
Faculty of Science and Technology

BACHELOR’S THESIS

Study program/Specialization: Spring semester, 2022

Bachelor of Science in Computer Science Open / Restricted access

Authors: Benjamin Chandler, Eirik Danielsen

Faculty supervisor: Nejm Saadallah

External supervisor: Eyasu Gebremichael

Thesis title: Graphical representation of fluid data

Credits (ECTS): 20

Keywords: Pages: 90

Azure, iOS, Android, Python, React, + attachments/other: 13

React Native, Rheology, Expo Stavanger 15. mai 2022

Contents

Content i

Summary vii

Terminology vii

1 Introduction 1

1.1 Project Description . 1

1.2 Objective . 1

1.3 Outline . 2

2 Background 3

2.1 Drilling fluids . 3

2.2 Industry use of rheology data 4

2.3 Rheology . 4

2.4 Intelligent Mud Solutions AS 5

i

CONTENTS

2.5 Defining the project . 5

3 Development Tools & libraries 8

3.1 Development methodology & choice of platforms 8

3.1.1 Development methodology & Git 8

3.1.2 Browser, iOS & Android 9

3.2 React . 10

3.3 Expo & React Native . 13

3.3.1 React Native & Cross-platform 13

3.3.2 Expo . 14

3.4 Python . 15

3.4.1 Flask . 16

3.4.2 Pandas . 16

3.4.3 Matplotlib . 17

3.5 Microsoft Azure . 18

3.5.1 Azure SQL Database 18

3.5.2 Logic App . 18

3.5.3 App Service . 19

4 Backend Development 20

4.1 Setting up a development environment 20

ii

CONTENTS

4.2 Simulating The Rheosense 21

4.2.1 Cleaning the data . 22

4.3 Building the database . 25

4.3.1 Creating the database schema 25

4.3.2 Connecting Python with the database 26

4.3.3 Inserting data . 26

4.3.4 Querying data . 27

4.3.5 Stats query . 28

4.4 Creating The APIs . 29

4.4.1 Configuring the app 30

4.4.2 Establishing a connection with the database 32

4.4.3 Closing the connection to the database 34

4.4.4 Creating the first API 34

4.4.5 Get and GetInterval API 37

4.4.6 GetStats API . 38

4.4.7 Securing the APIs 38

4.5 Login and registration . 39

4.6 Deployment to Azure . 41

4.6.1 Creating the App Service on Azure 41

4.6.2 deploying the Flask app to Azure 41

iii

CONTENTS

4.7 Automated Reporting Feature 42

4.7.1 Collecting data . 43

4.7.2 Creating the plot . 43

4.7.3 Sending emails to users 46

4.7.4 Azure Logic Apps 49

5 Web Development 51

5.1 Structure . 51

5.1.1 Routing . 51

5.1.2 Rendering . 53

5.1.3 State and props . 53

5.1.4 Hooks . 54

5.2 Charting . 56

5.2.1 Chart component . 57

5.3 Stats . 61

5.4 Obtaining data . 61

5.4.1 Fetching data . 62

5.5 Creating Pages . 65

6 Mobile Development 68

6.1 Structure . 68

iv

CONTENTS

6.1.1 Custom styled components 70

6.2 Login screen . 72

6.2.1 Creating the form 73

6.2.2 Sending a login request 77

6.2.3 Sign in via Google 79

6.3 Registration screen . 81

6.4 Home screen . 82

6.5 Routing . 84

7 Results, Conclusion and future development 86

7.1 Results . 86

7.2 Discussion and further work 87

7.2.1 Web application . 87

7.2.2 Mobile application 88

7.3 Conclusion . 89

Bibliography 93

Vedlegg 93

A Programlisting 94

A.1 LiveData.py . 94

v

CONTENTS

A.2 Setupdb.py . 97

A.3 Helper Functions . 98

A.4 Stats component . 100

A.5 Page components . 102

vi

Abstract

In this Bachelor thesis we will work together with Intelligent Mud Solutions
to explore the Graphical representation of fluid data. We will give an intro-
duction about IMS and Rheology. We create a development environment
mimicking the existing database and provide it with data from a python
script utilizing real data.
We use React and React-Native to create live and historical charts in the
format used by mud engineers.
To achieve this we create an API using Flask.py, this API is then used to
automate the creation and sending of PDF reports by e-mail.

vii

Chapter 1

Introduction

1.1 Project Description

In this bachelor thesis we will explore how to present live and historical
data. The bachelor thesis came about trough a partnership with Intelligent
Mud Solutions, who will be referred to as IMS.
IMS is a Technology firm based out of Stavanger who focuses on digitalizing
the drilling industry. One of their products is a sensor rig to provide rheol-
ogy data from drilling wells.It is this data that will need to be presented in
a satisfactory manner.

IMS goal with this data is to present it in real time to their customers trough
a web application and possibly trough a mobile app. In addition they would
also like reporting of historical data both on the web and mobile application
and as an email PDF report.

1.2 Objective

Our overarching objective for this bachelor thesis is therefore to explore the
real-time and historical graphical presentation of fluid data. This is a very
broad objective that can be solved in a multitude of ways, thus we will first

1

1.3 Outline

need to examine background information about both IMS and rheology.
This will be the subject of chapter 2 and will culminate in a detailed list of
objectives that will be the goal of our bachelor thesis.

1.3 Outline

The thesis is structured as follows:

• Chapter 1 Introduction of the project, a short introduction of the
main objectives and motivation for the project.

• Chapter 2 introduces the reader to the company and the necessary
petroleum background needed to make sense of the data.

• Chapter 3 specifies the technologies and development tools used for
this project.

