
Approved by the Dean 30 Sep 21
Faculty of Science and Technology

FACULTY OF SCIENCE AND TECHNOLOGY

BACHELOR THESIS

Study programme / specialisation:
Datateknologi - bachelor

The spring semester, 2022

Open / Confidential
Author:
Benjamin Mydland, Ove Oftedal

…………………………………………

(signature author)

Course coordinator: Tom Ryen

Supervisor(s): Naeem Khademi

Thesis title: CoolEngine: Simulating Realistic Fire and Smoke in a Unity3D-based
Tunnel Fire Rescue Game

Credits (ECTS): 20

Keywords:
CFD
FDS
Fire Simulation
Unity3D
Tunnel safety

 Pages: 99

 + appendix: 10

 Stavanger, 14.05.2022
 date/year

CoolEngine : Simulating Realistic Fire and
Smoke in a Unity3D-based Tunnel Fire

Rescue Game

Benjamin Mydland
Ove Oftedal

May 14, 2022

1

Abstract

Simulating fires in a 3D-environment is nothing new; But the tools used for
simulating fires in such scenarios are extremely limited, as they are seldom
the focal point of the scenario and they are extremely resource intensive and
complex to simulate. But it is certainly possible, and desirable, to have
well functioning and realistic fire simulation. The goal of this project is to
improve an already existing fire simulation game into a more general and
useful software for simulating tunnel fires, by first and foremost improving
the fire simulation.

With relatively recent improvements to CFDs used to simulate fire, and
improvements to computational power of consumer-grade PCs, it should be
much more feasible to attempt a realistic scenario than before. This will
be achieved by extending a simpler fire simulation game in Unity with the
results from the CFD known as FDS.

With some merging of results from FDS and with a focus on generally im-
proving the user experience, a software which is a step in the right direction
for the desired product has been achieved.

To summarize: It is possible to further improve a software for simulating a
fire scenario in a tunnel, and there is a great deal of potential in this field.
Doing this with a CFD, like FDS, is fruitful; but it also has its own set of
unique challenges and limitations.

2

Acknowledgement

We would first and foremost like to thank our advisor Assoc. Prof. Naeem
Khademi (University of Stavanger), whose advice always pushed us and our
work farther than we could have imagined.

In addition, we would like to thank developers Djurre Siccama and Dag
Magne Ulvang (both GEXCON) for telling us of their previous experiences
with merging a CFD (FLACS in their case) and Unity, giving us a valuable
baseline for us to understand the limits of the field.

We would also like to thank Assoc. Prof II Henrik Bjelland (University of
Stavanger) for informing us of some important aspects of FDS and Pyrosim.

Finally: we would like to thank our families for their continuous support,
without which nothing would be possible.

Contents

List of Figures 9

List of Tables 12

1 Introduction 13

1.1 Motivation . 13

1.2 Research Questions . 14

1.3 Objectives . 14

1.4 Thesis’ Contributions . 15

1.5 Thesis Structure . 15

2 Background 17

2.1 Software . 17

2.1.1 CFD . 17

2.1.2 Smokeview . 19

2.2 File Formats . 20

2.2.1 Plot3D . 20

2.3 Programming Languages . 20

3

CONTENTS 4

2.3.1 Fortran . 20

2.4 Development Philosophy . 21

2.4.1 Test Driven Development 21

3 Related Literature 22

3.1 Earlier Work at the UiS . 22

3.1.1 3D-Self Rescue Game 22

3.1.2 Digital Tunnel Twin 23

3.2 Earlier Work in General . 23

3.2.1 Brandforsk . 23

3.2.2 Gexcon . 24

3.2.3 Compare Two-Zone and Pure CFD 24

3.3 Commonly Used Fire Simulation Software 25

3.3.1 Summary of Viability 25

3.3.2 Ease of Use . 25

3.3.3 Advanced Geometry 26

3.3.4 CFAST . 27

3.3.5 FDS . 27

3.3.6 OpenFoam . 27

3.3.7 FLACS . 27

3.3.8 Kameleon FireEx . 28

3.3.9 Smartfire . 28

3.3.10 Simscale . 28

CONTENTS 5

3.3.11 B-RISK . 29

3.3.12 COMSOL . 29

3.3.13 AVL Fire . 29

3.3.14 BehavePlus . 29

4 CoolEngine Software Architecture 30

4.1 Future Design . 30

4.2 Current Architecture . 31

4.3 Software Foundation . 32

4.3.1 Generation of tunnels 32

4.3.2 Tunnel rescue game . 32

4.4 Potential Userbase . 33

5 Methodology 34

5.1 Potential Approaches to Fire Simulation and Selected Method 34

5.2 Choice of FDS . 35

5.3 Choice of Coupling Between Unity and FDS 35

5.4 From Plot3D Output to Unity 36

5.5 Choice of Simulation Domain 40

5.5.1 Domain options . 41

6 Implementation 45

6.1 The CoolEngine - pipeline . 45

6.1.1 File Structure . 46

CONTENTS 6

6.1.2 Creating FDS Input File 47

6.1.3 Running Simulation . 52

6.1.4 FDS2ASCII . 53

6.2 Unity Logic . 57

6.2.1 Scenario Storage . 57

6.2.2 Lethality Calculation 58

6.2.3 Dynamic Fire and Fire Curves 64

6.2.4 Parsing FDS Data . 67

6.2.5 Particle System . 69

6.2.6 Choose Spawn Location 73

6.2.7 Traffic Generation . 76

6.2.8 Updating Object Placement 76

6.2.9 Testing of Fundamental Scripts 80

6.3 Additional Features . 82

6.3.1 Procedural Modeling Updated to Python 3 82

7 Evaluation 83

7.1 Current Limitations of CoolEngine 83

7.1.1 Simplistic Traffic . 83

7.1.2 Tunnel Alignment . 83

7.2 Known Issues . 85

7.2.1 Traffic Congestion . 85

7.2.2 Traffic Rotation in Different Quadrants 86

CONTENTS 7

7.2.3 Tunnel Modeling . 87

7.2.4 UI Scaling . 90

8 Conclusion 91

8.1 Research Questions Answers 91

8.1.1 RQ1: Are There Any CFDs Suitable for Accessible Fire
Simulation? . 91

8.1.2 RQ2: Is It Possible to Utilize the Results From a CFD
With an Environment Like Unity? 92

8.1.3 RQ3: How Far Can the Realism for Fire-Scenarios Be
Taken with Current Technology? 92

8.2 Completion of Goals . 92

8.3 Potential Future Work . 92

8.3.1 Improvement to FDS-model 93

8.3.2 NVDB Update . 93

8.3.3 Implement VR . 93

8.3.4 Improving the CoolEngine - Pipeline Structure 93

References 95

Appendices 100

A Running the project 101

A.1 Procedural Modeling . 101

A.1.1 Requirements . 101

A.1.2 Installation of Python Dependencies 102

CONTENTS 8

A.1.3 Configuration . 102

A.1.4 Usage . 102

A.2 Compiling FDS2ASCII . 103

A.2.1 Requirements . 103

A.2.2 Compiling . 103

A.3 Unity Project . 104

A.3.1 Requirements . 104

A.3.2 Setup . 104

A.3.3 Running Software . 104

B Additional FDS parameters 105

B.1 Gravity Vector . 105

B.2 Slice Files . 105

B.3 Isosurface . 106

C Hardware Specifications 107

D Software User Guide 108

D.1 Generating Scenario . 108

D.2 Playing the scenario . 109

D.3 In-game . 109

List of Figures

2.1 A mesh model produced with the FDS GUI Pyrosim [5]. . . . 18

2.2 A custom model from CFAST[6] viewed in Smokeview[7]. It
has multiple rooms, and the data is therefore somewhat noisy. 19

2.3 Example Smokeview[7] output from a tunnel-like FDS simulation 20

5.1 Cells of size 1x1 have their coordinates in their corner, as this
cells coordinate is (1,-1,0) in theory, which rougly fits with the
coordinates up in the right corner. 38

5.2 Moving to the next cell reveals the X coordinate has incre-
mented by approximately 1, according to theory 39

5.3 A visualization of a 1x1 cell with the blue point demonstrates
where the point should be, and the red point where its actual
location is. [33] . 40

5.4 The .fbx model viewed from above prior to conversion. 42

5.5 The result after conversion from .fbx to FDS-friendly domains. 42

5.6 Simulation fit inside the tunnel [33] 43

5.7 Simulation overflowing outside of tunnel. [33] 44

6.1 Overview of pipeline. Made with Diagrams.net [33] 46

6.2 Important directories under project/Assets 47

9

LIST OF FIGURES 10

6.3 fds_local running a simulation. 52

6.4 Example of FDS2ASCII usecase, mirroring how it is used in
the CoolEngine . 55

6.5 The current chance of a player dying of smoke poisoning, dis-
played both as a numerical percentage and a white bar. 58

6.6 A rough sketch of how the density approximation works. The
linear blue graph represents the density in a cell as a func-
tion of time, the red constant represents the max density, and
the rectangles represent the fixed values one, two and three
particles will afflict. Figure created with GeoGebra [36]. 60

6.7 A figure demonstrating how large particles representing cells
may overlap and create intense zones of massive smoke expo-
sure. Made with Diagrams.net [33] 63

6.8 The fire still small at the beginning of a simulation 66

6.9 The fire at its maximum size 67

6.10 Aligning the particle system with the tunnel where blue is par-
ticle system and red is fire position. Made with Diagrams.net
[33] . 71

6.11 Example of calculating offsets, where blue is simulation, red
is fire position, green is the angle used in computation and
yellow is the original simulation fire position.
Both a rotation and a position offset is needed to make the
particle system align correctly with the tunnel. Made with
Diagrams.net[33] . 73

6.12 Player choosing spawn location 75

6.13 A tunnel wall segment selected, where walls and ceiling is all
one object. 77

6.14 A tunnel ceiling part of the segment, where the left and right
part of the wall are different objects. Making it three total
instead of one. 78

LIST OF FIGURES 11

6.15 Updated lights, more reminiscent of standard lighting in tun-
nel compared with the earlier version. 80

6.16 The tests have all completed successfully in the Unity editor . 81

7.1 Misaligned when curved . 84

7.2 Sometimes the cubic nature of the simulation meshes poorly
with the actual geometry . 85

7.3 Traffic overflow . 86

7.4 Bergeland circular part [42] 88

7.5 Bergeland rectangular part [43] 89

7.6 Error when creating the tunnel tube with ID 79611660 89

7.7 Back button position with 3:2 aspect ratio, it was supposed to
be in the corner, but behaved unpredictably. 90

List of Tables

3.1 Overall viability, in descending order of viability 25

3.2 Ease of use parameters . 26

3.3 Advanced geometry . 26

6.1 Which ppm-values over which minute-values lead to a certain
lethality in percentage. All the values are from table 25 in [35] 62

6.2 Fire curves based upon table 6.5 from the book [38] which is
based upon French regulations [39], note that the car entry
has been modified to fit with just one car 65

C.1 Specifications of computers used in the project 107

12

Chapter 1

Introduction

1.1 Motivation

There are a multitude of reasons for this thesis’ existence.

One of them is just how dangerous a tunnel fire can be. Fires are in general
extremely dangerous, as any person knows well. But it becomes a whole new
level of dangerous when it is in a tunnel scenario. Oxygen becomes even more
scarce, the open space one could escape to is no longer available, and traffic
and structural collapse may clutter a rescue effort. This can be demonstrated
via a concrete example: There was a serious and severely dangerous fire in
the Bragernes tunnel in 1999, it led to an explosion which left two people
dead [1]. This demonstrates the lethal potential of fire, even in tiny Norway.

The point above is exacerbated when one considers how many tunnels Norway
has. Finding concrete data for this is difficult, but Oddvar Karmo from
Statens Vegvesen stated that Norway is somewhat of a superpower when it
comes to tunnels [2]. If one thinks of it as a value like number of tunnels
per capita, the number may be extremely high, provided the geography of
Norway with a great deal of mountains and fjords in the way of potential
regular roads. Which means tunnels become a necessity when creating road
infrastructure across the country.

If the goal then is to further understand and prevent tunnel fires in a country
which has many, one approach may be to simulate the fire and train people
in it. This is a known approach, utilized by SINTEF as an example [3].

13

CHAPTER 1. INTRODUCTION 14

They created a sophisticated fire scenario in a tunnel, and placed people in it
to measure how an average person may react. Even with this sophisticated
simulation, the majority of attendants failed to immerse themselves in the
simulation. When a subjective analysis took place at the end of the test, the
mode of the attendants felt completely safe in the simulation (10/10), unlike
what they would have felt in a real scenario. This may indicate that there
is still room for improvement in regards to such simulations.

The last significant reason is that fire is generally a chaotic phenomena, which
may not be understood all that well. Therefore: any attempt to further the
understanding of how fire operates, and especially expose this understanding
to casual observers, will have its merits.

1.2 Research Questions

The stated task and the motivations behind this project leads to several
research questions:

RQ1. Are there any CFDs suitable for accessible fire simulation?

RQ2. Is it possible to utilize the results from a CFD with an environment
like Unity?

RQ3. How far can the realism for fire scenarios be taken with current tech-
nology and hardware?

1.3 Objectives

The research questions above manifest themselves as concrete objectives

The main objective is to improve the realism in regards to the fire and the
smoke in the already existing tunnel scenario, other important goals are:

• Research the state of the art in CFDs with fire simulation

• Improve the user experience with general fixes and additions

CHAPTER 1. INTRODUCTION 15

• Improve the interaction between the tunnel generation and how this is
used in Unity

• Make interacting with fire simulation easy and accessible

• Make the game ready for VR, for realism in simulation

1.4 Thesis’ Contributions

This thesis contributes to the field of fire simulation software in these key
regards:

• Collects information about CFDs in the field and compares them

• Proposes a way to utilize simulation data in a Unity environment

• Explores what limits one approaches when using said approach

1.5 Thesis Structure

The chapters of the thesis have the following goals:

Introduction

The introduction introduces the main ideas, goals, questions and motivation
for the thesis.

Background

The Background focuses on some of the fundamentals used in the project.
Like programming languages used, software used and file formats used.

CHAPTER 1. INTRODUCTION 16

Related Literature and Software

This chapter focuses on related literature in the fields related to this thesis,
and what can be learned from them. It also features a part discussing and
comparing the various CFDs suitable for this project.

CoolEngine Software Architecture

As this software is another iteration in a long list of designs, it is prudent
to discuss where this software is coming from and where it intends to go in
terms of design. This happens in this chapter.

