

Acknowledgements

I would like to thank my supervisor Damiano Rotondo for his patience and excellent guid-
ance during this project, as well as for presenting an interesting thesis topic. Also, I wish to
thank Didrik Efjestad Fjereide for his assistance in setting up the Aero laboratory system.
Additionally, I am grateful for the support I received from my colleagues at Troll C during
this project. Lastly, I would like to thank my family and close friends for their patience and
support.

- Mathias Dyvik

Abstract

This thesis describes the quasi-LPV modeling of a 2DOF dual-rotor lab experiment known
as the Quanser Aero. The quasi-LPV model is based on a nonlinear model derived from
Newton’s law and Euler’s rotational dynamics. The unknown model parameters have been
identified through an experimental approach, and the model has been validated through
simulation and online testing. In addition, a robust LQR state feedback controller has
been designed based on LMI theory. To make the LMIs computationally solvable, the
quasi-LPV model has been approximated in a polytopic way. Two different bounding box
approaches have been applied to approximate the quasi-LPV model in order to compare the
effects of a simple polytopic representation and a more advanced representation. The more
straightforward representation derived by a bounding box method and the more advanced
approach derived by an SVD-based box method are described and compared in detail. No
control experiments have been conducted due to infeasible LMI solutions due to too large
variations within the parameters. However, suggestions have been made as to how a feasible
solution may be found.

Sammendrag

Denne avhandlingen beskriver utviklingen av en quasi-LPV modell for et laboratorieoppsett
med to frihetsgrader, kalt Quanser Aero. Quasi-LPV modellen er utviklet med bakgrunn
i en ulineær dynamisk modell av Aero systemet. Denne ulineære modellen er utarbeidet
ved bruk av Newtons lover og Eulers rotasjons lover. Ukjente parametere som inngår i
modellen, er identifisert gjennom en eksperimentell tilnærming. Modellen er verifisert ved
bruk av simulering og sammenligninger mot målinger fra det faktiske Aero systemet. I tillegg
er det utviklet en LQR regulator basert på tilstandstilbakekobling (State feedback), ved bruk
av lineære matrise ulikheter (LMI). For å matematisk kunne løse disse ulikhetene er quasi-
LPV modellen approksimert gjennom konveks polytopisk tilnærming. Avhandlingen ser på
to ulike typer polytopisk approksimasjoner med hensikt i å analysere effekten av å bruke en
avanserte plytopisk metode kontra em enkel. De to anvendte metodene består av en enklere
metode kjent som bounding box metoden og en mer avansert metode kalt SVD-based box
metoden. Metodene er sammenlignet og beskrevet i detalj. Denne avhandlingen har ikke sett
på en faktisk regulering av Aero systemet grunnet at de lineære matrise ulikhetene knyttet
til regulator designet, ikke lot seg løse. Dette skyldes at de varierende LPV parameterne
inneholder for mye variasjon. Det er allikevel presentert flere løsninger som kan lede til
ulikheter som kan løses og dermed resultere i en brukbar regulator.

Contents

Nomenclature iii

List of Acronyms iii

List of Symbols iii

List of figures vii

List of tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Project Description . 1
1.3 Previous Work . 2
1.4 Outline . 2

2 Description and Non-linear Modeling 3
2.1 Description of the system . 3

2.1.1 Measurement instrumentation . 5
2.2 Modeling . 6

2.2.1 DC motors . 6
2.2.2 Motor shaft and propeller dynamics 7
2.2.3 Kinematic equations for the Aero body 8
2.2.4 Moment of Inertia of the Aero . 15

2.3 Nonlinear model of the Aero . 17
2.4 Parameter estimation . 17

2.4.1 Estimating Coulomb friction and viscous damping 18
2.4.2 Estimating Yaw inertia . 19
2.4.3 Estimating vertical cross-thrust force functions 20
2.4.4 Estimating Horizontal thrust force functions 22

2.5 Model validation . 23

3 Modeling and control of LPV systems 25
3.1 State-space representation . 25
3.2 Overview of quasi-LPV modeling . 27
3.3 Stability analysis of LPV systems . 29

i

3.3.1 The definition of stability . 29
3.3.2 Lyapunov stability criterion . 30
3.3.3 LMI-based stability analysis . 31

3.4 State feedback control design . 34
3.4.1 LMI-based robust control . 34
3.4.2 Linear quadratic regulator (LQR) . 36

4 Quasi-LPV modeling of the Aero 40
4.1 Quasi-LPV representation of the Aero . 40
4.2 Methods for generating polytopic LPV systems 43

4.2.1 Bounding box method . 43
4.2.2 SVD-based boxing . 44

4.3 Polytopic quasi-LPV Aero models . 52
4.3.1 Bounding box method applied to the Aero model 52
4.3.2 SVD-based boxing method applied to the Aero model 56

5 Results 60
5.1 LMI results for robust control design . 60

5.1.1 Scenario 1 . 60
5.1.2 Scenario 2 . 61

6 Conclusions and future work 63
6.1 Conclusions . 63
6.2 Future work . 64

References 66

Appendices 68

A Matlab code 69
A.1 Regression Analysis . 69
A.2 Bounding Box Method . 74
A.3 SVD-based Box Method . 79
A.4 Aero Parameters . 85
A.5 Functions . 86

B Simulink schemes 88
B.1 Nonlinear Aero model . 88
B.2 State feedback controller . 91

Nomenclature

Symbol Description
A State matrix in a state-spacemodel
B Input matrix in a state-spacemodel
C Output matrix in a state-spacemodel
D Feedthrough matrix in a state-spacemodel
K Gain matrix in a state-feedback controller
N Number of vertices in a polytopic representation
u Input vector in a state-spacemodel
P Lyapunov matrix
x State vector in a state-spacemodel
y Output vector in a state-spacemodel
r Control reference
µ Coefficient of a polytopic presentation
Ψ Varying parameter vector
ψ Varying parameter

List of Acronyms

Abbreviation Description
DAQ Data Acquisition Device
DC Direct current
DOF Degrees of freedom
Eq. Equation
IMU Inertial Measurement Unit
LMI Linear Matrix Inequality
LPV Linear Parameter Varying
LQR Linear Quadratic Regulator
MIMO Multiple-inputs-multiple-outputs
I/O Input/Output
UAV Unmanned aerial vehicle
SPI Serial Peripheral Interface Bus
SVD Singular Value Decomposition
PWM Pulse Width Modulation

List of Symbols

Symbol Description Unit
θp Pitch angle of the Aero rad

θ̇p = Ωp Angular velocity of the Aero around the pitch axis rad/s
θy Yaw angle of the Aero rad

θ̇y = Ωy Angular velocity of the Aero around the yaw axis rad/s
ωp Angular velocity of the main rotor rad/s
ωy Angular velocity of the tail rotor rad/s
τ g Gravitational torque on pitch body Nm
τMp Thrust torque from main rotor Nm
τ Ty Thrust torque from tail rotor Nm
τMy Cross-thrust torque from main rotor Nm
τ Tp Cross-thrust torque from tail rotor Nm
τDp Torque from damping of the pitch body Nm
τDy Torque from damping of the yaw body Nm
τRp Torque from Coulomb friction in the pitch joint Nm
τRy Torque from Coulomb friction in the yaw joint Nm
τCm,p Centripetal torque from the main rotor Nm
τCt,p Centripetal torque from the tail rotor Nm
τCp Total Centripetal torque Nm
τ Fy Friction torque torque for yaw motion Nm
FFy Coulomb friction in the yaw joint Nm
dm Center of mass displacement m
dt Thrust displacement m
FMp Thrust force from main rotor N
FTy Thrust force from tail rotor N
FMy Cross-thrust force from main rotor N
FTp Cross-thrust force from tail rotor N
Fg Gravitational force N
Fcm Centripetal force on the main rotor N
Fcm,p Vertical Centripetal force on the main rotor N
Fct Centripetal force on the tail rotor N
Fct,p Vertical Centripetal force on the tail rotor N
fa(ωp) Drag and air resistance torque main and tail rotor, defined in (2.8) Nm
fMp(ωp) Main motor thrust force, defined in (2.16) N
fTp(ωp) Tail motor cross-thrust force, defined in (2.16) N
fDp(Ωp) Viscous damping of the pitch body, defined in (2.18) Nm
fDy(Ωy) Viscous damping of the yaw body, defined in (2.34) Nm
g Gravitational acceleration at sea level m/s2

Jbeam Moment of inertia of the beam kgm2

Jyoke Moment of inertia of the forked yoke kgm2

Jprop Moment of inertia of the main and tail propeller kgm2

Jmotor Moment of inertia of the main and tail motor kgm2

Jhub Moment of inertia collect clamp between the propellers and motors kgm2

Jr Total moment of inertia of the rotors kgm2

Jp Total moment of inertia of the pitch body kgm2

Jy(θp) Total moment of inertia of the yaw body, defined in (2.49) kgm2

La Armature inductance for the DC motors H
mb Mass of the Aero pitch body kg
mrm Mass of main rotor assembly kg

mtm Mass of tube connecting the main rotor kg
mem Mass of the main DC motor kg
mrt Mass of tail rotor assembly kg
mtt Mass of tube connecting the tail rotor kg
met Mass of the tail DC motor kg
mtc Mass of the tube clamp connecting the main and tail tubes kg
Kτ Torque constant Nm/a
KE Back emf constant V/rad · s
kMpp1 Thrust force coefficient of the main rotor for positive ωp

N
(rad/s)2

kMpp2 Thrust force coefficient of the main rotor for positive ωp
N

rad/s

kMpn1 Thrust force coefficient of the main rotor for negative ωp
N

(rad/s)2

kMpn2 Thrust force coefficient of the main rotor for negative ωp
N

rad/s

kMyp1 Cross-thrust force coefficient of the main rotor for positive ωp
N

(rad/s)2

kMyp2 Cross-thrust force coefficient of the main rotor for positive ωp
N

rad/s

kMyn1 Cross-thrust force coefficient of the main rotor for negative ωp
N

(rad/s)2

kMyn2 Cross-thrust force coefficient of the main rotor for negative ωp
N

rad/s

kTyn1 Thrust force coefficients of the tail rotor for positive ωy
N

(rad/s)2

kTyn2 Thrust force coefficients of the tail rotor for positive ωy
N

rad/s

kTpp1 Cross-thrust force coefficient of the tail rotor for positive ωy
N

(rad/s)2

kTpp2 Cross-thrust force coefficient of the tail rotor for positive ωy
N

rad/s

kTpn1 Cross-thrust force coefficient of the tail rotor for negative ωy
N

(rad/s)2

kTpn2 Cross-thrust force coefficient of the tail rotor for negative ωy
N

rad/s

kDp1 Viscous damping coefficient for the pitch axis Nm
(rad/s)2

kDp2 Viscous damping coefficient for the pitch axis Nm
rad/s

kDy1 Viscous damping coefficient for the yaw axis Nm
(rad/s)2

kDy2 Viscous damping coefficient for the yaw axis Nm
rad/s

kd1 Drag and air resistance coefficient for the main and tail propellers Nm
(rad/s)2

kd2 Drag and air resistance coefficient for the main and tail propellers Nm
rad/s

kFyp Friction coefficient for positive Ωy
Nm
rad/s

kFyn Friction coefficient for negatative Ωy
Nm
rad/s

rt Radius of rotation about the yaw axis m
Ra Armature resistance for the DC motors Ω
Tm Tension force exerted on the horizontal tube by the main rotor N
Tt Tension force exerted on the horizontal tube by the tail rotor N
Tmp Vertical component of the tension force Tm N
Ttp Vertical component of the tension force Tp N

List of Figures

2.1 Components of the Quanser Aero [21] . 3
2.2 3d-printed 8-bladed low-efficiency propellers (left), high-efficiency propellers

produced by Advanced Precision Composites (right) 4
2.3 Pitch, yaw, and roll, which make up the three rotational degrees of freedom

(DOF) of a traditional helicopter [2] . 5
2.4 Free body diagram of the Aero body . 8
2.5 Center of mass and thrust displacement. Adapted from [16] 9
2.6 Illustration of the pendulum-like behavior of the center of mass of the pitch

body . 10
2.7 The centripetal force acting on the main rotor Fcm and the tail rotor Fcm. 12
2.8 General component arrangement of the mechanical parts on the Aero. Adapted

from [19] . 16
2.9 Test results from free spin experiment conducted to estimate yaw friction

and damping . 18
2.10 Test data showing the relationship between pitch angle and yaw inertia . . 19
2.11 Estimated thrust force-speed curve for positive and negative main motor

velocities using second-order polynomial curve fitting. The blue lines repre-
sent the resulting regression function from the standard least square method,
while the dashed lines represent the least square method with forced zero
y-intercept. 21

2.12 Estimated thrust force-speed curve for positive and negative main motor
velocities using second-order polynomial curve fitting. The blue lines repre-
sent the resulting regression function from the standard least square method,
while the dashed lines represent the least square method with forced zero
y-intercept. 22

2.13 Nonlinear model validation . 24

3.1 A mathematical block diagram of a dynamical system represented in state
space . 27

3.2 A visual illustration of the concept of stability for a two-dimensional system. 30
3.3 Example of a Lyapunov function for a two-dimensional system 31
3.4 A block diagram of the state feedback controller implemented on the Aero

system . 34

vi

4.1 Example of the bounding box method applied to a random cloud of corre-
lated points. 44

4.2 Using the SVD to identify the dimensions which exhibit the most variation
in a random cloud of correlated points . 47

4.3 Illustration of how VT acts as a rotation matrix. 48
4.4 Bounding box method applied in a rotated coordinate frame on a random

cloud of correlated points . 49
4.5 Illustration on how the obtained vertex coordinates are translated in order

to fit the original set of points. 50
4.6 Illustrative comparison of the standard and SVD-based bounding box method,

where the black area represents an infeasible region. 51
4.7 An example of a set of data points where the SVD-based method does not

result in an improved encompassing . 51
4.8 A bar chart showing the range of variation for each varying parameter . . . 53
4.9 Plots showing how the scheduling parameters ψ1(t) through ψ10(t) vary

within their lower and upper bounds. 55
4.10 SVD-based bounding box (red) compared to a standard bounding box (blue)

applied to ψ1, ψ2 and ψ8 . 56
4.11 Systematized scheme of the state-dependent varying parameters. 57
4.12 SVD-based bounding box (red) compared to a standard bounding box (blue)

applied to ψ5, ψ7 and ψ9 . 57
4.13 SVD-based bounding box (red) compared to a standard bounding box (blue)

applied to ψ4, ψ6 and ψ10 . 58

5.1 Varying parameter variation for scenarios 1 and 2 compared to original vari-
ation . 62

B.1 Simulink scheme representing the equation of motion for the main rotor
dynamics described in Eq. (2.13) . 88

B.2 Simulink scheme representing the equation of motion for the pitch velocity
described in Eq. (2.30) . 88

B.3 Simulink scheme which integrates Ωp(t) in order to get the θp(t) 89
B.4 Simulink scheme representing the equation of motion for the tail rotor dy-

namics described in Eq. (2.13) . 89
B.5 Simulink scheme representing the equation of motion for the yaw velocity

described in Eq. (2.38) . 89
B.6 Simulink scheme which integrates Ωy(t) in order to get the θy(t) 89
B.7 Simulink scheme where the nonlinear Aero model can be compared to the

actual plant . 90
B.8 Simulink scheme including Quanser I/O-blocks 91

List of Tables

2.1 Known parameter provided by Quanser . 17

4.1 limitations on the state variables . 52
4.2 Lower and upper bounds of the varying parameters 53

5.1 Stability assessment, scenario 1 . 61
5.2 Stability assessment, scenario 2 . 62

viii

Chapter 1

Introduction

The rapid development of electronics and microcontrollers over the last decade has led
to an increased interest in unmanned air vehicles (UAVs), such as quadcopters and other
drones. UAVs have proved to be helpful in a variety of fields, including military operations,
goods transportation, and photography. In order for these vehicles to operate safely in
challenging flight conditions, advanced control systems are often necessary. In this project
a control structure is developed for a dual-motor lab experiment, called the Aero. This
device resembles the behavior of a helicopter while remaining stationary.

1.1 Motivation

When developing complex control systems a mathematical model is very useful. With a
reliable mathematical model, simulations, stability analysis, and sophisticated controller
design are possible. However, most real-life physical systems have properties that result in
a nonlinear model. Due to the difficulty of solving nonlinear dynamical equations, nonlinear
models are often linearized for the system to be analysed. Nevertheless, a linerazied nonlin-
ear system is only valid in a small region around the point where it was linerazied. In strong
nonlinear systems with multiple operating points, this may be problematic. Throughout this
thesis, a modeling technique using linear parameter varying systems (LPV) is used. LPV
systems are a paradigm that falls between linear and nonlinear systems, by embedding the
nonlinearities in parameters whose values vary based on the state of the system. Thus, a
strongly nonlinear system can be represented in a linear framework without the need to
introduce linearization.

1.2 Project Description

The main objectives of this thesis have been to:

• Perform a literature review regarding previous research related to the Quanser Aero
and similar devices.

• Derive a nonlinear model that describes the dynamics of the 2 DOF Aero configuration.

1

CHAPTER 1. INTRODUCTION

• Learn the fundamental concepts of LPV theory and apply the principles to obtain a
quasi-LPV model of the 2 DOF Aero configuration.

• Design a robust LQR controller for the Aero.

• Develop and evaluate different polytopic representations of the quasi-LPV model

• Analyze the stability of the robust control system based on linear matrix inequality
theory.

1.3 Previous Work

The Quanser Aero and similar helicopter devices have been addressed in many research
papers and theses, as such devices present an interesting and challenging control problem. In
a master thesis by Gabrielsen and Frasik [7], a nonlinear model of the Aero is derived using an
experiential identification approach. The resulting model is then used to develop a number of
different controllers including cascade P-PI, linear quadratic regulator (LQR) state-feedback,
model predictive control (MPC) and model reference adaptive control (MRAC). In a research
paper by Kumar and Dewan [11] a nonliear model of the Aero is derived from applying the
Euler–Lagrange equation, in order to develop and compare two controllers based on LQR
control and sliding mode control (SMC). The paper also conducted a controllability and
observability analysis where it was concluded that the Aero system is completely controllable
and completely observable. In a research paper by Rotondo, Nejjari and Puig [22], an LPV
state observer and state-feedback controller was implemented on a dual-rotor device which
is similar to the Quanser Aero. In this study, a nonlinear model of the device, called a
twin rotor multiple-input multiple-output system (TRMS), was first identified and then
represented as a quasi-LPV system in a polytopic way. The polytopic representation was
obtained using a method called the bounding box method. This method resulted in an
efficient controller design with satisfactory results both in simulation and with the real
device. However, this study did not investigate if a more advanced polytopic representation
could lead to a better closed-loop performance.

1.4 Outline

This thesis is structured as follows:

• Chapter 2 describes the Quanser Aero system as well as the nonlinear modeling and
identification of the Aero system.

• Chapter 3 describes LPV systems and how they may be analysed and controlled.

• Chapter 4 introduces two bounding box approaches for generating convex hulls, and
shows how a polytopic quasi-LPV representation of the Aero was obtained.

• Chapter 5 presents results from solving LMIs in order to obtain a stable LQR state
feedback controller.

• Chapter 6 provides a conclusion and suggestions for future work.

2

Chapter 2

Description and Non-linear Modeling

2.1 Description of the system

The Aero is a dual-rotor laboratory experiment developed by Quanser Consulting Inc, a
company that specializes in lab equipment for education and research in control theory,
robotics, and mechatronics. The experiment is reconfigurable, meaning that the rotor as-
sembly can be tilted to desirable angles. The main configurations of the Aero resemble
either a half-quadrotor or a helicopter, both simplified with fewer degrees of freedom (DOF)
than the real aerospace systems. In mechanics, the term DOF is a measure of the number
of unique ways that a body can move or rotate in space. The half-quadrotor has one DOF,
while the helicopter configuration has two DOF. In this project, the Aero will be used as a
two DOF helicopter, where the rotors are perpendicular, as seen in Figure 2.1. This setup
is recognized as a challenging problem in the field of control engineering due to its high
non-linearity and cross-coupling effects.

Figure 2.1: Components of the Quanser Aero [21]

3

CHAPTER 2. DESCRIPTION AND NON-LINEAR MODELING

The main parts of the Aero are divided into three categories:

1. The base is a stationary box at the bottom of the Aero. It contains electric and elec-
tronic system components such as PWM amplifiers, I/O-modules, embedded USB and
SPI interfaces, and a data acquisition device (DAQ). The Aero is controlled externally
by either a PC or a microcontroller, where the DAQ serves as an interface between
the external controller and the internal components.

2. The support-yoke has the shape of a fork and stands vertically on the Aero base. Its
purpose is to raise the Aero body from the base and enable it to rotate around its
vertical axis. A rotational joint between the base and the bottom of the support yoke
allows for a 360◦ unlimited rotation.

3. The Aero body is the part that resembles the body of a helicopter. It comprises two
coupled metal tubes held together by a tube clamp with a pair of identical rotor blades
at both ends. The Aero body is connected to the support-yoke through a rotational
joint placed in the midpoint between the two rotors. This connection allows the
inclination of the pitch body to be rotated between + 54◦ and - 62◦ relative to the
support yoke.

The Quanser Aero comes with two pairs of interchangeable propellers, one pair of low
efficiency and one pair of high efficiency. The low-efficiency propellers are used in this
project as they produce a significantly larger cross-torque than the ones of high efficiency.

Figure 2.2: 3d-printed 8-bladed low-efficiency propellers (left), high-efficiency propellers
produced by Advanced Precision Composites (right)

The helicopter configuration of the Aero has two rotational DOF and zero transnational
DOF, meaning that it can rotate in two unique ways while the base remains stationary.
However, a real helicopter has three rotational DOF and three transnational DOF, where
the transnational DOF includes up-down, front-back, and sideways movement. The terms

4

CHAPTER 2. DESCRIPTION AND NON-LINEAR MODELING

pitch, yaw, and roll are commonly used in aerospace engineering to describe the rotational
DOF of any given aircraft. A pitch rotation is a change in the inclination of an aircraft´s
body relative to a defined steady equilibrium state. A yaw rotation occurs when the aircraft
rotates around its vertical axis, while a roll is a rotation around the horizontal axis. Figure
2.3 shows the three rotational DOF of a traditional helicopter. The Aero has the ability to
pitch and yaw but not roll.

Figure 2.3: Pitch, yaw, and roll, which make up the three rotational degrees of freedom
(DOF) of a traditional helicopter [2]

2.1.1 Measurement instrumentation

The Aero is equipped with four optical rotary encoders that measure the angular position
of each DC-motor, in addition to the pitch and yaw angle of the Aero body. The encoders
are incremental, meaning that they measure the change in angular position rather than the
absolute position. The consequence of this property is that the zero angle points of the
different positions are given by their initial position when the Aero is powered on. This
effect does not present an issue for the pitch position as the Aero is construed so that it
always returns to a horizontal equilibrium when the rotors are shut off. However, the yaw
position must be set manually to a desired starting point before powering the Aero.

The use of encoders for measuring pitch and yaw is not feasible in a real aerospace system.
This is because an encoder has a stationary and a moving part. The stationary part has to
be fixed to a non-moving base in order to measure the angular position of a moving object.
Therefore, the Aero is also equipped with a more realistic device called an inertial measure-
ment unit (IMU). The IMU used on the Aero consist of a combination of an accelerometer
and a gyroscope and is located in the center of the Aero body. The accelerometer measures

5

CHAPTER 2. DESCRIPTION AND NON-LINEAR MODELING

acceleration along the three principal axes x, y, and z, while the gyroscope measures angular
velocities around the principal axes. Methods for estimating the pitch and yaw positions
of the Aero body are given in the Quanser lab documentation [20]. The pitch angle is esti-
mated solely through acceleration measurements from the accelerometer. Quanser assumes
that the gravitational pull is the only linear acceleration acting on the IMU as the Aero
is immobile. This means that the acceleration along the y axis can be neglected as it will
always be perpendicular to the acceleration of gravity. The acceleration caused by gravity
along the x and z axes at arbitrary pitch angles can then be expressed as:

ax(t) = ag(t) sin(θp(t)) (2.1)
ay(t) = ag(t) cos(θp(t)) (2.2)

where ag is acceleration caused by gravity, ax is the gravitational acceleration along the x
axis, ay is the gravitational acceleration along the y axis and θp(t) is the pitch angle of the
Aero body.

The pitch angle is then be found by dividing ax by ay and solving for θp(t):

θp(t) = tan−1

(
ax(t)

ay(t)

)
(2.3)

The accelerometer can not be used to measure the yaw of a body. Therefore, yaw position
is often estimated by integrating the angular yaw velocity measured by the gyroscope. Like
the incremental encoder, this method only estimates the change in angular position from
an initial angular point θy(0). The yaw angle θy(t) of the Aero can be estimated as:

θy(t) = θy(0) +

∫ t

0
Ωy(t)dt (2.4)

where Ωy(t) is the angular yaw velocity.

As the main focus of this thesis lies in the modeling and control of the Aero, the more
precise encoder signals will be used for parameter estimation and online measurement of
the state variables. The different angular velocities is found by taking the time derivative
of the measured angular positions.

