Lie(G) must also be abelian. Here are some other properties.

Proposition 2.10. Let G be a matrix group with Lie algebra Lie(G) and suppose

N !G is a matrix subgroup of G then Lie(N)# Lie(G).

Proof. First it is clear that ifN ≤ G then Lie(N) ≤ Lie(G) since a differentiable

curve in N at 1 is also a differentiable curve in G at 1. Moreover suppose x ∈ Lie(N)

and y ∈ Lie(G) and let α, β be differentiable curves at 1 in G,N respectively with

α′(0) = y and β′(0) = x. We observe that τ(t) = α(t)β′(0)α(t)−1 ∈ Lie(N) for all t,

this is seen by considering the differentiable curve τt(s) = α(t)β(s)α(t)−1 in N , since

N ! G. Now we have seen that τ ′(0) = [x, y] and since Lie(H) is closed in gl(n,K)

then it follows that [x, y] ∈ Lie(N). This shows that Lie(N) is an ideal of Lie(G) as

required. "

Proposition 2.11. If ψ : G → H is a Lie homomorphism of real matrix groups then

the following hold.

(1) Lie(ker(ψ)) = ker(dψ).

(2) If G is connected and ψ(G) is closed in H then Lie(ψ(G)) = dψ(Lie(G)).

Proof. First since ψ is a Lie homomorphism and ψ(G) is closed in H then

we know that ker(ψ) and ψ(G) are matrix subgroups of G,H respectively, and so

Lie(ker(ψ)) ≤ Lie(G) and Lie(ψ(G)) ≤ Lie(H). Now for case (1), if γ is a curve at

1 ∈ G in ker(ψ) with γ′(0) = x then we have

dψ(x) = (ψ ◦ γ)′(0) = (In)
′(0) = 0

so that Lie(ker(ψ)) ⊆ ker(dψ). Conversely if x ∈ ker(dψ) then tx ∈ ker(dψ) for any

t ∈ R, so by considering the exponential map we note that ψ(etx) = 1 hence etx ∈
ker(ψ). So t → etx is a curve in ker(ψ) with derivative x ∈ Lie(ker(ψ)). Now for the

second case let G̃ ≤ H be the unique matrix subgroup with Lie algebra dψ(Lie(G)).

It is enough to show that G̃ = ψ(G). Now because G is connected then G is generated

by {ez|z ∈ Lie(G)}, in particular ψ(G) is generated by {ez|z ∈ dψ(Lie(G))}. But this
is also the case for G̃, i.e G̃ = ψ(G), so that dψ(Lie(G)) = Lie(ψ(G)) as required. "
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5. The inner automorphism group

Now we consider a Lie algebra L and the the automorphism group G = Aut(L). We

claim that this is a matrix subgroup of GL(n,K) where n = Dim(L). Indeed first

it is clear that we can embed ψ : G ↪→ GL(n,K) via a group homomorphism. Since

we can fix a basis {ej}j of L and represent an automorphism φ : L → L by it’s

matrix, X, so set ψ(φ) = X. Now we can equip ψ(G) with the induced topology from

GL(n,K). It remains to check that ψ(G) is closed in GL(n,K). To see this we let

[ei, ej] =
∑

k C
k
ijek where Ck

ij are the structure constants of L in K. Consider now a

convergent sequence of automorphisms (φn)n∈N → φ and denote (φn)ij = (φij(n))ij for

the matrix w.r.t {ej}j. Since φn are automorphisms of L then the following equality

must be satisfied: ∑

t

φti(n)
∑

s

φsj(n)C
l
ts =

∑

k

Ck
ijφlk(n)

for every l, i, j and n ∈ N. This means that since the entries of φn converges to the

entries of φ then φ must be an automorphism as well. Since we can take the limit as

n → ∞. We conclude that ψ(G) must be closed in GL(n,K).

Proposition 2.12. Let L be a Lie algebra then Lie(Aut(L)) = Der(L).

Proof. We show the case Lie(Aut(L)) ⊆ Der(L). Let Aut(L) be embedded

in GL(n,K) as in the argument above w.r.t a fixed basis {ej}j of L. Suppose that

D : L → L is a derivation of L, i.e D([a, b]) = [D(a), b] + [a,D(b)] for all a, b ∈ L. Let

X be the matrix which represents D w.r.t {ej}j. Now we will identify D with it’s

matrix X ∈ gl(n,K) w.r.t {ej}j so that Der(L) is embedded in gl(n,K). In particular

a matrix X = (xij)ij is a matrix of a derivation if and only if it satisfies the equality:

Ct
ij =

∑

l

xliC
t
lj +

∑

l

xljC
t
il

for all t, i, j where Ck
ij denotes the structure constants of L w.r.t {ej}j. Suppose now

that α : I → Aut(L) is a curve at 1 with α′(0) = X. Write (α(t))ij = αij(t) for the

matrix entries w.r.t the basis {ej}j. Then because α(t) is an automorphism of L we

know that the following equality must hold:
∑

k

αki(t)
∑

s

αsj(t)C
l
ks =

∑

k

Ck
ijαlk(t)

for every l, i, j. Now differentiating both sides of this equation we obtain the property

of X being a derivation. This shows that Lie(Aut(L)) ⊆ Der(L). "

Definition 2.9. If G is a matrix group we define the adjoint group

Ad(G) = {Adg|g ∈ G} ≤ Aut(Lie(G))
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where Adg : Lie(G) → Lie(G) is the automorphism of Lie(G) defined by Adg(x) =

gxg−1 for all x ∈ Lie(G).

Analogous toAut(Lie(G)) one may show thatAd(G) is a matrix subgroup ofAut(Lie(G)) ⊆
GL(n,K) by identifying an automorphism inAd(G) with it’s matrixX ∈ Aut(Lie(G))

w.r.t to the fixed basis {ej} of Lie(G). In this way a matrix X is a matrix of an au-

tomorphism in Ad(G) if and only if there is some g ∈ G such that

geig
−1 =

∑

l

xliel

for all i. Similarly we identify the adjoint Lie algebra ad(Lie(G)) ⊆ Der(Lie(G)) ⊆
gl(n,K). So that a matrix X is a matrix of a map ad(z) : Lie(G) → Lie(G) if and

only if

[z, ei] =
∑

l

xliel

for all i. In particular if α : I → G is a curve in G at 1 with matrix entries (αij(t))ij
and X(t) denotes the matrix of the map Adα(t) then

α(t)eiα(t)
−1 =

∑

l

Xli(t)el

for all i. By differentiating both sides we get

[α′(0), ei] =
∑

l

X ′
lj(0)el.

So we deduce that ad(Lie(G)) ⊆ Lie(Ad(G)). In fact it can be shown that the

inclusion is an equality.

The homomorphism Ad : G → Ad(G) given by g → Adg is called the adjoint

representation of G. By the previous argument Ad is smooth with differential

ad : Lie(G) → ad(Lie(G)). We immediately deduce that

Ad(eX) = ead(X)

for all X ∈ Lie(G).

Definition 2.10. Given a matrix group G with Lie algebra Lie(G) we define the

matrix group of inner automorphisms Int(Lie(G)) of Lie(G) to be the identity

component of Ad(G) namely, Ad(G)0. An automorphism Lie(G) →ψ Lie(G) is said

to be an inner automorphism if ψ ∈ Int(Lie(G)).

Example 2.5. If G is abelian then Adg : Lie(G) → Lie(G) is the trivial homomor-

phism for any g ∈ G, i.e Ad(G) and Int(Lie(G)) are the trivial groups.
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It follows that Int(Lie(G)) is generated by the set {ead(x)|x ∈ Lie(G)}. This is be-

cause Int(Lie(G)) is connected so it follows that Int(Lie(G)) is generated by the

image under the exponential map. We also note that if Lie(G) is semisimple then

we must have Aut(Lie(G))0 = Int(Lie(G)). This follows because Der(Lie(G)) =

ad(Lie(G)), so as Int(Lie(G)) is connected then by uniqueness Aut(Lie(G))0 =

Int(Lie(G)). In particular the inner automorphism group of a semisimple Lie al-

gebra is defined naturally without specifying any matrix group.



CHAPTER 3

Semisimple Lie algebras over R

1. Complexification and realification of Lie algebras

Most of this chapter is based on [1] and [5].

Definition 3.1. Let L0 be a real Lie algebra and suppose J : L0 → L0 is a linear map

such that J2 = −1L0 . Then J is said to be a complex structure on L if in addition

[x, J(y)] = J([x, y]) for all x, y ∈ L.

We note that if J is a complex structure on a real Lie algebra L0 then so is −J (since

(−J)2 = J2 = −1L0). The dimension of L0 must be even if a complex structure were

to exist, this is because J is an isomorphism of vector spaces so det(J)2 = (−1)Dim(L0).

The point with a complex structure is that we can construct a complex Lie algebra

using L0 as follows. Define for each x ∈ L0 the scalar multiplication of a complex

number by,

(a+ ib)x = ax+ bJ(x)

for any a, b ∈ R. It can be easily verified that this defines a complex Lie algebra with

the same Lie bracket [−,−] inherited from L0. Denote this complex Lie algebra by

L̄0. We note that if {xj}j is a basis for L̄0 then {xj}j ∪ {J(xj)}j is a basis of L0.

Consequently DimC(L̄0) =
1
2DimR(L0). The following argument shows this.

Proposition 3.1. DimC(L̄0) =
1
2DimR(L0).

Proof. Given a basis for L̄ say {xj}j then we claim that S = {xj}j ∪ {J(xj)}j
is a basis for L0. Indeed if x ∈ L̄ then we can write

x =
∑

j

(re(λj) + iIm(λj))xj

for suitable complex numbers λj ∈ C. In particular x =
∑

j re(λj)xj + Im(λj)J(xj)

so that S spans L0. Moreover if
∑

j

βjxj +
∑

j

αjJ(xj) = 0

for βj, αj ∈ R then
∑

j(αj + iβj)xj = 0, hence it follows that αj, βj are all zero since

{xj}j is a basis for L. "
42
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Definition 3.2. Given a complex Lie algebra L we define the realification of L

denoted LR to be the Lie algebra L over R with the Lie bracket inherited from L over

C.

Observe that given a complex Lie algebra L then LR has a complex structure J given

by J(x) = ix ∈ LR, as [x, J(y)] = [x, iy] = i[x, y] since L is a complex Lie algebra. In

particular the corresponding complex Lie algebra constructed by defining

(a+ ib)x = ax+ bJ(x) = ax+ ibx,

for all x, y ∈ LR and a, b ∈ R is just the original Lie algebra L over C. In particular

by our argument above it follows that DimR(LR) = 2DimC(L).

Recall the construction of C from R using R×R. We now extend this construction to

real vector spaces V , i.e we will construct a complex vector space denoted V C using

a natural complex structure on V × V . The complex vector space V C is defined to

be the complexification of V . This construction will also work for Lie algebras.

Let now L be a real vector space and consider the endomorphism map J : L× L →
L× L given by J(x, y) = (−y, x) for all x, y ∈ L. Define now a scalar multiplication

of complex numbers by:

(a+ ib)(x, y) = (ax, ay) + bJ(x, y) = (ax− by, ay + bx)

for all a, b ∈ R and x, y ∈ L. Set LC = {x + iy|x, y ∈ L} where we identify a pair

(x, y) = (x, 0) + J((y, 0)) with x + iy for (x, y) ∈ L × L. This is a complex vector

space. Moreover if L is a Lie algebra with bracket [−,−], then we can define a Lie

bracket on LC defined by:

[x+ iy, z + it] = [x, z]− [t, x] + i([y, z] + [x, t])

for all x, y, z, t ∈ L. So LC becomes a complex Lie algebra. We immediately see that

DimR(L) = DimC(LC).

2. Real forms

Definition 3.3. Let L be a complex Lie algebra and L0 ≤ LR be a Lie subalgebra of

LR. We say L0 is a real form of L if

LR = L0 ⊕ J(L0),

here LR →J LR is the complex structure on LR given by ix = J(x) for every x ∈ L.

We will usually just write i instead of J .
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It follows immediately that if L0 is a real form of a complex Lie algebra L then

LC
0 = L.

Example 3.1. The special linear Lie algebra sl(2,R) is a real form of sl(2,C). In

fact consider {e, f, h} the standard basis of sl(2,C) then the subspace C spanned by

{ih, e − f, i(e + f)} is also a real form of sl(2,C). Indeed we calculate the following

brackets:

[ih, e− f ] = 2i(e+ f), [ih, i(e+ f)] = −2(e− f), [e− f, i(e+ f)] = 2ih.

We deduce that the Lie algebra is real, so it is a Lie subalgebra of sl(2,C)R. It can

also be easily checked that sl(2,C)R = C ⊕ iC. It turns out that C ∼= R3
∧ (cross

product). The two real forms we found are in fact all the real forms of sl(2,C).

We say that a map σ : L → L is a antilinear map if σ satisfies σ(x+ y) = σ(x)+σ(y)

and σ(λx) = λ̄x for every x ∈ L and λ ∈ C. Now since I is a real form of L

then it gives rise to an involutive antilinear map σ : L → L given by conjugation

σ(x + iy) = x − iy. Conversely if we have an involutive antilinear map σ : L → L

which is a homomorphism of Lie algebras, then we claim that the subspace fixed by σ

must be a real form of L. Indeed note that σ is an involution when restricted on LR,

so we can write LR = L+ ⊕ L−. We clearly have L− = iL+ by definition. Moreover

L+ is clearly a Lie subalgebra of LR, since σ([x, y]) = [x, y] whenever x, y ∈ L+. So

L+ is a real form of L.

Definition 3.4. A real structure σ on a complex Lie algebra L is an involutive

antilinear homomorphism σ : L → L.

Proposition 3.2. Let L be a complex Lie algebra with real forms L0, L1 and conju-

gation maps τ0, τ1 respectively. Then the following hold:

(1) τ0 restricted to LR is an automorphism of LR, i.e τ0 ∈ Aut(L).

(2) τ0 ◦ τ1 ∈ Aut(L).

(3) τ1 ◦ τ0 = τ0 ◦ τ1 if and only if τ0(L1) = L1 and τ1(L0) = L0.

(4) If (3) holds then L0 = (L0 ∩ L1)⊕ (L0 ∩ iL1) and L1 = (L0 ∩ L1)⊕ (L1 ⊕ iL0).

(5) (∀x, y ∈ L)(κ(τ0(x), τ0(y)) = κ(x, y)).

Lemma 3.1. Let L0 be a real Lie algebra and denote κL0 for the Killing form. Denote

LC
0 = L and L̂ = LR. Then the following is true.

