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Abstract

This thesis deals with the design of a fuzzy control system for the 3DOF hover system
produced by Quanser. The human mind is great at making decisions based on estimated
and non-precise information. We may use words such as "very steep" or "not so hot"
when describing angles and temperatures, fuzzy logic is a way of implementing these
words into controller design. The results and performance of the fuzzy control system are
measured through comparisons with a linear quadratic regulator. As a second approach
for controlling the 3DOF hover, weighted linearization for the non-linear system is
implemented.

Sammendrag

Denne oppgaven omhandler design av et fuzzy kontrollsystem for 3DOF hover systemet
produsert av Quanser. Menneskesinnet er flink til å ta avgjørelser basert på estimert og
unøyaktig informasjon. Vi kan bruke ord som "veldig bratt" eller "ikke så varmt" når
man skal beskrive vinkler og temperaturer, fuzzy logikk er en måte å iverksette disse
begrepene i kontrollerdesign. Resultatene og ytelsen til det ikke-lineære kontrollsystemet
er målt gjennom sammenligninger med en lineær kvadratisk regulator. Som en annen
tilnærming for å kontrollere systemet, er vektet linearisering for det ikke-lineære systemet
iverksatt.
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Chapter 1

Aim and motive

1.1 Introduction

According to the project description that was published by the university. Fuzzy logic is
the name given to a logic where the truth value of a statement/variable can take any
real value between 0 and 1, for example 0.7, in contrast with the Boolean logic, where a
statement/variable can only be either true or false, which means definite 0 or definite
1. And a fuzzy control system is a control system based on fuzzy logic where different
controllers are blended according to the truth value of a rule. The fuzzy logic control
system will be heavily discussed in this thesis.

1.2 History of Fuzzy Control

1965 is the year Lotfi A. Zadeh introduced the term fuzzy logic for the first time
independently through the fuzzy set theory. The road to the fuzzy logic term, however,
started way back. Some important years in the history and evolution of the fuzzy logic
are mentioned here:

1920s, Jan Łukasiewicz and Alfred Tarski The Łukasiewicz logic was first intro-
duced as a three value logic, before going on to be a n-value logic and the infinite
value logic. This logic was the start and a completely necessary step towards
developing today’s fuzzy logic [5].

1974, Ebrahim H. Mamdani and Seto Assilian The first successful application of
fuzzy logic to a control on a laboratory-scale [6]. A model steam engine was
controlled by inferring the correction of the heat setting from the error and error

2



Part I: Introduction 3

change of the speed and pressure. This is the origin of the inference systems that
are known as Mamdani systems.

1982, Lauritz L. Holmblad and Jens J. Ostergaard The first industrial applica-
tion of a fuzzy logic system, implemented on a cement kiln in Denmark [7].

1985, Tomohiro Takagi, Michio Sugeno A mathematical tool for building the fuzzy
models of a system is presented by Takagi and Sugeno [8]. The fuzzy models uses
either a linear or constant consequent.

1986, Michio Sugeno, Geuntaek Kang The problems surrounding structure identi-
fication of fuzzy models are addressed and an algorithm for identifying the structure
is suggested [9]. The work builds upon the work Takagi and Sugeno did the previous
year.

1987, Matsushita® Fuzzy logic was first available in 1987 when the company Mat-
sushita sold the first consumer product with implemented fuzzy logic. The product
was a shower head. Later in 1989 they also released the first washing machine with
fuzzy logic [10].

1990, Kazuo Tanaka and Michio Sugeno Regarding the history of Takagi-Sugeno
fuzzy controller, Kazuo Tanaka and Michio Sugeno began working on the idea
through their seminal work introducing fuzzy model construction based on sector
nonlinearity and parallel distributed compensation based on Lyapunov stability
[11].

Remark: It is recognized that the fuzzy models in (3.3) to (3.6) are the result of work
done by Takagi and Sugeno in 1985, thus being known as the Takagi-Sugeno fuzzy models
[8]. Later on, in 1986, Kang and Sugeno did extensive work on structured identification
of fuzzy models which is referred to as the Sugeno-Kang fuzzy modeling method [9].
In this report it’s been chosen to acknowledge but not differentiate between the two
previously stated facts, therefore addressing the system as a Takagi-Sugeno-Kang fuzzy
inference system while a naming such as Takagi-Sugeno fuzzy inference system may be
justified.
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1.3 Goals

The main goals of this thesis can be listed as follows:

• Identify the nonlinear system model

• Compute a linearized state space model of the 3DOF Hover system

• Develop a Linear-Quadratic Regulator controller through the Linear Time-Invariant
system with a cost function and optimized weighting matrices

• Implement a Takagi-Sugeno-Kang fuzzy inference system

• Implement weighted linearization of fuzzy logic control

• Compare the Takagi-Sugeno-Kang fuzzy logic controller with the linear controller

• Compare the study of the weighted linearization approach against the Takagi-
Sugeno-Kang fuzzy controller

• Conclude on which controller approach suits the 3DOF Hover system the best.

To achieve these goals, results will be collected through simulations in MATLAB and
Simulink. Physical study and results are captured through experiments to adjust the
Quanser Aero 3DOF Hover which is available in room KE E-455 at the University of
Stavanger.



Chapter 2

The 3DOF Hover system

2.1 Description

The producer’s webpage describes the 3 Degrees Of Freedom (DOF) Hover seen in Figure
2.1 in the following way [3]:

The 3 DOF Hover consists of a planar round frame with four propellers. The
frame is mounted on a three degrees of freedom pivot joint that enables the
body to rotate about the roll, pitch and yaw axes. The propellers are driven by
four DC motors that are mounted at the vertices of the frame. The propellers
generate a lift force that can be used to directly control the pitch and roll
angles. Two of the propellers are counter-rotating, so that the total torque in
the system is balanced when the thrust of the four propellers is approximately
equal. The axis angles are all measured using high-resolution encoders. The
encoder and motor signals are transmitted through a slip ring mechanism,
which allows the yaw axis to rotate continuously about 360 degrees.

5
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Fig 2.1: The Quanser 3DOF hover test bed.

Each DC motor is a Pittman Model 9234 [12] with an electrical resistance of 0.83Ω and a
current-torque constant, Kt = 0.0182Nm/A. The supply voltage Vs of the motor is 12V ,
but its peak voltage can be brought up to 24V without damage. The input voltages Vx,
x = [f, b, r, l], are limited by the drivers. Further on considering given values and limits
from Quanser Aero’s datasheet [3] to help develop the controller.

The minimum and maximum pitch and roll angles are read as ±37.5◦ ≈ ±0.6545 rad,
while the yaw angle spins freely 360◦ around its axis.

The angular velocities p, q, r are found experimentally to be bounded by allowing
the motor voltages to reach saturation, with minimum and maximum velocity being
approximately ±1 rad/s.
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2.2 State-feedback

A state-feedback system includes the use of a given state vector to calculate the control
action for selected system dynamics. In this case, the system is a non-linear MIMO-
system, where the state-feedback consists of a gain matrix K determined by a Linear
Quadratic Regulator. State-feedback is also used in simpler systems, for example in a
SISO-system the gain K would act as a row vector.

Figure 2.2 depicts state-feedback regulation, as there is a connection between the process
output y and the control input u. The generation or calculation of the control input u

happens inside the regulator [13].

Regulator Process

measurement
device

-
reference

ue

disturbance

y

y measured x

+

Fig 2.2: State-feedback regulation diagram.

2.3 State-space representation

The state-space representation is a structured way to define the differential equations
describing a system. When working in the state-space domain there are methods for
linearization, simulation and analysis that are very helpful. Additionally, state-space
models are the foundation for topics like observability and controllability [14].

The Equations (2.1) and (2.2) represent the state-space model of a general n’th order
system.

ẋ(t) =


ẋ1(t) = f1(x1(t), . . . , xn(t), u1(t), . . . , un(t), t)

...

ẋn(t) = fn(x1(t), . . . , xn(t), u1(t), . . . , un(t), t)

(2.1)
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y(t) =


y1(t) = g1(x1(t), . . . , xn(t), u1(t), . . . , un(t), t)

...

yp(t) = gp(x1(t), . . . , xn(t), u1(t), . . . , un(t), t)

(2.2)

Where f(t) are the differential input equations and g(t) are the algebraic output equations.

The state-space representation of a continuous time-invariant system can then be simpli-
fied using vector notation, resulting in the system (2.3).

 ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(2.3)

With the following elements:

• time t

• state vector x(t)

• output vector y(t)

• input/control vector u(t)

• state matrix A

• input matrix B

• output matrix C

• feedthrough matrix D

2.3.1 Dynamics and state-space modeling

The 3DOF hover is described by a system of nonlinear Equations (2.4) - (2.9).

θ̇r = f1 = p + sinθrtanθpq + cosθrtanθpr (2.4)

θ̇p = f2 = cosθrq − sinθrr (2.5)

θ̇y = f3 = sinθr

cosθp
q + cosθr

cosθp
r (2.6)

ṗ = f4 = Jp − Jy

Jr
qr + Irq

Jr
ug + 1

Jr
τr (2.7)

q̇ = f5 = Jy − Jr

Jp
pr − Irp

Jp
ug + 1

Jp
τp (2.8)

ṙ = f6 = Jr − Jp

Jy
pq + 1

Jy
τy (2.9)

By isolating the equation describing the roll axis, the following dynamics can be identified,
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f4 = Jp − Jy

Jr
qr︸ ︷︷ ︸

Coriolis
Effect

+ Irq

Jr
ug︸ ︷︷ ︸

Rotor
Gyroscopic

Effect

+ 1
Jr

τr︸ ︷︷ ︸
Body

Gyroscopic
Torque

where the term describing the rotor gyroscopic effect [15] contains ug, a sum of voltages
as presented in Equation (2.10).

ug(u1, u2, u3, u4) = Kv(Vr + Vl − Vf − Vb) (2.10)

And the torques τr, τp and τy are given by the following Equations (2.11) - (2.13) [16].

τr(u3, u4) = LKf (Vr − Vl) (2.11)

τp(u1, u2) = LKf (Vf − Vb) (2.12)

τy(u1, u2, u3, u4) = Kt(Vr + Vl − Vf − Vb) (2.13)

The parameters of the 3DOF hover are listed in Table 2.1.

Symbol Description Value Unit
Kt Torque thrust constant of motor/propeller 0.0036 N m/V
Kf Force-thrust constant of motor/propeller 0.1188 N/V
L Distance between pivot to each motor 0.197 m
Jr Equivalent moment of inertia about roll axis 0.0552 kg m2

Jp Equivalent moment of inertia about pitch axis 0.0552 kg m2

Jy Equivalent moment of inertia about yaw axis 0.110 kg m2

Ir Motor rotor moment of inertia 6·10−5 kg m2

Kv Transformation constant 54.945 rad s/V

Table 2.1: Model parameters according to the producers at [3].

Additionally, the state x(t), input/control u(t) and output y(t) are given by the vectors
(2.14) - (2.16).

x(t) = [θr, θp, θy, p, q, r]T (2.14)

u(t) = [Vf , Vb, Vr, Vl]T (2.15)

y(t) = [θr, θp, θy]T (2.16)
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Where Vf , Vb, Vr, Vl correspond to the voltage control variables for the front, back, right
and left motor, and θr, θp and θy are the Euler angles yaw, pitch and roll as demonstrated
in Figure 2.3.

X'

Z'

Y'

Y

X


Z

FrontBack

Right

LeftYaw

Roll

Pitch

Fig 2.3: Coordinate system. X, Y and Z are the axes in the world frame.
X ′, Y ′ and Z ′ are the axes in the body frame.

The attitude is arranged in the Euler angle sequence 1-2-3, often used in aerospace
settings, referring to the angles as Tait-Bryan angles. The states p, q and r are the
angular velocities in the body frame, which are described by Equation (2.17) [17].

[p, q, r]T = E′
123


θ̇r

θ̇p

θ̇y

 =


1 0 −sinθp

0 cosθr cosθpsinθr

0 −sinθr cosθpcosθr




θ̇r

θ̇p

θ̇y

 (2.17)

Where E′
123 is the conjugate Euler angle rates matrix, which gives the angular velocities

in the body frame of reference when multiplied with the Euler angle rates θ̇r, θ̇p and θ̇y.

The input Equations (2.4) - (2.6) are derived from Equation (2.18) [17].

[θ̇r, θ̇p, θ̇y]T = [E′
123]−1


p

q

r

 =


1 sinθrtanθp cosθrtanθp

0 cosθr −sinθr

0 sinθr/cosθp cosθr/cosθp




p

q

r

 (2.18)
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Where [E′
123]−1 is the inverse conjugate Euler angle rates matrix, which gives the Euler

angle rates when multiplied with the angular velocities p, q and r in the body frame of
reference.

2.3.2 Linearization

Based on the nonlinear Equations (2.4) - (2.9), and partially deriving these with respect
to the state vector (2.14) we would obtain the state matrix A(x, u) as Equation (2.19).

A(x, u) =



∂f1
∂θr

∂f1
∂θp

· · · ∂f1
∂r

∂f2
∂θr

∂f2
∂θp

· · · ∂f2
∂r

...
... . . . ...

∂f6
∂θr

∂f6
∂θp

· · · ∂f6
∂r

 =



0 0 0 1 sinθrtanθp cosθrtanθp

0 0 0 0 cosθr −sinθr

0 0 0 0 sinθr
cosθp

cosθr
cosθp

0 0 0 0 Jp−Jy

Jr r − Irug

Jp
Jp−Jy

Jr
q

0 0 0 Jy−Jr

Jp
r + Irug

Jr 0 Jy−Jr

Jp
p

0 0 0 Jr−Jp

Jy
q

Jr−Jp

Jy
p 0


(2.19)

The terms Irug

Jp
and Irug

Jr
disappear when the voltages corresponding to an equilibrium

point x̄ = 0 are inserted, as Equations (2.20) - (2.21) show.

Irug

Jp
= IrKv

Jp
(Vr + Vl − Vf − Vb) = IrKv

Jp
(0 + 0 − 0 − 0) = 0 (2.20)

Irug

Jr
= IrKv

Jr
(Vr + Vl − Vf − Vb) = IrKv

Jr
(0 + 0 − 0 − 0) = 0 (2.21)

The input matrix B is found using the nonlinear Equations (2.4) - (2.9), going on to
partially derive these with respect to the input vector (2.15) resulting in Equation (2.22).

B(x) =



∂f1
∂Vf

∂f1
∂Vb

. . . ∂f1
∂Vl

∂f2
∂Vf

∂f2
∂Vb

. . . ∂f2
∂Vl

...
... . . . ...