2.2 Modeling

The first step when building an LPV model is to obtain a mathematical representation of
the system of interest. In this section, six differential equations describing the dynamic of
the Aero are derived.

2.2.1 DC motors

The Quanser Aero is equipped with a main rotor and a tail rotor, each of which is driven
by a brushed DC motor. By applying Kirchhoff’s voltage law, the motor armature circuits
can be modeled as two linear first-order differential equations:

6

CHAPTER 2. DESCRIPTION AND NON-LINEAR MODELING

diap/y(t)

dt
=
Ra

La
iap/y(t)−

KE

La
ωp/y(t) + vp/y(t) (2.5)

The torque produced by each DC motor τmp/y is proportional with the armature current
iap/y(t),

τmp/y = Kτ iap/y(t) (2.6)

where Kτ is a torque constant. All of the motor and propeller parameters are identical on
the two rotors.

2.2.2 Motor shaft and propeller dynamics

The Quaenser lab guides suggest a linear function for the torque caused by drag and air
resistance:

τ d(t) = kdωm(t) (2.7)

where τ d(t) is the drag torque which opposes the rotational motion of the rotor, kd is a
drag/air resistance coefficient and ωm is the rotor speed [20]. However, online testing on
the Aero’s main rotor revealed that the following non-linear function offers a more accurate
representation of the real propeller dynamics:

fa(ωp/y(t)) = sign(ωy/p(t))kd1ωp/y(t)
2 + kd2ωy/p(t) (2.8)

Although data from the main rotor was used to obtain fa, the function can be applied on
both rotors given the high degree of similarity of the two components.

Numerical values for the moments of inertia of the set of propeller hubs Jhub, the motors
Jmotor, and propellers Jprop, are provided by Quanser [20]. The total moment of inertia
acting on the rotor shaft is:

Jr = Jmotor + Jhub + Jprop (2.9)

By applying Newton’s second law for rotation, the rotor shaft and propeller dynamics can
be expressed as:

Jrθ̈ =
∑
i

τ i (2.10)

dωp/y(t)

dt
=
τm − τ d

Jr
=
Kτ
Jr

iap/y(t)−
fd(ωpy(t))

Jr
(2.11)

Then, by neglecting the motor inductance La in Eq. (2.5) the motor current can be found
as:

iap/y(t) =
vp/y(t)−KEωp/y(t)

Ra
(2.12)

Eq. (2.11) can then be rewritten as:

dωp/y(t)

dt
=

Kτ
RaJr

vp/y(t)−
KτKE

RaJr
ωp/y(t)−

fd(ωp/y(t))

Jr
(2.13)

7

CHAPTER 2. DESCRIPTION AND NON-LINEAR MODELING

2.2.3 Kinematic equations for the Aero body

By considering the Aero as a rigid body, Newtons’ laws and Euler’s rotational dynamics can
be applied to obtain the set of nonlinear equations describing the system’s motions. The
main rotor of the Aero is mounted horizontally. It produces a vertical thrust force FMp, that
enables the Aero to pitch, which is a rotation in the vertical plane around the horizontal
axes. However, Newton’s third law states that there is an equal and opposite reaction to
every action. Therefore, an additional perpendicular force FMy is produced, causing a cross-
torque and thus a negative yaw rotation, which is a rotaion in the horizontal plane around
the vertical axis. This cross-torque property is the main reason why traditional helicopters
are constructed with a vertical tail rotor, also called an anti-torque rotor. In addition to
counteracting the cross torque, the tail rotor is used to control the yaw angle. The Aero
tail rotor is mounted vertically and produces a thrust force FTy causing a positive rotation
about the yaw axes. Similar to the main rotor, an additional perpendicular force FTp is
produced, causing a positive rotation about the pitch axis. The four thrust forces and the
gravitational pull are illustrated in a free body diagram in Figure 2.4.

Figure 2.4: Free body diagram of the Aero body

Torques causing the Aero to pitch

• The torque τ g caused by the gravitational pull on the rigid-body

• The torque τMp produced by the thrust force from the main rotor

• The cross-torque τ Tp produced by the tail rotor

8

CHAPTER 2. DESCRIPTION AND NON-LINEAR MODELING

• The torque τDp caused by viscous damping

• The torque τCp caused by the centripetal force on the Aero body

Gravitational Torque

The center of mass of the Aero pitch body is slightly offset from the pivot point. This
displacement changes with how the rotors are angled. When the Aero is used as a 1 DOF
system, meaning that both the rotors are in a horizontal position, the center of mass for
each rotor is below the pivot point. The offset length for the 1 DOF configuration is given
in the Quanser documentation. However, when the Aero is used as a 2 DOF helicopter
system, only the center of mass of the main rotor is below the pivot point while the tail
rotor’s center of mass is flush with the pivot point. Therefore, the displacement dm for the
2 DOF configuration is less than for the 1 DOF, and is not provided by Quanser. In [7],
a test where tiny weights where suspended from the pitch body at different distances from
the pivot point was used to estimate the displacement of dm = 2.9 mm. The center of mass
displacement is illustrated exaggeratedly in Figure 2.5.

ϴ

Figure 2.5: Center of mass and thrust displacement. Adapted from [16]

As the center of mass is below the pivot point, the rigid body of the Aero behaves like
a pendulum, meaning that it will return to a horizontal orientation with a pitch angle of
approximately 0 degrees if no forces are applied. Figure 2.6 illustrates how the center of mass
moves with different pitch angles. The gravitational torque is a product of the gravitational
force Fg and the moment arm dt sin(θp) :

τ g(t) = Fgdm sin(θp(t)) = mbgdm sin(θp(t)) (2.14)

9

CHAPTER 2. DESCRIPTION AND NON-LINEAR MODELING

mt

Figure 2.6: Illustration of the pendulum-like behavior of the center of mass of the pitch
body

10

CHAPTER 2. DESCRIPTION AND NON-LINEAR MODELING

Vertical trust torques

Both the vertical thrust torque form the main rotor and the cross-torque from the tail rotor
is obtained by multiplying the force by its moment arm. The arm-length on the Aero dt, is
the distance from the pivot point to the center of the propellers, which is identical for each
of the rotors. The two vertical thrust torques are expressed as:

τMp(t) = FMp(t)dt

τ Tp(t) = FTp(t)dt
(2.15)

where the forces FMp(t) and FTp(t) can be described as functions of the propeller velocities:

FMp(t) = fMp(ωp(t)) =

{
kMpp1ω

2
p(t) + kMpp2ωp(t) if ωp(t) ≥ 0

kMpn1ω
2
p(t) + kMpn2ωp(t) if ωp(t) < 0

(2.16)

FTp(t) = fTp(ωy(t)) =

{
kTpp1ω

2
y(t) + kTpp2ωy(t) if ωy(t) ≥ 0

kTpn1ω
2
y(t) + kTpn2ωy(t) if ωy(t) < 0

(2.17)

The fact that the amount of thrust force produced by each rotors changes according to
the direction of rotation of the propellers is taken into account by implementing piecewise
polynomial functions. The main rotor thrust function fMp(ωp(t)) uses the thrust gains
kMpp1/2 for positive rotor velocities and kMpn1/2

for negative rotor velocities. Likewise, the
tail rotor thrust function fTp(ωy(t)) uses the thrust gains coefficients kTpp1/2 for positive
rotor velocities and kTpn1/2

for negative rotor velocities.

Vertical damping torque

The vertical damping torque is identified as a non-linear function of the pitch velocity :

τDp(t) = fDp(Ωp(t)) = sign(Ωp(t))kDp1Ωp(t)
2 + kDp2Ωp(t) (2.18)

where kDp1 and kDp2 are damping coefficients. The friction in the pitch joint is neglected.

Centripetal torque

As the Aero rotates about the yaw axis, a force directed toward the center of curvature
of the rotation called the centripetal force will drive the pitch body towards its horizontal
equilibrium.

The general equation for the centripetal force is defined as,

Fc =
mv2

r
(2.19)

where m is the mass of the moving body, v is the linear velocity, and r is the radius of
curvature.

The relationship between linear velocity and angular velocity is v = ωr:

11

CHAPTER 2. DESCRIPTION AND NON-LINEAR MODELING

θ

θ

Figure 2.7: The centripetal force acting on the main rotor Fcm and the tail rotor Fcm.

Using the general formula in Eq. (2.19), the centripetal force on the main rotor can be
expressed as:

Fcm(t) = (
mtc

2
+mtm +mem +mrm)

Ω2
y(t)r

2
t

rt
= mAΩ

2
y(t)rt (2.20)

where rt = dt cos(θp) is the radius of the rotation and mA = mtc
2 +mtm +mem +mrm.

The tension force exerted on the horizontal tube by the main motor is then expressed using
the centripetal force from Eq.(2.20):

Tm(t) =
Fcm(t)

cos(θp(t))
=
mAΩ

2
y(t)dt cos(θp(t))

cos(θp(t))
= mAΩ

2
y(t)dt (2.21)

The vertical component of the main tension force causes a negative rotation about the pitch
axis as the Aero rotates about the yaw axis and is found by multiplying by the sin of θp:

Tmp(t) = −Tm(t) sin(θp(t)) = −mAΩ
2
y(t)dt sin(θp(t)) (2.22)

The torque is derived by multiplying the vertical tension force by its moment arm, rt:

τ cm(t) = −mAΩ
2
y(t)dt sin(θp(t))rt = −mAΩ

2
y(t)d

2
t cos(θp(t)) sin(θp(t)) (2.23)

12

CHAPTER 2. DESCRIPTION AND NON-LINEAR MODELING

The centripetal force acting on the tail rotor is equally obtained as for the main rotor:

Fct(t) = (
mtc

2
+mtt +met +mrt)

Ω2
y(t)r

2
t

rt
= mBΩ

2
y(t)rt (2.24)

where mB = mtc
2 +mtt +met +mrt.

The tension force on the tail tube is:

Tt(t) =
Fct(t)

cos(−θp(t))
=
mBΩ

2
y(t)dt cos(−θp(t))
cos(−θp(t))

= mBΩ
2
y(t)dt (2.25)

The vertical component of the tail tension force also drives the pitch body towards its
horizontal equilibrium and is found by multiplying by sin(−θp):

Ttp(t) = Tt(t) sin(−θp(t)) = mBΩ
2
y(t)dt sin(−θp(t)) (2.26)

The torque is then obtained by multiplying the force by its moment arm rt:

τ ct(t) = mBΩ
2
y(t)dt sin(−θp(t))rt = mBΩ

2
y(t)d

2
t cos(−θp(t)) sin(−θp(t)) (2.27)

The total centripetal torque is found by adding equations (2.23) and (2.27):

τCp = −mAΩ
2
y(t)d

2
t cos(θp(t)) sin(θp(t)) +mBΩ

2
y(t)d

2
t cos(−θp(t)) sin(−θp(t))

= −2Ω2
y(t)d

2
t (mA +mB) cos(θp(t)) sin(θp(t))

= −Ω2
y(t)d

2
t (mA +mB) sin(2θp(t))

(2.28)

Net torque about the pitch axis

The net torque acting on the pitch axis is:∑
y

τ y = τMp(t) + τ Tp(t)− τ g(t)− τDp(t)− τCp(t)

= FMp(ωp(t))dt + FTp(ωy(t))dt −mbgdm sin(θp(t)(t))− fDp(Ωp(t))

− Ωy(t)
2d2t (mA +mB) sin(2θp(t))

(2.29)

Newton’s second law for rotation is then applied to obtain the equation describing the
motion about the pitch axis:

dΩp(t)

dt
=

1

Jp
(fMp(ωp(t))dt + fTp(ωy(t))dt −mbgdm sin(θp(t))− fDp(Ωp(t))

− Ωy(t)
2d2t (mA +mB) sin(2θp(t))

(2.30)

where Jp is the total moment of inertia of the pitch body.

Torques causing the Aero to yaw

• The torque τ Ty produced by the thrust force from the tail rotor

• The cross-torque τMy from the main rotor

• The torque τDy caused by viscous damping

• The torque τRy caused by Coulomb friction of the yaw joint.

13

CHAPTER 2. DESCRIPTION AND NON-LINEAR MODELING

Horizontal trust torques

The horizontal thrust torque from the tail rotor and the cross-torque from the main rotor is
modeled comparably to the vertical thrust torques. However, in this case, the moment arms
changes with the pitch angle. A cosine term is therefore included in the torque equations:

τMy(t) = FMy(t) cos(θp(t))dt

τ Ty(t) = FTy(t) cos(θp(t))dt
(2.31)

Also in this case, he thrust forces are modeled as nonlinear piecewise functions of the rotor
velocities:

FMy(t) = fMy(ωp(t)) =

{
kMyp1ω

2
p(t) + kMyp2ωp(t) if ωp(t) ≥ 0

kMyn1ω
2
p(t) + kMyn2ωp(t) if ωp(t) < 0

(2.32)

FTy(t) = fTy(ωy(t)) =

{
kTyp1ω

2
y(t) + kTyp2ωy(t) if ωy(t) ≥ 0

kTyn1ω
2
y(t) + kTyn2ωy(t) if ωy(t) < 0

(2.33)

where the main rotor thrust function fMy(ωp(t)) uses the thrust gains kMyp1/2 for positive
rotor velocities and kMyn1/2

for negative rotor velocities. Likewise, the tail rotor thrust
function fTy(ωp(t)) uses the thrust gains kTyp1/2 for positive rotor velocities and kTyn1/2

for
negative rotor velocities.

Yaw damping and Coulomb friction torque

A model of the damping and Coulomb friction for the yaw motion is proposed in [7], where
the static friction is expressed as a constant. In contrast, the damping and viscous friction
are combined in a nonlinear function of the angular yaw velocity. A slight improvement
on the model has been made by identifying different damping coefficients depending on the
direction of rotation:

τDy(t) = fDy(t) =

{
fDyp(Ωy(t)) = kDyp1Ω

2
y(t) + kDyp2Ωy(t) if Ωy(t) ≥ 0

fDyn(Ωy(t)) = kDyn1Ω
2
y(t) + kDyn2Ωy(t) if Ωy(t) < 0

(2.34)

where the coefficients KDyp1/2 applies to positive values of the yaw velocity Ωy(t), while
KDyn1/2

applies to negative values of Ωy(t).

The static friction force FFy(t) is also expressed with different constants depending of the
sign of the yaw velocity:

FFy(t) =

{
kFyp if Ωy(t) ≥ 0

kFyn if Ωy(t) < 0
(2.35)

The friction constant kFyp is used for positive yaw velocities, while the friction constant
kFyp is used for negative yaw velocities.

A final improvement on the static friction is made to ensure that the modeled yaw velocity
remains equal to zero as long as the combined rotor thrust force is less in magnitude than

14

CHAPTER 2. DESCRIPTION AND NON-LINEAR MODELING

the static friction force. This is accomplished by implementing Karnopp’s friction model
which extends the basic Coulomb fiction model [6]. The torque caused by static friction is
expressed as:

τ Fy(t) = fFy(t) =

{
sat(FMy(t)− FTy(t), FFy(t)) when Ωy(t) = 0

FFy(t) else
(2.36)

where the Karnopp’s model uses a saturation function1 to keep the sum of the magnitude
off all forces equal to zero until the applied forces are strong enough to overcome the friction
force. The static friction force FFy(t) is defined in Eq. (2.35).

Net torque about the yaw axis

The net torque acting on the yaw axis are:∑
y

τ y(t) = τ Ty(t)− τMy(t)− τDy(t)− τ Fy(t)

= fTy(ωy(t)) cos(θp(t))dt − fMy(ωp(t)) cos(θp(t))dt − fDy(Ωy(t))− fFy(t)

(2.37)

Newton’s second law for rotation is then applied to obtain the equation describing the yaw
motion of the Aero:

dΩy(t)

dt
=

1

Jy(θp)
(fTy(ωy(t)) cos(θp(t))dt − fMy(ωp(t)) cos(θp(t))dt − fDy(Ωy(t))− fFy(t)

(2.38)

where Jy(θp) is the total moment of inertia of the yaw body as a function of the pitch angle.

2.2.4 Moment of Inertia of the Aero

The moments of inertia acting on the Aero are modeled as proposed by Quanser in their
lab documentation [18]. However, the masses of the Aero have been divided into smaller
fractions than what Quanser suggests. This resulted in slightly lower numerical values for
both the pitch and yaw inertia, which gave better results when the model was tested against
the actual plant. In addition, the solution provided by Quanser does not take into account
that yaw inertia decreases as the inclination of the pitch body increases, which is a result
of the mass being more concentrated along the vertical rotation axis. Therefore, the yaw
inertia is modeled as a nonlinear function of the pitch angle, where Jy(θp = 0) is similar to
the estimate proposed by Quanser. Figure 2.8 shows the main parts of the Aero pitch and
yaw bodies.

1"The saturation function sat(x, S) is defined so that sat(x, S) = x when |x| ≤ S and sat(x, S) = Ssgn(x)
when |x| ≥ S" [6]

15

CHAPTER 2. DESCRIPTION AND NON-LINEAR MODELING

Figure 2.8: General component arrangement of the mechanical parts on the Aero. Adapted
from [19]

The main and tail tubes, including the tube clamp, are modeled as a single cylinder rotating
about its center with inertia,

Jcylinder =
1

12
(mtm +mtt +mtc)l

2
t

=
1

12
(2 · 0.089kg + 0.280kg) · 0.1652m2 = 1.04× 10−3 kgm2

(2.39)

where lt is the total length of tubes and clamp when assembled.

Each of the two rotor assemblies, including the DC motors, are considered as single-point
masses rotating at a distance dt from the pivot point resulting in the inertia:

Jrotor = (mrm/t +mem/t)d
2
t

= (0.146kg + 0.200kg) · 0.1582m2 = 8.64× 10−3 kgm2
(2.40)

The forked yoke is approximated as a cylinder rotating about its center which leads to the
expression:

Jyoke =
1

2
myr

2
y =

1

2
0.526kg · 0.022m2 = 1.05× 10−4 kgm2 (2.41)

The total moment of inertia acting about the pitch and yaw axes are:

Jp = Jcylinder + 2Jrotor = 0.0183kgm2

Jy(θp = 0) = Jcylinder + 2Jrotor + Jyoke = 0.0184kgm2
(2.42)

16

CHAPTER 2. DESCRIPTION AND NON-LINEAR MODELING

2.3 Nonlinear model of the Aero

By taking into account Eqs. (2.13), (2.30) and (2.38), the resulting model describing the
Aero motion consists of a set of six first order non-linear differential equations:



ω̇p(t)

Ω̇p(t)

θ̇p(t)

ω̇y(t)

Ω̇y(t)

θ̇y(t)



=



Kτ
RaJr

vp(t)− KτKE
RaJr

ωp(t)− 1
Jr
fa(ωp(t))

1
Jp
(fMp(ωp(t))dt + fTp(ωy(t))dt −mbgdm sin(θp(t))− fDp(Ωp(t)))

−Ωy(t)
2d2t (mA +mB) sin(2θp(t))

Ωp(t)

Kτ
RaJr

vy(t)− KτKE
RaJr

ωy(t)− 1
Jr
fa(ωy(t))

1
Jy(θp(t))

(fTy(ωy(t)) cos(θp(t))dt

−fMy(ωp(t)) cos(θp(t))dt − fDy(Ωy(t))− fFy(t)

Ωy(t)



(2.43)

where the electrical dynamics from Eq. (2.5) has been neglected, as the electrical circuits
have a significantly faster response than the mechanical aspects of the Aero. This non-linear
model will later be converted into a linear parameter varying (LPV) framework.

2.4 Parameter estimation

Some of the parameters in the non-linear model are given by Quanser. Still, most have
been estimated through identification procedures like regression analysis using the method
of least squares and iterative tuning. The Coulomb friction and viscous yaw damping was
estimated in a similar manner as described in [7]. A list of the parameter values that Quaser
has provided in their courseware resources is presented in table 2.1:

Parameter Value Parameter Value
Kτ 0.042 Nm/a KE 0.042 V/rad · s
Ra 8.4 Ω dt 0.158 m
mrm/t 0.146 kg mtm/t 0.089 kg

mem/t 0.200 kg mtc 0.280 kg

mb 1.15 kg my 0.526 kg
mb 1.15 kg my 0.526 kg
Jprop 5.6× 10−5 kgm2 Jmotor 2.0× 10−6 kgm2

Jhub 5.0× 10−8 kgm2 Jmotor 0.526 kgm2

Table 2.1: Known parameter provided by Quanser

17

CHAPTER 2. DESCRIPTION AND NON-LINEAR MODELING

2.4.1 Estimating Coulomb friction and viscous damping

Yaw axis

A free spin experiment was performed to estimate fDy and Ffy. The Aero was decelerated
from various positive and negative yaw velocities with both motors disengaged and the pitch
axis locked in its horizontal equilibrium. The equation of motion in (2.38) was then reduced
to:

Jy(θp = 0)
.
Ωy(t) = −fDy(Ωy(t)))− Ffy (2.44)

where the angular yaw deceleration was approximated as
.
Ωy(t) =

∆Ωy
∆t and Jy(θp = 0) =

0.0184 from Eq. (2.42). The results were plotted against the measured angular yaw decel-
eration equaling the sum of damping and friction in two separate plots, shown in Figure
2.9. A second-order regression for each plot gave an estimated relationship between angular
velocity and the sum of damping and friction. The damping and friction were then distin-
guished by modeling the viscous damping using the regression coefficients and the Coulomb
friction as the regression constant.

0 2 4 6 8 10
Angluar Velocity about the Yaw Axis,

y
 [rad/s]

5

6

7

8

9

10

11

12

S
um

 o
f D

am
pi

ng
 a

nd
 F

ric
tio

n
[N

m
]

10-3

Data from free spin test
Fitted model

Angular

(a) Ωy ≥ 0, R2 = 93.22%

-10 -8 -6 -4 -2 0
Angluar Velocity about the Yaw Axis,

y
 [rad/s]

-10

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

S
um

 o
f D

am
pi

ng
 a

nd
 F

ric
tio

n
[N

m
]

10-3

Data from free spin test
Fitted model

Angular

(b) Ωy < 0, R2 = 95.87%

Figure 2.9: Test results from free spin experiment conducted to estimate yaw friction and
damping

fDy =

{
kDyp1Ω

2
y + kDyp2Ωy if Ωy(t) ≥ 0

kDyn1Ω
2
y + kDyn2Ωy if Ωy(t) < 0

=

{
1.84× 10−5Ω2

y + 3.64× 10−4Ωy if Ωy(t) ≥ 0

−5.05× 10−5Ω2
y + 9.86× 10−4Ωy if Ωy(t) < 0

(2.45)

The second order regression resulted in the friction coefficients kFyp = 0.00616 and kFyn =
0.00461. However, online test on the Aero indicated that these values where slightly to

18

CHAPTER 2. DESCRIPTION AND NON-LINEAR MODELING

large. The coefficients have therefore been tuned down to:

Ffy =

{
kFyp if Ωy(t) ≥ 0

kFyn if Ωy(t) < 0
=

{
0.00586 if Ωy(t) ≥ 0

0.00341 if Ωy(t) < 0
(2.46)

Pitch axis

Estimating the Coulomb friction and viscous damping in the pitch joint is more challenging
than for the yaw joint, given the presence of the gravitational force. Therefore, an assump-
tion that the sum of viscous friction and damping in the pitch joint is similar to the yaw
joint is made, while the static friction is neglected. The parameters in fDp were then found
through iterative tuning.

fDp(Ωp(t)) = sign(Ωp(t))kDp1Ωp(t)
2 + kDp2Ωp(t)

= sign(Ωp(t))7.6× 10−6Ω2
y(t) + 6.1× 10−3Ωy(t)

(2.47)

2.4.2 Estimating Yaw inertia

An expression for the yaw inertia was found by rewriting Eq. (2.44) and applying the
regression results from Eq. (2.45)

Jy(θp = 0) =
−fDy − Ffy.

Ωy

=
1.84× 10−5Ω2

y + 3.63× 10−4Ω
∆Ωy
∆t

(2.48)

The angular yaw deceleration was approximated for different pitch angles. Figure 2.10
shows the relationship between the estimated yaw inertia and the pitch angle. A sum of
least square regression was then used to fit a second order curve. However, as suggested in
[7], the regression results can be simplified into a cosine function of the pitch angle:

Jy(θp) = kJy cos(θp) = 0.017 cos(θp) (2.49)

-1 -0.5 0 0.5 1
Pitch angle,

p
 [rad]

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

Y
aw

 in
er

tia
 [k

gm
2
]

Data from acceleration test
Fitted model
Cosine function

Figure 2.10: Test data showing the relationship between pitch angle and yaw inertia

19

CHAPTER 2. DESCRIPTION AND NON-LINEAR MODELING

2.4.3 Estimating vertical cross-thrust force functions

The vertical thrust force functions fMp(ωp(t)) and fTp(ωp(t)) were estimated with the yaw
axis locked, limiting the Aero only to rotate about the pitch axis, thus acting like a 1 DOF
system. Then data from each rotor was collected separately by energizing one motor at a
time.

