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Graphical Abstract
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L-xylose Future work:
Evaluation of 12 as acetylcholinesterase
inhibitor
Abstract

In this bachelor’s project we present a complete synthesis of an N-spirofused iminosugar
I1'with a stable positive charge on the spirocyclic nitrogen atom that together with the
hydroxyl groups are expected to establish interactions with the residues in the active gorge of
the acetylcholinesterase. Compound Il was successfully synthesized through seven steps from
commercially available L-xylose at an overall yield of 3%. This was done through the strategy
of initiating an Sn2 cyclisation on pyrrolidine I, thereby creating the N-spirofused bicyclic

iminosugar, before finally removing the protection groups.

1 Roman numerals refer to the compounds in the graphical abstract
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Introduction

1.0 Introduction

1.1 Alzheimer’s disease

Alzheimer’s disease (AD) is a neurodegenerative disease that is most common cause of

dementia. AD is approximated to account for 60-80% of all dementia cases worldwide.

The greatest risk factor of Alzheimer’s is aging as the disease is most common in people 65
years and older. There are cases where younger people are affected with AD, known as early
onset-AD, however this is not as common. AD is a devastating irreversible disorder in which
regions of the brain that are responsible for the cognitive functions undergo gradual shrinkage
due to neuronal loss*® before death occurs ca 4-8 years after diagnosis:. and the dementia it
causes are terrible diseases where the brain, dies slowly before the body it controls. This is
extremely traumatic not only for the patient slowly losing control over themselves, but also
for their immediate family and friends losing their loved one piece by piece. First symptoms
appear as difficulty learning new skills and information, then disorientation, mood swings,
confusion, memory loss, difficulty speaking eventually leading to struggles with swallowing
and walking®. A person with severe AD will require assistance to live a normal life.

As of 2020 there were reported to be 55 million people suffering from AD worldwide, a
number which is predicted to double every 20 years due to aging populations as a result of
advancements in technologies. The combined costs of medicine, healthcare and lost human
resources on a global scale was approximated to be worth 1.3 trillion USD, a sum which is
predicted to double by 2030.2 At the moment of writing, 80-100 thousand people are estimated
to be living with dementia in Norway?®. If one were to assume that all AD patients are to
receive an equal size of the economic estimate, that means that the economic impact on
Norway alone is 1.2-2.08 billion USD. The upper limit of that estimate would be equal to
0,5% of total GDP in 2022.

Despite being a disease over 100 years old with enormous social, economic, and worldwide
impact, AD does still not yet have any established cure, therapy, nor any treatments capable

of slowing disease progression’.



1.2 Neuropathology

AD is a neurodegenerative disorder characterized by neuritic plaque and neurofibrillary tangle
buildup in the brain. This plaque is visible in the temporal lobe and neocortical structures of
AD brain (Figure 1)!. For a diagnosis to be given, a patient must undergo a series of tests
including Neurological examination, magnetic resonance imaging (MRI) of the brain, B12
level lab tests, as well as a family history questionnaire to determine heredity. True AD
diagnoses however can only be given after examination under autopsy where a
histopathologic confirmation can be made through the discovery of the large plaques and
massive loss of neurons similar to the ones found by Alois Alzheimer in the first documented
AD patient in the early 1900s°.

Cerebral cortex

Healthy neurons 1\ _—~

Normal brain Eipposangioe

Shrinkage of
cerebral cortex Enlarged ventricles

Tau neurofibrillary tangles

Shrinkage of
hippocampus

Alzheimer disease

hisin AB plaques

Figure 1 - The physiological structure of the brain and neurons in (a) healthy brain and (b) AD brain®



What causes AD is not yet understood but scientist agree on two main hypotheses®. The

primary source of ideas stems from the Amyloid and Cholinergic Hypotheses.

1.2.1 Amyloid Hypothesis

The Amyloid cascade hypothesis is based on the theory that mutations in PS1 or PS2 genes
increases production and accumulation or decrease the catabolism of amyloid-beta(Ap)
proteins from the hydrolysis of amyloid precursor protein (APP) or decreasing its catabolism.
This leads to the binding of AP proteins as oligomers in the brain and causes abnormal
deposits of plaques and interfering with cellular signaling. Amyloid plaques also accumulate

in healthy aging however not in the levels seen in AD.

These AP oligomers block and interact with the synapses which through a set of complex
mechanisms leads to progressive synaptic and neuritic damage. This again causes changes to
the neural ionic homeostasis and oxidative injury which again leads to altered enzyme activity
and ultimately neural cell death causing loss of brain function. On the outside this will be

observed as symptoms of dementia®®.

There is more to discuss concerning the accumulation of Beta-amyloid and Tau-proteins in

AD brain, the evolution of the hypothesis and its general correlations with AD. However, as
the target molecule of this paper is not predicted to target or interact with any of the relevant
mechanisms. Further delving into the amyloid hypothesis is considered beyond the scope of

this paper.

1.2.2 Cholinergic Hypothesis

The biochemical investigation behind the cause of AD began already in the late 1960s over 50
years from today. Already in the mid-70s there was discovered deficits in the enzyme
responsible for the synthesis of acetylcholine (ACh) choline acetyltransferase (ChAT) as well
as choline uptake and ACh release indicated a large cholinergic deficit in AD-. This is also
when the link between ACh, learning and memory was discovered. All this information led to

the Cholinergic hypothesis.