∂f6
∂Vf

∂f6
∂Vb

. . . ∂f6
∂Vl

 =



0 0 0 0
0 0 0 0
0 0 0 0

− Irq
Jr

Kv − Irq
Jr

Kv
LKf

Jr
+ Irq

Jr
Kv −LKf

Jr
+ Irq

Jr
Kv

LKf

Jp
+ Irp

Jp
Kv −LKf

Jp
+ Irp

Jp
Kv − Irp

Jp
Kv − Irp

Jp
Kv

−Kt
Jy

−Kt
Jy

Kt
Jy

Kt
Jy


(2.22)
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Proceeding to find the output matrix C by partially deriving the output Equations (2.16)
by the state vector (2.14) resultig in Equation 2.23.

C =


∂θr
∂θr

∂θr
∂θp

∂θr
∂θy

∂θr
∂p

∂θr
∂q

∂θr
∂r

∂θp

∂θr

∂θp

∂θp

∂θp

∂θy

∂θp

∂p
∂θp

∂q
∂θp

∂r
∂θy

∂θr

∂θy

∂θp

∂θy

∂θy

∂θy

∂p
∂θy

∂q
∂θy

∂r

 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (2.23)

D will be a zero matrix as Equation 2.24 shows, because none of the inputs (2.15) will
be found in any of the output Equations (2.16).

D =


∂θr
∂Vf

∂θr
∂Vb

∂θr
∂Vr

∂θr
∂Vl

∂θp

∂Vf

∂θp

∂Vb

∂θp

∂Vr

∂θp

∂Vl

∂θy

∂Vf

∂θy

∂Vb

∂θy

∂Vr

∂θy

∂Vl

 =


0 0 0 0
0 0 0 0
0 0 0 0

 (2.24)

Further on, the matrices A(x) and B(x) are linearized around the equilibrium point
x̄ = 0. The constants are given values from Table 2.1, inserting these will return the
linearized matrices in (2.25).

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0.424 −0.424

0.424 −0.424 0 0
−0.0327 −0.0327 0.0327 0.0327


(2.25)

These matrices will be used to develop a controller using the Linear-quadratic regulator
approach in the following section.

2.4 Linear–quadratic regulator

The Linear-Quadratic Regulator (LQR) is a feedback controller which optimizes the
control of a system. Given a Linear Time-Invariant (LTI) system as presented in the
previous Section 2.3. With a cost function as presented in Equation (2.26).

J =
∫ ∞

0
(xT (t)Qx(t) + uT (t)Ru(t)) dt (2.26)
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The weighting matrices for Q and R are stated in the hover laboratory guide [18].

Q = diag(350, 350, 500, 20, 20, 0)
R = diag(0.01, 0.01, 0.01, 0.01)

The Q matrix penalizes bad performance by increasing its values for each of the states in
the state vector (2.14). The R matrix penalizes the effort of the actuators by increasing
its values, the inputs, which is the control vector (2.15).

The feedback control law that minimizes the cost is given by Equation (2.27).

u(t) = −Kx(t) (2.27)

Whereas the gain matrix K is computed by Equation (2.28).

K = R−1(BT P ) (2.28)

Where R and B are known matrices. P is found by solving a continuous time algebraic
Riccati equation, which is a non-linear equation typical to find in optimal control problems.
The Riccati equation occurs as in Equation (2.29).

0 = AT P + PA − PBR−1BT P + Q (2.29)

Where P is the unknown. The formula is solved for P , which appears as a symmetric
n-x-n matrix. The rest of the matrices are known values at this stage.

Using the weighting matrices Q and R with the computed state-space matrices A and B,
the control gain K can be computed through the cost function (2.11). To calculate this,
the Matlab function lqr can be used.

K =


0 132.2876 −111.8034 0 36.1989 −41.3293
0 −132.2876 −111.8034 0 −36.1989 −41.3293

132.2876 0 111.8034 36.1989 0 41.3293
−132.2876 0 111.8034 −36.1989 0 41.3293


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While a linearized control system utilizing LQR shows good control performance, it is only
effective in operating over a limited operational range. Looking into a non-linear system
will help achieve reliable quad-rotor control over a wider operational range. Taking into
account the fuzzy-model approach, we should be able to improve the performance of
controlling the 3DOF Hover.

2.4.1 Simulation

The state-space model is implemented in HoverSim.m and thereafter simulated in
SimulationLQR.m . Using ode45 to solve the differential equations that make up the

model (2.4) - (2.9), the formerly produced LQR is tested. The natural response of the
system is shown in Figure 2.4.
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Fig 2.4: The LQR response with initial condition x(0) = [15◦, 15◦, 100◦, 0, 0, 0]T
and reference ref = 0.

Figure 2.5 shows the state trajectory with a non zero reference for the same LQR
linearized around x̄ = 0.
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Fig 2.5: The LQR response with initial condition x(0) = 0
and reference ref = [15◦, 15◦, 100◦, 0, 0, 0]T .

Now the error e(t) substitutes for the state vector x(t) in the cost function (2.26) and
feedback control law giving the cost function in Equation (2.30).

J =
∫ ∞

0
(e(t)T Qe(t) + u(t)T Ru(t)) dt (2.30)

u(t) = −Ke(t)

One should not assume however that the controller linearized around x̄ = 0 will give
the lowest quadratic cost in this scenario. A plot comparing simulations with differently
linearized controllers is shown in Figure 2.6, indicating that linearizing around the
reference might improve performance.
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Fig 2.6: The LQR response for two differently linearized controllers with initial
condition x(0) = 0 and reference ref = [15◦, 15◦, 100◦, 0, 0, 0]T .

J is the quadratic cost (3.10).

2.4.2 Integral states

In the search of a system that responds with a zero steady state error, a useful solution
is to add a control integral action of the error signal. By having a control integral action,
the system will have close to zero steady state errors if the closed loop system is stable.

To include integral action to the controller, new states er, ep and ey are added to the
state vector (2.14):

• er - referring to error at the roll-axis

• ep - referring to error at the pitch-axis

• ey - referring to error at the yaw-axis

Which gives the new state vector xe(t) as in Equation (2.31):
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xe(t) = [θr, θp, θy, p, q, r, er, ep, ey]T (2.31)

These new states scale the error occurring from the reference value at each axis. When
derivated, the error states are set to equal the angular states [θr, θp, θy]. We can then
calculate three equations for the new states giving our system integral action:

ėr = x1 = θr

ėp = x2 = θp

ėy = x3 = θy

→

er =
∫ t

0
x1(t)dt

ep =
∫ t

0
x2(t)dt

ey =
∫ t

0
x3(t)dt

This also results in three new linear equations to the system, denoted as f7, f8 and f9

(2.32) - (2.34) in addition to the six original nonlinear Equations (2.4) - (2.9).

ėr = f7 = x1 = θr (2.32)

ėp = f8 = x2 = θp (2.33)

ėy = f9 = x3 = θy (2.34)

Simultaneously, the matrices A(x), B(x), Q, and K will expand by n additional number
of rows and columns corresponding to the new states. R stays the same as the control
vector (2.15) does not change.

The state matrix AIA(x) will now be a 9x9 matrix:

AIA(x) =



0 0 0 1 sinθrtanθp cosθrtanθp 0 0 0
0 0 0 0 cosθr −sinθr 0 0 0
0 0 0 0 sinθr

cosθp

cosθr
cosθp

0 0 0
0 0 0 0 Jp−Jy

Jr
r

Jp−Jy

Jr
q 0 0 0

0 0 0 Jy−Jr

Jp
r 0 Jy−Jr

Jp
p 0 0 0

0 0 0 Jr−Jp

Jy
q

Jr−Jp

Jy
p 0 0 0 0

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0


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While the input matrix BIA with integral action is given by:

BIA(x) =



0 0 0 0
0 0 0 0
0 0 0 0

− Irq
Jr

Kv − Irq
Jr

Kv
LKf

Jr
+ Irq

Jr
Kv −LKf

Jr
+ Irq

Jr
Kv

LKf

Jp
+ Irp

Jp
Kv −LKf

Jp
+ Irp

Jp
Kv − Irp

Jp
Kv − Irp

Jp
Kv

−Kt
Jy

−Kt
Jy

Kt
Jy

Kt
Jy

0 0 0 0
0 0 0 0
0 0 0 0



Finally, the weighting matrix QIA decided with integral action:

QIA = diag(350, 350, 500, 20, 20, 0, 1, 1, 1)

An example of what a computed gain matrix K with integral action will look like:

K =


0 134.21 −113.65 0 36.28 −41.67 0 7.07 −5.0
0 −134.21 −113.65 0 −36.28 −41.67 0 −7.07 −5.0

134.21 0 113.65 36.28 0 41.67 −7.07 0 5.0
−134.21 0 113.65 −36.28 0 41.67 −7.07 0 5.0



It is observed that for QIA = diag(350, 350, 500, 20, 20, 0, ir, ip, iy) with ix = 0, the
LQR was not able to build due to Q and A having unobservable modes on the imaginary
axis. However, his aspect is not further investigated in this report.
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Chapter 3

Takagi-Sugeno-Kang approach

3.1 Takagi-Sugeno-Kang fuzzy inference system

An approach to control is the Takagi-Sugeno-Kang (TSK) fuzzy inference system. While
the Mamdani system [6] is well-suited to human input, by easily applying rules that
correlate to the system behavior, the TSK system is to a greater extent compatible with
mathematical analysis. Additionally, TSK systems offer greater computational efficiency.
The Mamdani systems are more often associated with a considerable computational
burden as the final process involves calculating the centroid of a two-dimensional area
while TSK systems use a weighted average of a few data points [19].

The system consists of input variables, input membership functions (mf), rules and linear
output membership functions, structured according to Figure 3.1.

Fig 3.1: Diagram of a TSK system rule implementation with two inputs, x and y [1].

20
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By each rule, the system is given a weight and an output in the form of either a linear
equation or a constant. The final output is then calculated as a weighted average in
Equation (3.1).

u =
∑n

i=1 wi · (−Ki) · x∑n
i=1 wi

(3.1)

3.1.1 Membership function for the input

The implementation of a fuzzy inference system will start off with the fuzzification of the
input variables. The input values are assigned a degree of membership connected to each
of the membership functions resulting in a vector known as a fuzzy set. The membership
functions may look like in Figure 3.2.
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Fig 3.2: The input membership functions.

The membership functions are usually given names that allow for interpretation in a
linguistic manner. For an input with 5 membership functions, a method of naming that
would make for easy interpretation goes like this:

• NH - Negative High

• NL - Negative Low

• ZO - Zero

• PL - Positive Low

• PH - Positive High
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Fig 3.3: Fuzzification example.

To produce the fuzzy values, the input variable is
simply ran through the membership functions, noting
the degree of membership for each of them. The
outcome is a vector with a value between 0 and 1
corresponding to each membership function.

Figure 3.3 shows how an input x = −9 results in the
fuzzy set given in Equation (3.2), where each element
are the membership functions with the input inserted.
The membership functions will be denoted as F .

[FNH(x), FNL(x), FZO(x), FP L(x), FP H(x)] = [0.8, 0.2, 0, 0, 0] (3.2)

3.1.2 Rule Structure and fuzzy model

This section will start by introducing the rules syntax, then explaining how the rules are
interpreted and molded into the final output of the controller.

For the controller being presented in this chapter, each rule describes each input by a
membership function. All possible fuzzy combinations of angles and velocities are present
in the list of rules, giving a fuzzy model (3.3) - (3.6) [8].

rule 1:

IF x1 IS F11 AND x2 IS F21 AND . . . AND xj IS Fj1 (3.3)

THEN

 ẋ(t) = A1x(t) + B1u(t)

y(t) = C1x(t)
(3.4)

...
rule n:

IF x1 IS F1k AND x2 IS F2k AND . . . AND xj IS Fjk (3.5)

THEN

 ẋ(t) = Anx(t) + Bnu(t)

y(t) = Cnx(t)
(3.6)

For n = kj rules, j inputs and k membership functions, where An, Bn and Cn are the
state, input and output matrices describing the linearized system. Here, Fjk is the k’th
membership function for input j.
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The model (2.4) - (2.9) is linearized as in Subsection 2.3.2 about the operating points
corresponding to the membership function the input is compared to1

Each rule correlates with a gain matrix computed for the linearized model with weighting
matrices Q and R as in Section 2.4. This gives the input-output relation presented in
Equation (3.7).

rule 1: u1(t) = −K1x(t) . . . rule n: un(t) = −Knx(t) (3.7)

Boolean Fuzzy
AND(x,y) MIN(x,y)
OR(x,y) MAX(x,y)
NOT(x) 1 - x

Table 3.1: Zadeh operators.

The rules are built using the Boolean operator
AND(x,y), and while Boolean operators are used
to compare variables that are strictly true or false,
the variables of a fuzzy inference system are on a slid-
ing scale. Thus a method of interpreting the Boolean
operators for fuzzy variables is needed. The Zadeh
operators stated in Table 3.1 provide just this func-
tionality, therefore MIN(x,y) will be used in place of
AND(x,y) when implementing the rules in code.

The rule weight (firing strength) for n rules is computed as in Equation (3.8)-(3.9).

w1 = min(F11(x1),F21(x2), ... , Fj1(xj)) (3.8)
...

wn = min(F1k(x1),F2k(x2), ... , Fjk(xj)) (3.9)

Where Fjk(xj) is the k’th membership function evaluated for the state j. The rule
weights wn and gain matrices Kn are then used to calculate the output (3.1).

1The operating point connected with a membership function is the input which would give a 100%
degree of membership.
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3.2 Testing the TSK fuzzy logic controller

Comparing the TSK Fuzzy Logic Controller (FLC) to the linear controller is essential in
the search of making fuzzy control of a system as good as possible.

One way of quantifying the performance of a controller is with the cost function (3.10)
mentioned in Section 2.4. A sum (for discrete time systems) or integral (for continuous
time systems) of the variables of interest in our system. When referring to linear systems,
the LQR-design guarantees the lowest cost function available. By designing a custom
controller, it is possible to get close to the cost function of the LQR controller, but it
never results in a cheaper cost function.

The linear controller is only expected to work better close to the equilibrium points.
The TSK fuzzy controller on the other hand, when tuned, is expected to work signifi-
cantly better when far from equilibrium points. The fuzzy logic helps the controller be
more precise with its membership functions than a linear controller which is only an
approximation of the nonlinear system around the equilibrium point.

3.2.1 Obtaining the gain matrices

Unique gain matrices are obtained by calculating the matrices A and B corresponding
to different operating points and computing K for the same Q, R and B matrices.

The operating points are linearly spaced within the limits which are mentioned in Section
2.1. The angles are bounded by ±37.5◦ ≈ ±0.6545 rad for the roll and pitch, while the
yaw can spin freely both clockwise and counter-clockwise. The yaw can spin freely due
to a slip ring mechanism, which transmit the encoder and motor signals. The resulting
intervals are as follows:

−37.5◦ < θr < +37.5◦

−37.5◦ < θp < +37.5◦

−180◦ < θy < +180◦

−1 rad

s
< p < +1 rad

s

−1 rad

s
< q < +1 rad

s

−1 rad

s
< r < +1 rad

s

The operating points can then be handled as a Dirac delta function located at the center
of the membership functions as illustrated in Figure 3.4.