Vertical thrust from main rotor

The main rotor was accelerated to different angular velocities by applying various main
motor input voltages vp. The resulting pitch angles at a steady-state were then measured
and used to calculate the corresponding magnitudes of the thrust force. When the 1 DOF
pitch system is at rest with only the main rotor running, and zero angular velocity about
the pitch axis, the equation of motion about the pitch axis (2.30) is reduced to:

0 = fMp(ωp(t))dt −mbgdm sin(θp(t)) (2.50)

which can be used to solve for the main thrust force:

fMp(ωp(t)) =
mbgdm sin(θp(t))

dt
(2.51)

The positive and negative magnitudes of the thrust force are shown in separate plots in
Figure 2.11. A second-order least square regression curve has been fitted to each plot. Al-
though the resulting regression analysis indicates a satisfactory correlation of 99.86% for
positive pitch velocities and 99.99% for negative pitch velocities, both the regression equa-
tions contain a constant term. The constant term −8.72× 10−4 is included in the positive
velocity regression equation, while the negative velocity equation contains the constant term
−4.79×10−5. It’s not desirable to include these terms in the non-linear model as the rotors
do not produce any thrust force when the propellers do not rotate. As the constant terms
are close to zero, an alternative regression analysis has been applied where the y-intercept
of the regression curves has been forced to zero [14]. The correlation obtained with this
analysis was 99, 85% for positive values of ωp(t) and 99.99% for negative values. The two
zero intercept regression equations make up the piecewise function in Eq. (2.52).

20

CHAPTER 2. DESCRIPTION AND NON-LINEAR MODELING

0 50 100 150 200 250
Angular velocity of The Main Rotor,

p
 [rad/s]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

f M
p
(

p
)

[N
]

Data
Fitted model
Fixed zero intercept model

(a) ωp ≥ 0

-250 -200 -150 -100 -50 0
Angular velocity of The Main Rotor,

p
 [rad/s]

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

f M
p
(

p
)

[N
]

Data
Fitted model
Fixed zero intercept model

(b) ωp < 0

Figure 2.11: Estimated thrust force-speed curve for positive and negative main motor ve-
locities using second-order polynomial curve fitting. The blue lines represent the resulting
regression function from the standard least square method, while the dashed lines represent
the least square method with forced zero y-intercept.

fMp(ωp(t)) =

{
kMpp1ω

2
p(t) + kMpp2ωp(t) if ωp(t) ≥ 0

kMpn1ω
2
p(t) + kMpn2ωp(t) if ωp(t) < 0

=

{
1.51× 10−6ω2

p(t) + 8.61× 10−7ωp(t) if ωp(t) ≥ 0

−2.01× 10−6ω2
p(t)− 4.18× 10−5ωp(t) if ωp(t) < 0

(2.52)

Vertical thrust from tail rotor

Experimental data for the vertical thrust force form the tail rotor was collected analogously
to the main rotor. The Aero body was pitched to various angles by applying different tail
motor voltages. When the pitch angle is at steady state with only the tail rotor running,
Eq. (2.30) is reduced to:

0 = fTp(ωp(t))dt −mbgdm sin(θp(t)) (2.53)

where solving for fTp(ωp(t)) results in:

fTp(ωp(t)) =
mbgdm sin(θp(t))

dt
(2.54)

The tail rotor thrust force data are shown in two separate plots in Figure 2.12. As for
the main rotor, a second-order least square regression was applied to both the positive and
negative tail rotor thrust force data. Also in this case, the resulting regression equations

21

CHAPTER 2. DESCRIPTION AND NON-LINEAR MODELING

included non-zero constant terms of 1.53 × 10−4 for positive values of ωp(t), and 4.72 ×
10−4 for negative values of ωp(t). As the constant terms was close to zero, the fixed zero
intercept regression analysis was applied [14], which gave the expressions that define the
thrust function fTy(ωp(t)) in Eq. (2.55). The correlation obtained with the standard least
square regression analysis was 99.89% for positive values of ωp(t) and 99.27% for negative
values of ωp(t). Applying the fixed zero intercept regression analysis did not result in a
significant change in correlation for positive values of ωp(t). In contrast, the correlation
dropped to 99.17% for negative values of ωp(t).

fTy(ωp(t)) =

{
kTpp1ω

2
p(t) + kTpp2ωp(t) if ωp(t) ≥ 0

kTpn1ω
2
p(t) + kTpn2ωp(t) if ωp(t) < 0

=

{
1.49× 10−6ω2

p(t)− 2.52× 10−5ωp(t) if ωp(t) ≥ 0

−1.46× 10−7ω2
p(t) + 7.47× 10−6ωp(t) if ωp(t) < 0

(2.55)

0 50 100 150 200 250 300
Angular velocity of The Tail Rotor,

y
 [rad/s]

0

0.02

0.04

0.06

0.08

0.1

0.12

f T
p(

y)
[N

]

Data
Fitted model
Fixed zero intercept model

(a) ωp ≥ 0

-300 -250 -200 -150 -100 -50 0
Angular velocity of The Tail Rotor,

y
 [rad/s]

-15

-10

-5

0

f T
p(

y)
[N

]

10-3

Data
Fitted model
Fixed zero intercept model

(b) ωp < 0

Figure 2.12: Estimated thrust force-speed curve for positive and negative main motor ve-
locities using second-order polynomial curve fitting. The blue lines represent the resulting
regression function from the standard least square method, while the dashed lines represent
the least square method with forced zero y-intercept.

2.4.4 Estimating Horizontal thrust force functions

As the main and tail rotor are identical, it can be assumed that the same function can
describe the horizontal thrust from the tail rotor as the vertical thrust from the main rotor
and that the same function can describe the horizontal cross-thrust from the main rotor
as the vertical cross-thrust from the tail rotor. However, online simulations indicated that
the vertical thrust functions resulted in more thrust than needed for the yaw movement.

22

CHAPTER 2. DESCRIPTION AND NON-LINEAR MODELING

This inconsistency is likely due to unmodeled uncertainties. Slightly down-tuned versions of
the vertical thrust force functions are therefore implemented for the horizontal thrust force
functions fMy(ωp(t)) and fTy(ωy(t)):

fTy(ωy(t)) =

{
kTyp1ω

2
y(t) + kTyp2ωy(t) if ωy(t) ≥ 0

kTyn1ω
2
y(t) + kTyn2ωy(t) if ωy(t) < 0

=

{
1.06× 10−6ω2

p(t) + 1.17× 10−5ωp(t) if ωp(t) ≥ 0

−1.41× 10−6ω2
p(t)− 4.16× 10−5ωp(t) if ωp(t) < 0

(2.56)

fMy(ωy(t)) =

{
kMyp1ω

2
y(t) + kMyp2ωy(t) if ωy(t) ≥ 0

kMyn1ω
2
y(t) + kMyn2ωy(t) if ωy(t) < 0

=

{
1.04× 10−6ω2

p(t)− 1.91× 10−5ωp(t) if ωp(t) ≥ 0

−6.43× 10−7ω2
p(t) + 3.28× 10−5ωp(t) if ωp(t) < 0

(2.57)

2.5 Model validation

Figure 2.13 shows a model validation experiment comparing the nonlinear model to the real
Aero system. The experiment was performed by introducing two sets of shifted impulse
signals on the input voltages. The first set led to low rotor velocities, while the second set
led to high rotor velocities. The results show that there are some unmodeled dynamics in
the yaw motion, where the model behaves worse for low velocities. This is likely linked to
the Coulomb friction in the yaw joint. It can further be observed that the pitch motion
resembles the real system best for low pitch angular velocities. This could be a indication
that the pitch damping term has been overfitted. Nevertheless, the model still provide a
satisfactory approximation of the real system.

23

CHAPTER 2. DESCRIPTION AND NON-LINEAR MODELING

0

0.5

1
p
(t

)
[r

ad
]

Pitch angle model
Pitch angle plant

0 10 20 30 40 50 60 70 80 90 100

time [s]

-0.4

-0.2

0

y(t
)

[r
ad

/s
]

Pitch velocity model
Pitch velocity plant

p

0

100

200

300

p/
y(t

)
[r

ad
/s

]

Angular velocity main rotor model
Angular velocity main rotor plant
Angular velocity tail rotor model
Angular velocity tail rotor plant

0 10 20 30 40 50 60 70 80 90
 Time [s]

0

5

10

15

v p/
y [V

]

Input voltage main motor
Input volatge tail motor

Figure 2.13: Nonlinear model validation

24

Chapter 3

Modeling and control of LPV systems

A linear parameter varying (LPV) system is a subset of the larger category of linear time-
variant (LTV) systems, a type of dynamical system described by a single or a set of dif-
ferential equations. The linear property of an LTV system implies a linear relationship
between the system’s input and output variables. However, the time-variant aspect means
that the resulting outputs depend on at what time the input was given. LPV systems
are time-variant as they contain parameters that depend on measured variables that vary
with time [23]. These parameters are often referred to as varying parameters or schedul-
ing parameters. The theory of LPV systems was first described in a Ph.D. thesis by Jeff
S. Shamma at the Massachusetts Institute of Technology in 1988 [24]. LPV systems have
since then become an attractive tool in modeling and control applications, as they allow for
strongly non-linear systems to be transformed into a linear framework. The main advantage
of this approach is that powerful linear tools for analysis and control can be applied once the
non-linear system is transformed into the LPV framework [22]. There are several different
ways to represent systems within the LPV framework. In this project, a quasi-LPV model
is used, where the word quasi comes from the fact that the measured varying parameters
are endogenous, meaning that they are functions of the system’s state variables. In LPV
systems where the varying parameters are independent of the states, the parameters are
referred to as exogenous [15].

3.1 State-space representation

The main strength of the LPV framework lies in the ability to represent complex non-linear
systems in a compact matrix form. One way to express the behavior of a dynamical system
is through a so-called state-space representation, which is a well-established method in the
field of control theory. A state-space representation is a mathematical method that involves
rewriting one or more differential equations of higher order into a system of first-order
differential equations. This system of equations is described through a set of endogenous
variables called state variables xi(t), i = 1, ..., n, where the number n corresponds to the
order of the system. However, simplifications can be made that reduce the number of states
in relation to the original order. The system input signals are denoted as u1(t), ..., um(t),
where the number m corresponds to the number of inputs. The linear first-order equations

25

CHAPTER 3. MODELING AND CONTROL OF LPV SYSTEMS

are then expressed in a set of n functions called state functions, that has the general form:

ẋ(t) = f(x(t),u(t), t) (3.1)

where x(t) ∈ Rn and u(t) ∈ Rm are column vectors containing the states and inputs,
and ẋ(t) is the time derivative of the vector function f(x(t),u(t), t). The set of first order
differential equations contained in state vector function can then be expressed as:

ẋ1(t) = a11(t)x1(t) + . . .+ a1n(t)xn(t) + b11(t)u1(t) + . . .+ b1m(t)um(t)

ẋ2(t) = a21(t)x1(t) + . . .+ a2n(t)xn(t) + b21(t)u1(t) + . . .+ b2m(t)um(t)
...

ẋn(t) = an1(t)x1(t) + . . .+ ann(t)xn(t) + bn1(t)u1(t) + . . .+ bnm(t)um(t)

(3.2)

where aij(t) are time-dependent parameters that characterize the dynamics of the system.
If the time dependency of these parameters can be neglected or does not exist, the system
is referred to as a linear time-invariant (LTI) system.

Eq. (3.2) can be expressed in a compact matrix form:
ẋ1(t)
ẋ2(t)

...
ẋn(t)

 =


a11(t) . . . a1n(t)
a21(t) . . . a2n(t)

...
...

an1(t) . . . ann(t)



x1(t)
x2(t)

...
xn(t)

+


b11(t) . . . b1n(t)
b21(t) . . . b2m(t)

...
...

bn1(t) . . . bnm(t)



u1(t)
u2(t)

...
um(t)

 (3.3)

Then by defining a matrix A(t) containing the state parameters aij(t) and a matrix B(t)
containing the input parameters bij(t), the system can be represented in the form:

ẋ(t) = A(t)x(t) + B(t)u(t) (3.4)

Similar to the state function, the state-space approach also includes an output function:

y(t) = g(x(t),u(t), t) (3.5)

where y(t) ∈ Rp is a column vectors containing the system outputs and g(x(t),u(t), t) is
a vector function. The output equation is required as the signals of interest in a given
application are not necessarily the exact values of the state variables. In a system with m
number of defined output signals the vector function in Eq. (3.5) has the form:

y1(t) = c11(t)x1(t) + . . .+ c1n(t)xn(t) + d11(t)u1(t) + . . .+ d1r(t)um(t)

y2(t) = c21(t)x1(t) + . . .+ c2n(t)xn(t) + d21(t)u1(t) + . . .+ d2r(t)um(t)
...

yp(t) = cp1(t)x1(t) + . . .+ cpn(t)xn(t) + dp1(t)u1(t) + . . .+ dpr(t)um(t)

(3.6)

where cij(t) are time-dependent parameters that describe the relationship between the states
and the outputs, while dij(t) are so-called feedthrough parameters that enable the outputs

26

CHAPTER 3. MODELING AND CONTROL OF LPV SYSTEMS

to be directly related to the inputs. However, the use of feedthrough parameters is rarely
needed in control theory.

Analogously to the state equations, the output equations can be put in the compact matrix
form: 

y1(t)
y2(t)

...
yp(t)

 =


c11(t) . . . c1n(t)
c21(t) . . . c2n(t)

...
...

cp1(t) . . . cpn(t)



x1(t)
x2(t)

...
xn(t)

+


d11(t) . . . d1m(t)
d21(t) . . . d2m(t)

...
...

dr1(t) . . . drm(t)



u1(t)
u2(t)

...
um(t)

 (3.7)

where the matrix C(t) holds the parameters cij(t) and the matrix D(t) holds the parameters
dij(t).

The matrix form of the state equations together with the matrix form of the output equations
make up the full state space representation of an arbitrary LTV system:{

ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) + D(t)u(t)

(3.8)

A graphical representation of a general LTV system in state space is presented through a
block diagram in Figure 3.1.

∫+
+

+
+

ẋ

Figure 3.1: A mathematical block diagram of a dynamical system represented in state space

3.2 Overview of quasi-LPV modeling

The main goal in quasi-LPV modeling is to transform nonlinear systems into the compact
state-space form: {

ẋ(t) = A(ψ(t))x(t) + B(ψ(t))u(t)
y(t) = C(ψ(t))x(t) + D(ψ(t))u(t)

(3.9)

There exist several approaches that can achieve such transformations, where the existing
approaches can be categorized into three types: linearization-based, state-transformation,

27

CHAPTER 3. MODELING AND CONTROL OF LPV SYSTEMS

and function substitution-based [1]. The linearization-based approach involves linearizing
a system at several operating points followed by an interpolating between the operating
points to obtain an LPV representation. However, since this method involves linearizing,
the resulting LPV system only presents an approximation of the original nonlinear sys-
tem. The state-transformation approach aims to apply a coordinate change in the nonlinear
system to obtain an LPV representation. Although effective, this method is only appli-
cable for a limited type of nonlinear system. The interested reader can find a description
of these limitations in [5]. The substitution-based approach is the technique that will be
used to obtain an LPV representation of the Aero system. This method, along with the
state-transformation approach, has the advantage of potentially producing a LPV repre-
sentation that is exactly equivalent to the original nonlinear system [1]. The substitution
technique is based on obtaining decomposition functions that embed the nonlinear charac-
teristics of the system. These functions are what is referred to as the scheduling- or varying
parameters. In this project, a substitution-based approach called the sector nonlinearity
technique is applied [25]. In this method, the goal is to find a global or local sector such
that ẋ(t) = f(x(t)) ∈ [ψ1(t), . . . , ψj(t)], where ψ(t) are varying parameters.

Example 1. In order to demonstrate how the sector nonlinearity technique is used to obtain
a quai-LPV system in state-space form, let us consider an exemplified nonlinear system from
[23]: {

ẋ1(t) = sin(x1(t)) + x1(t)x2(t) + u(t)

ẋ2(t) = x21(t) + x22(t)
(3.10)

with two state variables x(t) = [x1(t) x2(t)]
T and a single input u(t).

By defining the three varying parameters:

ψ1(t) =
sin(x1(t))

x1(t)
(3.11)

ψ2(t) = x1(t) (3.12)
ψ3(t) = x2(t) (3.13)

which embed all the nonlinearities in the system equations (3.10), the nonlinear system can
be represented in a quasi-LPV form which is completely equivalent to original system:[

ẋ1(t)
ẋ2(t)

]
=

[
ψ1(t) ψ2(t)
ψ2(t) ψ3(t)

] [
x1(t)
x2(t)

]
+

[
1
0

]
u(t) (3.14)

Then, by defining the input function:

y(t) = x1(t) (3.15)

and the state-space matrices:

A(ψ(t)) =

[
ψ1(t) ψ2(t)
ψ2(t) ψ3(t)

]
, B =

[
1
0

]
, C =

[
1 0
0 0

]
(3.16)

28

CHAPTER 3. MODELING AND CONTROL OF LPV SYSTEMS

The system can be represented in the state-space form:{
ẋ(t) = A(ψ(t))x(t) + Bu(t)
y(t) = Cx(t)

(3.17)

3.3 Stability analysis of LPV systems

Once a nonlinear system is represented as a quasi-LPV model, powerful linear tools can be
used to analyze stability and design a stable closed loop control system. The purpose of this
section is to introduce the concept of stability, as well as how stability may be analyzed. As
a first step, the simpler theory of autonomous1 LTI and LPV systems is explored. This is
in order to provide a baseline that can be extended to the case of designing a stable closed
loop controller.

3.3.1 The definition of stability

Let’s consider the autonomous system:

ẋ(t) = f(x(t)), f : D ⊂ Rn → Rn (3.18)

where f is a vector function that maps states in the domain D to a n-dimensional vector
space, Rn, and has one or more equilibrium points, x̄ ∈ D. The stability of the system
around a given equilibrium point can then be defined as:

Definition 1 (Stability [10]). The equilibrium point x̄ = 0 is

• stable if for each ϵ > 0, there is δ = δ(ϵ) such that:

∥ x(0) ∥< δ ⇒∥ x(0) ∥< ϵ,∀t ≥ 0 (3.19)

• unstable if it’s not stable.

Definition 1 only applies to an equilibrium point that lies in the origin of Rn. It is therefore
essential that the domain D contains the origin of Rn. However, this does not lead to a loss
of generality as non-zero equilibrium points can be shifted to the origin through a variable
change: y = x− x̄. The condition in Eq. (3.19) states that a region in Rn around the origin
with radius ϵ should always contain a smaller region with radius δ, where if the initial state
of the system lays within δ, the system trajectory should never leave ϵ. This property needs
to hold for all values of ϵ, for the system to be stable [6]. In simpler terms, this means
that when a stable system is initiated close to an equilibrium point, it stays close to the
equilibrium point for all future time. A visual illustration of the stability definition is shown
in Figure 3.2a.

1The term autonomous refers to a system without input signals.

29

CHAPTER 3. MODELING AND CONTROL OF LPV SYSTEMS

δ

ε

δ

ε

(a) Stability

δ

ε

δ

ε

(b) Asymptotic stability

Figure 3.2: A visual illustration of the concept of stability for a two-dimensional system.

Definition 2 (Asymptotic stability [10]). The equilibrium point x̄ = 0 is asymptotically
stable if its stable and δ can be chosen such that:

∥ x(0) ∥< δ ⇒ lim
t→∞

x(t) = 0 (3.20)

Definition 2 states that a system is asymptotically stable if its stable and there exists a re-
gion with radius δ, where if the system is initiated within δ its state trajectory will converge
to the equilibrium point. This system property is illustrated in Figure 3.2b.

3.3.2 Lyapunov stability criterion

A powerful method of determining stability around an equilibrium point in a nonlinear
system is to use Lyapunov stability criteria. This method was first described by the Rus-
sian mathematician Aleksandr Mikhailovich Lyapunov in 1892, and involves searching for a
function of the system states called the Lyapunov function, V (x).

Theorem 1 (Lyapunov stability criterion [10]). Let x̄ = 0 be an equilibrium point for the
autonomous system in Eq. (3.18) and D ⊂ Rn be a domain containing x = 0. If and only if
there exist a function V (x) such that:

1. V (x) = 0, when x = x̄ (3.21)

2. V (x) > 0, ∀x ∈ D\{0} (3.22)

3. V̇ (x) ≤ 0, ∀x ∈ D (3.23)

then, x̄ is stable. Furthermore, if

V̇ (x) < 0, ∀x ∈ D\{0} (3.24)

then x̄ is a asymptotically stable equilibrium point.

30

CHAPTER 3. MODELING AND CONTROL OF LPV SYSTEMS

The criteria in Theorem 1 states that the Lyapunov function has to be a decreasing function
that has a minimum point in origin of the state space. This function can be thought of as a
general energy function in mechanical systems. Identifying such a function implies that the
system is always moving towards a region of lower energy, and therefore is a stable system.
An example of a Lyapunov function for a two-dimensional system is shown in Figure 3.3.

-3.5

-3

2

-2.5V
(x

) -2

2

x
2

-1.5

0

x
1

-1

0
-2 -2

Figure 3.3: Example of a Lyapunov function for a two-dimensional system

3.3.3 LMI-based stability analysis

In most cases, finding Lyapunov functions analytically is considered a difficult task. The
Lyapunov criteria are, therefore, more commonly rewritten as convex optimization problems
in control theory. A convex optimization problem is a problem that involves minimizing a
convex objective function or maximizing a concave objective function over constrained sets
that are also convex2. When a problem is presented as a convex optimization problem, a
solution can typically be found quickly by using sophisticated computer algorithms.

By choosing the Lyapunov function as a quadratic function of the form :

V (x) = x(t)TPx(t) (3.25)

where P is a symmetric matrix, the Lyapunov criteria for an autonomous system can be
expressed as a convex optimization problem [23]. The objective of the convex optimization
is then to find a matrix P that satisfies conditions (3.21) -(3.23), and (3.24) when analysing
asymptotic stability.

2A set is defined as convex if, for any given pair of points within the set, the line segment between the
points stays within the set.

31

CHAPTER 3. MODELING AND CONTROL OF LPV SYSTEMS

Condition (3.21) and (3.22) in Theorem 1 can then be checked by introducing the following
linear matrix inequality (LMI):

P ≻ 0 (3.26)

which states that the matrix P has to be positive definite, meaning that all the eigenvalues
has to be positive. Applying a matrix P that is positive definite in Eq. (3.25) will ensure
that V (x) > 0 for all x ̸= 0 and that V (x) = 0.

In order to check condition (3.23) and (3.24) in Theorem 1, an expression of V̇ (x) is needed.
For an autonomous LTI sytem that has the form:

ẋ(t) = Ax(t) (3.27)

the derivative of Eq. (3.25) can be derived using the chain rule:

V̇ (x(t)) = ẋ(t)TPx(t) + x(t)TPẋ(t)

= x(t)TATPx(t) + x(t)TPx(t)A

= x(t)T (ATP + PA)x(t)

= ATP + PA

(3.28)

The asymptotic stability condition (3.24) then leads to the LMI:

ATP + PA ≺ 0 (3.29)

By choosing the Lyapunov function in Eq. (3.25) for an autonomous LPV system of the
form:

ẋ(t) = A(ψ(t))x(t), ψ ∈ Ψ ⊂ Rn (3.30)

where Ψ represents a closed set which the parameters ψ(t) vary within, condition (3.23) in
Theorem 1 can be satisfied by solving the LMI:

A(ψ)TP + PA(ψ) ≺ 0, ∀ψ ∈ Ψ (3.31)

However, this results in a computational problem as the continuous variability of the pa-
rameters in A(ψ) leads to an infinite number of inequalities. In [23], a solution is proposed
that involves obtaining a polytopic representation of the state matrix A(ψ). This means
expressing A(ψ) as a weighted sum of the form:

A(ψ(t)) =

N∑
i=1

µi(ψ(t))Ai (3.32)

where the number N corresponds to the number of vertices in the polytope such that Ai

becomes so-called vertex matrices. µi(ψ(t)) are coefficients of the polytopic presentation
that has to satisfy the following condition:

N∑
i=1

µi(ψ(t)) = 1, µi(ψ(t)) ≥ 0 ∀1, . . . , N (3.33)

32

CHAPTER 3. MODELING AND CONTROL OF LPV SYSTEMS

If such a polytopic representation can be obtained, then the LMI in Eq. (3.31) can be
rewritten as a finite set of inequalities corresponding to the number of vertices in the poly-
tope:

AT
i P + PAi ≺ 0, ∀1, . . . , N (3.34)

where the set of inequalities can be solved together trough convex optimization. Then, if
a positive definite matrix P is obtained for all the N number of inequalities, the system is
stable.

There exist several numerical computing platforms that can solve LMIs. In this project,
the Matlab toolbox Yalmip is used. This toolbox acts as an interface between Matlab and
different solvers that numerically solve optimization problems. The code example below
show how the N number of LMIs is solved, for an arbitrary n-dimensional autonomous
LPV system, in the Yalmip framework. The different solvers are installed manually and
applied by replacing the text string ’thissolver’ with the solver name. In this project, the
solvers Sedumi, and SDPT3 and MOSEK is used.