The hypothesis stipulates that degeneration of the cholinergic neurons in the basal forebrain
and therefore the loss of cholinergic neurotransmission in the cerebral cortex and other parts



of the brain led to the deteriorative neural state in patients suffering from AD. Later studies
have shown that this does not cause cognitive decline directly as much as indirectly but did
provide the theory that acetylcholinesterase-inhibitors(AChEISs) like the target molecule of

this paper would slow down the symptoms of AD which turned out to be correct’.

So the three factors of the cholinergic hypothesis are:
1: less cholinergic substrates in AD brain.
2: Severe neurodegeneration in the basal forebrain region of the brain.

3: The role of cholinergic promoters as opposed to their antagonists®.

1.2.3 Cholinesterases

The primary antagonist of ACh is acetylcholinesterase (AChE) which catalyzes the hydrolysis
of ACh (Scheme 1) in its active gorge thereby metabolizing neural signaling substrate, which
in AD patients are already lacking (vide supra). AChE is located in neural postsynaptic
junctures and serves the primary function of inhibiting spreading of ACh to nearby synapses
in healthy individuals®.

0O

0
® ®
\h'l(/\o)l\ +Ho  AChE. \ITI</OH + HO)K

Scheme 1 - The hydrolysis reaction of ACh catalyzed by AChE

Another cholinesterase (ChE) is butyrylcholinesterase (BuChE) primarily excreted from glial
cells as opposed to neurons, the enzyme seems to fulfill the same functions as AChE but are
way less prominent until the onset of AD where the enzyme proliferates in higher numbers as

the disease progresses®.

The catalytic triad in the catalytic anionic site (CAS) of active gorge of AChE is where the
hydrolysis of ACh takes place (Figure 2). Tryptophan acts as an anionic subunit of CAS
making it susceptible for Cationic interactions whereas the peripheral anionic site (PAS)
serves as a guide for appropriate AChs. This active gorge is the target of the molecule of

interest in this paper (Figure 2)°.
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Figure 2: The active gorge of AChE

1.3 Current FDA Approved Treatments

Although a mountain of scientific effort has been put on finding the causes and cure against
AD, nothing other than theories and palliative treatments have been discovered at the moment

of writing. However, newer promising treatments have been arriving on the market one after

another.
1.3.1 Tacrine
NH.
The first drug approved by the FDA for treatment of AD was Tacrine. X
Tacrine was a cholinesterase inhibitor intended to increase the O N O
bioavailability of ACh by preventing its metabolism. It showed promising .
1 Tacrine

but not amazing results. Due to its hepatoxicity affecting approximately
25% of the users, tacrine got discontinued from clinic use in 2013. However, tacrine is still an
attractive moiety in the development of new AChE inhibitors, and many such derivatives have

been tested both in vitro and vivo!!1?,

1.3.2 Donepezil

Donepezil FDA approved in 1996 is another cholinesterase 0
inhibitor used in the treatment of AD and other forms of -

dementia. Unlike tacrine it is only rarely linked to liver "o

toxicology, but does show side effects such as insomnia, N

. . . \_Ph
nausea, loss of appetite, diarrhea, and muscle weakness. It is 2 Donepezil



not reported to reverse or halt the progression of the disease, but it delays the symptoms by a
few months for patients suffering from moderate and severe AD. Additionally Donepezil is
extremely selective towards AChE over BuChE and has also spawned the research of

derivatives retarding AP plaque generation!1322,

1.3.3 Rivastigmine o

Rivastigmine FDA approved in 2000 is a reversible /\NJ\O 'L\
cholinesterase inhibitor meaning it can easily dissociate from the

enzyme. Like donepezil it does not display a high prevalence of 3 Rivastigmine

liver toxicity, however it presents other major side effects such as stomach pain, weight loss,
diarrhea, nausea, vomiting and loss of appetite. Rivastigmine exhibits dual AChE/BuChE
inhibitory activity and is only recommended for patients suffering from mild to moderate
cases of AD. Donepezil does not slow disease progression but only treats symptoms.
Interestingly Rivastigmine shows higher affinity to one of the isoforms of AChE, which
appears to increase in prevalence in the progression of AD, this has sparked research in
derivatives, which show even higher activity. In Rat trials Rivastigmine has also shown higher

concentration of APP, implying that it also reduces the buildup of ApL1422,

1.3.4 Galantamine 0

FDA approved in 2001, galantamine is a reversible, competitive inhibitor

of AChE. In addition to blocking the breakdown of ACh, galantamine is He—5 N—
an allosteric modulator of the nicotinic receptors which are prototypical, \’//
ligand-gated ion channels that assist in fast cell signaling in the nervous HO

systems, thereby having two mechanisms of medical significance in AD 4 Galantamine

patients. Galantamine shows no correlation with hepatoxicity but has been associated with
side effects like convulsions, severe nausea, stomach cramps, vomiting, irregular breathing,
confusion, muscle weakness and watering eyes. Galantamine is recommended in mild to
moderate cases of AD and again does not slow disease progression, but only treats symptoms.
Galantamine also increases serotonin and glutamate bioavailability, the latter of which is

another important neural signaling molecule'**>?,



1.3.5 Memantine

FDA approved in 2003 memantine is not a AChE inhibitor, but low affinity NH;
uncompetitive n-methyl-D-Aspartate (NMDA) receptor antagonist which

binds preferentially to the NMDA receptor-operated cation channels, thereby

blocking the effect of glutamate, a neurotransmitter which in high doses can 5 Memantine
lead to overstimulation and excessive signaling which again can lead to oxidative neural stress
and hyperactivity of the glutamate receptors and cell death in the brain of AD patients. It also
shows no link to liver toxicology and is used in treatment of moderate to severe cases of AD.
As memantine targets another mechanism trials that investigate combining it with donepezil
have concluded that it has positive effects, however the burden of multiple medications and
the risk of negative synergistic effects makes researchers skeptical of the treatment. Side
effects associated with memantine include dizziness, confusion, aggression, depression,
headache, sleepiness, diarrhea, constipation, nausea, vomiting, weight gain, bodily pains and

COUghll’16’17’22.