• Chapter 4 covers the backend development process.

• Chapter 5 details the web app development process.

• Chapter 6 describes mobile app development process

• Chapter 7 concludes the results and further discussion.

2

Chapter 2

Background

2.1 Drilling fluids

Drilling Fluid or drilling mud as it is often referred to is a fluid used in
the drilling of wells. The simplest form of drilling fluid is simply water.
Different forms of chemicals can be added to the mixture to give it certain
properties. The second type of drilling fluids are oil based instead of water
based.
Drilling fluid is pumped trough the well while its being drilled. In the well
it provides several benefits to the drilling operation[1]. As it flows trough
the well it removes drill cuttings, where a high viscosity will allow cuttings
to be brought up easier.
While the mud is the well it also make contact with the drill and the borehole
itself, lubricating the wellbore and cooling down the drill bit. This allows
for more force being exerted to the drill bit while increasing lifespan of the
bit and wellbore, reducing maintenance costs.
The presence of drilling fluid also increases the buoyancy. Making the drill
string weigh less and increasing the stability of the well.
Some drilling tools even use the mud itself to transmit signals to the surface.
The composition of the drilling fluid dictates the effect it has on the well.
Changes can be made to the drilling fluid by adding or subtracting chemicals
from the mixture. This allows the properties of the fluid to be changed as
one drills further down into the well.

3

2.2 Industry use of rheology data

2.2 Industry use of rheology data

As mentioned above there are many uses of drilling fluids. Therefore it is
important to have up to date and correct information about the drilling
fluids property.
Mud engineers monitor the drilling fluids properties to ensure that it will
have the desired effect in the well.
Historically these properties have been monitored by historical reports about
the previous shift, with new reports being available every 12 or 24 hour pe-
riods. The drilling engineer can then make necessary changes if needed.
To measure the properties of drilling mud one uses rheology data.

2.3 Rheology

Rheology can be defined as the science of flow and deformation of matter
[2]. An important topic in rheology when analyzing drilling fluids is viscos-
ity as the viscosity of the mud greatly impacts its effect in the well.
Viscosity is in rheology defined as the ratio between shear stress and shear
rate[2].Shear stress is the force required to keep a constant flow of a fluid
[3]. Shear rate is the measurement of the rate of change in velocity between
fluid layers [4].
In a Newtonian fluid the viscosity is independent from the shear rate, unlike
non-newtonian fluids in which the viscosity is a function of the shear rate.

Bingham’s plastic model is a rheological model used in the oil and gas
industry to describe drilling mud, in which plastic viscosity and yield point
is derived from shear stress and shear rate.
Plastic viscosity is a measurement of the muds viscosity under infinite shear
rate, a low plastic viscosity indicates that one can maintain a high drill speed
[5].
Yield point is a measurement derived from the viscosity when the sheer
rate is set to zero[6].The yield point can be used to determine if a fluid is
Non-Newtonian. A Non-Newtonian fluid is a fluid that changes behaviour
when force is applied to it. This is important as non-Newtonian fluids can
carry drill cuttings better than a Newtonian fluid even if the two fluid have

4

2.4 Intelligent Mud Solutions AS

the same density.
The Yield point and Plastic viscosity can both be derived by using viscosity
measurements made with different rotations per minute.

2.4 Intelligent Mud Solutions AS

Intelligent Mud Solutions (IMS), is a technology firm based in Stavanger.
Since their formation in 2010 they have developed tools for fluid analy-
sis and management. Tools that see use in the oil an gas section, in
particular well drilling. Their products are a part of the digitalization
of the oil and gas sector, and they are currently furthering the research
and development of these tools. The relevant tools for this thesis are;

Figure 2.1:
RheoSense unit.

• RheoSense, Onsite analysis tool

• RheoMax, Onsite analysis tool with additional
sensors

• RheoReport, report tool for historic data

• RheoView, live view of analysis data

In particular the Rheosense as it is the unit gathering
the data we are visualizing.
The data points gathered from the Rheosense is cur-
rently;
viscosity measurements from the following rotations
per minute; 3, 6, 100, 200, 300 and 600.
Yield point, Plastic viscosity, density, PH and the inlet
temperature.

2.5 Defining the project

To define the scope of our thesis project we will look at
the following 2 main factors, what technology is cur-

5

2.5 Defining the project

rently in place and what is required.
The current technology in use is a Microsoft SQL-server Database hosted
on azure cloud, with Power BI being used for presentation. It is the presen-
tation of data for RheoReport and RheoView that IMS wants to improve,
to present it in a manner better suited for mud engineers.
IMS currently have a good solution for pushing data from their RheoSense
unit and hosting in the cloud but want to improve their graphical presen-
tation and ability to retrieve data from the database.

The solution made in this project is not expected to be ready for customers
immediately, but rather a presentation module that can be implemented
into their RheoView and RheoReport tools by a third party.
IMS wants a working prototype for testing and customer demos.

This gives us our main objectives, which are the following;

• Build a modular view for presenting live and historical data.

• Create a web application for demo and testing purposed, using the
presentation module.

• Build a tool for automating the creation and sending of email PDF
reports.

• Explore the creation of a mobile app that presents live and historical
data.

Too achieve this we also need to complete several sub objectives, which
include the following;

• Simulate a RheoSense to provide data.

• Determine how to best present data in a manner that
corresponds with how the data will be used.

• Create a development environment that resembles
the production environment already in use.