Code 3.1: Yalmip Example
1 P = sdpvar(n,n);
2 F = [P ≥ 1e-09];
3 % The vertex matrices are stored in the cell array A
4 for i = 1:N
5 F = [F, A{i}'*P+P*A{i} ≤ 1e-09];
6 end
7 optimize(F,sdpsettings('solver','thissolver'))

Strict inequalities with Yalmip

When using linear programming techniques such as Yalmip to solve optimization problems,
strict inequalities cannot be employed. To demonstrate this, let us consider the following
simple optimization problem [13]:

min x
s.t. x > 0

(3.35)

A computer would not be able to solve this problem as there always exist a lower limit for
a digital number of any kind. For example, the lowest number that Matlab can produce is
2.2251 × 10−308 [13]. However, presenting this as a solution for the problem in Eq. (3.35)
is not correct, as this corresponds to the solution for the non-strict equality problem:

min x
s.t. x ≥ 2.2251× 10−308 (3.36)

As a consequence of this, Yalmip cannot directly prove asymptotic stability by solving the
strict inequalities presented in this section. Therefore, as a solution, the use non-strict
inequality with a tolerance value is instead used. In the code example 3.1 a tolerance value
of 1× 10−9 have been implemented. However, determining the right tolerance margin can
be challenging as a too small margin is equivalent to using the value 0, while a too large
margin might lead to a less optimal solution.

33

CHAPTER 3. MODELING AND CONTROL OF LPV SYSTEMS

3.4 State feedback control design

The 2DOF configuration of the Aero system is a multiple input multiple output (MIMO)
system, with two input signals: [vp(t) vy(t)]T and six output signals: [ωp(t) Ωp(t) θp(t) ωy(t)
Ωy(t) θy(t)]

T . Controlling MIMO systems can be challenging, as cross-coupling effects often
exist between inputs and outputs, and multiple outputs can be affected by changing a single
input.

A state-feedback controller is a common approach when dealing with MIMO systems that
can be put in the compact matrix form of a state-space model. It involves multiplying
the feedback of all state variables with a predetermined gain matrix K, where the matrix
multiplication result is the input values that will drive the system to the desired reference
value. In the simplest case, where the aim is to drive the states to zero from an arbitrary
initial state, the control law can be formulated as:

u(t) = Kx(t) (3.37)

where u(t) is the system input vector, K is the gain and x(t) is the state vector. Figure
3.4 shows a block diagram of how the control law in Eq. (3.37) is implemented on the Aero
plant.

Aero Plant
u(t)

+
+
+

+ K
r(t)

x(t)

y(t)

Figure 3.4: A block diagram of the state feedback controller implemented on the Aero
system

3.4.1 LMI-based robust control

The implementation of a state feedback controller is, in most cases, trivial, but determining
the gain matrix K that ensures a stable closed loop system is not. A common approach
for ensuring closed loop stability when designing controllers for systems based on the LPV
framework is to apply the LMI theory described in the previous chapter. This section
presents how the LMIs in Eq. (3.26) and (3.30) can be extended to obtain a robust con-
troller gain K that stabilizes the Aero. The term robust refers to the fact that the constant
gain matrix K needs to stabilize the system for all values of A(ψ(t)).

As stated in Chapter 3, the open-loop quasi-LPV model that describes the Aero is expressed
as: {

ẋ(t) = A(ψ(t))x(t) + Bu(t)
y(t) = Cx(t)

(3.38)

34

CHAPTER 3. MODELING AND CONTROL OF LPV SYSTEMS

where the open-loop dynamics and stability is detriment by the properties of the state
matrix A(ψ(t)). By implementing the control law in Eq. (3.37) and thereby creating a
closed feedback loop, the state space equations are rewritten as:{

ẋ(t) = (A(ψ(t)) + BK)x(t)
y(t) = Cx(t)

(3.39)

Now the stability of the closed loop system is not only determined by the state matrix but
rather on the matrix (A(ψ(t)) + BK). This implies that the gain matrix K can be used
to alter the system dynamics and thus stabilize an originally unstable system or alter a
system to behave in a desired way. A concept called D-stability [23] allows the poles of
the closed loop system to be placed in a desired region in the complex plane, such that a
desired transient response can be ordained. However, with regard to the Aero control design,
the only closed loop requirement is that the controller is able to stabilize all states to the
equilibrium point x̄ = [0 0 0 0 0 0]T from an arbitrary initial state. This requirement is akin
to finding a gain matrix K which ensures that all the poles of the matrix (A(ψ(t)) +BK)
have a strictly negative real part for all values of ψ ∈ Ψ. This close loop stability criteria
can be formulated as a set of LMIs by substituting A(ψ(t)) with (A(ψ(t)) + BK) in the
LMI in Eq. (3.30):

(A(ψ(t)) + BK)TP + P(A(ψ(t)) + BK) ≺ 0 (3.40)

which can be expanded to:

A(ψ(t))TP + PA(ψ(t)) + KTBTP + PBK ≺ 0 (3.41)

The resulting inequality in Eq.(3.41), that is obtained by closing the loop, is actually known
as a bilinear matrix inequality (BMI) [23]. The reason for this is that the two unknown
variables K and P appear in the same matrix product. BMIs are not convex and therefore
not a desired way of formulating optimization problems. It is possible to solve BMIs,
but since they are not convex, there is no guarantee that there exists a global minimum.
However, as shown in [23], it is possible to rewrite the BMI in Eq.(3.41) as an LMI by
introducing the change of variable Γ = KP. In order to easily apply the change of variable
, the BMI in Eq.(3.41) is first rewritten into a so-called dual form, which is an completely
equivalent representation [23]. This is done by pre- and post-multiplying Eq. (3.41) by P−1:

A(ψ(t))TP + PA(ψ(t)) + KTBTP + PBK ≺ 0

P−1A(ψ(t))TPP−1 + P−1PA(ψ(t))P−1 + P−1KTBTPP−1 + P−1PBKP−1 ≺ 0

P−1A(ψ(t))T + A(ψ(t))P−1 + P−1KTBT + BKP−1 ≺ 0

(3.42)

Then, as stated in section 3.3.3 the matrix P is a symmetric matrix. Where the inverse of
a symmetric matrix, if it exists, is also a symmetric matrix. Therefor the change P−1 → P
can be done to obtain the BMI:

A(ψ(t))P + PA(ψ(t))T + BKP + PKTBT ≺ 0 (3.43)

Now, the change of variable Γ = KP can be preformed to obtain:

A(ψ(t))P + PA(ψ(t))T + BΓ+ ΓTBT ≺ 0 (3.44)

35

CHAPTER 3. MODELING AND CONTROL OF LPV SYSTEMS

which is an LMI.

Finally, in order to make the LMI in Eq. (3.44) computationally solvable the the state
matrix A(ψ(t)) is expressed trough the polytopic representation described in Eq. (3.32).
This results in an N number of LMIs that is solved together to obtain the two matrices P
and Γ :

P ≻ 0 (3.45)

AiP + BΓ+ PAT
i + ΓTBT ≺ 0 ∀i = 1, . . . , N (3.46)

Then, if a feasible solution exists, the robust controller gain K is obtained by preforming:

K = ΓP−1 (3.47)

3.4.2 Linear quadratic regulator (LQR)

The LMI-based controller design derived in the previous section can be further improved
by incorporating the concept of the linear quadratic regulator (LQR).

Robust LQR control of LTI systems

When implementing the control law in Eq. (3.37) on an LTI system in the form:

ẋ(t) = Ax(t) + Bu(t) (3.48)

the LQR approach allows obtaining an optimal control gain K by minimizing the cost
function:

J =

∫ ∞

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt (3.49)

where Q and R are diagonal and positive definite weight matrices that multiply the system
states and outputs, respectively. Q assigns different levels of importance to each state vari-
able. When using the control law (3.37), which stabilizes a system to the state space origin,
the matrix Q is used to prioritize which states should move to zero the fastest. The matrix
R determines the relative importance of the energy consumption in the system actuators
and is thus used to assess the aggressiveness of the controller. The importance of each state
and input variable is determined by the corresponding diagonal element in Q and R. As
the LQR approach seeks to minimize the value of J , larger values in the weighting matrices
correspond to a high level of importance. In contrast, low values correspond to a low level
of importance [17].

The strength of the LQR approach lies in the ability to obtain a stable controller gain while
systematically placing the poles of the closed loop system:

ẋ(t) = (A + BK)x(t) (3.50)

such that the resulting response has a desired trade-off between controller effort and control
quality. For an LTI system, the gain matrix K can easily be obtained by using the Matlab
function K = lqr(A, B, Q, R).

36

CHAPTER 3. MODELING AND CONTROL OF LPV SYSTEMS

Robust LQR control of LPV systems

The LQR approach cannot be directly applied to case of an LPV system by simply mini-
mizing the value of the cost function J . This is because the final value of J is dependent not
only on Q and R, but also on the trajectory of the varying parameters within A(ψ(t)) [23].
A common way to overcome this problem is to instead minimize the trace of the Lyapunov
matrix P, where the term trace means to take the sum of all the elements in the main
diagonal of a matrix and is denoted as tr(P). In order to demonstrate this, let us recall the
Lyapunov function introduced in Chapter 3.3:

V (x(t)) = x(t)TPx(t) (3.51)

where P is a positive definite matrix:
P ≻ 0 (3.52)

Then, it can be shown that minimizing tr(P) subject to:

V̇ (x(t)) + x(t)TQx(t) + u(t)TRu(t) < 0 (3.53)

will lead to a minimization of J and thus result in an optimal value of K. This is proven by
integrating Eq.(3.53) from 0 to ∞:∫ ∞

0

(
V̇ (x(t)) + x(t)TQx(t) + u(t)TR u(t)

)
dt < 0 (3.54)

which, by taking into account Eq. (3.49), results in:

V (x∞)− V (x0) + J < 0 (3.55)

where x∞ is equal to zero as all states will converge to the origin of the state space, which
means that V (x∞) = 0. The vector x0 refers to the initial condition of the state variables.

Now, by substituting V (x0) = xT
0 Px0 in Eq. (3.55):

−xT
0 Px0 + J < 0 (3.56)

J < xT
0 Px0 (3.57)

it is clear to see that minimizing tr(P) will lead to a minimization of J .

The expression in Eq. (3.55) can then by formulated as a BMI by recalling that V̇ (x(t)) is
equal to the expression on the left-hand side of Eq. (3.41):

A(ψ(t))TP + PA(ψ(t)) + KTBTP + PBK + x(t)TQx(t) + u(t)TRu(t) ≺ 0 (3.58)

which, by taking into account the control law in Eq. (3.37), becomes:

A(ψ(t))TP + PA(ψ(t)) + KTBTP + PBK + Q + KTRK ≺ 0 (3.59)

Then, by multiplying each side of the BMI by −1:

− A(ψ(t))TP − PA(ψ(t))− KTBTP − PBK − Q − KTRK ≻ 0 (3.60)

37

CHAPTER 3. MODELING AND CONTROL OF LPV SYSTEMS

and expanding the term −Q − KTRK intro three matrices:

− A(ψ(t))TP − PA(ψ(t))− KTBTP − PBK −
[
I KT

] [Q 0
0 R

] [
I
K

]
≻ 0 (3.61)

a matrix inequality is obtained, which has a form that allows for a Schur complement [4] to
be applied. Applying the Schur complement to Eq. (3.61) results in:−A(ψ(t))TP − PA(ψ(t))− KTBTP − PBK I KT

I Q−1 0
K 0 R−1

 ≻ 0 (3.62)

The use of schur complements is a standard method for expressing matrix inequalities as
convex optimizations problems. However, the matrix inequality in Eq. (3.62) is still a
BMI, where in order to obtain a LMI, the change of variable Γ = KP can be performed
equivalently to Eq. 3.44. Although to perform the variable change, Eq. (3.62) first needs
to be represented it’s dual form. This can done as follows:P−1 0 0

0 I 0
0 0 I

−A(ψ(t))TP − PA(ψ(t))− KTBTP − PBK I KT

I Q−1 0
K 0 R−1

P−1 0 0
0 I 0
0 0 I

 ≻ 0

P−1(−A(ψ(t))TP − PA(ψ(t))− KTBTP − PBK)P−1 P−1 P−1KT

P−1 Q−1 0
KP−1 0 R−1

 ≻ 0

(3.63)
Now, the top left entry of resulting matrix in Eq. (3.63) can be rewritten exactly as in Eq.
(3.42), resulting in:−P−1A(ψ(t))T − A(ψ(t))P−1 − P−1KTBT − BKP−1 P−1 P−1KT

P−1 Q−1 0
KP−1 0 R−1

 ≻ 0 (3.64)

Then, by performing the change P−1 → P and the variable change Γ = KP the following
LMI is obtained:−A(ψ(t))P − PA(ψ(t))T − BΓ− ΓTBT P ΓT

P Q−1 0
Γ 0 R−1

 ≻ 0 (3.65)

Note that introducing the change P−1 → P in Eq. (3.65) leads to the change P → P−1 in
the lyapunov function V (x):

V (x(t)) = x(t)TP−1x(t) (3.66)

As a consequence, in order to minimize the value of J , the trace of P should instead be
maximized. The reason for this is that taking the inverse of a matrix with high valued
entries results in a matrix with low valued entries.

38

CHAPTER 3. MODELING AND CONTROL OF LPV SYSTEMS

Finally, by representing A(ψ(t)) using the polytopic representation from Eq.(3.32), the
convex optimization problem that must be solved in order to obtain a stable controller gain
is given as follows [12]:

max
P, Γ

tr(P)

s.t.

−AiP − PAT
i − BΓ− ΓTBT P ΓT

P Q−1 0
Γ 0 R−1

 ≻ 0 ∀i = 1, . . . , N

and P ≻ 0

(3.67)

Once an optimal solution is obtained, the controller gain is simply found by using the
resulting values for P and Γ:

K = ΓP−1 (3.68)

The code listing below shows how the optimization problem in Eq. (3.67) is implemented
using the Yalmip toolbox in Matlab for a an arbitrary LPV sytem with an time-invariant
input matrix B ∈ Rn×m and a time-varying state matrix A ∈ Rn×n. In this example, the
matrix Γ is represented as the variable L. The lines 19−23 check that the feasible solution
returned by a solver is, in fact, feasible by checking the eigenvalues of P and the matrix
expression in Equation (3.67).

Code 3.2: State feedback design using Yalmip
1 Q = eye(n);
2 R = eye(m);
3 P = sdpvar(n,n);
4 L = sdpvar(m,n,'full');
5 F = [P ≥ 1e-09];
6 % The vertex matrices are stored in the cell array A
7 for i = 1:N
8 F = [F, [-A{i}*P - P*A{i}' - B*L -L'*B' P L';P inv(Q) zeros(n,m);L ...

zeros(n,m) inv(R)] ≤ 1e-09];
9 end

10 optimize(F,sdpsettings('solver','thissolver'))
11 K = value(L)*inv(value(Y));
12

13 E = zeros(N,1);
14 for e =1:nLMI
15 E(e,1) = min(eig([-A{e}*Y_value-B*L_value + ...

(-A{e}*Y_value-B*L_value)' Y_value L_value';Y_value inv(Q) ...
zeros(6,2);L_value zeros(2,6) inv(R)]));

16 end
17

18 %Checking eigenvalues
19 if min(E) ≥ 1e-09 && min(eig(Y_value)) ≥ 1e-09
20 fprintf("No feasible solution");
21 else
22 fprintf("Feasible solution found");
23 end

39

Chapter 4

Quasi-LPV modeling of the Aero

This chapter describes how a quasi-LPV representation of the nonlinear Aero model in
Eq. (2.43) has been obtained and then approximated by the use of two different polytopic
representations.

4.1 Quasi-LPV representation of the Aero

By applying the substitution-based method introduced in Chapter 3, known as the sector
nonlinearity technique [23], the nonlinear Aero model (2.43) can be represented in the quasi-
LPV form: {

ẋ(t) = A(ψ(t))x(t) + Bu(t)
y(t) = Cx(t)

(4.1)

where the state vector x(t) is defined as:

x(t) = [ωp(t) Ωp(t) θp(t) ωy(t) Ωy(t) θy(t)]
T (4.2)

and the input vector u(t) is defined as:

u(t) = [vp(t) vy(t)]
T (4.3)

The parameter vector ψ(t) contains ten varying parameter that embed the nonlinearities
in the nonlinear Aero model (2.43):

ψ(t) = [ψ1(t) ψ2(t) ψ3(t) ψ4(t) ψ5(t) ψ6(t) ψ7(t) ψ8(t) ψ9(t) ψ10(t)]
T (4.4)

These varying parameters are scheduled by all the states in Eq. (4.2) except θy(t), as there
are no nonlinearities associated with this state. The decomposition functions that make up
the varying parameters are shown in Eq. (4.5)- (4.14):

ψ1(t) = a11(t) = − KτKE

RaJrωp(t)
ωp(t)−

fa(ωp(t))

Jrωp(t)
= −KτKE

RaJr
− sign(ωp(t))ka1ωp(t) + ka2

Jr
(4.5)

40

CHAPTER 4. QUASI-LPV MODELING OF THE AERO

ψ2(t) = a21(t) =
fMp(ωp(t))dt

Jpωp(t)
=


dt
Jp

(kMpp1ωp(t) + kMpp2) if ωp(t) ≥ 0

dt
Jp

(kMpn1ωp(t) + kMpn2) if ωp(t) < 0

(4.6)

ψ3(t) = a22(t) = −
fDp(Ωp(t))

Ωp(t)
= −sign(Ωp(t))kDp1Ωp(t)− kDp2 (4.7)

ψ4(t) = a23(t) = −mbgdm sin(θp(t))

θp(t)
(4.8)

ψ5(t) = a24(t) =
fTp(ωy(t))dt

ωy(t)
=

{
dt(kTpp1ωy(t) + kTpp2) if ωy(t) ≥ 0

dt(kTpn1ωy(t) + kTpn2) if ωy(t) < 0
(4.9)

ψ6(t) = a25(t) = −Ωy(t)
2d2t (mA +mB) sin(2θp(t))

Ωy

= −Ωy(t)d
2
t (mA +mB) sin(2θp(t))

(4.10)

ψ7(t) = a34(t) = − KτKE

RaJrωy(t)
ωy(t)−

fa(ωy(t))

Jrωy(t)

= −KτKE

RaJr
− sign(ωy(t))ka1ωy(t) + ka2

Jr

(4.11)

ψ8(t) = a41(t) = −
fMy(ωp(t)) cos(θp(t))dt

Jy(θp)ωp(t)

=


− cos(θp(t))dt
kJy cos(θp(t))ωp(t)

(kMyp1ω
2
p(t) + kMyp2ωp(t)) if ωp(t) ≥ 0

− cos(θp(t))dt
kJy cos(θp(t))ωp(t)

(kMyn1ω
2
p(t) + kMyn2ωp(t)) if ωp(t) < 0

=


− dt
kJy

(kMyp1ωp(t) + kMyp2) if ωp(t) ≥ 0

− dt
kJy

(kMyn1ωp(t) + kMyn2) if ωp(t) < 0

(4.12)

ψ9(t) = a44(t) =
fTy(ωy(t)) cos(θp(t))dt

Jy(θp)ωy(t)

=


cos(θp(t))dt

kJy cos(θp(t))ωy(t)
(kTyp1ω

2
y(t) + kTyp2ωy(t)) if ωy(t) ≥ 0

cos(θp(t))dt
kJy cos(θp(t))ωy(t

(kTyn1ω
2
y(t) + kTyn2ωy(t)) if ωy(t) < 0

=


dt
kJy

(kTyp1ωy(t) + kTyp2) if ωy(t) ≥ 0

dt
kJy

(kTyn1ωy(t) + kTyn2) if ωy(t) < 0

(4.13)

41

CHAPTER 4. QUASI-LPV MODELING OF THE AERO

ψ10(t) = a45(t) =
−fDy(Ωy(t))− fFy

Jy(θp)Ωy(t)

=



−kDyp1Ωy(t)− kDyp2 − kFyp

kJy cos(θp(t))
if Ωy(t) > 0

−kDyp2 − sat(FTy(t) − FMy(t), FFy(t))

kJy cos(θp(t))
if Ωy(t) = 0

−kDyn1Ωy(t)− kDyn2 − kFyn

kJy cos(θp(t))
if Ωy(t) < 0

(4.14)

Placing the varying parameters in the state matrix A(ψ(t)) results in:

A(ψ(t)) =



ψ1(t) 0 0 0 0 0
ψ2(t) ψ3(t) ψ4(t) ψ5(t) ψ6(t) 0
0 1 0 0 0 0
0 0 0 ψ7(t) 0 0

ψ8(t) 0 0 ψ9(t) ψ10(t) 0
0 0 0 0 1 0

 (4.15)

The input matrix elements bij are time invariant and thus referred to as nonscheduling
parameters. As the main rotor and tail rotor are identical, the input parameters are also
identical:

b11 = b24 =
Kτ
RaJr

(4.16)

The input matrix B is defined as:

B =



b11 0
0 0
0 0
0 b24
0 0
0 0

 (4.17)

As described in Chapter 2, the Aero is equipped with rotary encoders that enables online
measurements of all the state variables in x(t). The output matrix C is therefore time
invariant and equal to the identity matrix I6:

C =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (4.18)

and the output vector y(t) is an exact reproduction of the state vector x(t):

y(t) = [ωp(t) Ωp(t) θp(t) ωy(t) Ωy(t) θy(t)]
T (4.19)

The feedthrough matrix D is equal to zero as there are exist no direct link between the
input and output signals.

42

CHAPTER 4. QUASI-LPV MODELING OF THE AERO

4.2 Methods for generating polytopic LPV systems

As discussed in the previous chapter, a polytopic representation of the Aero quasi-LPV
model (4.1) is needed in order to obtain a stable controller gain. The process of obtaining
the polytopic LPV representation expressed in Eq. (3.32) can in simpler terms be described
as building a convex polytope that encloses a cloud of points. Where the points represent
all the possible values of the parameter vector ψ(t) = [ψ1(t), . . . , ψj(t)]

T . There exists a
number of ways to define the term convex polytope. According to a definition known as the
vertex representation, a convex polytope is a convex hull of a finite set of points [28], where
a convex hull is defined as the intersection of all the convex sets comprising the set of points
[26]. Furthermore, a set is defined as convex if, for any given pair of points within the set,
the line segment between the points stays within the set [29].

For a given LPV-system, an infinite number of convex figures will allow the model to be
represented in a polytopic way. In this section, two bounding box approaches are considered.

4.2.1 Bounding box method

The first approach, called the bounding box method [22], is a simple but efficient technique
that involves building a rectangular or a hyper-rectangular box when working in higher
dimensions. The obtained box, which satisfies the conditions for being a convex polytope,
is constructed to enclose all possible values of ψ(t).

Prior to applying this method, the range of variation for each varying parameter must be
known, which can be expressed as:

ψ
j
≤ ψj ≤ ψj (4.20)

where ψ
j
and ψj denotes the lower and upper bounds. A set of N = 2nψ vectors ωi are then

created, where each vector contains a unique permutation of upper and lower bounds. Then,
by combining the vectors ωi, a convex hull which comprises all values of ψ(t) is formed,
where each vector corresponds to a vertex of the resulting polytope. Mathematically, this
corresponds to:

ψ ∈ Co{ω1,ω2, . . . ,ωN} (4.21)

where Co refers to the term convex combination [27]. Then, by using the vectors ωi, the
parameter vector ψ(t) can put in a polytopic representation:

ψ(t) ∈

{
N∑
i=1

µiωi, µi ≥ 0,
N∑
i=1

µi = 1

}
(4.22)

In Figure 4.1, the bounding box method has been applied to an exemplified system consisting
of two varying parameters α(t) = [α1(t) α2(t)]

T . For the purposes of avoiding confusion
with the Aero model, the varying parameters in the example are denoted as α(t). The
resulting convex shape, depicted by the blue line, demonstrates that the bounding box
method indeed produces a rectangular box that encompasses all values of α.

43

CHAPTER 4. QUASI-LPV MODELING OF THE AERO

-2 0 2 4 6

0

1

2

3

4

5

6

7

8

9

Figure 4.1: Example of the bounding box method applied to a random cloud of correlated
points.

As the state matrix A(ψ(t)) depends on the varying parameters, it also will vary within a
polytope of matrices:

A(ψ(t) ∈ Co{A1,A2, . . . ,AN} (4.23)

where the vertices correspond to the vectors ωi [22].

Consequently, the state matrix A(ψ(t)) can be represented as described in chapter 3.3:

A(ψ(t)) =
N∑
i=1

µi(ψ(t))Ai (4.24)

with:
N∑
i=1

µi(ψ(t)) = 1, µi(ψ(t)) ≥ 0 ∀1, . . . , N (4.25)

4.2.2 SVD-based boxing

A disadvantage of the bounding box approach is that it commonly produces polytopes en-
compassing a broader space than the cloud of points formed by the varying parameters.
This can be seen in the example in Figure 4.1, where the bounding box method resulted in
a relatively loose enclosing of the cloud of points. According to [3] the control performance
of LPV systems may be strongly influenced by how the polytopic representation is obtained.
In addition, [3] states that when describing LPV systems with a too simple polytopic repre-
sentation, it may lead to an infeasible solution in the LMI-based control design, even if the
system itself can be controllable. However, finding a tighter polytopic representation for a
complex quasi-LPV system can be challenging. In [23], the authors state that the number of
varying parameters increases exponentially with the number of nonlinearities when using the
sector nonlinearity embedding technique. This means that the number of vertices quickly

44

CHAPTER 4. QUASI-LPV MODELING OF THE AERO

can become significant. In [3], a solution is proposed which involves building a bounding
box in a new orthonormal coordinate system by the use of the matrix factorization known as
a singular value decomposition. This method, which is referred to as SVD-based boxing in
[3], may lead to a tighter polytopic representation than the standard bounding box method
without increasing the number of vertices.