1.3.6 Aducanumab

Aducanumab has been considered as a controversial medicine due to its rushed rollout
through the FDA in 2021 without full confirmation of efficacy in all the various clinical trials.
Aducanumab is also the only drug approved for AD that has been able to show a reduction of
amyloid-plaques in AD brain like discussed in the amyloid hypothesis. Scientists are in hot
discussion of whether plaques are the right thing to target in AD, as only one of the clinical
phase three trials showed moderately positive results in mild cases of AD the others showing
no or negative results. Around 40% of patients in the trials also developed brain swelling
requiring brain scans. Although no symptoms were reported this causes additional strain on
the health care systems. Biogen will charge 56’000 dollars a year for the drug which will
make this the most expensive treatment for AD thus far. Aducanumab is a whole antibody

meaning it is not a chemical like the other drugs currently available on the market®1°,

1.3.7 Iminosugars

Iminosugars are monosaccharide analogues in which the ring oxygen has been replaced by a

nitrogen atom. The nitrogen substitute allows for both increased polarity and additional



stereochemistry as opposed to its group 16 and 14 counterparts®.
Two examples of iminosugars are 1-deoxynojirimycin (X) and 1,4-dideoxy-1,4- imino-D-

arabinitol (Y).

OH
HO, \OH HO(_ .OH
‘ T o
i OH i
X Y

Figure 3 - Display of 1-deoxynojirimycin (X) and 1,4-dideoxy-1,4-imino-D-arabinitol (Y)

Iminosugars are mostly famous for their properties as glucosidase inhibitors. Therefore,
iminosugars are attractive lead-compounds for treatment of diseases such as Gaucher's
disease, type 2 diabetes, HIV and cancer, which involve carbohydrate processing enzymes. It
has also been discovered that some iminosugars can act as potent AChEIs similar to the
intended biochemical role of most current AD medication. This is possible due to the

chemical similarities between iminosugars in their protonated form and ACh.%



1.4 Objectives

The objective of this bachelor thesis will be to synthesize N-spirofused iminosugar 12 as an
AChE inhibitor candidate. The positively charged nitrogen atom is envisaged to establish
cation-zw-interactions with the tryptophan residue in the (CAS) region. In addition, the
hydroxyl groups are expected to generate hydrogen bonds with the residues in the catalytic

triad of the enzyme.

--- Hydrogen bond interaction

Figure 4 - 2d model of active gorge with Target molecule added, with lines, indicating the gorge-

molecule interactions. Model is based on data from reference 31



Results and discussion

2.0 Results and discussion
2.1 Synthesis of N-spirofused iminosugar

2.11 O-Benzylation of L-xylose

OH
1) AcCl, MeOH

‘s, O
'QOH 2) BnBr, NaH ’u,EOZWOH

HO ) OH 3) HCI, 1,4-dioxane BnO OBn

39%

Scheme 2 - O-Benzylation of L-xylose

To provide orthogonal protection on the anomeric hydroxyl group in L-Xylose (2), a methyl
group was added using a Fisher glycosylation method to provide an anomeric mixture of
methyl-L-xylofuranoside (3) (Scheme 2).

T i
//,.QOH AcCl, CH,OH //"QOCHG)
HO “oH HO “oH
2 3

Scheme 3 - Fisher glycosylation of L-Xylose

This orthogonal protecting group was added due to its simple removal and to inhibit
benzylation of the anomeric hydroxyl group. In the following step, acetyl chloride was used

to generate an acid catalyst (HCI) in situ when it reacts with methanol (MeOH + AcCl - HCl +
NaOMe).

The acid catalyst attacks the anomeric hydroxyl group to eliminate water, thereby creating an
oxocarbenium ion 2a that is resonance stabilized with the corresponding glycosyl cation
(Scheme 4). Lone pair electrons from methanol initiates a nucleophilic attack to insert a
methyl group and recycle the acidic proton by electron rearrangement to give the glycosylated
L-xylose 3 (Scheme 4).



HO OH HO  “oH HO' 9a OH

|
O-CHj ? QO CHs _— 'E-Z@
E_ZJ\ HO\“ OH
3 OH

Scheme 4 - Suggested mechanism on Fisher glycosylation

Next, the remaining hydroxyl groups in methyl furanoside 3 were protected by O-benzylation
upon treatment with NaH and BnBr in DMF to provide the perbenzylated methyl alpha- L -
xylofuranoside 4 (Scheme 5).

?H
QNOCHs BnBr, NaH QFOCH\%
HO 3 “OH BnO' OBn

Scheme 5 - O-Benzylation of methyl-L-xylofuranoside

The choice to protect by O-benzylation was preferable due to the mild condition requirements
to install and remove the Bn-groups using palladium-catalyzed hydrogenation. Alternatively,
one could use acetyl groups as global protecting groups. However, the deprotecting
procedures are generally easier for benzyl groups and global O-benzylation was therefore

preferred.