Methodology

This chapter will justify some of the fundamental decisions regarding meth-
ods made throughout the project; And look at some consequences of these.

Implementation

This chapter will look at some of the finer aspects of the implementation in
more detail.

Evaluation

This chapter will look at some of the results of the project and the discovered
limitations of the implementation.

Conclusion

This chapter will briefly summarize the results of the project, and discuss
the way forward for CoolEngine .

Chapter 2

Background

2.1 Software

2.1.1 CFD

CFD Stands for Computional Fluid Dynamics. It is defined by Simscale, a
company with their own CFD, as: "Computational Fluid Dynamics (CFD)
is the process of mathematically modeling a physical phenomenon involving
fluid flow and solving it numerically using the computational prowess." [4]

It is, in other words, a way to model diverse physical phenomena. This type
of software is widely used in several fields of engineering, to model whatever
needs to be modeled. It is of no use to list of some examples here, as many
examples will be looked at later.

The chief example for this thesis, however, is the simulation of fire. Fire
is, and has been for many centuries, a source of chaos. Thus: the ability
to simulate, and predict, fire-behavior has massive potential for different
applications. As the field of simulating fires itself seems ripe, it seems prudent
to further explore the possibilities of having it used in settings closer to people
who are not related to engineering fields; like people who play video games,
or people with a surface level interest in fire and tunnels.

17

CHAPTER 2. BACKGROUND 18

Ways of Achieving Fluid Dynamics

There are multiple ways a software can approach such a task of simulating.
The most relevant one in regards to CFDs and this thesis is splitting the do-
main/mesh into smaller cells and computing the temperature, as an example,
for each cell.

Figure 2.1: A mesh model produced with the FDS GUI Pyrosim [5].

This method is used by CFDs like FLACS and FDS.

Another relevant way for this thesis is the so-called two-zone method. This
method, instead of working with a great deal of cells, splits a room into
two zones: One upper, and one lower. This method uses the fact that heat
and smoke will rise to make a upper layer dedicated to that, and this makes
computations much quicker and simpler. It is slightly unclear if this is even
to be considered a "true CFD", but it has the same purpose for this thesis.

CHAPTER 2. BACKGROUND 19

Figure 2.2: A custom model from CFAST[6] viewed in Smokeview[7]. It has
multiple rooms, and the data is therefore somewhat noisy.

This method is used by software like B-RISK and CFAST.

Which of these methods is preferred will be discussed later.

2.1.2 Smokeview

Smokeview is a software used to visualize the results of CFDs that focus on
fire models [8]. The software is developed by NIST, and is mainly developed
for use with their own fire models; although some other models also use
Smokeview.

Most CFDs have equivalents to Smokeview, as it is extremely practical to
have the results be visualized immediately upon completion of calculation.

In addition: its focus on fire specifically will illustrate well to receive some
preliminary results on how the fire looks before it is implemented in the
software, making it extra useful for any work in this field.

CHAPTER 2. BACKGROUND 20

Figure 2.3: Example Smokeview[7] output from a tunnel-like FDS simulation

2.2 File Formats

2.2.1 Plot3D

Plot3D was originally a software developed by NASA to visualize solutions
computed by scientists working on diverse fluid-dynamics problems, in their
case: airflow of spacecrafts [9].

It is today used as a common data format for CFDs to output their solutions,
outputting .q or .xyz files as possible examples.

2.3 Programming Languages

2.3.1 Fortran

Fortran is a programming language focusing on high-performance, usually
used for science and engineering projects [10].

CHAPTER 2. BACKGROUND 21

It is used by some CFDs, like FDS, and will therefore hold relevance in this
thesis.

2.4 Development Philosophy

2.4.1 Test Driven Development

Test Driven Development is a style of programming which encourages relying
heavily on testing to create quality code. [11]

Specifically: It encourages users to create tests before they finish the code
they want tested. The point is to make it clear what exactly the code is to
do before it is created, to further guide the programmer as to how to create
the code.

This approach will be useful for the project, as this project’s focus on both
CFDs and Unity at the same time makes it exceedingly complicated, which
necessitates some testing to enable control.

Chapter 3

Related Literature

3.1 Earlier Work at the UiS

3.1.1 3D-Self Rescue Game

In the spring of 2021, there was developed a game as a part of a bachelor thesis
at the University of Stavanger. The main goal of the game is to simulate fire
scenarioes in tunnels and provide the player an idea of what to expect in
these situations [12].

This game was built on the top of the procedural tunnel modeling already
developed, and features many features essential to a fire simulation scenario.
Some of the features are:

• Flame and smoke that will reduce the player’s health

• Stations along the tunnel which have fire extinguishers in them

• Ability to extinguish the fire with the extinguisher

• Emergency exits placed along the tunnel

• Ability to win the game by exiting through the fire exit

The game works well as a video game on its own, it has a great deal of

22

CHAPTER 3. RELATED LITERATURE 23

functionality one would usually find in a video game, but the realism of the
fire and smoke itself is limited as it gamifies the concepts excessively.

This gamification shows itself clearly when the player takes "damage" when
touching smoke, a simple abstraction for the risk of death real smoke carries.

The main point of this thesis is to rework the fire specifically used in this
earlier thesis, but some of the other points may be reworked, which will be
discussed later.

3.1.2 Digital Tunnel Twin

At the same time as the aforementioned video game was developed, there
was developed a master thesis based upon improving the capabilities of the
Digital Twin model which the game also uses [13].

As this project was also based in Unity, there is some overlap between the two
projects. Both projects took measures to take traffic into account, but only
the master thesis seemingly got it to work within their time frame. Thus
part of this work will be merging some of the better aspects of these two
theses to make a unified product.

As the master thesis is more based upon a grand and complex design with
databases and such, it was chosen to create the code for this thesis based
upon the bachelor thesis; and then later improving some parts of it with
inspiration from the master. It is generally better to start simpler and make
it more complex when it is needed, than to start complex. This adheres to
the principle of KISS [14], which is an important principle when continuing
already massive and complex work like done in this thesis.

3.2 Earlier Work in General

3.2.1 Brandforsk

The University of Lund in Sweden has dabbled in importing logic from CFDs
into Unity before [15]. Their approach was to use a computationally simple
model based upon a two-zone model, CFAST in this case, and use physical

CHAPTER 3. RELATED LITERATURE 24

formulas based upon physical phenomena like light scattering to improve the
visualization.

An important aspect of this work is how they state that more complex models
than those based on two-zones would not enable interactivity as the compu-
tations are too heavy. This will be discussed later when the choice of CFD
is made.

3.2.2 Gexcon

Gexcon is a business which has developed the CFD FLACS, which will be
discussed later, used for simulating explosions and similar phenomena on oil
rigs. A portion of their team has developed a plugin between FLACS and
Unity, showcased in their Youtube video: FLACS VR-Safety [16].

This work differs from the work by the University of Lund in an essential way:
it does not seemingly use a two-zone model, due to the nature of FLACS.
This makes the fire showcased in the video somewhat limited in interactivity
and visualization, but it allows the consequences of the fire to be showcased
more clearly.The video clearly demonstrates the radiation the player endures
changing based on how close they are to the fire, and it demonstrates a
lethality percentage for the player being calculated.

3.2.3 Compare Two-Zone and Pure CFD

Wen Jiann Bong from the University of Canterbury wrote a thesis in 2011
comparing the viability of more CFD-centric software to software relying on
the zone-models [17]. The author notes that it is difficult to compare and
evaluate them accurately, but also states that the zone-models should be
avoided if the fire is small compared to the enclosure. Given that this thesis
works within a tunnel-scenario, where the fire is a relatively small part of
the tunnel itself: it may be slightly prefered to have a CFD-based software
compute the simulation if accuracy if the chief concern.

CHAPTER 3. RELATED LITERATURE 25

3.3 Commonly Used Fire Simulation Software

There has been a great deal of research into simulating fire, and there is
consequently a great deal of software that can simulate fires. Therefore:
a non-trivial amount of work had to be put into researching the different
software, to make sure the right one was chosen.

3.3.1 Summary of Viability

Table 3.1: Overall viability, in descending order of viability
CFD Pros Cons Correct use case Two-Zone

CFAST Fast Reduced accuracy Yes Yes
FDS High accuracy Resource intensive Yes No

Smartfire Academic Old Yes No
OpenFoam Complex Yes No

FLACS Complex Yes No
B-RISK Probability-focus Yes, but smoke is lacking Yes
Simscale Cloud-based Cloud-based Not in this case No

Kameleon FireEx Yes No
BehavePlus Fire, No, no smoke No
AVL Fire No, focuses on combustion No
COMSOL No, focuses on heat transfer No

The table above is roughly sorted with regards to how fitting the CFDs
are estimated to be for the project. CFAST being among the most viable,
and COMSOL being among the least viable. There is also a double line in
the table indicating the divide between viable and unviable for the current
project.

3.3.2 Ease of Use

Along with this general summary, there are other factors which should be
taken into account. This includes not just how accurate or how satisfactory
the performance is for the models are, but other factors that decide how easy
it is to work with.

CHAPTER 3. RELATED LITERATURE 26

Table 3.2: Ease of use parameters

CFD Documentation Open Source License API
CFAST Free Yes Free No
FDS Free Yes Free No

Smartfire Unknown No Yes, physical No
OpenFoam Expensive courses Yes Free Yes
B-RISK Free No Free No
FLACS Courses No Yes, physical Yes, Python
Simscale Free No Yes, digital Yes

The CFDs that are completely unviable have been left out of the table.

3.3.3 Advanced Geometry

The models also vary in how they model the rooms/spaces themselves, and
this will be of importance later. They mainly differ in if they use a box-model,
or if they use more flexible models; often CAD.

Table 3.3: Advanced geometry
CFD Curve support

CFAST No, box-model
FDS No, box-model

Smartfire Yes, CAD
OpenFoam Yes, CAD
B-RISK No, box-model
FLACS Yes, CAD
Simscale Yes, CAD

Note that the assertion of a yes/no here is not absolute, some softwares like
FDS have third-party support which allows pretty complex geometry through
various methods. This will be discussed later.

CHAPTER 3. RELATED LITERATURE 27

3.3.4 CFAST

CFAST is a CFD developed by NIST. It mainly utilizes the two model zone,
but has support for a single-zone model for larger domains. It is in active
development, and is open source on GitHub [18]. The computational power
needed to support this simulation is not excessive, but as a direct result it
is may not be as accurate as other simulation software. CFAST has existed
since 1990, and is therefore noticeably feature robust. [19]

3.3.5 FDS

Fire Dynamics Simulator is a CFD meant for simulating fire and different
fluids pertaining to fire. [20] Like CFAST, it is developed by NIST and is
also open source. It is a great deal more resource intensive than CFAST, but
has more granular data as previously mentioned.

It also has a great deal of third party support, with software like Pyrosim
giving it a complete GUI [5].

3.3.6 OpenFoam

OpenFoam is a free and open source CFD-software [21]. It has a specific
module, FireFoam, which tackles pyrolysis [22].
This is a software which seemingly has a great deal of potential for the given
task. As it seems it is one of the better and more widely used CFDs. But it
is fairly inacessible as it is more geared towards industrial use, and therefore
incentivises its users to take expensive courses to grasp its concepts.

3.3.7 FLACS

FLACS is a CFD developed by Gexcon. It covers many fields, with fire being
one of the main ones. [23].
This also seems like a robust way to model fire. But it is marginally out
of scope considering the project, as it seemingly has its own way to render
entire enviroments. While this project just requires fire that interacts with
structures. It also requires a great deal of training, like OpenFoam.

CHAPTER 3. RELATED LITERATURE 28

3.3.8 Kameleon FireEx

Kameleon FireEx is a CFD managed by DNV. It has a main focus on simu-
lating fires and disasters on oil rigs, based upon the focus of the website [24].
It seemingly creates exceedingly realistic fires and smoke. But is hindered by
not being readily available for consumers, again taking the industrial focus.
It seems they do not even offer user-licenses for individuals.

3.3.9 Smartfire

Smartfire is a fire simulation software developed by the FSEG of The Uni-
versity of Greenwich in England [25]. It is a software developed over many
years, and has been acknowledged by many as being robust. [26]
This seems to be a solid simulation software in its own right, and has the
major advantage of being created in an academic setting; which fits well into
the the given task. But it has a major problem: it is noticeably old, and its
creators may be done updating it. This seems to be the case since, if all the
instructions are followed for downloading as they recommend new users, the
only response the user receives is a "license expired" error.

3.3.10 Simscale

Simscale is one of the most unique CFDs here. It is developed by Simscale,
and has the unique property of being cloud-based [27].

It seems this also is a solid CFD, seemingly with capabilities for fire simula-
tion. It also boasts rich API possibilites.

The fact that it is cloud based is simultaneously its greatest boon and its
greatest curse. On the flipside: it allows for outsourcing all the heavy com-
putations to a powerful cloud, which would make heavy computations easier.
On the downside: not having the calculations done locally may make the
software less dynamic, as it depends on queries to a server for changes, in-
stead of just calculating them themselves. It was for this project decided to
have the calculations done locally for simplicty’s sake, but this CFD is worth
keeping an eye on.

CHAPTER 3. RELATED LITERATURE 29

3.3.11 B-RISK

B-RISK is a fire simulation software developed by BRANZ which focuses on
the probabilities of fire [28].
B-RISK is seemingly pretty similar to CFAST, but with more of a focus on
risks. Which for this task, which focuses more on the effects and physics of
it, will be unfitting.

3.3.12 COMSOL

COMSOL is a CFD which can simulate several factors; including airflow,
electricity, and chemical properties. It is therefore quite robust in terms of
physics.
Unfortunately, it is limited when it comes to fire. As it mainly focuses on
simulating heat-transfer, and heat flow [29]. This limits its usefullness in this
task.

3.3.13 AVL Fire

AVL Fire is a CFD that focuses primarily on combustion engines developed
by AVL. [30].
This CFD is presumably competent in what it does. But as it mainly focuses
on combustion and ignition and such topics, it is unfit for this task.

3.3.14 BehavePlus

BehavePlus is a fire modelling system mainly focused on modelling possible
forest-fires, developed under the supervision of the USDA forest service and
kept in a United States government website (.gov) [31].
This seems to be a serious and to the point fire modeller, but it unfortu-
nately is too specific to fire and forest-fires that it is unusable for the task of
simulating general fires and smoke.

Chapter 4

CoolEngine Software
Architecture

4.1 Future Design

As there have been a few different directions this project, when looked upon
over multiple years; there will be an attempt to further providing ideas to
how the software can be developed in the future, regardless of how far this
project manages to do this.