The singular value decomposition (SVD) is a powerful factorization tool used across a variety
of areas, including data processing and machine learning. It involves decomposing a real or
complex n×m matrix X into the matrix product: UΣVT . For the purposes of this thesis,
let us only consider real matrices.

Theorem 2 (The SVD existence for general real matrices [8]). For any real matrix X ∈
Rn×m, there exist a decomposition such that:

X = UΣVT (4.26)

where U ∈ Rn×n and V ∈ Rm×m are orthogonal matrices, and Σ ∈ Rn×m is a diagonal
matrix with non-negative entries, such that when n < m:

X =

u1 u2 . . . um



σ1 0 0 . . . 0

σ2
...

...
. . .

...
...

0 σn 0 . . . 0




vT1
vT2
...
vTn

 (4.27)

and when n > m:

X =

u1 u2 . . . um





σ1 0
σ2

. . .
0 σn
0 0
...

...
0 0




vT1
vT2
...
vTn

 (4.28)

Remark 1. The diagonal entries σ1, σ2 . . . σn are referred to as singular values of X, while
the columns of U and V are referred to as left and right singular vectors of X, respectively
[30].

The SVD may be interpreted in a variety of ways depending on the practical application. For
a matrix X composed of n number of column vectors containing data points corresponding
to an n-dimensional dataset, the SVD presents a tool for identifying the dimensions which
exhibit the most variation in the data. In the case of building a convex hull for a set of
data points, this property can be advantageously utilized to rotate the data set into a new
orthonormal coordinate system in which the axes align with the directions of most variation.
Following this, a standard bounding box method can be applied in the new coordinate
system, and the vertices of this box can then be rotated back to the original coordinate

45

CHAPTER 4. QUASI-LPV MODELING OF THE AERO

system. A noteworthy point is that the new orthonormal coordinate frame obtained by the
SVD and the original coordinate frame will have the same origin. Therefore, in [3], it is
recommended that the data points should be centered at the origin prior to applying the
SVD-based boxing. This is achieved by removing the mean value from the set of data.

Example 2. For the purpose of demonstrating the SVD based boxing method, let us
consider the LPV system from the example presented in Figure 4:

ẋ(t) = A(α(t)) + Bu(t) (4.29)

where α(t) = [α1(t) α2(t)] is system’s vector of varying parameters.

First, each varying parameter needs to be represented as discrete variables:

αi
d(n) = [αi

1d(n) α
i2d(n)] (4.30)

where the superscript i represents an initial coordinate frame and the subscript d indicates
that the parameters are discrete.

Then, once discretized, the mean value of each varying parameters is subtracted:

α̂i
1d(n) = αi

1d(n)− ᾱi
1d (4.31)

α̂i
2d(n) = αi

2d(n)− ᾱi
2d (4.32)

where ᾱjd indicates the mean value and α̂jd refers to the data being centered.

Next, each varying parameter is expressed as a column vector and combined to form the
matrix Mi ∈ Rn×m. In this example, with two varying parameters, the matrix Mi has
the size 100× 2. The number n corresponds to the length of the column vectors, which is
detriment by the number of samples used to describe the discrete varying parameters.

Mi =


α̂i
1d(1) α̂i

2d(1)
α̂i
1d(2) α̂i

2d(2)
...

...
α̂i
1d(100) α̂i

2d(100)

 (4.33)

Then, by applying the SVD, the matrix Mi is decomposed into:

Mi = UΣVT (4.34)

where U ∈ R100×100, V ∈ R2×2 and Σ ∈ R100×2.

Now, the dimensions which exhibit the most variation can be identified by examining the
matrix VT :

VT =

[
vT1,1 vT1,2
vT2,1 vT2,2

]
(4.35)

The rows in VT represent vector coordinates for vectors that point in the direction of the
largest variation. These row vectors are also sorted in decreasing order from the direction of

46

CHAPTER 4. QUASI-LPV MODELING OF THE AERO

most variation to the direction of least variation. Figure 4.2 illustrates this property, where
v1 = (vT11 v

T
12) is depicted by a red line and v2 = (vT21 v

T
22) appears as a green line. Clearly,

v1 lies in the dimension with the most variation, while v2 lies in the dimension with the
second most variation. Also, when compared to Figure 4.1, Figure 4.2 demonstrates that
by removing the mean value, the cloud of points is centered in the origin.

-4 -2 0 2 4
-4

-2

0

2

4

Figure 4.2: Using the SVD to identify the dimensions which exhibit the most variation in a
random cloud of correlated points

In addition to indicating the dimensions which exhibit the most variation, the matrix VT

also acts as a rotation matrix that can rotate the data set into a new coordinate system in
which the axes align with the directions of most variation. A rotation matrix that performs
a counter-clockwise rotation of a set of points in a two-dimensional plane by an angle of ϕ
is defined as:

R =

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]
(4.36)

Rotation matrices are known as orthogonal matrices, meaning that RT = R−1. Thus, the
transposed rotation matrix will perform an inverse rotation, that is, a clockwise rotation.
This effect can be observed in Figure 4.3.

47

CHAPTER 4. QUASI-LPV MODELING OF THE AERO

yi

xi

ys

xs

v1

v2

yi

xi

ys

ys

v1

v2

VT

φ

Figure 4.3: Illustration of how VT acts as a rotation matrix.

Rotating the cloud of points by using VT can then be expressed as:

Ms = (VTMiT)T = MiV (4.37)

which corresponds to:
α̂s
1d(1) α̂s

2d(1)
α̂s
1d(2) α̂s

2d(2)
...

...
α̂s
1d(100) α̂s

2d(100)

 =


α̂i
1d(1) α̂i

2d(1)
α̂i
1d(2) α̂i

2d(2)
...

...
α̂i
1d(100) α̂i

2d(100)


[
v11 v12
v21 v22

]
(4.38)

where the superscript s refers to the new orthonormal coordinate frame.

Now, the standard bounding box approach can be applied in the new coordinate system as
previously described. That is, identifying the lower and upper bounds of the transformed
varying parameters α̂s

1d(n) and α̂s
2d(n):

α̂s
1d ≤ α̂s

1d(n) ≤ α̂s
1d (4.39)

α̂s
2d ≤ α̂s

2d(n) ≤ α̂s
2d (4.40)

and building vertex vectors containing all possible permutation of upper and lower bounds:

ω̂s
1 = [α̂s

1d α̂s
2dr] (4.41)

ω̂s
2 = [α̂s

1d α̂s
2dr] (4.42)

ω̂s
3 = [α̂s

1d α̂s
2d] (4.43)

ω̂s
4 = [α̂s

1d α̂s
2d] (4.44)

such that:
α̂s ∈ Co{ω̂s

1, ω̂
s
2, ω̂

s
3, ω̂

s
4} (4.45)

Figure 4.4 shows the result from applying the bounding box method in the rotated coordi-
nate frame, where the y-axis has been inverted.

48

CHAPTER 4. QUASI-LPV MODELING OF THE AERO

-5 0 5
-4

-2

0

2

4

Figure 4.4: Bounding box method applied in a rotated coordinate frame on a random cloud
of correlated points

Then, by defining a matrix containing the vertex vectors as column vectors:

Ω̂s =
[
ω̂s

1 ω̂s
2 ω̂s

3 ω̂s
4

]
(4.46)

the vertex coordinates can be rotated back to the original coordinate frame by performing an
inverse linear transformation. That is pre-multiplying Ω̂ by (VT)−1 which, since a rotation
matrix performers an orthogonal transformation, equals (VT)T = V. The inverse rotation
of the vertex vectors can be expressed as:

Ω̂i = VΩ̂s[
ω̂i

1 ω̂i
2 ω̂i

3 ω̂i
4

]
=

[
v1 v2

] [
ω̂s

1 ω̂s
2 ω̂s

3 ω̂s
4

]
[
ω̂i
11 ω̂i

12 ω̂i
13 ω̂i

14

ω̂i
21 ω̂i

22 ω̂i
23 ω̂i

24

]
=

[
v11 v12
v21 v22

][α̂s
1d α̂s

1d α̂s
1d α̂s

1d

α̂s
2d α̂s

2d α̂s
2d α̂s

2d

] (4.47)

Now, since a rotation matrix preserves the ratio of distance between points, the inverse-
rotated vertices will encompass the centred cloud of points in the initial coordinate frame:

α̂i ∈ Co{ω̂i
1, ω̂

i
2, ω̂

i
3, ω̂

i
4} (4.48)

Finally, the mean value of α1d(n) and α2d(n) is added to first and second row of Ω̂i in order
to obtain Ωi:

Ωi =

[
ω̂i
11 + ᾱi

1d ω̂i
12 + ᾱi

1d ω̂i
13 + ᾱi

1d ω̂i
14 + ᾱi

1d

ω̂i
21 + ᾱi

12d ω̂i
22 + ᾱi

2d ω̂i
23 + ᾱi

2d ω̂i
24 + ᾱi

2d

]
=

[
ωi

1 ωi
2 ωi

3 ωi
4

] (4.49)

49

CHAPTER 4. QUASI-LPV MODELING OF THE AERO

such that:
αi ∈ Co{ωi

1, ω
i
2, ω

i
3, ω

i
4} (4.50)

Figure 4.5 illustrates the resultant SVD boxes for the centered and original points. It is
evident that both the centered and the original points are enclosed by the SVD generated
polytopes. Hence, the vertex coordinates that encompasses the original points can be used
to obtain a polytopic LPV representation of A(α(t)) by following the steps in Eq. (4.21),
(4.22), (4.23), (4.24) and (4.25).

-4 -2 0 2 4 6 8
-6

-4

-2

0

2

4

6

8

Figure 4.5: Illustration on how the obtained vertex coordinates are translated in order to
fit the original set of points.

In Figure 4.6, the standard bounding box is shown in blue while the SVD box is shown in
red. Clearly, the SVD-based bounding box encompasses the points more tightly than the
original bounding box. In fact, applying the SVD-based boxing resulted in the enclosed
area being reduced by 170%. Such a reduction may be crucial when solving LMIs in order
to prove stability. As discussed in [3], if there exists an infeasible region close to the cloud of
points, the SVD-based boxing might serve as a tool to exclude this region. This scenario is
illustrated in Figure 4.6 by a black area which represents a non-controllable region. However,
the SVD-based boxing method does not guarantee a tighter enclosing than the standard
bounding box approach. Figure 4.7 shows a set of data points in a xy-coordinate system,
which is distributed in two different directions. When a standard bounding box and an
SVD-based box are applied to these points, the SVD-based box will result in an area that
is 6% larger than the standard bounding box.

50

CHAPTER 4. QUASI-LPV MODELING OF THE AERO

-2 0 2 4 6 8
0

2

4

6

8

Figure 4.6: Illustrative comparison of the standard and SVD-based bounding box method,
where the black area represents an infeasible region.

-20 -10 0 10

x

-5

0

5

10

15

20

25

30

y

Figure 4.7: An example of a set of data points where the SVD-based method does not result
in an improved encompassing

51

CHAPTER 4. QUASI-LPV MODELING OF THE AERO

4.3 Polytopic quasi-LPV Aero models

Mathematically, the polytopic quasi-LPV model of the Aero can be expressed as:ẋ(t) =
N∑
i=1

(
µiψ(t)Aix(t)

)
+ Bu(t)

y(t) = Cx(t)

(4.51)

where the non-negative coefficients µi follows the condition in (4.25). This section describes
how the standard bounding box method and the SVD-based boxing method have been
applied in order to obtain the vertex matrices A1,A2 . . .Ai.

4.3.1 Bounding box method applied to the Aero model

In accordance with section 4.2.1, the first step in building a bounding box is identifying the
upper and lower bounds of the system’s varying parameters. For the Aero model, the bound-
ary on each varying parameter is determined by the physical limitations of the state variables
they depend on. The physical limitations of the state variables ωp(t), Ωp(t), ωy(t), and Ωy(t)
are are determined by the voltage saturation on the main and tail motor, which are both
±24V . The construction of the Aero creates a physical limitation for the pitch angle θp(t),
while the yaw angle θy(t) is unlimited. Nevertheless, this unlimited yaw rotation does not
lead to an issue since there are no varying parameters dependent on θy(t). Table 4.1 shows
the physical limitations of the state variables, which were identified by online testing on the
Aero experiment setup.

State variable Minimum Maximum

ωp(t) −280 rad/s 320 rad/s

Ωp(t) −1.2 rad/s 1.5 rad/s

θp(t) −1.065 rad 0.970 rad

ωy(t) −280 rad/s 320 rad/s

Ωy(t) −8.80 rad/s 8.68 rad/s

θy(p) −∞ rad +∞ rad

Table 4.1: limitations on the state variables

A Matlab script attached in Appendix A.2 was used to calculate the local minima and
maxima for each of the varying parameters. The resulting lower and upper bounds are
presented in table 4.2. As can be seen from the table, the parameterψ3(t) is close to constant
with the small range of only 1.0×10−6. This is due to the constant KDp2 being significantly
larger than KDp1 in Eq. (4.7). The state matrix element a22 is therefore approximated as
the constant value of −KDp2 . This means that there is 9 varying parameters that result in
a vertex system with 29 = 512 vertices and 29 + 1 = 513 LMIs that need to be solved.

52

CHAPTER 4. QUASI-LPV MODELING OF THE AERO

Parameter, ψj(t) Lower Bound, ψj Upper Bound, ψj

ψ1(t) −5.29 −3.70

ψ2(t) −3.40× 10−4 4.50× 10−3

ψ3(t) −6.09× 10−3 −6.10× 10−3

ψ4(t) −3.27× 10−2 −2.69× 10−2

ψ5(t) −2.84× 10−6 7.14× 10−5

ψ6(t) −3.81× 10−1 3.82× 10−1

ψ7(t) −5.29 −3.70

ψ8(t) 3.70× 10−4 8.41× 10−2

ψ9(t) 4.13× 10−4 9.78× 10−2

ψ10(t) −8.11× 10−1 3.76× 10−1

Table 4.2: Lower and upper bounds of the varying parameters

In Figure 4.8, the range of variation for each varying parameter is graphically presented
by a bar graph. This representation makes it clear that the variation of the parameters
ψ1(t), ψ6(t), ψ7(t) and ψ10(t) are dominate. This means that the variation in the least
varying parameters could be approximated with a constant value. If this were to be done
with for example ψ2(t), ψ4(t) and ψ5(t), the number of vertices would be reduce from 512
to 26 = 64. In [22], such an approximation was found through a least-squares algorithm.
However, due to the time constraints of this thesis, such an approximation has not been
included.

1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

Figure 4.8: A bar chart showing the range of variation for each varying parameter

53

CHAPTER 4. QUASI-LPV MODELING OF THE AERO

The functions that make up the varying parameters are graphically presented in Figure 4.9,
with a plot for each parameter.

-400 -200 0 200 400
Angular main rotor velocity,

p
(t) [rad/s]

-5.5

-5

-4.5

-4

-3.5

1
(t

)

(a) ψ1(ωp(t))

-200 0 200 400
Angular main rotor velocity,

p
(t) [rad/s]

0

1

2

3

4

5

2
(t

)

10-3

Positive values of
p

Negative values of
p

(b) ψ2(ωp(t))

-1 -0.5 0 0.5 1 1.5
Angular pitch velocity,

p
(t) [rad/s]

6.09

6.095

6.1

3
(t

)

10-3

(c) ψ3(Ωp(t))

-1 -0.5 0 0.5 1
Angular pitch velocity,

p
(t) [rad/s]

-0.032

-0.03

-0.028

4
(t

)

(d) ψ4(Ωp(t))

-400 -200 0 200 400
Angular main rotor velocity,

y
(t) [rad/s]

-2

0

2

4

6

8

5
(t

)

10-5

Positive values of
y

Negative values of
y

(e) ψ5(ωy(t))

5
0

Angular yaw velocity,

y
(t) [rad/s]

-0.4
-5

-0.2

1

0

Pitch angle,
p
(t) [rad]

6
(t

)

0.5

0.2

0

0.4

-10-0.5 -1

(f) ψ6(Ωy(t), θp(t))

54

CHAPTER 4. QUASI-LPV MODELING OF THE AERO

-400 -200 0 200 400
Angular tail rotor velocity,

y
(t) [rad/s]

-5.5

-5

-4.5

-4

-3.5
7
(t

)

(g) ψ7(ωy(t))

-200 0 200 400
Angular main rotor velocity,

p
(t) [rad/s]

0

0.02

0.04

0.06

0.08

8
(t

)

Positive values of
p
(t)

Negative values of
p
(t)

(h) ψ8(ωy(t))

-200 0 200 400
Angular tail rotor velocity,

y
(t) [rad/s]

0

0.02

0.04

0.06

0.08

0.1

9
(t

)

Positive values of
y
(t)

Negative values of
y
(t)

(i) ψ9(ωy(t))

0.5

Pitch angle,

p
(t) [rad]

0
-1

-0.8

-0.6

-10

-0.4

10
(t

) -0.2

-5

0

-0.5
Angular yaw velocity,

y
(t) [rad/s]

0.2

0.4

0 5 -110

(j) ψ10(Ωy(t), θp(t))

Figure 4.9: Plots showing how the scheduling parameters ψ1(t) through ψ10(t) vary within
their lower and upper bounds.

The next step in the development of a polytopic Aero quasi-LPV model is placing every
possible permutation of the upper and lower bounds from table 4.2 into N = 512 vertex
matrices. Rather than having to do this manually, a Matlab code has been developed where
this is performed automatically through the use of for-loops. This code can be found in
Appendix A.2. The generated vertex matrices are then stored in a cell array such that the
LMIs for the LQR control design can be solved using Yalmip as shown in the code listing
3.2. The resulting polytopic consisting of 512 LTI systems, can then be expressed as:

ẋ(t) = ABbox1x(t) + Bu(t)
ẋ(t) = ABbox2x(t) + Bu(t)
... =

...
ẋ(t) = ABbox512x(t) + Bu(t)

(4.52)

55

CHAPTER 4. QUASI-LPV MODELING OF THE AERO

where the 1st and the 100th vertex matrix is defined as:

ABbox1 =


ψ1 0 0 0 0 0

ψ2 KDp2 ψ4 ψ5 ψ6 0
0 1 0 0 0 0

0 0 0 ψ7 0 0

ψ8 0 0 ψ9 ψ10 0
0 0 0 0 1 0

 =


−3.7 0 0 0 0 0
0.0045 −0.0061 −0.0269 7.14e−5 0.382 0

0 1.0 0 0 0 0
0 0 0 −3.7 0 0

0.0841 0 0 0.0978 0.376 0
0 0 0 0 1.0 0


(4.53)

ABbox100 =


ψ1 0 0 0 0 0

ψ2 KDp2 ψ
4
ψ

5
ψ6 0

0 1 0 0 0 0

0 0 0 ψ7 0 0

ψ8 0 0 ψ
9
ψ

10
0

0 0 0 0 1 0

 =


−3.7 0 0 0 0 0
0.0045 −0.0061 −0.0327 −2.84e−6 0.382 0

0 1.0 0 0 0 0
0 0 0 −3.7 0 0

0.0841 0 0 4.13e− 4 −0.811 0
0 0 0 0 1.0 0


(4.54)

4.3.2 SVD-based boxing method applied to the Aero model

To develop a second polytopic representation of the Aero quasi-LPV model based on the
SVD boxing method, the varying parameters have been categorized according to which
state variables they depend upon. A visual illustration of this categorization can be found
in Figure 4.11. The varying parameter ψ3 is excluded since it is regarded as constant. The
SVD-based boxing method was performed separately on each of the three groups following
the approach description from section 4.2.2, resulting in three smaller vertex systems, each
with the size of N = 23 = 8. Figure 4.10 shows the resulting three-dimensional SVD-based
polytope for ψ1, ψ2, and ψ8 compared to a standard bounding box. In this case, the
SVD-based approach resulted in a polytope with 2430 % less volume than a standard box.

4

2
10-32

0

0.02

-5.5

0.04

8

1

-5

0.06

0.08

-4.5 0

0.1

-4 -3.5

Figure 4.10: SVD-based bounding box (red) compared to a standard bounding box (blue)
applied to ψ1, ψ2 and ψ8

56

CHAPTER 4. QUASI-LPV MODELING OF THE AERO

Ψ1(t)

Ψ (t)

Ψ (t)

Ψ (t)

Ψ (t)

Ψ (t)

Ψ (t)Ψ (t)

Ψ (t)

ω ω

ΩΩ

θ

Ψ (t)

Figure 4.11: Systematized scheme of the state-dependent varying parameters.

Also for ψ5, ψ7, and ψ9, building a polytope based on the SVD theory resulted in a tighter
enclosing than with the use of a standard box. This can be seen in Figure 4.12, where in
this case, the SVD-based approach resulted in a polytope with 1920 % less volume than a
standard box. The fact that the reduction was greater for the results in Figure 4.10 than for
the results in Figure 4.12 is linked to the fact that the parameters ψ5 and ψ9 has a greater
range of variation than ψ2 and ψ8, which can be seen in Figure 4.8.

-5
-0.02

0

10

7

0.02

-4.5

0.049

0.06

0.08

5

10-5
5

0.1

-40
-5

Figure 4.12: SVD-based bounding box (red) compared to a standard bounding box (blue)
applied to ψ5, ψ7 and ψ9

57

CHAPTER 4. QUASI-LPV MODELING OF THE AERO

For the group containing the parameters ψ4, ψ6 and ψ10, applying the SVD-based boxing
method resulted in a larger polytope than by using the standard bounding box method. The
resulting polytopes are shown in Figure 4.13. The red box corresponding to the SVD-based
polytope has a volume that is 8.70% greater than the blue standard bounding box. From
the plot in Figure 4.13, it can be observed that the variation in the data points move in two
distinct directions. This formation is a result of the piecewise function in Eq. (4.14) which
takes different values depending on the sign of Ωy(t). Hence, the varying parameters ψ4,
ψ6, and ψ10 falls under the category discussed in section 4.2.2 and illustrated in Figure 4.7,
where the SVD-based method does not result in an improved polytopic representation.

0.5-0.034
0.5

-0.032

6

0

-0.034

0

10

-0.028

-0.026

-0.5
-0.5-1

Figure 4.13: SVD-based bounding box (red) compared to a standard bounding box (blue)
applied to ψ4, ψ6 and ψ10

The three sets of vertex systems of size N = 8 are then combined into one larger system
with N = 512 vertices, which can be expressed as:

ẋ(t) = ASV D1x(t) + Bu(t)
ẋ(t) = ASV D2x(t) + Bu(t)
... =

...
ẋ(t) = ASV D512x(t) + Bu(t)

(4.55)

58

CHAPTER 4. QUASI-LPV MODELING OF THE AERO

where the 1st and the 100th vertex matrix is defined as:

ASV D1 =



−5.29 0 0 0 0 0
0.00444 −0.0061 0.0479 0.0479 −3.7 0

0 1.0 0 0 0 0
0 0 0 −0.0235 0 0

0.424 0 0 −0.807 −0.0265 0
0 0 0 0 1.0 0

 (4.56)

ASV D100 =



−3.7 0 0 0 0 0
−2.22e− 4 −0.0061 −0.0146 −0.0146 −3.7 0

0 1.0 0 0 0 0
0 0 0 −0.0235 0 0

−0.366 0 0 −0.84 −0.0264 0
0 0 0 0 1.0 0

 (4.57)

59

Chapter 5

Results

The polytopic representations of the Aero quasi-LPV model derived in the previous chapter
have been used to solve the robust LQR controller LMIs derived in Chapter 3.3. However,
neither the standard bounding box method nor the SVD-based box solution was able to
provide feasible solutions due to a too large variation in the varying parameters. In other
words, it has not been possible to find a Lyapunov matrix P and a controller gain K that
satisfy all 512 + 1 LMIs by using the obtained representations. An LQR controller has
therefore not been successfully implemented on the Aero. However, s simulation scheme
attached in Appendix B.2 shows how an LQR controller could be implemented on the
Aero if a feasible controller gain were obtained. This Simulink logic employs an LQR
controller developed by Quanser to drive the Aero to different initial positions and then
switches to the robust LPV-based LQR controller derived in Chapter 3. The LQR controller
designed by Quaser is based on a linearized state space model containing the states: x(t) =
[θp(t) θy(t) Ωp(t) Ωy(t)]

T [18].

5.1 LMI results for robust control design

Although the obtained polytopic quasi-LPV models did not lead to a feasible controller
design, a comparative analysis of the two polytopic representations has been conducted.
This has been done by considering two cases, hereafter referred to as scenarios 1 and 2. In
these cases, the state variables limits have been further constrained in order to arrive at
feasible solutions.

