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Chapter 1

Introduction

Core to the subject of control theory is the feedback loop. Using the error between the
reference and the measured output signal passing through a tuned controller, the feedback
loop can optimize how well a system reaches its desired state. Usage of this method in a
system is known as feedback control. There are many approaches in the field of feedback
control, all of which aim to reduce the aforementioned error as effectively as possible. One
of these is cascade control, which involves nesting at least one additional feedback loop
within another.

The objective of this report is to evaluate the effectiveness of using the cascade control
method to control Quanser’s Quanser Aero [1]. More specifically, cascade control will be
performed by using the Aero’s wing angle ¢(t) as the output variable of the outer loop, and
the rotational speed of the motors w (sometimes referred to as ¢/s) as the output variable
of the inner loop. This will be done in a 1IDOF (degrees of freedom) configuration, and
using only one of the Aero’s motors. Compared to the default of a single loop with the angle
as the only output variable, according to Visioli and Antonio [12] this configuration should
provide superior disturbance rejection properties. Hopefully this sufficiently improves the
performance to justify the additional effort in applying it.

To confirm this, testing various methods of implementing the cascade control system will
be necessary. Then, to compare the effectiveness of cascade control over regular feedback
control, some methods for implementing single loop feedback control will be tested as well.
This will all be tested using Matlab’s Simulink program. While the Quanser Aero itself



1.1 Structure

naturally operates with continuous-time, the sensors and the the software used operates in
discrete-time. The Simulink schemes in this report are all set to fixed-step at 0.002 second
intervals.

1.1 Structure

Firstly, Chapter 1 aims to explain the main objectives of the report, as well as cover some
elementary concepts that lays the groundwork for the rest of the report.

Next, Chapter 2 aims to give an understanding of how the object of the report, the Quanser
Aero, works. This includes a basic description of its mechanical properties, a mathematical
model, and an explanation as to how the Quanser Aero behaves as a process.

Next, Chapter 3 aims to explain and give and understanding of how to perform the various
methods that will eventually be tested in Chapter 4. In what way these methods will be
tested it is covered at the end of the chapter.

Next, Chapter 4 aims to describe the exact process that went into applying these methods
to the Quanser Aero. This includes the various response is obtained from the Quanser
Aero in the testing as well as the parameters obtained by the end.

Next, Chapter 5 aims to demonstrate the results from the testing of the previous chapter.
This includes tables showing all the finished parameters next to each other, figures demon-
strating the final step response and the performance against disturbances, as well as the
performance indices of the results.

Next, Chapter 6 aims to discuss the obtained results and what it could mean to the
effectiveness of a cascade control implementation on the Quanser Aero. Then, some options

in what could be done in a possible continuation of the subject will be discussed.

Lastly, Chapter 7 will summarize the report and conclude it.



1.2 Single-loop feedback control

1.2 Single-loop feedback control

Feedback control, as already mentioned, is at its core a control method that involves using
a feedback loop to generate an error signal that corrects the output into something more
desirable. The most simple kind of feedback control is the single-loop feedback control,
which is shown in Fig. 1.1.

disturbance 2 disturbance 1

reference error input signal output
@ Controller = —

Figure 1.1: Generic block diagram for feedback control

measured output

In this report, the various kinds of outputs, inputs and blocks demonstrated in the figure
will alternatively be referred to as r(t) for reference, e(t) for error, u(t) for input signal,
y(t) for output, y,,,(¢t) for measured output, d;(t) for disturbance 1, da(t) for disturbance
2, C(s) for controller and P(s) for process. Typically, unity gain feedback is assumed, that
is Sensor = 1 => y(t) = yu,(t), it will be in this report as well.

Ignoring the disturbances, which are unwanted elements, such a feedback loop can be
expressed in the Laplace domain as:

C(s)P(s)

= mr(s) (1.1)

y(s)

The noted ’disturbances’ are undesired, unaccounted for inputs which increase the error
of the system. Increasing robustness against such disturbances is the main purpose of
feedback control. More specifically, through having a feedback loop that responds to
unexpected developments in the output, the system can automatically correct itself against
those developments. Mathematically, the output with a disturbance can be expressed as:
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y(s) = di(s) + P(s)(e(s)C(s) + da(s)) (1.2)

Given that e(t) = r(t) - y(t), and assuming r(t) = 0 and d; (t) = 0, we can derive a transfer
function between Y (s) and da(s) as follows:

y(s) = P(s)(-y(s)C(s) + di(s)) y(s) + y(s)P(s)C(s) = di(s)P(s)
y(s) _  P(s)
di(s) ~ 1+ P(5)C(s) (13)
y(s) = da(s) - P(s)y(s)C(s) y(s) + y(s)P(s)C(s) = dafs)
y(s) 1 (1.4)

da(s) 1+ P(s)C(s)

To achieve the desired output, it is necessary for the user to manipulate the controller. The
purpose of the controller is to translate the error into a proper corrective action for the
process, and is thus an essential part of any feedback system. For the controller to actually
do so, it needs to be properly tuned according to behavior of the rest of the system.

1.3 The PID controller

There are many methods for making a controller, the PID controller being by far the most
common [7|. In a PID controller, there are 3 primary terms: The proportional gain Kp,
the integral gain K, and the derivative gain Kp. The output of the controller can be
expressed as shown in Eq. 1.5 as Eq. 1.6 in the Laplace domain, where K; = 2 and Kp

I
= Kp7p. A block diagram representation of this is shown in Fig. 1.2.

dz(tt) — Kpelt) + eg)dt + 7D d‘;&’f)) (1.5)

u(t) = Kpe(t) + Kr / e(t)dt + Kp

4



1.3 The PID controller

u(s) = (Kp + % + Kps)e(s) = Kp(1+ 7; + 1ps)e(s) (1.6)

In the case of the PID controller, tuning it to a specific system is done by adjusting these
parameters. While it is possible to tune manually by continually testing and changing
values to achieve a sufficient response according to Table 1.1, it is typically regarded as
better practice to utilize a specific tuning method. There are many different ways to do
so, and as stated previously, this report will utilize several such tuning methods.

Kr —f 1

Kp

+

Kp o s

Figure 1.2: PID-controller diagram

Table 1.1: Manual tuning guidance table

Parameter Rise time Overshoot | Settling Time | Steady state error Stability
Kp Decrease Increase | Small change Decrease Degrade
Kr Decrease Increase Increase Eliminate Degrade
Kp Minor change | Decrease Decrease No effect Improve if Kp is small

It is important to note that the derivative gain Kp will amplify high-frequency measure-
ment noise. Thus, it is usually necessary to add some kind of filter to the PID controller.
The simplest way to implement such a filter is by adding a simple low-pass filter, shown
in Eq. 1.7 to the derivative part, resulting in the Laplace-domain controller output of Eq.
1.8.

B 1
N 1—|-Tfs

Ty
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Je(s) (1.8)

Where the filter time constant is usually defined as 74 = aKp, a being a user decided
constant, usually in the range o €[0.05, 0.2]. All PID controllers in this report will include
such a filter with o = 0.1.

In the case of the derivative gain is not desired, it is also possible to utilize PI controller,
which can be expressed in the Laplace domain as as shown in Eq. 1.9. If the integral gain
is not desired either, a P controller is also possible.

u(s) = Kp(1 + % +ros)e(s) (1.9)

1.4 Cascade control

As mentioned, cascade control is feedback control with two or more nested feedback loops.
A basic diagram demonstrating this is shown in Fig. 1.3.

Outer loop Inner loop
da(t) d(t)
r(t) % ei(t) us) ui(t) - ex(t) Ons) us(t) yz(i)’.éﬂ(i)
Y2.m(t)
Y1m(t)

Figure 1.3: Block diagram for basic feedback control. 1 and 2 refer to whether it belongs to the
outer loop (1) or inner loop (2). It otherwise follows the same terminology as the feedback scheme.



1.4 Cascade control

As seen, this configuration uses two loops, referred to as the inner and outer loops or
the secondary and primary loops. Each loop is outfitted with its own sensor, process
and controller. They both naturally also have each their own error, expressed as e;(t) =
r(t) — y1(¢t) for the outer loop and ea(t) = u;(t) — y2(t) for the inner loop.

Following the logic that feedback control reduces the effect of disturbances, cascade control
would theoretically add another layer of robustness against disturbances. The general idea
is that the inner loop will have already corrected much of the disturbances by the time
outer loop completes a cycle, reducing the amount of stress on the outer loop.

And given that:
e1(s) =r1(s) —y1(s)
ea(s) = u1(s) — y2(s) = e1(s)C1(s) — y2(s) = (r1 — y1)C1 — ya(s) = —y1(s)C1(s) — ya(s)

wls) =

h—

y1(s) = di(s) + Pi(s)(e2(s)Ca(s) Pa(

y1(s) = Pi(s)Pa(s)((—1(s)C1(s) — 1 (s) (

y1(s) = —Pi(s)Pa(s)y1(s)C1(s)C ( ) — Pi(s) 2(8)y1 5)Ca
Yy1(s) +y1(s)Pr(s) Pa(s)C1(5)C2(s) + y1(s) Pi(s

y1(8)(1 + Pi(s) P2(s)C1(s)Ca(s) + Pi(s )Pz(s)cz(s ) = da(s)P1(s)Pa(s)

Finally resulting in a transfer function between the output and the disturbance:

yis) _ Pi(s)
dl(S) 1+ Pl(S)PQ(S)Cl(S)CQ(S) + Pl(S)PQ(S)CQ(S)

(1.10)

This can be directly compared with the transfer function from normal feedback control
(31((‘1)) = 17 PIzS)C(S) This means that if C2 > 1, the denominator of the cascade control
system is strictly larger than that of the ordinary feedback system, meaning the gain
of the transfer function is strictly smaller. Intuitively, the smaller the transfer function
between the disturbance and the output is, the smaller the effect the disturbance will have
on the output. Therefore, any disruptions acting in the inner loop should be reduced in a
cascade control configuration. Any disruption in the outer loop however, such as the the

disturbance d1, should not be especially reduced by the cascade control configuration.

In this report, both controllers in the cascade control system will be PID controllers. PID
tuning in cascade control can be achieved through two primary methods: sequential and

7



1.5 Integral windup and clamping

simultaneous. As the names imply, they revolve around tuning controllers in successive
order or at the same time, respectively. Sequential tuning utilizes largely the same tuning
methods as regular feedback control, while simultaneous tuning requires its own methods
entirely. Simultaneous tuning can prove to be more complex in implementation, but will
likely save time compared to sequential tuning.

1.5 Integral windup and clamping

In PID control, integral windup is a common issue. When a system is outfitted with some
kind of saturation that limits the process input to wm,in < u(t) < Umaqs, having an integral
component in a controller, which a PID controller does, can cause significant overshoot in
the response. More specifically, even if a signal becomes greater than u,,,, and is saturated
to a constant, the integral term will continue building up. Then, once the system has gone
past its reference point and needs to slow down the output, the built up integral term
will prevent the system from doing so immediately. This causes undesirable overshoot,
reducing the accuracy of the system. According to Visioli [12], this is Especially important
to watch out for when it comes to cascade control.

There are several possible anti-windup methods to minimize the effects of this, one of
which is clamping. Clamping is a conceptually simple method that consists of disabling
the integral buildup once the system reaches saturation, which can be achieved by a variety
of means. One possible implementation of this is seen in Fig. 1.4.

=il

r
|

VX P K s
multiply
r(t)  e(t) x, vo(t) v1 (1) y(t)
"0 O T, I !
Saturation
y(t) Kp — s

Figure 1.4: Basic block diagram for clamping
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As seen, clamping is accomplished through comparing the input and output of a saturation
block, vg and vy, and multiplying the result by the input to the integral gain. Thus, if
vo # v1, the integral gain input signal will be set as e;(¢) x 0 = 0. With this method the
integrator will only be active when the voltage is not being saturated.

In the case of the Quanser Aero, limits of the input voltages of each propeller are -24V <
v(t) < 24V. The aero will automatically saturate the input signals to achieve these voltages,
which makes the systems vulnerable to integral windup. To steel the system against this,
the clamping method described above will be utilized in every test in this report. However,
clamping and saturation will be largely omitted from test descriptions to avoid excessive
clutter.

1.6 Integral performance indices

The integral performance indices IAE (Integral Absolute Error), ITAE (Integral Time
Absolute Error), ISE (Integral Square Error) and ITSE (Integral Time Square Error) are
often used in quantitative evaluation of the performance of control systems. In this report,
these indices will be used for precisely that.

As the names imply, the indices are all based on the error, expressed as IAE = [ |e(t)|dt,
ITAE = [tle(t)|dt, ISE = [e(t)?dt and ITSE = [ te(t)?dt. Due to the nature of inte-
gration, what all these indices accomplish is to add together accumulated error over the
course of the experiment. Since error is something a system typically aims to keep as
low as possible, one can compare the relative quality of two control systems by how low
the integral indices are. Despite being similar, they fulfill slightly different niches. In the
case of ISE and ITSE, the fact that they square the error before integrating gives them a
greater emphasis on large spikes in error such as overshoot. In the case of ITAE and ITSE,
the multiplication by time puts greater emphasis on later portions of the error where t is
greater such as steady state or the disturbances.



Chapter 2

Description of the Quanser Aero

The Quanser Aero, shown in Fig. 2.1, is a tool designed for experiments in control theory
in education or research. It is somewhat resembles rotorcraft, though it operates on at
most two degrees of freedom and is mounted to the ground.

Propeller safety
guard Pitch encoder

Interchangeable
propellers

Pitch

Adjustable propeller angle
[horizontal to vertical)
DC motor with

Inertial measurement encoder

unit with accelerometer
and gyroscope

Unlimited 360°
yaw rotation

Yaw encoder

QFLEX 2 USB

interface panel
User-controllable P

tri-color LED

.."-Alsn available with
QFLEX 2 Embedded panel

Figure 2.1: Data sheet image of Quanser Aero

10



2.1 General description

2.1 General description

Most of the Aero’s features are represented in Fig. 2.1. As the image implies, the Aero
can rotate across the yaw and pitch axes. The yaw angle is designed to rotate infinitely,
while the pitch angle is limited to 124° (62° in each direction). The respective wings are
known as the ’pitch’ or ’front’ wing versus ’yaw’ and ’back’ wings on and come with their
own DC motor and propeller. Each propeller can also be adjusted on the roll axis using an
allen key. The pitch and yaw angles of the Aero can also be individually locked to simulate
1DOF. In this report, the yaw angle will be locked and the yaw motor will be unused,
resulting in a "1DOF helicopter mode’.

The Aero also comes with various built-in sensors, including a tachometer to measure pro-
peller speeds, high-resolution optical sensors to measure pitch and yaw angles, a gyroscope
for angular velocity, an accelerometer for angular acceleration, and an integrated current
sensor. The Aero can be interacted with using a USB connection and simulink’s various
HIL initialize, HIL read and HIL write blocks. This allows the user to set input voltages,
lock the pitch and yaw axes, set LED coloring and read the various sensors. As noted
earlier, the input voltage is locked at a range of -24V < x < 24V, and will automatically
saturate inputs outside this range.

In addition, the propellers of the Aero can be freely removed and replaced. In the UiS
laboratory, there are two pairs of propellers available, which greatly differ in how much they
are affected by disturbance. Comparing results obtained with each pair of of propellers
allows much more rigorous analysis of how well a system rejects disturbance. For this
reason, all testing will be done for both propellers. The propellers can be seen in Fig. 2.2
and 2.3.

Figure 2.2: High efficiency propeller[10] Figure 2.3: Low efficiency propeller[10]
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2.2 Modeling

2.2 Modeling

A free body diagram of the Aero in 2DOF helicopter mode can be found in their courseware
for the Quanser AERO [1] and is shown in Fig. 2.4.

y-axis

Figure 2.4: Free-body diagram of the 2DOF helicopter mode Quanser Aero

The rotation of the Aero in each axis is defined by variables ¢ (yaw) and 6 (pitch). How
the Aero rotates around the axis depends on the thrust forces F,(t) and F,(t) acting
perpendicularly to the propeller at distances 7, and r, from the y-axis. Meanwhile the
thrust forces are defined by propeller speeds w;, and w,, which are expressions of the user’s
input voltages V), and V.

The torques of each axis can be expressed as:

Tp = KppVp + KpyVy (2.1)
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2.2 Modeling

Ty = KypVp + Ky Vy (2.2)

Through Euler-Lagrange formulation, nonlinear dynamic equations for the pitch and yaw
motions for the Aero in 2DOF helicopter configuration, are found as Eq. (2.3) and (2.4)

[2].