• Create an API to enable the presentation modules to talk with the
database

6

2.5 Defining the project

• Create a Log in and authorization system to be used for the demo
application

7

Chapter 3

Development Tools & libraries

3.1 Development methodology & choice of plat-
forms

3.1.1 Development methodology & Git

Due to previous experience our version control system of choice was git. Git
is a free and open source version control system that enables us to cooperate
and manage the projects workflow with ease. One of git’s many features
we utilized was the branching model. The branching model lets you have
multiple local branches of your project where creation, deletion or merging
of said branches is a quick and simple process.

8

3.1 Development methodology & choice of platforms

Figure 3.1: Visualization of git branches [7]

The power behind the utility of the branching model is the separation
of project. This makes it easy to add new feature, bug fixes or experi-
ment without interfering with your own or other developers’ progress. This
proved to be useful as we followed scrum methodology for development
where weekly sprints and backlogging was made easier using git.

3.1.2 Browser, iOS & Android

In this project we are tasked with building both a web application and
a mobile application. The web application should be able to support all
modern browser such as google chrome, Firefox, safari, Microsoft Edge etc.
The mobile application should be available to nearly all users. To achieve
this goal we have to develop the mobile application for both android and iOS
as those are the biggest mobile platforms worldwide. Figure 3.2 illustrates
the market shares of mobile platforms in Norway over the last 12 months.

9

3.2 React

Figure 3.2: Mobile market share Norway [8]

In Norway iOS is more popular than android, but worldwide Android is
more common than iOS. Leaving one of those two platforms out will greatly
reduces the number of users able to use your application.

3.2 React

React is a free and open source JavaScript front-end library for building
user interfaces. React was created by Meta (formerly known as Facebook)
and launched in in 2013. Since its launch it has grown in popularity and
is today the most used web frameworks among developers worldwide as
illustrated in figure 3.3

10

3.2 React

Figure 3.3: Most used web frameworks for developers [9]

React utilizes JSX (JavaScript XML) which is a JavaScript syntax extension
in favour of regular HTML. This allows developers to combine markup
language and logic into something called components as opposed to having
to separate files for markup and logic. Although React does not require
JSX being used it is highly recommended as it makes it easier to write or
add HTML.

React has a component architecture. A React component is a independent
and a reusable bit code that is responsible for a part of the user interface.
Components have an internal state and returns JSX. There are two types of
React components available, class components and functional components.
Ever since React introduced hooks which gave functional components access
to states and all of the features exclusive to class components. There are
no real differences between the two except from syntax where functional
components are more straightforward and concise.

11

3.2 React

Figure 3.4: React component architecture [10]

Figure 3.4 illustrates how a user interface might be broken down into dif-
ferent components. Components are denoted by first letter uppercase while
regular JSX uses lowercase. React components might look something like
the example given below.

1 function Header() {
2 return <h2>This is the header component!</h2>;
3 }

1 function Footer() {
2 return <h2>This is the footer component!</h2>;
3 }

Here we have two separate and independent React components, each re-
sponsible for displaying different parts of the user interface. All that needs
to be done to combine these components together to display the full UI is
the following.

1 import Header from './components/Header';
2 import Footer from './components/Footer';
3

4 function App() {
5 return (
6 <Header />
7 <Footer />
8);
9 }

12

3.3 Expo & React Native

3.3 Expo & React Native

3.3.1 React Native & Cross-platform

React Native is a cross-platform JavaScript framework developed by Meta
and was open-sourced in 2015. The framework was built based on React,
a JavaScript library developed earlier by Meta that was highly popular
at the time of React Native’s release. Ever since its release react native
has grown in popularity and is behind the development of many world
leading mobile apps such as Facebook, Instagram, Skype, Tesla and Discord.
Having a background in JavaScript makes it easy using react native to start
developing mobile apps for iOS and android [11].

The power behind the mobile framework is that it allows developers to build
apps that supports various platforms from just a single codebase. The
benefits of utilizing a cross-platform framework is the ability to target a
large audience, cut down cost and time to market. A company developing a
cross-platform app may now only hire one team instead of hiring an android
developer team using Java or Kotlin and a separate iOS developer team
using Swift or objective C.

A drawback to using a cross-platform framework is that it requires expertise
in more than one platform and makes code design harder as it needs to be
responsive to various devices and platforms. A native developer only needs
to concern themselves with the ins and outs of their platform, whereas a
cross-platform developer needs to worry about how a change might impact
other platforms as well [12].

React Native enables hot reloading which results in fast iteration speed.
Hot reloading allows you to save changes while running your project and
the changes will appear immediately as opposed to having to save, run,
compile the project and then navigating to the page in question to see your
changes [11]. There are a lot of similarities between React and React Na-
tive such as JSX, components, props and state. There are some differences
however. React Native uses native components as building blocks whereas
React uses web components. Examples of standard JSX components in
React are <Div></Div> or <P></P> which equates to <View></View> or
<Text></Text> in React Native. Here the view component renders a con-

13

3.3 Expo & React Native

tainer and the text component allows us to render text. You are also able
to import hooks exactly like what you would have done using React.

3.3.2 Expo

When creating a React Native app there are two ways you can go. You
can get started using the Expo command line interface (CLI) or the React
Native CLI. Expo is a framework used to build React Native apps. It
is a set of tools and services built around React Native that helps you
develop, build, deploy and quickly iterate on IOS and Android from the
same JavaScript codebase. Expo also provides hot reloading, debugging
and logging features to simplify the development process [13].

Expo lets developers create iOS apps without the need for a computer run-
ning on macOS which lowers the barrier to entry and allowing windows
and Linux users to also develop apps for iOS. Expo also offers over the air
updates which means you don’t have to wait for apple store or google play
to review your updates each time you push new code, which can take weeks
[13].