(1) (∀x, y ∈ L0)(κL0(x, y) = κL(x, y)).

(2) (∀x, y ∈ L̂)(κL̂(x, y) = 2Re(κL(x, y))) where Re is the real part.

Proof. Case (1) is clear as the Lie bracket of L0 is an extension to the bracket

on L, moreover a choice of bases for L0 is also a basis for L. For (2) if S = {xj}j is a
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basis for L then we know that S ∪ J(S) = Ŝ is a basis for L̂, here J is the complex

structure on L̂ given by J(x) = ix. So given x ∈ L̂ we have

adL̂(x)(xj) = [x, xj] = adL(x)(xj) =
∑

l

(Re(alj) + iIm(alj))xl =

=
∑

l

Re(alj)xl +
∑

l

Im(alj)J(xl).

Here (aij)ij is the matrix for the map adL(x). Moreover we have since J is a complex

structure:

adL̂(x)(J(xj)) = [x, J(xj)] = J([x, xj]) = J(adL̂(x)(xj)) =

=
∑

l

−Im(alj)xl +
∑

l

Re(alj)J(xl).

This shows that the matrix of adL̂(x) has the block form
(
Re(A) −Im(A)

Im(A) Re(A)

)
.

This shows that if B is the matrix for adL(y) for y ∈ L̂ then adL̂(x) ◦ adL̂(y) has

matrix
(
Re(A)Re(B)− Im(A)Im(B) *

* Re(A)Re(B)− Im(A)Im(B)

)
=

(
Re(AB) *

* Re(AB)

)
.

Now because the real partRe(−) is linear then κL̂(x, y) = 2tr(Re(AB)) = 2Re(tr(AB))) =

2Re(κL(x, y)) as required. "

It follows immediately that the property of a complex Lie algebra of being semisimple

is conserved within its real forms.

Corollary 3.1. Let L0 be a real Lie algebra then following are equivalent.

(1) L0 is semisimple.

(2) LC
0 is semisimple.

(3) (LC
0 )

R is semisimple.

In particular if L is a complex Lie algebra with real form L0 then L is semisimple if

and only if L0 is semisimple. "

Having the notion of complexification we see that Cartan’s second criterion also hold

for real semisimple Lie algebras. In particular it follows that ad(L0) = Der(L0) also

for semisimple real Lie algebras L0, we can mimic the proof we used for complex

semisimple Lie algebras. Another observation is that if LC
0 is simple then so is L0.

Since if we have an ideal I#L0 then IC is an ideal of LC
0 . So it follows that any bilinear
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form of L0 which is associative, symmetric and non-degenerate must be proportional

to the Killing form, κ, on L0. This follows because we can extend the bilinear form

to a bilinear form on LC
0 with the same properties.

3. A compact real form

Definition 3.5. [Compact real form]. Let L be a complex Lie algebra. We say

that a real form L0 on L is compact if the Killing form κ on L is negative definite

when restricted to L0, i.e κ(x, x) < 0 for all x '= 0, and κ(x, x) = 0 if and only if

x = 0.

We will now show that every semsimple complex Lie algebra L has a compact real

form, this follows from the fact that L has a root decomposition. So choose a Cartan

subalgebra of L say H and write a root decomposition:

L = H ⊕α∈Ω Lα.

Recall now the definition of the Cartan-Weyl basis and the function λ defined on the

hull of a subset S ⊂ Ω. We will assume that L is equipped with this basis

{tα|α ∈ Ω, α '= −α} ∪ {xα|α ∈ Ω}.

Consider now the real subspace

C = iHR ⊕α (=−α 〈i(xα + x−α)〉 ⊕α (=−α 〈xα − x−α〉 ⊂ L

where HR is the real span of {tα|α ∈ Ω, α '= −α}. Recall that κ(tα,−) = α(−). We

will show that this is the required compact real form of L.

Lemma 3.2. The real subspace C of L is a real Lie subalgebra of L. Moreover if we

restrict the Killing form κ on L to C then κ is negative definite.

Proof. Write for elements z, ẑ ∈ C,

z =
∑

α

λαitα +
∑

α

cαi(xα + x−α) +
∑

α

bα(xα − x−α)

and

ẑ =
∑

β

λ̂βitβ +
∑

β

ĉβi(xβ + x−β) +
∑

β

b̂β(xβ − x−β).

Then an easy calculation shows that

κ(z, ẑ) = −
∑

α,β

λαλ̂βα(tβ)−
∑

α

cα(2ĉα) +
∑

α

bα(−2b̂α) ∈ R,
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using that κ(xα, x−α) = 1 for all α ∈ Ω and κ(Lα, Lβ) = 0 if α + β '= 0. Denote

h =
∑

α λαitα then

κ(z, z) = −κ(h, h)− 2
∑

α

c2α − 2
∑

α

b2α < 0

when z '= 0 as κ is positive definite on the Cartan subalgebra H. Replacing κ with

the Lie bracket [−,−] one shows similarly that [z, ẑ] ∈ C for every z, ẑ ∈ C by using

the fact λ(α, β) = −λ(−α,−β) for all α, β ∈ Ω and that λ(α, β) is real. The lemma

is proved. "

Consider now the real Lie subalgebra C ≤ LR as above. We claim that this is a real

form of L. Indeed recall that HR is a real form of H, so any element z ∈ L can be

decomposed as follows:

z = h1 + ih2 −
i

2

∑

α

λαi(xα + x−α) +
1

2

∑

α

λα(xα − x−α)

for some h1, h2 ∈ HR and xα ∈ Lα. This shows that LR = C + iC and it is clear that

C ∩ iC = 0, since κ is real on C.

Thus we have proved the following theorem.

Theorem 3.1. Every complex semisimple Lie algebra L has a compact real form. "

For later use, when we refer to the compact real form C associated to a root decom-

position of L, then we will mean the one we just found previously. It is immediate

that C satisfies the following.

Proposition 3.3.

(1) H ∩ C = iHR is maximal abelian in C.

(2) HR ⊂ iC.

Theorem 3.2. Let L0 be a real semisimple Lie algebra with complexification L, i.e

L0 is a real form on L. Now let C be a compact real form on L and denote σ for the

conjugation map of L0. There exist φ ∈ Aut(L) such that σ(φ(C)) ⊂ φ(C).

Proof. Let τ : LR → LR denote the conjugation map w.r.t the compact real

form C of L. Then the composition θ = σ ◦ τ is an involution θ : L → L. Since C is

compact then the bilinear form κτ defined by:

κτ (x, y) = −κ(x, τ(y))

for all x, y ∈ L forms an inner product on L. In particular since κ is invariant under

automorphisms of L and σ, τ are involutions of LR, then θ is symmetric w.r.t κτ . So
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w.r.t some orthonormal basis we can assume θ is represented by a diagonal matrix

with non-zero entries. In particular θ̃ = θ2 has positive diagonal entries say, λj > 0.

Consider now θ̃t for any real number t ∈ R. We claim that θ̃t is an automorphism of

L. Indeed this is true if and only if

λt
iλ

t
jC

k
ij = Ck

ijλ
t
k

for every k, i, j, t, where Ck
ij are the structure constants. However we already know

that it is true in the case of t = 1, so it easily extends to R. Similarly we see that

τ ◦ θ = θ−1 ◦ τ so this extends to τ ◦ θ̃t = θ̃−t ◦ τ for any t ∈ R. In particular if we set

ψt = θ̃t ◦ τ ◦ θ̃−t then using the previous inequality we get

σ ◦ ψt = θ ◦ θ̃−2t

and

ψt ◦ σ = θ−1 ◦ θ̃2t.

So in particular when t = 1
4 and since θ̃

1
2 = θ it follows that σ commutes with ψ 1

4
.

This means that if we choose the automorphism φ = θ̃
1
4 = θ

1
2 of L we get the required

result. "

From the previous proof it follows immediately that two compact real forms C, C̃ ≤ LR

of L are isomorphic. Since if τC denotes the conjugation map w.r.t C then we can find

a one parameter subgroup R → Aut(L): ψt : L → L, such that τC(ψ̃(C̃)) ⊂ ψ̃(C̃)

where ψ̃ = ψ
1
4 i.e

ψ̃(C̃) = (ψ̃(C̃) ∩ C)⊕ (ψ̃(C̃) ∩ iC).

But since C and ψ̃(C̃) are both compact it follows that ψ̃(C̃) = C. In particular we

know by the theory of matrix groups that ψt = etad(x) for a suitable x ∈ L, hence ψt

are inner automorphisms of L. In particular every two compact real forms of L are

related by a one parameter subgroup of Aut(L). So it follows that if G ⊂ GL(n,C)
is a matrix group with Lie algebra L then there is an element g ∈ G such that

gC̃g−1 = C.

Definition 3.6. [Conjugacy]. Let H1, H2 ≤ L where L is a real Lie algebra then we

say H1 is conjugate to H2 if we can find an inner automorphism ψ ∈ Int(L) such that

ψ(H1) = H2. Moreover if θ1, θ2 are two automorphisms of L then we say that they

are conjugate if we can find an inner automorphism ψ such that ψ−1 ◦ θ1 ◦ ψ = θ2.
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4. A Cartan decomposition

Definition 3.7. [Cartan decomposition]. Let L0 be a real Lie algebra with com-

plexification L. We say that L0 has a Cartan decomposition if

L0 = (L0 ∩ C)⊕ (L0 ∩ iC)

for some compact real form C of L with σ(C) ⊂ C.

Corollary 3.2. Every semisimple real Lie algebra L0 has a Cartan decomposition.

Proof. Let L be the complexification of L0 and C any compact real form of L,

also let σ be the conjugation map of L0. Then we know that there exist a automor-

phism ψ ∈ Aut(L) such that σ fixes ψ(C) = C̃ i.e σ(C̃) ⊂ C̃, in particular C̃ is also a

compact real form of L. So if τ denotes the conjugation map of C̃ then σ commutes

with τ , and so τ fixes L0. This shows that

L0 = (L0 ∩ C̃)⊕ (L0 ∩ iC̃)

which is by definition a Cartan decomposition of L0 as required. "

Consider now any involution θ : L0 → L0 and the Killing form κ of L0. Then

we can construct a new symmetric associative bilinear form, κθ on L0 by defining

κθ(−,−) := −κ(−, θ(−)). We are interested in which involutions θ this bilinear form

is positive definite, we will see that this is strongly related to the Cartan decomposition

of L0. So we have the following definition.

Definition 3.8. [Cartan involution]. Let L0 be a real Lie algebra and suppose

there is an involution θ : L0 → L0 such that κθ is positive definite. Then we say that

θ is a Cartan involution of L0.

From this definition we immediately see that if C is a compact real form of L = CC

then the identity 1C = θ serves as Cartan involution, since the Killing form is negative

definite on C. Note that if T0(+)⊕P0(−) is the eigenspace decomposition of a Cartan

involution θ, then κ restricted to T0 must be negative definite while κ restricted to P0

must be positive definite. Also if t0 ∈ T0 and p0 ∈ P0 then κ(t0, θ(p0)) = κ(t0,−p0) =

κ(θ(t0), p0) = κ(t0, p0), i.e κθ(t0, p0) = 0.

Example 3.2. Consider sl(2,R) with standard basis {e, f, h}. Then the involution

given by x → −xt is a Cartan involution of sl(2,R). Indeed let T0 ⊕ P0 be the

eigenspace decomposition. Then clearly T0 = 〈e − f〉 and P0 = 〈h, e + f〉. We have

seen that the real subspace C spanned by {e− f, ih, i(e+ f)} is a compact real form
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of sl(2,C). But since T0 ⊕ iP0 = C then κ is negative definite on T0 and positive

definite on P0 as required.

Proposition 3.4. Let L0 be a real semisimple Lie algebra with Cartan involution

θ ∈ Aut(L0) then the following hold.

(1) If L is the complexification of L0 then the real subspace T0⊕iP0 ⊆ LR is a compact

real form of L.

(2) The eigenspace decomposition L0 = T0 ⊕ P0 with respect to θ is a Cartan decom-

position.

It follows that every semisimple real Lie algebra L0 has a Cartan involution θ : L0 →
L0 which is restricted from an involution θC : L → L where L = LC

0 . In fact L0 has a

Cartan decomposition if and only if L0 has a Cartan involution.

Proposition 3.5. Every real semisimple Lie algebra L0 has a Cartan involution.

Moreover every Cartan involution of L0 can be extended to an involutive automor-

phism of L = LC
0 .

Proof. Choose a Cartan decomposition of L0 say L0 = T0 ⊕ P0 then we claim

that the map L0 →θ L0 given by θ(x+ y) = x− y is a Cartan involution. To see this

first observe that T0 = L0 ∩ C and P0 = L0 ∩ iC for some compact form C of L, by

definition of a Cartan decomposition. So we must have that κ is negative definite on

T0, while κ is positive definite on P0. This shows that for x ∈ T0 and y ∈ P0,

κθ(x+ y, x+ y) = −κ(x+ y, x− y) = −κ(x, x) + κ(y, y) > 0

for x+ y '= 0, while it is zero if and only if x+ y = 0. So κθ is positive definite. Now

θ is clearly a linear isomorphism and θ2 = 1. To show that it is an automorphism in

Aut(L0) we first consider the automorphism

θC = σ ◦ τ ∈ Aut(L)

where σ, τ are the conjugation maps for L0, C respectively. Now since σ and τ com-

mute then obviously θC is an involution. It is clear that θC extends θ. In particular

θ must be an automorphism as well. This proves the proposition. "

We now follow closely the idea in the proof of Theorem 3.2.

Consider now a Cartan involution θ of L0 with Cartan decomposition L0 = T0 ⊕ P0

and set C = T0 ⊕ iP0 for the corresponding compact real form of L = LC
0 . Denote

θC : L → L for the extension to L then κθC forms an Hermitian form on L. Now it

follows that if we define θ̃C = (θC)2 then the automorphism θ̃C
t
of L restricts to an
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involution L0 → L0 for all t ∈ R, since this holds for θC. In particular we have a

one parameter subgroup R → Aut(L0), so we know that θ̃C
t
= etad(x) for a suitable

x ∈ L0. But then θ̃C
t
∈ Int(L0) for every t ∈ R and we in particular have

θ = θ̃C
1
2 ∈ Int(L0).

This means that if we have a real matrix group G with semisimple Lie algebra L0,

then any Cartan involution has the form θ = Adg for a suitable g ∈ G.