Part II: Implementing Fuzzy Logic 25

-37.50 -18.75 0 18.75 37.50

1

0

Fig 3.4: Operating points described by Dirac delta functions.

Section 3.1.2 states that the list of rules is the result of the combinatoric permutation with
repetition, meaning every combination of membership functions is present. Consequently,
as the membership functions also reflect corresponding operating points, such a list can
be created with n = kj = 55 = 3125 elements (k membership functions and j inputs):



−37.50 −37.50 −1 −1 −1
−18.75 −37.50 −1 −1 −1

...
...

...
...

...
18.75 37.50 1 1 1
37.50 37.50 1 1 1


=



Operating points, Rule 1
Operating points, Rule 2

...
Operating points, Rule 3124
Operating points, Rule 3125



The function RuleMaker.m creates the list of operating points and rules in MATLAB.
It should be noted that as θy is not a variable in either the state matrix A(x) or input
matrix B(x), no fuzzy inference will be made for that state.

The state matrix A(x) (2.19) is evaluated at the different set of operating points:

A1 =


a11 a12 . . . a16

a21 a22
...

... . . . a56

a61 . . . a65 a66

 θr = −37.50
θp = −37.50
p=-1
q=-1
r=-1

=



0 0 0 1.000 0.467 −0.609
0 0 0 0 0.793 0.609
0 0 0 0 −0.767 1.000
0 0 0 0 0.993 0.993
0 0 0 −0.993 0 −0.993
0 0 0 0 0 0


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A2 =


a11 a12 . . . a16

a21 a22
...

... . . . a56

a61 . . . a65 a66

 θr = −18.75
θp = −37.50
p=-1
q=-1
r=-1

=



0 0 0 1.000 0.247 −0.727
0 0 0 0 0.947 0.321
0 0 0 0 −0.405 1.194
0 0 0 0 0.993 0.993
0 0 0 −0.993 0 −0.993
0 0 0 0 0 0


...

A3124 =


a11 a12 . . . a16

a21 a22
...

... . . . a56

a61 . . . a65 a66

 θr = 18.75
θp = 37.50
p=1
q=1
r=1

=



0 0 0 1.000 0.247 0.727
0 0 0 0 0.947 −0.321
0 0 0 0 0.405 1.194
0 0 0 0 −0.993 −0.993
0 0 0 0.993 0 0.993
0 0 0 0 0 0



A3125 =


a11 a12 . . . a16

a21 a22
...

... . . . a56

a61 . . . a65 a66

 θr = 37.50
θp = 37.50
p=1
q=1
r=1

=



0 0 0 1.000 0.467 0.609
0 0 0 0 0.793 −0.609
0 0 0 0 0.767 1.000
0 0 0 0 −0.993 −0.993
0 0 0 0.993 0 0.993
0 0 0 0 0 0



Then the input matrix B(x) (2.22) is evaluated at the different set of operating points:

B1 =


b11 b12 b13 b14

b21 b22 b23 b24
...

...
...

...
b61 b62 b63 b64

 θr = −37.50
θp = −37.50
p=-1
q=-1
r=-1

=



0 0 0 0
0 0 0 0
0 0 0 0

0.060 0.060 0.364 −0.484
0.364 −0.484 0.060 0.060

−0.033 −0.033 0.033 0.033



B2 =


b11 b12 b13 b14

b21 b22 b23 b24
...

...
...

...
b61 b62 b63 b64

 θr = −18.75
θp = −37.50
p=-1
q=-1
r=-1

=



0 0 0 0
0 0 0 0
0 0 0 0

0.060 0.060 0.364 −0.484
0.364 −0.484 0.060 0.060

−0.033 −0.033 0.033 0.033


...
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B3124 =


b11 b12 b13 b14

b21 b22 b23 b24
...

...
...

...
b61 b62 b63 b64

 θr = 18.75
θp = 37.50
p=1
q=1
r=1

=



0 0 0 0
0 0 0 0
0 0 0 0

−0.060 −0.060 0.484 −0.364
0.484 −0.364 −0.060 −0.060

−0.033 −0.033 0.033 0.033



B3125 =


b11 b12 b13 b14

b21 b22 b23 b24
...

...
...

...
b61 b62 b63 b64

 θr = 37.50
θp = 37.50
p=1
q=1
r=1

=



0 0 0 0
0 0 0 0
0 0 0 0

−0.060 −0.060 0.484 −0.364
0.484 −0.364 −0.060 −0.060

−0.033 −0.033 0.033 0.033



The input matrix B(x) is independent of the states θr, θp and θy, but are dependent
on p, q and r. Which is why B1 and B2 stay the same despite changing the roll axis
operating point. B3125 looks different as the value of the velocities are at a maximum
compared to a minimum in the first input matrices.

For the state matrix Ai and input matrix Bi, with the same R and Q matrix as stated
in Section 2.4, the LQR gain matrices (2.28) are:

K1 =


57.030 1.6149 −181.25 5.4866 33.585 −62.098

−11.001 −153.07 62.074 2.9447 −40.674 −23.057
100.61 82.644 115.25 31.160 4.8153 50.201

−146.64 68.815 3.9264 −39.592 2.2734 34.955



K2 =


51.134 59.9112 −169.23 5.2946 32.693 −64.142
4.4314 −161.98 −6.0933 3.3518 −39.834 −27.846
96.358 52.943 142.238 31.063 4.5419 52.790

−151.92 49.023 33.080 −39.710 2.5990 39.198



...



Part II: Implementing Fuzzy Logic 28

K3124 =


−12.975 161.47 −3.2855 −3.3688 39.728 −27.902
−43.429 −60.130 −172.16 −5.4091 −32.612 −64.000
153.41 −41.320 37.938 39.859 −2.5380 39.942

−97.008 −60.025 137.51 −31.081 −4.5783 51.959



K3125 =


2.5328 152.68 64.708 −2.9160 40.514 −23.099

−49.544 −1.7931 −184.36 −5.6592 −33.580 −61.987
148.87 −63.197 11.527 39.788 −2.1458 35.809

−101.86 −87.695 108.13 −31.213 −4.8890 49.278



The gain matrices have been calculated through the function GainMatrix.m in MAT-
LAB, which uses the built-in function lqr to find the gain matrix that minimizes the cost
function (2.26). Similarly, when an integral action is used, the different gain matrices
are calculated through the function GainMatrixInt.m .

3.2.2 Implementation using Fuzzy Logic Toolbox in MATLAB

A way of implementing the fuzzy model (3.3) - (3.6) defined in the previous section,
is with the Fuzzy Logic Toolbox function in MATLAB. The toolbox allows for the
implementation of TSK and Mamdani type systems both at the command line and with
an interactive user interface. However, this report will only benefit from the command
line (script) implementation of TSK systems.

The input variables are based on the state vector (2.14) and added with the function
addInput. The yaw angle θy is omitted due to its absence in the state matrix (2.19).
The remaining states will act as an input on the inference system, with limitations for
each being set according to the physical observations made in Section 2.1. The function
addMF is used to add input membership functions with a structure as in Figure 3.2.

The output variables in this case will be the voltages to the different motors, which is the
control vector (2.15). These are added with the function addOutput, where each voltage
will be set as an output. addMF is then used again, in this case to add linear functions of
the inputs that will generate an output. These linear functions are extracted from the
gain matrix in the following manner,
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u(x(t)) =



uVf
= a1θr + a2θp + . . . + a6r

uVb
= b1θr + b2θp + . . . + b6r

uVr = c1θr + c2θp + . . . + c6r

uVl
= d1θr + d2θp + . . . + d6r

, with Kn =


a1 a2 . . . a6

b1 b2 . . . b6

c1 c2 . . . c6

d1 d2 . . . d6



where Kn is the gain matrix corresponding to the n’th rule.

Lastly, the rules of the TSK system are added with the function addRule.
Code 3.1 demonstrates the syntax,

1 ruleList = [[1 1 0 1 1 1 1 1 1 1 1 1];...

2 [5 1 0 1 1 4 2 2 2 2 1 1];...

3 [3 3 0 3 3 3 3 3 3 3 1 1];...

4

5 FIS = addRule (FIS , ruleList )

Code 3.1: Example of numeric rule description.

which would correspond to the following rules:

if θr is NH and ... and r is NH then Vf is F1 and ... and Vl is F1

if θr is PH and ... and r is PL then Vf is F2 and ... and Vl is F2

if θr is ZO and ... and r is ZO then Vf is F3 and ... and Vl is F3

A total of twelve digit values are set for each rule. The first six describe the antecedent
(input), the next four describe the consequent (output). The penultimate column digits
are for setting the rule weight which must be a number from 0 to 1. The last digit
chooses the fuzzy operator: 1 for AND(x,y), 2 for OR(x,y).

Despite the fact that TSK systems are quite simple to implement, as the only operations
involved are sums and products, the runtime with the Fuzzy Logic Toolbox presents an
issue. The toolbox was slow when conducting experiments with more than 3 membership
functions, which is necessary for this report.

For this reason the class tsk.m was written. This class constructs the membership
functions, list of rules and gain matrices based on desired properties such as number of
membership functions and how they are arranged. Later on in Chapter 4, the class will
be built upon to support weighted linearization.
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In conjunction with the aforementioned class, a function EvalFuzzy.m was written.
This function handles the fuzzification, rule weighting and output calculation both in
simulation and in real-time testing.

Table 3.2 shows how the user-defined class and function provide vastly improved runtimes,
whereas the code was (at times) not able to complete in the toolbox’s environment at all
within a feasible timeframe.

No. of:
Membership

Functions

No. of:
Rules

Runtime:
User-Defined

Class

Runtime:
Fuzzy Logic

Toolbox

Percentage
improvement

3 243 00:00:02 00:00:18 91 %
5 3125 00:00:15 00:43:48 99 %
7 16807 00:01:13 unable to complete 100 %
9 59049 00:04:19 unable to complete 100 %
11 161051 00:12:37 unable to complete 100 %
13 371293 00:30:22 unable to complete 100 %

Table 3.2: Comparing runtime of User-Defined classes and functions with the Fuzzy
Logic Toolbox in MATLAB.

The Fuzzy Logic Toolbox implementation is done via the script SugenoFIS.m .

3.2.3 Simulation

Before implementing and testing the Fuzzy Logic Controller (FLC) on the 3DOF Hover,
simulations are done in MATLAB. The performance of the controller is quantified by
the discrete-time cost function as the simulated signal under consideration is with a
fixed-step size. The function is presented in Equation (3.10):

J = xT
N QxN +

N−1∑
i=0

(xT
i Qxi + uT

i Rui) (3.10)

The function will give a single value that should be comparably lower for the fuzzy
controller than the linear controller. The cost is calculated for the trajectory followed by
the Hover as it goes from an initial condition x(0) ̸= 0 to x = 0. An example of the fuzzy
logic and linear controller response side by side is shown in Figure 3.5, plotted from the
code script SimulationFIS.m and SimulationLQR.m .
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Fig 3.5: Natural response of the system with x(0) = [30◦, 30◦, 140◦, 0, 0, 0] for
both the FLC and linear controller.

In Figure 3.5 the states x = [θr, θp, θy]T had an initial condition of x(0) = [30◦, 30◦, 140◦].
The simulation was set to have a small step size (.001) and to run long enough for the
angles to stabilize around the desired degree-reference which was set to equal zero for
both controllers.

Comparing the simulation of the FLC to the simulation of the linear controller, the
following quadratic cost (3.10) was obtained:

JF UZZY = 1.07 · 105

JLINEAR = 1.109 · 105

Figure 3.6 shows that for repeated simulations with increasing initial condition of
x = [θr, θp, θy]T , the percentage improvement of the cost will rise when comparing the
FLC to the linear controller proposed in Section 2.4.
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Fig 3.6: Percentage improvement in quadratic cost for the FLC over the linear controller
in simulation. The initial condition x(0) is increased for each simulation.

The earlier part of the plot displaying experiments with lower initial conditions x(0)
prefers the linear controller over the FLC. This aligns with the theory that a FLC should
only improve performance when far away from the equilibrum point x̄ = 0. There is also
a diminishing return in performance as the controllers get more complex, meaning the
controller with 5 membership functions might be preferred over one with 7 or 9.

3.2.4 Real-time testing

The FLC and linear controller are compared against each other as was done in simulation,
giving a representation of the quality of the produced fuzzy inference system by a
percentage improvement in quadratic cost. A first step into making a good FLC would
be to make it give a lower cost function than the linear controller. The finite-horizon,
continuous-time cost function is shown in Equation (3.11).

J =
∫ t1

t0
(xT (t)Qx(t) + uT (t)Ru(t)) dt (3.11)

Which in turn gives Equation (3.12) when the state vector (2.14) and input vector (2.15)
are inserted.
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=
∫ t1

t0

[
θr θp θy p q r

]


500 0 0 0 0 0
0 350 0 0 0 0
0 0 350 0 0 0
0 0 0 0 0 0
0 0 0 0 20 0
0 0 0 0 0 20





θr

θp

θy

p

q

r



+
[
Vf Vb Vr Vl

]


0.01 0 0 0
0 0.01 0 0
0 0 0.01 0
0 0 0 0.01




Vf

Vb

Vr

Vl

 (3.12)

To begin comparing the controllers, the Simulink model provided by Quanser is adjusted
to allow for fuzzy control and calculation of the cost function (3.11). The Simulink
schemes can be seen in Appendix D, where Figure D.1 in particular illustrates the cost
calculation.

Figure 3.7 presents the different stages of an experiment. Firstly the initial condition is
reached using a linear controller, thereafter either the fuzzy or linear controller drives
all the states to zero. Each experiment is run twice, once for both the linear and fuzzy
controller. Lastly, the quadratic cost is calculated in the timeframe 10-20 seconds and
compared for both controllers.

FLC / LQR drive angles to zeroLQR drive angles to initial condition

0s 10s 20s

Initial
Condition

ReachedExperiment


Start

Start Cost

Calculation

Cost
recorded

Experiment

End

Fig 3.7: The different stages of an experiment testing the FLC.

To reduce variance in the initial conditions and results between experiments, the following
countermeasures are implemented:

Ramp reference - To reduce oscillations and unwanted behavior when approaching the
initial condition. Using a step reference results in a behavior that is increasingly
unstable as the reference is set higher, meaning an increased load on the rig and
deviation in initial conditions between experiments.
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Integral states - To reduce the steady state error when approaching the initial condition.
The addition of integral states is discussed in Section 2.4.2.