Although Expo is great for getting started quickly with cross-platform de-
velopment it does have its limitations. Not all iOS and Android APIs are
available like Bluetooth or Geolocation. In the Expo documentation there
are lists of all the available native APIs and those available are satisfactory
for the scope of this project [13]. Expo is supported by the the React Native
team and is even included in the React Native documentation [11].

When developing an app using Expo you can view your project either
through a physical device (Android or iOS) via their Expo Go app or
through an emulator. The group had access to an iOS device and an An-
droid device. This helps the mobile cross-platform development process as
you are able to view the application through different platforms and keep
up to date whether the app still has that native feeling on their respective
platforms.

14

3.4 Python

3.4 Python

Python is a high-level, general purpose programming language. Its design
philosophy emphasizes code readability with the use of significant indenta-
tion [14]. Python is relatively simple to get started with due to easy to read
syntax. Python is a popular choice when it comes to developing web appli-
cations as illustrated in a survey performed by Jetbrains[15]. In figure 3.5a,
50% of the 28.000 python developers surveyed responded that their main
use of the programming language was for the intention of web development.

Python has a mature and supportive community as its been around for over
30 years and there are thus a ton of python frameworks and libraries to work
with. This section will cover the three main libraries/frameworks included
in this project.

(a) What do you use python for [15] (b) Most used python web frameworks [15]

Figure 3.5: Caption for this figure with two images

When developing web applications with python there are a lot of frameworks
to choose from. In the survey[15] mentioned previously the respondents were
also asked which web framework they preferred when using python. The
two most popular python web frameworks according to this survey ended
up being Flask and Django as shown in figure 3.5b. For this project Flask
ended up as the web framework of choice due to previous experience in
courses like DAT250 and DAT310. The supervisor from IMS also had some
limited experience using Flask which solidified this choice.

15

3.4 Python

3.4.1 Flask

Flask is a python micro web framework released 12 years ago in April
2010. it is not classified as a framework because it does not require any
tools or libraries. Flask does not have any database abstraction layer or
any other components that third-party libraries already provides. In the
documentation Flask claims that "Flask aims to keep the core simple but
extensible."[16]. This way you only import what you need and nothing
more.

3.4.2 Pandas

Pandas is a Python library designed for data manipulation and analysis.
Pandas was first open sourced in 2009 and is widely used by data scien-
tist/data analysts and also for machine learning purposes. Pandas intro-
duces something called a DataFrame, their main and most commonly used
data structure [17]. A DataFrame is a two-dimensional data structure that
consists of columns and rows.

Figure 3.6 shows a standard Python list containing five dictionaries of var-
ious petroleum readings. Reading and working with data in such a format
can be challenging and even impossible once the data set reaches a certain
size. This is a situation where the application of the Pandas DataFrame
would be useful.

Figure 3.6: Raw Data

Figure 3.7 displays the same data as the previous figure, but instead using
a DataFrame object to display the data. The power behind the DataFrame
object is not only due to the improved visualization. It also opens up for a
lot of methods to be called on the object that are useful for data analysis
like percentiles, min, max and many more.

16

3.4 Python

Figure 3.7: Same data converted into a Pandas DataFrame object

Although collecting such statistical data is not impossible to do without
Pandas, it does make it a lot easier and less time consuming to do so.
Figure 3.8 shows how you can retrieve key statistical data points using the
previous data set with the describe() method.

Figure 3.8: The describe() method being called upon the previous DataFrame
object

The improved data sorting capabilities Pandas provides is also useful in
combination with other Python libraries, one of which will be covered in
the following subsection.

3.4.3 Matplotlib

Matplotlib is a comprehensive Python data visualization library that has
been around for 19 years [18]. Most of Matplotlib’s utilities such as creating
various charts fall under the pyplot sub module. Pyplot enables developers
to create and customize their plots as they see fit. Supporting a ton of
different methods to do so [18]. This library was therefore included as the
necessary charts for this project required heavy customization. Matplotlib
works great with the Pandas library and is even included in their own
documentation [17].

17

3.5 Microsoft Azure

3.5 Microsoft Azure

Microsoft Azure commonly knows as just Azure, is Microsoft’s cloud com-
puting platform. As cloud services has become more prevalent in the indus-
try over the years there are now a multitude of technology companies that
offer such services. Major tech companies like Google and Amazon, each
offer their own cloud platform. Azure however, does have data a center
located in Oslo, unlike Google or Amazon [19]. This might in part explain
Azure’s prominence in the Norwegian industry compared to its competi-
tors. As stated previously, IMS have chosen Microsoft Azure as their cloud
provider and for this project we will do the same. This section will intro-
duce and give you a basic understanding of the Azure services used in this
project.

3.5.1 Azure SQL Database

Azure offers numerous different ways to store your data like storage and
database services. We reached out to the supervisor at IMS to know more
about the how they choose to store their data on the cloud. This information
proved to be useful when choosing which service would best fit the needs of
this project. The group ended up selecting the Azure SQL Database since
all of the group members had previous experience with SQL and because of
the information gathered from IMS.

3.5.2 Logic App

For the projects daily reporting system we were in need of a service that
would be able to periodically run a function. This is where Azures Logic
Apps come in handy. The Logic Apps resource lets you create and run
automated workflows. In Azure, a workflow is a process were there is an
event followed by one or more actions [20]. Azure opens up for a lot of
options and customization for what these events and actions may be.

18

3.5 Microsoft Azure

3.5.3 App Service

The Azure App service resource lets developers build and host web apps,
mobile back ends and APIs. App Service support most programming lan-
guages like Node.js, PHP, Python and many more [21]. The documentation
for the App Service is extensive and getting started is fairly simple. This
resource allows for deployment via Git through VS Code. Once your back-
end/app is deployed to the App Service you gain access to a variety of
features and data, like the amount of requests made to the application.