(Jp + malZ)0 + Dpb + myl2, 7 sin(0)cos(0) + mpgle,cos(0) = KyVy + KpyVy  (2.3)
(Jy +mpul2,,cos(0)%)1) + Dyt + 2mypl2, sin(0)cos(0)0v) = K,V + KV, (2.4)
Where the parameters are as defined in Tab. 2.1.
Table 2.1: 2DOF helicopter parameters
Parameter Value Unit
Jp Moment of Inertia about the pitch axis kg - m?
Jy Moment of Inertia about the yaw axis kg - m?
D, Pitch viscous friction constant N/V
D, Yaw viscous friction constant N/V
K, | Torque thrust gain acting on pitch axis from pitch propeller N-m/V
K, | Torque thrust gain acting on pitch axis from yaw propeller N-m/V
K,, | Torque thrust gain acting on yaw axis from pitch propeller N-m/V
K,, | Torque thrust gain acting on yaw axis from yaw propeller N-m/V
lem Center of mass distance from the body-fixed frame origin m
mp Mass of the Aero body kg

By selecting the state vector and the input vector as shown in Eq. 2.10 Eq. 2.9 the state

space equation in Eq. 2.7 was derived.
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2.2 Modeling

"y _ 1 _
I A I 5
x=|5|=|= (2.5)
L ¥ REZN
[ ][ w ]
U= =] (2.6)
x3
. L4
X = Kppu1+Kpyus—Dpzz—mpl2,, x2sin(x1)cos(z1)—mpgl2,, cos(z1) (27)
Jp+mhl2

Kypui+Kyyuas—Dyxa—2myplZ,, sin(z1)cos(x1)z3zs
Jy+mpl2,, cos(z1)?

In 1DOF helicopter mode, the yaw motor is locked and disabled, meaning 1, 1&, LZ, Ky
Kyp and Ky = 0. Considering this, the dynamic equation for the pitch is found as Eq.

2.8, the state vector as Eq. 77, the input as Eq. 7?7 and state space representation as Eq.
2.11.

(Jp + mpl2,)0 + Dy + mpgl2, cos(0) = K,V (2.8)
o 0 o T
[3]-[2)
U=V,=u (2.10)
. L2
[X] — Kppu1—Dgxa—mpgl2, cos(z1) (2.11)
Jp +mhlgm
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2.3 Process behavior

2.3 Process behavior

Most of relevant behaviors of the Quanser Aero can be obtained from the open loop step

responses of each output w(t) and ¢(t), respectively, shown in Fig. 2.5 and 2.6 for the
efficient propellers and Fig. 2.7 and 2.8 for the inefficient propellers.

04 T T T T T T

0.3
E
)]
- 0-2
[
<

0.1
0 I I I I L I I I I
0 2 4 6 8 10 12

14 16 18

20
time (s)

Figure 2.5: Open loop step response of ¢(t), efficient propellers
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Figure 2.6: Open loop step response of w(t), efficient propellers
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Figure 2.7: Open loop step response of ¢(t), inefficient propellers
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2.3 Process behavior
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Figure 2.8: Open loop step response of w(t), inefficient propellers

As the step responses show, there is little difference in the overall behavior of the the
different propellers. For both propeller types, it can be observed that both outputs converge
to a specific value. This means that neither loop is unstable or integrating. As far as the
inner loop goes, it can also be observed that the overall behavior of the process seems
to largely resemble a first order transfer function. Meanwhile, considering the outer loop
process is clearly underdamped, it is better described by function of second order or higher.

Besides that, it should be noted that the process speed of w(t), and thus the dynamics of
the inner loop, is several times faster than ¢(¢). As noted in the introduction, according
to Visioli and Antonio [12], this means the cascade control system should have improved
stability characteristics and allows for greater gain in the primary loop.
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Chapter 3

Tuning methods

3.1 Single-loop tuning methods

3.1.1 Ziegler-Nichols closed loop method

The Ziegler-Nichols closed loop method is a particularly not well known PID tuning
method. A basic scheme to represent the method is shown in Fig. 3.1 , while the scheme’s
subsystem PIDX is detailed in Fig. 3.2. To avoid clutter in block diagrams, the PIDX
subsystem will be used several more times in the report, indicated by the controller in the
diagram being replaced with "PIDX".
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3.1 Single-loop tuning methods

r(t) @ e(t) f——

Ym (t)

Figure 3.1: Basic block diagram for Ziegler-Nichols closed-loop method

1 A

Kfﬁg—»g/)—
2

e(t) X ®uzl (t)

1 B

KD—>S—>§/>7
2

Figure 3.2: PIDx: PID-controller diagram for Ziegler-Nichols method. It is identical to a regular
PID controller, except it features switches to enable and disable the derivative and integral gains

To begin testing, PIDX’s switch A and B must both be set to position 2. This sets the
controller to proportional gain only. Afterwards, Kp must be increased until the system
response reaches marginal stability. Since perfect precision is unnecessary, a response with
approximate marginal stability works fine as well. From the marginally stable response,
the ultimate gain Ky and the ultimate period Ty are then found as the current Kp and
period of the resulting oscillations, respectively. Thereafter, the parameters can be easily
computed through Table 3.1. Once the parameters are applied and the switches are set to
1, the tuning is finished.
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3.1 Single-loop tuning methods

Table 3.1: Ziegler-Nichols PID tuning table, where Ky = ultimate gain and Ty = ultimate
frequency

Control Type Kp K Kp
P 0.5Ky 0 0
PI 0.45Ky | 0.54Ky /Ty 0
PID 06Ky | 1.2Ky/Ty | 0.075KyTy

3.1.2 Standard relay-feedback method

The relay feedback method is another common tuning method. A basic diagram is shown
in Fig. 3.3.

r e 1 u
O s o 14 ) ()
2
Ym (1) Relay

Figure 3.3: Basic block diagram for standard relay-feedback method

To start tuning, switch A must be set to position 2. This replaces the controller with a
symmetrical relay of amplitude h. Similarly to the Ziegler-Nichols method, this method
requires finding an ultimate gain Ky and an ultimate period Ty. To begin, the amplitude
of the relay needs to be increased until continual oscillations are obtained in the response.
The oscillations will perhaps have a changing amplitude at first, but if h is sufficient
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3.1 Single-loop tuning methods

will converge to marginal stability at t -> co. Preferably, measurements of Ky and Ty
should be done when the output is as close to marginal stability as possible. Since perfect
precision is unnecessary, it can be assumed Ay arginal = Aymarginal (Where Ay margina is
the amplitude) after an arbitrary, user-decided period of time. After selecting the usable
time range, the ultimate gain can be computed according to the formula in Eq. 3.1, where
A = Ay marginal- Meanwhile, Ty can be found as the period of the oscillations. Then,
the parameters can be set and the switch turned back to position 1, resulting in a tuned
System.

4h

Ky =—
U™ Arn

(3.1)

Once the values have been obtained, the parameters can be computed through the same
computational methods as Ziegler-Nichols, shown in Table 3.1.

3.1.3 Ziegler-Nichols open-loop method

Ziegler-Nichols open-loop method is a particularly simple method, initially proposed by
J.G Ziegler and N.B Nichols in 1942 [14]. A simplification of the method was provided
in Damiano Rotondo’s lecture notes [9]. A basic diagram for execution of the method is
demonstrated in Fig. 3.4.

y(1)

r(t) R e(t) o(s)

Ym (t)

Figure 3.4: Basic block diagram for Ziegler-Nichols open-loop feedback method

To begin with, switch A and switch B both need to be in position 2, which ensures that
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3.2 Sequential cascade control tuning methods

the system is in open-loop and that the reference is not unaffected by the controller, hence
u(t) = r(t). Then the reference needs to excite the process with a simple step input
r(t) = U x 1(t), where 1(t) is the unit step signal shown in Eq. 3.2. From the output of
this, the necessary parameters L and R can be obtained. R can be found as the slope of
the response’s steepest tangent 7' = Rt. L is the dead time, defined as the time L = t; —tg
between the step time ty and the time of intersection between the steepest tangent T and
the x-axis t;. The PID parameters of the controller can then be computed using Table 3.2.
Setting the controller parameters both switches to 1 should then result in a tuned feedback
system.

0 t<ty

1(t) = { (3.2)

1 t>1

Table 3.2: Table for calculation of Ziegler-Nichols open-loop PID parameters

Controller type | Kp K; Kp
U
= b o
LR RL2
P> | | [

3.2 Sequential cascade control tuning methods

As already mentioned, tuning methods that work with normal feedback control can the-
oretically also work with cascade control systems by using sequential tuning. To do so
effectively, tuning should be done first on the secondary controller with the primary loop
disabled, and then on the primary controller [12|. Naturally, tuning this way takes a sig-
nificant amount of time. Specifically how this can be applied will be covered in section
3.3.
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3.3 Simultaneous cascade tuning using step input

3.3 Simultaneous cascade tuning using step input

A method for simultaneous tuning of controllers, which only requires a single step input,
is presented by Visioli and Piazzi [13]. A basic diagram for the method is presented in Fig.
3.5. The paper features specific methods on how to arrive at the tuned controllers, but in
practice the core concept allows for much freedom in its execution. The core concept in
question is applying a step input directly to the processes in open loop and using the step
responses y2 and y1 to obtain models for the processes P2 and P1. These models should
be in the form of first order plus dead time (FOPDT), seen in Eq. 3.3 or second order
plus dead time (SOPDT) transfer functions, seen in Eq. 3.4 and 3.5. Once the transfer
functions for the processes have been found, many methods can be used to tune C1 and
C2.

K

T(s) = — — 16—“ (FOPDT) (3.3)

K —Ls
T(s) = T D D) Ls (SOPDT) (3.4)
T(s) K ~Ls (SOPDT) (3.5)

- T2s+2£Ts+1e

r1(t) @ e1(t)

Yi,m (t)

Figure 3.5: Basic block diagram for simultaneous step response method

To begin, all switches must be set to position 2, so that the system is in open loop and
ignores the controllers. Then, the user needs to send a step input signal to P, and read
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3.3 Simultaneous cascade tuning using step input

the responses y; and ys. From the step input of r and step response s, any method that
uses the step response to determine a low-order model can be used to find process P;.
Finding a model of the process P> can be slightly more complicated since its input, yo, is
a step response rather than a step or sinusoidal input. Therefore, only methods that can
determine a model from a variable input and its output can be used to determine a model
for P,. If the resulting model is high order, some kind of model reduction is necessary.
From this point, two types of approaches are possible:

Firstly, it is possible to tune the controllers from just the models of P; and P», assuming
the method is adjusted to account for cascade structure. This approach is simple, but
must be specifically tailored, which leaves a relatively small selection.

The second approach involves a much broader selection of methods. It is possible to use
regular FOPDT or SOPDT model based tuning methods by first tuning the secondary
controller using any such method and deriving from it the controller transfer function:

B KDS2+KPS+K[
S

2 (3.6)

Then, the overall transfer function of the inner loop in series with the primary process can
be determined as:

. P1 (S)PQ(S)CQ(S)
Pr(s) = 4 B )0 (s)

(3.7)

Then the transfer function needs to be reduced to an FOPDT or SOPDT transfer function.
If the model of the process P1 is a higher order function, such as those gained from the
proposed least-squares method, then the model reduction can wait until after Pr is found.

Antonio and Piazzi [13] recommend using the area method [12] to determine a FOPDT
of Pp(s). Then, an arbitrarily high order transfer function of P1 is determined using a
least-squares based method such as the one in Sung et al [11], which is then reduced to
a FOPDT model using a least-squares reduction method. Then, the second approach is
followed and the controllers are tuned using the Kappa-Tau method due to supposedly
greater disturbance rejection.
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3.3 Simultaneous cascade tuning using step input

L+T

Figure 3.6: Visual representation of the area method

3.3.1 The area method

The area method is a relatively simple method for finding a FOPDT model of a process. A
demonstration of the method is presented by Visioli [12], where it is visualized as follows:

As already noted, the area method revolves around applying a step input r(t) = U 1(t)
and reading the step output y(t). To execute the method, it is necessary that the y(t) is
in steady state before the step input is applied.

To begin with, the gain K can be determined as the relation between the steady state value

after the step input yss and the step input magnitude U:

K = yss/U (3'8)

Then, the area between the steady state and the step response from the step input time
tg can computed as:

Then, the areas A; and Ay can be computed as:
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3.3 Simultaneous cascade tuning using step input

Ay = / * wtywo)dt (3.10)

to

Where TO is the step input time and yO0 is the steady state output before the step input.

From there the dead time L and the time constant 7 can be computed as:

eAQ
¢ 3.11
T= (3.11)
A
L= fl —7 (3.12)

Where e refers to Euler’s number.

Due to being based on integral computation, the area method can be very difficult to pull
off by hand, and should preferably be executed using a digital script. It is also possible to
get a negative value for L, which make the model largely unusable. On the other hand,
the method is very robust to measurement noise.

3.3.2 Model estimation using least-squares

A method for identifying a higher order model of a transfer function is presented in Sung
et al [11].

N 8™ + N1 8™ L + ...+ 018 + ng

T (s) =
n(s) dps™ +dp_15" 1+ ...+ dis+1

(3.13)

Considering the transfer function can be expressed as:
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3.3 Simultaneous cascade tuning using step input

T(s) = 22 (3.14)

The following can be derived:

y(s)  nms"4nm_18" " 4. 4nis+ng
u(s) — dnps"tdp—18" 14+ .+dis+1
nmsm’"—ﬁ-nm_1sm*"*1+...+n1s’"’1+nos*"
dntdn—15714+...+dis—tl4+1s—n
o nm/s"*m+nm_1/ssf’"+1+...+n1/s"+1+no/s"
- dntdn—1/s+..+d1 /s~ 1+1/sm
=>

y(s)(dp +dn_1/s+ ... +di/s" 1 +1/5")

3.15
= () (Mn /8" F N1 /5T £ L0y /T g /™) (3.15)

This can be transformed into the time domain as:
dny(t) + dn-17y(t) + ... + d1zyn—1(t) + TYn () (3.16)

= N PUp—m () + M- 1ZUp—m+1(t) + ... + M1TU41 (F) + NoTUR(2)

myi(t):/t://.../(y(t))dti (3.17)
us(t) :/t://.../(u(t))dti (3.18)

Where tg is the time of the input change. The equation can be used to find the following:

xyn(t) = —dpy(t) — dp—12y(t) — ... — dyzyn—1(t) +
N LU —mn (L) 4 N1 TUp— 1 () + oo + n12Up 1 (E) + nozun(t)
(3.19)
= [—y(t) —zy(t) — ... — 2Yn—1)TUp—m(t)TUn—mt1(t)...TUp1(E)TUK(L)]
[_dndn—l--- - dlnmnm_l...nlno]T
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3.3 Simultaneous cascade tuning using step input

Now, by considering all the time from to to the final time t; at discrete intervals: t = [to,

t1, ..., ty—1, t¢], this equation can be expressed as :
B = Ax (3.20)
Where:
T
B = [ XYn(t0), ¥Yn(t1);s s TYn(tend—1)s TYn (tend) ] (3.21)
y(to)s =2y (to)s -+ —2Yn—1(t0), TUn—m(t0), Tun—m+1(to); s Tunt1(to), un(to)
-y (t1), —xy(t1)s s —2Yn—1(t1)s TUp—m (1), TUn—mt1(t1), s TUpg1 (E1), TUR(t1)
A= (3.22)

Y(br-1)s 2Y(tr-1); s ¥Yn—1(tr-1)s P (tr-1)s TUn—mt1(Ef—1)s s TUpt1 (Ep—1), TUR(E-1)
y(tend)a my(tend)v vy TYn—1 (tend)a TUp—m (tend)7 TUp—m+1 (tend)a cery TUp4-1 (tend)a wun(tend)

1" (3.23)

Tr = [ ‘dna_dn—la-‘-v_dlynm7nm—la‘--777/1’77!0

Finally, by solving Eq. 3.20 for x using a least-squares procedure, all the parameters needed
to find the higher order model shown in Eq. 3.13 are obtained.

It is possible to directly obtain a low order model for a process using this method, but it
would not account for dead time, so this is not recommended.

3.3.3 Least-squares reduction method

Alongside the high order model estimation method, Sung et al [11] presents a least-squares
based reduction method that can give either an FOPDT or SOPDT model from the arbi-
trarily high order transfer function T(s).