Theorem 3.3. Suppose L0 is a semisimple real Lie algebra and

L0 = T0 ⊕ P0 = T1 ⊕ P1

are two Cartan decompositions of L0. Then we can find an inner automorphism

ψ ∈ Int(L0) such that ψ(T0) = T1 and ψ(P0) = P1. In particular T0
∼= T1 and

P1
∼= P0.

Proof. Denote T0 ⊕ iP0 = C and T1 ⊕ iP1 = C̃ for the compact real forms

of L = LC
0 w.r.t to the two Cartan decompositions of L0. Now let σ, τ, τ̃ be the

conjugation maps of L0, C, C̃ respectively and set θ = τ τ̃ with θ̃ = θ2. Then it follows

that φ(C) = C̃ for which φ = θ̃
1
4 (see Theorem 3.2). We claim that φ(T0) = T̃0

and φ(P0) = P̃0. Indeed θ̃ restricts to an involution L0 → L0 since τ̃(L0) ⊂ L0 and

τ(L0) ⊂ L0 so in particular θ̃(L0) ⊂ L0. But then this easily extends to θ̃t for any

t ∈ R. So in particular φ is an inner automorphism of L0. Now the theorem follows

since σ commutes with both τ and τ̃ . "

It follows from the previous results that any two Cartan involutions θ, θ̃ : L0 → L0 of

L0 must be conjugate. In particular any Cartan involution θ of a compact real form

C of CC is unique, i.e θ = 1C .

Let L0 be semisimple and consider now any involution ρ : L0 → L0 of L0 with

eigenspace decomposition T ⊕ P . Define ρC for the extended involution to LC
0 by

ρC(x+ iy) = ρ(x)+ iρ(y) for all x, y ∈ L0. The following proposition shows when and

how it is related to a Cartan involution of L0.

Proposition 3.6. ρ is a Cartan involution if and only if T ⊕ iP is a compact real

form of LC
0 . Moreover if θ̃ is a Cartan involution of L0 then there exist an inner

automorphism ψ ∈ Int(L0) such that ψ ◦ θ̃ ◦ ψ−1 commutes with ρ.

Proof. If C = T ⊕ iP is a compact real form of LC
0 then since T ⊂ C we must

have that κ is negative definite on T . Similarly since iP ⊂ C then κ restricted

P must be positive definite. This shows that ρ is a Cartan involution as required.
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Conversely suppose that ρ is a Cartan involution. Then by definition T ⊕ P is a

Cartan decomposition, hence T ⊕ iP is a compact real form of LC
0 . The second

statement follows from Theorem 3.2 by replacing the following components in the

proof: replace τ with θ̃C and σ with ρC, and set θ = ρC ◦ θ̃C then the proof is still

valid. So following the proof there is a one parameter subgroup of Aut(LC
0 ) of the

form φt = (θ2)t such that when t = 1
4 then φ−t ◦ θC ◦ φt commutes with ρC. In

particular φt is a one parameter subgroup of Aut(L0), hence restricting to L0 we get

the result with ψ = φ
1
4 . The proposition is proved. "

We now investigate Cartan involutions of LR where L is a semisimple complex Lie

algebra.

Since L is semisimple then LR is also semisimple. Let C ≤ LR be a compact real form

of L. Then the decomposition

LR = C ⊕ iC

is a Cartan decomposition of LR. To see this we claim that the conjugation map

θ : LR → LR given by θ(x + iy) = x − iy is a Cartan involution. It is clearly an

involutive Lie homomorphism. Now we have seen that the Killing form on LR is just

given by

κ(x, y) = 2Re(κL(x, y))

for all x, y ∈ LR. In particular κ(x, x) = 2κL(x, x) for all x ∈ LR, and so clearly κ

is negative definite on C. Similarly we see that κ(ix, ix) = −2κL(x, x) so it positive

definite on iC. This shows that θ is a Cartan involution of LR.

Conversely suppose θ is any Cartan involution of LR with Cartan decomposition

T0 ⊕ P0 = LR. We can choose a compact real form of L, say C. Then we know that

there is an inner automorphism ψ ∈ Int(LR) such that ψ(T0) = C and ψ(P0) = iC.

So in particular T0 must be a compact real form of L, since κ is negative definite on

T0 and so is positive definite on iT0. Hence T0 ∩ iT0 = 0. So we have proved the

following theorem.

Theorem 3.4. Let L be a complex semisimple Lie algebra then there is a bijection:

{Cartan involutions LR → LR} ↔{ Compact real forms of L}.

5. Cartan subalgebras of real Lie algebras

Definition 3.9. Let L0 be real Lie algebra with complexification L then we say that

a Lie subalgebra H ≤ L0 is a Cartan subalgebra of L0 if HC is a Cartan subalgebra

of L.
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We define the rank of L0 to be the dimension of a Cartan subalgebra of L0. The rank

is well-defined since it can be shown that every Cartan subalgebra of a complex Lie

algebra L is conjugate. This is however not the case over the reals, for instance it can

be shown that the Cartan subalgebras of sl(2,R) can be divided into two conjugacy

classes. In fact any semisimple real Lie algebra L0 has a finite number of conjugate

classes, and in the case where L0 is compact then every Cartan subalgebra is in fact

conjugate.

Example 3.3. Consider L a semisimple complex Lie algebra and denote C for the

compact form associated to a root decomposition L = H ⊕α∈Ω Lα where H is a

Cartan subalgebra of L. Recall the real subalgebra HR ⊂ H. It follows that iHR is an

abelian subalgebra of C, moreover we know that (iHR)C is just H, i.e it is a Cartan

subalgebra of C. To illustrate let L = sl(2,C) with standard basis {e, f, h}, then we

can take H to be the span of {h}. Here iHR is the real span of {ih}, where C is the

real span of {ih, i(e+ f), e− f}.

A useful remark is the following. Consider now a real Lie algebra L0 with Cartan invo-

lution θ with the inner product κθ. Write L0 = T0⊕P0 for the Cartan decomposition

w.r.t θ. Then we observe that if x, y, z ∈ L0 we have

κθ(x, ad(θ(z))(y)) = −κ(x, θ([θ(z), y])) = κ([z, x], θ(y)) = −κθ(ad(z)(x), y).

So given x = t0 + p0 for t0 ∈ T0 and p0 ∈ P0 then ad(t0) and ad(p0) are the antisym-

metric/symmetric parts of ad(x) w.r.t κθ.

Using this observation we can prove that every semisimple real Lie algebra is a matrix

Lie algebra. This is a special case of Ado’s theorem (see appendix B).

Theorem 3.5. Let L0 be a real semisimple Lie algebra the the following is true.

(1) There is a monomorphism

L0 ↪→ψ gl(Dim(L0),R)

such that ψ(L0) is closed under taking transpose.

(2) If θ denotes a Cartan involution of L0 then the corresponding Cartan involution

of ψ(L0) is given by A → −At.

Proof. Denote θ for a Cartan involution of L0, with corresponding Cartan de-

composition T0 ⊕ P0. Now ad(L0) ∼= L0 so we clearly have the following embedding:

L0 ↪→Ad ad(L0) ↪→φ gl(n,R)
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where φ(ad(x)) is sent to the matrix which it is represented by w.r.t a orthonormal

basis chosen w.r.t the inner product κθ. But then ad(T0) is sent to antisymmetric

matrices and ad(P0) is sent to symmetric matrices. So (1) follows immediately. If we

denote composition above by ψ then θ̃ = ψ ◦ θ ◦ ψ−1 restricted to ψ(L0) is a Cartan

involution of ψ(L0). This follows because the Killing form is preserved under the

embedding, i.e

κψ(L0)(ψ(x), ψ(y)) = κL0(x, y)

for all x, y ∈ L0. In particular

−κψ(L0)(ψ(x), θ̃(ψ(y))) = −κL0(x, (θ ◦ ψ−1)(y))

for all x, y ∈ L0. This shows that it is a Cartan involution of ψ(L0) with decomposition

ψ(T0) ⊕ ψ(P0) as required. Moreover it is clear that θ̃(A) = −At for all A ∈ ψ(L0).

The theorem is proved. "

We immediately see that any semisimple compact Lie algebra C is embedded into

the special orthogonal Lie algebra so(n,R) for n = Dim(C). Now the dimension of

so(n,R) can be seen to be
(
n
2

)
. So for example sl(2,R) ⊗ sl(2,R) is semisimple of

dimension 6. Hence it has a compact form embedded in so(6,R) which has dimension

15. Note that the dimension n = Dim(C) is the best possible, indeed it is easily

verified that sl(2,C) has a compact real form isomorphic to so(3,R).

Recall now the definition of a reductive Lie algebra.

Proposition 3.7. The following is true.

(1) A reductive Lie algebra L has the form L = [L,L]⊕Z(L) where [L,L] is semisim-

ple.

(2) A real Lie algebra L0 ⊂ gl(n,R) which is closed under taking transpose, i.e xt ∈ L0

for all x ∈ L0 is reductive.

Proof. For proof of (1) see for example [5], chapter 1, section 7, Corollary 1.53.

A proof of (2) can be found in [5], section 8, Proposition 1.56. "

Let L0 be a real Lie algebra and H be a Lie subalgebra of L0. Suppose ψ is an

automorphism of L0. Then we say that H is ψ-stable if ψ(H) ⊂ H.

It is now immediate that any θ-stable Lie subalgebra of a semisimple real Lie algebra

L0 must be reductive. Since embed L0 into gl(n,R) and denote this copy by L̃0, by

our results above we can assume L̃0 is closed under taking transpose. Now the Cartan

involution is now identified with θ̃ given by θ̃(x) = −xt for all x ∈ L̃0, so it follows
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that the copy of H in L̃0 must be θ̃−stable. Hence it is reductive, in particular H is

reductive.

Having a Cartan decomposition gives rise to Cartan subalgebras in the following way.

Proposition 3.8. Let L0 be a real semisimple Lie algebra with Cartan involution θ

and Cartan decomposition L0 = T0 ⊕ P0 then the following hold:

(1) Let t0 ⊂ T0 be maximal abelian then the centralizer H = CL0(t0) is a θ-stable

Cartan subalgebra of L0.

(2) Let p0 ⊂ P0 be maximal abelian and t0 ⊂ CT0(p0) be maximal abelian then t0⊕p0 =

H is a Cartan subalgebra of L0.

Proof. For case (1) it is clear that the subalgebra H = CL0(t0) ⊂ L0 is θ-stable.

So in particular we know that H is reductive and has the form H = T0 ∩H ⊕P0 ∩H.

It follows that H is abelian, since [H,H] is semisimple and abelian so must be trivial,

i.e H = Z(H). Now H is clearly maximal abelian since if H ⊆ H̃ ⊂ L0 where H̃ is

another abelian subalgebra of L0, then by definition of H we have H̃ ⊆ H. It remains

to show that every h ∈ HC is semisimple in L = LC
0 . If θC denotes the extension of

θ, then κθC is an inner product on L. Now every element h of HC can written as

h = −iit0 + p0 + i(t̃0 + p̃0)

for suitable t0, t̃0 ∈ T0 and p0, p̃0 ∈ P0. Choose an orthonormal basis for L w.r.t κθC .

Now w.r.t this basis it follows that ad(p0) and ad(p̃0) are Hermitian, while ad(t̃0) and

ad(t0) are antisymmetric. In particular ad(it̃0) is also Hermitian. But we also have

ad(−iit0) = −iad(it0), so that this is also Hermitian w.r.t this basis. This proves the

result. Case (2) follows in a similar way. "

In particular we have proved the following.

Theorem 3.6. Every real semisimple Lie algebra L0 with Cartan involution θ has a

θ-stable Cartan subalgebra. "

6. θ-stable Cartan subalgebras

Although two Cartan subalgebras of a semisimple real Lie algebra are not necessarily

conjugate, we prove in this section that every Cartan subalgebra is conjugate to a

θ-stable Cartan subalgebra. This is trivially true when the Lie algebra is compact.
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Consider now a real semisimple Lie algebra L0 with complexification L, and suppose

H is a Cartan subalgebra of L0. So we can write a root decomposition of L,

L = HC ⊕α∈Ω Lα.

Recall that there is a compact real form of L associated to every root decomposition.

Set C for this compact real form. Now we also recall that HC = HR ⊕ iHR for which

HR ⊂ iC is a real Lie subalgebra of HC. Here HC ∩ C = iHR is maximal abelian in

C. We will use this setup in the following theorem:

Theorem 3.7. There exist a θ-stable Cartan subalgebra H̃ ⊂ L0 such that H and H̃

are conjugate.

Proof. Denote σ, τC for the conjugation maps of L0 and C respectively. Now we

know that there is an automorphism ψ ∈ Aut(L) for which

σ(ψ(C)) ⊂ ψ(C).

So set U = ψ(C), which is another compact real form of L. We claim that ψ(HC) =

HC. Indeed since σ(HC) ⊂ HC and τC(HC) ⊂ HC then obviously this extends to

ψ. This follows because we can choose ψ of the form (σ ◦ τC)
1
2 (See Theorem 3.2 for

details). Also observe that σ(h) = h for all h ∈ H. Now we may write a Cartan

decomposition

L0 = L0 ∩ U ⊕ L0 ∩ iU

of L0 with Cartan involution θ̃ = σ ◦ τU . There exist an inner automorphism γ ∈
Int(L0) such that

γ−1θγ = θ̃.

So set H̃ = γ(H) as our Cartan subalgebra of L0, then obviously θ(H̃) = γ(θ̃(H)). It

is therefore enough to show that θ̃(H) = H. First note that ψ(HC ∩C) = HC ∩ U is

maximal abelian in U since HC ∩ C is maximal abelian in C. We claim that we can

decompose:

HC = HC ∩ U ⊕HC ∩ iU.

Indeed suppose there is an 0 '= h ∈ HC such that h /∈ HC ∩ U ⊕ HC ∩ iU . We can

write h = a + ib for a, b ∈ U since U is a real form of L, we can assume w.l.g that

a /∈ HC ∩ U . So

[HC ∩ U, h] = [HC ∩ U, a] + i[HC ∩ U, b] = 0

and therefore we must have [HC ∩ U, a] = 0 and [HC ∩ U, b] = 0. So we can extend

HC ∩ U to a larger abelian Lie subalgebra of U , this contradicts our assumptions.
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Hence τU(HC) = HC. Now since σ commutes with τU then for h ∈ H we have

θ̃(h) = σ(τ(h)) = σ(h̃+ ih̃′) = h̃− ih̃′ = τU(h) = h̃+ ih̃′

for suitable h̃, h̃′ ∈ H, i.e h̃′ = 0. The theorem is proved. "

Now we consider a real semisimple Lie algebra L0 with Cartan involution θ and with

corresponding Cartan decomposition L0 = T0 ⊕ P0. Recall that a Lie subalgebra H

which is θ-stable has the form H = T0 ∩H ⊕ P0 ∩H.