The mechanism provided in Scheme 5 suggests that NaH deprotonates the hydroxyl group
making it possible for a nucleophilic attack by the oxygen to the benzyl group simultaneously

expelling the bromide group in an Sn2 fashion.
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Scheme 6 - Suggested mechanism of O-Benzylation of methyl-L-xylofuranoside®®

The methyl group furanoside 4 is finally removed by using aqueous HCI at elevated
temperatures using the reverse mechanism that went under Fisher glycosylation protocol in
the first step. The product of protected L-xylose 5 was purified by silica column
chromatography to provide a 39% yield over three steps (Fisher glycosylation, benzylation

and hydrolysis of glycosidic bond).

o8n o8n
"«Eozwow3 HCI, 1,4-dioxane //,,QOH
BnO\; OBn 3

4 BnO 5 OBn

Scheme 7 — Removal of orthogonal protecting group of protected methyl-L-xylofuranoside

2.1.2 Addition of amine-hydroxyl and regiospecific O-silylation to

protected methyl-L-xylofuranoside

(l)Bn OBn
O |~ OH
OH 1) NH')OH, HCI _ 14, _N/OTBDPS
S 2) TBDPSCI, imidazole ‘
BnO 5 OBn o 70

54%

Scheme 8 - Addition of amine-hydroxyl and regiospecific O-silylation to perbenzylated L-

xylofuranoside

An equilibrium exists between the cyclic form 5 and linear form 5a of perbenzylated L-xylose

in which the cyclic form is the dominant (Scheme 9)
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Scheme 9 — Weak equilibrium between cyclic form and linear form

The motivation behind this reaction was to install a nitrogen atom such that one could create
N-spirofused iminosugar. When the linear form 5a of perbenzylated L-xylose reacts with
hydroxylamine generated in situ from hydroxylamine hydrochloride and sodium methoxide
(HONH:-HCI + NaOMe - NH2OH + NaCl + MeOH), aldoxime 6 is formed. Due to the La
Chatelier’s principle, the equilibrium in Scheme 9 shifts towards 5a as more aldoxime 6 is

being formed.

" —0 NH,OH,HCI /- =N’
R NaOMe, MeOH ‘
BnO'  oBn BnO'

OBn

Scheme 10 — Addition of hydroxylamine to aldehyde

The lone pair electrons on the hydroxylamine attacks the carbonyl which readily donates
electrons to the oxygen atom meanwhile oxygen deprotonates the quaternary ammonium
intermediate 5b. Oxygen further deprotonates the quaternary ammonium, thereby inducing
hydrolysis while newly formed lone pair electrons on the nitrogen atom attacks the carbon

and as a result providing oxime 6 (Scheme 11).

HO H
H _:NH Hy O ¢
?Bno, ( 2 OBn(') H, " H OBn | I _H OBn
. . ®NJ__D l, CNJ.. l, OH  oH
v — "(F) — (e )
BnO' OBn BnO\\‘ OBn BnO OBn BnO\\‘
5a 5b 2 OBn

Scheme 11 — Suggested mechanism of addition of hydroxylamine to aldehyde

The product was instantly used in the next reaction without further purification and the yield

is therefore not disclosed.



The following reaction concerns the regiospecific O-silylation of aldoxime 6 due to steric
hindrance of the second hydroxyl group. The oxime was treated with tert-
butyldiphenylsilylchloride (TBDPSCI) and imidazole to give the silyl protected oxime 7 and
making CI the leaving group (Scheme 12).

OBn

OH OBn
., ! l, OH  TBDPS
Imidazole _ K ~N~
—_ TBDPSCI, DCM A
6 O8N BnO" _ oBn

Scheme 12 — O-silylation of oxime

The suggested mechanism in Scheme 13 initiates by deprotonation by the imidazole on the
hydrogen in the oxime hydroxyl group, giving oxygen an extra pair of lone electrons. Lone
pair electrons on the oxygen atom attacks the silicon atom of TBDPSCI meanwhile the
chloride group is expelled thereby forming the protected oxime 7. It is although uncertain
whether the imidazole group deprotonates the oxime before or after O-silylation. Oxime 7

was purified by flash silica gel column chromatography (FCC) and provided a yield of 54%.

i
Cl

L, OH oy N L. PR _ o |, OH  oTBDPS
Cre B — e
BnO  YoBn 8O  oen BnO' oBn

Scheme 13 — Suggested mechanism of O-silylation of oxime

2.1.3 O-Mesylation of silyl protected oxime

The motivation behind the synthesis is to create a stereospecific cyclization to create an N-
oxime. The hydroxyl group of the silyl protected oxime 7 is a poor leaving group and needs to
be substituted by a better leaving group that doesn’t constitute to any steric hindrance. Oxime
7 was therefore treated with triethylamine and mesyl chloride to form mesylate 8 (Scheme
14).
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Scheme 14 — Mesylation of silyl-protected oxime

Triethylamine acts as a base and deprotonates the methyl group of MsCI. The carbon atom

readily donates electrons to the central sulfur atom which in turn donates to the oxygen atom.

Oxygen stabilizes the negative charge by expelling the Cl atom (Scheme 15).