Firstly, the gain can be computed as:

K = T, (0) (3.24)
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3.3 Simultaneous cascade tuning using step input

Then, given that the magnitude of the SOPDT transfer function in the frequency domain
can be given as:

_ K
T3 (jw)| = o (3.25)

The following equation can be derived:

Ty (jw)Pw! + (47°€* = 27°)| Ty (juw) Pw = K — |T(jw)|? (3.26)

Setting a — 74 and b — 472¢2 — 272 gives:

a| Ty (jw) Pw? + b Ty (jw) Pw = K2 — |T(jw)[? (3.27)

Meanwhile, the ultimate frequency w,, can be found as the frequency where |T}(j w)| =
1, that is at |Tp(j wy)|lap = 0. If this has no solution, w, can be found at |Th(j wy)|ip
= 20log(K) - 3dB. From this, a frequency vector 0 < wy < wy < ... < w; < ... <wy, of
arbitrary length 1 must be defined. Using this, Eq. 3.27 can give:

[ K2 T, [ T 0,0
K? — | T (jwo)|? | Th (jwo)wg, | Th(jwo)wy
K? — [T}, (jw:)[? [ Th(jwr) Pwl, [Th(jw:)Pwi
= [a,b ] (3.28)
K? — [T}, (jw;)[? I Th(jwi)|Pwi, [T (jwi) w?
L K2 — ’Th(jWU)|2 L L ‘Th(jwu)’2w37 |Th(jwu)‘2w3 i

Then finally, after solving Eq. 3.28 for the unknowns [a, b| using a least-squares procedure,
the following operations can be done to find 7, £ and L of the SOPDT model:

T=+v/a (3.29)
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3.3 Simultaneous cascade tuning using step input

b+ 272
€=/ ZT; (3.30)

i) (3.31)

7+ arctan2(—27&wy, 72w

L=

Wy,

This method can also be used to find FOPDT parameters instead, without requiring a least-
squares procedure. First, the magnitude of a FOPDT transfer function in the frequency
domain can be found as shown in Eq. 3.32, which at w = w,, can through relatively simple
math give the formula for 7 in Eq. ?77.

L K
Ty (jw)| = NiEach: (3.32)

_ VE? =T (jw,)?
T TGl (3.33)

Then, the dead time can be found as suggested in Visioli and Antonio [13]:

_arg(|Th(jwu)|) + atan(wu)
N

L =

(3.34)

It is important to note that there are several ways for this reduction method to result in
invalid parameters. The first issue is the formulas for the dead time L have the possibility of
resulting in a negative value, which would also typically result in unusable PID parameters.
In addition, in the case of the SOPDT calculations, it is possible to get complex parameters
if either a < 0 ( complex 7) or if b < -272 (complex £). Meanwhile for the FOPDT method,
if |T1(j wy)|ap is rising, meaning that 0 > 20log(K), it will result in a complex 7. These
complex parameters are not very useful for creating transfer function models, and will
result in similarly unusable PID parameters.
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3.3 Simultaneous cascade tuning using step input

3.3.4 Simultaneous tuning using process models

A method for the tuning of cascade controllers given models of the primary process P(s)
and the secondary process Py(s) is presented in Lee et al [5]. The paper describes method-
ology to tune any controller using a model, though in this report, the more interesting part
is the simplification of the method in the case of FOPDT or SOPDT process models. This
simplification is represented in table 3.3, where K; = %, Kp = KpTp and Ly = L; +
Lo.

Table 3.3: Tuning rules for cascade controllers given FOPDT or SOPDT models of processes P
and P1

Process Process model Kp Ty Tp
FOPDT Mo o las Tkt ™+ Q(%ELQ) 76@5@2@(3 - 72)

. 2 L3 .
SOPDT | ot el | pliars | 26m + iy : T e

L.
FOPDT 71§i167L15 m Tt At 2(A1L+1TLT) = %(IilzLT; + 2(/\1LjLT)
- L

SOPDT | oyt me ™™ | mgdry | 2néit+de + 2<A1L+1TLT) THZ&TIAYZGWILT) + 2(A1L+2TLT)

In the case of PI controllers, it is recommended to simply remove the derivative action.

3.3.5 Tuning based on SOPDT or FOPDT models

Several tuning methods are simplified and shown in Panda et al 7], including a 'IMC-
PID’ method for tuning using FOPDT models and a 'IMC-Chien’ method for tuning using
SOPDT models.

FOPDT tuning using IMC-PID

The IMC-PID method is based on the Internal Model Control methodology of Rivera et al
[8] and the selection of the IMC tuning parameter X of [6]. The resulting PID controller is
of a different type than the one covered in chapter 1.3, and in its laplace form is as follows:
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3.3 Simultaneous cascade tuning using step input

PID3 = (Kp + % + Kps)( ) (3.35)

Tf8+1

Since a filter is already included in the formula, there is no need to add any additional
filter to the derivative gain. Then, the tuning rules are as shown in table 3.4 and Eq. 3.36,
where A\ = max(0.25L, 0.27).

Table 3.4: IMC-PID tuning rules

Controller type Kp Ky Kp
7+ L T
AN B
PID 2K(A+1L) Kp 7+0.5L Kp 22+L
AL
= 3.36
ETe s (3:36)

SOPDT tuning using IMC-Chien

The IMC-Chien method, again based on Internal Model Control [8], is presented by Chien
[4]. The resulting tuning rules, based on the behavior of the model are shown in table 3.5,
where again A = max(0.25L, 0.27).

Table 3.5: IMC-Chien tuning rules

Behavior type Model Kp K; Kp
K =y + T
Overdamped | monmsin® | &bty | Krass | Keat
K —L 2 1
Not Overdamped me s WJ:L) KP 267 KP i
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3.4 Method selection

3.3.6 Kappa-Tau tuning

Tuning into PI or PID based on a FOPDT model of a process, taken from the Kappa-Tau
method presented by Astréom and Hagglund [3] is presented by Visioli and Antonio [13],

and shown in Table 3.6. In it, § = TL%

Table 3.6: IMC-Chien tuning rules

Controller type Model Kp P ™
PI 0.41¢~0-23+0+00190° T | 5 7,1.7+0-0.690° 0
PID 3.8~ 8-4+0+7.30° % 5.92¢—25%0-1.407 1 | () 80 —0.37x0—4.16% |

3.4 Method selection

3.4.1 Single loop tuning

As described in the introduction, it is desired to do some amount of testing on a single loop
control system as a point of comparison. To draw an adequate comparison, two approaches
were chosen:

e Tuning C(s) to a PID controller using the Ziegler-Nichols closed-loop method.

e Tuning C(s) to a PID controller using the relay feedback method.

Tests were done with both the Ziegler-Nichols closed loop method and the relay feedback
method. The following approaches will be used

3.4.2 Sequential tuning of cascade controller

As noted in the introduction, it is possible to perform any sequential cascade tuning meth-
ods by first tuning the inner loop and then the outer loop using normal single loop tuning
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3.4 Method selection

methods. Unfortunately, both the Ziegler-Nichols closed loop method and the relay feed-
back method rely on oscillations to perform tuning. Since it has been established that
the inner loop process behaves like a first order transfer function, this means that neither
method is usable with the inner loop. Thus, to test either of these methods with the cas-
cade control configuration, it is necessary to use another tuning method on the inner loop
first. For that purpose, the Ziegler-Nichols open loop method will be utilized.

In addition, since the derivative gain amplifies high frequency noise, and the extremely fast
moving propellers are very susceptible to this, the derivative action is largely undesired for
the secondary controller. So instead, PI controller will be utilized for the inner loop in all
cascade control tuning methods.

In summary, to implement sequential tuning on the cascade system, two approaches will
be taken in this report:

e Tuning C5(s) to a PI controller using the Ziegler-Nichols open-loop method, followed
by tuning Ci(s) to a PID controller using the Ziegler-Nichols closed-loop method.

e Tuning Cy(s) to a PI controller using the Ziegler-Nichols open-loop method, followed
by tuning Cj(s) to a PID controller using the relay feedback method for the primary
controller.

3.4.3 Simultaneous cascade control tuning

The only method covered for simultaneous tuning of the cascade controller is the step
response method. However, as mentioned, there are many approaches in doing this. To
cover everything that was detailed the following approaches will be used:

e Determining a FOPDT model of Py using the area method, determining an arbitrarily
high order transfer function for Py using the least-squares model estimation method,
tuning Cy into a PI controller using Kappa-Tau with Ps, computing Pr, reducing
Pr to a FOPDT model using the least-squares reduction method, and finally tuning
C; into a PID controller using Kappa-Tau with Pr.

e Determining an FOPDT model of P2 using the area method, determining an arbi-
trarily high order transfer function for Py using the least-squares model estimation
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3.4 Method selection

method, tuning Cy into a PI controller using IMC-PID with Py, computing Pp, re-
ducing Pr to a SOPDT model using the least-squares reduction method, and finally
tuning C; into a PID controller using IMC-Chien with Pr.

Determining a FOPDT model of P, using the area method, determining an arbitrarily
high order transfer function for P; using the least-squares model estimation method,
reducing Pr to a FOPDT model using the least-squares reduction method, and finally
tuning Cs into a PI controller and C; into a PID controller using simultaneous tuning
with Py and P;.

Determining a FOPDT model of Py using the area method, determining an arbitrarily
high order transfer function for P; using the least-squares model estimation method,
reducing Pr to a SOPDT model using the least-squares reduction method, and finally
tuning Cs into a PI controller and C; into a PID controller tuning with Ps and Pj.

The first approach listed is the same as the one that was proposed by Visioli and Antonio
[13]. For simplicity, these approaches will in this report be tentatively shortened to:

Step response Kappa-Tau
Step response IMC
Step response simultaneous FOPDT plus FOPDT

Step response simultaneous FOPDT plus SOPDT

Notably, considering the outer loop requires a transfer function of at least second order to
be accurately represented, it is expected that the ’step response IMC cascade tuning’ and
the ’step response simultaneous FOPDT plus SOPDT cascade tuning’, considering they
both estimate a SOPDT model from ¢(t), will perform much better than the other two
others which estimate FOPDT models. Since the system is underdamped, it is also not
realistic to utilize any methods which operate on the SOPDT type in Eq. 3.4, hence their

absence in this report.
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Chapter 4

Testing

4.1 Ziegler-Nichols closed-loop method

The model used for the tuning process is shown in Fig. 4.1.

) o o) o] )

Pm ()

Figure 4.1: Block diagram for Ziegler-Nichols closed-loop method testing

To actually test the method on the Quanser Aero, the steps were followed fairly ordinarily,
both for the efficient and inefficient propellers. The marginally stable responses used for
the ultimate gains and ultimate periods are shown in Fig. 4.2 and 4.3. This resulted in
Ky = 70.50 (38.00) and Tyy = 2.142 (2.625) in the case of efficient (inefficient) propellers,
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4.1 Ziegler-Nichols closed-loop method

which were used with Table 3.1 to obtain the PID parameters and filter coefficients. The
final parameters are shown in Fig. 4.1. Applying the parameters to the controllers resulted
in the responses shown in Fig. 5.1 and 5.9.

Table 4.1: PID parameters and filter coefficients for Ziegler-Nichols tuning

Controller Kp Kr Kp Tf
Efficient propellers controller | 42.30 | 39.50 | 11.32 | 0.02677
Inefficient propellers controller | 22.80 | 17.37 | 7.482 | 0.03282

0.4 w

T
—Aero angle
- - Reference

0.3 g====--m-=memeeeeeeeeceeeececaeaoce-os -==-A-

Angle (¢)

_01 1 1 1 L 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

time (s)

Figure 4.2: Marginally stable Ziegler-Nichols system response, efficient propellers, obtained at
Kp = Ky = 70.50
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4.2 Standard relay-feedback method
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Figure 4.3: Marginally stable Zigler-Nichols system response, inefficient propellers, obtained at
Kp = Ky = 38.00

4.2 Standard relay-feedback method

The control model used for the tuning process is shown in Fig. 4.4.
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4.2 Standard relay-feedback method
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Figure 4.4: Block diagram for standard relay-feedback method testing

The oscillatory responses necessary for the ultimate gain and ultimate period are shown
in Fig. 4.5 and 4.6, found at h = 50 and h = 12 for efficient and inefficient propellers,
respectively. The oscillations were considered as in permanently oscillating after 30 seconds,
after which A = 0.6233 (0.8211) and Ty = 1.496 (1.974) were read off the responses in the
case of efficient (inefficient) propellers. The final parameters are shown in Fig. 4.2. The
resulting PID parameters were applied to the controllers, resulting in Fig. 5.2 and 5.10.

Table 4.2: PID parameters and filter coefficients for Relay feedback tuning

Controller Kp K Kp Tf
Efficient propellers controller | 61.28 | 81.94 | 11.46 | 0.01870
Efficient propellers controller | 11.16 | 11.31 | 2.755 | 0.02468
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4.2 Standard relay-feedback method
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elay feedback test for inefficient propellers, obtained at h = 12
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4.3 Sequential Ziegler-Nichols closed loop plus Ziegler-Nichols open loop
methods on cascaded system

4.3 Sequential Ziegler-Nichols closed loop plus Ziegler-Nichols
open loop methods on cascaded system

The model used for the tuning process is in Fig. 4.7.

step ﬁ(t)
ri(t) — ei(t) 1A e
QM pipx {g/@@@ Ca(s)
2
1 B
Oml(t) O

Wm, (t) 2

Figure 4.7: Block diagram for Ziegler-Nichols closed loop plus Ziegler-Nichols open loop cascade
control

To begin tuning the secondary controller, switch A was set to 2 to disable the primary
loop. To actually tune the secondary controller, the Ziegler-Nichols open loop method was
selected and used ordinarily. At step input amplitude U = ro(t) = 15, Fig. ?7? and 4.9 were
obtained, and from it the slopes R = 7133 (2101) and the dead-times L = 0.006 (0.008)
were found in the case of efficient (inefficient) propellers. After the resulting PI parameters
were applied to Ca(s), the responses in Fig. 4.10 and 4.11 were obtained from 73(t) = 150.
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4.3 Sequential Ziegler-Nichols closed loop plus Ziegler-Nichols open loop
methods on cascaded system
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Figure 4.8: Inner loop open loop step response, efficient propeller, found at U = 15
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Figure 4.9: Inner loop open loop step response, inefficient propeller, found at U = 15
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4.3 Sequential Ziegler-Nichols closed loop plus Ziegler-Nichols open loop
methods on cascaded system
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Figure 4.10: Inner loop open loop tuning result, efficient propeller, found at step input ro(t) =
150
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Figure 4.11: Inner loop open loop tuning result, efficient propeller, found at step input ro(t) =
150

Switch A was then set back to 1 to enabled the primary loop. To tune the primary
controller, Ziegler-Nichols method was followed normally. Then, Ky = 25000 ( 4100) and
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4.3 Sequential Ziegler-Nichols closed loop plus Ziegler-Nichols open loop

methods on cascaded system

Ty = 2.004 (1.930) were found for the case of efficient (inefficient) from the responses Fig.
4.12 and 4.13. The final parameters are shown in Fig. 4.3 Applying the PID parameters

to PIDX resulted in the responses shown in Fig. 5.3 and 5.11.

Table 4.3: PID parameters and filter coefficients for Ziegler-Nichols open-loop plus Ziegler-Nichols

closed loop tuning

Controller Kp K; Kp Tf
Efficient propellers secondary controller | 0.31544 | 15.9314 0 -
Efficient propellers primary controller 15000 14972 | 3757 | 0.02505
Inefficient propellers secondary controller | 0.8033 30.43 0 -
Inefficient propellers primary controller 2460 2549 593.5 | 0.02412
0.6 ‘

—Aero angle
05+ - - Reference |
0.4 7

2 o03r-4--1-t--F--1-1--f-F- S R E S EEE B SR S o
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_01 1 1 1 L 1 1 1 L 1
0 2 4 6 8 10 12 14 16 18 20
time (s)

Figure 4.12: Marginally stable outer loop response, efficient propellers, found at Ky = Kp =

25000
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4.4 Sequential relay-feedback method plus Ziegler-Nichols open loop tuning
methods on cascaded system
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Figure 4.13: Marginally stable outer loop response, inefficient propellers, found at Ky = Kp =
4100

4.4 Sequential relay-feedback method plus Ziegler-Nichols open
loop tuning methods on cascaded system

The model used for this tuning method is shown in Fig. 4.14.

T e 1 A & u w
2

Figure 4.14: Block diagram for relay-feedback plus Ziegler-Nichols open loop cascade control

~
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4.4 Sequential relay-feedback method plus Ziegler-Nichols open loop tuning
methods on cascaded system

As this method utilizes the same Ziegler-Nichols open loop technique as the previous part
for tuning the inner loop, the secondary controller parameters from table 4.3 were re-used
for this section. Therefore, only the outer loop tuning will be covered.