19

Chapter 4

Backend Development

4.1 Setting up a development environment

The first thing we did when starting to work on the project was setting up a
development environment. We did not have access to the clients production
database nor was there an API to access the test data in the database. When
creating the graphs we could have worked with hard coded test data, but
seeing as IMS would also like a live demo site we would eventually have to
get data from the database anyways.
By far the most common way to retrieve data from a database is by using
an API as discussed in chapter 3.
Our plan for creating an API is to first create a database that we populate
with data that can be used to test our graphical presentation.
We decided that the best course of action was to populate the database
with data that resemble real data from a Rheosense, as this would help us
in understanding how the data would be perceived by the end user. Thus
our first goal was to simulate a Rheosense.

20

4.2 Simulating The Rheosense

4.2 Simulating The Rheosense

When simulating the Rheosense we do not intend to create a full simulation
but rather a script that can populate our database in real time with data
that is similar to real rheology data.
Our first instinct was to determine a range of possible values for each data
point and a range for their delta, and then generate new values randomly.
This approach however is both time consuming and complicated, and when
we started looking at Rheosense data we quickly found a better solution.
IMS provided us with a set of sample data from one of their Rheosense
tests. Looking at that data we saw that it was very stable and that each
data point often only had a delta of a few decimal points, and only occa-
sionally had any significant changes.
To replicate this would be more complicated than just creating two ranges
and use them to create random data points, this would most likely create
a data set with far to much noise.

Figure 4.1: Example of the sample data provided.

As we already had a set of real data points we decided that a far simpler
and more accurate approach would be to simply use a set of real Rheosense
data.
Our plan then became, build a script that would take a set of Rheosene
data provided by IMS and loop over it while putting each data point in our
development database, allowing us to test with real data without accessing
the production database.
Python would be a suitable language for this as we were both comfortable
with it, and it is suited for working with large data sets.

21

4.2 Simulating The Rheosense

Code 4.1: liveData.py Imports
1 import time
2 import requests
3 from datetime import datetime

The simulation script does not need many external packages, we only use
time and datetime for handling date and time alongside requests to make
request to the API we made.
For us to loop over the sample data we would first have to clean it a bit,
removing any duplicates as there should not be any duplicates in the final
version of the Rheosense.
The sample we are working with is a also just a fragment of the data taken
from the database, therefore not all data types had an entry for each time
stamp. The way the Rheosense unit works is that for a set time interval
all the sensors sends a reading, this means that for each timestamp there
should be an unique reading for each data type.
There appeared to be some bugs regarding the upload to the database with
some timestamps having duplicate readings of a datatype or missing some
dataype values.
These readings had to be removed, such that we would end up with data
that resembled the intended behaviour of a Rheosense unit.
To achieve this we created a set of python functions to clean the data before
inputting the resulting list into our data generator class.

4.2.1 Cleaning the data

These functions listed in Appendix A.1 and A.2 uses list comprehension and
basic string manipulation techniques to extract the relevant data points
while checking for duplicates. We also had some functions to determine
the amount of different data types in the data set. Having determined the
amount of data types we then split the list of data points into a list with
the length equal to the number of data points, with each index of the list
containing a new list with every data point of said value.

22

4.2 Simulating The Rheosense

Code 4.2: liveData.py Data splitting support
1 def split_data(data,datatypes):
2 splitData = []
3 print(datatypes)
4 for _ in datatypes:
5 category = []
6 splitData.append(category)
7 for datapoint in data:
8 index = find_datatype(datapoint, datatypes)
9 splitData[index].append(datapoint)

10 return splitData

The data generator

With the data now in the Right format and ready to be put into the
database, to do this we created a data generator class. We chose to make a
it a class to make it usable in other script as well as make it easy to change
parameters. This we we could change the data source, interval and push
target easily.

Code 4.3: liveData.py Datagenerator
1 class DataGenerator:
2 def __init__(self,sample, timeToWait,target):
3 self.target = target
4 self.sample = sample
5 self.counter = 0
6 self.timeToWait = timeToWait
7 self.limit = self.find_limit()-1
8 def wait(self):
9 time.sleep(self.timeToWait)

Here we see the class DataGenerator being defined, an init function is

defined to initialize a new object of the DataGenerator class. The init
function defines the objects attributes. With target being the API endpoint
the data should be pushed to. Sample is the data set to be looped trough.
Counter keeps track of which timestamp should be pushed. timeToWait

is time time to wait between each generation and push. This value is then
used in the class method wait . The wait method utilizes the time
package to pause the execution of the script for a specified amount of time.

23

4.2 Simulating The Rheosense

The limit attribute is used to ensure that when looping over the arrays

the counter does not exceed the length of the shortest array. This limit

is then found upon initialization by another class method detailed in the
appendix A.3.

Code 4.4: liveData.py Methods for generating data
1 def generate_data(self):
2 while True:
3 datapoint = self.generate_datapoints()
4 self.push_datapoints(datapoint)
5 self.update_counter()
6 self.wait()
7

8

9 def generate_datapoints(self):
10 datapoints = []
11 for i in range(len(self.sample)):
12 datapoint = self.sample[i][self.counter]
13 datapoints.append(datapoint)
14 return datapoints

In the code snippets above we see the main method of the DataGenerator
and the method used for looping trough the sample data.
The generate_datapoints method uses the sample and counter attributes
to loop over the sample and create a list containing the data values for each
datatype. Counter keeps track of which time stamp to get the data values
from.
The generate_data method then uses the generate_datapoints method
to create a set of data points corresponding to a timestamp. Updates the
counter before pushing the data to the target API endpoint, theses methods
are shown in the appendix A.4, A.5, ??. Finally it uses the wait method
to wait for amount of time specified by the timeToWait attribute before
continuing the loop.