Definition 3.10. A θ-stable Cartan subalgebra H ≤ L of the form H = t0 ⊕ p0 for

t0 ⊂ T0 and p0 ⊂ P0 is said to be maximally compact if t0 ⊂ T0 is maximal. By

maximal we mean that if t0 ⊂ t1 ⊂ T0 and t1 ⊕ a1 is a θ-stable Cartan subalgebra for

some a1 ⊂ P0 then t1 = t0. Similarly we say that H is maximally non-compact if

p0 ⊂ P0 is maximal.

Clearly any Cartan subalgebra of a compact semisimple Lie algebra is maximally

compact. In fact the other extrema also exist, i.e we will see that any semisimple

complex Lie algebra has a real form with Cartan subalgebra contained in P0. This

real form is known as a split real form.

Proposition 3.9. A θ-stable Cartan subalgebra H = t0 ⊕ p0 of L0 is maximally

compact if and only if t0 is maximal abelian in T0. Similarly it is maximally non-

compact if and only if p0 is maximal abelian in P0.

Proof. Suppose H = t0 ⊕ p0 is a θ-stable Cartan subalgebra of L0. If t0 ⊂ T0 is

maximal then obviously H is maximal compact. Conversely suppose H is maximally

compact. Assume t0 ⊆ t̃0 ⊂ T0 for a maximal abelian subalgebra t̃0 ⊂ T0 containing

t0. Then we know that the centralizer H̃ = CL0(t̃0) is a θ-stable Cartan subalgebra

of L0. In particular H̃ = t̃0 ⊕ p̃0 for some p̃0 ⊂ P0, so we must have t̃0 = t0 since H

is maximally compact. Hence t0 is maximal abelian in T0. Now if p0 is maximal in

P0 then obviously H is maximally non-compact. Conversely if H is maximally non-

compact then assume p0 ⊂ p̃0 ⊂ P0 is maximal abelian in P0 containing p0. Then we

can choose a θ-stable Cartan subalgebra of the form H̃ = t̃0⊕ p̃0 where t̃0 ⊂ CT0(p̃0) is

maximal abelian. In particular p0 = p̃0, so must be maximal abelian as required. "

7. The split real form

Definition 3.11. [Split real form]. Let L be a semisimple complex Lie algebra and

L0 a real form of L. We say L0 is a split real form if for every Cartan decomposition

L0 = T0 ⊕ P0 we can find a maximal abelian subalgebra H0 ≤ L0 such that H0 ⊆ P0.
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Clearly H0 must be a Cartan subalgebra of L0. Indeed we have seen that H = T ⊕H0

is a Cartan subalgebra for which T is maximal abelian in CT0(H0). However H is

also maximal abelian in L0, in particular H0 = H, i.e T = 0. Note also that if the

conditions are satisfied in the definition for one Cartan decomposition then clearly

it holds for every Cartan decomposition. This is because Cartan involutions are

conjugate.

Example 3.4. sl(2,R) is a split real form of sl(2,C). Since if {e, f, h} is the standard

basis of sl(2,C) then the span of {h} is a Cartan subalgebra of sl(2,C). But h ∈
sl(2,R) and h ∈ P0 where P0 consists of all symmetric matrices of sl(2,R). So we can

take H0 equal to the real span of h.

Having a split real form allows us to consider a real version of a root decomposition

of it’s complexification. Often this is called the restricted root decomposition.

To see this let L0 be a semisimple split real form of L = LC
0 and L0 = T0 ⊕ P0 be a

Cartan decomposition of L0. Choose H0 ⊂ P0 to be a maximal subalgebra of L0. Set

H = HC
0 . Now we can choose a basis {xj}j of L0 such that every linear map in ad(H0)

is represented by a diagonal matrix. So we clearly have a real root decomposition

L0 = Lo ⊕λ∈
∑ Gλ

where Gλ = {x ∈ L0|[h0, x] = λ(h0)x, ∀h0 ∈ H0} and
∑

= {0 '= λ ∈ H∗
0 |Gλ '= 0}.

Clearly Lo = H0 since H0 is maximal abelian in L0.

Now since every element h in H has the form h = h0 + ih′
0 for h0, h′

0 ∈ H0 then

clearly ad(h) is diagonal in L w.r.t the same basis as for L0. Let H⊕α∈ΩLα be a root

decomposition of L w.r.t H. Now given 0 '= x ∈ Lα we can write x =
∑

j ajxj for

unique aj ∈ R. So given h0 ∈ H0 we note that

[h0, x] =
∑

j

ajλj(h0)xj =
∑

j

ajα(h0)xj

where xj ∈ Gλj . In particular there is at least one ai '= 0 so that λi(h0)ai = α(h0)ai,

i.e α(h0) = λi(h0) ∈ R. This shows that every root in Ω has the form α = λC for

some λ ∈
∑

. Here λC(h0 + ih′
0) = λ(h0) + iλ(h′

0) for all h0, h′
0 ∈ H0. So we deduce

that Gλ = LλC ∩ L0. So our real root decomposition has the form

L0 = H0 ⊕α∈Ω (Lα ∩ L0).

We end our discussion of semisimple real Lie algebras by showing that every semisim-

ple complex Lie algebra has a split real form. This we do by exploiting the fact that

L has a root decomposition, we will see that this split real form is strongly related to

the compact real form associated to the root decomposition.
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Let L be a complex semisimple Lie algebra with root decomposition

L = H ⊕α∈Ω Lα.

Also denote the real Lie algebra HR = ⊕α (=−α〈tα〉 ≤ H for which tα ∈ H are the

unique elements satisfying κ(tα,−) = α(−). Equip L with a Cartan-Weyl basis:

{tα|α ∈ Ω} ∪ {xα|α ∈ Ω}.

We claim that the following subspace of L:

L0 = HR ⊕α∈Ω 〈xα〉

is a real form of L. First it is clear that L0 is a real Lie algebra because [xα, xβ] =

λ(α, β)xα+β with λ(α, β) ∈ R for every α, β ∈ Ω. Similarly [tα, xβ] = β(tα)xβ for

every α, β ∈ Ω, where β(tα) ∈ R. This is all by definition of a Cartan-Weyl basis.

Moreover since HC
R = H and Lα = 〈xα〉C then clearly L0 ⊕ iL0 = LR. Now let C be

the compact real form of L associated with the root decomposition of L:

C = iHR ⊕α (=−α 〈i(xα + x−α)〉 ⊕α (=−α 〈xα − x−α〉.

Then we claim that

L0 = L0 ∩ C ⊕ L0 ∩ iC.

Indeed if τ denotes the conjugation map of C then as HR ⊂ iC we have τ(HR) ⊂ HR.

Also we note that

xα =
1

2
(xα − x−α)−

i

2
i(xα + x−α)

for each α ∈ Ω. So τ(xα) = −x−α hence τ fixes ⊕α∈Ω〈xα〉 as well. So τ fixes L0 and

so the decomposition follows, and in particular if σ denotes the conjugation map of

L0 then σ(C) ⊂ C as the conjugation maps commute. This shows that it is a Cartan

decomposition of L0. Hence the automorphism θ = σ ◦ τ of L is a Cartan involution

of L0 when restricted to L0. Now θ(h) = −h for all h ∈ HR and HR is clearly

maximal abelian in L0. Indeed if h ∈ L0 but h /∈ HR and [HR, h] = 0 then write

h = h1+
∑

α λαxα for λα ∈ R, where λβ '= 0 say. So that [tβ, h] = 0 =
∑

α λαα(tβ)xα,

however this is impossible as λββ(tβ) '= 0. Thus L0 is a split real form of L, and we

have proved the following theorem.

Theorem 3.8. Every semisimple complex Lie algebra L has a split real form. More-

over every complex semisimple Lie algebra contain at least two non-isomorphic real

forms. "



CHAPTER 4

Real forms and semisimple matrix groups

1. Complexification and realification of matrix groups

Most of what is written in this chapter is based on material from [11], [6] and [9].

Let G be a real matrix group G ⊆ GL(n,R) then the Lie algebra Lie(G) is naturally

contained in gl(n,R) ⊆ gl(n,C). So therefore so is the complexification, i.e Lie(G)C ⊆
gl(n,C). Now there is a unique connected matrix subgroup G̃ in GL(n,C) with Lie

algebra Lie(G)C. So set GC = G · G̃ then it can be shown that this is a complex

matrix group with Lie algebra Lie(G)C. Analogous to the complexification of a Lie

algebra we define GC to be the complexification of G.

Proposition 4.1. GC is a complex matrix group with complex Lie algebra Lie(GC) =

Lie(G)C.

It turns out that any element in GC can be uniquely written as the product geix

for a suitable g ∈ G and x ∈ Lie(G). So that we can write GC = GeiLie(G) =

{geix|x ∈ Lie(G), g ∈ G}. Here the identity component of GC is generated by the set

{eix|x ∈ Lie(G)}.

Here are some standard examples:

Example 4.1.

• SO(n)C = SO(n,C).
• SL(n,R)C = SL(n,C).
• O(p, q)C = O(p, q,C).

We want to define the realification of a complex matrix group G which is analogous

to the notion of realification of Lie algebras. Suppose G has complex Lie algebra

Lie(G). It is clear that we can embed GL(n,C) into GL(2n,R) via a continuous

monomorphism Ψ of groups. Indeed consider the map Ψ̃ : C → M(2,R) given by

a+ ib →
(

a b

−b a

)
,

60
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this is clearly a continuous monomorphism. Now we can extend this map to a map

Ψ : M(n,C) → M(2n,R) given by sending a matrix (aij)ij to the 2n × 2n matrix

having block form consisting of 2×2 blocks: ψ̃(aij). This defines a continuous injective

ring homomorphism, in fact it is also easily seen to be R-linear. In particular the

differential is well-defined and is just the map itself: Ψ : gl(n,C)R → gl(2n,R). So it

is a Lie monomorphism. We define Ψ(G) = GR to be the realification of G. So it is

immediate that Lie(G)R ∼= Lie(GR). For later use we will refer to this map as Ψ.

Similarly to Lie algebras we can define real and complex structures on matrix groups,

this lead to real forms of complex matrix groups.

Definition 4.1. Let G be a real matrix group then we say that an involution G →J G

is a complex structure if the differential Lie(G) →dJ Lie(G) is a complex structure

on Lie(G). Similarly if G is complex then an involution G →ψ G is said to be a real

structure on G, if the differential dψ is a real structure on Lie(G), i.e dψ : Lie(G) →
Lie(G) is an involutory antilinear automorphism.

Definition 4.2. [Real form]. Let G ⊂ GL(n,C) be a complex matrix group with

complex Lie algebra Lie(G). A subgroup H ≤ G is said to be a real form of G if

there is a real structure σ : G → G such that Gσ = H (the fix group of σ).

Note that a real form H of G is naturally a matrix subgroup of G. Moreover since

there is a real structure σ on G with fix group H, then the real Lie algebra fixed by

the differential dσ clearly coincides with the tangent space T1H of H. We note that

T1H is not a complex vector space but rather a real vector space, Lie(H) is a real

form of Lie(G).

In particular if G is a real matrix group then it is a real form of GC. Indeed we can

consider the complex conjugation σ : GC → GC as our real structure. It is clear that

G ⊂ GC ∩GL(n,R) = (GC)σ. Now suppose there is some element g ∈ GL(n,R)∩GC

which is not in G. Then by removing g from GC we can make a smaller complex

group containing G, this contradicts the definition of GC.

Example 4.2. Consider the complex orthogonal group O(n,C) then the complex

conjugation map g → ḡ clearly gives rise to the real form O(n,R). Moreover if we

consider the map σ of O(n,C) given by g → Ip,qḡIp,q then this defines an involution

with differential dσ given by X → Ip,qX̄Ip,q. In particular σ is a real structure on

O(n,C). So the fix group

Gp,q = {g ∈ O(n,C)|Ip,qḡIp,q = g}
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is a real form of O(n,C) for every p, q such that p+ q = n. In fact one can show that

Gp,q can be identified with the orthogonal group O(p, q). So we can think of O(p, q)

as a real form of O(n,C).

Definition 4.3. Given a complex matrix group G we say a real form H of G is

compact if Lie(H) is a compact real form of Lie(G).

2. Semisimple matrix groups

Definition 4.4. A matrix group G is said to be semisimple if G has a semisimple

Lie algebra Lie(G).

So in particular if G is a complex semisimple matrix group then obviously any real

form of G is semisimple. Similarly GR is also semisimple.

Example 4.3. Here are some examples of semisimple matrix groups:

• O(p, q) = {X ∈ GL(n,R)|X tIp,qX = Ip,q} with semisimple Lie algebra o(p, q) where

p+ q = n.

• SL(n,R) = {X ∈ GL(n,R)|det(X) = 1} with semisimple Lie algebra sl(n,R).
• SO(n,R) = {X ∈ O(n,R)|det(X) = 1} with semisimple Lie algebra so(n,R).
• SL(2,R)× SO(3,R) with semisimple Lie algebra ∼= sl(2,R)⊗ so(3,R).

We make the following observation: We know that any semisimple Lie algebra L is

isomorphic to the adjoint Lie algebra ad(L). In particular L isomorphic to a matrix

Lie algebra. So L is isomorphic to a Lie algebra of some semisimple matrix group.

This follows because we can take the matrix group of inner automorphisms, Int(L)

in this case. So there is a map:

{semisimple Lie algebras} →{ semisimple matrix groups}.

The following two proceeding theorems show that there is a strong connection between

a semisimple matrix group and it’s Lie algebra.

Theorem 4.1. A semisimple real Lie algebra L is compact if and only if there exist

a compact matrix group G with Lie(G) ∼= L.

Proof. For proof see for example [1], chapter 2, section 6. "

In particular a compact semisimple matrix group G must have a compact semisimple

Lie algebra.
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Theorem 4.2. [Cartan decomposition]. Let G be a semisimple real matrix group

and θ be a Cartan involution of Lie(G) and suppose Lie(G) = T0 ⊕ P0 is the corre-

sponding Cartan decomposition. Then the following is true.

(1) The subgroup K = {g ∈ G|Adg ◦ θ = θ ◦Adg} is a matrix subgroup of G with Lie

algebra T0.

(2) There exist an involution Θ : G → G such that dΘ = θ and K = GΘ.