The steps for the relay-feedback methods were then followed ordinarily for the outer loop.
The oscillatory response used was found at relay amplitudes of h = 800 for efficient, and
250 for inefficient, and are shown in Fig. 4.15 and 4.16. The oscillations were considered
as in permanently oscillating after 30 seconds, after which A = 0.6351 (0.4227) and Ty
= 1.513 (1.493) were read off the responses in the case of efficient (inefficient) propellers.
The final parameters are shown in Fig. 4.4. Then, applying the PID parameters obtained
to the controllers resulted in Fig. 5.4 and 5.12.

Table 4.4: PID parameters and filter coefficients for Ziegler-Nichols open-loop plus relay feedback
tuning

Controller Kp K Kp Tf

Efficient propellers secondary controller | 0.31544 | 15.9314 0 -
Efficient propellers primary controller 962.3 1272 182.0 | 0.01891

Inefficient propellers secondary controller | 0.8033 30.43 0 -
Inefficient propellers primary controller 451.8 605.2 | 84.34 | 0.01867
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4.4 Sequential relay-feedback method plus Ziegler-Nichols open loop tuning
methods on cascaded system
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Figure 4.15: Relay outer loop test, efficient propellers, found at h = 800
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Figure 4.16: Relay outer loop test, inefficient propellers, found at h = 250
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4.5 Simultaneous tuning using step response

4.5 Simultaneous tuning using step response

4.5.1 Common grounds

As noted earlier, the testing for this method was done using 4 different approaches. All of
them utilized the model shown in Fig. 4.17.

r1(t) ® e1(t) Crs)

¢1,m(t)

Figure 4.17: Basic block diagram for simultaneous step response method

Since all the step response tuning approaches can be executed from script after a single
open loop step test, the same step responses of ¢ and w were used for all the approaches.
In addition, testing used m = 3 and n = 4 for least-squares model estimation method in all
approaches, as that should be sufficient to create a model that replicates most properties
of the original process without overfitting.

Notably, the open loop tests used to achieve these results had to be redone several times,
especially for the inefficient propellers, since it would oftentimes result in negative param-
eters or complex answers, which are both unusable. This was largely due to the faults
mentioned in the least-squares reduction method.

Since all the selected approaches use the area method for FOPDT estimation, the following
execution of the area method applies to all of them:

To begin, all switches were set to 2 to disable the controllers and set the system in open
loop. The system was then excited using an input of U = 15. From the step response of Po,
w(t), the area method found that the FOPDT parameters were K = 23.56, 7 = 0.05238,
L = 0.001801 for the efficient propellers, and K = 16.95, 7 = 0.1304, L, = 0.010145 for the
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4.5 Simultaneous tuning using step response

inefficient propellers.

4.5.2 Step response Kappa-Tau

Using the model found in section 4.5.1, combined with Kappa-Tau tuning, least-squares
process estimation on the step responses of w and ¢ and least-squares reduction, the
FOPDT model parameters of Pr were found as K = 0.0005323, 7 = 0.3620 and L =
0.7599 for the efficient propellers, and K = 0.0008706, 7 = 0.2292 and L = 0.6639 for the
inefficient propellers. Then, by using the Kappa-Tau method, the parameters in Table 4.5
were found.

Table 4.5: PID parameters and filter coefficients for ’step response Kappa-Tau’ tuning

Controller Kp Ki Kp T¢

Efficient propellers secondary controller | 0.1310 | 3.266 0 -
Efficient propellers primary controller 327.4 | 856.5 | 26.27 | 0.008024
Inefficient propellers secondary controller | 0.3060 | 4.697 0 -
Inefficient propellers primary controller 165.2 | 665.5 | 7.694 | 0.004657

4.5.3 Step response IMC

Using the model found in section 4.5.1, combined with Kappa-Tau tuning, least-squares
process estimation on the step responses of w and ¢ and least-squares reduction, the
SOPDT model parameters of Py were found as K = 0.0005323, 7 = 0.5209, £ = 0.07795
and L = 0.06097 for the efficient propellers, and K = 0.0008706, 7 = 0.4842, £ = 0.1005
and L = 0.07484 for the inefficient propellers. Then, by using the Kappa-Tau method, the
parameters in Table 4.6 were found.
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4.5 Simultaneous tuning using step response

Table 4.6: PID parameters and filter coefficients for ’step response IMC’ tuning

Controller Kp K Kp Tf
Efficient propellers secondary controller | 0.2265 | 4.718 0 0.001773
Efficient propellers primary controller 544.0 | 11380 | 3067 | 0.5638
Inefficient propellers secondary controller | 0.3065 | 2.262 0 0.003652
Inefficient propellers primary controller 487.4 | 6690 | 1555 | 0.3190

4.5.4 Step response simultaneous FOPDT plus FOPDT

Using the model found in section 4.5.1 least-squares process estimation on the step re-
sponses of w and ¢ and least-squares rediction, the FOPDT model parameters of P were
found as K = 0.0005323, 7 = 0.3619 and L = 0.7410 for the efficient propellers, and K
= 0.0008706, 7 = 0.2433 and L = 0.6307 for the inefficient propellers. Then, by using
the simultaneous FOPDT plus FOPDT tuning method, the parameters in Table 4.7 were
found.

Table 4.7: PID parameters and filter coefficients for ’step response simultaneous FOPDT plus
FOPDT’ tuning

Controller Kp K; Kp Tf

Efficient propellers secondary controller | 0.5786 | 10.89 0 -
Efficient propellers primary controller 1029 1684 | 152.4 | 0.01481

Inefficient propellers secondary controller | 0.5189 | 3.878 0 -
Inefficient propellers primary controller 552.1 | 1195 | 64.88 | 0.01175

4.5.5 Step response simultaneous FOPDT plus SOPDT

Using the model found in section 4.5.1, least-squares process estimation on the step re-
sponses of w and ¢ and least-squares reduction, the SOPDT model parameters of P; were
found as K = 0.0005323, 7 = 0.5209, £ = 0.07791 and L = 0.05510 for the efficient pro-
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4.5 Simultaneous tuning using step response

pellers, and K = 0.0008706, 7 = 0.4857, £ = 0.1031 and L = 0.06582 for the inefficient
propellers. Then, by using the simultaneous FOPDT plus SOPDT tuning method, the
parameters in Table 4.8 were found.

Table 4.8: PID parameters and filter coefficients for 'step response IMC’ tuning

Controller Kp Kr Kp Tf

Efficient propellers secondary controller | 0.8322 | 15.71 0 -
Efficient propellers primary controller 2224 | 22012 | 5811 | 0.2613
Inefficient propellers secondary controller | 0.5189 | 3.878 0 -
Inefficient propellers primary controller 1316 | 10080 | 2297 | 0.1746
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5.1 PID parameters and filter coefficients

Chapter 5

Results

5.1 PID parameters and filter coefficients

Table 5.1: PID parameters and filter coefficients for all tuning methods, efficient propellers

Method and controller

Kp K[ KD 7'f
Single loop Ziegler Nichols closed loop 42.30 39.50 | 11.32 | 0.02677
Single loop relay feedback method 61.28 81.94 | 11.46 | 0.01870
Ziegler-Nichols closed loop plus
Ziegler-Nichols open loop, secondary controller 0.31544 | 15.9314 0 )
_ Ziegler-Nichols closed loop plus 15000 | 14972 | 3757 | 0.02505
Ziegler-Nichols open loop, primary controller
Relay feedback plus Ziegler-Nichols open loop, 0.31544 | 15.9314 0 )
secondary controller
Relay feedback plus Ziegler-Nichols open loop, 962.3 1279 182.0 | 001891
primary controller
Step response Kappa-Tau, secondary controller | 0.1310 3.266 0 -
Step response Kappa-Tau, primary controller 327.4 856.5 | 26.27 | 0.008024
Step response IMC, secondary controller 0.2265 4.718 0 0.001773
Step response IMC, primary controller 544.0 11380 | 3067 0.5638
Step response simultaneous FOPDT plus
FOPDT, secondary controller 0.5786 10-89 0 )
Step response simultaneous FOPDT plus
FOPDT, primary controller 1029 1684 152.4 | 0.01481
Step response simultaneous FOPDT plas
SOPDT, secondary controller 0.8322 15.71 0 )
Step response simultaneous FOPDT plus 9994 929012 | 5311 0.2613

SOPDT, primary controller




5.1 PID parameters and filter coefficients

Table 5.2: PID parameters and filter coefficients for all tuning methods, inefficient propellers

Method and controller Kp K; Kp Tf
Single loop Ziegler Nichols closed loop 22.80 | 17.37 | 7.482 | 0.03282
Single loop relay feedback method 11.16 | 11.31 | 2.755 | 0.02468
Ziegler-Nichols closed loop plus
Ziegler-Nichols open loop, secondary controller 0.8033 | 30.43 0 )
. Zicgler-Nichols closed loop plus 2460 | 2549 | 593.5 | 0.02412
Ziegler-Nichols open loop, primary controller
Relay feedback plus Ziegler-Nichols open loop, 0.8033 | 30.43 0 i
secondary controller
Relay feedback plus Ziegler-Nichols open loop, 4518 | 6052 | 8434 | 001367
primary controller
Step response Kappa-Tau, secondary controller | 0.3060 | 4.697 0 -
Step response Kappa-Tau, primary controller 165.2 | 665.5 | 7.694 | 0.004657
Step response IMC, secondary controller 0.3065 | 2.262 0 0.003652
Step response IMC, primary controller 487.4 | 6690 | 1555 0.3190
Step response simultaneous FOPDT plus
FOPDT, secondary controller 0.5189 ) 3.878 0 )
Step response simultaneous FOPDT plus
FOPDT, primary controller 552.1 | 1195 | 64.88 | 0.01175
Step response simultaneous FOPDT plus
SOPDT, secondary controller 0.5189 ) 3.878 0 )
Step response simultaneous FOPDT plus 1316 | 10080 | 2297 0.1746

SOPDT, primary controller
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5.2 Figures

5.2 Figures

5.2.1 Efficient propellers
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Figure 5.1: Single loop closed loop Ziegler-Nichols method result, efficient propellers
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Figure 5.2: Single loop relay feedback method result, efficient propellers
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5.2 Figures
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Figure 5.3: Sequential closed loop Ziegler-Nichols plus open loop Ziegler-Nichols result, efficient
propellers
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Figure 5.4: Sequential relay feedback plus open loop Ziegler-Nichols result, efficient propellers
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5.2 Figures
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Figure 5.5: Step response Kappa-Tau cascade tuning, efficient propellers
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Figure 5.6: Step response IMC cascade tuning, efficient propellers
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Figure 5.7: Step response simultaneous FOPDT plus FOPDT cascade tuning, efficient propellers
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Figure 5.8: Step response simultaneous FOPDT plus SOPDT cascade tuning, efficient propellers
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5.2 Figures

5.2.2 Inefficient propellers
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Figure 5.9: Single loop closed-loop Ziegler-Nichols result, inefficient propellers
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Figure 5.10: Single loop relay feedback result, inefficient propellers
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Figure 5.11: Sequential closed loop Ziegler-Nichols plus open loop Ziegler-Nichols result, ineffi-
cient propellers
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Figure 5.12: Sequential relay feedback plus open loop Ziegler-Nichols result, inefficient propellers
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5.2 Figures
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Figure 5.13: Step response Kappa-Tau cascade tuning, inefficient propellers
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Figure 5.14: Step response IMC cascade tuning, inefficient propellers
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5.2 Figures
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Figure 5.15: Step response simultaneous FOPDT plus FOPDT cascade tuning, inefficient pro-
pellers
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Figure 5.16: Step response simultaneous FOPDT plus SOPDT cascade tuning, inefficient pro-
pellers
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5.3 Integral performance indices

5.3 Integral performance indices

Table 5.3: Integral performance indices for efficient propellers

Method IAE | ITAE ISE ITSE
Standard Ziegler-Nichols 1.006 | 14.63 | 0.09543 | 0.7130
Standard relay feedback 1.057 | 17.28 | 0.08279 | 0.7669
Cascade Ziegler-Nichols 0.2175 | 1.125 | 0.03586 | 0.01054
Cascade relay feedback 0.4632 | 2.265 | 0.06508 | 0.1116
Step response Kappa-Tau 15.43 | 394.15 | 9.816 270.5
Step response IMC 0.7606 | 11.82 | 0.05261 | 0.2690
Step response simultaneous FOPDT plus FOPDT | 0.4813 | 2.489 | 0.06431 | 0.1163
Step response simultaneous FOPDT plus SOPDT | 0.3960 | 1.827 | 0.05190 | 0.08559
Table 5.4: Integral performance indices for inefficient propellers
Method IAE | ITAE ISE ITSE
Standard Ziegler-Nichols 1.689 | 20.85 | 0.1875 1.294
Standard relay feedback 2.568 | 33.24 | 0.3365 2.431
Cascade Ziegler-Nichols 0.3818 | 1.672 | 0.04748 | 0.02780
Cascade relay feedback 0.8721 | 5.570 | 0.1154 | 0.2857
Step response Kappa-Tau 20.05 | 464.5 14.56 354.5
Step response IMC 0.2617 | 1.507 | 0.04198 | 0.05793
Step response simultaneous FOPDT plus FOPDT | 7.012 | 153.3 1.651 38.09
Step response simultaneous FOPDT plus SOPDT | 0.3682 | 1.718 | 0.05049 | 0.07937
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Chapter 6

Discussion and future work

6.1 Discussion

Due to disturbances and human error varying between individual experiments, small dif-
ferences in performance can largely be neglected. Even with that in mind, as was desired,
the cascade control versions of both the closed loop Ziegler-Nichols and the relay-feedback
methods perform much better in the graphs and the integral indices. This improvement is
especially prominent for the inefficient propellers, which are affected by disturbances more
than the efficient ones. This can also be observed by the time variant integral indices,
which put more emphasis on disturbances, demonstrate an especially radical improvement
compared from single loop control to cascade control. The only exceptions being the less
stable systems, where the low performance in the time variant integral indices can be at-
tributed to that very lack of stability. Though this is best observed by the figures, where
while the single loop feedback control systems hardly had time to stabilize between the
various disturbances, the cascade control systems were hardly affected. This was consistent
even among worse performing methods. Clearly, consistent with what was established ear-
lier, cascade control on the Quanser Aero has significantly superior disturbance rejection
properties against disturbances acting in the inner loop, compared to single loop control.

Even besides disturbance rejection though, from reading the figures, it can be observed that

there’s some improvement in speed and/or stability from the single loop Ziegler-Nichols
closed loop and relay feedback experiments to their cascade control equivalents.
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6.2 Future work

However, it remains true that sequential cascade control, which were the best performing
methods, involves much greater time to tune. Fortunately, the inner loop in these exper-
iments utilized the Ziegler Nichols open loop method, which is less time consuming than
the Ziegler Nichols open loop method or the relay feedback method, meaning the time it
takes was not quite doubled. In addition, considering that typical tests with the Quanser
Aero do not take long, the time it takes to tune is arguably of low relevance compared to
the performance of the method.

Regardless, reducing the time it takes to tune the controller is still desirable. For that
purpose, simultaneous tuning of controllers can be a useful approach, as it can possibly
tune both controllers with just one test and a script. On the other hand, it is much more
challenging to implement. Firstly, it takes much more advanced methods to develop the
required script. Second, due to the underdamped nature of the Quanser Aero’s primary
process, the number of methods that are available is drastically limited. As shown by
the results of ’Step response Kappa-Tau’ and ’Step response simultaneous FOPDT plus
FOPDT’, while methods that utilize FOPDT models for the outer loop can work, they
are particularly unreliable. Though even among the SOPDT based methods, tests had to
be redone several times, and in the end largely did not show the same consistent level of
performance as the sequential methods. Still, considering only one overall tuning method
was attempted for simultaneous tuning, it is hard to conclude whether this was fully the
fault of simultaneous tuning. Though at the very least, it is certain that simultaneous
tuning takes a lot more effort to set up.

Regardless, there is clearly significant benefit to applying a cascade control configuration
to the Quanser Aero. The disturbance rejection properties are very significant, and there
is likely more general benefits like speed and/or stability as well. While the time it takes
to tune is a problem, it takes a little enough time to tune overall that this is likely not
as much of a detriment as the increase in performance is of a benefit. Not to mention
it’s also possible to cut down this added time by using simultaneous tuning, though the
effectiveness of such methods is slightly more uncertain as of now.

6.2 Future work

At this point, this report still leaves lots of work to be done. Particularly, since all testing
was done only using the 1DOF helicopter configuration, it may be worthhile to test the
usage of cascade control with other configurations, especially 2DOF. Taken one step further,
it may be useful to test cascade control with Quanser’s 3DOF helicopter.
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6.2 Future work

There would also be value in testing with more tuning methods. While the claim that
cascade control is superior in resisting disturbances in the Quanser Aero’s inner loop has
been quite definitively demonstrated, other factors like speed, stability and ease of imple-
mentation would perhaps require more types of tests. In particular, it would be desirable
to find another less flawed model reduction method for the cascade step response method.
Testing at least one more type of simultaneous tuning method would also be very useful to
increase the robustness of any claims regarding simultaneous tuning. In general, a larger
variety of tested methods would allow for a much more rigorous analysis of how a cascade
control implementation affects the Quanser Aero.