5.1.1 Scenario 1

The state variable constraints used in scenario 1, can be found in the top part of Table
5.1. The lower part of Table 5.1 shows the results form solving the LMIs presented in Eq.
(3.67) using the Yalmip tool box. Additionally, the table presents a comparison between the
polytopic representations obtained and the three different solvers MOSEK, SeDuMi and SDPT3.
Each LMI solution is assessed based on the massage returned by the solver, the feasibility
of the solution, the resulting value of the trace of P, and the execution time of the code.
As the objective in the LMI-based optimization problem in Eq. (3.67) is to maximize the
value of the trace of P, a large value of tr(P) is desired.

60

CHAPTER 5. RESULTS

State variables limits

State Minimum Maximum State Minimum Maximum

ωp(t) 80 rad/s 320 rad/s ωy(t) 50 rad/s 320 rad/s

θp(t) −1.065 rad 0.970 rad Ωy(t) 0 rad/s 8.68 rad/s

LMI results

Solver Polytopic
representation

Problem
status Feasibility tr(P)

Execution
time [s]

MOSEK Bounding box Successfully
solved Feasible 40.52 2.8 s

SVD-based box Successfully
solved Feasible 63.01 1.4 s

SeDuMi Bounding box Successfully
solved Feasible 40.27 25.2 s

SVD-based box Numerical
problems Feasible 63.01 11.4 s

SDPT3 Bounding box Numerical
problems Feasible 40.27 12.9 s

SVD-based box Lack of
progress Feasible 63.01 11.1 s

Table 5.1: Stability assessment, scenario 1

Despite some error messages that solvers SeDuMi and SDPT3 returned, all three solvers were
able to determine a feasible solution. It is worth noting that the solver MOSEK performed the
optimization significantly faster than the other solvers. This is understandable considering
MOSEK is a commercially licensed product, while SeDuMi and SDPT3 are free. Table 5.1 also
shows that using MOSEK resulted in a slightly larger value for the trace of P for the bounding
box representation than the other solvers.

By observing the resulting values for the trace of P, it is clear to see that using the SVD-
based method results in a more optimal solution. This implies that the SVD-based polytopic
representation should have better performance on the Aero than the standard bounding box
method. That is, if a method to reduce the variation within the polytope can be obtained
such that the LMIs with the original state variable constraints can be solved. This suggestion
comes from the fact that the value of trace(P) has a direct link to the value of the linear
quadratic cost function J as discussed in Chapter 3.3.

5.1.2 Scenario 2

The second scenario evaluates a case with less constrained state variable limits as seen in
the top part of Table 5.2. In this case, only the SVD-base polytopic representation resulted
in a feasible solution, which further suggest that this representation should produce a better
controller.

61

CHAPTER 5. RESULTS

State variables limits

State Minimum Maximum State Minimum Maximum

ωp(t) 5 rad/s 320 rad/s ωy(t) −280 rad/s 320 rad/s

θp(t) −1.065 rad 0.970 rad Ωy(t) 0 rad/s 8.68 rad/s

LMI results

Solver Polytopic
representation

Problem
status Feasibility tr(P)

Execution
time [s]

MOSEK Bounding box Unknown error Infeasible N/A N/A

SVD-based box Successfully
solved Feasible 12.04 1.8 s

SeDuMi Bounding box Infeasible
problem Infeasible N/A N/A

SVD-based box Numerical
problems Feasible 12.04 15.1s

SDPT3 Bounding box Numerical
problems Infeasible N/A N/A

SVD-based box Lack of
progress Feasible 12.04 11.1 s

Table 5.2: Stability assessment, scenario 2

Figure 5.1 shows the range of variability for the varying parameters for scenarios 1 and
2 compared to the original variation from Figure 4.8. Based on this graph, it is evident
that parameter ψ10 plays a substantial role in the fact that the LMIs corresponding to
the original range of variation are not feasible. Therefore finding a solution to the split
formation of points seen in Figure 4.13 could prove to be vital in obtaining a controllable
polytopic LPV representation of the Aero. This is further discussed in the next chapter.

1 2 4 5 6 7 8 9 10

0

0.5

1

1.5

Figure 5.1: Varying parameter variation for scenarios 1 and 2 compared to original variation

62

Chapter 6

Conclusions and future work

6.1 Conclusions

This thesis has derived and experimentally identified a nonlinear model of the Quanser
Aero 2 DOF configuration. Furthermore, the model was proven to represent the real system
well. However, through model validation, it was observed that the yaw motion had some
unmodeled dynamics and performed more poorly for low angular velocities than for high
angular velocities. The nonlinear model was transformed into a quasi-LPV system by intro-
ducing ten varying parameters, which later were reduced to nine. Two different polytopic
representations of the quasi-LPV model were derived using a bounding box method and
an SVD-based approach. This allowed for a finite number of LMIs to be solved in order
to obtain a stable, robust LQR state feedback control gain. However, due to too much
variation in the varying parameters, a stable controller gain could not be obtained without
containing the varying parameters. The control design could therefore not be implemented
on the Aero system. Despite this, the two polytopic representations were compared using
two different sets of constraints on the system states and thus also the varying parameters.
Based on the findings of this project, the following conclusions can be drawn:

• A robust LQR state feedback controller could not be obtained for neither the two
polytopic Aero quasi-LPV models because of too much variation in the varying pa-
rameters.

• The polytopic representation obtained by using the bounding box method resulted in
a polytope encompassing a significantly larger space than the region containing points
corresponding to the Aero varying parameters.

• The SVD-based polytopic representation resulted in a smaller convex polytope than
the bounding box method for the parameters ψ1, ψ2, ψ8, ψ5, ψ7 and ψ9.

• Due to a split formation of the variation within the parameters ψ4, ψ6 and ψ10, the
SVD-based polytopic representation did not result in a smaller convex polytope than
the bounding box method.

• The SVD-based polytopic representation of the Aero LPV-model resulted in a more
optimal LQR controller than the standard bounding box method. In addition, the

63

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

SVD-based polytopic representation resulted in a feasible LMI solution for a set of
varying parameter constraints where the bounding box method did not.

• In comparison to the other two solvers, the MOSEK solver executes code significantly
faster.

6.2 Future work

The following suggests future work that might lead to feasible LMI solutions for the LPV
Aero model and further enhance the state feedback controller.

• In order to deal with the fact that the varying parameters ψ1(t), ψ2(t), ψ5(t), ψ7(t),
ψ8(t), ψ9(t) and ψ10(t) includes piecewise functions that creates a split in the varia-
tion of the parameters, a method known as control of switched LPV systems could by
applied. This switching effect in the varying parameters in this project was especially
seen for the varying parameters in Figure 4.13. However, dealing with the switched
variation in all the above mentioned parameters could be vital in order to arrive at
a feasible LMI solution. In [9], a switched LPV system is developed by introducing
different regions in the state space depending on the values of the system varying pa-
rameters. The Lyapunov function V (x(t)) was then made dependent on the varying
parameters: V (x(t),ψ(t)) and a family of LPV controllers were designed for each
region. This method could be applied on the Aero model by introducing different
regions depending on the sign of the states ωp/y and Ωp/y.

• The state feedback controller could further be improved by introducing gain scheduling
control. For an LPV system, this is done by defining a parameter dependent gain
matrix K(ψ) [23]. The control system will then contain a N number of controller
gain Ki corresponding to the N number of vertices of the polytopic representation.

• The state feedback control law could be made more advanced such that the controller
would be able to track trajectory references.

• For the SVD-based polytopic representation, the number of vertex systems could be
reduced by performing a dimensionality reduction. This is based on the theory known
as a principal component analysis (PCA).

• The number of varying parameters could be reduced by neglecting the rotor dynamics
and instead creating thrust functions based on different input voltages, as done in [7].

• Other more advanced polytopic representations could be developed.

• The state feedback controller cloud be designed by pole placement methods such as
D-stability [23]. This would allow the poles of the closed loop system to be placed in
a desired region in the complex plane, such that a desired transient response could be
ordained.

The nonlinear Aero model could be further improved by considering the following:

64

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

• The model equations for the yaw motion could be improved by incorporation different
functions depending on both the magnitude and sign of the yaw velocity. This could
resolve the problems shown in Figure 2.13, where the the model performed worse for
low angular yaw velocities.

• The damping about the pitch axis could be identified be a sum of least squares algo-
rithm instead of experimental tuning.

65

References

[1] H. S. Abbas, R. Tóth, M. Petreczky, N. Meskin, and J. Mohammadpour. Embedding of nonlinear
systems in a linear parameter-varying representation. IFAC Proceedings Volumes, 47(3):6907–6913,
2014.

[2] ACME. ACME H-60 Dynamic Motion Seat System, 2022. URL [Online; accessed 06.04.2022].

[3] P. Baranyi. Convex hull generation methods for polytopic representations of lpv models. In 2009 7th
International Symposium on Applied Machine Intelligence and Informatics, pages 69–74. IEEE, 2009.

[4] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix inequalities in system and control
theory. SIAM, 1994.

[5] F. Casella and M. Lovera. Lpv/lft modelling and identification: overview, synergies and a case study.
In 2008 IEEE International Conference on Computer-Aided Control Systems, pages 852–857. IEEE,
2008.

[6] O. Egeland and J. T. Gravdahl. Modeling and simulation for automatic control, volume 76. Marine
Cybernetics Trondheim, Norway, 2002.

[7] J. M. Frasik and S. I. L. Gabrielsen. Practical application of advanced control. Master’s thesis,
University of Agder, 2018.

[8] M. Grasmair. The singular value decomposition. Norwegian University of Science and Technology,
2016. URL [Online; accessed 09.05.2022].

[9] X. He, G. M. Dimirovski, and J. Zhao. Control of switched lpv systems using common lyapunov
function method and an f-16 aircraft application. In 2010 IEEE International Conference on Systems,
Man and Cybernetics, pages 386–392. IEEE, 2010.

[10] H. K. Khalil. Nonlinear systems third edition. Patience Hall, 115, 2002.

[11] S. Kumar and L. Dewan. A comparative analysis of lqr and smc for quanser aero. In Control and
Measurement Applications for Smart Grid, pages 453–463. Springer, 2022.

[12] J. Löfberg. State feedback design for LPV system, 2016. URL [Online; accessed 09.05.2022].

[13] J. Löfberg. Strict inequalities, 2021. URL [Online; accessed 09.05.2022].

[14] Mark Mikofski. polyfitZero. MATLAB Central File Exchange, 2022. URL [Online; accessed 02.04.2022].

[15] J. Mohammadpour and C. Scherer. Control of Linear Parameter Varying Systems with Applications.
Springer New York, 2012. ISBN 9781461418344.

[16] NI. Quanser AERO: Advanced Controls Applications - Half-Quad, 2022. URL [Online; accessed
02.04.2022].

[17] K. Ogata et al. Modern control engineering, volume 5. Prentice hall Upper Saddle River, NJ, 2010.

66

https://www.acme-worldwide.com/about-acme/overview/
https://wiki.math.ntnu.no/_media/tma4205/2017h/svd.pdf
https://ymip.github.io/example/lpvstalatefeedback/
https://yalmip.github.io/inside/strictinequalities/
https://se.mathworks.com/matlabcentral/fileexchange/35401-polyfitzero
https://education.ni.com/teach/resources/306/quanser-aero-advanced-controls-applications-half-quad

REFERENCES

[18] QUANSER AERO - 2DOF Laboratory Guide. Quanser Inc, 119 Spy Court Markham, Ontario, 2016.

[19] Quick Start Guide: Quanser AERO USB. Quanser Inc, 119 Spy Court Markham, Ontario, 2016.

[20] QUANSER AERO - First Principles Modeling. Quanser Inc, 119 Spy Court Markham, Ontario, 2020.

[21] Quanser Inc. Quanser AERO - Features, 2022. URL [Online; accessed 17.03.2022].

[22] D. Rotondo, F. Nejjari, and V. Puig. Quasi-lpv modeling, identification and control of a twin rotor
mimo system. Control Engineering Practice, 21(6):829–846, 2013.

[23] D. Rotondo, H. S. Sanchez, F. Nejjari, and V. Puig. Analysis and design of linear parameter varying
systems using lmis. Rev. Iberoam. Autom. Inform. Ind, 16:1–14, 2019.

[24] J. S. Shamma. Analysis and design of gain scheduled control systems. PhD thesis, Massachusetts
Institute of Technology, 1988.

[25] H. O. Wang and K. Tanaka. Fuzzy control systems design and analysis: A linear matrix inequality
approach. John Wiley & Sons, 2004.

[26] Weisstein, Eric W. Convex Hull. MathWorld - A Wolfram Web Resource, 2022. URL [Online; accessed
19.04.2022].

[27] Wikipedia. Convex combination — Wikipedia, the free encyclopedia, 2022. URL [Online; accessed
09.05.2022].

[28] Wikipedia. Convex polytope — Wikipedia, the free encyclopedia, 2022. URL [Online; accessed
08.05.2022].

[29] Wikipedia. Convex set — Wikipedia, the free encyclopedia, 2022. URL [Online; accessed 08.05.2022].

[30] Wikipedia. Singular value decomposition — Wikipedia, the free encyclopedia, 2022. URL [Online;
accessed 09.05.2022].

67

https://www.quanser.com/products/quanser-aero/
https://mathworld.wolfram.com/ConvexHull.html
http://en.wikipedia.org/w/index.php?title=Convex%20combination&oldid=1074687547
http://en.wikipedia.org/w/index.php?title=Convex%20polytope&oldid=1079494436
http://en.wikipedia.org/w/index.php?title=Convex%20set&oldid=1075320810
http://en.wikipedia.org/w/index.php?title=Singular%20value%20decomposition&oldid=1082288629

Appendices

68

Appendix A

Matlab code

A.1 Regression Analysis

1 %% Yaw Inertia
2 clear
3 close all
4

5 YawVelocity_p = [5.39 5.68 2.42 5.62 5.66 5.68 4.17 6.50 6.77 5.13 ...
1.84 6.88 6.76 2.64 7.14 7.2 4.47 5.8 5.96]; %rad/s

6 DecelerationTime_p = [10.9 11.1 5.39 10.67 5.69 9.87 7.97 11.16 9.61 ...
8.19 3.08 10.26 9.90 4.06 7.23 8.86 3.65 7.75 9.77]; % s

7 PitchAngle = [0 0.166 0.166 0.20 0.936 0.494 0.417 0.473 0.63 0.638 ...
0.688 0.688 0.672 0.733 0.942 0.854 -1.08 -0.724 -0.503]; % rad

8

9 Deceleration_p = YawVelocity_p ./ DecelerationTime_p; %rad/s^2
10

11 J_y = (1.84e-05* YawVelocity_p .^2 +0.000363* YawVelocity_p + ...
0.00616) ./ Deceleration_p;

12

13 p_p = polyfit(PitchAngle , J_y , 2);
14 yfit_p = polyval(p_p ,PitchAngle);
15 yresid = J_y - yfit_p;
16 SSresid_p = sum(yresid .^2);
17 SStotal_p = (length(J_y) -1) * var(J_y);
18 rsq_p = 1 - SSresid_p/SStotal_p;
19

20 x_pos = linspace(min(PitchAngle), max(PitchAngle), 10000);
21

22 % Defining rgb colors
23 c1 = [76, 120, 126]/256;
24 c2 = [0, 0, 0]/256;
25 c3 = [247, 93, 89]/256;
26

27 figure (1)
28 plot(PitchAngle , J_y , 'o', 'MarkerEdgeColor ', ...

c1,'MarkerFaceColor ',c1, ...
29 LineWidth =1.2, MarkerSize =10)
30 hold on

69

APPENDIX A. MATLAB CODE

31 plot(x_pos , polyval(p_p ,x_pos), 'color', c2, LineWidth =1.6)
32 plot(x_pos ,p_p(3)*cos(x_pos),'--','color', c3,LineWidth =1.6)
33 xlim ([-1.2 1])
34 xlabel('Pitch angle , \theta_p [rad]')
35 ylabel('Yaw inertia [kgm^2]')
36 legend('Data from acceleration test', 'Fitted model', 'Cosine ...

function ',Location='northwest ')
37

38 set(findall(figure (1),'-property ','FontSize '),'FontSize ' ,14)
39

40 %% Yaw Friction and Damping
41 clear
42 J_y = 0.0184;
43

44 DecelerationTime_p = [2.17 2.2 3.3 2.8 3.5 3.9 4.8 6.9 7.8 8.9 9.6 ...
10.8 11.8 12.2 12.7 13.2 13.3 13.5 15.1 16]; % s

45 YawVelocity_p = [0.82 0.891 1.06 1.09 1.14 1.39 1.69 2.54 2.98 3.65 ...
4.32 4.98 5.57 6.06 6.47 7.05 7.28 7.52 8.42 9.57]; %rad/s;

46 Deceleration_p = YawVelocity_p ./ DecelerationTime_p;
47 FrictionDampingSum_p = Deceleration_p .* J_y;
48

49 DecelerationTime_n = [7.0 8.1 8.7 9.7 10.4 11.8 13.0 16.8 15.4 14.6 ...
3.2 4.4]; % s

50 YawVelocity_n = [-2.3 -3.1 -3.7 -4.2 -4.7 -5.6 -6.1 -8.6 -7.8 -6.8 ...
-0.96 -1.5]; %rad/s;

51 Deceleration_n = YawVelocity_n ./ DecelerationTime_n;
52 FrictionDampingSum_n = Deceleration_n .* J_y;
53

54 % Defining rgb colors
55 c1 = [52, 73, 94]/256;
56 c2 = [0, 0, 0]/256;
57

58 p_p = polyfit(YawVelocity_p , FrictionDampingSum_p , 2);
59 yfit_p = polyval(p_p ,YawVelocity_p);
60 yresid_p = FrictionDampingSum_p - yfit_p;
61 SSresid_p = sum(yresid_p .^2);
62 SStotal_p = (length(FrictionDampingSum_p) -1) * var(FrictionDampingSum_p);
63 rsq_p = 1 - SSresid_p/SStotal_p;
64 x_pos_p = linspace(min(YawVelocity_p),max(YawVelocity_p), 10000);
65

66 figure (2)
67 plot(YawVelocity_p , FrictionDampingSum_p , 'o', 'MarkerEdgeColor ', ...
68 c1 , 'MarkerFaceColor ',c1, LineWidth =1.2, MarkerSize =10)
69 hold on
70 plot(x_pos_p , polyval(p_p ,x_pos_p),"Color",c2, LineWidth =1.6, ...

MarkerSize =8)
71 xlabel('Angluar Velocity about the Yaw Axis , \Omega_y [rad/s]')
72 ylabel('Sum of Damping and Friction [Nm]')
73 legend('Data from free spin test', 'Fitted model', Location='northwest ')
74 xlim ([0 10])
75 set(findall(figure (2),'-property ','FontSize '),'FontSize ' ,14)
76

77 p_n = polyfit(YawVelocity_n , FrictionDampingSum_n , 2);
78 yfit_n = polyval(p_n ,YawVelocity_n);
79 yresid_n = FrictionDampingSum_n - yfit_n;

70

APPENDIX A. MATLAB CODE

80 SSresid_n = sum(yresid_n .^2);
81 SStotal_n = (length(FrictionDampingSum_n) -1) * var(FrictionDampingSum_n);
82 rsq_n = 1 - SSresid_n/SStotal_n;
83 x_pos_n = linspace(min(YawVelocity_n),max(YawVelocity_n), 10000);
84

85 figure (12)
86 plot(YawVelocity_n , FrictionDampingSum_n , 'o', 'MarkerEdgeColor ', ...
87 c1 , 'MarkerFaceColor ',c1, LineWidth =1.2, MarkerSize =10)
88 hold on
89 plot(x_pos_n , polyval(p_n ,x_pos_n),"Color",c2, LineWidth =1.6, ...

MarkerSize =8)
90 xlabel('Angluar Velocity about the Yaw Axis , \Omega_y [rad/s]')
91 ylabel('Sum of Damping and Friction [Nm]')
92 legend('Data from free spin test', 'Fitted model', Location='northwest ')
93 ylim ([-10e-03 -5e -03])
94 set(findall(figure (12),'-property ','FontSize '),'FontSize ' ,14)
95

96

97

98 %% Cross Torque about Pitch axis
99 clear

100 close all
101

102 omega_y_pos = [0 39.6 82.5 118 149 182 213 242 270 ...
296];

103 theta_p_pos = [0 0.00613 0.0399 0.0828 0.147 0.218 0.304 0.397 ...
0.493 0.647];

104

105 omega_y_neg =[-322 -297 -242 -213 -182 -149 -118 ...
-82.6 -39.9 0];

106 theta_p_neg= [-0.556 -0.459 -0.362 -0.267 -0.192 -0.129 -0.0736 ...
-0.0338 -0.00307 0];

107

108 g = 9.81;
109 D_m = 0.0029;
110 m = 1.15;
111 D_t = 0.158; %m
112

113 F_g_pos = g*D_m*m*sin(theta_p_pos)/D_t;
114 F_g_neg = g*D_m*m*sin(theta_p_neg);
115

116 p_pos = polyfit(omega_y_pos , F_g_pos , 2);
117 yfit_pos = polyval(p_pos ,omega_y_pos);
118 yresid_pos = F_g_pos - yfit_pos;
119 SSresid_pos = sum(yresid_pos .^2);
120 SStotal_pos = (length(F_g_pos) -1) * var(F_g_pos);
121 rsq_pos = 1 - SSresid_pos/SStotal_pos
122

123 % Regression model with fixt zero intercept
124 p_pos2 = polyfitB(omega_y_pos , F_g_pos , 2,0)
125 yfit_pos2 = polyval(p_pos2 ,omega_y_pos);
126 yresid_pos2 = F_g_pos - yfit_pos2;
127 SSresid_pos2 = sum(yresid_pos2 .^2);
128 SStotal_pos2 = (length(F_g_pos) -1) * var(F_g_pos);
129 rsq_pos2 = 1 - SSresid_pos2/SStotal_pos2

71

APPENDIX A. MATLAB CODE

130

131 p_neg = polyfit(omega_y_neg , F_g_neg , 2)
132 yfit_neg = polyval(p_neg ,omega_y_neg);
133 yresid_neg = F_g_neg - yfit_neg;
134 SSresid_neg = sum(yresid_neg .^2);
135 SStotal_neg = (length(F_g_neg) -1) * var(F_g_neg);
136 rsq_neg = 1 - SSresid_neg/SStotal_neg
137

138 p_neg2 = polyfitB(omega_y_neg , F_g_neg , 2,0)
139 yfit_neg2 = polyval(p_neg2 ,omega_y_neg);
140 yresid_neg2 = F_g_neg - yfit_neg2;
141 SSresid_neg2 = sum(yresid_neg2 .^2);
142 SStotal_neg2 = (length(F_g_neg) -1) * var(F_g_neg);
143 rsq_neg = 1 - SSresid_neg2/SStotal_neg2
144

145 x_pos = linspace(min(omega_y_pos),max(omega_y_pos), 10000);
146 x_neg = linspace(min(omega_y_neg),max(omega_y_neg), 10000);
147 % Defining rgb colors
148 c1 = [27, 79, 114]/256;
149 c2 =[0 0.4470 0.7410];
150

151 figure (3)
152 plot(omega_y_pos , F_g_pos , 'o', 'MarkerEdgeColor ', c1, ...

'MarkerFaceColor ',c1,LineWidth =1.2, MarkerSize =12)
153 hold on
154 plot(x_pos , polyval(p_pos ,x_pos),'Color',c2, LineWidth =1.6)
155 plot(x_pos , polyval(p_pos2 ,x_pos),'k --', LineWidth =2.5, MarkerSize =12)
156 xlabel('Angular velocity of The Tail Rotor , \omega_y ...

[rad/s]',FontSize =16)
157 ylabel('f_{Tp}(\ omega_y) [N]',FontSize =16)
158 legend('Data', 'Fitted model','Fixed zero intercept ...

model',Location='northwest ')
159

160 figure (4)
161 plot(omega_y_neg , F_g_neg , 'o', 'MarkerEdgeColor ', c1, ...