(3) We can decompose g ∈ G uniquely as the product g = kep0 for p0 ∈ P0 and

k ∈ K = GΘ, this is known as a Cartan decomposition of G w.r.t Θ.

(4) If the center Z(G0) is finite and G has finitely many components then K is

maximally compact.

Proof. For proof see for example [6], chapter 4, Theorem 3.2. "

In fact one may prove that the involution Θ is unique, in the sense that if Θ̃ is another

involution of G lifting θ and fixingK then Θ = Θ̃. So we have the following definition.

Definition 4.5. Let G be a real matrix group then we say an involution Θ : G → G

is a Cartan involution of G if the following is satisfied:

(1) There exist a Cartan involution θ : Lie(G) → Lie(G) such that the differential of

Θ is θ.

(2) If K = {g ∈ G|Adg ◦ θ = θ ◦ Adg} then Θ(g) = g for all g ∈ K.

Here are two examples.

Example 4.4. Consider the semisimple matrix group SL(2,R). Then we can use the

Cartan involution θ : sl(2,R) → sl(2,R) given by θ(x) = −xt. In particular a Cartan

decomposition of sl(2,R) is given by so(2,R) ⊕ P0. It is clear that SO(2,R) ⊂ K.

Now if X ∈ K then (X tX)A(X tX)−1 = A for all A ∈ SL(2,R). So by a straight

forward calculation one can show that XX t = I, or one can simply use the fact

that SO(2,R) is connected. So there is a unique matrix subgroup in SL(2,R) with
Lie algebra so(2,R). We conclude that SO(2,R) = K. A Cartan decomposition of

SL(2,R) is therefore given by:

SL(2,R) = SO(2,R)eP0 .

Note that Θ in this case is just the involution given by A → A−t for all A ∈ SL(2,R).

Example 4.5. Consider the orthogonal group O(p, q) where p + q = n with Lie

algebra o(p, q) equipped with the Cartan involution θ : o(p, q) → o(p, q) given by

θ(x) = Ip,qxIp,q. Then a Cartan decomposition of o(p, q) is given by o(p, q) = T0 ⊕P0
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where T0 consists of matrices of the form

(
X 0

0 Y

)
where X, Y are antisymmetric

p× p and q× q matrices respectively. Now the corresponding Cartan involution Θ of

O(p, q) can be shown to be Adh where h = Ip,q. So we see that the fix group of Θ is

given by K = {g ∈ G|gh = hg}, and it follows that an element in K has the form(
X 0

0 Y

)
where X, Y are orthogonal i.e XX t = Ip and Y Y t = Iq. This is a maximal

compact subgroup of O(p, q) and we see that K ∼= O(p, 0)×O(q, 0).

In the case where G is compact and semisimple our Lie algebra Lie(G) will have

Cartan involution given by the identity 1Lie(G). So in the Cartan decomposition

theorem P0 = 0 and so our fix group of Θ is just G itself, i.e K = G. Hence Θ is also

the identity, 1G.

Corollary 4.1. Any Cartan involution of a semisimple compact real matrix group G

is just the identity 1G : G → G. "

Given a semisimple matrix group G with Lie algebra L then we know that two Cartan

involutions θ, θ̃ of L are conjugate, this is also true for two Cartan involutions Θ, Θ̃

of G.

Proposition 4.2. Two Cartan involutions Θ, Θ̃ : G → G of a semisimple matrix

group G are conjugate, i.e there is some g ∈ G such that g−1Θg = Θ̃.

Given a Cartan involution θ : L → L, it can be extended to a Cartan involution

θR : (LC)R → (LC)R. This is a real structure on LC. We now show that this is also

possible for semisimple matrix groups, i.e given a Cartan involution Θ : G → G lifting

θ, we can extend to an involution ΘC : GC → GC lifting θR. Moreover we show that

there is a Cartan decomposition of GC w.r.t ΘC.

To see this let GC = G̃ and consider the realification Ψ(G̃) = G̃R ⊂ GL(2n,R).
Choose a Cartan involution for G say Θ, write a Cartan decomposition Lie(G) =

T0 ⊕ P0 w.r.t dΘ. Denote also K for the fix group of Θ. So via Ψ we obtain a new

Cartan involution of Ψ(G):

Θ̃ = Ψ ◦Θ ◦Ψ−1

with fix group Ψ(K). Now the realification of G̃ is also semisimple, and we can write

a Cartan decomposition Lie(Ψ(G)) = Ψ(T0) ⊕ Ψ(P0) for Ψ(G) w.r.t the differential

dΘ̃. Thus we can extend the Cartan involution dΘ̃ to a Cartan involution of Lie(G̃R),

say dΘ̃R. This follows because if

C = Ψ(T0)⊕ iΨ(P0)
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then C⊕ iC is a Cartan decomposition of Lie(G̃R). Denote Θ̃R for the corresponding

Cartan involution on G̃R. Now the fix group Ũ of Θ̃R has the form

Ũ = {g ∈ G̃R|Adg ◦ dΘ̃R = dΘ̃R ◦ Adg}

and so we clearly see that the Cartan involution of G̃R is just an extension of Θ̃ on

Ψ(G). This shows that Ψ(K) = Ψ(G) ∩ Ũ .

Finally transferring all this back to G̃ = GC via Ψ−1 we see that there is an involution

ΘC : GC → GC extending Θ : G → G. Moreover using the Cartan decomposition

theorem on G̃R, then every element g in GC can be written uniquely as the product

g = uep for u ∈ U (the fix group of ΘC which is U = Ψ−1(Ũ)) and p ∈ iT0 ⊕ P0. In

particular K = U ∩G.

Note that U is a real form of GC since ΘC is a real structure with differential dΘR. If

G happens to be compact then the groups G,K,U must all coincide. Indeed since G

is compact then we know that Lie(G) is compact so K = G since P0 = 0. However

ΘC is now the just the conjugation map, i.e U = G as required.

We have proved the following theorem.

Theorem 4.3. Every Cartan involution Θ of G extends to a real structure ΘC of

GC. Moreover every element in GC can be written uniquely as the product g = uep

where u ∈ U (the fix group of ΘC) and p ∈ iT0 ⊕ P0 (where T0 ⊕ P0 is the Cartan

decomposition of Lie(G)). "

We will use this result in the next chapter.



CHAPTER 5

Real orbits of semisimple matrix groups

1. Preliminaries

In this chapter we assume that a vector space V is finite dimensional over R or C,
and all topological properties will be w.r.t the classical topology on V , inherited from

Rn and Cn respectively. If we speak of an inner product 〈−,−〉 on V then we will

define ||v|| = 〈v, v〉 1
2 .

Fix a basis for V . Let End(V ) be equipped with the usual norm metric ||, || inherited
from M(n,K), i.e if f : V → V is a linear map represented by a matrix A w.r.t this

fixed basis then: ||f || = ||A||. In this way GL(V ) is isomorphic to GL(n,K). We can

define analogously the exponential of a linear map

exp(f) =
∑

0≤n<∞

1

n!
fn.

Similarly we can define a curve γ : (a, b) → GL(V ) to be differentiable if and only if

the curve (a, b) →γ GL(V ) →φ GL(n,K) is differentiable. Here φ sends an invertible

map to it’s matrix. If the curve is differentiable we set γ′(t0) to be the linear map

given by the matrix (φ ◦ γ)′(t0). In this way the tangent space of GL(V ) coincides

with gl(V ). In particular if f ∈ gl(V ) then exp(f) ∈ GL(V ).

Definition 5.1. Let G be a matrix group and V be a vector space. Then a contin-

uous group homomorphism G → GL(V ) is said to be a representation of G or a

continuous linear group action on V . We will often just say G acts on a vector

space V .

A representation ψ : G → GL(V ) is smooth if and only if G → GL(n,K) is smooth

factoring through GL(V ) via φ. Hence the differential Lie(G) → gl(n,K) of φ ◦ ψ

factors through gl(V ) via the Lie isomorphism gl(V ) → gl(n,K), which is given by

sending a linear map to it’s matrix. Thus the differential Lie(G) → gl(V ) of ψ is a

well-defined Lie homomorphism.

We will not prove this here but it turns out that any continuous homomorphism

G → H is a Lie homomorphism. In particular there is a well-defined differential

attached to any representation which is in particular a representation itself.

66
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Proposition 5.1. Let G,H be matrix groups then any continuous homomorphism

G → H is a Lie homomorphism.

Proof. See for example [11], section 1.3.6, Proposition 1.3.14. "

Lemma 5.1. Any representation ψ : G → GL(V ) extends to a complex representation

ψC : GC → GL(V C). Moreover the differential dψC is a complex representation.

We will refer to the following example throughout this chapter as an illustration of

the results.

Example 5.1. Consider a semisimple real matrix group G with Lie algebra g. Then

the adjoint action Ad : G → GL(g) is a representation, and the differential is just the

adjoint representation ad : g → gl(g). We see that the adjoint representation AdC

of GC acting on gC extends Ad. Similarly if G̃ is another real form of GC with Lie

algebra g̃ then AdC extends the adjoint action of G̃ acting on g̃ as well.

Definition 5.2. Let G be a group which acts on an inner product space V then the

orbit space at v ∈ V is defined to be the induced subspace Gv = {g · v|g ∈ G} ⊆ V

of V .

Definition 5.3. Let G → GL(V ) be a group action on an inner product space V .

Then we say that a vector v ∈ V is minimal if for all g ∈ G:

||g · v|| ≥ ||v||.

We denote the set of minimal vectors by M(G, V ).

Given a representation ψ : G → GL(V ) and any v ∈ V it is straightforward to check

that the stabilizer/isotropy subgroup Gv = {g ∈ G|g · v = v} is a matrix subgroup of

G. So we can define the isotropy Lie algebra Lie(Gv) ≤ Lie(G). It is easy to check

that Lie(Gv) consists of elements x of Lie(G) such that dψ(x)(v) = 0.

2. Minimal vectors and closure of semisimple real orbits

In this section we will always assume that G ⊆ GL(n,R) is a real semisimple matrix

group. We will follow closely what is written in [2]. Our setup is as follows:

Suppose we have a representation ψ : G → GL(V ) where V is a real finite dimensional

vector space. Now we will assume that there is a Cartan involution Θ : G → G of G

with differential θ, and an inner product 〈−,−〉θ on V which is K = GΘ−invariant,

i.e

〈k · v, k · ṽ〉θ = 〈v, ṽ〉θ
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for all v, ṽ ∈ V and k ∈ K. Let Lie(G) = T0 ⊕ P0 be the corresponding Cartan

decomposition w.r.t θ : Lie(G) → Lie(G). We will assume that the differential dψ of

ψ has the property such that if p0 ∈ P0 then dψ(p0) is symmetric w.r.t 〈−,−〉θ, and
similarly if t0 ∈ T0 then dψ(t0) is antisymmetric w.r.t 〈−,−〉θ. Denote the Cartan

decomposition of G: G = KeP0 w.r.t Θ.

Example 5.2. Consider the adjoint action Ad : G → GL(g). Then there is a natural

inner product on g which satisfies the criteria above. Indeed consider the Killing form

of g together with a Cartan involution θ : g → g. We know that the bilinear form

〈−,−〉θ = λκθ(−,−) = −λκ(−, θ(−))

for any λ > 0 is an inner product on g. If we denote Θ for the Cartan involution of

G lifting θ, then the Killing form is clearly invariant under automorphisms Adg for

g ∈ G. Moreover by definition of K the automorphisms Adk commute with θ, i.e the

inner product is invariant under K. We have also seen that if x ∈ g is decomposed as

x = t0 + p0 w.r.t θ, then ad(x) has symmetric/antisymmetric parts ad(p0) and ad(t0)

w.r.t 〈−,−〉θ respectively.

In fact an inner product with the properties above always exist on V when G is

a semisimple matrix group. The image of a semisimple Lie algebra under a Lie

homomorphism is also semisimple, so the identity component ψ(G)0 of ψ(G) is also

a semisimple matrix group. In particular if θ is a Cartan involution of Lie(G) then

it can be shown that the involution: dψ(x) → dψ(θ(x)) is a Cartan involution of

dψ(Lie(G)). So there is a Cartan involution Θ′ of ψ(G)0 with Cartan decomposition

ψ(G)0 = ψ(K)0e
dψ(P0).

The condition ψ ◦Θ =Θ ′ ◦ ψ ensures that such an inner product exists.

We state this result as a lemma.

Lemma 5.2. Let G → GL(V ) be a finite real representation of a real semisimple

matrix group G. Then for any choice of Cartan involution θ of Lie(G) there exist an

inner product 〈−,−〉θ with the properties above.

Proof. For details about the proof see for example [12], Proposition 13.5. "

Having the setup described above, our aim in this section is to show the relationship

between minimal vectors, the Lie algebra Lie(G) and the closure of a real orbit. We

start with some technical lemma’s.
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Lemma 5.3. Let v ∈ V and ψ ∈ gl(V ) be a self adjoint map w.r.t 〈−,−〉θ. Also let

f : R → R be the map given by f(t) = ||etψ(v)||2 for all t ∈ R. Then if ψ(v) '= 0 we

have f ′′(t) > 0 for all t ∈ R. Moreover f is smooth.

Proof. Since ψ is self adjoint then all eigenvalues are real and we may write

V = ⊕λVλ as a decomposition into the eigenspaces of ψ. In particular we may choose

a basis of eigenvectors {vj}j for V , and clearly 〈vi, vj〉θ = 0 for all i '= j. So with

respect to this basis ψ has a diagonal matrix with diagonal entries say, λj. Write

v =
∑

j ajvj for aj ∈ R. Then

f(t) =
∑

j

e2tλj ||vj||2a2j

since etψ is diagonal with diagonal entries etλj . So

f ′(t) =
∑

j

2λje
2tλj ||vj||2a2j

and therefore

f ′′(t) =
∑

j

4λ2
j ||vj||2a2je2tλj ≥ 0.

Now since ψ(v) '= 0 then obviously there is some λiai '= 0 so that f ′′(t) > 0 for all

t ∈ R as required. "

The lemma shows that if p0 ∈ P0 is such that dψ(p0)(v) '= 0 (i.e p0 /∈ Lie(Gv)) then

the function f(t) = ||etp0 · v||2 has the property: f ′′(t) > 0 for all t ∈ R. Indeed this

follows because

etp0 · v =def ψ(etp0)(v) = etdψ(p0)(v),

and dψ(p0) ∈ gl(V ) is assumed to be self-adjoint w.r.t 〈−,−〉θ. We will use this map

in the upcoming proofs.