When creating the data generation script we strove to follow good object
oriented programming principles for the data generator class, with each
function doing only one thing at a time. Hopefully making it easy to reason
about the overlaying flow of the function and what it does even tough some
of the list comprehension in the individual functions may be difficult to

24

4.3 Building the database

understand at first.

4.3 Building the database

Our goal when creating the database was to end up with a database that
would be similar to the IMS production database. With a database schema
a copy would be achievable, we were however not able to get such a schema.
We therefore had to create the database based on the sample data we were
given.But most likely a 1 to 1 transfer for our database with the IMS pro-
duction database is not possible, as most likely the column names and even
database names would be different. The SQL queries would most likely
have to be rewritten to function with the production database.

Although we could not create an exact replica we could use the same tech-
nologies, namely Microsoft SQL-Server and Azure. As we were mainly de-
veloping using WSL creating a local MSSQL server was not straight forward,
we therefore used a sqlite3 database during the early phase of development.
This was done to get a prototype up and running fast, as we had previous
experience with sqlite3 and it is used in the flask documentation.
Once we were ready to host on azure we migrated to a MSSQL server, only
a few changes in the sql queries was necessary.

4.3.1 Creating the database schema

Working from the sample data we received we could then create a simple
database schema to use for our development database.
Looking at the figure 4.1 we can see that each data entry has 7 columns,
for our database we are only concerned with the value and time columns.
Seeing as all the sensors send the data at the same time, the time column
should be equal for all rows for the given sensor reading.
We decided to then keep all the sensor readings for one interval on the same
row, resulting in the following schema listed in appendix A.8.
We use real as the type for all the values as they are decimal numbers. To
make it easy to work with time, date is set as a datetime object. This makes
the date easy to work with in both python and JavaScript. When creating

25

4.3 Building the database

the database we also made queries for adding and retrieving data. We used
these queries to create helper functions for the api to call.

4.3.2 Connecting Python with the database

For python to be able to communicate with the SQL Server database a
database driver is needed. Microsoft recommends pyodbc in their documentation[22].
Python can then connect and run queries to the database with a connection
string. The details of creating a connection string and using it to establish
a connection to the SQL Server will be covered in chapter 4.2.2.

4.3.3 Inserting data

With the database connection sql queries can be ran to add data to the
database.

Code 4.5: Adding data to the database
1 def insert_data(conn, data1, data2, data3, data4, data5, ...

data6, data7, data8, data9, data10):
2 sql = ''' INSERT INTO RheosenseData(rpm_3, rpm_6, ...

rpm_100, rpm_200, rpm_300, rpm_600, rho, t_inlet, ...
yp, pv, Date)

3 VALUES(?,?,?,?,?,?,?,?,?,?,?) '''
4 try:
5 cur = conn.cursor()
6 cur.execute(sql, (data1, data2, data3, data4, ...

data5, data6, data7, data8, data9, data10, ...
datetime.now()))

7 conn.commit()
8 except pyodbc.Error as e:
9 print("Error: {}".format(e))

10 return -1

The function takes the connection to run the query on and data to be
inserted as parameters. Then a string representation of the SQL query is
made to specify where to insert the data. Placeholder values in the form of
? are used, this tells the database driver to escape the values. Escaping the

26

4.3 Building the database

values is important as it protects against sql injections by ensuring that the
values can not be interpreted as SQL commands.
Using the execute command sup lied with the SQL string and values on
the connection then runs the sql query and returns the result in the cursor.
The query is wrapped in a try except block to allow error handling. In this
case the error is printed to the console and -1 is returned to signify a failed
attempt.

4.3.4 Querying data

A similar approach is used when creating functions for querying data. When
querying data we are interested in the data between to points in time.The
same query method will be used to get the newest data since a specific time,
historic data from a point in time and a snapshot of historic time.
The query function will take two points of time as input and the different
API endpoints will supply those points in time. When querying data to
reduce the amount of API calls we will always query for all the columns of
data. seeing as they are on the same row this will not be much slower than
getting only one column.
This results in the input of the query method being, the connection, a start
time and an end time.

Code 4.6: Querying the database
1 def select_interval(conn,startDatetime, endDatetime):
2 cur = conn.cursor()
3 cur.execute(
4 "SELECT * FROM RheosenseData WHERE Date BETWEEN ? ...

AND ?",(startDatetime,endDatetime))
5 datalist = []
6 for (id, data1, data2, data3, data4, data5, data6, ...

data7, data8, data9, data10, data11) in cur:
7 datalist.append({
8 "id" : id, "3_rpm" : data1, "6_rpm" : data2, ...

"100_rpm" : data3,
9 "200_rpm" : data4, "300_rpm" : data5, ...

"600_rpm" : data6, "rho" : data7,
10 "t_inlet" : data8, "yp" : data9,"pv" : ...

data10,"Date" : data11 })
11 return datalist

27

4.3 Building the database

Since the SQL string is a bit shorter it is written directly in the execute
function, the end result is the same. The SQL statement is ran on the
connection with the result being returned in the cursor.
The SQL statement works by selecting all the data from the table specified
that corresponds to the condition set by WHERE . In this case being all
the rows with a date value between the two supplied time values from the
RheosenseData table.
To prepare the result for the API a list of dictionaries is made by looping
trough the contents of the cursor cur . This list is then returned, the
format makes it simple for the API to return it as a JSON object.