An essential component which will have to be added sooner or later is VR-
compatibility. The ability to come even closer to the simulations and the
results produced will let the user immerse themselves even more in the sce-
nario, and may boost the current software massively for purposes like training
of personnel to fire scenarios.

Another component which would be in line with the vision would be the
addition of multiplayer. As it would massively help the potential users who
may want to use this software to train teams of people in cooperation in
these sorts of scenarios as an example. This also helps the current design
since the simulations of CoolEngine will only become better and better the
more computational power one has access to; If the main simulation could
be outsourced to a super-computer which broadcasts the results to a team
of fire-fighters, as an example, that would really boost the usefulness.

Another aspect that should be looked at more closely for a more complete

30

CHAPTER 4. COOLENGINE SOFTWARE ARCHITECTURE 31

piece of software is the traffic components. The traffic components right now
are pretty limited, as the user can only watch as cars drive by. But in a more
realistic scenario, it would be the user who drives in on a burning scenario,
as people rarely walk around in tunnels like the current architecture. So the
user should be able to drive cars, but this would take a great deal of effort.

Another interesting extension that may be a part of this complete software
would be extending this to general structures. Like if the same software
that simulates the tunnels could simulate the local church or a cinema. This
would rely on more initiatives that map real life structures to data-models
however, and would also have a larger potential to be exploited by bad-faith
actors like arsonists.

The last extension worth mentioning would be to aim it towards a specific
branch or work-group. An example would be implementing tools that the
fireman needs to respond to a fire in a tunnel, or creating an interface that
would enable tunnel-architects to more clearly see how small changes in their
design may effect the security in such a scenario.

To summarize all the points above: The software which can be built upon
the current iteration of CoolEngine is envisioned to be a flexible program
which allows for a lot of fire scenarios, a lot of models that interact with the
fire, a lot of actions for the user can take; all wrapped up in an immersive
simulation.

4.2 Current Architecture

The current design of the game has taken an approach to become more of
a general software instead of a game, comparable to taking some parts of a
game and some parts of a simulation and meshing it together into a software.

In the center of the current architecture is the CoolEngine - pipeline. This
pipeline aims to be the groundwork for more realistic fire simulations, giving
the user and the program all of the essentials one would need to further
the realism of combustion. The pipeline ensures that all the data that a
compatible CFD may produce can be inserted into Unity and used for the
software.

An additional essential part of the current design is the freedom to experi-

CHAPTER 4. COOLENGINE SOFTWARE ARCHITECTURE 32

ment with several different things. The previous game technically supported
multiple tunnels imported from the NVDB, but it did not have code which
scaled well with several different scenarios. This architecture, however, fo-
cuses on letting the user choose myriad of things:

• Parameters for the simulation

• Simple traffic and some levels of traffic

• Support for many tunnels

• Ability to choose where to spawn in a tunnel

• The user can explore more of the tunnel

4.3 Software Foundation

4.3.1 Generation of tunnels

The fundamental basis for this work is the generation of the tunnels from
the NVDB database into .fbx files. This is an essential part of all further
projects, but does not carry with it any design by itself as it is mostly a tool

4.3.2 Tunnel rescue game

The main inspiration and progenitor to this project is the game that came
before it [12]. In that thesis, the aim was to create a game to help teach
people self-rescue. This game therefore focused a great deal on the aspects
which makes it a game: It uses game logic like damage-points to hurt the
player upon exposure to fire and smoke, as an example.

It also creates scenarios which are not particularly realistic, to focus on the
drama often found in video games. This is showcased when there are gener-
ated buses standing diagonally in the tunnel to block the player, and how the
fire extinguisher without fail extinguishes the fire regardless of how intense
the fire may be.

CHAPTER 4. COOLENGINE SOFTWARE ARCHITECTURE 33

When the time came to further the concept in this project, part of the goal
was to create a design which is as realistic as possible. This means remov-
ing some unrealistic components, like the aforementioned over-powered fire
extinguishers, if they could not be ensured to be based on some sort of reality.

4.4 Potential Userbase

Simulations can be exceedingly difficult for an average consumer to wrap
ones head around. When the goal is to predict how phenomena, like fire, will
behave: the bar for entry for understanding a simulation software or method
is extremely high, and this just is not feasible for most people.

The primary group this software is intended to appeal to is therefore these
people, the people who are unfamiliar with fire but want or need to interact
with it. Examples would be an ambulance worker who may have to save
people from a fire in extraordinary circumstances, or the aforementioned
architect who has not taken a day of fire-theory in their life.

This would be the most powerful niche to target. As the people who have fire
as their main field of study, like firemen, probably have access to sophisticated
tools that a software of this size simply can not compete with.

But another niche this software may access is the institutions or people who
do not have a sizable budget, but still a clear need for this sort of software.
Some examples could be fire-stations in less developed or central parts of the
world, which must prioritize the actual function of their tools instead of some
software for simulation. This is due to the largely open-source design of this
software, which would be readily available to a wider audience.

The last, but not as niche group of potential users, is the crème de la crème:
the people with budget and interest in the field. Like firemen working in
a large city. This may be a difficult group to please as they probably are
well-trained and have a great deal of resources, but it is also one of the most
natural groups to target if the software gets several of improvements.

Chapter 5

Methodology

5.1 Potential Approaches to Fire Simulation and
Selected Method

When the task is to improve how realistic a fire scenario is, there is an
abundance of options one could pursue. Fire propagation is a well-researched
field, with several solutions.

One could look into the more physical and mathematical side of it, and model
it based on those disciplines, not unlike what Brandforsk did. But in this
scenario, which places emphasis on the computational part of it, this is less
relevant and useful.

One could also look into the software that attempts to simulate crowd move-
ment in fire scenarios, like PathFinder by ThunderHead Engineering [32].
However, this is most usefeul when one wants to explore how masses escape
a dangerous situation, and this simulation only concerns the user/player.

Thus: in order to both satisfy the need for a computer solution, and to
focus on the fire/smoke itself, CFDs is the natural solution. As it focuses
on the physics behind the phenomena, without requiring much focus on the
formulas.

34

CHAPTER 5. METHODOLOGY 35

5.2 Choice of FDS

When it comes to the choice of CFD, this thesis will be implementing the
simulation with the help of FDS. There are many reasons as to why the
choice fell on this particular CFD, and they were discussed in the chapter
regarding related literature. The reasons can be summarized as:

• It is easy to aquire a license as a student

• It specializes in fire, and is exceedingly realistic; meaning it is better
suited for our task

• It does not require too much time to learn

A sizeable proportion of the other CFDs also fit some of these criteria, but
they all fail in at least one of them. CFAST for instance is more than
adequate; but it uses the two-zone model previously discussed, meaning it is
unrealistic in comparison to FDS.

Smartfire also seems to be well suited, but is extremely difficult/expensive
for a student to acquire a license.

OpenFoam is also an excellent candidate, and may be preferred if one is to
work on a simulation like this over a longer period of time with a great deal
of time and resources, but it also requires a great deal of training which does
not fit into the limited timeframe of a thesis like this.

Therefore: FDS was deemed to be the most fitting in the most important
aspects. Though it is worth noting that any CFD conforming to the require-
ments for file formats should be able to use the framework developed, if they
follow some criteria which will be established later.

5.3 Choice of Coupling Between Unity and FDS

Like previously discussed with the Brandforsk report [15], there are two main
routes to go if one wants to use CFDs to simulate fire:

1. Implement some physical and mathematical concepts from the CFDs
directly into the game, like the report does.

CHAPTER 5. METHODOLOGY 36

2. Couple the game and the CFD together: The CFD computes the data,
and the game visualizes and utilizes it.

It was chosen for this project that the latter of the two be attempted: cou-
pling. There are positive and negative aspects to both solutions, and the
other option may be the one that offers the "best" results; but as the scope
of this project is both limited and computational, the direct coupling is pre-
ferred.

5.4 From Plot3D Output to Unity

There are several ways one can access the information in the FDS simulation
as an output. The one chosen for this project was reading the data through
the Plot3D format which FDS supports.

1 0.74000E+02 , -0.20000E+01, 0.00000E+00, 0.10207E+01
2 0.76000E+02 , -0.20000E+01, 0.00000E+00, 0.10231E+01
3 0.78000E+02 , -0.20000E+01, 0.00000E+00, 0.10162E+01

Listing 5.1: A snippet from one of the Plot3D files in .csv format.
In this case, it displays x, y, z coordinates and the corresponding soot density
for each cell

This data will be as granular as the simulation is allowed to be, if there are
more and smaller cells, the data will have finer granularity.

Now that the data from the simulation is acquired, the only question is how
exactly it will be used and displayed in Unity. The goal at the end of the
day is to have this data influence the player to offer them the impression of
being in a real fire scenario, after all.

There are several possible ways the data may be used. It may be viable to
create a mesh to represent the data, as this is the way the data is represented
in Plot3D after all. This, however, has the drawback of being ill-suited for
3D, as meshes are best at visualizing surfaces like they usually do in video
games.

For this project, a slightly naive solution was chosen. Unity has a parti-
clesystem which can represent particles, like smoke and fire in this scenario.
This has the advantage of being easy to implement and understand: the co-

CHAPTER 5. METHODOLOGY 37

ordinates of the cell is mapped to the coordinates of the smoke-particle as
an example.

There are some drawbacks however. One of them is the offset that naturally
exists because of this decision. If a particle/point should be used to approxi-
mate a cell, then it should be in the middle of the square, as is natural. The
problem is, however, that the coordinates listed in the .csv file is one of the
corners of the cell, not the center.

CHAPTER 5. METHODOLOGY 38

Figure 5.1: Cells of size 1x1 have their coordinates in their corner, as this
cells coordinate is (1,-1,0) in theory, which rougly fits with the coordinates
up in the right corner.

CHAPTER 5. METHODOLOGY 39

Figure 5.2: Moving to the next cell reveals the X coordinate has incremented
by approximately 1, according to theory

This will lead to a skewing of the entire simulation, as every particle does
not map entirely with the cell.

CHAPTER 5. METHODOLOGY 40

Figure 5.3: A visualization of a 1x1 cell with the blue point demonstrates
where the point should be, and the red point where its actual location is.
[33]

This means the simulation will always be slightly offset with a vector of (-
1/2, -1/2). This is no real problem, as it is a minor inaccuracy in the grand
scheme of things, but the assumption that this is fine is worth mentioning as
a fundamental aspect of the approach to this project.

5.5 Choice of Simulation Domain

The choice of domain/mesh for the simulation is also an important one. The
simulation calculations required for the improvements to the visualization

CHAPTER 5. METHODOLOGY 41

are extremely intensive, and the main such bottlenecks are:

• The time of the simulation

• The granularity of the data (size of cells)

• How large the domain is

All of these will be discussed in turn later. The size of the domain is the
most interesting part present.

5.5.1 Domain options

1-to-1 models

The most natural choice would be to just model the domain after the actual
tunnel proportions directly. But there are some problems with this approach.
First: it would be a massive calculation, and would take a great deal of time
and resources. This could, however, be circumvented by further reducing the
domain after the main domain is generated, and just running the simulation
in a smaller portion. This is a fair possibility.

Another problem, however, is how limited this sort of design is with the cho-
sen CFD: FDS. It does not support anything more complicated than a box-
model by default, like discussed before. This can however be circumvented
by the selection of third-party software like the aforementioned Pyrosim [5].
Pyrosim has a feature where one can convert various 3D-models into models
that work with FDS. One of these 3D-models is the .fbx format that this
project uses for the tunnels. The problem with this, however; is that either
the original transformation from NVDB to .fbx was not designed with such
conversions in mind, or the Pyrosim software is limited. The figures below
demonstrates an example of conversion.

CHAPTER 5. METHODOLOGY 42

Figure 5.4: The .fbx model viewed from above prior to conversion.

Figure 5.5: The result after conversion from .fbx to FDS-friendly domains.

As the figures illustrates, the result after conversion is a quite limited and
box-based model which it is somewhat difficult to imagine smoke and heat
flowing in between. The conclusion is that this is an interesting possibility,
but it was not deemed viable for this project.

CHAPTER 5. METHODOLOGY 43

The chosen domain

The chosen domain, at the end of the day, is a simple and connected box
model-like displayed in figure 2.1 as an example. This solves most of the
problems discussed relating to the previous solution:

• It is easy to control the size, and therefore performance

• It will be easy for the smoke and temperature to flow, as it is a contin-
uous model

It does, however, introduce new limitations one should be aware of.

The most pressing limitation is the geometry itself. It is an improvement
compared to the .fbx conversion, but it is still unlike the mostly curved
tunnels seen in real life.

Figure 5.6: Simulation fit inside the tunnel [33]

CHAPTER 5. METHODOLOGY 44

Figure 5.7: Simulation overflowing outside of tunnel. [33]

This will lead to smoke, as an example, being placed outside the tunnel in
the lower illustration’s case; or being placed inside the tunnel but not along
the entirety of the tunnel as demonstrated in the upper illustration’s case.

This is not a huge problem at the end of the day however, the majority of
smoke and data would fit nicely into the square even in a real fire-scenario.
But it is important to realize the limits of an implementation like this.

Chapter 6

Implementation

All the code discussed here is maintained in the GitHub-repository for the
project [34]. If the reader wants access, they should contact Assoc. Prof.
Naeem Khademi of the UiS regarding access to this private repository.

6.1 The CoolEngine - pipeline

The most essential part of this project is the pipeline leading all the way
from the simulation parameters, through all the steps it needs on the way,
and finally to the data in the game. It will therefore be explained carefully,
and in detail.

45

CHAPTER 6. IMPLEMENTATION 46

Figure 6.1: Overview of pipeline. Made with Diagrams.net [33]

6.1.1 File Structure

The key directories are as follows; the FDS folder contains the input folder
where the simulation results are stored and converted to ASCII. The output
folder contains the finished converted and aggregated data from a simulation.
The Scripts directory contains all the code used in the Unity project.

CHAPTER 6. IMPLEMENTATION 47

Figure 6.2: Important directories under project/Assets

Both the Input and Output directories contain scenario directories which are
named after the GUID (Global Unique IDentifier) it is assigned when created.

6.1.2 Creating FDS Input File

Everything that happens in the simulation is decided by the parameters set
in the .fds file. FDS will, upon execution, run the simulation according to the
initial parameters. For the purposes of this pipeline, there has been created a
template.fds file which creates a tunnel-like simulation with as little overhead
as possible, and allow inputs from the user of the software.

FDS can be somewhat finnicky, and it requires understanding a significant
amount of moving parts to start using the software, so it will be looked at in
detail.