Lemma 5.4. If R →f R is a smooth function satisfying the conditions:

(1) For all t ∈ R we have f ′′(t) > 0.

(2) There exist t0 ∈ R such that f ′(t0) = 0.

Then f(t) > f(t0) for all t0 '= t ∈ R and we have limt→±∞f(t) = ∞.

We now define a function Fv : G → R× for a vector 0 '= v ∈ V given by Fv(g) =

||g · v||2 = 〈g · v, g · v〉θ for all g ∈ G. One can show that there is a well-defined

differential dFv : Lie(G) → R given by

dFv(x) = 2〈x · v, v〉θ
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for all x ∈ Lie(G). Here x · v = dψ(x)(v), where dψ denotes the differential of the

group representation G →ψ GL(V ). To see that this is true consider γ a curve at

1 ∈ G and let {ej}j be an orthonormal basis for V . Also set x = γ′(0) ∈ Lie(G)

and suppose ψ(γ(t)) has matrix (aij(t))ij w.r.t to this basis. So dψ(γ′(0)) has matrix

(a′ij(0))ij. Write v =
∑

j λjej for λj ∈ R. Then we have

(〈γ(t) · v, γ(t) · v〉θ)′(0) = 2
∑

l,j

λlλja
′
jl(0) = 2〈x · v, v〉θ.

This is clearly a Lie homomorphism since R is abelian.

So in the case where f(t) = ||etx · v||2 for x ∈ Lie(G) we get

f ′(0) = 2〈x · v, v〉θ = dFv(x).

We will say that 1 ∈ G is a critical point for Fv if the differential dFv : Lie(G) → R
is not surjective, which is the case if and only if dFv is the zero map, since R is

1-dimensional.

Corollary 5.1. If 1 ∈ G is a critical point of the function Fv for some v ∈ V then

||ex · v|| ≥ ||v|| for every x ∈ P0. Moreover if x ∈ P0 then ||ex · v|| = ||v|| if and only

if x ∈ Lie(Gv) ∩ P0 = Pv where Gv is the isotropy subgroup of G.

Proof. Suppose 0 '= x ∈ P0 and x /∈ Lie(Gv), so in particular dψ(x)(v) '= 0.

Therefore we can consider the function f : R → R defined by:

f(t) = ||etx · v||2

for all t ∈ R. We know that f ′′(t) > 0 for all t ∈ R. Moreover since 1 ∈ G is a critical

point for Fv then dFv(x) = 0 for all x ∈ Lie(G). But we recall that dFv(x) = f ′(0) so

f ′(0) = 0. Therefore we know that the function f also satisfies: f(t) > f(0) = ||v||2

for all t '= 0, and so f(1) = ||ex · v||2 > f(0) = ||v||2 as required. For the last

statement, if x ∈ Lie(Gv) then ex ∈ Gv so by definition ex · v = v, showing that

f(1) = f(0) = ||v||2. Conversely if ||ex ·v|| = ||v|| for x ∈ P0 and x /∈ Lie(Gv) then by

the argument above we get a contradiction, i.e x ∈ Pv. The corollary is proved. "

The corollary shows the following: Write g ∈ G of the form g = kep0 where k ∈ K

and p0 ∈ P0. Then we have

||g · v|| = ||kep0 · v|| = ||ep0 · v||

for all v ∈ V by the K-invariance of 〈−,−〉θ. In particular if 1 ∈ G is a critical point

of Fv for some v ∈ V then

||g · v|| ≥ ||v||,
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hence v is minimal, i.e v ∈ M(G, V ).

The following theorem show the full relationship between minimal vectors and the

non-compact part P0 of the Cartan involution θ.

Theorem 5.1. Let v ∈ V then the following are equivalent.

(1) v ∈ M(G, V ).

(2) 1 ∈ G is a critical point for the function Fv.

(3) For all x ∈ P0 we have dFv(x) = 0.

Proof. Suppose v is a minimal vector in V then Fv(g) ≥ Fv(1) for all g ∈ G.

Let x ∈ Lie(G). Now since dFv(x) = f ′(0) for which f(t) = ||etx · v||, then obviously

f has a minimum at t = 0, hence dFv(x) = 0. So 1 ∈ G is a critical point for Fv.

This proves [(1) ⇒ (2)]. Case [(2) ⇒ (3)] is clear. The case [(3) ⇒ (1)] has already

been shown. This proves the theorem. "

Consider as an example the adjoint action Ad : G → GL(g) where Lie(G) = g. The

previous theorem says that x ∈ g is minimal if and only if κ([p0, x], θ(x)) = 0 for all

p0 ∈ P0. The next proposition show what this means in terms of the properties of

the Lie algebra g.

Proposition 5.2. Let x ∈ g then the following are equivalent.

(1) x ∈ M(G, g) is a minimal vector.

(2) [x, θ(x)] = 0.

(3) There exist a maximally compact Cartan subalgebra H of g containing x which is

θ-stable, i.e θ(H) = H.

In particular we see that T0 ∪ P0 ⊆ M(G, g).

Proof. [(1) ⇔ (2)]. By definition x ∈ g is minimal if and only if

−κ([p0, x], θ(x)) = 0 = −κ(p0, [x, θ(x)])

for all p0 ∈ P0. However if [x, θ(x)] '= 0 then κ would be degenerate, which contradicts

the semisimplicity of g. [(3) ⇒ (1)]. If x is contained in a θ-stable Cartan subalgebra

H ⊆ g then obviously we have H = T0∩H⊕P0∩H. So if x = t0+ p0 for t0 ∈ T0∩H

and p0 ∈ P0 ∩ H, then [t0, p0] = 0 and by the previous equivalence x is minimal in

g as required. [(2) ⇒ (3)]. Suppose that [x, θ(x)] = 0 for some x ∈ g written as

t0 + p0 = x. We can choose a maximal abelian subalgebra H0 ⊂ T0 containing t0. So

that x is contained in the centralizer, x ∈ Cg(H0) since [t0, p0] = 0. It follows that

H = Cg(H0) is a Cartan subalgebra of g and is clearly θ-stable, since if h ∈ T0 and
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h̃ ∈ H then θ([h, h̃)]) = 0 = [h, θ(h̃)]. We see that H is maximally compact since H0

is chosen maximal abelian in T0. "

Example 5.3. As an example consider g = sl(2,R), the split real form of sl(2,C).
Choose the Cartan involution given by X → −X t. Then one easy calculate that

T0 ∪ P0 = M(G, g).

Coming back to the more general case, the following corollary describes the set of

minimal vectors in a real orbit.

Corollary 5.2. Suppose v ∈ M(G, V ) then the following is true.

(1) Gv ∩M(G, V ) = Kv.

(2) Gv = KvePv where Kv = {g ∈ K|g · v = v} and Pv = Lie(Gv) ∩ P0.

Proof. Suppose v ∈ M(G, V ) then clearly Kv ⊆ M(G, V ), since if k ∈ K then

obviously ||gk · v|| ≥ ||v|| = ||k · v|| for all g ∈ G, as v is minimal. Conversely suppose

that β = g · v ∈ M(G, V ) and write g = kep for k ∈ K and p ∈ P0. Now we have,

||g−1 · β|| = ||v|| ≥ ||β||,

but since v is also minimal then ||β|| ≥ ||v|| so ||g · v|| = ||ep · v|| = ||v|| hence p ∈ Pv.

This shows that g · v = k · v, and so (1) is proved. Now suppose that g = kep for

k ∈ K and p ∈ P0, assume g ∈ Gv. Then similarly

||ep · v|| = ||g · v|| = ||v||

so that p ∈ Pv since v is minimal. In particular g · v = k · v = v which shows that

k ∈ Kv. Now the inclusion KvePv ⊆ Gv is clear, this shows case (2). "

Note in the case where G is also compact then G coincides with K, and clearly

M(G, V ) = V . So every orbit is closed.

Lemma 5.5. Let v ∈ V and suppose the orbit space Gv is not closed. Then there

exist x ∈ P0 such that limt→−∞etx · v ∈ V exist w.r.t to the classical topology on V .

Moreover if this limit is α ∈ V then the real orbit Gα is closed in V .

Proof. For proof see [2], Lemma 3.3. "

We note that the function f : R → R given by t → ||etx · v||2 is clearly continuous

for any v ∈ V and x ∈ Lie(G). Moreover if etx · v → β for t → −∞ then as∣∣||etx · v||− ||β||
∣∣ ≤ ||etx · v−β|| we have ||etx · v|| → ||β|| as t → −∞. So in particular

if the limit of f(t) as t → −∞ does not exist, then the limit of etx · v does not exist

either. We will use this simple observation in the next theorem.
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The following theorem shows the connection between a minimal vector and the closure

of a real orbit.

Theorem 5.2. Let v ∈ V then the orbit space Gv is closed if and only if Gv contains

a minimal vector α ∈ M(G, V ).

Proof. We show the direction [(⇐)]. If Gv is not closed but there is some

minimal vector α ∈ Gv then we can find x ∈ P0 such that etx · α → β as t → −∞
for a suitable β ∈ V . Moreover Gβ is closed. We claim that x · α '= α. Indeed if

this was the case then for any t ∈ R we have tx ∈ Lie(Gα). So that etx · α = α for

all t ∈ R, and consequently β = α so that Gβ = Gv and Gv would also be closed,

this contradicts our assumption. Now 1 ∈ G is a critical point of the function Fα. So

by considering the smooth function f(t) = ||etx · α||2 for t ∈ R, we conclude by the

previous results that f(t) → ∞ as t → −∞. This is impossible. "

Corollary 5.3. Let v ∈ V and Gv be an orbit. Then the closure cl(Gv) of Gv

contains a minimal vector in M(G, V ).

Proof. If Gv is closed we are done. Assume Gv is not closed then we can

choose x ∈ P0 such that the sequence (an)n∈N = e−nx · v is a sequence in Gv which

converges to a vector γ ∈ V such that Gγ is closed in V . But clearly given g ∈ G the

sequence gan in Gv converges to gγ ∈ Gγ. So that Gγ ⊆ cl(Gγ). Hence we can find

β ∈ Gγ ⊆ cl(Gγ) such that β ∈ M(G, V ) as required. "

3. Complex versus the real case

In this section we will explore the connection between real and complex orbits under

the actions of a complex semisimple matrix group GC ⊆ GL(n,C) with corresponding

real form G ⊆ GL(n,R). We will follow the same setup for our real semisimple matrix

group G as in the previous section. To relate G and GC we will do via their Cartan

decompositions (see the end of the previous chapter). So our setup is as follows.

Let ψC : GC → GL(V C) be an extended representation of G and denote dψC for the

differential. Let

ΘC : GC → GC

be the extension of Θ with differential θR (Cartan involution of Lie(GC)R). So we

have Cartan decompositions:

Lie(G) = T0 ⊕ P0, Lie(GC)R = (T0 ⊕ iP0)⊕ (iT0 ⊕ P0) = C ⊕ iC
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w.r.t θ and θR. Similarly for G and GC we have Cartan decompositions GC = UeiC

and G = KeP0 w.r.t Θ and ΘC. Here U has compact Lie algebra T0 ⊕ iP0 = C. In

fact the following is true for U .

Lemma 5.6. Every element in U can be written uniquely as the product keip0 for

k ∈ K and p0 ∈ P0.

Write as before 〈−,−〉θ for the inner product on V as in the previous section with

norm ||v||2 = 〈v, v〉θ. We will now consider an inner product on the realification of

V C, defined by

〈x+ iy, x̃+ iỹ〉θR = 〈x, x̃〉θ + 〈y, ỹ〉θ
for all x, x̃, y, ỹ ∈ V . This clearly extends the inner product on V . Now since we

have the notion of the realification of GC which is a real semisimple matrix group in

GL(2n,R), then we can study the closure and minimal vectors of a complex orbit

of ψC via the realification (GC)R. Moreover since we have an inner product which

extends 〈−,−〉θ, then we can relate minimal vectors of real orbits of ψ to minimal

vectors of complex orbits of ψC. We show this connection in the next results.

Lemma 5.7. The inner product 〈−,−〉θR on the realification of V C is U-invariant.

Proof. Since every element in U can be written uniquely as the product keip0

for k ∈ K and p0 ∈ P0, then it is enough to show that the linear map dψC(ip0) is

antisymmetric w.r.t 〈−,−〉θR . This however follows by an easy calculation since dψC

is a complex representation extending dψ, and dψ(p0) is symmetric w.r.t 〈−,−〉θ. "

Example 5.4. Consider AdC : GC → GL(gC) to be the adjoint action extending

Ad : G → GL(g). Denote 〈−,−〉θ = λκθ(−,−) (λ > 0) for the usual inner product

on g. Then we can take our inner product 〈−,−〉θR on the realification of gC to be

λκθR(−,−) = 〈−,−〉θR ,

noting that θR is just the conjugation map of C = T0 ⊕ iP0. We see directly that it

is U -invariant, since by definition of U :

U = {g ∈ GC|Adg ◦ θR = θR ◦ Adg}.

Recall the map Ψ : GC → (GC)R between GC and the realification, with real differen-

tial Ψ itself (see beginning of the previous chapter). Define for v ∈ V C as in the real

case the map FC
v : GC → R by

FC
v (g) = 〈g · v, g · v〉θR

for all g ∈ GC. Then analogous to the real case we have:
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Theorem 5.3. [Complex case]. The following are equivalent statements.

(1) v ∈ M(GC, V C).

(2) 1 ∈ GC is a critical point for the function FC
v .

(3) For all x ∈ iC we have 2〈x · v, v〉θR = dFC
v (x) = 0.

Moreover if v ∈ V C is minimal then GCv ∩M(GC, V C) = Uv.

Proof. Since the realification of GC is semisimple, then one can apply all the

results in the previous section to the representation

ψR : (GC)R → GL((V C)R)

given by ψR = 1 ◦ ψC ◦ Ψ−1. The differential becomes dψR = 1 ◦ dψC ◦ Ψ−1. Here

the Lie algebra of the realification have Cartan decomposition Ψ(C) ⊕ Ψ(iC) with

corresponding decomposition (GC)R = Ψ(U)eΨ(iC). This real representation preserves

the complex orbits of ψC. Indeed if g̃ ∈ GR then g̃ = Ψ(g) for a unique g ∈ GC so

that

ψR(g̃)(v) = ψC(g)(v) = g · v

for all v ∈ V C, i.e GRv = GCv. "

In particular a complex orbit GCv is closed if and only it intersects M(GC, V C). The

following proposition relates the minimal vectors of V to minimal vectors of V C.