'MarkerFaceColor ',c1,LineWidth =1.2, MarkerSize =12)
162 hold on
163 plot(x_neg , polyval(p_neg ,x_neg),"Color",c2, LineWidth =1.6)
164 plot(x_neg , polyval(p_neg2 ,x_neg),'k --', LineWidth =2.5, MarkerSize =12)
165 xlabel('Angular velocity of The Tail Rotor , \omega_y [rad/s]')
166 ylabel('f_{Tp}(\ omega_y) [N]')
167 legend('Data', 'Fitted model','Fixed zero intercept ...

model',Location='northwest ')
168

169 set(findall(figure (3),'-property ','FontSize '),'FontSize ' ,16)
170 set(findall(figure (4),'-property ','FontSize '),'FontSize ' ,16)
171

172 %% Main Torque About Pitch Axis
173 clear
174 close all
175

176 theta_p = [-0.543 -0.41 -0.288 -0.184 -0.114 -0.046 -0.0092
177 0 0.00614 0.046 0.0982 0.166 0.249 0.347 0.431];
178

179 omega_p_pos = [0 39.6 82.5 118 149 182 213 242];

72

APPENDIX A. MATLAB CODE

180 theta_p_pos = [0 0.00614 0.046 0.0982 0.166 0.249 0.347 0.431];
181

182 omega_p_neg = [-242 -213 -182 -149 -118 -82.6 -39.9 0];
183 theta_p_neg = [-0.543 -0.41 -0.288 -0.184 -0.114 -0.046 -0.0092 0];
184

185 g = 9.81;
186 D_m = 0.0029;
187 m = 1.15;
188 D_t = 0.158; %m
189

190 F_g_pos = g*D_m*m*sin(theta_p_pos)/D_t;
191 F_g_neg = g*D_m*m*sin(theta_p_neg)/D_t;
192

193 p_pos = polyfit(omega_p_pos , F_g_pos , 2);
194 yfit_pos = polyval(p_pos ,omega_p_pos);
195 yresid_pos = F_g_pos - yfit_pos;
196 SSresid_pos = sum(yresid_pos .^2);
197 SStotal_pos = (length(F_g_pos) -1) * var(F_g_pos);
198 rsq_pos = 1 - SSresid_pos/SStotal_pos;
199

200 % Regression model with fixt zero intercept
201 p_pos2 = polyfitB(omega_p_pos , F_g_pos , 2,0);
202 yfit_pos2 = polyval(p_pos2 ,omega_p_pos);
203 yresid_pos2 = F_g_pos - yfit_pos2;
204 SSresid_pos2 = sum(yresid_pos2 .^2);
205 SStotal_pos2 = (length(F_g_pos) -1) * var(F_g_pos);
206 rsq_pos2 = 1 - SSresid_pos2/SStotal_pos2;
207

208 p_neg = polyfit(omega_p_neg , F_g_neg , 2);
209 yfit_neg = polyval(p_neg ,omega_p_neg);
210 yresid_neg = F_g_neg - yfit_neg;
211 SSresid_neg = sum(yresid_neg .^2);
212 SStotal_neg = (length(F_g_neg) -1) * var(F_g_neg);
213 rsq_neg = 1 - SSresid_neg/SStotal_neg;
214

215 % Regression model with fixt zero intercept
216 p_neg2 = polyfitB(omega_p_neg , F_g_neg , 2,0);
217 yfit_neg2 = polyval(p_neg2 ,omega_p_neg);
218 yresid_neg2 = F_g_neg - yfit_neg2;
219 SSresid_neg2 = sum(yresid_neg2 .^2);
220 SStotal_neg2 = (length(F_g_neg) -1) * var(F_g_neg);
221 rsq_neg2 = 1 - SSresid_neg2/SStotal_neg2;
222

223 x_pos = linspace(min(omega_p_pos),max(omega_p_pos), 10000);
224 x_neg = linspace(min(omega_p_neg),max(omega_p_neg), 10000);
225

226 % Defining rgb colors
227 c1 = [128, 0,0]/256;
228 c2 =[0 0.4470 0.7410];
229

230 figure (6)
231 plot(omega_p_pos , F_g_pos , 'o', 'MarkerEdgeColor ', c1, ...

'MarkerFaceColor ',c1,LineWidth =1.2, MarkerSize =12)
232 hold on
233 plot(x_pos , polyval(p_pos ,x_pos),"Color",c2,LineWidth =1.5, MarkerSize =12)

73

APPENDIX A. MATLAB CODE

234 plot(x_pos , polyval(p_pos2 ,x_pos),'k --', LineWidth =2.5, MarkerSize =12)
235 xlabel('Angular velocity of The Main Rotor , \omega_p [rad/s]')
236 ylabel('f_{1p}(\ omega_p) [N]')
237 legend('Data', 'Fitted model', 'Fixed zero intercept ...

model',Location='northwest ')
238

239 figure (7)
240 plot(omega_p_neg , F_g_neg , 'o', 'MarkerEdgeColor ', c1, ...

'MarkerFaceColor ',c1,LineWidth =1.2, MarkerSize =12)
241 hold on
242 plot(x_neg , polyval(p_neg ,x_neg),"Color",c2, LineWidth =1.6, ...

MarkerSize =12)
243 plot(x_neg , polyval(p_neg2 ,x_neg),'k --', LineWidth =2.5, MarkerSize =12)
244 xlabel('Angular velocity of The Main Rotor , \omega_p [rad/s]')
245 ylabel('f_{2}(\ omega_p) [N]')
246 legend('Data', 'Fitted model','Fixed zero intercept ...

model',Location='northwest ')
247

248 set(findall(figure (6),'-property ','FontSize '),'FontSize ' ,16)
249 set(findall(figure (7),'-property ','FontSize '),'FontSize ' ,16)

A.2 Bounding Box Method

1 clear
2 format short e
3 % Constants
4 Aero_parameters
5

6 % State variable limits
7

8 op_min = 5;
9 op_max = 320;

10 oy_min = -280;
11 oy_max = 320;
12 theta_p_max = 0.9695;
13 theta_p_min = -1.065;
14 Omega_y_min = -8.8;
15 Omega_y_max = 0;
16

17 op = linspace(op_min , op_max ,100);
18 oy = linspace(oy_min , oy_max ,100);
19 numPoints = 50;
20 Omega_y_v = linspace(Omega_y_min , Omega_y_max , numPoints);
21 Omega_y_v2 = [Omega_y_v (1 ,1:25), 0, Omega_y_v (1,26:end)];
22 theta_p_v = linspace(theta_p_min , theta_p_max , numPoints);
23 theta_p_v2 = [theta_p_v (1 ,1:26), 0, theta_p_v (1,27:end)];
24 [Omega_y , theta_p] = ndgrid(Omega_y_v2 , theta_p_v2);
25

26 % Calculating the functions that make up the varying parameters
27 p1 = -((K_tau*K_E)/(R_a*J_r)) - (sign(op)*k_a1.*op + k_a2)/J_r;
28 p2 = zeros(1,length(op));
29 p8 = zeros(1,length(op));

74

APPENDIX A. MATLAB CODE

30 for i = 1: length(op)
31 if op(i) ≥ 0
32 p2(i) = d_t*(K_Mpp1*op(i) + K_Mpp2)/J_p;
33 p8(i) = -(d_t/K_Jy)*(K_Myp2 .*op(i) + K_Myp1);
34 else
35 p2(i) = d_t*(K_Mpn1*op(i) + K_Mpn2)/J_p;
36 p8(i) = -(d_t/K_Jy)*(K_Myn2*op(i) + K_Myn1);
37 end
38 end
39

40 p7 = -((K_tau*K_E)/(R_a*J_r)) - (sign(oy)*k_a1.*oy + k_a2)/J_r;
41 p5 = zeros(1,length(oy));
42 p9 = zeros(1,length(oy));
43 for i = 1: length(oy)
44 if oy(i) ≥ 0
45 p5(i) = d_t*(K_Tpp1 .*oy(i) + K_Tpp2);
46 p9(i) = (d_t/K_Jy)*(K_Typ2 .*oy(i) + K_Typ1);
47 else
48 p5(i) = d_t*(K_Tpn1 .*oy(i) + K_Tpn2);
49 p9(i) = (d_t/K_Jy)*(K_Tyn2 .*oy(i) + K_Tyn1);
50 end
51 end
52

53 p6 = -Omega_y .*d_t ^2*(m_A + m_B).*sin (2.* theta_p);
54 p10 = zeros(length(Omega_y));
55 p4 = zeros(length(theta_p));
56 n = size(Omega_y);
57 for i = 1:n(1)^2
58 if Omega_y(i)> 0
59 p10(i) = (-K_Dyp1 .* Omega_y(i) - K_Dyp2 - ...

K_Fyp)./(K_Jy.*cos(theta_p(i)));
60 elseif Omega_y(i)< 0
61 p10(i) = (-K_Dyn1 .* Omega_y(i) - K_Dyn2 - ...

K_Fyn)./(K_Jy.*cos(theta_p(i)));
62 elseif Omega_y(i) == 0
63 p10(i) = (-K_Dyn2 - K_Fyn)./(K_Jy.*cos(theta_p(i)));
64 end
65 if theta_p(i)== 0
66 p4(i) = -m_b*g*d_m; % since lim x-> 0 sin(x)/x = 1
67 else
68 p4(i) = -(m_b*g*d_m.*sin(theta_p(i)))./ theta_p(i);
69 end
70 end
71

72 p1_min = min(p1);
73 p2_min = min(p2);
74 p4_min = min(p4 ,[],'all');
75 p5_min = min(p5);
76 p6_min = min(p6 ,[],'all');
77 p7_min = min(p7);
78 p8_min = min(p8);
79 p9_min = min(p9);
80 p10_min = min(p10 ,[],'all');
81

82 p1_max = max(p1);

75

APPENDIX A. MATLAB CODE

83 p2_max = max(p2);
84 p4_max = max(p4 ,[],'all');
85 p5_max = max(p5);
86 p6_max = max(p6 ,[],'all');
87 p7_max = max(p7);
88 p8_max = max(p8);
89 p9_max = max(p9);
90 p10_max = max(p10 ,[],'all');
91

92 % Building the vertex matrices
93 v_min = [p1_min p2_min p4_min p5_min p6_min p7_min p8_min p9_min ...

p10_min];
94 v_max = [p1_max p2_max p4_max p5_max p6_max p7_max p8_max p9_max ...

p10_max];
95 n = length(v_min);
96 % Creating a matrix that contain all the possible combinations of a ...

10 bit
97 % binary code
98 VertexVectors = (dec2bin (2^n-1: -1:0)-'0');
99 % Exchanging the number 1 with upper bounds and the number 0 with ...

lower bounds. Each row of the VertexVectors matrix then becomes a
100 % row vector containing all the varying parameters with different ...

combinations of upper and lower bounds.
101

102

103 for i = 1:2^n
104 for j = 1:n
105 if VertexVectors(i,j) == 1
106 VertexVectors(i,j)= v_max(j);
107 else
108 VertexVectors(i,j)= v_min(j);
109 end
110 end
111 end
112

113 A = cell(1,n);
114 % a is used to create the different matrices that will be stored in A
115 a = (zeros (5,6));
116 N = size(VertexVectors);
117

118

119 % Loops through all the vertex vectors and builds vertex matrices
120 for k = 1:N(1)
121 a(1,1) = VertexVectors(k,1);
122 a(2,1) = VertexVectors(k,2);
123 a(2,2) = -K_DP2;
124 a(2,3) = VertexVectors(k,3);
125 a(2,4) = VertexVectors(k,4);
126 a(2,5) = VertexVectors(k,5);
127 a(3,2) = 1;
128 a(4,4) = VertexVectors(k,6);
129 a(5,1) = VertexVectors(k,7);
130 a(5,4) = VertexVectors(k,8);
131 a(5,5) = VertexVectors(k,9);
132 a(6,5) = 1;

76

APPENDIX A. MATLAB CODE

133 A{1,k} = a;
134 end
135

136 % Solving the LMI 's
137 b11 = K_tau /(R_a*J_r);
138 b24 = b11;
139 B = [b11 0; 0 0; 0 0; 0 b24; 0 0; 0 0];
140 nLMI = N(1);
141

142 %robust controller
143 Q = eye (6);
144 R = eye (2);
145 Y = sdpvar (6,6);
146 L = sdpvar(2,6,'full');
147 F = [Y ≥ 1e -09];
148 for x = 1:nLMI
149 F = [F, [-A{x}*Y-B*L + (-A{x}*Y-B*L)' Y L';Y inv(Q) zeros (6,2);L ...

zeros (2,6) inv(R)] ≥1e -09];
150 end
151 %optimize(F,-trace(Y), ...

sdpsettings('solver ','sedumi ','verbose ',0,'debug ',1))
152 optimize(F,-trace(Y),sdpsettings('solver ','sdpt3','sdpt3.maxit' ,500,'verbose ',0,'debug' ,1))
153 Y_value = value(Y);
154 L_value = value(L);
155 K = value(L)*inv(value(Y));
156 E = zeros(nLMI ,1);
157 for e =1: nLMI
158 E(e,1) = min(eig([-A{e}*Y_value -B*L_value + ...

(-A{e}*Y_value -B*L_value)' Y_value L_value '; Y_value inv(Q) ...
zeros (6,2);L_value zeros (2,6) inv(R)]));

159 end
160

161 fprintf('The value of -trace(Y)for the robust control = %e.\n\n', ...
value(trace(Y)));

162

163 %Checking eigenvalues
164 if min(E) ≥ 0 && min(eig(Y_value)) ≥ 0
165 fprintf('\nok\n');
166 else
167 fprintf('\nnot ok\n');
168 end
169

170

171 %%
172 %Range
173 p1_range = abs(p1_max -p1_min);
174 p1_range_2 = 1.5736;
175 p2_range = abs(p2_max -p2_min);
176 p2_range_2 = 4.1067e-03;
177 p4_range = abs(p4_max -p4_min);
178 p4_range_2 = 5.8432e-03;
179 p5_range = abs(p4_max -p5_min);
180 p5_range_2 = 2.6870e-02;
181 p6_range = abs(p6_max -p6_min);
182 p6_range_2 = 7.6416e-01;

77

APPENDIX A. MATLAB CODE

183 p7_range = abs(p7_max -p7_min);
184 p7_range_2 = 1.5926e+00;
185 p8_range = abs(p8_max -p8_min);
186 p8_range_2 = 4.7135e-02;
187 p9_range = abs(p9_max -p9_min);
188 p9_range_2 = 9.7425e-02;
189 p10_range = abs(p10_max -p10_min);
190 p10_range_2 = 2.2166e-01;
191

192 R = [[p1_range p1_range_2 1.5926e+00] ;[p2_range p2_range_2 ...
4.8381e-03]; [p4_range p4_range_2 5.8432e-03];

193 [p5_range p5_range_2 2.6870e-02]; [p6_range p6_range_2 ...
7.6416e-01]; [p7_range p7_range_2 1.5926e+00];

194 [p8_range p8_range_2 8.3692e-02]; [p9_range p9_range_2 9.7425e-02 ...
]; [p10_range p10_range_2 1.1908e+00];

195];
196

197

198 X = categorical ({'\psi_1','\psi_2','\psi_4','\psi_5','\psi_6', ...
199 '\psi_7','\psi_8','\psi_9','\psi_ {10}'});
200 X = reordercats(X,{'\psi_1','\psi_2','\psi_4','\psi_5','\psi_6', ...
201 '\psi_7','\psi_8','\psi_9','\psi_ {10}'});
202

203 figure (11)
204 bar(X,R)
205 set(findall(figure (11),'-property ','FontSize '),'FontSize ' ,16)
206 ylabel('Range of variation ','interpreter ','latex')
207 ylim ([0 1.8])
208

209 %
210 % Plots:
211 figure (1)
212 plot(op, p1 ,'b','LineWidth ' ,1.6)
213 xlabel('Angular main rotor velocity , \omega_p(t) [rad/s]')
214 ylabel('\psi_1(t)')
215 set(findall(figure (1),'-property ','FontSize '),'FontSize ' ,16)
216

217 figure (2)
218 plot(op, p2 ,'b','LineWidth ' ,1.6)
219 xlabel('Angular main rotor velocity , \omega_p(t) [rad/s]')
220 ylabel('\psi_2(t)')
221 set(findall(figure (2),'-property ','FontSize '),'FontSize ' ,16)
222 hold off
223

224

225 figure (4)
226 plot(theta_p , p4 ,'b','LineWidth ' ,1.6)
227 xlabel('Angular pitch velocity , \Omega_p(t) [rad/s]')
228 ylabel('\psi_4(t)')
229 set(findall(figure (4),'-property ','FontSize '),'FontSize ' ,16)
230

231 figure (5)
232 plot(oy, p5 ,'b','LineWidth ' ,1.6)
233 xlabel('Angular main rotor velocity , \omega_p(t) [rad/s]')
234 ylabel('\psi_5(t)')

78

APPENDIX A. MATLAB CODE

235 set(findall(figure (5),'-property ','FontSize '),'FontSize ' ,16)
236 hold off
237

238 figure (6)
239 surf(Omega_y , theta_p , p6, 'FaceColor ','b')
240 xlabel('Angular yaw velocity , \newline \Omega_y(t) [rad/s]')
241 ylabel('Pitch angle , \theta_p(t) [rad]')
242 zlabel('\psi_6(t)')
243 set(findall(figure (6),'-property ','FontSize '),'FontSize ' ,14)
244

245 figure (7)
246 plot(oy, p7 ,'b','LineWidth ' ,1.6)
247 xlabel('Angular tail rotor velocity , \Omega_y(t) [rad/s]')
248 ylabel('\psi_7(t)')%
249 set(findall(figure (7),'-property ','FontSize '),'FontSize ' ,16)
250

251 figure (8)
252 plot(op, p8 ,'b','LineWidth ' ,1.6)
253 xlabel('Angular main rotor velocity , \omega_p(t) [rad/s]')
254 ylabel('\psi_8(t)')
255 set(findall(figure (8),'-property ','FontSize '),'FontSize ' ,16)
256

257 figure (9)
258 plot(oy, p9 ,'b','LineWidth ' ,1.6)
259 xlabel('Angular tail rotor velocity , \Omega_y(t) [rad/s]')
260 ylabel('\psi_9(t)')
261 set(findall(figure (9),'-property ','FontSize '),'FontSize ' ,16)
262

263 figure (10)
264 surf(Omega_y , theta_p , p10 ,'FaceColor ','b')
265 xlabel('Angular yaw velocity , \newline \Omega_y(t) [rad/s]')
266 ylabel('Pitch angle , \theta_p(t) [rad]')
267 zlabel('\psi_ {10}(t)')
268 set(findall(figure (10),'-property ','FontSize '),'FontSize ' ,14)

A.3 SVD-based Box Method

1 clear
2 format short
3 idx = [4 8 5 1 4; 1 5 6 2 1; 2 6 7 3 2; 3 7 8 4 3; 5 8 7 6 5; 1 4 3 2 ...

1]'; format shortE
4 close all
5 %Load Aero constants from file:
6 Aero_parameters
7

8 % State variable limits
9 op_min = -280;

10 op_max = 320;
11 oy_min = -280;
12 oy_max = 320;
13 theta_p_max = 0.9695;
14 theta_p_min = -1.065;

79

APPENDIX A. MATLAB CODE

15 Omega_y_min = -8.8;
16 Omega_y_max = 8.68;
17

18

19 op = linspace(op_min , op_max ,100);
20 oy = linspace(oy_min , oy_max ,100);
21 numPoints = 50;
22 Omega_y_v = linspace(Omega_y_min , Omega_y_max , numPoints);
23 Omega_y_v2 = [Omega_y_v (1 ,1:25), 0, Omega_y_v (1,26:end)];
24 theta_p_v = linspace(theta_p_min , theta_p_max , numPoints);
25 theta_p_v2 = [theta_p_v (1 ,1:26), 0, theta_p_v (1,27:end)];
26 [Omega_y , theta_p] = ndgrid(Omega_y_v2 , theta_p_v2);
27

28 % Calculating the functions that make up the varying parameters
29 p1 = -((K_tau*K_E)/(R_a*J_r)) - (sign(op)*k_a1.*op + k_a2)/J_r;
30 p2 = zeros(1,length(op));
31 p8 = zeros(1,length(op));
32 for i = 1: length(op)
33 if op(i) ≥ 0
34 p2(i) = d_t*(K_Mpp1*op(i) + K_Mpp2)/J_p;
35 p8(i) = -(d_t/K_Jy)*(K_Myp2 .*op(i) + K_Myp1);
36 else
37 p2(i) = d_t*(K_Mpn1*op(i) + K_Mpn2)/J_p;
38 p8(i) = -(d_t/K_Jy)*(K_Myn2*op(i) + K_Myn1);
39 end
40 end
41

42 p7 = -((K_tau*K_E)/(R_a*J_r)) - (sign(oy)*k_a1.*oy + k_a2)/J_r;
43 p5 = zeros(1,length(oy));
44 p9 = zeros(1,length(oy));
45 for i = 1: length(oy)
46 if oy(i) ≥ 0
47 p5(i) = d_t*(K_Tpp1 .*oy(i) + K_Tpp2);
48 p9(i) = (d_t/K_Jy)*(K_Typ2 .*oy(i) + K_Typ1);
49 else
50 p5(i) = d_t*(K_Tpn1 .*oy(i) + K_Tpn2);
51 p9(i) = (d_t/K_Jy)*(K_Tyn2 .*oy(i) + K_Tyn1);
52 end
53 end
54

55 p6 = -Omega_y .*d_t ^2*(m_A + m_B).*sin (2.* theta_p);
56 p10 = zeros(length(Omega_y));
57 p4 = zeros(length(theta_p));
58 n = size(Omega_y);
59 for i = 1:n(1)^2
60 if Omega_y(i)> 0
61 p10(i) = (-K_Dyp1 .* Omega_y(i) - K_Dyp2 - ...

K_Fyp)./(K_Jy.*cos(theta_p(i)));
62 elseif Omega_y(i)< 0
63 p10(i) = (-K_Dyn1 .* Omega_y(i) - K_Dyn2 - ...

K_Fyn)./(K_Jy.*cos(theta_p(i)));
64 elseif Omega_y(i) == 0
65 p10(i) = (-K_Dyn2 - K_Fyn)./(K_Jy.*cos(theta_p(i)));
66 end
67 if theta_p(i)== 0

80

APPENDIX A. MATLAB CODE

68 p4(i) = -m_b*g*d_m; % since lim x-> 0 sin(x)/x = 1
69 else
70 p4(i) = -(m_b*g*d_m.*sin(theta_p(i)))./ theta_p(i);
71 end
72 end
73

74 % Building standard bounding boxes
75 w128_min = [min(p1) min(p2) min(p8)];
76 w128_max = [max(p1) max(p2) max(p8)];
77 w128 = vertices(w128_min ,w128_max);
78 w579_min = [min(p5) min(p7) min(p9)];
79 w579_max = [max(p5) max(p7) max(p9)];
80 w579 = vertices(w579_min ,w579_max);
81 w6104_min = [min(p6 ,[],'all') min(p10 ,[],'all') min(p4 ,[],'all')];
82 w6104_max = [max(p6 ,[],'all') max(p10 ,[],'all') max(p4 ,[],'all')];
83 w6104 = vertices(w6104_min ,w6104_max);
84

85 % Removing mean value
86 p1t = p1 - mean(p1);
87 p2t = p2 - mean(p2);
88 p8t = p8 - mean(p8);
89 p5t = p5 - mean(p5);
90 p7t = p7 - mean(p7);
91 p9t = p9 - mean(p9);
92 p6t = p6 - mean(p6 ,'all');
93 p10t = p10 - mean(p10 ,'all');
94 p4t = p4 - mean(p4 ,'all');
95

96 % Rewriting from array to vector
97 p6t = p6t(:);
98 p10t = p10t (:);
99 p4t = p4t(:);

100

101 % Placing the varying parameters as columns in a matrix P
102 P128 = [p1t ' p2t ' p8t '];
103 P579 = [p5t ' p7t ' p9t '];
104 P6104 = [p6t p10t p4t];
105

106 % Apply singular value decomposition
107 [U128 ,S128 ,V128] = svd(P128);
108 [U579 ,S579 ,V579] = svd(P579);
109 [U6104 ,S6104 ,V6104] = svd(P6104);
110

111 % Rotating the P Matrices
112 Pn128 = (V128 '*P128 ') ';
113 Pn579 = (V579 '*P579 ') ';
114 Pn6104 = (V6104 '*P6104 ') ';
115

116 % Creating x, y, z vectors
117 p1n = (Pn128 (:,1));
118 p2n = (Pn128 (:,2));
119 p8n = (Pn128 (:,3));
120 p5n = (Pn579 (:,1));
121 p7n = (Pn579 (:,2));
122 p9n = (Pn579 (:,3));

81

APPENDIX A. MATLAB CODE

123 p6n = (Pn6104 (:,1));
124 p10n = (Pn6104 (:,2));
125 p4n = (Pn6104 (:,3));
126

127 % Building a new box in the rotated coordinate frame
128 wn128_min = [min(p1n) min(p2n) min(p8n)];
129 wn128_max = [max(p1n) max(p2n) max(p8n)];
130 wn128 = vertices(wn128_min ,wn128_max);
131 wn579_min = [min(p5n) min(p7n) min(p9n)];
132 wn579_max = [max(p5n) max(p7n) max(p9n)];
133 wn579 = vertices(wn579_min ,wn579_max);
134 wn6104_min = [min(p6n) min(p10n) min(p4n)];
135 wn6104_max = [max(p6n) max(p10n) max(p4n)];
136 wn6104 = vertices(wn6104_min ,wn6104_max);
137

138 % Rotatating back the vertecies to the original coordinate system
139 Wr128 = (V128*wn128 ') ';
140 Wr579 = (V579*wn579 ') ';
141 Wr6104 = (V6104*wn6104 ') ';
142

143 % Adding back the mean
144 Wo128 = Wr128 + [mean(p1), mean(p2), mean(p8)];
145 Wo579 = Wr579 + [mean(p5), mean(p7), mean(p9)];
146 Wo6104 = Wr6104 + [mean(p6 ,'all'), mean(p10 ,'all'), mean(p4,'all')];
147

148 V = VertexVectors(Wo128 ,Wo579 ,Wo6104);
149

150 q = size(V);
151 n = q(2);
152 N = length(V);
153 VertexVectors = V;
154

155

156 A = cell(1,n);
157 % a is used to create the different matrices that will be stored in A
158 a = (zeros (5,6));
159

160 % Loops through all the vertex vectors and build A(psi)
161 for k = 1:N
162 a(1,1) = V(k,1);
163 a(2,1) = V(k,2);
164 a(2,2) = -K_DP2;
165 a(2,3) = V(k,3);
166 a(2,4) = V(k,3);
167 a(2,5) = V(k,5);
168 a(3,2) = 1;
169 a(4,4) = V(k,6);
170 a(5,1) = V(k,7);
171 a(5,4) = V(k,8);
172 a(5,5) = V(k,9);
173 a(6,5) = 1;
174 A{1,k} = a;
175 end
176

177 % Building B

82

APPENDIX A. MATLAB CODE

178 b11 = K_tau /(R_a*J_r);
179 b24 = b11;
180 B = [b11 0; 0 0; 0 0; 0 b24; 0 0; 0 0];
181 nLMI = N;
182

183 robust controller
184 Q = eye (6);
185 R = eye (2);
186 Y = sdpvar (6,6);
187 L = sdpvar(2,6,'full');
188 F = [Y ≥ 1e -09];
189 for x = 1:nLMI
190 F = [F, [-A{x}*Y-B*L + (-A{x}*Y-B*L)' Y L';Y inv(Q) zeros (6,2);L ...

zeros (2,6) inv(R)] ≥1e -09];
191 end
192 optimize(F,-trace(Y),sdpsettings('solver ','sdpt3','sdpt3.maxit' ,500,'verbose ',0,'debug' ,1))
193 %optimize(F,-trace(Y), ...

sdpsettings('solver ','sedumi ','verbose ',0,'debug ',1))
194 Y_value = value(Y);
195 L_value = value(L);
196 K = value(L)*inv(value(Y));
197 E = zeros(nLMI ,1);
198 for e =1: nLMI
199 E(e,1) = min(eig([-A{e}*Y_value -B*L_value + ...