1 &HEAD CHID=’simulation ’, TITLE=’Simulation ’ /
2 &TIME T_END=replace_time. /
3

4 &MESH IJK=16,4,4, XB=0.0 ,16.0 , -2.0 ,2.0 ,0.0 ,4.0 , MULT_ID=’mesh
’ /

CHAPTER 6. IMPLEMENTATION 48

5 &MULT ID=’mesh ’, DX=16., I_UPPER =7 /
6

7 &PRES TUNNEL_PRECONDITIONER=T /
8

9 &DUMP PLOT3D_QUANTITY (1)=’DENSITY ’, DT_PL3D =1.0,
PLOT3D_SPEC_ID=’SOOT ’ /

10

11 &REAC FUEL=’PROPANE ’, SOOT_YIELD=replace_soot_yield /
12

13 &RAMP ID=’q’, T=0, F=0 /
14 &RAMP ID=’q’, T=30, F=1 /
15 &RAMP ID=’q’, T=180, F=1 /
16 &RAMP ID=’q’, T=300, F=0 /
17

18 &SURF ID=’fire ’, COLOR=’RED ’, HRRPUA=replace_hrrpua , RAMP_Q
=’q’ /

19

20 &VENT SURF_ID=’fire ’, XB=63.5 ,64.5 , -0.5 ,0.5 ,0.0 ,0.0 , COLOR=’
RED ’ /

21 &VENT ID=’Mesh Vent: Mesh01 [0,0,0] [XMIN]’, SURF_ID=’OPEN ’,
XB=0.0 ,0.0 , -2.0 ,2.0 ,0.0 ,4.0/

22 &VENT ID=’Mesh Vent: Mesh01 [7,0,0] [XMAX]’, SURF_ID=’OPEN ’,
XB=128.0 ,128.0 , -2.0 ,2.0 ,0.0 ,4.0/

23

24 &TAIL /

Listing 6.1: template.fds

Each line has its purpose, and each component will be looked at in more
detail with information based upon experience and the aforementioned FDS
user guide [20].

Head and tail

1 &HEAD CHID=’simulation ’, TITLE=’Simulation ’ /

1 &TAIL /

Line 1 and 24 encapsulate the entire file. They essentially just tell FDS where
the simulation parameters start and end. But the declaration of the CHID
is somewhat important, as that is the identification of the simulation which
the tool FDS2ASCII will later use.

Time

CHAPTER 6. IMPLEMENTATION 49

1 &TIME T_END=replace_time. /

The Time-line specifies information regarding time.

T_END specifies when the simulation ends, or in this case: how long the
simulation runs. This is a quite important parameter, as the time to run
massively impacts the runtime. It is therefore extremely important to provide
the end-user access to this parameter, so that they can themselves change
this to fit the limits of the hardware they are using.

Mesh

1 &MESH IJK=16,4,4, XB=0.0 ,16.0 , -2.0 ,2.0 ,0.0 ,4.0 , MULT_ID=’mesh
’ /

2 &MULT ID=’mesh ’, DX=16., I_UPPER =7 /
3

4 &PRES TUNNEL_PRECONDITIONER=T /

Line 4-7 all have to do with the simulation’s mesh.

The Mesh-line specifies a rectangular, three-dimensional mesh. It takes sev-
eral important arguments. The IJK parameter specifies how many cells there
should be in the corresponding x, y, z directions, effectively setting the gran-
ularity of the simulation.

The XB-parameter defines the lower and upper limits to the x, y, z co-
ordinates. For this project, it was decided that the distance between the
corresponding XB coordinates and the IJK values should be equal. This cre-
ates cells of the dimensions 1x1x1, essentially a unit cube. These unit cubes
accomplish three things:

• Has a significant degree of detail, all things considered

• Is not excessively detailed to hamper computation

• Unit cubes makes later calculations easier

The Mult-line specifies how a mesh is to be repeated.

The DX-parameter specifies how much the next mesh should be displaced
in the X direction. In this case, it places the next mesh 16 meters after the
mesh before it, matching the length of the mesh so that there will not be any
overlap.

CHAPTER 6. IMPLEMENTATION 50

The I_UPPER-parameter specifies how many times this is to be repeated.
In this case, there will be 8 total meshes, because there is a base mesh defined
in &MESH and it will be repeated 7 times.

The reason why this repeating approach was used instead of just creating a
large continuous mesh was because any future improvements to the model
in the CoolEngine -pipeline would need multiple meshes to emulate more
complex geometry, so the pipeline is already ready for expansion in this
regard.

The last line here is the Tunnel_Preconditioner line, which is set to true.
This line must be applied when simulating tunnel-like scenarios with multiple
meshes like here, otherwise the FDS guide warns of numerical instabilites in
the simulation.

Dump

1 &DUMP PLOT3D_QUANTITY (1)=’DENSITY ’, DT_PL3D =1.0,
PLOT3D_SPEC_ID=’SOOT ’ /

The Dump-line specifies how the output from the simulation is to be.

The parameter DT_PL3D specifies how long there should be, in seconds,
between each generated Plot3D file. A whole second is chosen to improve
performance, both when the files are read in Unity, and when the simulation
itself is run.

The parameters PLOT3D_QUANTITY and PLOT3D_SPEC_ID both spec-
ify what sort of information should be output in the Plot3D file, in this case,
the density of the soot per cell is chosen.

Reactant

1 &REAC FUEL=’PROPANE ’, SOOT_YIELD=replace_soot_yield /

The Reac-line defines what sort of material will burn in the simulation.

The Fuel-parameter specifies which fuel will be the basis for the fire. It is
in this project specified to be propane, as the chemical make-up of burning
cars was deemed to be slightly out-of-scope for this project, and propane is
a known reactant for fires.

CHAPTER 6. IMPLEMENTATION 51

The Soot_Yield-parameter specifies how much of the fuel should be turned
into soot-smoke, measured in kg soot out of kg burned (kg/kg). This is a
required value, and will depend on several factors, which is why it is provided
control to the user to choose it. If the chemical make-up of propane can not
support the provided soot-yield, it will not run.

Ramp

1 &RAMP ID=’q’, T=0, F=0 /
2 &RAMP ID=’q’, T=30, F=1 /
3 &RAMP ID=’q’, T=180, F=1 /
4 &RAMP ID=’q’, T=300, F=0 /

The Ramp-lines specifies how the fire will change (ramp-up) throughout its
lifespan.

The T-parameter defines that this line applies to the specified time in seconds.

The F-parameter defines the fraction of the total HRR a fire should have at
the specified time.

In this case, the fire will reach max HRR after 30 seconds, and be completely
gone by 300 seconds. In the actual CoolEngine -pipeline, these values will be
decided based on fire curves and what vehicle is burning, as these commands
allow for linear approximation which will be looked at later.

Surface

1 &SURF ID=’fire ’, COLOR=’RED ’, HRRPUA=replace_hrrpua , RAMP_Q
=’q’ /

The Surf-line defines a surface, but is in this case used to define the fire.

The HRRPUA-parameter is the HRR (Heat Release Rate) per Unit Area. It
effectively controls the HRR, as the fire area is defined to be a unit-square
in the XB-parameter. HRR is measured in kW , HRRPUA in kW/m2.

Vents

1 &VENT SURF_ID=’fire ’, XB=63.5 ,64.5 , -0.5 ,0.5 ,0.0 ,0.0 , COLOR=’
RED ’ /

2 &VENT ID=’Mesh Vent: Mesh01 [0,0,0] [XMIN]’, SURF_ID=’OPEN ’,
XB=0.0 ,0.0 , -2.0 ,2.0 ,0.0 ,4.0/

CHAPTER 6. IMPLEMENTATION 52

3 &VENT ID=’Mesh Vent: Mesh01 [7,0,0] [XMAX]’, SURF_ID=’OPEN ’,
XB=128.0 ,128.0 , -2.0 ,2.0 ,0.0 ,4.0/

The Vent-lines define open areas in the mesh, or "holes" to put it simply.

The Surf_Id-parameter defines what sort of opening this is. The two types
used here are:

• OPEN - Meaning a standard hole

• fire - Meaning an opening for the fire to burn

Simulations require some sort of vent to function, just like fires need access
to air to burn.

6.1.3 Running Simulation

The simulation is started via cli using the command: fds_local simulation
.fds when the simulation.fds file is done generating. It will then create a
subprocess running cmd, and displaying it as a popup to the user. The
result of the simulation as binary Plot3D files are moved to a subdirectory
called q_files for conversion to ASCII.

Figure 6.3: fds_local running a simulation.

CHAPTER 6. IMPLEMENTATION 53

Note that this approach of displaying the cli to the user takes advantage of
FDS’ innate way of revealing how far along the simulation has computed, it
displays which time-value is the last one to be computed in real time. This
provides the user a feel for how far along the simulation is.

6.1.4 FDS2ASCII

The idea behind FDS2ASCII, a program packaged with FDS, is simple: It
allows the user to convert .q files, in this case, to ASCII. It gives the user a
long list of all the files found for the given simulation, with indices for every
file, and asks the user to specify which index it wants to convert.

Compiled With Newer Version

The included FDS2ASCII with FDS version 6.7.7 does not support more than
2000 binary files at once in the listing, and will not index the files properly
if it exceeds the maximum. Therefore a newer version of FDS2ASCII was
compiled specifically to circumvent this problem, since the file limit was
changed to 500000 after the latest FDS release. It is included under the
FDS directory specified in subsection. This made it easier to see which files
FDS2ASCII is working on, and was necessary to make the scripting work.

1 INTEGER , PARAMETER :: FILE_DIM = 500000

Listing 6.2: FDS2ASCII file limit, line 21

It also includes a modified build of FDS2ASCII, which does not print all
the files available every time it completes a file conversion. This creates less
overhead in the computation and makes the input more readable for the user.
The way this achieved by commenting out the code in listing 6.3.

1 ! WRITE(6,’(I6 ,3X,A,A,I4 ,A,F5.0) ’) I,TRIM(PL3D_FILE(I))
,’, MESH ’,PL3D_MESH(I),’, Time: ’,PL3D_TIME(I)

Listing 6.3: Commented out line from FDS2ASCII, line 274

Specifying Data

When first calling the command, the software asks for some rudimentary
information which is needed for it to function. It will first asks for the chid,

CHAPTER 6. IMPLEMENTATION 54

which identifies which simulation in the directory it will convert. It then
needs the ask for the file format and the domain size.

Typical input:

1. Specify chid

2. Type of data/file format

• Plot3D

• SLCF

• BNDF

3. Sampling Factor

• All data

• Every other data

• Etc.

4. Domain

• Limited domain

• Unlimited domain

• Type and location

(Bold text is the default selected when getting this data to Unity)

CHAPTER 6. IMPLEMENTATION 55

Figure 6.4: Example of FDS2ASCII usecase, mirroring how it is used in the
CoolEngine

Translation Table

The first FDS2ASCII build will be called first, input the standard param-
eters to receive all the Plot3D but will cancel when a file is prompted for.
This output will be used to construct a translation table in code, since the
FDS2ASCII index for a file is not sorted in any discernible pattern. This
translation table will be used to create a script file.

Converting to ASCII

After the translation table has been created, the other build of FDS2ASCII
will be called with the script file via the command redirection operator in
command prompt. It will then convert all the files to .csv-files.

CHAPTER 6. IMPLEMENTATION 56

1 ProcessInfo = new ProcessStartInfo("cmd.exe", "/C " + $"{
command} < {script_file}");

Listing 6.4: cli.cs, to start the subprocess

1 public static void CreateScriptFile(string [] Q_Files ,
Dictionary <string , int > Table , string base_output_name ,
string directory)

2 {
3 using (StreamWriter sw = File.CreateText($"{directory }/

script.txt"))
4 {
5 sw.WriteLine("./ simulation");
6 sw.WriteLine("1");
7 sw.WriteLine("1");
8 sw.WriteLine("n");
9 for (int i = 0; i < Q_Files.Length; i++)

10 {
11 string [] q_files_array = Q_Files[i]. Split(’\\’);
12 string q_file_name = q_files_array[q_files_array.

Length - 1];
13 sw.WriteLine(Table[q_file_name]);
14 string file_name = Path.GetFileName(Q_Files[i]);
15 var name_list = file_name.Split(’_’);
16 string ms_percent = name_list[name_list.Length -

1]. Split(’.’)[0];
17 string timestep_seconds = name_list[name_list.

Length - 2];
18 string mesh_num = name_list[name_list.Length -

3];
19

20

21

22 sw.WriteLine($"{base_output_name}_{mesh_num}_{
timestep_seconds}_{ms_percent }.csv");

23 }
24 sw.WriteLine("0");
25 }
26 }

Listing 6.5: FDS2ASCII.cs, to use the table to convert all the files

Aggregation

As mentioned previously, the domain is split into 8 meshes, so they have to
be aggregated into one file for Unity’s sake.

CHAPTER 6. IMPLEMENTATION 57

All the text files which have a matching timestamp will be merged into one
file. It will then be moved into Assets/CFD/FDS/Output/scenario_id.

1 for (int i = 0; i < CSV_Files.Length; i++)
2 string [] file_array = CSV_Files[i]. Split(’_’);
3 string milliseconds = file_array[file_array.Length - 1].

Split()[0;
4 string seconds = file_array[file_array.Length - 2];
5 string output_file_path = $"./ Assets/CFD/FDS/Output /{Id

}/{ base_output_name}_{seconds}_{milliseconds }.csv";
6 if (!File.Exists(output_file_path))
7 {
8 using (var strm = File.Create(output_file_path)) { }
9 }

10 // Merges file with others of same mesh
11 using (var outputStream = File.Open(output_file_path ,

FileMode.Append))
12 {
13 using (var inputStream = File.OpenRead(CSV_Files[i]))
14 {
15 inputStream.CopyTo(outputStream);
16 }
17 }
18 }

Listing 6.6: Aggregation of files in FDS2ASCII.cs

If a file does not exist which matches the corresponding time stamp, it will
create an empty csv file with the appropriate name. Afterwards it will append
the content to the end of the file created.

6.2 Unity Logic

6.2.1 Scenario Storage

Scenarios created via the scenarios menu is stored as a JSON file as seen in
listing 6.7. It sums up all the necessary settings for creating FDS input file.
It also includes the information for changing the size of the fire when inside
a tunnel.