Proposition 5.3. We have M(G, V ) = M(GC, V C) ∩ V .

Proof. The inclusion M(GC, V C) ∩ V ⊆ M(G, V ) is clear by definition since

〈−,−〉θR extends 〈−,−〉θ and P0 ⊆ iC. Now given X ∈ iC write X = x + iy for

x ∈ P0 and y ∈ T0 then

dFC
v (X) = 2〈X ·v, v〉θR = 2〈x ·v+ iy ·v, v〉θR = dFv(x)+ 〈iy ·v, v〉θR = 〈iy ·v, v〉θR = 0,

since v ∈ V and y · v ∈ V . Hence v is minimal in M(GC, V C) as required. The

proposition is proved. "

The proposition shows that if we have a real orbit Gv ⊆ V which is closed then the

complex orbit GCv ⊆ V C must also be closed. The converse is also true but is harder

to prove.

Theorem 5.4. Suppose v ∈ V and the complex orbit GCv is closed in V C then so is

the real orbit Gv in V .

Proof. For proof see [10], Lemma 2.2. "



Chapter 5 Page 76

Corollary 5.4. If G is a real semisimple compact matrix group and v, µ ∈ V then

(1) GCv ∩M(GC, V C) = Gv = GCv ∩ V.

(2) If GCv = GCµ then Gv = Gµ.

Proof. We note first that M(G, V ) = V since G is compact. So given v ∈ V

then v is minimal in the complex orbit GCv. Hence given any α ∈ GCv which is

minimal then α ∈ U · v, but since G is compact then G = U and so α ∈ G · v ⊆ V .

This proves (1). Now case (2) follows immediately from case (1).

The previous corollary is actually a special case of a more general result for semisimple

matrix groups G. The result states that if v ∈ V then GCv ∩ V is a finite disjoint

union of real orbits Gvj for vj ∈ V . In particular if GCv is closed then so are all the

real orbits Gvj. So if αj ∈ Gvj are minimal then we deduce that Uv ∩ V is a finite

disjoint union of K-orbits, Kαj.

Remark. Although we have assumed in this section thatG is a real matrix group with

complexification GC, we could also have worked with an arbitrary complex semisimple

matrix group GC and a real form G (not necessarily a real matrix group). This follows

because one can always embed the real form G into the realification of GC, so that G

becomes a real matrix group inside GL(2n,R).

4. Intersection of semisimple real orbits

The following section is my own work.

In this section we continue with the notation from the previous section, except now

we let Lie(G) = g and gC = Lie(GC). We now consider another real form of GC

say G̃ and let Ṽ be a real form of V C. We suppose ψ̃ : G̃ → GL(Ṽ ) is another

representation which restricts from ψC, define dψ̃ for the real differential. Similarly

to G, we can equip Ṽ with an inner product with the usual properties, determined

by a Cartan involution θ̃ : g̃ → g̃, with corresponding Cartan decomposition

g̃ = T̃0 ⊕ P̃0.

We denote this inner product similarly by 〈−,−〉θ̃. Note that a Cartan decomposition:

G̃ = K̃eP̃0 is now complex, i.e K̃ and eP̃0 are not necessarily subsets of real matrices.

We find a Cartan decomposition of G̃ by first embedding it in the realification of

GC (i.e in GL(2n,R)) and then transferring the information back to G̃ via the usual

realification map Ψ. So the inner product 〈−,−〉θ̃ is here K̃-invariant. Now we can

extend to an inner product on the realification of V C as we did in the previous section

for 〈−,−〉θ, denote this similarly by 〈−,−〉θ̃R .
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We get as in the previous section a decompositionGC = ŨeiC̃ where C = T̃0⊕iP̃0, here

θ̃R denotes the Cartan involution of gC with decomposition: C̃ ⊕ iC̃. Now analogous

to ψ all the results in the previous two sections also hold for ψ̃, these results are

proved by using the realification map Ψ. The matrix groups U and Ũ are compact

real forms of GC.

It can be assumed that G is also an arbitrary real form of GC (not necessarily con-

tained in GL(n,R)). Since we may as well assume that GC is an arbitrary complex

semisimple matrix group.

We will say that two real orbits G̃x̃ ⊆ Ṽ and Gx ⊆ V are conjugate if GCx = GCx̃.

For the rest of this section we assume ψ, ψ̃, ψC are the adjoint representations, i.e

g = V, g̃ = Ṽ and V C = gC. Let κθ(−,−) and κθ̃(−,−) be the usual inner products

on g and g̃ respectively, defined via the Killing form κ. We also equip the realification

of gC with the inner products κθR(−,−) and κθ̃R(−,−). Here κθR(−,−) = 2κθ(−,−)

on g.

The following problem is explored in this section:

Problem. Consider two conjugate real orbits Gx ⊆ V and G̃x̃ ⊆ Ṽ .

(1) Do they intersect in general?

(2) If one of the orbits is closed do they intersect? If so is there a relationship between

the minimal vectors of one orbit to the other?

We prove that if G = Ũ is the compact real form of GC and G̃ is an arbitrary real

form of GC then two conjugate real orbits must intersect in a minimal vector. The ad-

joint action can also be extended to an action on the vector space of endomorphisms:

gl(g). We consider this extended action and prove a result concerning the symmet-

ric/antisymmetric parts of an endomorphism R w.r.t the bilinear forms: κ(−,−) and

κθ(−,−).

Lemma 5.8. If G̃x̃ is conjugate to Gx then Gx is closed ⇔ G̃x̃ is closed.

Proof. If G̃x̃ is closed then the complex orbit GCx is closed hence so is Gx.

Similarly if Gx is closed then GCx is closed hence so is G̃x̃. "

Consider the orthogonal group GC = O(n,C) with real forms G = O(n) and G̃ =

O(p, q) = {X ∈ O(n,C)|Ip,qX̄Ip,q = X} where p + q = n. Here g = o(n) and

g̃ = o(p, q) are real forms of o(n,C). We claim that any two conjugate real orbits

intersect, this is proved in the next proposition.
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Proposition 5.4. Let G̃ = O(p, q) and G = O(n). Suppose Gx ⊆ g and G̃x̃ ⊆ g̃ are

conjugate real orbits. Then they intersect in a minimal vector.

Proof. Take θ̃ : g̃ → g̃ to be the Cartan involution given by X → X̄. We note

that a Cartan involution θR of the realification of gC is also given by this map. This

follows because θR is an antilinear Lie homomorphism with fix point set g, i.e when

restricting to g we obtain the identity 1g, which is of course the Cartan involution of

g. Now the real orbit Gx is closed since the Cartan involution on g is the identity,

so therefore G̃x̃ is also closed. This means that we can choose a minimal vector X in

G̃x̃. But X is also minimal in GCx, i.e

X ∈ GCx ∩M(GC, gC) = Gx.

Hence Gx intersect with G̃x̃ as claimed. "

The reason why the previous proposition works is because O(n) coincides with Ũ ,

since o(n) = T0 ⊕ iP0 = C w.r.t the Cartan involution X → X̄ of o(p, q). Indeed

when we extend our Cartan involution θ to a Cartan involution θR on the realification

of gC, then θR also extends the identity on the compact real form C. But this is the Lie

algebra of the compact real form U . Hence we have the following trivial observation.

Proposition 5.5. Set G̃ = U (the compact real form). Let Gx and Ux′ be conjugate

real orbits. Then Gx intersect Ux′ in a minimal vector.

Proof. Since Ux′ ⊆ C is closed then so is Gx ⊆ g, i.e we can choose a minimal

vectorX ∈ Gx. But we know thatX is also minimal inGCx and is therefore contained

in Ux′ by construction. "

We now show that there is an embedding of the real form g̃ into gC such that the

compact form C̃ coincides with C. In this way U coincides with Ũ and K, K̃ ≤ U .

This we can do via an inner automorphism of gC. Indeed we know that any two

compact real forms are conjugate via an element g ∈ GC, so we can use Adg : gC → gC

to embed g̃ in gC. Denote this new copy also by g̃. It follows that we can choose a

real structure

θR : gC → gC

which restricts to new Cartan involutions θR|g = θ and θR|g̃ = θ̃ for g and g̃ respectively.

To see this we only need to note that having a Cartan decomposition T0 ⊕ P0 of g

extends to a Cartan decomposition of the realification of gC, i.e

(gC)R = C ⊕ iC.
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So θ extends to θR. Moreover take Adg ◦ θ̃ ◦ Adg−1 to be the new Cartan involution

θ̃ for g̃. Then the extended Cartan involution to the realification is also θR because

the compact real forms coincide, i.e

C = T0 ⊕ iP0 = T̃0 ⊕ iP̃0 = C̃.

In particular if g ∩ g̃ '= 0, then it follows that

g ∩ g̃ = (T0 ∩ T̃0)⊕ (P0 ∩ P̃0).

In this way G̃ is embedded in GC also via Adg.

Now recall what was done in the end of chapter 4, where we gave a Cartan decom-

position of GC and the definition of U . By definition U and Ũ are those elements in

GC such that Adg commute with the extension θR, i.e U = Ũ and so K, K̃ ≤ U .

We have thus proved the following lemma:

Lemma 5.9. There is an embedding of g̃ in gC such that the following properties

hold.

(1) C = T̃0⊕iP̃0 = T0⊕iP0 = C̃. In particular when g is compact we get T̃0⊕iP̃0 = g.

(2) θ and θ̃ are both restricted from the Cartan involution θR of (gC)R with Cartan

decomposition C ⊕ iC.

(3) U = Ũ and K, K̃ ≤ U .

(4) The inner products on g, g̃ both extend to the inner product 〈−,−〉θR = 1
2κθR(−,−).

Example 5.5. The real forms o(p, q) and o(p̃, q̃) of o(n,C) satisfy the previous lemma

naturally. Indeed they both share the Cartan involution: X → X̄, and so C = C̃ =

o(n). So in this case U = Ũ = O(n).

Having property (4) in the previous lemma means that we can speak of a common

set of minimal vectors M(GC, gC) for gC. In particular we see that if v ∈ g̃ ∩ g is

minimal in g then it must also be minimal in g̃. This follows since 〈X · v, v〉θR = 0 for

all X ∈ iT0+P0 = iT̃0+ P̃0 so by restricting to P̃0 we see that X is also minimal in g̃.

We will occasionally write Ṽ = g̃ and V = g.

One can also extend to an obvious action of G on the vector space of endomorphisms

of V : End(V ) = V . Indeed define the action of G by:

(g · f)(v) = g · (f(v)), f ∈ V , v ∈ V.

It is easy to check that the differential in this case is also given by:

(x · f)(v) = x · (f(v)), x ∈ g, f ∈ V .
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Now if we fix an orthonormal basis {ej}j of V w.r.t 〈−,−〉θ then we can define an

inner product 〈〈−,−〉〉θ on V by:

〈〈f, g〉〉θ =
∑

j

〈f(ej), g(ej)〉θ, f, g ∈ V .

It is easy to check that it has the required properties similar to that of 〈−,−〉θ. We

can do this similarly for Ṽ = End(Ṽ ) and V , Ṽ are real forms of VC = End(V C). This

follows by identifying a linear map R : V → V with the extension RC : V C → V C,

defined by

RC(x+ iy) = R(x) + iR(y), x, y ∈ V.

Lemma 5.10. Let M be the minimal vectors of g w.r.t the inner product κθ(−,−).

Suppose θ′ is a another Cartan involution of g of the form γθγ−1 for any choice of

γ ∈ Aut(g). Then the minimal vectors M′ w.r.t the inner product κθ′(−,−) is just

γ(M).

Proof. Let α be minimal in g w.r.t κθ(−,−) then [α, θ(α)] = 0. But since the

new Cartan involution of g has the form θ′ = γθγ−1 we get:

[γ(α), θ′(γ(α))] = [γ(α), γ(θ(α))] = γ([α, θ(α)]) = γ(0) = 0.

This shows that γ(M) = M′. "

The lemma says that by conjugating the Cartan involution of our Lie algebra we

conjugate the set of minimal vectors. So consider a change of Cartan involution of

g by a conjugation of an automorphism γ in Ad(G). Conjugate the groups G and

G̃ in GC by γ and similarly the Lie algebras. Now since we are using the adjoint

representation then the orbits also become conjugated by γ. In particular we loose

no information about the orbits. A real orbit Gx become Gγ(x) = Gx and a real

orbit G̃x̃ become γ(G)γ(x̃). So when G = Ũ is the compact real form of GC then we

get the following corollary.

Corollary 5.5. Suppose G = Ũ is the compact real form of GC. Let Gx ⊆ g and

G̃x̃ ⊆ g̃ be two real conjugate orbits. Then we may assume w.l.o.g that x̃ is minimal.

Proof. Since G = Ũ is the compact real form then we know that Gx and G̃x̃

intersect in a minimal vector α. Suppose α = g̃ · x̃ for a suitable g̃ ∈ G̃. Now we can

conjugate our setup by g̃−1 via the isomorphism γ = Adg̃−1 : gC → gC. In this way our

Cartan involutions become conjugated by γ. Denote θ̃′ for the new Cartan involution

of g̃. The orbit Gx is now identified with the orbit γ(Gx) = γ(G)γ(x), while the orbit
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G̃x̃ remains unchanged. So x̃ is now an element of g (the new copy) and is minimal

in G̃x̃ w.r.t the new inner product κθ̃′(−,−). This proves the corollary. "

It is easy to check that the previous two lemmas also hold for the action of G, G̃

on V and Ṽ respectively, equipped with the inner products 〈〈−,−〉〉θ and 〈〈−,−〉〉θ̃
respectively. To see why, conjugate our Cartan involution of g by say γ ∈ Ad(G).

Suppose we have two conjugate real orbits GR ⊆ V and G̃R̃ ⊆ Ṽ . Assume that our

setup is conjugated by γ (i.e we conjugate the groups and the Lie algebras) then the

real orbit GR is now conjugate to the real orbit γ(G̃) · γ ◦ R̃.

Moreover if say R is minimal w.r.t 〈〈−,−〉〉θ and if θ′ denotes the conjugated Cartan

involution of g then for any X ∈ P0:

0 = 〈〈X · R,R〉〉θ =
∑

j

〈X · R(ej),R(ej)〉θ

= −
∑

j

κ(γ(X · R(ej)), γ(θ(R(ej)))

= −
∑

j

κ(γ([X,R(ej)]), γ(θ(R(ej))))

= −
∑

j

κ(γ(X) · γ(R(ej))), γ(θ(γ
−1γ(R(ej)))))

=
∑

j

κθ′(γ(X) · γ(R(ej))), γ(R(ej)))

= 〈〈γ(X) · γ ◦ R, γ ◦ R〉〉θ′ .