It is also an option to test other types of controllers besides PI and PID. They can poten-
tially change how cascade control affects the performance of the Quanser Aero.

It may of course also be considered to simply improve on the methods already demonstrated
in case there were any errors in execution.
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Chapter 7

Conclusion

The goal of this bachelor’s report is to evaluate how effective applying a cascade control
system to the Quanser Aero would be. To determine this, many different ways of tuning a
PI or PID controller were established. These were then used in tuning the Quanser Aero
several times both using a single loop configuration and a cascade control configuration,
after which the performance of the tuned systems was tested. All tests were then repeated
with a second set of worse propellers. The results from this were then evaluated and
discussed.

In the end, it was clear that the cascade control configuration provides drastically superior
disturbance rejection properties against disturbances acting in the inner loop. There’s
also seemingly some advantage in stability and/or speed, but more testing needs to be
done to determine that for certain. While the main disadvantage cascade control, speed
of implementation, can be alleviated using simultaneous tuning, this can be much more
difficult to implement and much more inconsistent in result. Though in summary, it’s clear
that a cascade control configuration is overall quite effective when applied to the Quanser
Aero.
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Vedlegg A

Matlab scripts

Finding integral indices of result test:

1 IAE = load("IAE.mat") .ans;

2 ITAE = load("ITAE.mat") .ans;

3 ISE = load("ISE.mat") .ans;

4 ITSE = load("ITSE.mat") .ans;

5

6 disp("IAE: " + string(IAE(2,end)))

7 disp("ITAE: " + string(ITAE(2,end)))
8 disp("ISE: " + string(ISE(2,end)))

9 disp("ITSE: " + string(ITSE(2,end)))

Finding single loop Ziegler-Nichols closed loop parameters and plotting test figure:

close all
clear
clc

KU = 70.5;
vend = 0.4;
ystart = -0.1;

© 0 N O Ok W N

t0 = 3;
timeset = 20;

=
= O
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Matlab scripts

12
13
14
15
16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

s = load('y.mat");

total = s.ans (1, end);
x = total-t0;
step = s.ans(l, 2) - s.ans(l, 1);

tn = timeset/step + 1;

tK = total/step;
xK = (total - x)/step;

max = 0;
peakCount = 0;
startFlag = 1
endFlag = 1;
peakFlag = 0;

resetCount = 0;

for K =1 : (tK + 1)
tempx = s.ans (2, K);
if K < xK
if tempx > max;
max = tempx;
end
elseif (K > xK) & (tKx0.9 > K)
if tempx > maxx0.9
if peakFlag == 0
peakFlag = 1;

peakCount = peakCount + 1;

resetCount = 0;

if startFlag == 1
firstPeak = Kxstep;
disp (peakCount)
startFlag = 0;

end
lastPeak = Kxstep;
end
else
if resetCount < 100
resetCount = resetCount
else
peakFlag = 0;
end

end
else
% {
if tempx > maxx0.9
if endFlag == 1
lastPeak = Kxstep;
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Matlab scripts

61 endFlag = 0;
62 end

63 end

64

65 end
66 end

67

68 w_u = 1/ ((lastPeak—-firstPeak)/ (peakCount-1));
69

70 TU
71

72 KP = 0.6%xKU;

73 KI 1.2%KU/TU;

74 KD = 3xKUxTU/40;

75

76 TF = KD/KPx0.1;

77

78 %%%Plots ————————————————————————————————————
79

oe
—

(lastPeak-firstPeak) / (peakCount-1);

80 t = s.ans(l, l:tn);

81 y = s.ans(2, l:tn);

82

83 s2 = load('r.mat');

84

85 r = s2.ans(2, l:tn);

86

87 p = plot(t, y, t, r, '"——")

88 p(l).LineWidth = 2;

89 p(2).LineWidth = 2;

90 legend("Aero angle", "Reference")
91 ylabel ("Angle (\phi)™")

92 xlabel ("time (s)")

93 ax = gca;

94 ax.FontSize = 22;

95 ylim([ystart, yend]);

96

97 disp("KU: " + string(KU))
98 disp("TU: " + string(TU))
99 disp("KP: " + string(KP))
100 disp("KI: " + string(KI))
101 disp("KD: " + string(KD))
102 disp("TF: " + string(TF))

Plotting result of single loop Ziegler-Nichols closed loop method:

1 close all
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2 clear

3 clc

4

5 yend = 0.5;

6 ystart = 0;

7

8 timeset = 40;

9 tn = timeset/0.002 + 1;
10

11 s = load('y.mat');

12

13 t = s.ans(l, 1l:tn);

14 y = s.ans (2, l:tn);

15

16 s2 = load('r.mat'");

17 r = s2.ans (2, l:tn);

18 s4 = load('disturbance');
19 d = sd4.ans (2, 1l:tn)*x0.02;
20

21 p = plot(t, vy, t, r, '-—',t, d, 'black")
22 p(l).LineWidth = 2;

23 p(2).LineWidth = 2;

24 p(3).LineWidth = 1;

25 legend("Aero angle", "Reference", "Disturbances (V)")
26 ylabel ("Angle (\phi)™")

27 xlabel ("time (s)")

28 ax = gca;

29 ax.FontSize = 22;

30 ylim([ystart, yend]);

Finding single loop relay feedback parameters and plotting test figure:

1 close all

2 clear

3 clc

4

5 h = 50;

6 t0 = 30;

7 yend = 0.9;

8 ystart = -0.5;

9 timeset = 100;

10 tn = timeset/0.002 + 1;
11

12 s = load('y.mat');
13

=
'S

total = s.ans(1l, end);
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Matlab scripts

15 X = total-tO0;

16 step = s.ans(l, 2) - s.ans(l, 1);
17

18 tK = total/step;

19 xK = (total - x)/step;

20

21 max = 0;

22 peakCount = 0;

23 startFlag
24 endFlag = 1;
25 peakFlag = 0;
26 fallFlag = 0
27

28 resetCount = 0;
29 ampTopTotal = 0;
30

31 min = 10000;

32 peakCount2
33 startFlag2
34 endFlag2 = 1;
35 peakFlag2 = 0;
36 fallFlag2 0

Il
—
~.

I
)
~ o~

37

38 resetCount2 = 0;

39 ampBotTotal = 0;

40

41 for K =1 : (tK + 1)

42 tempx = s.ans (2, K);

43 if K < xK

44 if tempx > max;

45 max = tempx;

46 end

a7 if tempx < min;

48 min = tempx;

49 end

50 elseif (K > xK) & (tK+x0.9 > K)
51 %disp (tempx)

52 if tempx > maxx0.9

53 if peakFlag == 0

54 peakFlag = 1;

55 peakCount = peakCount + 1;
56 resetCount = 0;

57 if startFlag == 1

58 firstPeak = Kxstep;
59 %disp (peakCount)
60 startFlag = 0;
61 end

62 lastPeak = Kxstep;
63 end
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64 if fallFlag == 0

65 if tempx > s.ans (2, K+1)

66 ampTopTotal = ampTopTotal + tempx;
67 %disp (tempx)

68 fallFlag = 1;

69 end

70 end

71 else

72 if resetCount < 100

73 resetCount = resetCount + 1;
74 else

75 peakFlag = 0;

76 fallFlag = 0;

77 end

78 end

79 if tempx < (min + 0.1*max)

80 if peakFlag2 == 0

81 peakFlag2 = 1;

82 peakCount2 = peakCount2 + 1;
83 resetCount2 = 0;

84 if startFlag2 == 1

85 firstPeak2 = Kxstep;

86 %disp (peakCount)

87 startFlag2 = 0;

88 end

89 lastPeak2 = Kxstep;

90 end

91 if fallFlag2 == 0

92 if tempx < s.ans (2, K+1)

93 ampBotTotal = ampBotTotal + tempx;
94 %disp (tempx)

95 fallFlag2 = 1;

96 end

97 end

98 else

99 if resetCount2 < 100

100 resetCount2 = resetCount2 + 1;
101 else

102 peakFlag2 = 0;

103 fallFlag2 = 0;

104 end

105 end

106 end

107 end

108

109

110 A = ((ampTopTotal/ (peakCount-1) - ampBotTotal/ (peakCount-1)))/2;

111 TU = (lastPeak-firstPeak) /peakCount-1;
112 KU 4xh/ (Axpi);
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113
114 KP = 0.6%*KU;

115 KI = 1.2xKU/TU;

116 KD = 3%xKU*TU/40;

117

118 TF = KD/KPx0.1;

119

120 y = s.ans (2, l:tn);

121 t = s.ans (1, 1l:tn);

122 s2 = load('r.mat');

123 r = s2.ans (2, l:tn);

124

125 s3 = load('relay');

126 rl = s3.ans (2, l:tn);

127

128 p = plot(t, y, t, r, '--', t, rl)
129 p(l) .LineWidth = 2;

130 p(2) .LineWidth = 2;

131 p(3) .LineWidth = 1;

132 legend("Aero angle", "Reference", "Relay")
133 ylabel ("Angle (\phi)")

134 xlabel ("time (s)")

135 ax = gca;

136 ax.FontSize = 22;

137 ylim([ystart, yend]);

138

139 disp("A: " + string(A))
140 disp("TU: " + string(TU))
141 disp ("KU: " + string(KU))
142 disp("")

143 disp("KP: " + string(KP))
144 disp ("KI " + string(KI))
145 disp ("KD: " + string(KD))
146 disp("TF: " + string(TF))

Plotting result of single loop relay feedback:

close all
clear
clc

=W NN =

yvend = 0.5;
ystart = 0;
timeset = 40;

tn = timeset/0.002 + 1;

© 0 9 O »
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10

11 s = load('y.mat');

12

13 t = s.ans(l, 1l:tn);

14 y = s.ans (2, l:tn);

15

16 s2 = load('r.mat');

17 r = s2.ans (2, l:tn);

18 s4 = load('disturbance');
19 d = sd4.ans (2, 1:tn)=*0.02;
20

21 p = plot(t, vy, t, r, '-—-',t, d, 'black")
22 p(l).LineWidth = 2;

23 p(2).LineWidth = 2;

24 p(3).LineWidth = 1;

25 legend ("Aero angle", "Reference", "Disturbances (V)")
26 ylabel ("Angle (\phi)")

27 xlabel ("time (s)")

28 ax = gca;

29 ax.FontSize = 22;

30 ylim([ystart, yend]);

Finding inner loop open loop parameters and plotting test figure:

1 timeset = 0.3;

2 tn = timeset/0.002 + 1;
3 yend = 400;

4

5 r = load('r2.mat");

6 U = r.ans (2, 5);

7

8 s = load('y2.mat');

9 %time = s.ans.time;

10 ttime = s.ans(1l, end);
11 step = s.ans(l, 2) - s.ans(l, 1);
12 total = ttime/step;

13

14 tl = 1000;

15 startflag = 0;

16

17 for n = 1l:total

18 value = s.ans (2, n);
19 t = s.ans (1, n);

20 if (value > 1) & (startflag == 0)
21 L =t;

22 x0 = value;
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23 tl = L + stepx*5;
24 startflag = 1;
25 end

26 if t == t1l

27 x1 = value;

28 end

29 end

30

31 R = (x1 - x0)/(tl - L);
32

33 KP = 0.9%U/ (RxL);

34 KI = KP/(3.3%L);
35 KD = 0;

36

37 s = load("y2.mat");

33 t = s.ans (1, 1:tn);

39 y = s.ans (2, l:tn);

40

41 Uvector = zeros(l, tn) + 15;

42 p = plot(t, vy, t, Uvector, '--")
43 p(l).LineWidth = 2;

44 p(2).LinewWidth = 2;

45 %p(2) .Linewidth = 2;

46 legend("Aero motor speed", "U")
47 ylabel ("Tach (\phi/s)")

48 xlabel ("time (s)")

49 ax = gca;

50 ax.FontSize = 22;

51 ylim ([0, yendl]);

52

53 disp("U: " + string(U))
54 disp("L: " + string(L))
55 disp("R: " + string(R))
56 disp("KP: " + string(KP))
57 disp("KI: " + string(KI))
58 disp("KD: " + string(KD))

Plotting result of open loop inner loop tuning:

close all

timeset = 0.3;
tn = timeset/0.002 + 1;
yend = 200;

N4 O R W N =

s = load("y2.mat");
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8 t = s.ans(l, l:tn);
9 y = s.ans (2, l:tn);
10

11 s2 = load("r2.mat");
12 r = s2.ans (2, 1l:tn);

13
14 p = plot(t, vy, t, r, '——")

15 p(l).LineWidth = 2;

16 pP(2) .LineWidth 2;

17 legend("Aero motor speed", "Reference")
18 ylabel ("Tach (\phi/s)")

19 xlabel ("time (s)")

20 ax = gca;

21 ax.FontSize = 22;

22 ylim ([0, yend]);

Finding sequential Ziegler-Nichols closed loop plus Ziegler-Nichols open loop primary pa-
rameters and plotting test figure:

close all
clear
clc

KU = 25000;
yvend = 0.6;
ystart = -0.1;

© 0 N O Ok W N

t0 = 3;
timeset = 20;
tn = timeset/0.002 + 1;

== = e
w N = O

s = load('yl.mat');

[
SRS

total = s.ans(1l, end);
x = total-t0;
step = s.ans(l, 2) - s.ans(1l, 1);

= e e
© N o

tK = total/step;
xK = (total - x)/step;

NN
N o= O ©

max = 0;
peakCount =
startFlag = 1
endFlag = 1;
peakFlag = 0;

)
]
|
o
~

NN
[N
~

N
3
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28 resetCount = 0;

29

30 for K =1 : (tK + 1)

31 tempx = s.ans (2, K);

32 if K < xK

33 if tempx > max;

34 max = tempx;

35 end

36 elseif (K > xK) & (tKx0.9 > K)
37 if tempx > maxx0.9

38 if peakFlag == 0

39 peakFlag = 1;

40 peakCount = peakCount + 1;
41 resetCount = 0;

42 if startFlag == 1
43 firstPeak = Kxstep;
44 disp (peakCount)
45 startFlag = 0;
46 end

a7 lastPeak = Kxstep;
48 end

49 else

50 if resetCount < 100

51 resetCount = resetCount + 1;
52 else

53 peakFlag = 0;

54 end

55 end

56 else

57 % {

58 if tempx > max*0.9

59 if endFlag == 1

60 lastPeak = Kxstep;
61 endFlag = 0;

62 end

63 end

64 %}

65 end

66 end

67

68 w_u = 1/ ((lastPeak-firstPeak)/ (peakCount-1));
69

70 TU = (lastPeak-firstPeak)/ (peakCount-1);

71

72 KP = 0.6*KU;

73 KI = 1.2%KU/TU;
74 KD = 3*xKU*TU/40;
75

76 TF = KD/KP%0.1;
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77
78 %%%Plots ——f———————————————
79

80 t = s.ans(l, 1l:tn);

81 y = s.ans (2, l:tn);

82

83 s2 = load('rl.mat');

84 r = s2.ans (2, l:tn);

85

86 p = plot(t, vy, t, r, "——")

87 p(l).LineWidth = 2;

88 p(2).LineWidth = 2;

89 legend ("Aero angle", "Reference")
90 ylabel ("Angle (\phi)™")

91 xlabel ("time (s)")

92 ax = gca;
93 ax.FontSize = 22;

94 ylim([ystart, yend]);

95

96 disp("KU: " + string(KU))
97 disp("TU: " + string(TU))
98 disp("KP: " + string(KP))
99 disp("KI: " + string(KI))
100 disp("KD: " + string(KD))
101 disp("TF: " + string(TF))

Plotting result of Ziegler-Nichols closed loop plus Ziegler-Nichols open loop tuning

close all
clear
clc

yvend = 0.4;
ystart = 0;
timeset = 40;

tn = timeset/0.002 + 1;

© 0 N O O R W N

=
— o
0]
I

load('yl.mat");

=
w N

t = s.ans(1l, 1:tn);
s.ans (2, l:tn);

== =
()BT
w =
N

I
Il

load('rl.mat");
r = s2.ans (2, 1l:tn);

=
N
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19 s4 = load('disturbance');

20 d = s4.ans (2, 1l:tn)*x0.02;

21

22 = plot(t, v, t, r, '--', t, d, 'black")
23 (1) .LineWidth = 2;