H
| CH2
~ cH, QMg
0o T 00 0o

Scheme 15 — Suggested mechanism of acid-base reaction between triethylamine and mesylchloride

The oxygen in the free hydroxyl group in compound 7 acts as a nucleophile and attacks the
sulfur atom which by further electron transfer stabilization yields mesylate 8 (Scheme 16).
The product was purified by FCC and had a total yield of 74%
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Scheme 16 — Suggested mechanism on mesylation of silyl-protected oxime

2.1.4 Formation of zwitterionic N-Oxide by addition elimination
through pentacoordinated intermediate

To finalize the iminosugar structure, the silyl-protecting group was removed in expectation of

a stereospecific cyclization into 5-membered zwitterionic N-oxide compound 9 (Scheme 17).
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Scheme 17 — Formation of zwitterionic N-oxide

Compound 9 was synthesized by removal of the silyl-protecting group from compound 8 by
reaction with TBAF in toluene reflux (Scheme 17). After deprotecting, compound 8 was
transformed to a reactive intermediate 8a, which would be due to the nucleophilicity of the
nitrogen atom that initiates an intramolecular stereospecific Sn2 substitution to the carbon
residing in the 4™ position. This would create a pentacoordinated intermediate which would in
turn quickly stabilize and form compound 9, thereby after being subjected to FCC gave a
yield of 66% (Scheme 18).
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Scheme 18 — Suggested mechanism on formation of zwitterionic N-oxide

2.1.5 Reduction of N-C double bond by NaBH4 and Deoxygenation
by Zn
The pyrrole-oxide 9 was reduced in a sequence including reduction of N-oxide by NaBHj into

the corresponding hydroxylamine and reduction of hydroxylamine to the corresponding amine

(Scheme 19).

OBn Q@ OBn |,
NS 1INaBH, EtOH N
\ 2) Zn, AcOH, H,0
BnO  OBn BnO  OBn

Scheme 19 — Reduction of N-C double bond by NaBH4 and Zn



Borohydride expels a hydrogen atom which reacts with the double bond of the pyrrole-oxide
9 to initiate an electron rearrangement to eliminate the double bond to form amine-oxide 9a.
Lone pair electrons from the N-oxide oxygen subsequently attack a methanol group to form

the hydroxylamine 9b (Scheme 20).
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Scheme 20 - Suggested mechanism on reduction of N-C double bond by NaBH,4

Zn further reduces hydroxylamine 9b to pyrrolidine 10, however the mechanism is yet poorly
understood (Scheme 21). Product 10 was subjected to FCC and gave a total yield of 70% over

two steps (Double bond reduction and deoxygenation).

OBn (,)H OBn IT'
N
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Scheme 21 - Deoxygenation to primary amine by Zn

2.1.6 Synthesis of N-spirofused bicyclic iminosugar by double Sn2

substitution

Amine 10 underwent a double Sn2 substitution with 1,4-dibromobutane to afford ammonium
bromide 11, which accommodates a permanent positive charge on the spirocyclic nitrogen
atom Sn2 (Scheme 22). The choice of base was determined by the salt that would form after

the corresponding reaction. K.COswas therefore a competent choice for this reaction.
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Scheme 22 — Double Sy2 substitution on primary amine



The reaction of compound 10 initiates by a nucleophilic attack by the lone pair electron on the
nitrogen atom on the alkyl halide carbon with the lowest electron density. K.COgz proceeds to
deprotonate the nitrogen atom, thereby creating a new pair of lone electrons in intermediate
10a which can initiate a new nucleophilic attack on the tail end of the alkyl halide chain and
providing compound 11 (Scheme 23). The remaining product was subjected to FCC and gave
a total yield of 47%.
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Scheme 23 — Suggested mechanism on double Sy2 substitution on primary amine
2.1.7 Benzyl group deprotection of N-spirofused iminosugar

The protected N-spirofused bicyclic iminosugar was treated with 10% Pd/C hydrogenation
and TFA in ethanol to deprotect the earlier reinstated O-Benzylated protecting groups to

provide the N-spirofused iminosugar 12 (Scheme 24).

BnO [ ) HO [ )
N

N
10% Pd/C
K@Z TFA, EtOH K@Z

BnO 11 “OBn HO 12 “OH

Scheme 24 - Deprotection of N-spirofused iminosugar

The deprotection of the O-benzyl groups using palladium-on-carbon as a catalyst was further
accelerated using TFA in ethanol which readily increases the coordination ability of Pd/C

onto the amine.



Pd/C situates itself between the benzylic leaving group and oxygen before hydrogenation
initiates. Palladium leaves with the benzyl group thereby giving 11a with one less protected
group. Pd/C is recovered and the reaction restarts providing iminosugar 12 in the end

(Scheme 25). The final product was filtered through Celite and gave quantitative yield.
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Scheme 25 - Suggested mechanism on deprotection of N-spirofused iminosugar®

2.2 Concluding remarks and the future of AChE inhibitors

The N-spirofused iminosugar 12 was successfully synthesized as a potential AChE inhibitor
from several steps starting with L-xylose, where a Fisher glycosylation method was done
before global O-benzylation was performed. A nitrogen atom was inserted in the form of
hydroxylamine addition before introduction of a silyl protecting group. To produce a good
leaving group, the protected oxime was mesylated before removal of the silyl protecting
group, thus creating an intramolecular Sn2 substitution through a pentacoordinated

intermediate. The pyrrole-oxide was further reduced and deoxygenated to form a protected



pyrrolidine, which was thereby treated with a double substituted alkylhalide that would
provide as a strong nucleophile that also wouldn’t create steric hindrance and a base that
would subsequently not form an interfering salt to provide the protected edition of the N-
spirofused iminosugar. Furthermore, by using a different solvent when synthesizing
compound 11 should be examined as TLC analysis of 11 was suspected of being
contaminated by remaining traces of DMF. Alternatively, one could use other aprotic solvents
with lower boiling points like acetone or acetonitrile. Finally, 11 was treated with Pd/C in
acidic environments to finalize the N-spirofused iminosugar. However, treatment of Pd/C
hydrogenation in acid for 1 day was not sufficient and would require more time and more acid

to accelerate and fulfill the reaction.