This shows that γ ◦ R is minimal w.r.t 〈〈−,−〉〉θ′ .

Let now R ∈ V and R̃ ∈ Ṽ then we can decompose into symmetric/antisymmetric

parts:

R = R+ +R− w.r.t 〈−,−〉θ
and

R̃ = R̃+ + R̃− w.r.t 〈−,−〉θ̃.

Lemma 5.11. Suppose R ∈V . Let γ ∈ Aut(g) and θ′ = γθγ−1 be another Cartan

involution. Then γ ◦R◦ γ−1 is symmetric/antisymmetric w.r.t κθ′(−,−) if and only

if R is symmetric/antisymmetric w.r.t κθ(−,−).

Proof. Let x, y ∈ g then

κθ′(γRγ−1(x), y) = −κ(γRγ−1(x), γθγ−1(y)) =
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= −κ(R(γ−1(x)), θ(γ−1(y))) = κθ(R(γ−1(x)), γ−1(y)).

Now since γ is bijective the result follows. "

The lemma shows that by conjugating a Cartan involution we loose no information

about the symmetric/antisymmetric parts of an endomorphism of the Lie algebra

w.r.t the Killing form. We will use the previous lemmas in the next theorem.

Recall if we set G = Ũ (the compact real form of GC) associated to G̃, then Lemma 5.9

holds naturally as we have seen. In particular our inner products 〈−,−〉θ = κθ(−,−)

and 〈−,−〉θ̃ = κθ̃(−,−) both restrict from the inner product 〈−,−〉θR = 1
2κθR(−,−).

We will use this property now.

The following theorem is an application of Proposition 5.5.

Theorem 5.5. Let G̃ be an arbitrary real form of GC and G = Ũ be the compact real

form of GC. Let G̃R̃ ⊆ Ṽ and GR ⊆ V be two conjugate real orbits. Then one can

assume R̃ = R and

R̃+ = R+ and R̃− = R−.

Proof. Since G = Ũ is a compact real form of GC then it follows that we can

choose a minimal vector X in the intersection of the real orbits. In particular X ∈
V ∩ Ṽ . Now since GR ⊆ M(G,V) then we can assume that X = R i.e R ∈ Ṽ ∩ G̃R̃
is minimal. So R = g̃ · R̃ for a suitable g̃ ∈ G̃. We may assume w.l.o.g that R = R̃,

since we can always conjugate the Cartan involution of g̃ so that R̃ becomes minimal.

Now as an element of VC then R has the form

R = R+ + iR+ +R− + iR−.

The maps T± = R± + iR± are clearly the symmetric(+)/antisymmetric(-) parts of

R w.r.t the inner product 〈−,−〉θR on the realification of V C. We can similarly

decompose:

R̃ = R̃+ + iR̃+ + R̃− + iR̃−

as an element in VC. Define similarly T̃± = R̃± + iR̃±, then these are also the

symmetric/antisymmetric parts of R̃ w.r.t 〈−,−〉θR . But since R = R̃ then T̃± must

coincide with T± by uniqueness of symmetric/antisymmetric parts. In particular by

restricting T̃± and T± to Ṽ and V respectively on 〈−,−〉θR , we obtain that T±|
Ṽ
= R̃±

and similarly T̃±|V
= R±. So we get as required

R± = R̃±.

"
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We note if g is the compact real form of gC that 〈−,−〉θ is just the Killing form:

−κ(−,−). So if R̃ : Ṽ → Ṽ is an endomorphism satisfying the criteria in the

previous theorem, then the symmetric/antisymmetric parts w.r.t the Killing form κ

coincide with the symmetric/antisymmetric parts w.r.t κθ̃(−,−) = −κ(−, θ̃(−)).

Here is an example for which the theorem immediately applies.

Example 5.6. Let g̃ = o(p, q) for p + q = n and g = o(n). Suppose R̃ is an

endomorphism of o(p, q) which satisfies the criteria of the theorem. Then the sym-

metric/antisymmetric parts of R̃ w.r.t the Killing form κ(−,−) coincide with the

symmetric/antisymmetric parts w.r.t κθ̃(−,−), where θ̃ can be chosen to be the Car-

tan involution: θ̃ : X → X̄.
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A root system

For more details about the theory of root systems we refer to [3], chapter 11.

Let V be an inner product space with inner product (-,-) and let 0 '= α ∈ V .

Definition A.1. A linear map sα : V → V is said to be a reflection in the hyperplane

〈α〉⊥, if it fixes pointwise 〈α〉⊥ ⊂ V and is an involution such that s(α) = −α.

Proposition A.1. sα(x) = x− 2 (x,α)
(α,α)α for all x ∈ V .

Proof. It is easy to check that sα is a reflection in the hyperplane 〈α〉⊥. Now

since V = 〈α〉 ⊕ 〈α〉⊥ then obviously such a reflection must be unique. "

Definition A.2. A subset R ⊂ V is said to be a root system if the following axioms

are satisfied.

(1) 0 /∈ R and |R| < ∞ together with 〈R〉 = V .

(2) If α ∈ R and C ∈ R then Cα ∈ R if and only if C = ±1.

(3) There are reflections for each α ∈ R, sα in the hyperplane 〈α〉⊥ such that the

restriction to R is a bijection, i.e there is a natural homomorphism

〈sα|α ∈ R〉 → S|R|.

(4) For any α, β ∈ R we have 2(α,β)
(β,β) ∈ Z.

The vectors in R are said to be the roots of the root system.
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APPENDIX B

Elementary representation theory of Lie algebras

1. A representation of a Lie algebra

In this section we assume a Lie algebra L can be over any field K unless otherwise

stated. Most of what is written here is based on [3], chapter 7.

Definition B.1. A representation of a Lie algebra L over K is a Lie homomorphism

ψ : L → gl(V )

for some vector space V overK. We say a representation is faithful if ψ is a monomor-

phism. We also say that L has a n-dimensional representation if Dim(V ) = n.

Example B.1. Any matrix Lie algebra L ⊂ gl(n,K) has a natural faithful represen-

tation L ↪→ gl(V ) for V a vector space over K of dimension n. Indeed we can send a

matrix x to the linear map V → V represented by the matrix x.

Definition B.2. Let L be a Lie algebra and V be a vector space. We say that V

is an L-module if there is a map L × V →ψ V which is bilinear such that for every

x, y ∈ L and v ∈ V we have [x, y] ·v = x · (y ·v)−y · (x ·v), where [x, y] ·v is a shortcut

for writing ψ([x, y], v).

Proposition B.1. Let L be a Lie algebra then a vector space V is an L-module if

and only if L has a representation L → gl(V ).

Proof. Assume V is an L-module then there is a bilinear map L × V →ψ V

satisfying [x, y] · v = x · (y · v)− y · (x · v) for all x ∈ L and v ∈ V . Now consider the

map ψ(x,−) : V → V for x ∈ L. This is a linear map because ψ is bilinear and so

for λ ∈ K and v ∈ V we have

ψ(x, λv) = x · (λv) = λ(x · v) = λψ(x, v).

So define the map L → gl(V ) by sending x → ψ(x,−). This map is clearly linear

again because ψ is bilinear, and for every x, y ∈ L and v ∈ V we have,

ψ([x, y], v) = [x, y]·v = x·(y·v)−y·(x·v) = ψ(x, ψ(y, v))−ψ(y, ψ(x, v)) = [ψ(x,−), ψ(y,−)](v).
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So we deduce that the map is a representation of L as required. Now conversely

if L →ψ gl(V ) is a representation of L, then we can define a map L × V → V

by sending (x, v) → ψ(x)(v). This map is clearly bilinear as each map ψ(x) is

linear and ψ is linear. Also since ψ([x, y]) = ψ(x) ◦ ψ(y) − ψ(y) ◦ ψ(x) we see that

[x, y] · v = x · (y · v) − y · (x · v) for every x, y ∈ L and v ∈ V . So V is an L-module

as required. "

Definition B.3. Let L be Lie algebra with representation L →ψ gl(V ) and suppose

there is a vector subspace W ≤ V such that ψ(L)(W ) ⊂ W , then we say that the

representation ψ restricted to W : L → gl(W ), is a subrepresentation of ψ. Similarly

if V is an L-module, L× V →β V then a submodule W is a vector subspace W ≤ V

such that β(L,W ) ⊂ W .

If an L-module V does not have any non-trivial proper submodules then V is said to

be irreducible or simple, the same definition goes for irreducible representations.

Consider the adjoint map Ad : L → gl(L) of L, then this is a representation of L.

In particular if L is semisimple then ker(Ad) = Z(L) = 0 so that Ad is a faithful

representation of L. We also note that a submodule L̃ ⊂ L w.r.t Ad is just an ideal of

L. Indeed we have Ad(L)(L̃) = [L, L̃] ⊂ L̃. This shows that the adjoint representation

of a Lie algebra L is irreducible if and only if L is simple.

Proposition B.2. Every finite dimensional representation of a solvable Lie algebra

over C has a 1-dimensional subrepresentation. In particular every irreducible finite

dimensional representation of a complex solvable Lie algebra is 1-dimensional.

Proof. Let L →ψ gl(V ) be a representation then it is straightforward to show

that ψ(L(k)) = ψ(L)(k) for each k ≥ 1 so that ψ(L) is solvable. Now use Lie’s Theorem

to choose a basis x1, x2, . . . xn of V such that simultaneously every element in ψ(L)

is represented by an upper triangular matrix. Now we may consider the subspace

W = 〈x1〉 ≤ V so ψ(x)(x1) = λx1 ∈ W for some λ ∈ C. Hence W is a 1-dimensional

L-submodule of V as required. "

Definition B.4. Let L be a Lie algebra and V an L-module then we say that V is

completely reducible if V = ⊕n
j Vj for irreducible submodules Vj of V . Otherwise

V is said to be indecomposable. The same definition goes for a representation of

L, viewing it as an L-module.

It turns out that every finite dimensional representation of a complex semisimple Lie

algebra is completely reducible into one dimensional submodules. This is known as

Weyl’s theorem.
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Definition B.5. Let L be a Lie algebra together with L-modules V and W . Then a

linear map V →ψ W such that for all x ∈ L and v ∈ V :

ψ(x · v) = x · ψ(v)

is said to be a homomorphism of L-modules. Moreover if ψ is bijective then V

and W are said to be isomorphic as L-modules, we write V ∼= W . Similarly two

representations are defined to be isomorphic if they are isomorphic as L-modules.

Note that if ψ, ψ̃ are two isomorphic representations of L, then viewing them as

L-modules there is a linear isomorphism V →γ Ṽ such that

γ(ψ(x)(v)) = ψ̃(x)(γ(v))

for x ∈ L and v ∈ V . This tells us that γ ◦ ψ = ψ̃ ◦ γ so ψ and ψ̃ are conjugate via

γ. This means that if two representations are isomorphic then for every x ∈ L the

matrix of the linear map ψ(x) must be similar to the matrix representing ψ̃(x).

The following lemma is immediate.

Lemma B.1. If V →ψ W is a homomorphism of L-modules then ker(ψ) and ψ(V )

are L-submodules of V and W respectively. "

Lemma B.2. [Schur’s Lemma]. If V is a finite irreducible L-module over C with

Dim(V ) = n, then a linear map V →ψ V is a homomorphism of L-modules if and

only if ψ = λ1V for some λ ∈ C.

Proof. The direction (⇐) is clear as V is an L-module. So consider the direction

(⇒). First since we are working over C we can choose an eigenvalue of ψ say λ ∈ C
with eigenspace Vλ '= 0. Now because ψ is a homomorphism then for any x ∈ L and

v ∈ Vλ we have

x · ψ(v) = λ(x · v) = ψ(x · v).

Hence x · Vλ ⊂ Vλ for all x ∈ L. This shows that Vλ is a non-trivial L-submodule of

V , but as V is irreducible then Vλ = V . This shows that ψ = λ1V as required. "

Observe that if x ∈ Z(L) and V is an L-module then V → V given by v → x · v is

naturally a homomorphism of L-modules. Indeed [x, y] · v = 0 so x · (y · v) = y · (x · v)
for all y ∈ L and v ∈ V . In particular the following corollary is immediate from

Schur’s lemma.

Corollary B.1. Let L be a complex Lie algebra with irreducible representation L →ψ

gl(V ). Then any element in ψ(Z(L)) is diagonalisable. "
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Proposition B.3. Every 1-dimensional representation of a Lie algebra L with L = L′

is trivial. Moreover if L′ '= L then L has an infinite number of non-isomorphic 1-

dimensional representations, in fact we have a bijection,

{L → K of 1 dimensional reps} ↔ (L"L′)∗.

Proof. Let L →ψ K be a 1-dimensional representation of L. Now since K is

abelian and ψ is a Lie homomorphism then we must have ψ(L′) = 0. Now if L is a

Lie algebra with L′ = L then ψ is trivial, so the first part is proved. For the second

part assume L′ '= L. We first note that if p is the quotient map L → L"L′ and

α ∈ (L"L′)∗ then this gives rise to a 1-dimensional representation of L namely the

composition,

L →p L"L′ →α K.

Conversely if ψ is a 1-dimensional representation of L then ψ(x) = α(p(x)) for α ∈
(L"L′)∗ defined by α(x+L′) = ψ(x) for x ∈ L. This is a well-defined linear functional

as ψ(L′) = 0. Now if we have two 1-dimensional reps of L say ψ '= ψ̂ which are

isomorphic then we must have:

λψ(x) = λψ̂(x)

for some 0 '= λ ∈ K. So this shows that two 1-dimensional representations are

isomorphic if and only if they are equal. It now follows that there is a bijection

between 1-dimensional representations of L and linear functionals (L"L′)∗ as claimed,

in particular (L"L′)∗ is infinite as Dim(L′) < Dim(L). The proof is complete. "

In particular if L is a complex semisimple Lie algebra then every 1-dimensional rep-

resentation is trivial, since L = L′. We end our discussion of representation theory

by stating an interesting theorem, which states that every Lie algebra over a field of

characteristic 0 is in fact a matrix Lie algebra.

Theorem B.1. [Ado’s Theorem]. Given any finite dimensional Lie algebra L over

a field K with Char(K) = 0, there is a faithful representation

L ↪→ gl(n,K).

Hence every Lie algebra is linear, in the sense that it has a representation in terms

of matrices equipped with the commutator bracket [−,−].
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