(-A{e}*Y_value -B*L_value)' Y_value L_value '; Y_value inv(Q) ...
zeros (6,2);L_value zeros (2,6) inv(R)]));

200 end
201

202 %Checking eigenvalues
203 if min(E) ≥ 0 && min(eig(Y_value)) ≥ 0
204 fprintf('\nok\n');
205 else
206 fprintf('\nnot ok\n');
207 end
208 fprintf('The value of trace(Y)for the robust control = %f.\n\n', ...

value(trace(Y)));
209

210 %% Calculating Volume
211

212 % Psi 128
213 % Original box:
214 xcoor128 = w128 (:,1);
215 ycoor128 = w128 (:,2);
216 zcoor128 = w128 (:,3);
217 [K128 ,Vol128] = boundary(xcoor128 ,ycoor128 , zcoor128);
218 %SVD box
219 xcoor128n = Wo128 (:,1);
220 ycoor128n = Wo128 (:,2);
221 zcoor128n = Wo128 (:,3);
222 [Kn128 ,Voln128] = boundary(xcoor128n ,ycoor128n , zcoor128n);
223

224 diff128 = Vol128 - Voln128;
225 percentage128 = (diff128/Voln128)*100;
226

227 % Psi 579

83

APPENDIX A. MATLAB CODE

228 % Original box:
229 xcoor579 = w579 (:,1);
230 ycoor579 = w579 (:,2);
231 zcoor579 = w579 (:,3);
232 [K579 ,Vol579] = boundary(xcoor579 ,ycoor579 , zcoor579);
233 %SVD box
234 xcoor579n = Wo579 (:,1);
235 ycoor579n = Wo579 (:,2);
236 zcoor579n = Wo579 (:,3);
237 [Kn579 ,Voln579] = boundary(xcoor579n ,ycoor579n , zcoor579n);
238

239 diff579 = Vol579 - Voln579;
240 percentage579 = (diff579/Voln579)*100;
241

242 % Psi 6104
243 % Original box:
244 xcoor6104 = w6104 (:,1);
245 ycoor6104 = w6104 (:,2);
246 zcoor6104 = w6104 (:,3);
247 [K6104 ,Vol6104] = boundary(xcoor6104 ,ycoor6104 , zcoor6104);
248 %SVD box
249 xcoor6104n = Wo6104 (:,1);
250 ycoor6104n = Wo6104 (:,2);
251 zcoor6104n = Wo6104 (:,3);
252 [Kn6104 ,Voln6104] = boundary(xcoor6104n ,ycoor6104n , zcoor6104n);
253

254 diff6104 = Voln6104 - Vol6104;
255 percentage6104 = (diff6104/Voln6104)*100;
256

257

258

259 %% Plots
260 figure (1)
261 scatter3(p1 , p2, p8, 30, 'k')
262 patch('vertices ', Wo128 , 'faces', idx ', 'facecolor ', 'r', ...

'facealpha ', 0.05, 'EdgeColor ','r');
263 %patch('vertices ', w128 , 'faces ', idx ', 'facecolor ', 'b', ...

'facealpha ', 0.05,'EdgeColor ','b');
264 set(findall(figure (1),'-property ','FontSize '),'FontSize ' ,16)
265 xlabel('\psi_1','FontSize ' ,20)
266 ylabel('\psi_2','FontSize ' ,20)
267 zlabel('\psi_8','FontSize ' ,20)
268

269

270 figure (2)
271 scatter3(p5 , p7, p9, 30, 'k', 'filled ')
272 patch('vertices ', Wo579 , 'faces', idx ', 'facecolor ', 'r', ...

'facealpha ', 0.05, 'EdgeColor ','r');
273 patch('vertices ', w579 , 'faces', idx ', 'facecolor ', 'b', 'facealpha ', ...

0.05,'EdgeColor ','b');
274 set(findall(figure (2),'-property ','FontSize '),'FontSize ' ,16)
275 xlabel('\psi_5','FontSize ' ,20)
276 ylabel('\psi_7','FontSize ' ,20)
277 zlabel('\psi_9','FontSize ' ,20)
278 zlim ([-0.03 0.11])

84

APPENDIX A. MATLAB CODE

279

280

281 figure (3)
282 scatter3(p6(:), p10(:), p4(:) ,20, 'k', 'filled ')
283 patch('vertices ', Wo6104 , 'faces', idx ', 'facecolor ', 'r', ...

'facealpha ', 0.05, 'EdgeColor ','r');
284 patch('vertices ', w6104 , 'faces', idx ', 'facecolor ', 'b', ...

'facealpha ', 0.05,'EdgeColor ','b');
285 set(findall(figure (3),'-property ','FontSize '),'FontSize ' ,16)
286 xlabel('\psi_6','FontSize ' ,20)
287 ylabel('\psi_ {10}','FontSize ' ,20)
288 zlabel('\psi_4','FontSize ' ,20)

A.4 Aero Parameters

1 J_p = 0.0183;
2 J_r = 5.6e-05 + 5.04e-08 + 2.0e-06;
3 d_t = 0.158;
4 g = 9.81;
5 d_m = 0.0029;
6 m_b = 1.15;
7 R_a = 8.4;
8 m_A = 0.87;
9 m_B = 0.87;

10 K_tau = 0.042;
11 K_E = 0.042;
12 k_a1 = 2.9e-07;
13 k_a2 = 4.2e-06;
14 K_Mpp1 = 1.51e-06;
15 K_Mpp2 = 8.61e-07;
16 K_Mpn1 = -2.01e-06;
17 K_Mpn2 = -4.18e-05;
18 K_DP1 = 7.6e-06;
19 K_DP2 = 6.1e-03;
20 K_Tpp1 = 1.49e-06;
21 K_Tpp2 = -2.52e-05;
22 K_Tpn1 = -1.46e-07;
23 K_Tpn2 = 7.47e-06;
24 K_Myp1 = 7.30e-07;
25 K_Myp2 = -1.61e-05;
26 K_Myn1 = -6.11e-07;
27 K_Myn2 = 3.23e-05;
28 K_Typ1 = 1.06e-06;
29 K_Typ2 = 1.17e-05;
30 K_Tyn1 = -1.11e-06;
31 K_Tyn2 = -3.76e-05;
32 K_Dyp1 = 1.84e-05;
33 K_Dyp2 = 3.64e-04;
34 K_Dyn1 = -5.05e-05;
35 K_Dyn2 = 9.86e-04;
36 K_Jy = 0.017;
37 K_Fyp = 0.00616;

85

APPENDIX A. MATLAB CODE

38 K_Fyn = -0.00411;
39

40 % State boundaries:
41 omega_max = 215;
42 omega_min = -215;
43 OMEGA_P_max = 0.81;
44 OMEGA_P_min = -0.72;
45 theta_p_max = 0.9695;
46 theta_p_min = -1.065;
47 OMEGA_Y_max = 4.6;
48 OMEGA_Y_min = -4.9;

A.5 Functions

1 function v = vertices(min , max)
2 v = [0 0 0; 1 0 0; 1 1 0; 0 1 0; 0 0 1; 1 0 1; 1 1 1; 0 1 1];
3 for i = 1:2^3
4 for j = 1: length(min)
5 if v(i,j) == 1
6 v(i,j)= max(j);
7 else
8 v(i,j)= min(j);
9 end

10 end
11 end
12 end

1 function V = VertexVectors(V1, V2, V3)
2 w = zeros (8,6);
3 A = cell (1,8);
4 B = cell (1,8);
5 C = cell (1,8);
6

7 % Building 8 8x6 matrices containg combinations of psi128 and psi579
8 for i = 1:8
9 for j = 1:8

10 w(j,:) = [V2(i,:), V3(j,:)];
11 end
12 A{1,i} = w;
13 end
14

15 % Building 64 8x9 matrices containg combinations of psi128 , ...
psi579 and psi6104

16 for i = 1:8
17 b1 = repmat(V1(i,:) ,8,1);
18 for j = 1:8
19 z = zeros (8,9);
20 z(: ,1:3)= b1;
21 z(: ,4:9)= A{j};
22 B{1,j} = z;

86

APPENDIX A. MATLAB CODE

23 end
24 C{i} = B;
25 end
26

27 % stacking the 64 matrices to create one 512x9 matrix containg ...
all possible

28 % permutations of vertecies
29 V = [];
30 for i = 1:8
31 for j = 1:8
32 w = C{i}{j};
33 V = vertcat(V,w);
34 end
35 end
36 end

87

Appendix B

Simulink schemes

B.1 Nonlinear Aero model

1
x1_Angular velocity main rotor

1
u1_Main motor voltage

2 x2_Angular velocity body around pitch axis

3
x3_Pitch angle

4
x4_Angular velocity tail rotor

5
x5_Angular velocity body around yaw axis

6 x6_Yaw angle

2
u2_Tail motor voltage

Integrator
OMEGA_p

Integrator
omega_p

Integrator
thetha_p

Integrator
omega_y

Integrator
OMEGA_y

Integrator
theta_y

x
÷

+
−K_taup

x
÷

R_ap

−
−
+
+
−

F_g

sin

x
÷

J_p

x
÷

J_huby

J_propy
+
+
+

K_tauy

x
÷

R_ay

+
−

+
−
−
−

x
÷

+
−

K_Ep

+
−

K_Ey

J_hubp

J_propp

+
+
+

J_motorpk_d2p

+
+

k_d1p

x

J_mototyk_d2y

+
+

k_d1y

x

u y

f_Mp(omega_p)

u y

f_Tp(omega_y)

Omega_y

theta_p
1

Tau_cm

d_t2

d_t1

+
+

k_Dp2

K_Dp2
x

u y

f_Ty(omega_y)

u y

f_My(omega_p)

cos

k_Jy

d_t3

d_t4

x

x
+
−

u y

f_Dy(OMEGA_y)

u

o
y

F_fy

Figure B.1: Simulink scheme representing the equation of motion for the main rotor dy-
namics described in Eq. (2.13)

1
x1_Angular velocity main rotor

1
u1_Main motor voltage

2 x2_Angular velocity body around pitch axis

3
x3_Pitch angle

4
x4_Angular velocity tail rotor

5
x5_Angular velocity body around yaw axis

6 x6_Yaw angle

2
u2_Tail motor voltage

Integrator
OMEGA_p

Integrator
omega_p

Integrator
thetha_p

Integrator
omega_y

Integrator
OMEGA_y

Integrator
theta_y

x
÷

+
−K_taup

x
÷

R_ap

−
−
+
+
−

F_g

sin

x
÷

J_p

x
÷

J_huby

J_propy
+
+
+

K_tauy

x
÷

R_ay

+
−

+
−
−
−

x
÷

+
−

K_Ep

+
−

K_Ey

J_hubp

J_propp

+
+
+

J_motorpk_d2p

+
+

k_d1p

x

J_mototyk_d2y

+
+

k_d1y

x

u y

f_Mp(omega_p)

u y

f_Tp(omega_y)

Omega_y

theta_p
1

Tau_cm

d_t2

d_t1

+
+

k_Dp2

K_Dp2
x

u y

f_Ty(omega_y)

u y

f_My(omega_p)

cos

k_Jy

d_t3

d_t4

x

x
+
−

u y

f_Dy(OMEGA_y)

u

o
y

F_fy

Figure B.2: Simulink scheme representing the equation of motion for the pitch velocity
described in Eq. (2.30)

88

APPENDIX B. SIMULINK SCHEMES

1
x1_Angular velocity main rotor

1
u1_Main motor voltage

2 x2_Angular velocity body around pitch axis

3
x3_Pitch angle

4
x4_Angular velocity tail rotor

5
x5_Angular velocity body around yaw axis

6 x6_Yaw angle

2
u2_Tail motor voltage

Integrator
OMEGA_p

Integrator
omega_p

Integrator
thetha_p

Integrator
omega_y

Integrator
OMEGA_y

Integrator
theta_y

x
÷

+
−K_taup

x
÷

R_ap

−
−
+
+
−

F_g

sin

x
÷

J_p

x
÷

J_huby

J_propy
+
+
+

K_tauy

x
÷

R_ay

+
−

+
−
−
−

x
÷

+
−

K_Ep

+
−

K_Ey

J_hubp

J_propp

+
+
+

J_motorpk_d2p

+
+

k_d1p

x

J_mototyk_d2y

+
+

k_d1y

x

u y

f_Mp(omega_p)

u y

f_Tp(omega_y)

Omega_y

theta_p
1

Tau_cm

d_t2

d_t1

+
+

k_Dp2

K_Dp2
x

u y

f_Ty(omega_y)

u y

f_My(omega_p)

cos

k_Jy

d_t3

d_t4

x

x
+
−

u y

f_Dy(OMEGA_y)

u

o
y

F_fy

Figure B.3: Simulink scheme which integrates Ωp(t) in order to get the θp(t)

1
x1_Angular velocity main rotor

1
u1_Main motor voltage

2 x2_Angular velocity body around pitch axis

3
x3_Pitch angle

4
x4_Angular velocity tail rotor

5
x5_Angular velocity body around yaw axis

6 x6_Yaw angle

2
u2_Tail motor voltage

Integrator
OMEGA_p

Integrator
omega_p

Integrator
thetha_p

Integrator
omega_y

Integrator
OMEGA_y

Integrator
theta_y

x
÷

+
−K_taup

x
÷

R_ap

−
−
+
+
−

F_g

sin

x
÷

J_p

x
÷

J_huby

J_propy
+
+
+

K_tauy

x
÷

R_ay

+
−

+
−
−
−

x
÷

+
−

K_Ep

+
−

K_Ey

J_hubp

J_propp

+
+
+

J_motorpk_d2p

+
+

k_d1p

x

J_mototyk_d2y

+
+

k_d1y

x

u y

f_Mp(omega_p)

u y

f_Tp(omega_y)

Omega_y

theta_p
1

Tau_cm

d_t2

d_t1

+
+

k_Dp2

K_Dp2
x

u y

f_Ty(omega_y)

u y

f_My(omega_p)

cos

k_Jy

d_t3

d_t4

x

x
+
−

u y

f_Dy(OMEGA_y)

u

o
y

F_fy

Figure B.4: Simulink scheme representing the equation of motion for the tail rotor dynamics
described in Eq. (2.13)

1
x1_Angular velocity main rotor

1
u1_Main motor voltage

2 x2_Angular velocity body around pitch axis

3
x3_Pitch angle

4
x4_Angular velocity tail rotor

5
x5_Angular velocity body around yaw axis

6 x6_Yaw angle

2
u2_Tail motor voltage

Integrator
OMEGA_p

Integrator
omega_p

Integrator
thetha_p

Integrator
omega_y

Integrator
OMEGA_y

Integrator
theta_y

x
÷

+
−K_taup

x
÷

R_ap

−
−
+
+
−

F_g

sin

x
÷

J_p

x
÷

J_huby

J_propy
+
+
+

K_tauy

x
÷

R_ay

+
−

+
−
−
−

x
÷

+
−

K_Ep

+
−

K_Ey

J_hubp

J_propp

+
+
+

J_motorpk_d2p

+
+

k_d1p

x

J_mototyk_d2y

+
+

k_d1y

x

u y

f_Mp(omega_p)

u y

f_Tp(omega_y)

Omega_y

theta_p
1

Tau_cm

d_t2

d_t1

+
+

k_Dp2

K_Dp2
x

u y

f_Ty(omega_y)

u y

f_My(omega_p)

cos

k_Jy

d_t3

d_t4

x

x
+
−

u y

f_Dy(OMEGA_y)

u

o
y

F_fy

Figure B.5: Simulink scheme representing the equation of motion for the yaw velocity
described in Eq. (2.38)

1
x1_Angular velocity main rotor

1
u1_Main motor voltage

2 x2_Angular velocity body around pitch axis

3
x3_Pitch angle

4
x4_Angular velocity tail rotor

5
x5_Angular velocity body around yaw axis

6 x6_Yaw angle

2
u2_Tail motor voltage

Integrator
OMEGA_p

Integrator
omega_p

Integrator
thetha_p

Integrator
omega_y

Integrator
OMEGA_y

Integrator
theta_y

x
÷

+
−K_taup

x
÷

R_ap

−
−
+
+
−

F_g

sin

x
÷

J_p

x
÷

J_huby

J_propy
+
+
+

K_tauy

x
÷

R_ay

+
−

+
−
−
−

x
÷

+
−

K_Ep

+
−

K_Ey

J_hubp

J_propp

+
+
+

J_motorpk_d2p

+
+

k_d1p

x

J_mototyk_d2y

+
+

k_d1y

x

u y

f_Mp(omega_p)

u y

f_Tp(omega_y)

Omega_y

theta_p
1

Tau_cm

d_t2

d_t1

+
+

k_Dp2

K_Dp2
x

u y

f_Ty(omega_y)

u y

f_My(omega_p)

cos

k_Jy

d_t3

d_t4

x

x
+
−

u y

f_Dy(OMEGA_y)

u

o
y

F_fy

Figure B.6: Simulink scheme which integrates Ωy(t) in order to get the θy(t)

89

APPENDIX B. SIMULINK SCHEMES

Main	rotor	voltage

Tail	rotor	voltage

Speed	main	motor	from	encoder

Speed	tail	motor	from	encoder

Pitch	angle	from	encoder

Yaw	angle	from	encoder

Pitch	angle	from	Accelerometer	

Aero	Plant

[model_omega_p]

[model_Omega_p]

[model_theta_p]

[model_omega_y]

[model_Omega_y]

[model_theta_y]

[V_p]

[V_y]

[plant_speed_main_motor]

[plant_speed_tail_motor]

[plant_encoder_yaw]

[plant_encoder_pitch]

u1_Main	motor	voltage

u2_Tail	motor	voltage

x1_Angular	velocity	main	rotor

x2_Angular	velocity	body	around	pitch	axis	

x3_Pitch	angle

x4_Angular	velocity	tail	rotor

x5_Angular	velocity	body	around	yaw	axis

x6_Yaw	angle

Aero	Model	

[model_theta_p]

[plant_encoder_pitch]

[model_theta_y]

[plant_encoder_yaw]

[model_omega_p]

[plant_speed_main_motor]

[V_p]

[V_y]

[model_omega_y]

[plant_speed_tail_motor]

[model_Omega_y]

[plant_encoder_yaw] 5
s+5

Low-Pass
Filter7

[model_Omega_p]

[plant_encoder_pitch] 5
s+5

Low-Pass
Filter8

Main	motor	voltage

Main	motor	voltage

Tail	motor	valtage
Tail	motor	valtage

Pitch	angle	model

Pitch	angle	plant

Yaw	angle	model

Yaw	angle	plant

Angular	velocity	main	rotor	model

Angular	velocity	main	rotor	plant

Input	voltage	main	motor

Input	volatge	tail	motor

Angular	velocity	tail	rotor	model

Angular	velocity	tail	rotor	plant

Yaw	velocity	model

plant	encoder	d/dt

Yaw	velocity	plant

Pitch	velocity	model

Pitch	velocity	plant

plant	encoder	d/dt

Figure B.7: Simulink scheme where the nonlinear Aero model can be compared to the actual
plant

90

APPENDIX B. SIMULINK SCHEMES

HIL
Write
Analog

(HIL-1)

HIL-1	(quanser_aero_usb-0)

HIL
Read

Timebase

a0
a1
e0
e1
e2
e3

o4000
o4001
o4002
o14000
o14001
o14002
o14003

(HIL-1)

HIL
Write
Analog

(HIL-1)

1
Main	rotor	voltage

2
Tail	rotor	voltage

1
Speed	main	motor	from	encoder

2
Speed	tail	motor	from	encoder

3
Pitch	angle	from	encoder

4
Yaw	angle	from	encoder

atan 50
s+50

Low-Pass
Filter

5
Pitch	angle	from	Accelerometer	

Tail	motor	speed	from	enncoder

Main	motor	speed	from	encoder

Accelerometer	for	Y-axis	in	m/s2.
Accelerometer	for	X-axis	in	m/s2.

Yaw	angle	from	encoder

Pitch	angle	from	encoder

Figure B.8: Simulink scheme including Quanser I/O-blocks

B.2 State feedback controller

91

Yaw Enable Motor

Pitch Motor Enable

Current (A)

0

"quanser_aero"
not found

Quanser Aero USB Interface

 > 20

"QUARC Targets"
not installed

Time

Output_gainReference
+/- 24V

State X

pitch (rad)

yaw (rad)

Reference pitch (rad)

yaw (rad)

Output_gain

Quanser controller

Output_gainReference
+/- 24V

State X

th_p

th_y

o_p

o_y

Time

Reference

th_p
th_y
o_p
o_y

Output_gain

Robust controller

th_y

Rth_y

v_p

v_y

R_th_p

th_p

o_p

o_y

th_p

th_y

o_p

o_y

th_y

th_p

APPENDIX B. SIMULINK SCHEMES

92

1
Output_gain

1
Reference

+−

+/- 24V

pitch (rad)

yaw (rad)
X

State X

2
pitch (rad)

3
yaw (rad)

APPENDIX B. SIMULINK SCHEMES

93

State X = [pitch, yaw, pitch_dot, yaw_dot]

1
X

1
pitch (rad)

2
yaw (rad)

"QUARC Targets"
not installed

Second-Order
Low-Pass Filter

"QUARC Targets"
not installed

Second-Order
Low-Pass Filter1

APPENDIX B. SIMULINK SCHEMES

94

1
Output_gain

1
Reference

++

+/- 24V

th_p (rad)
th_y (rad)

o_p (rad)1
o_y (rad)2

X

State X

2
th_p

3
th_y

4
o_p

5
o_y

 >
 2

0

"QUARC Targets"
not installedTime

APPENDIX B. SIMULINK SCHEMES

95

State X = [o_p, O_p, th_p, o_y, O_y, th_y]

1
X

1
th_p (rad)

2
th_y (rad)

"QUARC Targets"
not installed

Second-Order
Low-Pass Filter

"QUARC Targets"
not installed

Second-Order
Low-Pass Filter1

3
o_p (rad)1

4
o_y (rad)2

APPENDIX B. SIMULINK SCHEMES

96

	Nomenclature
	List of Acronyms
	List of Symbols
	List of figures
	List of tables
	Introduction
	Motivation
	Project Description
	Previous Work
	Outline

	Description and Non-linear Modeling
	Description of the system
	Measurement instrumentation

	Modeling
	DC motors
	Motor shaft and propeller dynamics
	Kinematic equations for the Aero body
	Moment of Inertia of the Aero

	Nonlinear model of the Aero
	Parameter estimation
	Estimating Coulomb friction and viscous damping
	Estimating Yaw inertia
	Estimating vertical cross-thrust force functions
	Estimating Horizontal thrust force functions

	Model validation

	Modeling and control of LPV systems
	State-space representation
	Overview of quasi-LPV modeling
	Stability analysis of LPV systems
	The definition of stability
	Lyapunov stability criterion
	LMI-based stability analysis

	State feedback control design
	LMI-based robust control
	Linear quadratic regulator (LQR)

	Quasi-LPV modeling of the Aero
	Quasi-LPV representation of the Aero
	Methods for generating polytopic LPV systems
	Bounding box method
	SVD-based boxing

	Polytopic quasi-LPV Aero models
	Bounding box method applied to the Aero model
	SVD-based boxing method applied to the Aero model

	Results
	LMI results for robust control design
	Scenario 1
	Scenario 2

	Conclusions and future work
	Conclusions
	Future work

	References
	Appendices
	Matlab code
	Regression Analysis
	Bounding Box Method
	SVD-based Box Method
	Aero Parameters
	Functions

	Simulink schemes
	Nonlinear Aero model
	State feedback controller