We believe that our synthesis strategy would be sufficient in synthesizing bundles of N-
spirofused ammonium compounds. Further work would have to be done to determine the
inhibition effect that compound 12 would provide. Our sample of compound 12 is therefore
being sent to associate professor Oscar Lopéz at the University of Seville to test the

performance of 12 as an AChE.



3. Experimental

3.1 Practical

3.1.1 Solvents and reagents

The chemicals used were all obtained from Sigma Aldrich, VWR or Merck and used as

supplied unless otherwise stated in the experimental protocols.
3.1.2 Spectrometric and spectroscopic analysis

Nuclear magnetic resonance (NMR) spectra were recorded on the Bruker Ascend TM 400
series, operating at 400 MHz for *H and MHz for 13C, respectively. The chemical shifts (8)
are expressed in ppm relative to residual CDCls (*H, 7.26 ppm; 3C, 77.16 ppm), D20 (*H,
4.79 ppm) and CD30D *H, 3.31 ppm; *C, 49.00 ppm). Coupling constants (J) are given in
Hertz (Hz) and the multiplicity is reported as: singlet (s), doublet (d), triplet (t), doublet of
doublets (dd), multiplet (m) and broad singlet (bs). The assignments of signals in various

NMR spectra were often assisted by conducting heteronuclear single-quantum correlation

spectroscopy (HSQC), heteronuclear multiple bond correlation spectroscopy (HMBC) and

homonuclear correlated spectroscopy (COSY).
3.1.3 Chromatography

Thin-layer chromatography (TLC) was carried out using aluminium backed 0.2 mm silica gel
plates. The spots of the product were detected using ultraviolet (UV) extinction at A=254 nm
or A=366 nm. Flash column chromatography (FC) was also carried out with silica gel, with
solvent gradients that are indicated in the procedure. Flash chromatography was carried out
with silica gel (particle size 40-63 um), with solvent gradients as indicated in the experimental

procedures.



3.2 Experimental

3.2.1 Methyl 2,3,5-Tri-O-benzyl-L-xylofuranose?*

(l)Bn
. O\ wOH
BnO\\ 5 OBn

AcCI (0.29mL), 4.0mmol, 0.2 equiv) and L-xylose (3.0g, 20.0 mmol, 1.0 equiv) was added to
MeOH (70 mL) which was kept stirring for 2 days in RT. The temperature of the mixture was
adjusted to 0°C before NaOH(1M) was added to adjust to pH 10-11. The mixture was
evaporated from co-evaporation. The procedure was done three times from toluene (20mL).
The remaining product was dissolved in anhydrous DMF (84mL). NaH (60% dispersion in
mineral oil (4.61g, 115mmol, 5.75 equiv) was added spoonwise while the mixture was kept
stirring in RT under inert gas atmosphere (Ar) for 15 min. The temperature of the mixture was
adjusted to 0°C before BnBr (12 ml, 101mmol, 5.05 equiv) was added dropwise to the
mixture. The mixture was kept stirring in RT for 1 day. The temperature of the mixture was
adjusted to 0°C and H20O (100mL) was added dropwise. The inorganic solution was extracted
by EtoAc (2*100mL) while the organic parts were dried (MgSQO4) and added to a filtered
beaker and further evaporated under reduced pressure. The remaining solution was dissolved
in 1,4-dioxane (60mL) and ag. HCI (60mL, 4M). The mixture was left stirring at 60-63°C for
2 days suspended in an oil bath. The remaining product was subjected to FCC (Pet.Et, EtoAc
18/2) to yield a yellow syrup (3.16g, 39%)

Rf: 0.20 (PE/EtOAC, 3:1 v/Iv)

IHNMR CDCls, 400 MHz) 8y: 7.37-7.27 (m, 15H), 5.47 (brs, 1H), 5.23 (d, 1H, J = 6.2 Hz), 4.63 -
4.48 (m, 6H), 4.41-4.37 (m, 1H), 4.10 (dd, 1H, J = 3.1 Hz, J = 5.5 Hz), 4.03 (dd, 1H, J = 2.7 Hz, J =
4.4 Hz), 3.95-3.93 (m, 1H), 3.86 - 3.84 (m, 1H), 3.78 - 3.64 (m, 3H)

BCNMR (CDCls, 100 MHz) &c: 67.2, 68.4, 68.8, 72.0, 72.5, 72.8, 73.2, 73.6, 73.8, 77.4, 77.5, 80.0,
81.2,81.4,86.7,96.4,101.8, 127.7-128.8 (Ar), 136.9, 137.5, 137.6, 137.7, 137.8, 138.3 (Ar)

11 carbon signals in the sugar region are missing due to signal overlap.