Estimation over multiple experiments - To reduce the variance in results. While
it’s possible that either controller may be better than the other for a single
experiment, it would be more interesting to see how the controllers compare when
anomalies are disregarded. The median is used as it accounts for outliers in the
dataset which may skew the results significantly.

An experiment is recorded in Figure 3.8 with the aforementioned description.

0 5 10 15 20

-5
0
5

10
15

r

roll

0 5 10 15 20

0

10

20

p

pitch

0 5 10 15 20

t

0

50

100

y

yaw

Fig 3.8: Real-time response of the FLC with an initial condition x(10) ≈ [15◦, 15◦, 100◦].

A series of experiments are recorded, each time incrementing the initial condition away
from the equilibrium point x̄ = 0. The results are plotted as the percentage improvement
in quadratic cost, as was done in simulation, giving the Figure 3.9.
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Fig 3.9: Percentage improvement in cost for the FLC over the linear controller in
real-time. Each data point is an estimation from 10 identical experiments.

The outcome of Figure 3.9 aligns with expectations in some ways, and fails in others.
While a FLC with 3 membership functions clearly shows improved performance, more
complex controllers decline.

It will be mentioned that in early testing, the results did not agree with the theory
that an addition of fuzzy inference would increase performance. If the mathematical
model describing a system is known, then applying a fuzzy logic controller design should
improve the overall performance of the system. The poor results raised the question
about the accuracy of the nonlinear model, which ended up being the culprit. Appendix
A presents experimental results along with comments and corrections, narrating the
evolvement of the mathematical model.

In it’s current condition, the 5 mf controller has no correlation with the 3 mf controller,
as visualized in Figure 3.10.
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3 mf 7 mf5 mf

Fig 3.10: Linearly spaced membership functions with a common width.

To include the robustness of the 3 mf controller in subsequent controllers, instead of
linearly spacing the membership functions with the same widths, each new scheme uses
the previous one as a basis. Figure 3.11 presents the new method.

3 mf

5 mf

9 mf

Fig 3.11: Adding membership functions with the previous arrangement as a basis.
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The new scheme does significantly improve the controller, as seen in Figure 3.12.

Fig 3.12: Percentage improvement in cost for the FLC over the linear controller in
real-time. Each data point is an estimation from 10 identical experiments.

Ideally, the 5 mf controller would add information to the 3 mf controller, by the addition
of 2 membership functions, thus performing even better. However, this is not the case.
There continues to be a decline in performance when adding membership functions
when testing in real-time. Nonetheless, the new membership function arrangement does
improve overall performance when compared to Figure 3.9.

Manipulating the shape and position of the membership functions surely affects per-
formance. Therefore an experiment was conducted, with a wider membership function
range for the velocities as demonstrated by Figure 3.13, and an additive arrangement as
in Figure 3.11.
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-10 101-1

Fig 3.13: Widening the membership function range for the velocities.

The range [−10 10] was chosen experimentally, as it would increase performance compared
to a more narrow or wide range. The results are displayed in Figure 3.14.

Fig 3.14: Percentage improvement in cost for the FLC over the linear controller in
real-time. Each data point is an estimation from 4 identical experiments.

Increasing the membership function range, and consequently changing the operating
points at which the gain matrices are built around has a big impact on performance,
mostly for the 3 mf controller. More work should therefore be contributed to deciding
the arrangement of the velocity input membership functions.



Chapter 4

Weighted Linearization Approach

... a generalization of the linearization technique in which the computation
of the Jacobian matrices at the state trajectory of interest is replaced by
the multiple integral over the state and input spaces of the Jacobian matrix
functions multiplied by a weighting function. ... [20]

4.1 Weighted linearization of the 3DOF hover system

The second approach worth looking into for the 3DOF hover system is weighted lin-
earization of the nonlinear system. Taking into account the bigger picture of the system
performance, by linearizing multiple scenarios with help from a weighting function. In
this approach, the weighting function will be triangular, to match the existing member-
ship functions in Chapter 3.1.1. An example of how it could be done with a Gaussian
weighting function is shown in Appendix B.

Figure 4.1 depicts how weighted linearization includes neighbouring operating points by
having multiple Dirac delta functions that are differently weighted.

39
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1

0

-37.50 -18.75 0 18.75 37.50

Fig 4.1: Operating points described by Multiple Dirac delta functions.

Followingly, the matrices A(t) and B(t) are produced from the Equations (4.1) and (4.2).

A(t) =
∫

· · ·
∫
Rn+m

ρ(x, u, t)Df

Dx
(x, u, t)dxdu (4.1)

B(t) =
∫

· · ·
∫
Rn+m

ρ(x, u, t)Df

Du
(x, u, t)dxdu (4.2)

Where ρ(x, u, t) is the weighting function. In essence, the factors Df
Dx (x, u, t) and Df

Du(x, u, t)
are the different elements of the state matrix A(x) (2.19) and input matrix B(x) (2.22)
derived from taylor series expansion.

In general, the weighting function is any function that fulfills the requirements of (4.3).

∫
· · ·

∫
Rn+m

ρ(x, u, t)dxdu = 1 ∀t ∈ R (4.3)

As the weighting functions need to accord with Equation (4.3), the membership functions
can not be used directly. Instead, the height of the membership functions are altered as
illustrated in Figure 4.2, giving it an integral of 1.
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Weighting 

      Function

a b

1

b-a
a

Membership 
 Function 

1

Fig 4.2: Relationship between a membership function and a weighting function.

As Figure 4.3 illustrates. By breaking up the operating range of state variables (2.14),
the weighting functions can be translated into linear functions of the form ρ(x, t) = ax+b

for the blue areas. The remaining red areas correspond to a weighting function ρ = 0.

a a+b b c c+d d

f1f1' f2f2'

2 2

Fig 4.3: The weighting functions divided into several linear equations.

The linear functions f(x, t) and f ′(x, t) can be found by the Equations (4.4) and (4.5),
where x is the state.
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f(x, t) = 4
(b − a)2 (x − a) (4.4)

f ′(x, t) = −4
(b − a)2 (x − b) (4.5)

4.1.1 Example

The following example demonstrates how the weighted linearization is performed for a
single element in the state matrix a15. Starting with the Equation (4.1).

A(t) =
∫

· · ·
∫
Rn+m

ρ(x, u, t)Df1
Dr

(x, u, t)dxdu

a15 =
∫ ∞

−∞

∫ ∞

−∞
ρθr (x, u, t)ρθp(x, u, t)(cosθrtanθp)(x, u, t)dθrdθp

Where the weighting function ρ(x, u, t) is in the general form ax+b, and Df1
Dr = cosθrtanθp

is the same element as can be found in the corresponding element of matrix (2.19).

By breaking up the membership functions of the input as such:

-0.65 0 0.65-0.325 0.325

θr θp

The double integrals can be easily computed using a math software, with the limits
defined by the triangular function shape. Equation (4.6) displays the procedure.
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a15 =
∫ ∞

−∞
ρθp(x, u, t)

∫ −0.325

−0.65
(9.47θr + 6.15)(cosθrtanθp)(x, u, t)dθr︸ ︷︷ ︸

F1

dθp

+
∫ ∞

−∞
ρθp(x, u, t)

∫ 0

−0.325
(−9.47θr)(cosθrtanθp)(x, u, t)dθr︸ ︷︷ ︸

F2

dθp

=
∫ 0.325

0
(9.47θp)(0.451tanθp︸ ︷︷ ︸

F1

+ (−3.024tanθp)︸ ︷︷ ︸
F2

)dθp

+
∫ 0.65

0.325
(−9.47θp + 6.15)(0.451tanθp︸ ︷︷ ︸

F1

+ (−3.024tanθp)︸ ︷︷ ︸
F2

)dθp

= −0.285 + (−0.597)

= −0.882 (4.6)

The same calculation is done for every element of the state matrix AW L.

4.1.2 Simulation

The weighted linearization is implemented in tsk.m code line 204 - 432, bringing about
the results shown in Figure 4.4.

Fig 4.4: Percentage improvement in quadratic cost for the WL FLC over the linear
controller in simulation. The initial condition x(0) is increased for each simulation.
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The weighted linearization with a membership function arrangement according to Figure
3.11 does not improve the results in simulation in any obvious way. The result indicates
minor improvements in certain areas however, as can be seen in Figure 4.5. With some
manipulation of the membership functions, better results may be possible.

Fig 4.5: Percentage improvement in quadratic cost for the WL FLC over the linear
controller in simulation. The initial condition x(0) is increased for each simulation

(zoom).

4.1.3 Real-time testing

The weighted linearization method is tested at the 3-DOF Hover bed in real-time.
Compared to what we observed in the simulation section, where no notable ± difference
could be observed, the weighted linearization acted similarly to the FLC also in real-time.
The system was tested with 3, 5 and 9 membership functions according to Figure 3.11.
The results are shown in Figure 4.6 and further analyzed.
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Fig 4.6: Percentage improvement in quadratic cost for the WL FLC over the linear
controller in real-time. Each data point is an estimation from 4 identical experiments.

On average, the performance of the controller is subpar to a FLC using the taylor series
expansion method of linearization. However, the FLC using a weighted linearization
method has greater robustness, providing a steadier incline in performance. In com-
bination with membership functions that better suit the nonlinear model, weighted
linearization may prove a worthwhile addition to the controller scheme due to its ability
to provide steadily improving results.



Chapter 5

Conclusions and Future work

5.1 Conclusions

5.1.1 Fuzzy Logic Controller

In the simulation comparison, the sun always shines because one does not have influencing
factors compared to real-time. In this part, the fuzzy logic controller works better than
the linear controller for all initial conditions angles bigger than zero, as shown in Figure
3.6. And as observed from the same figure, the percentage improvement over the linear
controller increases as initial conditions are raised.

On the other hand, the real-time comparison turned out to reward the FLC less compared
to the simulation. Especially for the more complex controllers with 5 or more membership
functions. The FLC would still score well, especially when operating far from the
equilibrium point. There are several reasons why the performance in real-time does not
align with simulations however. The fact that it is a physical system for one, gives several
influencing factors which are difficult to find, and therefore not included in the non-linear
calculations.

A similar conclusion can be found in other papers, like in this paper written by students
from Spain and Romania published as an Inproceeding1 in the 2011 50th IEEE Conference
on Decision and Control and European Control Conference [21].

1A paper that was published in the proceedings of a conference, and must have been accepted by the
conference.
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Their conclusion is mostly the same regarding simulation, however, they seemed to get a
better experimental real-time result than we managed:

An LMI-based Takagi-Sugeno nonlinear observer has been designed for attitude
and rotational speed estimation in a quadrotor. The experimental results
presented show that a better estimation is obtained with the TS observer when
the operating range is far away from the point of linearization of a similarly
designed linear observer. In this way, the theoretical advantages of the TS
framework are confirmed in a real experiment.

As observed in Chapter 3.2.4 involving real-time testing, some questions about the
membership functions occur. Both about how the operating points of the velocities act,
and how different membership functions should be applied to further improve performance.
This is mentioned as an aspect to improve in the future work Chapter 5.2, the system will
surely improve more by researching and experimenting with the setup of the membership
functions. Anyhow, a quite basic fuzzy logic controller with 3 membership functions does
provide quite reliable improvements.

5.1.2 Weighted Linearization approach

The weighted linearization was quite an interesting approach. The baseline for this part
of the report was Damiano Rotondo’s "Weighted linearization of nonlinear systems" [20].
This really helped the understanding of what weighted linearization is generally about,
and the benefits of it. Good examples of other papers using weighted linearization on a
non-linear system were rare and hard to find. The combination of weighted linearization
and triangular membership/weighting functions could not be found in any published
paper as well. Surely more published papers using these combinations would help the
understanding of the approach, and a better FLC based on weighted linearization could
be evolved.

The simulation and real-time results both show varying degrees of improvement in
quadratic cost. However, they seem to follow the same kind of pattern, lying close to
the regular FLC cost-improvement compared to the linear controller. Results indicate
that the approach could work better with weighted linearization. Figure 4.6 suggests a
more robust rate of improvement when moving away from the equilibrium point x̄ = 0.
However, the weighting-function relationship should be improved to reach a conclusion.
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5.2 Future work

This project could be further improved by looking into the following aspects:

• Yet unknown physical factors acting on the 3DOF hover system could have been
further investigated, to obtain an even more precise model. A continuation of the
work done in Appendix A might be beneficial to further work with the rig.

In particular, it was found to be a nonlinear relationship between the applied
voltages and the propeller speed. More experiments involving open-loop testing
could prove to find a more accurate description of the propeller angular frequency.
For example as stated in [22], where the propeller angular frequency was interpreted
with a first-order transfer function.

• The operating points of the velocities should be further researched and resolved why
they act as they do. It was found that manipulating the velocity input membership
functions would impact the performance more than the angular input membership
functions.

• Evolve even more appropriate membership functions in the FLC, concerning the
behavior of the 3DOF Hover. An arbitrary example is shown in Figure 5.1, where
the membership functions are not necessarily symmetrical.

Fig 5.1: Example of how the membership function could be evolved.

In particular, it would be interesting to find the operating points that would be
most appropriately chosen as the center of the membership functions, especially
with regards to the velocities as mentioned in the previous comment. Some methods
might be found to choose the most optimal membership functions.

• A brief observation at the end of Section 2.4.2 mentions unobservable modes in
the imaginary axis of Q and A. The connection between integral states and these
unobservable modes could have been a topic of investigation.
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Appendix A

Experimental results and model
adjustment

This appendix includes, in chronological order, the experimental results and observations
that led to the adjustment of the mathematical model describing the system. The various
models will be brought up in succession with their additions highlighted in red.

Figure A.1 provides a plot of the percentage improvement over repeated experiments
where the initial condition was increased incrementally. The plot showed abnormalities
concerning the higher initial conditions, as well as a general variance in the results.

Fig A.1: Percentage improvement in cost for the FLC over the linear controller.
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The variance was most obvious when comparing datasets from a range of experiments as
can be seen in Figure A.2.

Fig A.2: Percentage improvement in cost for the FLC over the linear controller for 100
experiments.

As the Figures A.1 and A.2 show, there was a need to implement some procedures to
reduce variance and abnormalities. Therefore the ramp reference and integral states was
implemented, which in combination with an estimation over multiple experiments gave
the resulting plot of Figure A.3.

Fig A.3: Percentage improvement in cost for the FLC over the linear controller. Each
data point is an estimation from 10 identical experiments.
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Figure A.3 revealed a trend that was not obvious in Figure A.1. While it was evident
that having 3 membership functions resulted in an improved controller, having 5 or 7
seemed to aggravate the performance significantly. The poor results raised the question
about the accuracy of the nonlinear model (A.1) - (A.6).