1 {
2 "Records ": [{
3 "id": "528 dd7fc -2c18 -4eaa -9bc5 -ef8cb3224708",
4 "name": "test",

CHAPTER 6. IMPLEMENTATION 58

5 "soot_yield ": "0.15" ,
6 "time": "10",
7 "fire_material ": {
8 "name": "Car",
9 "hrrpua ": 3000,

10 "TimeToMax ": 300,
11 "TimeToDiminish ": 1500,
12 "TimeToFinished ": 2700
13 }
14 }]
15 }

Listing 6.7: scenarios.json example

This is the link between simulation.fds and the user input, where the infor-
mation the user gives is stored, and sent forward to FDS and further down
the CoolEngine - pipeline.

6.2.2 Lethality Calculation

The Probit

One of the most powerful aspects of a software that uses CoolEngine is how
it allows the user to be impacted directly by the simulation scenario. Similar
software may have to depend on a several assumptions on how e.g smoke
would behave in regards to the user, but this software can use scientific
models based on physical data.

The most clear example of this is the way the software calculates the smoke
lethality. The idea of smoke lethality is to illustrate the likelihood of a person
dying if they are exposed to a certain dosage of smoke for a certain amount
of time.

Figure 6.5: The current chance of a player dying of smoke poisoning, dis-
played both as a numerical percentage and a white bar.

CHAPTER 6. IMPLEMENTATION 59

This value is calculated based upon equation 6.1, and can be found in a paper
from the Health and Safety Executive of the U.K. about human vulnerability
in offshore environments [35].

Pr = −38.8 + 3.7ln(C ∗ t) (6.1)

Where C is the concentration of CO measured in mg/m3, and t is the time
in minutes.

This formula leads to a probit, a value which corresponds to how many per-
cent lethal a certain amount of exposure is. It is worth noting that this
project approximates soot to being chemically equivalent to CO for the pur-
poses of this calculation. This is not an extremely accurate approximation
in physical terms, but it works well for keeping the calculations and design
simple.

Plot3D outputs the soot density per cell in kg/m3, and Unity can keep track
of how much time has passed inbetween frames. Thus: the probit can be
calculated.

The Soot Density

But before that, there must be done a last approximation. Since the smoke
has been implemented as a particle system, consideration must be taken.
Particles in Unity can not carry data on their own, as they are meant to
be lightweight visualizations of certain visual effects (like smoke). Therefore
they can not directly carry the soot density per cell.

This is circumvented, however, by visualizing the smoke in a particular way.
When the simulation data is loaded into Unity, it also finds out the max soot
density in the simulation. It thereafter calculates, for each particle to be
rendered, how many particles each soot density should be. This is done by
calculating how much of the max density the cell has in density, currentDensity

maxDensity
,

and then multiplying that by three; a constant chosen since it allows for both
pretty detailed data, and for satisfactory performance.

This means, at the end of the day, that each particle has a fixed amount of
mg/m3 it will afflict the user with, and more particles will be rendered where
the smoke is extra thick.

CHAPTER 6. IMPLEMENTATION 60

Figure 6.6: A rough sketch of how the density approximation works. The
linear blue graph represents the density in a cell as a function of time, the red
constant represents the max density, and the rectangles represent the fixed
values one, two and three particles will afflict. Figure created with GeoGebra
[36].

Note that the soot density is to be considered neither a function of time nor
a linear function, but it serves to illustrate the point.

Now that an approximation of the density in each cell is established, the only
remaining functionality missing is the interaction with the player. When the
user collides with a particle in Unity, a OnParticleCollision-event is triggered,
and when this collision occurs, the user receives lethality-damage.

1 void OnParticleCollision(GameObject other)
2 {
3 if (other.tag == "smoke3D")
4 {
5 ct += ConvertDensity(SETTINGS.densityPerParticle)

* ConvertTime(timeDelta);
6 }

CHAPTER 6. IMPLEMENTATION 61

7 }

Listing 6.8: PlayerLethality.cs

The use of tags for the particles makes sure only the correct particles trigger
lethality-damage.

As a theoretical example: A user may walk into cell C1, this cell has a soot
density corresponding to 2/3 of the max value of soot in this simulation.
Unity will therefore render 2/3 ∗ 3 = 2 particles in that cell-coordinate, and
the user will increase their probit by 2∗maxDensity∗timeBetweenFrames.

The Lethality

Now that there is established both a way to calculate a probit and a way for
the user in Unity to be affected by this, the data must be translated into the
lethality which the user will see in the simulation.

The probit is calculated into a percentage with a formula from a research
paper from 2005 also regarding offshore platforms [37].

P = 50 ∗ (1 + Pr − 5

|Pr − 5|
∗ erf(|Pr − 5|√

2
)) (6.2)

Where erf is the error-function from statistics.

Using this calculation yields the same results as those in table 25 in the
technical report with the calculations [35]. This is verified by PlayerLethali-
tyTests.cs, which passes in the test-runner.

CHAPTER 6. IMPLEMENTATION 62

Table 6.1: Which ppm-values over which minute-values lead to a certain
lethality in percentage. All the values are from table 25 in [35]

Concentration of CO in ppm /
Exposure time needed for % lethality

1-5% 50%
1100 60 min 2000 60 min
2200 30 min 4000 30 min
3200 20 min 6000 20 min
6400 10 min 12000 10 min
13000 5 min 24000 5 min

1 [Test]
2 public void testProbitAndLethality ()
3 {
4 GameObject gam = new GameObject ();
5 PlayerLethality pl = gam.AddComponent <PlayerLethality

>();
6

7 double ct = 24000 * 5 / 0.862; //We divide by 0.862
to convert from ppmV to mg/m^3

8 int result = (int)pl.LethalityCalculation(pl.
ProbitCalculation(ct));

9 Assert.AreEqual (50, result);
10

11 ct = 13000 * 5 / 0.862;
12 result = (int)pl.LethalityCalculation(pl.

ProbitCalculation(ct));
13 Assert.AreEqual(1, result);
14 }

Listing 6.9: PlayerLethalityTests.cs

Limitations of This Model

There are some limitations of this model which is worth pointing out.

The particles are not extremely accurate compared to the original mesh de-
sign. Since the particles will not match entirely with the cells in the design,
two possible inaccuracies may occur:

1. There may be areas which are in a cell, but are not colliding with the
circular particle

CHAPTER 6. IMPLEMENTATION 63

2. There are areas where multiple particles overlap, and create excessive
amounts of exposure

The smoke particles in this project are pretty large, so the latter is the more
likely scenario.

Figure 6.7: A figure demonstrating how large particles representing cells
may overlap and create intense zones of massive smoke exposure. Made with
Diagrams.net [33]

This may lead to inaccuracies, and may illustrate why it is preferrable to
implement the simulation logic in another data-structure than the particles

CHAPTER 6. IMPLEMENTATION 64

in the future.

The other issue is that this is a extremely slow rising value. Even though
carbon-monoxide and smoke are poisonous, it takes a great deal of time
and exposure at the concentrations gained through this simulation to receive
impactful values.

This is why it should, eventually, be implemented similar logic to this but for
heat radiation exposure. The same model for smoke toxicity may be used for
heat radiation with probits and lethalities, in fact, the papers used to build
this smoke model touches on the same topic [35][37]. This would offer users
a clearer response, as heat radiation needs less exposure to become lethal.

6.2.3 Dynamic Fire and Fire Curves

The FDS simulation already takes care of the growth of the fire model, as
previously discussed. But this data is not outputed to the Plot3D data which
has been covered so far. Thus another solution has to be used here.

The chosen way to model the fire in this project is linear aproximation of
the fire curve. This is mainly because it is easier to work with and therefore
adheres to KISS, but it also is a well-accepted way to model fires based
upon a book on Tunnel Fire Dynamics from 2015 [38]. Specifically figure 6.1
from chapter 6 demonstrating how the linear aproximation compares to the
exponential model.

When using linear approximation, all that needs to be known is:

• How much is maximum HRR

• How long until the fire has peaked in terms of HRR

• How long until the fire will reduce its HRR

• How long until the fire is finished

All this information can be found in the book regarding the topic [38], [39],
this information has been reproduced in the table below for brevity. A custom
fire curve for the purposes of this project has been added.

CHAPTER 6. IMPLEMENTATION 65

Table 6.2: Fire curves based upon table 6.5 from the book [38] which is based
upon French regulations [39], note that the car entry has been modified to
fit with just one car

Vehicle Q_Max t_Max t_Diminish t_Finish

Car 3 5 25 45
Truck 30 10 70 100
Basic 2 0.5 3 5

Where Q_Max is the maximum HRR in MW , all t-values are in minutes,
t_Max is the time for the HRR to maximize, t_Diminish is the time for it
to start decreasing, t_Finish is the time the fire stops.

The basic vehicle type is just data that fits well into the limitations of the
simulation. As the simulation should rarely be longer than 5 minutes unless
the user is prepared to wait a significant amount of time for it to compute.

The user can choose when creating their scenario which of these three vehicles
they want, and the simulation will run with these parameters. The same
source that provide this information to FDS, a .json file, provides it to Unity
at runtime to model the fire. It scales the size of the fire linearily with the
fire curves linear growth in HRR.

1 if (raw_time < _fireMaxTime)
2 {
3 scale = raw_time/_fireMaxTime;
4 var fire = this.gameObject.transform.Find("

FirePosition").Find("Fire(Clone)");
5 foreach(Transform child in fire)
6 {
7 child.localScale = new Vector3(scale ,

scale , scale);
8 }
9 }

Listing 6.10: CFDFire.cs, showing the scaling of the fire when it increases in
the beginning of the fire.

CHAPTER 6. IMPLEMENTATION 66

Figure 6.8: The fire still small at the beginning of a simulation

CHAPTER 6. IMPLEMENTATION 67

Figure 6.9: The fire at its maximum size

This approach has the benefit that it is not extremely computationally heavy.
Meaning the fire will still behave as intended after the software has run out
of Plot3D data.

6.2.4 Parsing FDS Data

Data Structure

The data structure is defined as a 2-dimensional list, or a nested list, con-
taining data points as defined in listing 6.11.

1 public class DataPoint
2 {
3 public double [] Position;
4 public double Soot_Density;
5 public TimeSpan Time_Stamp;
6 }
7 }

Listing 6.11: DataPoint.cs

CHAPTER 6. IMPLEMENTATION 68

Each item in the highest order list will be equivalent to a point in time, while
the second list inside will be equivalent to lines inside the file.

Reading Files

The CFD parser loops through all the files in the scenario directory with the
.csv file extension, and loads them into memory using the specified structure.
When type casting, the culture is specified because of the specific format
FDS2ASCII uses when converting to ASCII.

1 using (var reader = new StreamReader(cfd_file))
2 {
3 while (! reader.EndOfStream)
4 {
5 // Parses filename to TimeSpan object
6 Date_Parser Parser = new Date_Parser ();
7 TimeSpan time_stamp = Parser.FileNameToTimeSpan(

cfd_file);
8

9 var line = reader.ReadLine ();
10 var values = line.Split(’,’);
11 var first_value = values [0]. Trim();
12 // Ignore strings , like X,Y,Z
13 if (! double.TryParse(first_value , System.

Globalization.NumberStyles.Float , CultureInfo.
CreateSpecificCulture("en-US"), out double _))

14 {
15 continue;
16 }
17 if (line == "\n" || line == "")
18 {
19 break;
20 }
21

22 //Trims string , and converts from string to array.
Second argument because csv file decimal numbers are
seperated by dot and not comma

23 double x = double.Parse(values [0]. Trim(), System.
Globalization.NumberStyles.Float , CultureInfo.
CreateSpecificCulture("en-US")); // System.Globalization.
CultureInfo.InvariantCulture

24 double y = double.Parse(values [1]. Trim(), System.
Globalization.NumberStyles.Float , CultureInfo.
CreateSpecificCulture("en-US")); // System.Globalization.
CultureInfo.InvariantCulture

CHAPTER 6. IMPLEMENTATION 69

25 double z = double.Parse(values [2]. Trim(), System.
Globalization.NumberStyles.Float , CultureInfo.
CreateSpecificCulture("en-US")); // System.Globalization.
CultureInfo.InvariantCulture

26 double soot_density = double.Parse(values [3]. Trim(),
System.Globalization.NumberStyles.Float , CultureInfo.
CreateSpecificCulture("en-US"));

27 if (soot_density > _densityM) { _densityM =
soot_density; } // Simple track of max density

28 double [] position_array = new double [] { x, y, z };
29 DataPoint data_point = new DataPoint ();
30 data_point.Position = position_array;
31 data_point.Soot_Density = soot_density;
32 data_point.Time_Stamp = time_stamp;
33 data_points.Add(data_point);
34 }
35 }

Listing 6.12: Excerpt from CFD_Parser.cs

This happens when a user chooses where they want to spawn in the tunnel,
which may take some time to load.

6.2.5 Particle System

With the template fds input file, the simulation created is in the form of a
hyperrectangle. To find the correct placement, a few challenges has to be
overcome.

It is worth noting before any details are discussed, that the z-axis is "up" in
FDS, while it is the y-axis which is "up" in Unity.

Finding Start of Fire

First Unity needs to know where the fire starts in the simulation, to place it
correctly overlapping where the fire is located.

Looping through the first second of the simulation, and then finding the
highest amount of soot density will offer a decent approximation of where
the fire starts. This is a fair assumption, as there will typically be the most
smoke right above the fire in this scenario.

CHAPTER 6. IMPLEMENTATION 70

Alignment

To align the particle system, an assumption is first made about how the
paricle system is initially aligned. It is assumed it will be pointing towards
the positive z axis, and is also starting out sideways.

To align it properly; it will be rotated 90 degrees on the x-axis to fix it being
sideways.

Then it is rotated by the degrees between the direction vector of the particle
system and the road direction vector closest to the fire position.

Lastly, the degrees to rotate is multiplied by the mathematical sign on the
z-axis position the particle system is going to move to, to take into account
the tunnel being in different quadrants.

1 z_angle = Angle(particle_system_direction , road_direction)
2 z_angle *= Math.Sign(trans.position.z)
3 particle_system.rotation = (-90, 0, z_angle)

Listing 6.13: Pseudocode for rotation of particle system

CHAPTER 6. IMPLEMENTATION 71

Figure 6.10: Aligning the particle system with the tunnel where blue is par-
ticle system and red is fire position. Made with Diagrams.net [33]

CHAPTER 6. IMPLEMENTATION 72

Position Offset

After finding the start of the fire, the offsets on the x-axis and z-axis needs
to be calculated as illustrated in figure 6.11, to make the start of the fire in
the simulation match that of the fire in Unity.

The offset is the x and the z coordinates, illustrated in the figure as the catheti
of the triangle, which needs to be added to the particle system position to
make it align correctly.