3.2.2 (2R,3R,4S, E)-2,3,5-Tris(benzyloxy)-4-hydroxypentanal O-
(tert-butyldiphenylsilylchloride) oxime?

?Bn
OH_N/OTBDPS

BnO 7 OBn

A solution of sodium methoxide (0.69g, 30.1mmol, 10 mL, 4.00 equiv) was added to a
solution of 5 (3.16g, 7.75mmol, 1.00 equiv) and hydroxylamine hydrochloride (4.19g,
60.3mmol, 8.00 equiv) in MeOH (45mL). The mixture was left stirring in RT for 1 day and
concentrated under reduced pressure. The remaining solids were dissolved in DCM (70mL),
purified with distilled water(3x55mL.), dried over MgSQOyg, filtered, and concentrated under
reduced pressure. The remaining yellow syrup was added anhydrous DCM (15mL) and
imidazole (0.71g, 10.4mmol, 1.35 equiv) under inert atmosphere (Ar). TBDPSCI (2.81mL,
9.67mmol, 1.25 equiv) was added dropwise while stirring. The mixture was left stirring for 30
min under inert atmosphere (Ar) in RT. The solution was diluted with distilled H.O/DCM
(50mL, 1:1) and was left stirring for 1 day. The organic phase was extracted using DCM
(3x55mL). The collection of organic phases was washed with sat. NaCl (25mL), dried over
MgSOs, filtered and concentrated under reduced pressure. The remaining product was

subjected to FCC to yield oxime 6 as a colourless syrup (2.84g, 54%).
Rf: 0.30 (PE/EtOAC, 19:1, 18:2 v/v)

IH-NMR (CDCls, 400 MHz) 5:7.80 (d, 1H J=8,00Hz) 7.72-7.66 (m, 4H) 7.42-7.20 (m, 21H)
4.63-4.32 (m, 6H) 4.20-3.93 (m, 3H) 3.48-3.30 (m, 3H) 1.10 (s, 9H)

13C-NMR (CDCls, 100 MHz) &¢: 20.0, 20.2, 27.6, 27.7,70.7,71.5,71.9, 72.1, 72.3, 72.5, 74.2,
75.2,75.8.77.0, 80.6, 81.1, 128.7 -131.0, 134.5, 134.7, 136.7, 138.9, 139.4, 139.5, 156.1, 157.6



3.2.3 2,3,5-Tri-O-benzyl-4-methanesulfonyl-L-xylofuranose

Oxime?2®

(l)Bn
OMS_N,OTBDPS

BnO 8 “OBn

To oxime 6 (2.84g, 4.22 mmol, 1.00 equiv) CH.CI. (18mL) was added at 0°C under inert
atmosphere (Ar). Triethylamine (0.91mL, 6.54mmol, 1.55 equiv) and mesylchloride (0.38mL,
4.94mmol, 1.17 equiv) was added while stirring. The mixture was left stirring for 30 min until
water (5mL) was added. The aqueous layer was extracted three times with CH>Cl, (25mL)
meanwhile the organic layer was washed with sat. NaCl (25mL), dried over MgSO4 and
concentrated under reduced pressure. The resulting residue was subjected to column
chromatography over silica gel (PE, EtOAc 18/2, 17/3) which yielded 7 (2.43g. 74%) as a

colourless oil.
Rf: 0.27 (PE, EtOAc, 18/2 V/v)
'HNMR: (File corrupted)

13CNMR: (File corrupted)

3.2.4 (2R,3R,4R)-3,4-Bis(benzyloxy)-2-((benzyloxy)methyl)-3,4-
dihydro-2H-pyrrole 1- oxide?

o

OBn O

N

AN
BnO 9 “OBn

To a solution of oxime 7 (2.43g, 3.22mmol, 1.00 equiv) anhydrous toluene (50mL) and tert-
butyl ammonium fluoride (5mL, 1M in THF, 5 mmol, 1.55 equiv) was added under inert
atmosphere (Ar). The reaction was heated to reflux in 45 min before getting cooled to RT.
The mixture was diluted with CH2Cl> (50mL). Deionized water (100mL) was added. The
aqueous layer was extracted with CH2Cl, (2x75mL) and the organic layers were washed with

sat. NaCl (30mL). The impurities were removed by concentrating under reduced pressure.



The remaining mixture was subjected to TLC (Hexane/EtoAc, 1/1, 0/1) which yielded 8 (882
mg, 66%) as yellow circular crystals.

Rf: 0.10 (Hexane/EtOAc, 1/1 vIv)

IHNMR (CDCls, 400 MHz) 8,1:7.30-7.12(m,15H) , 6,82(5,1H) , 4,60-4,42(m,7H),
4,30(dd,1H, J=2,2Hz, J=3,6Hz) , 4,00-3,93(m 2H), 3,7(dd,1H, J=3,00Hz , J=10,00Hz)

13CNMR (CDCl3 100 MHz) 8¢: 66.3, 71.8, 72.0, 73.6, 80.4, 82.8, 127.8-128.7 (Ar), 132.9, 137.3,
137.4, 137.8)

3.2.5- -(2R,3R,4R)-3,4-bis(benzyloxy)-2-[(benzyloxy)methyl]-1H-
pyrrolidine?