MODEL VERSION 1

θ̇r = f1 = θr + sinθrtanθpθp + cosθrtanθpθy (A.1)

θ̇p = f2 = cosθrθp − sinθrθy (A.2)

θ̇y = f3 = sinθr

cosθp
θp + cosθr

cosθp
θy (A.3)

θ̈r = f4 = Jp − Jy

Jr
θ̇pθ̇y + 1

Jr
τr (A.4)

θ̈p = f5 = Jy − Jr

Jp
θ̇rθ̇y + 1

Jp
τp (A.5)

θ̈y = f6 = Jr − Jp

Jy
θ̇rθ̇p + 1

Jy
τy (A.6)

Figure A.4 shows discrepancies between the closed-loop response of a simulated model
and the physical rig with the model (A.1) - (A.6).

Fig A.4: Simulated vs. real closed-loop response to a reference change without a
modelled gyroscopic effect.
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By comparing simulations and real time experiments, factors that were not included in
(A.1) - (A.6) were investigated. Table A.1 shows dynamics both already included, and
ones that were not.

Physical effects Source for the effect Outcome variable Included
Aerodynamics Propeller rotation Roll torque ✓

Aerodynamics Blades flapping Pitch torque ✓

Torque from inertia Change in propeller rotation speed Yaw torque ✓

Gyroscopic
Change in the orientation
of the rigid body

Body gyroscopic torque ✓

Gyroscopic
Change in the orientation
of the propeller plane

Rotor gyroscopic torque X

Gravity Center of mass position Gravity X
Near surface The aircraft near the surface Air velocity X

Table A.1: Physical effects in the 3DOF Hover system [4].

By taking into account the omitted factors, firstly the rotor gyroscopic effects, the
nonlinear Equations (A.1) - (A.6) evolved into the Equations (A.7) - (A.12) [4].

MODEL VERSION 2: Added gyroscopic effect

θ̇r = f1 = θr + sinθrtanθpθp + cosθrtanθpθy (A.7)

θ̇p = f2 = cosθrθp − sinθrθy (A.8)

θ̇y = f3 = sinθr

cosθp
θp + cosθr

cosθp
θy (A.9)

θ̈r = f4 = Jp − Jy

Jr
θ̇pθ̇y + 1

Jr
τr + Ixθ̇p

Jr
ug (A.10)

θ̈p = f5 = Jy − Jr

Jp
θ̇rθ̇y + 1

Jp
τp − Ixθ̇r

Jp
ug (A.11)

θ̈y = f6 = Jr − Jp

Jy
θ̇rθ̇p + 1

Jy
τy (A.12)

As Figure A.5 demonstrates, including the gyroscopic effect in the model (A.7) - (A.12)
resulted in a greater resemblance between the simulated and real response.
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Fig A.5: Simulated vs. real closed-loop response to a reference change with a modelled
gyroscopic effect.

There was an improvement in performance as presented in Figure A.6, however, the
controllers with more than 3 membership functions continued to perform poorly when
compared to the linear controller.

Fig A.6: Percentage improvement in cost for the FLC over the linear controller. Each
data point is an estimation from 4 identical experiments.
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Figure A.7 demonstrates how the standard deviation in results when repeating an
experiment went down when the gyroscopic effect was modeled, making it a good
addition.

5 7.8 10.6 13.3 16.1 18.9 21.7 24.4 27.2 30

r
, 

p

0

2

4

6

8

10

12

14

16

18

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

original model

new model

20 33.3 46.7 60 73.3 86.7 100 113.3 126.7 140

y

Fig A.7: Standard deviation in results for the 5 mf controller from Figure A.3 and A.6.
X-axis displays initial condition.

Nonetheless, the performance of the fuzzy logic controller did still degrade quite rapidly
with higher angles. The assumption that the angular velocities would be the derivative
of the Euler angles was questioned, and it explained why higher initial conditions would
be detrimental to the performance, as the difference between the Euler angular rates
and angular velocities of the hover differ more as the angles increase. Figure A.8 shows
discrepancies between Euler angular rate and angular velocity for a simple simulation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

t

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

r
a

d
/s

Fig A.8: Euler angular rate θ̇r and angular velocity p.
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Thus the states [θ̇r, θ̇p, θ̇y] were replaced with the angular velocities of the hover [p, q, r].
Resulting in Equations (A.13) - (A.18) which are described in great detail in Section
2.3.1.

MODEL VERSION 3: Eular angular rates translated to angular velocities

θ̇r = f1 = p + sinθrtanθpq + cosθrtanθpr (A.13)

θ̇p = f2 = cosθrq − sinθrr (A.14)

θ̇y = f3 = sinθr

cosθp
q + cosθr

cosθp
r (A.15)

ṗ = f4 = Jp − Jy

Jr
qr + 1

Jr
τr + Ixq

Jr
ug (A.16)

q̇ = f5 = Jy − Jr

Jp
pr + 1

Jp
τp − Ixp

Jp
ug (A.17)

ṙ = f6 = Jr − Jp

Jy
pq + 1

Jy
τy (A.18)

Fig A.9: Weighting clips attached to the 3-DOF
hover, shown as component #3 [2].

The remaining effects listed in Table A.1
which are not modeled in the 3DOF hover
system will not be featured.
The gravity effect is not something to con-
sider, assuming the hover is resting at its
center of mass by the rig’s pivot joint. The
effect is however taken to account physi-
cally, as a weight clip shown in Figure A.9
is attached to the frame. This makes the
hover balanced and in parallel with the
floor level when at rest.
The air velocity the system would gain
eventually being near the surface is also
a non-considering factor here. The hover
works at the same height, only adjusting
the axes’ angles.



Appendix B

Weighted Linearization based on a
Gaussian weighting function

Multiple linearized state matrices Aσ are obtained by choosing different values for σ, a
value defining the width of the Gaussian weighting function as seen in Figure B.1.

Fig B.1: Gaussian weighting functions with different deviation σ.

Looking at the state-space nonlinear equations (2.4) - (2.9), one would need to calculate
the different values for Aσ by an equation which includes an integral for each of the
applicable states from each element in the matrix A(x) (2.19) obtained from taylor series
expansion. This stems from the factor Df

Dx of Equation (4.1).

Five of the states x (2.14) appear in the state matrix A(x), which means the multidi-
mensional Gaussian weighting function will look like in Equation (B.1).

ρ(θr, θp, p, q, r) = 105

2π5/2 e−( (θr−θ̄r)2

2σ2 + (θp−θ̄p)2

2σ2 + ··· + ··· + (r−r̄)2

2σ2 ) (B.1)
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This is calculated by the Equation (B.2), described in [20] as follows:

A class of weighting functions that showed promising results are
multidimensional Gaussian functions centered on (x̄(t), ū(t)) with unit
hypervolume, which are described by the following expression:

ρ(x, u, t) =
√

detH

πn+m
exp

−

x − x̄(t)
u − ū(t)

T

H

x − x̄(t)
u − ū(t)


 (B.2)

where H is a positive definite (n+m) x (n+m) matrix.

When the system responds to a chosen deviation value of σ = 0.1, and x̄ = 0, the
weighting function appears as in Equation (B.3).

ρ(θr, θp, p, q, r) = 105

(2π)5/2 e−50(θ2
r+θ2

p+p2+q2+r2) (B.3)

A0.1 can then be calculated through Equation (B.4).

10Q

2πQ/2 =
∫

· · ·
∫

RQ
e−50(θ2

r+θ2
p+p2+q2+r2)(Axx) dθr dθp dp dq dr (B.4)

Where Q corresponds to the number of states included in each element of A(x). This
fact means that we will never look at Q > 2, as the expressions from the original state
matrix A(x) (2.19) does not include more than 2 states. For example, the value A36 will
look like:

102

2π

∫
· · ·

∫
R2

e−50(θ2
r+θ2

p+p2+q2+r2)(A36) dθr dθp dp dq dr

102

2π

∫ ∞

−∞

∫ ∞

−∞
e−50(θ2

r+θ2
p)(cos θr

cos θp
) dθr dθp = 1.000051676
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Calculating for all the points in A(x) and a weighting function with σ = 0.1, gives the
following A matrix :

A0.1 =



0 0 0 1 0 0
0 0 0 0 1

200√e
0

0 0 0 0 0 1.000051676
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



Table B.1 includes values with different σ, and the states present for the function set
with an operating point x̄ = 0. The function here is Df3

Dr , or element A36 of the state
matrix linearized with taylor series expansion. It will be noted that the equation would
not integrate with values bigger than σ = 0.25.

θ̄r θ̄p σ
√

det(H)
πn+m f(x) e

−(x−x̄)2

2σ2 Result
0 0 0.1 102

2π
cos θr
cos θp

e−50(θ2
r+θ2

p) 1.000051676

0 0 0.15
20
3

2

2π
cos θr
cos θp

e−( 200
9 )(θ2

r+θ2
p) 1.00026406

0 0 0.2 52

2π
cos θr
cos θp

e−12.5(θ2
r+θ2

p) 1.000873712
0 0 0.25 42

2π
cos θr
cos θp

e−8(θ2
r+θ2

p) 1.002261065

Table B.1: The weighted linearization of f3 with regards to the angular velocity r using
a Gaussian weighting function with different values of σ.

For the function A25 where only the state θr appears, results can be seen in Table B.2.

θ̄r σ
√

det(H)
πn+m f(x) e

−(x−x̄)2

2σ2 Result
0 0.1 10

2π cos θr e−50(θ2
r) 0.995012

0 0.15
20
3

2π cos θr e−( 200
9 )(θ2

r) 0.988813
0 0.2 5

2π cos θr e−12.5(θ2
r) 0.980199

0 0.25 4
2π cos θr e−8(θ2

r) 0.969233
Table B.2: The weighted linearization of f2 with regards to the angular velocity q using

a Gaussian weighting function with different values of σ.
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MATLAB code

C.1 HoverSim.m

1 function xdot = HoverSim (x,jp ,jr ,jy ,l,kf ,kt ,u)

2

3 rtau = l*kf*(u(3) -u(4));

4 ptau = l*kf*(u(1) -u(2));

5 ytau = kt*(u(3)+u(4))-kt*(u(1)+u(2));

6

7 xdot = zeros (6 ,1);

8 xdot (1 ,1) = x(4) + sin(x(1))*tan(x(2))*x(5)+cos(x(1))*tan(x(2))*x(6);

9 xdot (2 ,1) = cos(x(1))*x(5) - sin(x(1))*x(6);

10 xdot (3 ,1) = (cos(x(1))/cos(x(2)))*x(6) + (sin(x(1))/cos(x(2)))*x(5);

11 xdot (4 ,1) = (((jp -jy)/jr)*x(5)*x(6) + rtau/jr);

12 xdot (5 ,1) = ((jy -jr)/jp)*x(4)*x(6) + ptau/jp;

13 xdot (6 ,1) = (((jr -jp)/jy)*x(4)*x(5) + ytau/jy);

C.2 HoverSimIntegralStates.m

1 function xdot = HoverSimIntegralStates (x,ref ,jp ,jr ,jy ,l,kf ,kt ,u)

2

3 rtau = l*kf*(u(3) -u(4));

4 ptau = l*kf*(u(1) -u(2));

5 ytau = kt*(u(3)+u(4))-kt*(u(1)+u(2));

6

7 xdot = zeros (6 ,1);

8 xdot (1 ,1) = x(4) + sin(x(1))*tan(x(2))*x(5)+cos(x(1))*tan(x(2))*x(6);

9 xdot (2 ,1) = cos(x(1))*x(5) - sin(x(1))*x(6);

10 xdot (3 ,1) = (cos(x(1))/cos(x(2)))*x(6) + (sin(x(1))/cos(x(2)))*x(5);

11 xdot (4 ,1) = ((jp -jy)/jr)*x(5)*x(6) + rtau/jr;

61
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12 xdot (5 ,1) = ((jy -jr)/jp)*x(4)*x(6) + ptau/jp + 1/jp;

13 xdot (6 ,1) = ((jr -jp)/jy)*x(4)*x(5) + ytau/jy;

14 xdot (7 ,1) = x(1) -ref (1);

15 xdot (8 ,1) = x(2) -ref (2);

16 xdot (9 ,1) = x(3) -ref (3);

C.3 HoverConstants.m

1 function [Jp ,Jy ,Jr ,L,Kf ,Kt ,Ir ,Kv] = HoverConstants ()

2

3 Jp = 0.0552;

4 Jy = 0.110;

5 Jr = 0.0552;

6 L = 0.197;

7 Kf = 0.1188;

8 Kt = 0.0036;

9 Ir = 6e -5;

10 Kv = 54.945;

C.4 SimulationLQR.m

1 %% Defining the parameters

2

3 [Jp ,Jy ,Jr ,L,Kf ,Kt ,Ir ,Kv] = HoverConstants ();

4

5 v_bias = [2 2 2 2];

6

7 Q = diag ([350 350 500 20 20 0]);

8 R = diag ([0.01 0.01 0.01 0.01]) ;

9 K = GainMatrix (0 ,0 ,0 ,0 ,0 ,0);

10

11 %% Simulate closed -loop system

12

13 x0 (1 ,1) = deg2rad (30);

14 x0 (2 ,1) = deg2rad (30);

15 x0 (3 ,1) = deg2rad (140);

16 x0 (4 ,1) = 0;

17 x0 (5 ,1) = 0;

18 x0 (6 ,1) = 0;

19

20 ref (1 ,1) = deg2rad (0);

21 ref (2 ,1) = deg2rad (0);

22 ref (3 ,1) = deg2rad (0);
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23 ref (4 ,1) = 0;

24 ref (5 ,1) = 0;

25 ref (6 ,1) = 0;

26

27 tspan = 0:0.01:2;

28

29 u=@(x)(-K*(x - ref))’ + v_bias ;

30

31 [t,x] = ode45(@(t,x) HoverSim (x,Jp ,Jr ,Jy ,L,Kf ,Kt ,u(x)),tspan ,x0);

32

33

34 %% Finding the quadratic cost

35

36 quad = zeros( length (x) -1,1);

37

38 for k = 1:( length (x) -1)

39 quad(k) = x(k ,:)*Q*x(k ,:) ’ + u(x(k ,:) ’)*R*u(x(k ,:) ’) ’;

40 end

41

42 J_int = x(end ,:)*Q*x(end ,:) ’ + sum(quad);

43

44 fprintf (’Linearized System gives quadratic cost: %s\n’,J_int)

45 disp(’ ’)

46

47 %% plot

48

49 x = arrayfun (@(x) rad2deg (x),x(: ,1:3)); % \\ in degrees

50

51 % figure (2)

52

53 subplot (3 ,1 ,1);hold on

54 plot(t,x(: ,1) ,’Color ’,’red ’)

55 % line ([0 tspan(end)],[ rad2deg (ref (1 ,1)) rad2deg (ref (1 ,1))],’LineStyle

’,’:’,’Color ’,’red ’)

56 ylabel (’\ theta_ {r}’,’Interpreter ’,’tex ’)

57 title(’roll ’,’FontWeight ’,’normal ’)