The angle between the road direction and the z_axis variable is the same
angle which is illustrated in green in figure 6.11.

The catheti can then be calculated as displayed in listing 6.14 where posi-
tion[0] is the distance from the origin of the particle system to the start of
the fire, which is also the hypotenuse. This is achieved using the definition
of sine and cosine.

1 Vector3 z_axis = new Vector3(0, 0, trans.position.z);
2 Vector3 road_direction = TMath.

DirectionVectorBetweenRoads(GetRoad(fire_index), GetRoad(
fire_index + 1));

3

4 // Calculate the X and Z offset when rotating the
tunnel on a non -straight road

5 //Find absolute value of the fire start position in-
case the positions are negative

6 var x = Math.Abs(position [0] * Math.Sin(Vector3.Angle
(z_axis , road_direction) * Math.PI/180));

7 var z = Math.Abs(position [0] * Math.Cos(Vector3.Angle
(z_axis , road_direction) * Math.PI/180));

Listing 6.14: TScene.cs

CHAPTER 6. IMPLEMENTATION 73

Figure 6.11: Example of calculating offsets, where blue is simulation, red is
fire position, green is the angle used in computation and yellow is the original
simulation fire position.
Both a rotation and a position offset is needed to make the particle system
align correctly with the tunnel. Made with Diagrams.net[33]

The triangle is defined by the particle system position and the fire position
which outlines the hypotenuse.

6.2.6 Choose Spawn Location

Choosing spawn location is implemented using a separate scene generating
the selected tunnel. It generates the whole tunnel, then filtering away every
game object which is not a road. The highest and lowest x and z coordinates
from the roads is found, and calculating the midpoints between the respective

CHAPTER 6. IMPLEMENTATION 74

axes. It then uses those values for the camera coordinates.
1 Center = new Vector2 ((X_Upper + X_Lower)/2, (Z_Upper

+ Z_Lower)/2);

Listing 6.15: SelectTunnelObj.cs

The y-axis coordinate is calculated via a constant, 4.5, multiplied by the
amount of road segments. This constant is found by experimentation, and
leads to the camera being placed high enough for most tunnels.

1 Camera.main.transform.position = new Vector3(Center.x
, (float)(4.5 * index), Center.y);

Listing 6.16: SelectTunnelObj.cs

When it loops through all the game objects and removing everything not
being roads, it also creates a dictionary with the road game object as the key
and the index for the road as the value.

CHAPTER 6. IMPLEMENTATION 75

Figure 6.12: Player choosing spawn location

To find what road segment has been clicked on, a ray is cast from the camera,
and returns the game object. It then compares it to the table created when
the tunnel was generated to find the index of the road. This is set in settings
as the spawn index, which is read when the tunnel scene script runs.

CHAPTER 6. IMPLEMENTATION 76

6.2.7 Traffic Generation

Pathfinding

The path generated for the cars is an ordered list of vectors representing the
coordinates for all the road segments. This is found by iterating over all the
roads, which is already in the correct order from one tunnel end to the other.

Driving

The car is moving by interpolating positions between the road positions with
the built in .MoveTowards() which takes a start vector, end vector and a step.
[40] The step is calculated by speed*Time.timeDelta, where the timeDelta is
the difference in time between the previous frame and current frame. This
is done every frame the software renders, and at 60 frames per second the
time delta would be 1/60 = 16.66ms. The target for the next road also has
a y-axis offset, since the the car would be inside the road if only the center
y coordinate was used. When it arrives at the next road segment, is where
it will rotate.

1 transform.position = Vector3.MoveTowards(
transform.position , target_position , step);

Listing 6.17: Car.cs

To rotate the car properly, the vector between the current road and the next
road is first calculated. It will then use those angles to change the rotation
of the car gameobject, and applying a 90 degree and 180 degree rotation to
make it match the tunnels rotation.

When driving, the cars will cast a ray in front of it to check for obstacles. It
will then brake if it detects a gameobject with the tag "Car".

6.2.8 Updating Object Placement

Wall Ceiling Problem

To achieve being able to input varying sized tunnels, the tunnel placement
code from Self Rescue Game had to be updated. The code originally as-

CHAPTER 6. IMPLEMENTATION 77

sumed that all tunnel segments had a single encompassing wall segment.
This, however, is not the case: The procedural modeling software does not
necessarily produce models with only one single wall per segment, and it will
vary depending on the tunnel dimensions. This is shown in the figures below.

Figure 6.13: A tunnel wall segment selected, where walls and ceiling is all
one object.

CHAPTER 6. IMPLEMENTATION 78

Figure 6.14: A tunnel ceiling part of the segment, where the left and right
part of the wall are different objects. Making it three total instead of one.

The code previously used for the placement of things always assumed that
there were a single encompassing wall for each road segment, but this is not
the case as has been proven above. This means that the code would place
things incorrectly because of this assumption.

CHAPTER 6. IMPLEMENTATION 79

Signs

The aforementioned faulty assumption regarding the meshes lead directly
into the placement of the exit signs, as these objects also assumed this. This
was remedied by taking the amount of wall-segments and divide them by the
amount of road-segments, leading to a value of one if there is a single wall
and a value of three if there are three. This could later be used to make
sure only every third wall segment received a sign, and then the algorithm
worked.

1 int walls_per_segment = (int)Math.Round((double)(walls.Count
/ roads.Count));

2 for (int i = 2; i < walls.Count; i+= walls_per_segment)
3 {
4 if (walls_per_segment > 1 || i % 5 == 0)
5 ...

Listing 6.18: DirectionSigns.cs, only looping over the correct wall segments
to place signs.

Lights

The prefab was modified to look slightly more realistic, in addition to lighting
up the roof of the tunnel which the earlier version did not do.

CHAPTER 6. IMPLEMENTATION 80

Figure 6.15: Updated lights, more reminiscent of standard lighting in tunnel
compared with the earlier version.

6.2.9 Testing of Fundamental Scripts

As described in the chapter about the project background, test-driven design
is a virtue. And although this project can not claim to have followed all the
paradigms of that philosophy exactly, it has used testing via the Unity Test
Framework to test some of the most fundamental scripts in the project.

CHAPTER 6. IMPLEMENTATION 81

Figure 6.16: The tests have all completed successfully in the Unity editor

This sort of testing has become more and more important as the project has
grown in complexity. The testing of how the game works takes more and
more time as the scope increases, so ensuring the basics work is extremely
important. This will be even more important when the project moves onward.

CHAPTER 6. IMPLEMENTATION 82

6.3 Additional Features

6.3.1 Procedural Modeling Updated to Python 3

Python 2 was used when the procedural modeling software was written, when
AutoDesk Maya only supported Python 2 and not Python 3. Since the code
had been written, Maya has received support for Python 3, and the language
Python 2 is deprecated and no longer recommended to use. [41] Therefore
the procedural modeling code was updated to work with Python 3, and since
it already followed most of the conventions used in Python 3 it did not require
much work.

The most significant changes from Python 2 to Python 3 was how print and
comparisons works. In Python 2 when trying to compare two variables with
different datatypes, it would try to automatically type cast it. In Python 3
that is longer the case, and most fixes was adding implicit casting to required
variables.

1 if l2 < 1000:
2 allowedDeficiency = allowedDeficiency /2
3 absLen = abs(l1 -l2)

Listing 6.19: Previous Python 2 code, where l2 is a string

1 if float(l2) < 1000:
2 allowedDeficiency = allowedDeficiency /2
3 absLen = abs(float(l1)-float(l2))

Listing 6.20: Updated Python 3 code, where l2 is still a string

Another important change was Python 3 string variables being Unicode by
default, where the previous code one had to look out for strings not being
Unicode. Fixing these issues made the code work with the Python 3 inter-
preter

1 profile = tunnelTube[u’Tunnelprofil ’]. encode(’utf8’)

Listing 6.21: Previous Python 2 code, where profile is treated as a bytearray

1 profile = tunnelTube[u’Tunnelprofil ’]

Listing 6.22: Updated Python 3 code, where it is treated as unicode

Chapter 7

Evaluation

7.1 Current Limitations of CoolEngine

7.1.1 Simplistic Traffic

The traffic implementation is noticeably simplistic, and does not take multi-
ple different behaviors which can occur in real life. Cars reacting to the fire,
and trying to escape it by either driving past it or trying to turn around in
the tunnel to escape the other end is not implemented, and in the software
they will just stand still after detecting the burning vehicle. No drivers will
go out of the vehicle either to try and flee on foot, which is also not realistic.

They also will not utilize the lanes. This is mainly because the lanes are
based upon simple textures which may appear quite differently depending
on which tunnel is loaded.

The traffic also only appears one way, this is due to the earlier discussed
limitations of the tunnel models in Unity, it may be wise to reassess how the
tunnels are utilized in Unity moving forward.

7.1.2 Tunnel Alignment

Curves are currently not implemented in most accessible CFDs, especially
those focused on fire and smoke propagation. Currently the solution CoolEngine

83

CHAPTER 7. EVALUATION 84

uses is an hyperrectangle, and will not be realistic depending on the curvature
of the tunnel it is used in. As seen in 7.1.2, the simulation does not properly
match the geometry of the tunnel, and smoke will be generated outside of it.

Figure 7.1: Misaligned when curved

If the tunnel is both especially circular and especially large in comparison to
the simulation domain, the smoke may expose its cubic nature more clearly
than it will an average run, as seen in 7.1.2

CHAPTER 7. EVALUATION 85

Figure 7.2: Sometimes the cubic nature of the simulation meshes poorly with
the actual geometry

In addition, it does not handle vertical or steep tunnels especially well. As
mentioned in the methodology, it is assumed the tunnel is aligned alongside
the ground, which clearly does not work when the tunnel climbs upwards or
downwards.

Overall, this is one of the biggest limitations of CoolEngine .

7.2 Known Issues

7.2.1 Traffic Congestion

After the software has been running for a while, the car path finding can bug
out and start driving where they are not intended to drive. Somewhere along
the way, the cars will not detect that there is one in front of it and stop, so it
will try and continue to follow the given coordinates. This will make it drive
wildly off course.

CHAPTER 7. EVALUATION 86

Figure 7.3: Traffic overflow

Some tunnels, especially more vertical ones, are more prone for this issue to
arise. Some tunnels of this vertical nature barely have functioning traffic at
all, as the implementation does not take vertically into account.

Proposed Solution

One possible fix for the more horizontal tunnels where this issue appears
is to check for how many cars are nearby, and wait until they either have
moved or just wait indefinitely based on the nature of the current traffic
implementation

7.2.2 Traffic Rotation in Different Quadrants

Traffic rotation does not seem to work when the tunnel is in certain quad-
rants. In the third and fourth quadrants the cars are rotated properly and
drives along the given path. In the first and second quadrants it does not
seem to work, and the cars are facing the exit for the tunnel instead. It will
still cast a ray in front of it and detect it as a wall and will therefore not
move.

CHAPTER 7. EVALUATION 87

Examples of provided tunnels that work with traffic and are in the right
quadrants are Bergeland and Kleivene Nordgående.

Proposed Solution

A proposed solution is to force every tunnel to be in the same quadrant,
to make the math consistent regardless of which tunnel has been generated.
Compared to now with the apparent randomness.

7.2.3 Tunnel Modeling

Scaling

The scaling of the tunnels does not always match with real life judging by
the size of the player, cars and road signs in different tunnels. There also
seems to be a discrepancy between the scaling between tunnels and tunnel
tubes. It is unclear if this because of the NVDB dataset, the textures it uses
throwing of the feel, the way Unity utilizes the tunnel, or if the procedural
modeling is approximating too much.

Approximation

Bergelandstunnelen is a tunnel that was used a great deal for testing. One
phenomenon which was noticed was that even though the tunnel inside the
software has a round shape across the whole tunnel, in reality it seems to go
from the more circular to more rectangular as seen in 7.2.3 and 7.2.3.

CHAPTER 7. EVALUATION 88

Figure 7.4: Bergeland circular part [42]

CHAPTER 7. EVALUATION 89

Figure 7.5: Bergeland rectangular part [43]

Certain Tunnels Not Generating

When generating certain tunnels, it will sometimes inexplicably fail. In the
image 7.2.3, it displays an error where it seems to be missing polygonal
objects. This can have a multitude of different reasons, like the data set
being incomplete from NVDBs side or the procedural modeling making an
assumption upon generation which does not apply to all tunnels.

Figure 7.6: Error when creating the tunnel tube with ID 79611660

CHAPTER 7. EVALUATION 90

7.2.4 UI Scaling

The UI scaling is handled by Unity, which can behave unpredictably. Specif-
ically the back button when choosing spawn location was observed to have
unexpected behavior when the aspect ratio or resolution is exceedingly dif-
ferent from the editor resolution and aspect ratio.

Figure 7.7: Back button position with 3:2 aspect ratio, it was supposed to
be in the corner, but behaved unpredictably.

Chapter 8

Conclusion

The software has successfully been amended to include a much more realistic
fire and smoke propagation based upon data from FDS.

Although there are several unique limitations and challenges with creating
a software like this, like discussed in the previous chapter, completely linked
with a simulation software; it also works really well all in all when all is
considered. This field is something the authors hope will be explored much
more deeply in the future, as it seems to be an unexplored field.

8.1 Research Questions Answers

It is prudent to review what has been learned in regards to the initially posed
research questions

8.1.1 RQ1: Are There Any CFDs Suitable for Accessi-
ble Fire Simulation?

There are multiple CFDs which are both suited for fire simulation and acces-
sible to everyone. The chief CFDs are definitely the ones from NIST: FDS
and CFAST. They are lightweight and allow for complex scenarios at the
same time. Other promising ones to keep an eye out for are OpenFoam and
Simscale.

91

CHAPTER 8. CONCLUSION 92

8.1.2 RQ2: Is It Possible to Utilize the Results From a
CFD With an Environment Like Unity?

It is certainly possible to do this, as has been demonstrated in this thesis.
There are several ways to do it when one considers all the different CFDs
which may be able to do it, and concrete CFDs like FDS which has several
of ways to expose their simulation information, which is discussed more in
the appendix chapter B.

8.1.3 RQ3: How Far Can the Realism for Fire-Scenarios
Be Taken with Current Technology?

It is somewhat difficult to quantify how far realism can be taken, it is nev-
ertheless worth pointing out the findings. The realism can be massively
improved, like in this task, when the propagation of smoke specifically is
improved. This, however, comes at costs like interaction and the smoke ren-
dering in real time. Therefore when the smoke moves and propagates more
realistically, other aspects have to be sacrificed. There should be focus on
better computations, like cloud systems outsourcing the computations, as an
example to counteract this.