24 p(2).LineWidth = 2;

25 p(3).LineWidth = 1;

26 legend("Aero angle", "Reference", "Disturbances (V)")
27 ylabel ("Angle (\phi)")

28 xlabel ("time (s)")

29 ax = gca;

30 ax.FontSize = 22;

31 ylim([ystart, yend]);

p
p

Finding outer loop parameters of sequential relay feedback plus open loop Ziegler-Nichols
tuning and plotting test plot:

close all
clear
clc

800;

t0 = 30;

yvend = 1;

ystart = -0.6;

timeset = 100;

tn = timeset/0.002 + 1;

© 0 N o C oA W N e
j=n
Il

== e
N o~ O

s = load('yl.mat");

[
N

total = s.ans(1l, end);
x = total-t0;
step = s.ans(l, 2) - s.ans(1l, 1);

— e e
N o w

tK
xK

total/step;
(total - x)/step;

O
S © w
Il

N
-

max = 0;
peakCount = 0;
startFlag 1;
endFlag = 1;
peakFlag = 0;
fallFlag = 0

MO N NN
S A A W N
Il

M
3

resetCount = 0;
ampTopTotal = 0;

NN
©
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30

31 min = 10000;

32 peakCount2 = 0;
33 startFlag2 = 1;
3¢ endFlag2 = 1;
35 peakFlag2 = 0;
36 fallFlag2 = 0
37

38 resetCount2 = 0;

39 ampBotTotal = 0;

40

41 for K =1 : (tK + 1)

42 tempx = s.ans (2, K);

43 if K < xK

44 if tempx > max;

45 max = tempx;

46 end

a7 if tempx < min;

48 min = tempx;

49 end

50 elseif (K > xK) & (tKx0.9 > K)

51 if tempx > maxx0.9

52 if peakFlag == 0

53 peakFlag = 1;

54 peakCount = peakCount + 1;
55 resetCount = 0;

56 if startFlag == 1

57 firstPeak = Kxstep;
58 %disp (peakCount)

59 startFlag = 0;

60 end

61 lastPeak = Kxstep;

62 end

63 if fallFlag == 0

64 if tempx > s.ans (2, K+1)
65 ampTopTotal = ampTopTotal + tempx;
66 %disp (tempx)

67 fallFlag = 1;

68 end

69 end

70 else

71 if resetCount < 100

72 resetCount = resetCount + 1;
73 else

74 peakFlag = 0;

75 fallFlag = 0;

76 end

77 end

78 if tempx < (min + 0.l*max)
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79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

104
105
106

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

end

A =
TU
KU

KP
KI
KD

TF

(Sl
[

if peakFlag2 == 0

peakFlag2 = 1;

peakCount2 = peakCount2 + 1;

resetCount2 = 0

if startFlagz == 1
firstPeak2 = Kxstep;
%disp (peakCount)
startFlag2 = 0;

I~

end

lastPeak2 = Kxstep;
end
if fallFlag2 == 0

if tempx < s.ans (2, K+1)
ampBotTotal = ampBotTotal + tempx;
$disp (tempx)
fallFlag2 = 1;

end
end
else
if resetCount2 < 100
resetCount2 = resetCount2 + 1;
else
peakFlag2 = 0;
fallFlag2 = 0;
end
end
end

((ampTopTotal/ (peakCount-1) - ampBotTotal/ (peakCount-1)))/2;

(lastPeak-firstPeak) /peakCount-1;
4xh/ (Axpi);

0.6%xKU;
1.2+KU/TU;
3xKU*xTU/40;

= KD/KP*0.1;

= s.ans (2, l:tn);

s.ans(l, l:tn);
= load('rl.mat");
s2.ans (2, 1l:tn);

load('relay');
= s3.ans (2, l:tn);

plOt(tr Yr t, r, '77'7 t, rl)
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128 p(l) .LineWidth 2;

129 p(2) .LineWidth 2;

130 p(3) .LineWidth = 1;

131 legend("Aero angle", "Reference", "Relay")
132 ylabel ("Angle (\phi)")

133 xlabel ("time (s)")

134 ax = gca;

135 ax.FontSize = 22;

136 ylim([ystart, yend]);

137

138 disp("A: " + string(A))
139 disp("TU: " + string(TU))
140 disp ("KU: " + string(KU))
141 disp(" ")

142 disp("KP: " + string(KP))
143 disp("KI: " + string(KI))
144 disp("KD: " + string(KD))
145 disp("TF: " + string(TF))

Plotting result of sequential relay feedback plus open loop Ziegler-Nichols tuning:

1 close all

2 clear

3 clc

4

5 yend = 0.4;

6 ystart = 0;

7

8 timeset = 40;

9 tn = timeset/0.002 + 1;
10

11 s = load('yl.mat'");

12

13 t = s.ans(l, 1l:tn);

14 y = s.ans (2, l:tn);

15

16 s2 = load('rl.mat');

17 r = s2.ans (2, l:tn);

18

19 s4 = load('disturbance');
20 d = s4.ans (2, 1l:tn)*x0.02;
21

22 p = plot(t, vy, t, r, '——-', t, d, 'black")
23 p(l).LineWidth = 2;

24 p(2).LineWidth = 2;

25 p(3).LineWidth = 1;
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26 legend ("Aero angle", "Reference", "Disturbances (V)")
27 ylabel ("Angle (\phi)™")

28 xlabel ("time (s)")

29 ax = gca;

30 ax.FontSize = 22;

31 ylim([ystart, yend]);

Finding parameters of ’step response Kappa-Tau’ tuning:

o

%1lsgnnoneg —-> TnO —-> norma—-> KT

close all; clear; clc;

o)

$Area method

o

$step_amount = 15;
initial_y = 0;

© 00 9 O O s W N =

Jun
o

u_f = load('step_input.mat');

y_f = load('step_output2.mat');

== e
w N e

step_amount = u_f.ans (2, 1);

—
~

15 y_t = y_f.ans (2, :)/step_amount;

16 time = y_f.ans(l, end);
17 step = y_f.ans(1l, 2) - y_f.ans(1l, 1);
18 x = [O:step:time];

19

20

21 y_ss = y_t(end);

22

23 y_diff = y_ss - y_t;

24

25 Al = interpole_int(x, y_diff);
26

27 K = y_ss;

28

29 LT = abs (Al) /K;

30 x2 = [0O:step:LT];

31

32 y_diff2 = y_t - initial_y;

33 y_diff3 y_diff2(1:(LT/step + 1));
34 %1, current_time, step

35 A2 = interpole_int (x2, y_diff3);
36 a = y_diff2(1l:(LT/step));

37
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38 T = exp(l)*A2/K;
39 L = (Al - K»T)/K;
40

41 K2 = K;

42 T2
43 L2 = L;

44

45 G2 = tf([K], [T 1]);
46

Il
i

47 %LSQ

T
49

50 num = 3;

51 den = 4;

52 unstable = 0;

53

54 y_f = load('step_outputl.mat');

55 u_f = load('step_output2.mat');

56 % = load('step_outputlx.mat');
57 % = load('step_output2x.mat');
58 % = load('y_sg.mat');

59 % = load('u_sg.mat');

60 y_t =vy_f.ans (2, :);

61 u_t = u_f.ans (2, :);

62

63 K = time/step;

64 x = [O:step:time];
65
66 t_values = [1:1:K];
67

68 t_v = [O:step: ((t_values(end) - 1)=*step)];
69 t_v = rot90(t_v, -1);
70

71 syF = zeros(length(t_values), 1);

72 sM = zeros(length(t_values), den + num + 1);
73

74 sy = zeros (length(t_values), den);

75 su = zeros(length(t_values), num + 1);
76 yM = zeros(length(t_values), den + 1);
77 for n = 1:(length(t_values))

78 t_value = t_values(n);

79

80 sM(n, 1) = -y_t(t_value);

81 yM(n, 1) = y_t(t_value);

82

83 y_t_temp = y_t;

84 for nn = l:den

85 current_index = n - nn;

86 current_time = t_value + 1 - nn;

87
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87 if current_index > 0

88 y_t_temp = trapez_int(y_t_temp, 1, current_time, step);
89 sy(n—-nn, nn) = y_t_temp(end);

90 yM(n-nn, nn+l) = y_t_temp (end);

91 if nn == den

92 if unstable == 1

93 temp = -y_t_temp(end);

94 else

95 temp = y_t_temp (end);

96 end

97 syF (n-nn) = temp;

98 else

99 sM(n—-nn, nn+l) = -y_t_temp(end);
100 end

101 end

102 end

103

104 u_t_i = zeros(l, num + 1);

105 u_t_temp = u_t;

106 t_value = t_values (n);

107 for nn = 1: (num+1)

108 current_index = n - nn;

109 current_time = t_value + 1 - nn;

110 if current_index > 0

111 u_t_temp = trapez_int (u_t_temp, 1, current_time, step);
112 su(n-nn, nn) = u_t_temp (end);

113

114 sM(n-nn, den + nn) = u_t_temp(end);
115 end

116 end

117 end

118

119 %
120 plottime = rot90(0:step: ((length(yM)-1)x*step), -1);
121 for n = 1:(den + 1)

122 figure (n)

123 plot (plottime, yM(:, n))

124 end

125 %}

126

127 xsM = sM(l: (length(sM) - num - 1), :);
128 xsyF = syF(l: (length(syF) - num - 1), :);
129

130 ¢ = lsgnonneg(xsM, xsyF);

131 %c = xsyF\xsM;

132 numerator = zeros(l, num + 1);

133 denominator = zeros(l, den + 1);

134 total_str = '"[';

135 total_strx = " ';
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136 sSyms X
137 polN = 0;

138

139 for n = 1l:(num + 1)

140 if c(den + n) > 0

141 extra = '+';

142 else

143 extra = '';

144 end

145 total_strx = total_strx + extra + string(c(den + n)) + 'x*' +
string (num+l - n) + ' ';

146 polN = polN + c(den + n)=*x”"(num+l-n);

147 total_str = total_str + string(c(den + n)) + ' ';

148 disp('n' + string(num + 1 - n) + ': ' + string(c(den + n)))

149 numerator (n) = c(den + n);

150 end

151 total_str2 = '[';

152 total_strx2 = "' ';

153 polD = 0;

154

155 for n = 1:(den)

156 if c(n) > O

157 extra = '"+';

158 else

159 extra = '';

160 end

161 total_strx2 = total_strx2 + extra + string(c(n)) + 'x*' +
string(den - n) + ' ';

162 polD = polD + c(n)*x"(den-n);

163

164 total_str2 = total_str2 + string(c(n)) + "' ';

165 disp('d' + string(den + 1 - n) + ': ' + string(c(n)))

166 denominator (n) = c(n);

167 end

168 denominator (end) = 1;

169

170 total_str = total_str + ']';

171 total_str2 = total_str2 + '1]1°';
172

173 disp ('Numerator: ' + total_str)

174 disp ('Denominator: ' + total_str2)

175 disp('Gl = tf(' + total_str + ', ' + total_str2 + ");"')
176 disp (total_strx)

177

178 Gl = tf (numerator,denominator);

179

180 %xxx: To TnO and C
18] B
182
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183
184
185
186
187
188

190
191
192

194
195
196
197

199
200
201
202
203
204
205
206

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

5 {

) *xT2/ (K2xL2) ;

4.1%x(RDT2)"2)*L2;

0.019+RDT2"2) xT2/ (K2xL2) ;

RDT2 = L2/ (T2 + L2);

KP2 = 3.8xexp(-8.4xRDT2 + 7.3% (RDT2) "2

TI2 = 5.2%exp(-2.5*RDT2 - 1.4% (RDT2)"2)*L2;
KI2 = KP2/TI2;

TD2 = 0.89*xexp(-0.37«RDT2 -

KD2 = KP2+TD2;

%}

RDT2 = L2/ (T2 + L2);

KP2 = 0.41xexp(-0.23xRDT2 +

TI2= 5.7xexp(1.7+xRDT2 - O.

KI2 = KP2/TI2;

KD2 = 0;

C2 = tf([KD2 KP2 KI2],[1 01);
GM = C2xG2xG1l/ (1 + C2xG2)
bode (GM)

$xxx: To TO

1 = 10;

GMx = GM.Numerator (1);

GMx = GMx{1l};

GMx2 = GM.Denominator (1);
GMx2 = GMx2{1l};

if GMx (end) == 0 & GMx2(end) == 0
GMx = GMx (1l: (end-1));
GMx2 = GMx2 (1l: (end-1));

end

GM = tf (GMx,GMx2)

[mag, phase,
bode (GM)
magnitude = zeros(l, length (wout));
for n = 1l:length (wout)

wout] = bode (GM) ;

magnitude (n) = 20x1logl0 (mag(l, 1,
end
figure (2)
semilogx (wout, magnitude)
cross = 0;
wc = 0;
cross_closest = cross + 5;
for n = 1l:length (wout)

90

69+xRDT2"2) xL2;

n));
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232 if abs(cross - magnitude (n)) < abs(cross - cross_closest)
233 cross_closest = magnitude (n);
234 wc = wout (n);

235 end

236 end

237

238 XW = WC;

239 S = J*XW;

240

241 GMx = GM.Numerator(l);

242 GMx = GMx{1l};

243 GMx2 = GM.Denominator (1) ;

244 GMx2 = GMx2{1};

245 1f GMx (end) == 0 & GMx2 (end) == 0
246 GMx = GMx (1l: (end-1));

247 GMx2 = GMx2 (1l: (end-1));

248 end

249 GM = tf (GMx,GMx2);

250

251 KR = GMx (end) /GMx2 (end) ;

252

253 1f wc ==

254 cross = 20+«1ogl0 (KR) - 3;

255 cross_closest = cross + 5;

256 for n = 1l:length (wout)

257 if abs(cross - magnitude(n)) < abs(cross - cross_closest)
258 cross_closest = magnitude (n);
259 wc = wout (n);

260 end

261 end

262 GM_jw = find_numerical (GM, wc);
263 else

264 GM_jw = find_numerical (GM, wc);
265 end

266 GM_Jjw_mag = abs (GM_jw);

267 GM_jw_arg angle (GM_Jjw) ;

268

269 K1 = KR;

270 TR = sqrt ((KR"2 - GM_jw_mag”2))/ (GM_jw_mag*wc) ;

271 Tl = TR;

272 L1 = - (GM_jw_arg + atan(wc*TR))/wc + L2;

273 %$Has To do +L2 Because it wasn't part of the initial GM Calculation
274

275 disp(" ")
276 disp ("Kl: " + string(K1l))
277 disp("Ll: " + string(L1l))
278 disp("Tl: " + string(T1))
279 disp(" ")
280 ${
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281 RDT1 = L1/(T1 + L1);

282 KP1 = 0.41+exp(-0.23%*RDT1 + 0.019*«RDT1"2)*T1/ (K1xL1);
283 TI1 = 5.7xexp(1.7«RDT1 - 0.69%RDT1"2)*xL1;

284 KI1 = KP1/TI1;

285 KDl = 0;

286 %}

287 %

288 RDT1 = L1/(T1 + L1);

289 KP1l = 3.8%exp(-8.4%*RDT1 + 7.3%(RDT1)"2)*T1l/(K1%L1l);
290 TI1 = 5.2%xexp(-2.5xRDT1 - 1.4x(RDT1)"2)*L1;

291 KI1 = KP1/TI1;

292 TD1 = 0.89xexp(-0.37+«RDT1 - 4.1x(RDT1)"2)*L1;

293 KD1 = KP1xTD1;

294 TF1l = TD1x0.1;

295 %

296

297 disp ('KP2: ' + string(KP2))

298 disp ('KI2: ' + string(KIZ2))

299 disp ('KD2: ' + string(KD2))
300

301 disp('KPl: ' + string(KP1))
302 disp ('KIl: ' + string(KI1l))
303 disp('KDl: ' + string(KD1))
304 disp('TEFl: ' + string(TF1l))

Finding parameters of ’step response IMC’ tuning;:

1 %$lsgnnoneg —> Tn0O -> normal SO TO -> IMC

D T T
3 close all; clear; clc;

4

5 %Area method

6 T
7 %step_amount = 15;

8 initial_y = 0;

9

10 u_f = load('step_input.mat');

11 y_f = load('step_output2.mat');

12 %

13 ut = u_f.ans (1, :);

14 ud = u_f.ans(1l, :);

15 vyt =y _f.ans (1, :);

16 yd = y_f.ans(1l, :);

17

18 u_f.ans = timeseries(ud, 0.002);

19 y_f.ans = timeseries(yd, 0.002);
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20
21

o
—

22 step_amount = u_f.ans(2, 1);
23
24 y_t = y_f.ans (2, :)/step_amount;