58

59

60 subplot (3 ,1 ,2);hold on

61 plot(t,x(: ,2) ,’Color ’,’red ’)

62 % line ([0 tspan(end)],[ rad2deg (ref (2 ,1)) rad2deg (ref (2 ,1))],’LineStyle

’,’:’,’Color ’,’red ’)

63 ylabel (’\ theta_ {p}’,’Interpreter ’,’tex ’)

64 title(’pitch ’,’FontWeight ’,’normal ’)

65 hold on

66

67 subplot (3 ,1 ,3);hold on

68 plot(t,x(: ,3) ,’Color ’,’red ’)
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69 % line ([0 tspan(end)],[ rad2deg (ref (3 ,1)) rad2deg (ref (3 ,1))],’LineStyle

’,’:’,’Color ’,’red ’)

70 ylabel (’\ theta_ {y}’,’Interpreter ’,’tex ’)

71 xlabel (’t’)

72 title(’yaw ’,’FontWeight ’,’normal ’)

73 hold on

C.5 SimulationFIS.m

1 %% Defining the parameters

2

3 [Jp ,Jy ,Jr ,L,Kf ,Kt ,Ir ,Kv] = HoverConstants ();

4

5 v_bias = [2 2 2 2];

6

7 Q = diag ([350 350 500 20 20 0]);

8 R = diag ([0.01 0.01 0.01 0.01]) ;

9

10 FIS = tsk (5);

11

12 %% Simulate closed -loop system

13

14 x0 (1 ,1) = deg2rad (30);

15 x0 (2 ,1) = deg2rad (30);

16 x0 (3 ,1) = deg2rad (140);

17 x0 (4 ,1) = 0;

18 x0 (5 ,1) = 0;

19 x0 (6 ,1) = 0;

20

21 ref (1 ,1) = deg2rad (0);

22 ref (2 ,1) = deg2rad (0);

23 ref (3 ,1) = deg2rad (0);

24 ref (4 ,1) = 0;

25 ref (5 ,1) = 0;

26 ref (6 ,1) = 0;

27

28 tspan = 0:0.01:2;

29

30 u = @(x) -EvalFuzzy (FIS ,x-ref)’ + v_bias ;

31

32 [t,x] = ode45(@(t,x) HoverSim (x,Jp ,Jr ,Jy ,L,Kf ,Kt ,u(x)),tspan ,x0);

33

34

35 %% Finding the quadratic cost

36

37 quad = zeros( length (x) -1,1);
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38

39 for k = 1:( length (x) -1)

40 quad(k) = x(k ,:)*Q*x(k ,:) ’ + u(x(k ,:) ’)*R*u(x(k ,:) ’) ’;

41 end

42

43 J_fis = x(end ,:)*Q*x(end ,:) ’ + sum(quad);

44

45 fprintf (’Fuzzy Inference System gives quadratic cost: %s\n’,J_fis)

46 disp(’ ’)

47

48 %% plot

49

50 x = arrayfun (@(x) rad2deg (x),x(: ,1:3));

51

52 figure (’Name ’,’FIS simulation ’,’NumberTitle ’,’off ’);

53

54 subplot (3 ,1 ,1)

55 plot(t,x(: ,1))

56 line ([0 tspan(end)],[ rad2deg (ref (1 ,1)) rad2deg (ref (1 ,1))],’LineStyle ’,’:’

)

57 ylabel (’\ theta_ {r}’)

58 title(’roll ’)

59 set(gca ,’box ’,’off ’);

60

61 subplot (3 ,1 ,2)

62 plot(t,x(: ,2))

63 line ([0 tspan(end)],[ rad2deg (ref (2 ,1)) rad2deg (ref (2 ,1))],’LineStyle ’,’:’

)

64 ylabel (’\ theta_ {p}’)

65 title(’pitch ’)

66 set(gca ,’box ’,’off ’);

67

68 subplot (3 ,1 ,3)

69 plot(t,x(: ,3))

70 line ([0 tspan(end)],[ rad2deg (ref (3 ,1)) rad2deg (ref (3 ,1))],’LineStyle ’,’:’

)

71 ylabel (’\ theta_ {y}’)

72 xlabel (’t’)

73 title(’yaw ’)

74 set(gca ,’box ’,’off ’);

C.6 GainMatrix.m

1 function K = GainMatrix (roll , pitch , ~, p, q, r)

2

3 [Jp ,Jy ,Jr ,L,Kf ,Kt ,Ir ,Kv] = HoverConstants ();
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4

5 A = [...

6 0 0 0 1 sin(roll)*tan(pitch) cos(roll)*tan(pitch);...

7 0 0 0 0 cos(roll) -sin(roll);...

8 0 0 0 0 sin(roll)/cos(pitch) cos(roll)/cos(pitch);...

9 0 0 0 0 (Jp -Jy)*r/Jr (Jp -Jy)*q/Jr ;...

10 0 0 0 (Jy -Jr)*r/Jp 0 (Jy -Jr)*p/Jp ;...

11 0 0 0 (Jr -Jp)*q/Jy (Jr -Jp)*p/Jy 0];

12

13 B = [...

14 0 0 0 0;...

15 0 0 0 0;...

16 0 0 0 0;...

17 -Ir*q*Kv/Jr -Ir*q*Kv/Jr L*Kf/Jr+Ir*q*Kv/Jr -L*Kf/Jr+Ir*q*Kv/Jr ;...

18 L*Kf/Jp+Ir*p*Kv/Jr -L*Kf/Jp+Ir*p*Kv/Jr -Ir*p*Kv/Jr -Ir*p*Kv/Jr ;...

19 -Kt/Jy -Kt/Jy Kt/Jy Kt/Jy];

20

21 Q = diag ([350 350 500 20 20 0]);

22 R = diag ([0.01 0.01 0.01 0.01]) ;

23

24 K = lqr(A, B, Q, R);

C.7 GainMatrixInt.m

1 function K = GainMatrixInt (roll , pitch , ~, p, q, r, qrint , qpint , qyint)

2

3 [Jp ,Jy ,Jr ,L,Kf ,Kt ,Ir ,Kv] = HoverConstants ();

4

5 A = [...

6 0 0 0 1 sin(roll)*tan(pitch) cos(roll)*tan(pitch);...

7 0 0 0 0 cos(roll) -sin(roll);...

8 0 0 0 0 sin(roll)/cos(pitch) cos(roll)/cos(pitch);...

9 0 0 0 0 (Jp -Jy)*r/Jr (Jp -Jy)*q/Jr ;...

10 0 0 0 (Jy -Jr)*r/Jp 0 (Jy -Jr)*p/Jp ;...

11 0 0 0 (Jr -Jp)*q/Jy (Jr -Jp)*p/Jy 0];

12

13 B = [...

14 0 0 0 0;...

15 0 0 0 0;...

16 0 0 0 0;...

17 -Ir*q*Kv/Jr -Ir*q*Kv/Jr L*Kf/Jr+Ir*q*Kv/Jr -L*Kf/Jr+Ir*q*Kv/Jr ;...

18 L*Kf/Jp+Ir*p*Kv/Jr -L*Kf/Jp+Ir*p*Kv/Jr -Ir*p*Kv/Jr -Ir*p*Kv/Jr ;...

19 -Kt/Jy -Kt/Jy Kt/Jy Kt/Jy];

20

21 Q = diag ([350 350 500 20 20 0]);

22 R = diag ([0.01 0.01 0.01 0.01]) ;
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23

24 if qrint ~= 0

25 A = [A,zeros( length (A) ,1);1, zeros (1, length (A))];

26 B = [B;0 ,0 ,0 ,0];

27 Q = [Q,zeros( length (Q) ,1);zeros (1, length (Q)),qrint ];

28 end

29 if qpint ~= 0

30 A = [A,zeros( length (A) ,1);0,1, zeros (1, length (A) -1)];

31 B = [B;0 ,0 ,0 ,0];

32 Q = [Q,zeros( length (Q) ,1);zeros (1, length (Q)),qpint ];

33 end

34 if qyint ~= 0

35 A = [A,zeros( length (A) ,1);0,0,1, zeros (1, length (A) -2)];

36 B = [B;0 ,0 ,0 ,0];

37 Q = [Q,zeros( length (Q) ,1);zeros (1, length (Q)),qyint ];

38 end

39

40 K = lqr(A, B, Q, R);

C.8 PermRep.m

1 function y = PermRep (n,k)

2

3 % PERMREP calculates all the combinatoric permutations with repetition .

4 % A vector of length n^k is created consisting of all combinations of n

5 % given k positions . n may be a vector of arbitrary numbers .

6 %

7 % Example :

8 % PermRep (2 ,3)

9 %

10 % 1 1 1

11 % 2 1 1

12 % 1 2 1

13 % 2 2 1

14 % 1 1 2

15 % 2 1 2

16 % 1 2 2

17 % 2 2 2

18

19 x = n;

20 K = k;

21

22 %// create all possible permutations (with repetition ).

23 %// Code from www. stackoverflow .com

24

25 C = cell(K, 1); %// Preallocate a cell array
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26 [C{:}] = ndgrid (x); %// Create K grids of values

27 y = cellfun (@(x){x(:)}, C); %// Convert grids to column vectors

28 y = [y{:}]; %// Obtain all permutations

C.9 RuleMaker.m

1 function [no_points , eq_list , rule_list ] = RuleMaker (num_mf , limit)

2

3 %% declaring variables needed for the logic deciding the equilibrium

point

4

5 pos = linspace (-limit ,limit , num_mf ); % a vector where each fuzzy set

represents a position in the range of angles

6

7 vel = linspace (-1,1, num_mf ); % a vector where each fuzzy set

represents a velocity in the range

8

9 %% filling the equilibrium and rule list

10

11 eq_list = zeros( num_mf ^5 ,5);

12 rule_list = zeros( num_mf ^5 ,12);

13

14 m = 1;

15

16 for h = 1: num_mf

17 for i = 1: num_mf

18 for j = 1: num_mf

19 for k = 1: num_mf

20 for l = 1: num_mf

21 eq_list (m ,:) = [pos(h),pos(i),vel(j),vel(k),vel(l)];

22 rule_list (m ,:) = [h,i,0,j,k,l ,[1 ,1 ,1 ,1]*m ,1 ,1];

23 m = m+1;

24 end

25 end

26 end

27 end

28 end

29

30 no_points = length ( eq_list );

C.10 SugenoFIS.m
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1 %% declaring constants

2

3 roll_range = deg2rad (37.5) ;

4 pitch_range = deg2rad (37.5) ;

5 yaw_range = deg2rad (180); %spins freely 360 degrees

6 velocity_range = 1;

7

8 %% creating the sugeno fuzzy inference system object

9

10 FIS = sugfis (’Name ’,’hover ’);

11

12 %% producing the gain matrices

13

14 % num_mf = 3;

15 limit = roll_range ;

16

17 [no_points ,eq_list , rule_list ] = RuleMaker (num_mf ,limit);

18

19 K = cell(no_points ,1);

20

21 for i = 1: no_points

22 K{i} = GainMatrix ( eq_list (i ,1) ,eq_list (i ,2) ,0, eq_list (i ,3) ,eq_list (i

,4) ,eq_list (i ,5));

23 end

24

25 %% adding inputs

26

27 FIS = addInput (FIS ,[- deg2rad (37.5) deg2rad (37.5) ],’Name ’,"roll");

28 steps = (- roll_range : roll_range *2/( num_mf -1): roll_range );

29 for i = 1: num_mf

30 if i == 1

31 FIS = addMF(FIS ,"roll"," trapmf " ,[- deg2rad (37.5) -deg2rad (37.5)

steps (1) steps (2) ]);

32 elseif i == num_mf

33 FIS = addMF(FIS ,"roll"," trapmf " ,[steps(end -1) steps(end) deg2rad

(37.5) deg2rad (37.5) ]);

34 else

35 FIS = addMF(FIS ,"roll","trimf" ,[steps(i -1) steps(i) steps(i+1) ]);

36 end

37 end

38

39 FIS = addInput (FIS ,[- deg2rad (37.5) deg2rad (37.5) ],’Name ’,"pitch");

40 steps = (- pitch_range : pitch_range *2/( num_mf -1): pitch_range );

41 for i = 1: num_mf

42 if i == 1

43 FIS = addMF(FIS ,"pitch"," trapmf " ,[- deg2rad (37.5) -deg2rad (37.5)

steps (1) steps (2) ]);
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44 elseif i == num_mf

45 FIS = addMF(FIS ,"pitch"," trapmf " ,[steps(end -1) steps(end) deg2rad

(37.5) deg2rad (37.5) ]);

46 else

47 FIS = addMF(FIS ,"pitch","trimf" ,[steps(i -1) steps(i) steps(i+1) ])

;

48 end

49 end

50

51 FIS = addInput (FIS ,[- deg2rad (180) deg2rad (180)],’Name ’,"yaw");

52 steps = (- yaw_range : yaw_range *2/( num_mf -1): yaw_range );

53 for i = 1: num_mf

54 if i == 1

55 FIS = addMF(FIS ,"yaw"," trapmf " ,[- deg2rad (180) -deg2rad (180) steps

(1) steps (2) ]);

56 elseif i == num_mf

57 FIS = addMF(FIS ,"yaw"," trapmf " ,[steps(end -1) steps(end) deg2rad

(180) deg2rad (180) ]);

58 else

59 FIS = addMF(FIS ,"yaw","trimf" ,[steps(i -1) steps(i) steps(i+1) ]);

60 end

61 end

62

63 FIS = addInput (FIS ,[-2 2],’Name ’," roll_velocity ");

64 steps = (- velocity_range : velocity_range *2/( num_mf -1): velocity_range );

65 for i = 1: num_mf

66 if i == 1

67 FIS = addMF(FIS ," roll_velocity "," trapmf " ,[-2 -2 steps (1) steps (2)

]);

68 elseif i == num_mf

69 FIS = addMF(FIS ," roll_velocity "," trapmf " ,[steps(end -1) steps(end)

2 2]);

70 else

71 FIS = addMF(FIS ," roll_velocity ","trimf" ,[steps(i -1) steps(i)

steps(i+1) ]);

72 end

73 end

74

75 FIS = addInput (FIS ,[-2 2],’Name ’," pitch_velocity ");

76 steps = (- velocity_range : velocity_range *2/( num_mf -1): velocity_range );

77 for i = 1: num_mf

78 if i == 1

79 FIS = addMF(FIS ," pitch_velocity "," trapmf " ,[-2 -2 steps (1) steps

(2) ]);

80 elseif i == num_mf

81 FIS = addMF(FIS ," pitch_velocity "," trapmf " ,[steps(end -1) steps(end

) 2 2]);

82 else
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83 FIS = addMF(FIS ," pitch_velocity ","trimf" ,[steps(i -1) steps(i)

steps(i+1) ]);

84 end

85 end

86

87 FIS = addInput (FIS ,[-2 2],’Name ’," yaw_velocity ");

88 steps = (- velocity_range : velocity_range *2/( num_mf -1): velocity_range );

89 for i = 1: num_mf

90 if i == 1

91 FIS = addMF(FIS ," yaw_velocity "," trapmf " ,[-2 -2 steps (1) steps (2)

]);

92 elseif i == num_mf

93 FIS = addMF(FIS ," yaw_velocity "," trapmf " ,[steps(end -1) steps(end)

2 2]);

94 else

95 FIS = addMF(FIS ," yaw_velocity ","trimf" ,[steps(i -1) steps(i) steps

(i+1) ]);

96 end

97 end

98

99 %% adding outputs

100

101 FIS = addOutput (FIS ,’Name ’,’vf’);

102 for i = 1: no_points

103 FIS = addMF(FIS ,’vf’,’linear ’,[K{i}(1 ,:) ,0]);

104 end

105

106 FIS = addOutput (FIS ,’Name ’,’vb’);

107 for i = 1: no_points

108 FIS = addMF(FIS ,’vb’,’linear ’,[K{i}(2 ,:) ,0]);

109 end

110

111 FIS = addOutput (FIS ,’Name ’,’vr’);

112 for i = 1: no_points

113 FIS = addMF(FIS ,’vr’,’linear ’,[K{i}(3 ,:) ,0]);

114 end

115

116 FIS = addOutput (FIS ,’Name ’,’vl’);

117 for i = 1: no_points

118 FIS = addMF(FIS ,’vl’,’linear ’,[K{i}(4 ,:) ,0]);

119 end

120

121 %% adding rules

122

123 FIS = addRule (FIS , rule_list );
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C.11 tsk.m

1 classdef tsk

2

3 %TSK Creates a Takagi -Sugeno -Kang Fuzzy Inference system for the ’

Quanser 3DOF Hover ’.