OBn

o

BnO" 10 “oBn

To a solution of 8 (882mg, 2.12mmol, 1.00 equiv), ethanol (55mL) and NaBH4 (1.605g, 4.24
mmol, 2.00 equiv) was added. The mixture was stirred at RT for 2 days. The resulting crude
was subjected to TLC analysis to verify the formation of a new product. Rf = 0.10, Rf _new =
0.70. The mixture was added MeOH (3.5mL) and deionized H>O (10.6mL) and kept stirring
under reduced pressure. The newly purified hydroxylamine product was added conc. AcOH
(28.3 mL), Zn powder (2.77g, 42.4 mmol, 20 equiv) and deionized H20 (28.3mL). The
mixture was left stirring for 1 day. The mixture was subjected to TLC analysis (DCM: MeOH
30:1) which showed the disappearance of the starting material (Rf = 0.85) and the formation
of a new product (Rf = 0.27). The mixture was filtered with cotton, concentrated under
reduced pressure. A sat.solution of Na.SO4 was added at 0°C to basic pH. The mixture was
extracted with EtoAc (3x30mL), where the organic layers were dried over anhyd. Na>SOa.
The mixture was concentrated under reduced pressure and subjected to Flash Column
Chromatography (DCM: MeOH 30:1) which yielded 9 (594mg, 70%) as a yellow oil.

Rf: 0.27 (DCM/MeOH, 30:1 v/v)

| (CDCls 400 MHz) 6: 7.28-7.21 (m, 15H) 4.47-4.45 (m, 3H) 3.96-3.93 (m, 1H) 3.81-3.80
(m, 1H) 3.56-3.47 (m, 2H) 3.17 (dd, 1H, J=5,20 Hz, J=15,50 Hz) 3. 02 (d, 2H J=3,90Hz)

BCNMR (CDCl3 100 MHz) 5c: 51.1, 64.2, 70.4, 71.1, 71.9, 73.2, 84.5, 85.8, 127.6-128.4 (Ar)
138.1,138.3



3.2.6- -(1R,2R,3R)-2,3-bis(benzyloxy)-1-[(benzyloxy)methyl]-5-

azoniaspiro [4.4] nonane

Bn
e

Bn" 11 'Bn

To a solution of 9 (530 mg, 1.27 mmol), DMF (10mL), 1,4-dibromobutane (7.58 mL,
6.35mmol, 5 equiv) and K>COs (878mg, 6.35 mmol, 5 equiv.) was added. The mixture was
left stirring for 1 day. The product mixture was subjected to a TLC analysis (DCM/MeOH
30:1) to confirm the formation of a new product (Rfold = 0.67, Rf _new = 0.53). The mixture
was subjected to Flash Column Chromatography (DCM/MeOH 30:1) which yielded product
10 (251 mg, 37%) as white crystals.

Rf: 0.53 (DCM/MeOH 30:1 v/v)

IHNMR (CD3O0D, 400 MHz) 8: 7.37-7.27 (m, 15H) 4.62-4.51 (m, 6H) 4.38 (brs, 1H) 4.30-
4.29 (m, 1H) 4.10-4.07 (m, 1H) 4.00-3.81 (m, 5H) 3.74-3.61 (M, 3H) 2.17 (s, 3H)

13CNMR (CD30D, 100 MHz) &¢: 20.8, 21.6, 57.0, 59.0, 64.6, 65.6, 66.1, 71.7, 72.0, 73.0,
75.4,80.0, 82.8, 127.8-128.2 (Ar), 137.0, 137.1

3.2.7 (1R,2R,3R)-2,3-Dihydroxy-1-(Hydroxymethyl)-5-asoniaspiro[4.4]

nonane?
OH / \

HO 12 “oH
To 10 (100 mg, 0.109 mmol), 10% Pd/C (100 mg), TFA (8 mL) and EtOH (16mL) was
added. The mixture was then subjected under inert atmosphere (Ar) and Hz gas (1 atm) was
introduced. The reaction was left stirring for 1 day. The mixture was filtered through Celite
and concentrated under reduced pressure which resulted in the formation of 12 (quantitative
yield).

IHNMR (D20, 400 MHz) 3 4.47 (brs, 1H), 4.30 (dd, 1H, J=3.70Hz, J = 6.90Hz), 3.89-3.59
(m, 9H) 2.26-2.17 (m, 5H)

BCNMR (D20, 100 MHz) &c: 20.4, 21.2, 57,0, 59.2, 66.7, 67.3, 73.6, 76.8, 77.0
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Appendix

Methyl 2,3,5-Tri-O-benzyl-L-xylofuranose
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2R,3R,4S, E)-2,3,5-Tris(benzyloxy)-4-hydroxypentanal O-(tert-
butyldiphenylsilylchloride) oxime
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Current Data Faramstera
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2,3,5-Tri-O-benzyl-4-methanesulfonyl-L-xylofuranose Oxime
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(2R,3R,4R)-3,4-Bis(benzyloxy)-2-((benzyloxy)methyl)-3,4-
dihydro-2H-pyrrole 1- oxide

P2 - Acquinsition Paramstsa
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i 11.11 &
INSTRUL opect
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iH 8012.820 Hz
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2R,3R,4R)-3,4-bis(benzyloxy)-2-[(benzyloxy)methyl]-1H-
pyrrolidine
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(1R,2R,3R)-2,3-bis(benzyloxy)-1-[(benzyloxy)methyl]-5-
azoniaspiro [4.4] nonane
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(1R,2R,3R)-2,3-bis(benzyloxy)-1-[(benzyloxy)methyl]-5-
azoniaspiro [4.4] nonane
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