25 time = y_f.ans(l, end);
26 step = y_f.ans(l, 2) - y_f.ans (1, 1);
27 x = [O:step:time];

28
29

30 y_ss = y_t(end);

31

32 y diff = y_ss - y_t;

33

34 Al = interpole_int(x, y_diff);
35

36 K = y_ss;

37
38 LT = abs (Al) /K;
39 x2 = [0O:step:LT];

40

41 y_diff2 = y_t - initial_y;

42 y_diff3 y_diff2(1: (LT/step + 1));
43 %1, current_time, step

44 A2 = interpole_int (x2, y_diff3);

45 a = y_diff2(1l:(LT/step));

46

a7 T = exp(l)*A2/K;

48 L (A1l - KxT)/K;

49

50 K2 = K;

51 T2
52 L2 = L;

53

54 G2 = tf([K], [T 11);
55

I
i

56 $LSO

BT
58

59 num = 3;

60 den = 4;

61 unstable = 0;

62

63 y_f = load('step_outputl.mat');

64 u_f = load('step_output2.mat');

65 %y_f = load('step_outputlx.mat');
66 Su_f = load('step_output2x.mat');
67 %y_f = load('y_sg.mat');

68 %u_f = load('u_sg.mat');
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690 y_t = vy_£f.ans (2, :);

70 u_t = u_f.ans (2, :);

71

72 K = time/step;

73 x = [O:step:time];

74

75 t_values = [1:1:K];

76

77 t_v = [0O:step: ((t_values(end) — 1) =*step)];
78 t_v = rot90(t_v, -1);

79

80 syF = zeros(length(t_values), 1);

81 sM = zeros(length(t_values), den + num + 1);
82

83 sy = zeros(length(t_values), den);

84 su = zeros (length(t_values), num + 1);

85 yM = zeros(length(t_values), den + 1);

86 for n = 1:(length(t_values))

87 t_value = t_values(n);

88

89 sM(n, 1) = -y_t(t_value);

90 yM(n, 1) = y_t(t_value);

91

92 y_t_temp = y_t;

93 for nn = l:den

94 current_index = n - nn;

95 current_time = t_value + 1 - nn;
96 if current_index > 0

97 y_t_temp = trapez_int(y_t_temp, 1, current_time,
98 sy(n-nn, nn) = y_t_temp(end);
99 yM(n-nn, nn+l) = y_t_temp (end);
100 if nn == den

101 if unstable == 1

102 temp = -y_t_temp(end);
103 else

104 temp = y_t_temp (end);
105 end

106 syF (n—-nn) = temp;

107 else

108 sM(n-nn, nn+l) = -y_t_temp(end);
109 end

110 end

111 end

112

113 u_t_i = zeros(l, num + 1);

114 u_t_temp = u_t;

115 t_value = t_values(n);

116 for nn = 1: (num+1)

117 current_index = n - nn;

94

step);
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118 current_time = t_value + 1 - nn;

119 if current_index > 0

120 u_t_temp = trapez_int (u_t_temp, 1, current_time, step);
121 su(n-nn, nn) = u_t_temp(end);

122

123 sM(n—-nn, den + nn) = u_t_temp (end);
124 end

125 end

126 end

127

128 %

129 plottime = rot90(0:step: ((length(yM)-1)x*step), -1);
130 for n = 1:(den + 1)

131 figure (n)

132 plot (plottime, yM(:, n))

133 end

134 %}

135

136 xsM = sM(1l: (length(sM) - num - 1), :);

137 xsyF = syF (l:(length(syF) - num - 1), :);

138

139 ¢ = lsgnonneg(xsM, xsyF);

140 %$c = xsyF\xsM;

141 numerator = zeros(l, num + 1);

142 denominator = zeros(l, den + 1);

143 total_str = '[';

144 total_strx = ' ';

145 syms X
146 polN = 0;

147

148 for n = 1l:(num + 1)

149 if c(den + n) > 0

150 extra = '+';

151 else

152 extra = '';

153 end

154 total_strx = total_strx + extra + string(c(den + n)) + 'x*' +
string (num+l - n) + ' ';

155 pPolN = polN + c(den + n)x*x"(num+l-n);

156 total_str = total_str + string(c(den + n)) + ' ';

157 disp('n' + string(num + 1 - n) + ': ' + string(c(den + n)))

158 numerator (n) = c(den + n);

159 end

160 total_str2 = '[';

161 total_strx2 = "' ';

162 polD = 0;

163

164 for n = 1l: (den)

165 if c¢(n) > O
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166 extra = '+';

167 else

168 extra = '';

169 end

170 total_strx2 = total_strx2 + extra + string(c(n)) + 'x*' +
string(den - n) + ' ';

171 polD = polD + c(n)*x"(den—-n);

172

173 total_str2 = total_str2 + string(c(n)) + ' ';

174 disp('d' + string(den + 1 - n) + ': ' + string(c(n)))

175 denominator (n) = c(n);

176 end

177 denominator (end) = 1;

178

179 total_str = total_str + ']';

180 total_str2 = total_str2 + '1]°';

181

182 disp ('Numerator: ' + total_str)

183 disp ('Denominator: ' + total_str2)

(
(
184 disp('Gl = tf (' + total_str + ', ' + total_str2 + ");")
185 disp (total_strx)

186
187 Gl = tf (numerator,denominator);

188

189 %xxx: To TnO and C

190 BT T T T T T T

191
192 1b2 = max(0.25%L2,0.2xT2);

193
194 TI2 = T2 + 0.5%xL2;
195 KP2 = (2+xT2+L2)/ (2xK2x1b2);

106 KI2 = KP2/TI2;
197 KD2 = 0;
198 TF2 = 1b2xL2/ (2% (1b2 + L2));

199
200 C2 = tf([KD2 KP2 KI2],I[1 0]);

201

202 GM = C2%G2xGl/ (1 + C2xG2)

203

204 %Sxxx: To TO

T
206

207 1 = 10;
208 GMx = GM.Numerator(l);
209 GMx = GMx{1l};

210 GMx2 = GM.Denominator (1) ;

211 GMx2 = GMx2{1l};

212 1f GMx (end) == 0 & GMx2 (end) == 0
213 GMx = GMx (1l: (end-1));
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214 GMx2 = GMx2 (1l: (end-1));

215 end

216 GM = tf (GMx, GMx2)

217

218 [mag, phase, wout] = bode (GM);

219 figure (1)
220 bode (GM)

221 magnitude = zeros(l, length(wout));

222 for n = l:length(wout)

223 magnitude (n) = 20xloglO0(mag(l, 1, n));
224 end

225 figure (2)

226 semilogx (wout, magnitude)
227 p(l).LineWidth = 2;

228 p(2) .LineWidth = 2;

229 legend ("P_T")

230 ylabel ("Bode (dB)")

231 xlabel ("Frequency (rad/s)")

232 ax = gca;
233 ax.FontSize = 22;

234

235 cross = 0;

236 wu = 0;

237 Cross_closest = cross + 5;

238 for n = 1l:length (wout)

239 if abs(cross - magnitude(n)) < abs(cross - cross_closest)
240 cross_closest = magnitude (n);

241 wu = wout (n);

242 end

243 end

244
245 Km = find_numerical (GM, O0);

246
247 1f wu ==

248 cross = 20%«1ogl0 (Km) - 3;

249 cross_closest = cross + 5;

250 for n = 1l:length (wout)

251 if abs(cross - magnitude(n)) < abs(cross - cross_closest)
252 cross_closest = magnitude (n);

253 wu = wout (n);

254 end

255 end

256 end

257

258 wu = round(wu, 4);

259 wiM = [ (wu/l): (wu/l) :wu];

260

261 A = zeros(l, 1);
262 B zeros (1, 2);
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263 test = zeros((l), 6);

264 disp ('Km: ' + string(Km))

266 for n = 1:(1);

266 wi = wiM(n);

267 Gm_jwi = find_numerical (GM, wi);
268 Gm_jwi_mag = abs (Gm_Jjwi);

269

270 Gm_jwi_arg = angle (Gm_jwi) ;
271

272 B(n, 1) = Gm_jwi_mag”2 x wi”"4;
273 B(n, 2) = Gm_jwi_mag”2 x wi"2;
274 A(n) = Km"2 - Gm_jwi_mag”2;
275

276 test (n, 1) = wi;

277 test (n, 2) = Km;

278 test (n, 3) = Gm_jwi_mag;

279 test (n, 4) = A(n);

280 test (n, 5) = B(n, 1);

281 test (n, 6) = B(n, 2);

282 end

283

284 X = B\A
285 tau_m = nthroot (X (1), 4);
286 gamma_m = sqgrt (X (2)/ (4d+«tau_m"2) + 0.5);

287 phi_m = (pi + atan2(-2*tau_m*gamma_m*wu,l — tau_m”*2 x wu’2))/wu;

288

289 disp('taul = ' + string(tau_m) + ';")

290 disp('gammal = ' + string(gamma_m) + ';"')

291

202 disp ('Kl = ' + string(Km) + ';")

293 disp('Ll = ' + string(phi_m) + ';")

294 %disp('phi_m: ' + string(phi_m))

295 disp ('Denominator: [' + string(tau_m”2) + ' ' + string(2+tau_mrgamma_m)
+ 1Y)

296

297 taul = tau_m;

208 gammal = gamma_m;

209 K1 = Km;

300 L1 = phi_m + L2;

301 %$Has To do +L2 Because it wasn't part of the initial GM Calculation
302

303 disp(" ")

304 disp("Kl: " + string(K1l))

305 disp("Tl: " + string(taul))

306 disp("Xil: " + string(gammal))

307 disp("Ll: " + string(L1l))

308 disp("Denom: [" + string(taul”2) + " " + string(2+«taulxgammal) + " 11")
309 disp(" ")

310
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311 1b = max (0.25xL1,0.2%taul);

312 TI1 = 2+xgammal*taul - (2+1b"2 — L172)/(2%(2%1b + L1));

313 TD1 = TI1 - 2xgammalxtaul + (taul”2 - L1"3 /(6% (2x1lb + L1)))/TI1;
314 KP1 = TI1/ (Kl*(lb + L1));

315 KI1 = KP1/TI1;

316 KD1 = KP1xTD1;

317 TF1 = TD1x0.1;

318

319

320 disp('KP2: ' + string(KP2))
321 disp('KI2: ' + string(KIZ2))
322 disp('KD2: ' + string(KD2))
323 disp('TF2: ' + string(TF2))
324

325 disp('KPl: ' + string(KP1))
326 disp('KIl: ' + string(KI1l))
327 disp('KDl: ' + string(KD1))
328 disp('TFl: ' + string(TF1l))

Finding parameters of ’Step response simultaneous FOPDT plus FOPDT’ tuning:

1 %lsgnnoneg —-> Tn -> normal SO T -> normal (1, 2)
2 B
3 close all; clear; clc;

4

5 %Area method

6 T
7 $%step_amount = 15;

8 1initial_y = O;

9

10 u_f = load('step_input.mat');

11 y_f = load('step_output2.mat');

12 %

13 ut = u_f.ans (1, )

14 ud = u_f.ans (1, ) ;

15 yt = vy_f.ans (1, ) ;

16 yd = y_f.ans (1, )

17

18 u_f.ans = timeseries(ud, 0.002);

19 y_f.ans = timeseries(yd, 0.002);

20 %}

21

22 step_amount = u_f.ans (2, 1);

23

24 y_t = vy_f.ans (2, :)/step_amount;

25 time = y_f.ans (1, end);
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26 step = y_f.ans(l, 2) - y_f.ans (1, 1);
27 x = [O:step:time];

28

29

30 y_ss = y_t(end);

31

32 y diff = y_ss - y_t;

33

34 Al = interpole_int(x, y_diff);
35

36 K = y_ss;

37

38 LT = abs (Al) /K;

39 x2 = [0O:step:LT];

40

41 y_diff2 = y_t - initial_y;

42 y_diff3 y_diff2(1: (LT/step + 1));
43 %1, current_time, step

44 A2 = interpole_int (x2, y_diff3);

45 a = y_diff2(1l:(LT/step));

46

47 T = exp (1) *xA2/K;

48 L = (Al - K«T)/K;

49

50 K2 = K;

51 T2 = T;

52 L2 = L;

53

54 %LSQ

57
56

57 num = 3;

58 den = 4;

59 unstable = 0;

60

61 y_f = load('step_outputl.mat'");
62 u_f = load('step_output2.mat');
63 Sy_f = load('step_outputlx.mat');
64 %u_f = load('step_output2Z2x.mat');
65 %y_f = load('y_sg.mat');

66 Su_f = load('u_sg.mat');

67 y_t = vy_f.ans (2, :);
68 u_t = u_f.ans (2, :);

69
70 K = time/step;

71 x = [O:step:time];
72

73 t_values = [1:1:K];
74
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75 t_v = [O:step: ((t_values(end) - 1)=*step)];
76 t_v = rot90(t_v, -1);
77

78 syF = zeros(length(t_values), 1);

79 sM = zeros(length(t_values), den + num + 1);
80

81 sy = zeros (length(t_values), den);

82 su = zeros(length(t_values), num + 1);

83 yM = zeros(length(t_values), den + 1);

84 for n = 1:(length(t_values))

85 t_value = t_values(n);

86

87 sM(n, 1) = -y_t(t_value);

88 yM(n, 1) = y_t(t_value);

89

90 y_t_temp = y_t;

91 for nn = 1l:den

92 current_index = n - nn;

93 current_time = t_value + 1 - nn;

94 if current_index > 0

95 _t_temp = trapez_int(y_t_temp, 1, current_time,
96 sy (n—-nn, nn) = y_t_temp(end);

97 yM(n-nn, nn+l) = y_t_temp (end);
98 if nn == den

99 if unstable == 1

100 temp = -y_t_temp (end);
101 else

102 temp = y_t_temp(end);
103 end

104 syF (n—-nn) = temp;

105 else

106 sM(n—-nn, nn+l) = -y_t_temp(end);
107 end

108 end

109 end

110

111 u_t_i = zeros(l, num + 1);

112 u_t_temp = u_t;

113 t_value = t_values(n);

114 for nn = 1: (num+1l)

115 current_index = n - nn;

116 current_time = t_value + 1 - nn;

117 if current_index > 0

118 u_t_temp = trapez_int (u_t_temp, 1, current_time,
119 su(n-nn, nn) = u_t_temp(end);

120

121 sM(n-nn, den + nn) = u_t_temp(end);
122 end

123 end

101
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124 end

125

126 plottime = rot90(0:step: ((length(yM)-1)*step), -1);
127 for n = 1l:(den + 1)

128 figure (n)

129 plot (plottime, yM(:, n))

130 end

131

132 xsM = sM(l: (length(sM) - num - 1), :);
133 xsyF = syF(l:(length(syF) - num - 1), :);
134

135 c = lsgnonneg (xsM, xsyF);

136 %$c = xsyF\xsM;

137 numerator = zeros(l, num + 1);

138 denominator = zeros(l, den + 1);

139 total_str = '[';

140 total_strx = ' ';

141 syms X
142 polN = 0;

143

144 for n = 1l:(num + 1)

145 if c(den + n) > 0

146 extra = '"+';

147 else

148 extra = '';

149 end

150 total_strx = total_strx + extra + string(c(den + n)) + 'x*' +
string (num+l - n) + ' ';

151 polN = polN + c(den + n)*x”(num+l-n);

152 total_str = total_str + string(c(den + n)) + ' ';

153 disp('n' + string(num + 1 - n) + ': ' + string(c(den + n)))

154 numerator (n) = c(den + n);

155 end

156 total_str2 = '[';

157 total_strx2 = ' ';

158 polD = 0;

159

160 for n = 1:(den)

161 if c¢(n) > 0

162 extra = '+';

163 else

164 extra = '';

165 end

166 total_strx2 = total_strx2 + extra + string(c(n)) + 'x*' +
string(den - n) + ' ';

167 polD = polD + c(n)*x" (den-n);

168

169 total_str2 = total_str2 + string(c(n)) + ' ';

170 disp('d' + string(den + 1 - n) + ': ' + string(c(n)))
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171 denominator (n) = c(n);

172 end

173 denominator (end) = 1;

174

175 total_str = total_str + ']';

176 total_str2 = total_str2 + '1]"';
177

178 disp ('Numerator: ' + total_str)
179 disp ('Denominator: ' + total_str2)

(
(
180 disp('Gl = tf(' + total_str + ', ' + total_str2 + ");")
181 disp(total_strx)