4 % FIS = (NumMF ,NAME1 ,VALUE1 ,...) Creates a tsk fuzzy inference

5 % system with specified number of membership functions ( default =

3).

6 % Additionally , using Name/Value pairs the following properties can

be

7 % specified :

8 %

9 % AngOuter - Input variable range for the angles .

10 %

11 % AngInner - Membership function variable range for the

12 % angles .

13 %

14 % VelOuter - Input variable range for the velocities .

15 %

16 % Method - Linearization method . ’TSE ’ ( standard ) for

17 % taylor series expansion , ’WL ’ for weighted

linearization .

18 %

19 % Arrangement - Membership function arrangement . ’Normal ’ (

standard )

20 % for linearly spaced and common width. ’

Additive ’ for

21 % membership functions added onto previous

iteration .

22

23

24 properties ( Hidden )

25 AngleIndex % Indexing vector for angles .

26 VelocityIndex % Indexing vector for velocities .

27 AngOuter % Input variable range for the angles .

28 AngInner % Membership function variable range for

the angles .

29 VelOuter % Input variable range for the velocities

.

30 VelInner % Membership function variable range for

the velocities .

31 end

32

33 properties (Hidden , Constant )

34 NumInputs = 5 % Number of inputs .
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35 StepIncrement = 1/90 % Step increment size for the membership

functions

36 % which defines accuracy for EvalFuzzy .m

37 end

38

39 properties

40 NumMF % Number of membership functions .

41 MemFunctions % Cell containing membership functions .

42 RuleList % Array containing all rules.

43 MatrixList % Array containing all gain matrices .

44 end

45

46 methods

47

48 function obj = tsk(NumMF , Options )

49 % Creates the tsk object

50

51 arguments

52 NumMF double = 3

53 Options . AngOuter (1 ,1) double = deg2rad (37.5)

54 Options . AngInner (1 ,1) double = deg2rad (37.5)

55 Options . VelOuter (1 ,1) double = 2

56 Options . VelInner (1 ,1) double = 1

57 Options . Method char = ’TSE ’

58 Options . Arrangement char = ’Normal ’

59 end

60

61 if strcmp ( Options . Arrangement ,’Additive ’) && ~ ismember (NumMF

,[3 ,5 ,9])

62 error(’For additive arrangement , choose 3, 5 or 9

membership functions ’)

63 elseif ~( strcmp ( Options . Arrangement ,’Normal ’) || strcmp (

Options . Arrangement ,’Additive ’))

64 error(’Void arrangement (case sensitive )’)

65 elseif ~( strcmp ( Options .Method ,’TSE ’) || strcmp ( Options .

Method ,’WL’))

66 error(’Void linearization method (case sensitive )’)

67 end

68

69 obj. AngOuter = Options . AngOuter ;

70 obj. AngInner = Options . AngInner ;

71 obj. VelOuter = Options . VelOuter ;

72 obj. VelInner = Options . VelInner ;

73 obj.NumMF = NumMF;

74

75 obj. MemFunctions = cell(obj.NumInputs ,1);

76
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77 obj. AngleIndex = (- Options . AngOuter : Options . AngOuter *obj

. StepIncrement : Options . AngOuter ) ’;

78 obj. VelocityIndex = (- Options . VelOuter : Options . VelOuter *obj

. StepIncrement : Options . VelOuter ) ’;

79

80 obj. MemFunctions {1} = createMF (obj ,’angle ’,Options .

Arrangement );

81 obj. MemFunctions {2} = createMF (obj ,’angle ’,Options .

Arrangement );

82 obj. MemFunctions {3} = createMF (obj ,’velocity ’,Options .

Arrangement );

83 obj. MemFunctions {4} = createMF (obj ,’velocity ’,Options .

Arrangement );

84 obj. MemFunctions {5} = createMF (obj ,’velocity ’,Options .

Arrangement );

85

86 [obj.MatrixList ,obj. RuleList ] = createRules (obj , Options .

Method );

87

88 end

89

90 function [MFcell , WFcell ] = createMF (obj , type , arr)

91 % Creates a membership function depending on type (angle or

velocity )

92 % and arrangement type ( normal or additive ).

93

94 if strcmp (type ,’velocity ’)

95 lim = obj. VelOuter ;

96 ran = obj. VelInner ;

97 x = obj. VelocityIndex ;

98 elseif strcmp (type ,’angle ’)

99 lim = obj. AngOuter ;

100 ran = obj. AngInner ;

101 x = obj. AngleIndex ;

102 end

103

104 MFcell = cell(obj.NumMF ,1);

105 WFcell = cell(obj.NumMF ,1);

106

107 if strcmp (arr ,’Normal ’)

108 steps = linspace (-ran ,ran ,obj.NumMF);

109 for i = 1: obj.NumMF

110 if i == 1

111 MFcell {i} = trapmf (x, [-lim -lim steps (1) steps

(2) ]);

112 elseif i == obj.NumMF

113 MFcell {i} = trapmf (x, [steps(end -1) steps(end)

lim lim ]);
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114 else

115 MFcell {i} = trimf(x, [steps(i -1) steps(i) steps(i

+1) ]);

116 end

117 end

118 end

119

120 if strcmp (arr ,’Additive ’)

121 for h = 1:( obj.NumMF -1) /2

122 if h == 1

123 steps = linspace (-ran ,ran ,3);

124 for i = 1:3

125 if i == 1

126 MFcell {1} = trapmf (x, ...

127 [-lim -lim steps (1) steps (2) ]);

128 elseif i == 3

129 MFcell {obj.NumMF} = trapmf (x, ...

130 [steps(end -1) steps(end) lim lim ]);

131 else

132 MFcell {( obj. NumMF +1) /2} = trimf(x, ...

133 [steps(i -1) steps(i) steps(i+1) ]);

134 end

135 end

136 elseif h == 2

137 steps = linspace (-ran ,ran ,4*h -3);

138 if obj.NumMF == 5

139 MFcell {2} = trimf(x, [steps (1) steps (2) steps

(3) ]);

140 MFcell {4} = trimf(x, [steps (3) steps (4) steps

(5) ]);

141 elseif obj.NumMF == 9

142 MFcell {3} = trimf(x, [steps (1) steps (2) steps

(3) ]);

143 MFcell {7} = trimf(x, [steps (3) steps (4) steps

(5) ]);

144 end

145 elseif h == 3

146 steps = linspace (-ran ,ran ,4*h -3);

147 MFcell {2} = trimf(x, [steps (1) steps (2) steps (3)

]);

148 MFcell {4} = trimf(x, [steps (3) steps (4) steps (5)

]);

149 MFcell {6} = trimf(x, [steps (5) steps (6) steps (7)

]);

150 MFcell {8} = trimf(x, [steps (7) steps (8) steps (9)

]);

151 end

152 end
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153 end

154 end

155

156 function [matrices , rule_list ] = createRules (obj , Method )

157 % Creates the rule list and cell of gain matrices

158

159 if strcmp (Method ,’TSE ’)

160 pos = linspace (-obj.AngInner ,obj.AngInner ,obj.NumMF);

161 vel = linspace (-obj.VelInner ,obj.VelInner ,obj.NumMF);

162

163 rule_list = zeros(obj.NumMF^obj.NumInputs ,obj. NumInputs );

164 matrices = cell(obj.NumMF^obj.NumInputs ,1);

165

166 m = 1;

167

168 for h = 1: obj.NumMF

169 for i = 1: obj.NumMF

170 for j = 1: obj.NumMF

171 for k = 1: obj.NumMF

172 for l = 1: obj.NumMF

173 matrices {m} = GainMatrix (pos(h),pos(i) ,0,vel(j),vel(k

),vel(l));

174 rule_list (m ,:) = [h,i,j,k,l];

175 m = m+1;

176 end

177 end

178 end

179 end

180 end

181

182 elseif strcmp (Method ,’WL’)

183

184 pos = linspace (-obj. AngInner *(1+2/( obj.NumMF -1)), ...

185 obj. AngInner *(1+2/( obj.NumMF -1)), obj.NumMF +2);

186

187 vel = linspace (-obj. VelInner *(1+2/( obj.NumMF -1)), ...

188 obj. VelInner *(1+2/( obj.NumMF -1)), obj.NumMF +2);

189

190 rule_list = zeros(obj.NumMF^obj.NumInputs ,obj. NumInputs );

191 matrices = cell(obj.NumMF^obj.NumInputs ,1);

192 A = cell (6 ,6);

193 B = cell (6 ,4);

194

195 m = 1;

196

197 [Jp ,Jy ,Jr ,L,Kf ,Kt ,Ir ,Kv] = HoverConstants ();

198

199 Q = diag ([350 350 500 20 20 0]);
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200 R = diag ([0.01 0.01 0.01 0.01]) ;

201

202 syms roll pitch yaw p q r

203

204 for h = 1: obj.NumMF

205

206 roll_a = round(obj. AngleIndex (find(obj. MemFunctions {1}{h

}, 1 )) ,2);

207 roll_b = round(obj. AngleIndex (find(obj. MemFunctions {1}{h

}, 1, ’last ’ )) ,2);

208

209 if h ~= 1 || h ~= obj.NumMF

210

211 roll_a = pos(h);

212 roll_b = pos(h+2);

213

214 end

215

216 roll_func1 = 4/( roll_b - roll_a )^2*( roll - roll_a ); % roll wf

1

217 roll_func2 = -4/( roll_b - roll_a )^2*( roll - roll_b ); % roll

wf 2

218

219 for i = 1: obj.NumMF

220

221 pitch_a = round(obj. AngleIndex (find(obj. MemFunctions {2}{i

}, 1 )) ,2);

222 pitch_b = round(obj. AngleIndex (find(obj. MemFunctions {2}{i

}, 1, ’last ’ )) ,2);

223

224 if i ~= 1 || i ~= obj.NumMF

225

226 pitch_a = pos(i);

227 pitch_b = pos(i+2);

228

229 end

230

231 pitch_func1 = 4/( pitch_b - pitch_a )^2*( pitch - pitch_a ); %

pitch wf 1

232 pitch_func2 = -4/( pitch_b - pitch_a )^2*( pitch - pitch_b ); %

pitch wf 2

233

234 for j = 1: obj.NumMF

235

236 p_a = round(obj. VelocityIndex (find(obj. MemFunctions {3}{j

}, 1 )) ,1);

237 p_b = round(obj. VelocityIndex (find(obj. MemFunctions {3}{j

}, 1, ’last ’ )) ,1);
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238

239 if j ~= 1 || j ~= obj.NumMF

240

241 p_a = vel(j);

242 p_b = vel(j+2);

243

244 end

245

246 p_func1 = 4/( p_b -p_a)^2*(p-p_a); % roll velocity wf 1

247 p_func2 = -4/(p_b -p_a)^2*(p-p_b); % roll velocity wf 2

248

249 for k = 1: obj.NumMF

250

251 q_a = round(obj. VelocityIndex (find(obj. MemFunctions {4}{k

}, 1 )) ,1);

252 q_b = round(obj. VelocityIndex (find(obj. MemFunctions {4}{k

}, 1, ’last ’ )) ,1);

253

254 if k ~= 1 || k ~= obj.NumMF

255

256 q_a = vel(k);

257 q_b = vel(k+2);

258

259 end

260

261 q_func1 = 4/( q_b -q_a)^2*(q-q_a); % pitch velocity wf 1

262 q_func2 = -4/(q_b -q_a)^2*(q-q_b); % pitch velocity wf 2

263

264 for l = 1: obj.NumMF

265

266 r_a = round(obj. VelocityIndex (find(obj. MemFunctions {5}{l

}, 1 )) ,1);

267 r_b = round(obj. VelocityIndex (find(obj. MemFunctions {5}{l

}, 1, ’last ’ )) ,1);

268

269 if l == 1 || l == obj.NumMF

270

271 r_a = vel(l);

272 r_b = vel(l+2);

273

274 end

275

276 r_func1 = 4/( r_b -r_a)^2*(r-r_a); % yaw velocity wf 1

277 r_func2 = -4/(r_b -r_a)^2*(r-r_b); % yaw velocity wf 2

278

279 A{1 ,4} = 1;

280 A{1 ,5} = sin(roll)*tan(pitch);

281 A{1 ,6} = cos(roll)*tan(pitch);
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282 A{2 ,5} = cos(roll);

283 A{2 ,6} = -sin(roll);

284 A{3 ,5} = sin(roll)/cos(pitch);

285 A{3 ,6} = cos(roll)/cos(pitch);

286 A{4 ,5} = (Jp -Jy)*r/Jr;

287 A{4 ,6} = (Jp -Jy)*q/Jr;

288 A{5 ,4} = (Jy -Jr)*r/Jp;

289 A{5 ,6} = (Jy -Jr)*p/Jp;

290 A{6 ,4} = (Jr -Jp)*q/Jy;

291 A{6 ,5} = (Jr -Jp)*p/Jy;

292

293 B{4 ,1} = -Ir*q*Kv/Jr;

294 B{4 ,2} = -Ir*q*Kv/Jr;

295 B{4 ,3} = L*Kf/Jr+Ir*q*Kv/Jr;

296 B{4 ,4} = -L*Kf/Jr+Ir*q*Kv/Jr;

297 B{5 ,1} = L*Kf/Jp+Ir*p*Kv/Jp;

298 B{5 ,2} = -L*Kf/Jp+Ir*p*Kv/Jp;

299 B{5 ,3} = -Ir*p*Kv/Jp;

300 B{5 ,4} = -Ir*p*Kv/Jp;

301

302 A_wl = zeros (6 ,6);

303 B_wl = zeros (6 ,4);

304

305 %%% A(1 ,4)

306

307 A_wl (1 ,4) = 1;

308

309 %%% A(1 ,5)

310

311 F1 = int( roll_func1 *A{1,5}, [ roll_a ( roll_a + roll_b )/2]);

312 F2 = int( roll_func2 *A{1,5}, [( roll_a + roll_b )/2 roll_b ]);

313

314 A_wl (1 ,5) = int( pitch_func1 *(F1+F2), [ pitch_a ( pitch_a +

pitch_b )/2]) ...