8.2 Completion of Goals

Of the original goals outlined in the beginning of the thesis and project, only
one was not implemented: The implementation of the VR. This is because
the implementation of FDS and the CoolEngine -pipeline was more complex
than initially thought, leaving little time for such to flourish.

8.3 Potential Future Work

A great deal of future work was discussed back in the chapter about the
architecture, so most of what was discussed there is relevant here. Some
additional points which are not necessarily part of the design can be further
improved.

CHAPTER 8. CONCLUSION 93

8.3.1 Improvement to FDS-model

Although the choice to make the simulation as simple as possible for the sake
of performance and simplicity was an important one in the project; now that
it is proven that FDS may work as a baseline for the software, it may benefit
from improving the simulation further. Some concrete points that can be
explored further are:

• The addition of vents and fans in the simulation

• More sophisticated meshes, like curves or dynamic width according to
tunnel-width

• Support for different increases in height, with a gravity vector

• More cells if better hardware is acquired

• More consideration into the chemical make-up of cars and smoke

8.3.2 NVDB Update

There were encountered some problems with the tunnels themselves in this
project, some if it may be due to it still depending on the old and deprecated
NVDBv2 when the NVDBv3 is the current and recommended version. [44]
The Python script which creates the tunnel was updated from Python2 to
Python3, but it may really lift the project if NVDBv3 is used.

8.3.3 Implement VR

Implementing VR was originally a goal of this software, so leaving without
this done is somewhat disappointing from the authors’ perspective. This
should therefore be prioritized, to complete the initial vision.

8.3.4 Improving the CoolEngine - Pipeline Structure

CoolEngine achieves a multitude of things; but it is plagued by being some-
what of a naive solution. The two main offenders are:

CHAPTER 8. CONCLUSION 94

• The way the Plot3D data is loaded and stored in Unity, mainly how it
is all loaded at the start of the runtime instead of gradually.

• The way the data is represented in Unity, the main offender here being
the particlesystem

These could probably both be improved if needed, as they are both sort of
naive solutions that have concerned themselves more with how to get it to
work rather than how to optimize it.

References

[1] Live Oftedahl, Eksplosjonen som rystet en hel by: 20 år siden smellet
i bragernes-tunnelen, [Online]. Available: https://ambulanseforum.
no/artikler/eksplosjonen- som- rystet- en- hel- by- 20- ar-
siden-smellet-i-bragernes-tunnelen/, (accessed: Apr. 25, 2022),
2019.

[2] Oddvar Karmo, Safety security in tunnel management, Guest Lecture,
The University of Stavanger, Jan. 2022.

[3] G. D. Jenssen, J. Skjermo, Å. Snilstveit, P. Arnesen, H. Frantzich,
and D. Nilsson, “Simulering av evakuering i tunnel”, SINTEF, PO-box:
4760 Torgarden, 7465 Trondheim, Norway, Tech. Rep. ISBN: 978-82-
14-06915-0, 2018.

[4] Simscale, What is cfd | computational fluid dynamics?, [Online]. Avail-
able: https://www.simscale.com/docs/simwiki/cfd-computational-
fluid-dynamics/what-is-cfd-computational-fluid-dynamics/,
(accessed: May 10, 2022), 2021.

[5] Thunderhead Engineering, Fire dynamics and smoke control, [Online].
Available: https://www.thunderheadeng.com/pyrosim/, (accessed:
Apr. 25, 2022), 2019.

[6] NIST, Cfast, [Online]. Available: https://www.nist.gov/services-
resources/software/cfast, (accessed: May 12, 2022), 2022.

[7] ——, Smokeview (smv), [Online]. Available: https://github.com/
firemodels/smv, (accessed: May 14, 2022).

[8] Glenn Forney, Smokeview, a tool for visualizing fire dynamics simula-
tion data volume i: User’s guide, [Online]. Available: https://pages.
nist.gov/fds-smv/manuals.html, (accessed: Feb. 14, 2022), 2021.

95

https://ambulanseforum.no/artikler/eksplosjonen-som-rystet-en-hel-by-20-ar-siden-smellet-i-bragernes-tunnelen/
https://ambulanseforum.no/artikler/eksplosjonen-som-rystet-en-hel-by-20-ar-siden-smellet-i-bragernes-tunnelen/
https://ambulanseforum.no/artikler/eksplosjonen-som-rystet-en-hel-by-20-ar-siden-smellet-i-bragernes-tunnelen/
https://www.simscale.com/docs/simwiki/cfd-computational-fluid-dynamics/what-is-cfd-computational-fluid-dynamics/
https://www.simscale.com/docs/simwiki/cfd-computational-fluid-dynamics/what-is-cfd-computational-fluid-dynamics/
https://www.thunderheadeng.com/pyrosim/
https://www.nist.gov/services-resources/software/cfast
https://www.nist.gov/services-resources/software/cfast
https://github.com/firemodels/smv
https://github.com/firemodels/smv
https://pages.nist.gov/fds-smv/manuals.html
https://pages.nist.gov/fds-smv/manuals.html

REFERENCES 96

[9] Pamela P. Walatka, Pieter G. Buning, Larry Pierce, Patricia A. Elson,
Plot3d user’s manual, [Online]. Available: https://ntrs.nasa.gov/
citations/19900013774, (accessed: Feb. 15, 2022), 1990.

[10] Fortran, High-performance parallel programming language, [Online]. Avail-
able: https://fortran-lang.org/, (accessed: Apr. 25, 2022).

[11] Agile-alliance, What is test driven development (tdd)?, [Online]. Avail-
able: https://www.agilealliance.org/glossary/tdd/, (accessed:
Feb. 23, 2022), 2022.

[12] Emil Haavardtun, Audun Stjernelund Lien, Dag Hermann Valvik, 3d
self-rescue game for tunnel fire, B. thesis, The University of Stavanger,
Kitty Kiellands hus, Rennebergstien 30, 4021 Stavanger, May 2021.

[13] B. K. Nohut, “Digital tunnel twin using procedurally made 3d mod-
els”, M.S. thesis, The University of Stavanger, Kitty Kiellands hus,
Rennebergstien 30, 4021 Stavanger, 2021.

[14] Yannic Schröer, Kiss principle (keep it simple stupid), [Online]. Avail-
able: https://code- specialist.com/code- principles/kiss-
principle/, (accessed: Apr. 25, 2022), 2020.

[15] J. Wahlqvist and P. van Hees, “Visualization of fires in virtual reality”,
Division of Fire Safety Engineering, Lund University, SE-221 00 Lund,
Sweden, Tech. Rep. ISRN: LUTVDG/TVBB-3222-SE, 2018.

[16] Official Gexcon Account, Flacs vr-safety, [Online]. Available: https:
/ / www . youtube . com / watch ? v = vhaLZnJPlP0, (accessed: Apr. 25,
2022), 2016.

[17] W. J. Bong, “Limitations of zone models and cfd models for natural
smoke filling in large spaces”, M.S. thesis, University of Canterbury,
Private Bag 4800 Christchurch, New Zealand, 2011.

[18] Richard D. Peacock, Paul A. Reneke, Glenn P. Forney, Cfast – con-
solidated model of fire growth and smoke transport (version 6) user’s
guide, NIST, 100 Bureau Drive Gaithersburg, MD 20899, 2013.

[19] Richard Peacock, Version history, [Online]. Available: https://github.
com/firemodels/cfast/wiki/Version-History, (accessed: Jan. 24,
2022), 2017.

[20] Kevin McGrattan, Simo Hostikka, Jason Floyd, Randall McDermott,
Marcos Vanella, Nist special publication 1019 sixth edition fire dynam-
ics simulator user’s guide, NIST, 100 Bureau Drive Gaithersburg, MD
20899, 2021.

https://ntrs.nasa.gov/citations/19900013774
https://ntrs.nasa.gov/citations/19900013774
https://fortran-lang.org/
https://www.agilealliance.org/glossary/tdd/
https://code-specialist.com/code-principles/kiss-principle/
https://code-specialist.com/code-principles/kiss-principle/
https://www.youtube.com/watch?v=vhaLZnJPlP0
https://www.youtube.com/watch?v=vhaLZnJPlP0
https://github.com/firemodels/cfast/wiki/Version-History
https://github.com/firemodels/cfast/wiki/Version-History

REFERENCES 97

[21] OpenFoam, Openfoam, [Online]. Available: https://www.openfoam.
com/, (accessed: Jan. 24, 2022), 2022.

[22] ——, Firefoam, [Online]. Available: https : / / openfoamwiki . net /
index.php/FireFoam, (accessed: Jan. 24, 2022), 2021.

[23] Gexcon, Flacs-cfd, [Online]. Available: https://www.gexcon.com/
products- services/flacs- software/, (accessed: Jan. 24, 2022),
2022.

[24] DNV, Kameleon fireex, [Online]. Available: https://www.dnv.com/
services/fire-simulation-software-cfd-simulation-kameleon-
fireex-kfx-110598, (accessed: Jan. 24, 2022), 2022.

[25] FSEG, Fseg introduction, [Online]. Available: https://fseg.gre.ac.
uk/fire/index.html, (accessed: Jan. 24, 2022), 2003.

[26] ——, Smartfire introduction, [Online]. Available: https://fseg.gre.
ac.uk/smartfire/index.html, (accessed: Jan. 24, 2022), 2003.

[27] Simscale, Simulation software reinvented for the web, [Online]. Avail-
able: https://www.simscale.com/, (accessed: May 10, 2022).

[28] Branz, B-risk: Design fire tool, [Online]. Available: https : / / www .
branz.co.nz/fire-safety-design/b-risk/, (accessed: Jan. 24,
2022), 2022.

[29] COMSOL, Comsol heat transfer module, [Online]. Available: https:
/ / www . comsol . com / heat - transfer - module, (accessed: Jan. 25,
2022), 2022.

[30] AVL, The leader in powertrain cfd: Avl fire, [Online]. Available: https:
//www.avl.com/fire/, (accessed: Jan. 25, 2022), 2022.

[31] US Forest Service, Behaveplus fire modelling system, [Online]. Avail-
able: https://www.frames.gov/behaveplus/home, (accessed: Jan.
25, 2022).

[32] Thunderhead Engineering, Agent based evacuation simulation, [Online].
Available: https://www.thunderheadeng.com/pathfinder/, (ac-
cessed: Mar. 17, 2022), 2019.

[33] J. Ltd., Diagrams.net, [Online]. Available: https://www.diagrams.
net, (accessed: May 11, 2022).

[34] Coolengine-realistic-fire, [Online]. Available: https://github.com/
TunnelSafety/3D-tunnel/tree/coolengine-realistic-fire, (ac-
cessed: May 10, 2022).

https://www.openfoam.com/
https://www.openfoam.com/
https://openfoamwiki.net/index.php/FireFoam
https://openfoamwiki.net/index.php/FireFoam
https://www.gexcon.com/products-services/flacs-software/
https://www.gexcon.com/products-services/flacs-software/
https://www.dnv.com/services/fire-simulation-software-cfd-simulation-kameleon-fireex-kfx-110598
https://www.dnv.com/services/fire-simulation-software-cfd-simulation-kameleon-fireex-kfx-110598
https://www.dnv.com/services/fire-simulation-software-cfd-simulation-kameleon-fireex-kfx-110598
https://fseg.gre.ac.uk/fire/index.html
https://fseg.gre.ac.uk/fire/index.html
https://fseg.gre.ac.uk/smartfire/index.html
https://fseg.gre.ac.uk/smartfire/index.html
https://www.simscale.com/
https://www.branz.co.nz/fire-safety-design/b-risk/
https://www.branz.co.nz/fire-safety-design/b-risk/
https://www.comsol.com/heat-transfer-module
https://www.comsol.com/heat-transfer-module
https://www.avl.com/fire/
https://www.avl.com/fire/
https://www.frames.gov/behaveplus/home
https://www.thunderheadeng.com/pathfinder/
https://www.diagrams.net
https://www.diagrams.net
https://github.com/TunnelSafety/3D-tunnel/tree/coolengine-realistic-fire
https://github.com/TunnelSafety/3D-tunnel/tree/coolengine-realistic-fire

REFERENCES 98

[35] HSE, Methods of approximation and determination of human vulner-
ability for offshore major accident hazard assessment, [Online]. Avail-
able: https://www.hse.gov.uk/foi/internalops/hid_circs/
technical_osd/spc_tech_osd_30/spctecosd30.pdf, (accessed:
Apr. 30, 2022).

[36] GeoGebra, Geogebra for teaching and learning math, [Online]. Avail-
able: https://www.geogebra.org/, (accessed: May 11, 2022).

[37] R. Pula, F. I. Khan, B. Veitch, and P. R. Amyotte, “Revised fire con-
sequence models for offshore quantitative risk assessment”, Journal of
Loss Prevention in the Process Industries, vol. 18, no. 4, pp. 443–454,
2005, issn: 0950-4230. doi: https://doi.org/10.1016/j.jlp.
2005.07.014. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0950423005001269.

[38] H. Ingason, Y. Li, and A. Lönnermark, Tunnel Fire Dynamics. Jan.
2015, pp. 160, 162, isbn: 978-1-4939-2198-0. doi: 10.1007/978-1-
4939-2199-7.

[39] D. Lacroix, “New french recommendations for fire ventilation in road
tunnels”, in 9th International Conference on Aerodynamics and Venti-
lation of Vehicle Tunnels, Aosta Valley, Italy, Oct. 1997.

[40] Unity, Vector3.movetowards, [Online]. Available: https://docs.unity3d.
com/ScriptReference/Vector3.MoveTowards.html, (accessed: May
14, 2022), 2022.

[41] Python Software Foundation, Sunsetting python 2, [Online]. Available:
https://www.python.org/doc/sunset-python-2/, (accessed: May
12, 2022), 2020.

[42] Google, Google maps streetview, [Online]. Available: https://www.
google.com/maps/@58.9662384, 5.7350116, 3a, 75y, 82.24h,
88.06t/data=!3m6!1e1!3m4!1sB8ygMujrRaO8OI5iSYMa3Q!2e0!
7i16384!8i8192, (accessed: May 10, 2022).

[43] ——, Google maps streetview, [Online]. Available: https://www.google.
com/maps/@58.9706052,5.7430649,3a,75y,177.8h,88.71t/data=
!3m6!1e1!3m4!1sxd8Y6P8sK36o-VmsqfYq3A!2e0!7i16384!8i8192,
(accessed: May 10, 2022).

[44] Statens vegvesen, Api-dokumentasjon, [Online]. Available: https://
api.vegdata.no/, (accessed: May 14, 2022).