4.3.5 Stats query

To implement some of the features in the front end we require the average,
minimum and maximum values of the different columns. There exists inbuilt
functions in SQL to achieve this. This allows us to obtain these stats directly
from the database without handling the values with python. One problem
we ran into was that the name of the column to run these built in commands
on could not be supplied by placeholder values.
we therefore had to create individual functions for each column and build
a switch to direct the API request to the correct functions. This switch is
simply an else if method and can be found in the appendix A.3.

Code 4.7: Querying for stats
1 def select_stats_3rpm(conn,category,start,end):
2 cur = conn.cursor()
3 cur.execute("SELECT avg(rpm_3),min(rpm_3),max(rpm_3) ...

FROM RheosenseData WHERE Date BETWEEN ? AND ? ...
",(end,start))

4 result = cur.fetchall()[0]
5 stats = {
6 "name" : category,
7 "average" : result[0],
8 "min" : result[1],
9 "max" : result[2]

10 }
11 return stats

Here is an example of such a function, this function retrieves the stats for

28

4.4 Creating The APIs

the 3 rpm column.
It functions similarly to the query for data values but instead of returning
all the values as denoted by Select * it now returns the requested stats as
denoted by the SELECT avg(rpm_3)... function. These functions can not
be ran on * or ? making it neccessary to create individual functions for
each column.
Again the result is prepared for the API by inserting it into a dictionary
before returning the dictionary.

4.4 Creating The APIs

After developing the Rheosense simulator and building the database we
need something to allow them to communicate together, an API. Using the
Python micro-framework Flask we can develop these APIs and allow for
communication between the simulator and the database. The API’s for
this project also needs to allow the frontend, both mobile and web to be
able to communicate with the database.

Figure 4.2: Flow of communication for the application.

Figure 4.2 illustrates the flow of data for this project, where the blue arrows
represents the APIs. The Rheosense simulator will continuously push data
to the database and the fronted applications will be able to retrieve this
data. This section will cover the various APIs developed to make that
possible.

29

4.4 Creating The APIs

4.4.1 Configuring the app

To get this project going we have to be able to add data from the Rheosense
simulator into the database. As mentioned in chapter 3 we are going to use
Flask to implement the necessary APIs. To get started we are first going
to need to install Flask. This can be done through the terminal using pip3.

Code 4.8: app.py Flask Installation using pip3
1 pip3 install flask

Once Flask has been installed we created a new file named app.py. This is
the file that is going to contain everything to do with the APIs. To start
off we are going to import the following:

Code 4.9: app.py Imports
1 from flask import Flask, g, request
2 import json
3 from flask_cors import CORS
4 from decouple import config
5 import pyodbc
6 from azure_db import insert_data, select_data, ...

select_interval, add_user, get_hash_for_login, ...
get_user_by_email

In the first line we start off by importing Flask into our project including
g and request. Flask provides us with two contexts. The application context
and the request context. Here g is a special object associated with the
current application context that is used to store data that can be accessed
by multiple functions during a request. The application context is created
before a request comes in and is torn down (deleted) after every request is
finished. The request object is associated with the current request and is
required to retrieve the request data [23]. For this project Pythons built-in
package json will be used to work with JSON data. It includes a variety
of methods for interchanging data formats, but this project will primarily
utilize the json.dumps method [24].

Flask by default does not allow cross-origin requests. This means that all

30

4.4 Creating The APIs

requests made to the server outside the server will receive a
Cross-Origin Request Blocked error. To enable cross-origin requests we

first have to install the Flask-CORS extension [25]. The following command
shows how to install the extension using pip3, where the -U option will
upgrade all the packages after the installation is complete.

Code 4.10: app.py Flask-CORS Installation using pip3
1 pip3 install -U flask-cors

Once the installation is complete, we can go ahead and import the CORS
class from the extension as shown in line 3 in code snippet 4.9.
The application will need access to sensitive information like the database
connection string, secret keys and both email username and password. To
store these in a safe manner we are going to import the config object

which is part of the decouple Python package [26].

As it is not a built-in package we will have to install it using pip3:

Code 4.11: app.py python-decouple Installation using pip3
1 pip3 install python-decouple

To be able to connect and work with the Azure SQL database in python a
database driver is needed. Microsoft recommends using the pyodbc driver
when working in python [22]. The driver can be installed using pip3:

Code 4.12: app.py pyocdbc Installation using pip3
1 pip3 install pyocdbc

At last we import all the database queries from the setup_db module
covered in section 4.3. Now that all of the necessary imports are completed
we can start configuring our application as shown in code snippet 4.13.

31

4.4 Creating The APIs

Code 4.13: app.py Configuring the app
1 ## Finds the secret key stored in a .env file
2 secret_key = config('secret_key')
3

4 ## Creates and Configures the app
5 app = Flask(__name__)
6 CORS(app)
7 app.debug = True
8 app.secret_key = secret_key

1. secret_key = config('secret_key') sets the secret_key variable
to the secret key value stored in the .env file using the config object
imported from decouple.

2. secret_key = config('secret_key') creates an instance of the
Flask class where the __name__ parameter is the current module,
which tells the app its path.

3. CORS(app) enables CORS on all domains and routes [25].

4. app.debug = True sets Flask in debug mode. This enables the
debugger and hot reloading, which is useful during development.

5. app.secret_key = secret_key sets the secret key of the app to the
secret key stored in the .env file. This key will primarily be used to
securely sign the session cookies.