182

183 Gl = tf (numerator,denominator);

184

185 %xxx: To TnO and C

186 G
187 lambda2 = 0.5xL2;

188

189 TI2 = T2 + L2"2/ (2 (lambda2 + L2));

190 TD2 = (L272/ (6% (lambda2 + L2)))*(3 — L2/(T2 + L272/(2* (lambda2 + L2))));
191 $KP2 = (T2 + (L272)/(2xlambda2 + 2xL2))/ (K2% (lambda2 + L2));

192 KP2 = TI2/ (K2 (lambda2 + L2));

103 KI2 = KP2/TI2;

194 %KD2 = KP2xTD2;
195 KD2 = 0;

196

197 C2 = tf([KD2 KP2 KI2],[1 0]);

198

199 GM = G1;

200

201 %$xxx: To TO

202 B
203

204 [mag, phase, wout] = bode (GM);

205 bode (GM)

206 magnitude = zeros(l, length (wout));

207 for n = 1l:length (wout)

208 magnitude (n) = 20x1logl0(mag(l, 1, n));
209 end

210 figure (2)
211 semilogx (wout, magnitude)

212

213 cross = 0;

214 wc = 0;

215 Cross_closest = cross + 5;

216 for n = 1l:length (wout)

217 if abs(cross - magnitude(n)) < abs(cross - cross_closest)
218 cross_closest = magnitude (n);

219 wc = wout (n);
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220 end

221 end

222

223 XW = WC;
224 S = J*XW;
225

226 GMx = GM.Numerator(l);
227 GMx = GMx{1l};

228 GMx2 = GM.Denominator (1) ;

220 GMx2 = GMx2{1l};

230 1f GMx (end) == 0 & GMx2 (end) == 0
231 GMx = GMx (1l: (end-1));

232 GMx2 = GMx2 (1l: (end-1));

233 end

234 GM = tf (GMx, GMx2)

235

236 KR = GMx (end) /GMx2 (end) ;

237

238 1f wc ==

239 cross = 20+«1ogl0 (KR) - 3;

240 cross_closest = cross + 5;

241 for n = 1l:length (wout)

242 if abs(cross - magnitude(n)) < abs(cross - cross_closest)
243 cross_closest = magnitude (n);
244 wc = wout (n);

245 end

246 end

247 GM_jw = find_numerical (GM, wc);
248 else

249 GM_jw = find_numerical (GM, wc);
250 end

251 GM_Jjw_mag = abs (GM_jw);
252 GM_jw_arg = angle (GM_Jjw);

254 K1 = KR;
255 TR = sqrt ((KR"2 - GM_jw_mag”2))/ (GM_jw_mag*wc) ;
256 Tl = TR;

257 L1 = —(GM_Jjw_arg + atan (wc*TR))/wc;
258

259 disp(" ")

260 disp("Kl: " + string(K1l))

261 disp("Ll: " + string(Ll))

262 disp("Tl: " + string(T1))

263 disp(" ")

264

265 L3 = L1 + L2;

266 lambdal = 0.5x (L3);

267

268 KP1 = (Tl + lambda2 + (L3)"2/ (2 (lambdal + L3)))/ (Kl (lambdal + L3));
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260 TI1 = Tl + lambda2 + (L3)"2/(2x(lambdal + L3));

270 KI1 = KP1/TI1;

271 TD1 = (lambda2+T1 - (L3)"3/ (6« (lambdal + L3)))/ (Tl + lambda2 +
(L3)72/ (2% (lambdal + L3))) + (L3)7"2/(2*(lambdal + L3));

272 KD1 = KP1xTD1;

273 TF1 = TD1x0.1;

274
275 disp ('KP2: ' + string(KP2))
276 disp ('KI2: ' + string(KIZ2))
277 disp('KD2: ' + string(KD2))
278

279 disp('KPl: ' + string(KP1))
280 disp('KIl: ' + string(KI1l))
281 disp('KDl: ' + string(KD1))
282 disp('TEFl: ' + string(TF1l))
283

284 disp(T2)
285 disp (K2)
286 disp (L2)

Finding parameters of ’step response simultaneous FOPDT plus SOPDT’ tuning:

1 %lsgnnoneg —-> Tn —> normal SO T —-> normal (1, 2)
2 T T T T
3 close all

4 clear

5 clc

6

7 %Area method

B
9 %$step_amount = 15;

10 initial_y = O;

11

12 u_f = load('step_input.mat');

13 y_f = load('step_output2.mat');

14 %1

15 ut = u_f.ans (1, )

16 ud = u_f.ans (1, ) ;

17 yt = vy_f.ans (1, ) ;

18 yd = y_f.ans (1, )

19

20 u_f.ans = timeseries(ud, 0.002);

21 y_f.ans = timeseries(yd, 0.002);

22 %}

23

24 step_amount = u_f.ans (2, 1);
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25
26 y_t = y_f.ans (2, :)/step_amount;

27 time = y_f.ans (1, end);

28 step = y_f.ans (1, 2) - y_f.ans (1, 1);
29 x = [O:step:time];

30

31

32 y_ss = y_t(end);

33

34 y_ diff = y_ss - y_t;

35

36 Al = interpole_int(x, y_diff);
37

38 K = y_ss;

39

40 LT = abs (Al) /K;

41 x2 = [0O:step:LT];

42

43 y_diff2 = y_t - initial_y;

44 y_diff3 = y_diff2(1l:(LT/step + 1));
45 %1, current_time, step

46 A2 = interpole_int (x2, y_diff3);

a7 a = y_diff2(1l:(LT/step));

48
49 T = exp(l)*A2/K;

50 L = (Al - K«T)/K;

51

52 K2 = K;

53 T2 = T;

54 L2 = L;

55

56 %LSO

57 T
58

59 num = 3;

60 %num = 5;

61 den = 4;

62 unstable = 0;

63

64 y_f = load('step_outputl.mat');
65 u_f = load('step_output2.mat');

66 %y_f = load('step_outputlx.mat');
67 %u_f = load('step_output2x.mat');
68 Sy_f = load('y_sg.mat');
69 %u_f = load('u_sg.mat');

70 y_t =vy_f.ans (2, :);
71 u_t = u_f.ans (2, :);
72

73 K = time/step;
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74 x = [O:step:time];

75

76 t_values = [1:1:K];

77

78 t_v = [0O:step: ((t_values(end) - 1) «*step)];
79 t_v = rot90(t_v, -1);

80

81 syF = zeros(length(t_values), 1);

82 sM = zeros(length(t_values), den + num + 1);
83

84 sy = zeros(length(t_values), den);

85 su = zeros(length(t_values), num + 1);

86 yM = zeros (length(t_values), den + 1);

87 for n = 1:(length(t_values))

88 t_value = t_values(n);

89

90 sM(n, 1) = -y_t(t_value);

91 yM(n, 1) = y_t(t_value);

92

93 y_t_temp = y_t;

94 for nn = l:den

95 current_index = n - nn;

96 current_time = t_value + 1 - nn;
97 if current_index > 0

98 y_t_temp = trapez_int(y_t_temp, 1, current_time,
99 sy (n-nn, nn) = y_t_temp(end);
100 yM(n-nn, nn+l) = y_t_temp (end);
101 if nn == den

102 if unstable == 1

103 temp = -y_t_temp(end);
104 else

105 temp = y_t_temp (end);
106 end

107 syF (n—-nn) = temp;

108 else

109 sM(n—-nn, nn+l) = -y_t_temp(end);
110 end

111 end

112 end

113

114 u_t_i = zeros(l, num + 1);

115 u_t_temp = u_t;

116 t_value = t_values(n);

117 for nn = 1: (num+1l)

118 current_index = n - nn;

119 current_time = t_value + 1 - nn;
120 if current_index > 0

121
122

u_t_temp =

su(n-nn, nn) =

trapez_int (u_t_temp, 1,
u_t_temp (end);

current_time,

107
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123
124 sM(n-nn, den + nn) = u_t_temp (end);

125 end

126 end

127 end

128

129 plottime = rot90(0:step: ((length(yM)-1)~*step), -1);
130 for n = 1l:(den + 1)

131 figure (n)

132 plot (plottime, yM(:, n))

133 end

134

135 xsM = sM(1l: (length(sM) - num - 1), :);
136 xsyF = syF (l:(length(syF) - num - 1), =:);
137

138 ¢ = lsgnonneg(xsM, xsyF);

139 %$c = xsyF\xsM;

140 numerator = zeros(l, num + 1);

141 denominator = zeros(l, den + 1);

142 total_str = '[';

143 total_strx = ' ';

144 syms X
145 polN = 0;

146

147 for n = 1l:(num + 1)

148 if c(den + n) > 0

149 extra = '+';

150 else

151 extra = '';

152 end

153 total_strx = total_strx + extra + string(c(den + n)) + 'x*' +
string (num+l - n) + ' ';

154 polN = polN + c(den + n)*x"(num+l-n);

155 total_str = total_str + string(c(den + n)) + ' ';

156 disp('n' + string(num + 1 - n) + ': ' + string(c(den + n)))

157 numerator (n) = c(den + n);

158 end

159 total_str2 = '[';

160 total_strx2 = "' ';

161 polD = 0;

162

163 for n = 1l: (den)

164 if c(n) > O

165 extra = '+';

166 else

167 extra = '';

168 end

169 total_strx2 = total_strx2 + extra + string(c(n)) + 'x*' +
string(den - n) + ' ';
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170 polD = polD + c(n)*x"(den—-n);

171

172 total_str2 = total_str2 + string(c(n)) + ' ';
173 disp('d' + string(den + 1 - n) + ': ' + string(c(n)))
174 denominator (n) = c(n);

175 end

176 denominator (end) = 1;

177

178 total_str = total_str + ']';

179 total_str2 = total_str2 + '1]°';

180

181 disp ('Numerator: ' + total_str)

182 disp ('Denominator: ' + total_str2)

(
(
183 disp('Gl = tf(' + total_str + ', ' + total_str2 + ");")
184 disp(total_strx)

185
186 Gl = tf (numerator,denominator);

187

188 %xxx: To TnO and C

180 B
190

191 lambda2 = 0.5%L2;
192 TI2 = T2 + L2"2/ (2 (lambda2 + L2));

193 TD2 = (L272/ (6% (lambda2 + L2)))*(3 - L2/(T2 + L272/ (2% (lambda2 + L2))));
194 %$KP2 = (T2 + (L272)/(2+xlambda2 + 2xL2))/ (K2% (lambda2 + L2));

195 KP2 = TI2/ (K2 (lambda2 + L2));
1906 KI2 = KP2/TI2;

197 %KD2 = KP2+TD2;

198 KD2 = 0;

199
200 C2 = tf ([KD2 KP2 KI2],[1 01);

201

202 GM = G1;

203

204 5 o
205 1 = 10;

206 GMx = GM.Numerator(l);
207 GMx = GMx{1l};

208 GMx2 = GM.Denominator (1);

209 GMx2 = GMx2{1};

210 1f GMx (end) == 0 & GMx2 (end) == 0
211 GMx = GMx (1l: (end-1));

212 GMx2 = GMx2 (1l: (end-1));

213 end

214 GM = tf (GMx,GMx2)

215

216 [mag, phase, wout] = bode (GM);

217 figure (1)
218 bode (GM)
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219 magnitude = zeros(l, length (wout));

220 for n = l:length (wout)

221 magnitude (n) = 20+xlogl0(mag(l, 1, n));
222 end

223 figure (2)

224 semilogx (wout, magnitude)
225 p(l).LineWidth = 2;

226 P (2).LineWidth = 2;

227 legend ("P_1")

228 ylabel ("Bode (dB)")

229 xlabel ("Frequency (rad/s)")

230 ax = gcaj;

231 ax.FontSize = 22;

232

233 cross = 0;

234 wu = 0;

235 Cross_closest = cross + 5;

236 for n = l:length(wout)

237 if abs(cross - magnitude(n)) < abs(cross - cross_closest)
238 cross_closest = magnitude (n);
239 wu = wout (n);

240 end

241 end

242

243 Km = find_numerical (GM, 0);

244

245 1f wu ==

246 cross = 20+x1ogl0 (Km) - 3;

247 cross_closest = cross + 5;

248 for n = 1l:length (wout)

249 if abs(cross - magnitude(n)) < abs(cross - cross_closest)
250 cross_closest = magnitude(n);
251 wu = wout (n);

252 end

253 end

254 end

255

256 wu = round(wu, 4);

257 wiM = [(wu/1l) : (wu/l) :wul;

258

259 A = zeros(l, 1);

260 B = zeros(l, 2);

261 test = zeros((l), 6);

262 disp('Km: ' 4+ string(Km))

263 for n = 1:(1);

264 wi = wiM(n);

265 Gm_jwi = find_numerical (GM, wi);
266 Gm_jwi_mag = abs (Gm_Jjwi);

267
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268 Gm_jwi_arg = angle (Gm_Jjwi);
269

270 B(n, 1) = Gm_jwi_mag”™2 » wi"4;
271 B(n, 2) = Gm_jwi_mag”2 x wi”"2;
272 A(n) = Km"2 - Gm_jwi_mag”"2;
273

274 test (n, 1) = wi;

275 test (n, 2) = Km;

276 test (n, 3) = Gm_jwi_mag;

277 test (n, 4) = A(n);

278 test (n, 5) = B(n, 1);

279 test (n, 6) = B(n, 2);

280 end

281

282 X = B\A
283 tau_m = nthroot (X(1), 4);
284 gamma_m = sqgrt (X (2)/ (4d+xtau_m"2) + 0.5);

285 phi_m = (pi + atan2(-2stau_mrgamma_m*wu,l — tau_m”*2 x wu’2))/wu;

286

287 disp('taul = ' + string(tau_m) + ';")

288 disp('gammal = ' + string(gamma_m) + ';')

289

290 disp ('Kl = ' + string(Km) + ';"')

291 disp ('Ll = ' + string(phi_m) + ';")

292 %disp('phi_m: ' + string(phi_m))

293 disp('Denominator: [' + string(tau_m”2) + ' ' + string(2xtau_mrgamma_m)
+ " 1]

294

295 taul = tau_m;

296 gammal = gamma_m;

297 K1 = Km;
298 L1 = phi_m;

299
300 disp(" ")

301 disp("Kl: " + string(K1l))

302 disp("Tl: " + string(taul))

303 disp("Xil: " + string(gammal))

304 disp("Ll: " 4+ string(L1l))

305 disp ("Denom: [" + string(taul”2) + " " + string(2+taulsgammal) + " 1]1")
306 disp(" ")

307

308 lambda2 = 0.5x%L2;
3090 L3 = L1 + L2;
310 lambdal = 0.5% (L3);

311
312 TI1 = 2+xgammal*taul + lambda2 + L372/ (2% (lambdal + L3));
313 TD1 = (taul”2 + 2*taulxgammal=*lambda2 - L3%2 / (6% (lambda2 + L3)))/TIl

+ L3%2 / (2% (lambdal + L3));
314 KP1 = TI1l/ (Kl*(lambdal + L3));
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315 KI1 = KP1/TI1;

316 KD1 = KP1xTD1;

317 TF1 = TD1x0.1;

318

319 disp ('KP2: ' + string(KP2))
320 disp('KI2: ' + string(KIZ2))
321 disp('KD2: ' + string(KD2))
322

323 disp('KPl: ' + string(KP1))
324 disp('KIl: ' + string(KI1l))
325 disp('KDl: ' + string(KD1))
326 disp('TEFl: ' + string(TF1l))

Plotting result of simultaneous step response tuning:

1 close all

2 clear

3 clc

4

5 yend = 0.4;

6 ystart = 0;

7

8 timeset = 40;

9 tn = timeset/0.002 + 1;

10

11 s = load('step_outputl.mat');
12

13 t = s.ans(l, 1l:tn);

14 y = s.ans (2, l:tn);

15

16 s2 = load('step_input.mat');
17 r = s2.ans (2, l:tn);

18

19 s4 = load('disturbance');

20 d = sd4.ans (2, 1l:tn)=*0.02;

21

22 p = plot(t, v, t, r, '"--', t, d, 'black")
23 p(l).LineWidth = 2;

24 p(2).LineWidth = 2;

25 p(3).LineWidth = 1;

26 legend("Aero angle", "Reference", "Disturbances (V)")
27 ylabel ("Angle (\phi)™")

[
3]

xlabel ("time (s)")

ax = gca;

ax.FontSize = 22;
ylim([ystart, yend]);

w W N
- o ©
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Figure B.1: Simulink scheme for single loop Ziegler-Nichols closed loop tuning
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Figure B.2: Simulink scheme for single loop relay feedback tuning

114



Simulink Schemes

1

Step

C b
O\" _ 15000 @7
- seipoint arar : reafling error
= Input Select radians k_p3
e
e s ﬂﬂ
£ s >
00250465 + 1 b T Ve

Wave
ble/disabl i
EJ_' s L e ]
Angle
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