[45] NIST, Fds, [Online]. Available: https://github.com/firemodels/
fds, (accessed: May 12, 2022), 2022.

https://www.hse.gov.uk/foi/internalops/hid_circs/technical_osd/spc_tech_osd_30/spctecosd30.pdf
https://www.hse.gov.uk/foi/internalops/hid_circs/technical_osd/spc_tech_osd_30/spctecosd30.pdf
https://www.geogebra.org/
https://doi.org/https://doi.org/10.1016/j.jlp.2005.07.014
https://doi.org/https://doi.org/10.1016/j.jlp.2005.07.014
https://www.sciencedirect.com/science/article/pii/S0950423005001269
https://www.sciencedirect.com/science/article/pii/S0950423005001269
https://doi.org/10.1007/978-1-4939-2199-7
https://doi.org/10.1007/978-1-4939-2199-7
https://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
https://docs.unity3d.com/ScriptReference/Vector3.MoveTowards.html
https://www.python.org/doc/sunset-python-2/
https://www.google.com/maps/@58.9662384,5.7350116,3a,75y,82.24h,88.06t/data=!3m6!1e1!3m4!1sB8ygMujrRaO8OI5iSYMa3Q!2e0!7i16384!8i8192
https://www.google.com/maps/@58.9662384,5.7350116,3a,75y,82.24h,88.06t/data=!3m6!1e1!3m4!1sB8ygMujrRaO8OI5iSYMa3Q!2e0!7i16384!8i8192
https://www.google.com/maps/@58.9662384,5.7350116,3a,75y,82.24h,88.06t/data=!3m6!1e1!3m4!1sB8ygMujrRaO8OI5iSYMa3Q!2e0!7i16384!8i8192
https://www.google.com/maps/@58.9662384,5.7350116,3a,75y,82.24h,88.06t/data=!3m6!1e1!3m4!1sB8ygMujrRaO8OI5iSYMa3Q!2e0!7i16384!8i8192
https://www.google.com/maps/@58.9706052,5.7430649,3a,75y,177.8h,88.71t/data=!3m6!1e1!3m4!1sxd8Y6P8sK36o-VmsqfYq3A!2e0!7i16384!8i8192
https://www.google.com/maps/@58.9706052,5.7430649,3a,75y,177.8h,88.71t/data=!3m6!1e1!3m4!1sxd8Y6P8sK36o-VmsqfYq3A!2e0!7i16384!8i8192
https://www.google.com/maps/@58.9706052,5.7430649,3a,75y,177.8h,88.71t/data=!3m6!1e1!3m4!1sxd8Y6P8sK36o-VmsqfYq3A!2e0!7i16384!8i8192
https://api.vegdata.no/
https://api.vegdata.no/
https://github.com/firemodels/fds
https://github.com/firemodels/fds

REFERENCES 99

[46] ——, Fds-smv, [Online]. Available: https://pages.nist.gov/fds-
smv/downloads.html, (accessed: May 14, 2022).

https://pages.nist.gov/fds-smv/downloads.html
https://pages.nist.gov/fds-smv/downloads.html

Appendices

100

Appendix A

Running the project

A.1 Procedural Modeling

A.1.1 Requirements

Applications

• AutoDesk Maya 2022 or later

• Python 3

Python Dependencies for Procedural Modeling

• Requests

• Colorama

• Maya

• PyMel

• SciPy

101

APPENDIX A. RUNNING THE PROJECT 102

A.1.2 Installation of Python Dependencies

To automatically install all needed python dependencies, run pip3 install -
r requirements.txt in the procedural-modeling directory.

A.1.3 Configuration

The path for AutoDesk Maya has to be set manually for procedural mod-
eling to work, especially since the path is different depending on the year
version. To set it, navigate to procedural-modeling/config.py and set the
MAYA_PATH to the appropriate path.

1 MAYA_PATH = ’D:\\ Autodesk \\ Maya2022 \\bin\\ mayapy.exe ’

Listing A.1: config.py

As long as the path specified directs to mayapy.exe as the listing shows, it
should be fine.

A.1.4 Usage

1. To start the procedural modeling software, run the command py gui.py
or runApp.bat if Windows.

2. Acquire the id (example: 78728413) from NVDB from the following
URLs:

• For tunnels: https://nvdbapiles-v2.atlas.vegvesen.no/vegobjekter/581

• For tunnel tubes: https://nvdbapiles-v2.atlas.vegvesen.no/vegobjekter/67

Note: The URLs will provide a list of tunnels, which will be lim-
ited by the amount of API calls allowed by NVDB. The atlas for
NVDB API v2 is no longer available. [44] The IDs between API v2
and v3 with limited testing seems to be the same, so going on the
newer atlas might have some success. The newer atlas is available at
https://vegkart.atlas.vegvesen.no.

3. Insert the ID, choose the correct type and then click generate.

APPENDIX A. RUNNING THE PROJECT 103

4. The 3D-model file will appear as an .fbx file under proceduralmodel-
ing/tunnels, to import it to CoolEngine move it to Assets/Resources/Tunnels
in the project/editor directory.

5. Create a new build as explained in A.3.2.

6. The new build with the new tunnel(s) should now, after following the
necessary steps in A.3.2, be ready to use.

A.2 Compiling FDS2ASCII

A.2.1 Requirements

• Intel MPI Library or OpenMPI

• Intel Fortran compiler or GNU Fortran compiler

• Make Software

Note: Based on experience, it is recommended to use the Intel library and
compiler for Windows, and OpenMPI and GNU Fortran compiler for Linux.

A.2.2 Compiling

First of all, make sure that all the wanted changes in fds2ascii.f90 have been
made before attempting a compile.

In the FDS repository, navigate to Utilities/fds2ascii and to the appropriate
directory based on compiler and operating system. [45] It will contain a make
file, and directories for different operating systems with different compilers
containing the appropriate operating system script file to build FDS2ASCII.

APPENDIX A. RUNNING THE PROJECT 104

A.3 Unity Project

A.3.1 Requirements

Supported Operating Systems

• Windows 10

• Windows 11

Application Requirements

• Unity 2020.3.27f1

• FDS (6.7.7) [46]

A.3.2 Setup

Creating Unity Build

To manually build the project, open the project with the Unity Hub. Go to
File -> Build Settings -> Build, and a popup will appear asking where to
place the build.

Note: When cloning the repository, make sure to pull everything. This is
done by first doing git pull and then git lfs pull

Afterwards, to complete the build additional assets needs to be moved man-
ually. The directories and its contents Assets/CFD and Assets/Resources
needs to be moved to the Assets folder in the build location.

A.3.3 Running Software

To start the project, simply run the executable included in the build folder.

Appendix B

Additional FDS parameters

There was spent a great number of hours understanding the jargon of the
FDS-syntax in this project, so much so that some information learned did
not fit into the final product. This section will therefore spend some time de-
tailing other parameters learned that may be of use in other similar projects.

B.1 Gravity Vector

1 &MISC GVEC = -1.70 ,0.0 , -9.65 /

The GVEC parameter-line specifies the gravity vector which will be used in
the simulation. This is set to

(0, 0,−9.81)

by default, which is what the gravity vector is on a flat surface at ground
level if the z-axis is orthogonal to the ground-plane.

This parameter can be used to model a tunnel which is not on the ground
level, as different gravity vectors lead to different flows of smoke akin to
tunnels with different heights.

B.2 Slice Files

1 &SLCF QUANTITY=’TEMPERATURE ’, VECTOR =.TRUE., PBY =0. /
2 &SLCF QUANTITY=’H’, CELL_CENTERED =.TRUE., PBY =0. /

105

APPENDIX B. ADDITIONAL FDS PARAMETERS 106

The &SLCF parameter line specifies output of slice files (.sf). These files can
be in the form of lines or planes, and an be used to aggregate information
into these mathematical models instead of illustrating each point like done
in this project with Plot3D .

This could be used in the future for more sophisticated interpretations of the
data into CoolEngine . An example would be to output the heat radiation
as a plane, and use this to calculate the heat lethality based upon where on
the plane the user is; opting for a model which effectively only values how
close the user is to the heat source and not which height it has.

But this requires that Unity supports .sf-files or that the fds2ascii application
supports parsing this information to something usable, both of which could
not be verified within the time-frame of this project.

B.3 Isosurface

1 / &ISOF QUANTITY=’soot density ’, VALUE (1)=0., VALUE (2)=1.,
VALUE (3) =10. /

The &ISOF parameter-line specifies how a isosurface based on a certain phys-
ical value shall be created.

This means that a surface can be generated which is effectively a level field
of a more complex function. An example: you specify temperature=1000 K,
and the surface will be created on every point which fits this description.

This can be used for better visualizations for certain things in the future.
As an isosurface may be smoother in appearance than data taken from a
cell-grid like used in this project. It may, however, be difficult to use these
surfaces in Unity. Further clarification should be applied on this.

Appendix C

Hardware Specifications

As this is a project based upon the game-engine Unity, and simulation of
realistic fire, the computational resources needed may be fairly heavy. Un-
derneath are some specs from computers used in this project, which provides
a rough idea of the requirements needed to run CoolEngine from a hardware-
perspective.

Table C.1: Specifications of computers used in the project
Model/Name CPU GPU Memory Laptop Recommend?
Surface Pro 6 Intel i7-8650U @ 4.2GHz Intel UHD Graphics 620 16GB 1867MHz Yes No
Acer Nitro 5 Intel i7-9750H @ 2.6GHz Nvidia GTX 1660 Ti 16GB 2667MHz Yes Sort of
Desktop PC AMD RYZEN 7 3700X Nvidia RTX 2080 16GB 3200MHz No Yes

Note that the Acer-PC runs at a acceptable frame-rate for the most part,
but the performance is not as great as on Desktop. Hardware similar to the
components the Acer has is therefore to be viewed as a sort of minimum
requirement.

107

Appendix D

Software User Guide

D.1 Generating Scenario

To generate a scenario, navigate to Scenarios from the main menu. Here
are some tips for the scenarios:

• Set the same preferably to something unique to identify.

• Set the soot yield to your liking. A general recommendation for soot
yield is that it should not exceed 0.5kg/kg, as the chosen fuel propane
does not support much more yield than that.

• Set the time to something desirable. The time selected is recommended
to not be over 6 minutes, since both the wait times for the generation
and the wait times for the loading of the simulation are extremely long
even with the highest specifications the group has tested with.

• If the simulation seemingly does not work, one of the values you have
inputted may be invalid. You should start with some basic values,
like 30 seconds duration and 0.15 soot yield which is a scenario that
is confirmed to work, and then change some values gradually to see if
FDS wants to accept them.

108

APPENDIX D. SOFTWARE USER GUIDE 109

D.2 Playing the scenario

To start a scenario, head into Start from the main menu. Here are some
additional tips for the starting of the scenario:

• Choosing Unity Rendered simulation means that you will get a basic
and procedural smoke and fire based upon simple rules. This is great if
you do not want to load an entire simulation, or if you want to compare
simulations.

• The tunnels you can choose are based upon which you have inputted,
detailed further in how to create procedural tunnels.

• The traffic levels are based upon the pseudo-random values Unity gen-
erates. Therefore even if you choose high traffic, the traffic may be low
due to randomness.

D.3 In-game

Once you are in game, there are some points that should be emphasized:

• The visualization of the smoke is based upon the max value of the soot
density, so the smoke you see may not be entirely accurate, it is to be
viewed more as indication of there being a great deal of smoke there.
This means you will always see some smoke, no matter how short the
simulation is.

• The CO-lethality begins at around 10% to make it easier for the user
to see the effects of CO-lethality, this does NOT mean a person would
always have 10% lethality in a scenario like this.

• The software does not take into account the damage fires themselves
do to a human due to time constraints, this does NOT mean the user
could survive being so close to a fire as the software may imply.

	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Questions
	Objectives
	Thesis' Contributions
	Thesis Structure

	Background
	Software
	CFD
	Smokeview

	File Formats
	Plot3D

	Programming Languages
	Fortran

	Development Philosophy
	Test Driven Development

	Related Literature
	Earlier Work at the UiS
	3D-Self Rescue Game
	Digital Tunnel Twin

	Earlier Work in General
	Brandforsk
	Gexcon
	Compare Two-Zone and Pure CFD

	Commonly Used Fire Simulation Software
	Summary of Viability
	Ease of Use
	Advanced Geometry
	CFAST
	FDS
	OpenFoam
	FLACS
	Kameleon FireEx
	Smartfire
	Simscale
	B-RISK
	COMSOL
	AVL Fire
	BehavePlus

	CoolEngine Software Architecture
	Future Design
	Current Architecture
	Software Foundation
	Generation of tunnels
	Tunnel rescue game

	Potential Userbase

	Methodology
	Potential Approaches to Fire Simulation and Selected Method
	Choice of FDS
	Choice of Coupling Between Unity and FDS
	From Plot3D Output to Unity
	Choice of Simulation Domain
	Domain options

	Implementation
	The CoolEngine - pipeline
	File Structure
	Creating FDS Input File
	Running Simulation
	FDS2ASCII

	Unity Logic
	Scenario Storage
	Lethality Calculation
	Dynamic Fire and Fire Curves
	Parsing FDS Data
	Particle System
	Choose Spawn Location
	Traffic Generation
	Updating Object Placement
	Testing of Fundamental Scripts

	Additional Features
	Procedural Modeling Updated to Python 3

	Evaluation
	Current Limitations of CoolEngine
	Simplistic Traffic
	Tunnel Alignment

	Known Issues
	Traffic Congestion
	Traffic Rotation in Different Quadrants
	Tunnel Modeling
	UI Scaling

	Conclusion
	Research Questions Answers
	RQ1: Are There Any CFDs Suitable for Accessible Fire Simulation?
	RQ2: Is It Possible to Utilize the Results From a CFD With an Environment Like Unity?
	RQ3: How Far Can the Realism for Fire-Scenarios Be Taken with Current Technology?

	Completion of Goals
	Potential Future Work
	Improvement to FDS-model
	NVDB Update
	Implement VR
	Improving the CoolEngine - Pipeline Structure

	References
	Appendices
	Running the project
	Procedural Modeling
	Requirements
	Installation of Python Dependencies
	Configuration
	Usage

	Compiling FDS2ASCII
	Requirements
	Compiling

	Unity Project
	Requirements
	Setup
	Running Software

	Additional FDS parameters
	Gravity Vector
	Slice Files
	Isosurface

	Hardware Specifications
	Software User Guide
	Generating Scenario
	Playing the scenario
	In-game