315 + int( pitch_func2 *(F1+F2), [( pitch_a + pitch_b )/2

pitch_b ]);

316

317 %%% A(1 ,6)

318

319 F1 = int( roll_func1 *A{1,6}, [ roll_a ( roll_a + roll_b )/2]);

320 F2 = int( roll_func2 *A{1,6}, [( roll_a + roll_b )/2 roll_b ]);

321

322 A_wl (1 ,6) = int( pitch_func1 *(F1+F2), [ pitch_a ( pitch_a +

pitch_b )/2]) ...

323 + int( pitch_func2 *(F1+F2), [( pitch_a + pitch_b )/2

pitch_b ]);

324

325 %%% A(2 ,5)
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326

327 A_wl (2 ,5) = int( roll_func1 *A{2,5}, [ roll_a ( roll_a + roll_b

)/2]) ...

328 + int( roll_func2 *A{2,5}, [( roll_a + roll_b )/2 roll_b ]);

329

330 %%% A(2 ,6)

331

332 A_wl (2 ,6) = int( roll_func1 *A{2,6}, [ roll_a ( roll_a + roll_b

)/2]) ...

333 + int( roll_func2 *A{2,6}, [( roll_a + roll_b )/2 roll_b ]);

334

335 %%% A(3 ,5)

336

337 F1 = int( roll_func1 *A{3,5}, [ roll_a ( roll_a + roll_b )/2]);

338 F2 = int( roll_func2 *A{3,5}, [( roll_a + roll_b )/2 roll_b ]);

339

340 A_wl (3 ,5) = int( pitch_func1 *(F1+F2), [ pitch_a ( pitch_a +

pitch_b )/2]) ...

341 + int( pitch_func2 *(F1+F2), [( pitch_a + pitch_b )/2

pitch_b ]);

342

343 %%% A(3 ,6)

344

345 F1 = int( roll_func1 *A{3,6}, [ roll_a ( roll_a + roll_b )/2]);

346 F2 = int( roll_func2 *A{3,6}, [( roll_a + roll_b )/2 roll_b ]);

347

348 A_wl (3 ,6) = int( pitch_func1 *(F1+F2), [ pitch_a ( pitch_a +

pitch_b )/2]) ...

349 + int( pitch_func2 *(F1+F2), [( pitch_a + pitch_b )/2

pitch_b ]);

350

351 %%% A(4 ,6)

352

353 A_wl (4 ,6) = int( q_func1 *A{4,6}, [q_a (q_a+q_b)/2]) ...

354 + int( q_func2 *A{4,6}, [( q_a+q_b)/2 q_b ]);

355

356 %%% A(6 ,4)

357

358 A_wl (6 ,4) = int( q_func1 *A{6,4}, [q_a (q_a+q_b)/2]) ...

359 + int( q_func2 *A{6,4}, [( q_a+q_b)/2 q_b ]);

360

361 %%% A(5 ,4)

362

363 A_wl (5 ,4) = int( r_func1 *A{5,4}, [r_a (r_a+r_b)/2]) ...

364 + int( r_func2 *A{5,4}, [( r_a+r_b)/2 r_b ]);

365

366 %%% A(4 ,5)

367
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368 A_wl (4 ,5) = int( r_func1 *A{4,5}, [r_a (r_a+r_b)/2]) ...

369 + int( r_func2 *A{4,5}, [( r_a+r_b)/2 r_b ]);

370

371 %%% A(6 ,5)

372

373 A_wl (6 ,5) = int( p_func1 *A{6,5}, [p_a (p_a+p_b)/2]) ...

374 + int( p_func2 *A{6,5}, [( p_a+p_b)/2 p_b ]);

375

376 %%% A(5 ,6)

377

378 A_wl (5 ,6) = int( p_func1 *A{5,6}, [p_a (p_a+p_b)/2]) ...

379 + int( p_func2 *A{5,6}, [( p_a+p_b)/2 p_b ]);

380

381 %%% B(4 ,1)

382

383 B_wl (4 ,1) = int( q_func1 *B{4,1}, [q_a (q_a+q_b)/2]) ...

384 + int( q_func2 *B{4,1}, [( q_a+q_b)/2 q_b ]);

385

386 %%% B(4 ,2)

387

388 B_wl (4 ,2) = int( q_func1 *B{4,2}, [q_a (q_a+q_b)/2]) ...

389 + int( q_func2 *B{4,2}, [( q_a+q_b)/2 q_b ]);

390

391 %%% B(4 ,3)

392

393 B_wl (4 ,3) = int( q_func1 *B{4,3}, [q_a (q_a+q_b)/2]) ...

394 + int( q_func2 *B{4,3}, [( q_a+q_b)/2 q_b ]);

395

396 %%% B(4 ,4)

397

398 B_wl (4 ,4) = int( q_func1 *B{4,4}, [q_a (q_a+q_b)/2]) ...

399 + int( q_func2 *B{4,4}, [( q_a+q_b)/2 q_b ]);

400

401 %%% B(5 ,1)

402

403 B_wl (5 ,1) = int( p_func1 *B{5,1}, [p_a (p_a+p_b)/2]) ...

404 + int( p_func2 *B{5,1}, [( p_a+p_b)/2 p_b ]);

405

406 %%% B(5 ,2)

407

408 B_wl (5 ,2) = int( p_func1 *B{5,2}, [p_a (p_a+p_b)/2]) ...

409 + int( p_func2 *B{5,2}, [( p_a+p_b)/2 p_b ]);

410

411 %%% B(5 ,3)

412

413 B_wl (5 ,3) = int( p_func1 *B{5,3}, [p_a (p_a+p_b)/2]) ...

414 + int( p_func2 *B{5,3}, [( p_a+p_b)/2 p_b ]);

415
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416 %%% B(5 ,4)

417

418 B_wl (5 ,4) = int( p_func1 *B{5,4}, [p_a (p_a+p_b)/2]) ...

419 + int( p_func2 *B{5,4}, [( p_a+p_b)/2 p_b ]);

420

421 %%% B(6 ,1) - B(6 ,4)

422

423 B_wl (6 ,1) = -Kt/Jy;

424 B_wl (6 ,2) = -Kt/Jy;

425 B_wl (6 ,3) = Kt/Jy;

426 B_wl (6 ,4) = Kt/Jy;

427

428 %%%

429

430 matrices {m} = lqr(A_wl , B_wl , Q, R);

431 rule_list (m ,:) = [h,i,j,k,l];

432 m = m+1;

433

434 end

435 end

436 end

437 end

438 end

439 end

440 end

441

442 function plotMem (obj ,index)

443 % Plots the membership functions for specified input

444

445 figure (’Name ’,sprintf (’membership function %d’,index), ...

446 ’NumberTitle ’,’off ’);

447 hold on

448

449 if index == 1 || index == 2

450 for i = 1: obj.NumMF

451 plot(obj.AngleIndex ,obj. MemFunctions {index }{i})

452 end

453 xlim ([ obj. AngleIndex (1) , obj. AngleIndex (end)])

454 else

455 for i = 1: obj.NumMF

456 plot(obj. VelocityIndex ,obj. MemFunctions {index }{i})

457 end

458 xlim ([ obj. VelocityIndex (1) obj. VelocityIndex (end)])

459 end

460 end

461 end

462 end
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C.12 EvalFuzzy.m

1 function output = EvalFuzzy (obj ,input)

2 % Evaluates the fuzzy inference system at the given input

3

4 rulelist = obj. RuleList ;

5 NumberOfRules = length ( rulelist );

6

7 w = zeros( NumberOfRules ,1);

8

9 fuzzyVar = zeros (5, obj.NumMF);

10 for i = 1:5

11 if i == 1 || i == 2

12 z = abs(obj.AngleIndex -input(i));

13 else

14 z = abs(obj. VelocityIndex -input(i+1));

15 end

16 index = min(z)==z;

17 for j = 1: obj.NumMF

18 fuzzyVar (i,j) = [obj. MemFunctions {i}{j}( index)];

19 end

20 end

21

22

23 for i = 1: NumberOfRules

24 w(i) = min ([...

25 fuzzyVar (1, rulelist (i ,1)) ,...

26 fuzzyVar (2, rulelist (i ,2)) ,...

27 fuzzyVar (3, rulelist (i ,3)) ,...

28 fuzzyVar (4, rulelist (i ,4)) ,...

29 fuzzyVar (5, rulelist (i ,5))]);

30 end

31

32 w_nz = find(w);

33 u = zeros (4, nnz(w));

34

35 for i = 1: nnz(w)

36 u(:,i) = w(w_nz(i)).* obj. MatrixList {w_nz(i)}* input;

37 end

38

39 output = sum(u ,2)/sum(w(w_nz));

C.13 CalculateCost.m

1 function J = CalculateCost (x,u,Q,R)
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2

3 quad = zeros( length (x) -1,1);

4

5 for k = 1:( length (x) -1)

6 quad(k) = x(k ,:)*Q*x(k ,:) ’ + u(x(k ,:) ’)*R*u(x(k ,:) ’) ’;

7 end

8

9 J = x(end ,:)*Q*x(end ,:) ’ + sum(quad);

C.14 CostPlot.m

1 clear;close;clc;tic

2 %%

3

4 NOruns = 80;

5 roll_final = deg2rad (37.5) ;

6 pitch_final = deg2rad (37.5) ;

7 yaw_final = deg2rad (180);

8 mf_final = 13;

9

10 roll = linspace (0, roll_final , NOruns );

11 pitch = linspace (0, pitch_final , NOruns );

12 yaw = linspace (0, yaw_final , NOruns );

13

14 K = GainMatrix (0 ,0 ,0 ,0 ,0 ,0);

15

16 Q = diag ([350 350 500 20 20 0]);

17 R = diag ([0.01 0.01 0.01 0.01]) ;

18

19 jp = 0.055;

20 jy = 0.110;

21 jr = 0.055;

22 l = 0.197;

23 kf = 0.119;

24 kt = 0.0036;

25

26 tspan = 0:0.01:1;

27

28 J_diff = zeros (1, NOruns );

29

30 ref (1 ,1) = 0;

31 ref (2 ,1) = 0;

32 ref (3 ,1) = 0;

33 ref (4 ,1) = 0;

34 ref (5 ,1) = 0;

35 ref (6 ,1) = 0;
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36

37 figure (’Name ’,’Percentage improvement ’,’NumberTitle ’,’off ’);

38 hold on

39

40 for h = 3:2: mf_final

41

42 FIS = tsk(h);

43

44 u_fis = @(x)-EvalFuzzy (FIS ,x - ref) ’;

45 u_lin = @(x)(-K*(x-ref)) ’;

46

47 for i = 1: NOruns

48

49 x0 (1 ,1) = roll(i);

50 x0 (2 ,1) = pitch(i);

51 x0 (3 ,1) = yaw(i);

52 x0 (4 ,1) = 0;

53 x0 (5 ,1) = 0;

54 x0 (6 ,1) = 0;

55

56 [~, x_fis] = ode45(@(t,x) hover_sim (x,jp ,jr ,jy ,l,kf ,kt ,u_fis(x)),

tspan ,x0);

57 [t,x_lin] = ode45(@(t,x) hover_sim (x,jp ,jr ,jy ,l,kf ,kt ,u_lin(x)),

tspan ,x0);

58

59 J_fis = CalculateCost (x_fis ,u_fis ,Q,R);

60 J_lin = CalculateCost (x_lin ,u_lin ,Q,R);

61

62 J_diff (i) = (J_lin -J_fis)/J_lin *100;

63

64 end

65

66 % Plotting section

67

68 if h == mf_final

69 plot( rad2deg (roll),J_diff ,’DisplayName ’,string (h)+’ mf’)

70 legend

71 xlim ([0 rad2deg (roll(end))])

72 ylim ([0 J_diff (end)])

73 ax (1)=gca;

74 set(ax (1) ,’Position ’ ,[0.12 0.12 0.80 0.70])

75 set(ax (1) ,’XColor ’,’k’,’YColor ’,’k’);

76 ax (2)=axes(’Position ’,get(ax (1) ,’Position ’) ,...

77 ’XAxisLocation ’,’top ’ ,...

78 ’YAxisLocation ’,’right ’ ,...

79 ’Color ’,’none ’ ,...

80 ’XColor ’,’k’,’YColor ’,’k’);

81 set(gca , ’YTick ’, [])
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82 set(ax ,’box ’,’off ’)

83 hl2=line( rad2deg (yaw),J_diff ,’Color ’,’k’,’Parent ’,ax (2));

84 hl2. LineStyle = ’none ’;

85 set(get(ax (1) ,’xlabel ’),’string ’,’$\theta_r ,\ theta_p$ ’,’

Interpreter ’,’latex ’)

86 set(get(ax (2) ,’xlabel ’),’string ’,’$\ theta_y$ ’,’Interpreter ’,’

latex ’)

87 set(get(ax (1) ,’ylabel ’),’string ’,’Percentage improvement in

quadratic cost ’)

88 ytickformat (’percentage ’)

89 ax (1).YAxis. TickLabelFormat = ’%g%%’;

90 else

91 plot( rad2deg (roll),J_diff ,’DisplayName ’,string (h)+’ mf’)

92 end

93 drawnow

94

95 % End of plotting section

96

97 end
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Simulink Models

Cost	Calculation

3DOF	HOVER	Fuzzy-Logic/Linear	Controller

For	10	seconds	the	linear	controller	with	integral	states
manouver	the	hover	to	a	specific	reference	value,	then	after	10
seconds	has	passe,	either	the	linear	or	fuzzy	controller	is	activated	

depending	on	the	variable	'sw'.

Thus	simulating	an	initial	condition	at	10	seconds	that	the	
controller	drives	to	reference	=	0.
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Fig D.1: The cost function implemented in Simulink.
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