4.4.2 Establishing a connection with the database

As the app has been properly configured it now needs to be able to com-
municate with the database. Information needed to establish a connection
to the database is found on the Azure Portal. This information is then put
into the .env file mentioned previously which will be hidden. We can then
use the method used previously to access the necessary values inside .env
file as shown in code snippet 4.14.

Code 4.14: app.py Configuring the DB connection string

32

4.4 Creating The APIs

1 ## Azure Database Connection Configuration
2 server = config('server')
3 database = config('database')
4 username = config('username')
5 password = config('password')

Once the required values have been retrieved they can be put together into
a complete connection string:

Code 4.15: app.py Completing the connection string.
1 # Construct connection string
2 conn_string = 'DRIVER={ODBC Driver 17 for SQL Server};
3 SERVER='+server+';DATABASE='+database+';UID='+username+
4 ';PWD='+ password

Now that the connection string is constructed we can go ahead and
create a function get_db() that will return a connection to the Azure
SQL database as shown below.

Code 4.16: app.py Creates the DB Connection.
1 def get_db():
2 if 'db' not in g:
3 g.db = pyodbc.connect(conn_string)
4

5 return g.db

In line 2 of the code snippet 4.16 the application context g checks whether
a connection to the database has been made during the request. If it has
it will return the current connection, and if it has not, it will return a new
connection. This makes sure that only one connection to the database is
made per request, thus reducing redundancy. This is especially important
as connections to the database are quite expensive to make [27].

33

4.4 Creating The APIs

4.4.3 Closing the connection to the database

The database connection should also be closed after every request due to
safety concerns, such as memory leakage. It could also lead to errors where
there are too many connections open at once. To counteract this we want
our connection to be closed after every request. For this purpose Flask
provides the teardown_appcontext() decorator. Functions marked with
this decorator will be called every time the application context is torn down,
which is after every request [23]. The code below shows how we can use the
Flask decorator to close the database connection if it exists.

Code 4.17: app.py Closes the DB Connection
1 @app.teardown_appcontext
2 def teardown_db(exception):
3 ##Closes the database at the end of the request.
4 db = getattr(g, 'db', None)
5 if db is not None:
6 print("close connection")
7 db.close()

Here the tearrdown_db(exception) function will be called whenever any
request is finished and will close the connection if there is any. Decorators
in Python starts with an @ and are often used to add functionality or
modify the behaviour of functions.

4.4.4 Creating the first API

Now that the app is configured and there are functions to help us connect
and disconnect to the Azure database we are finally able to start developing
the APIs required for this project. Following the Flask documentation we
can utilize the @app.routes() decorators [28]. The decorator takes two
parameters:

• rule - the URL string which will trigger the function below.

34

4.4 Creating The APIs

• options - are optional arguments e.g methods like POST or GET,
where GET is the default argument.

For this project the Flask special routes decorator will be used to set up
and specify our APIs. To start off building the first API we need to specify
the URL and the methods to be used. As we want to push data from the
Rheosense simulator into the database an intuitive URL name would be
/Add . Secondly as we are pushing data from the client to the server, the

method for this route has to be POST . A general rule of thumb is that

when you are adding/updating data you should use the POST method,

and when you are retrieving data you should use the GET method [29].
Now that we have established what our route decorator is going to look like
we can go ahead and create the function it will trigger. The /Add API
function should:

1. connect to the database

2. collect the data its been sent

3. insert the data into the database

4. return a successful message if it was indeed successful.

Code listing 4.18 shows how step 1-4 can be achieved. Note that we wrap
the returning dictionary inside the json.dumps() method which changes
the format from a python dictionary to JSON.

Code 4.18: app.py Add data to database API
1 @app.route("/Add", methods=['POST'])
2 def push_to_db():
3 conn = get_db()
4 data = request.json
5 insert_data(conn, data...)
6 return json.dumps({'msg' : 'successful'})

Now that our Flask app is set up and we have created the first API, we can
go ahead and run the application and check whether its working or not. To

35

4.4 Creating The APIs

do this we are going to use the API platform Postman. Postman is a tool
that lets developers send HTTP request to test and iterate their APIs. Be-
fore we can send a HTTP request we first have to run our application. This
can be done by running the python3 app.py command in the terminal.
Once its up and running Flask lets us now its running on localhost port
5000. We can now go ahead and enter the correct URL and method for our
API as shown in figure 4.3.

Figure 4.3: Postman Configurations

For our API to work correctly we also have to send it some data it can push
to the database. Postman lets us send data, and we choose to do so in the
JSON format as shown below:

Figure 4.4: Postman dummy data

Now that everything is set up and configured we can go ahead and send
the HTTP request and wait for the response. The response from the Flask
application returns a successful message as shown in figure 4.5.

36

4.4 Creating The APIs

Figure 4.5: Postman HTTP response

Now the that the API is functional and running the Rheosense simulator
is able to continuously add data every second to the database. Once the
data has successfully entered the database it needs to be retrieved in order
to create the desired graphical interfaces.

4.4.5 Get and GetInterval API

Developing the APIs responsible for retrieving data will follow a similar
structure as the previous API. The main difference is that we are retriev-
ing the data and not adding any, and will therefore not utilize the POST

method. There are two ways we would like to collect the petroleum data
for the frontend:

• Get which returns the entire data set.

• GetInterval which returns data between a specified timestamp.

The Get API utilizes the select_data query which retrieves all the
records in the database. This API will primarily be called when a user
wants access to historical petroleum data. It is fairly straightforward to
implement this function and we will therefore focus on the GetInterval

API. The API can be accessed by the URL /GetInterval using the GET

method and requires an argument Delta . Here Delta is defined as the
difference in seconds between two timestamps.

37

4.4 Creating The APIs

This argument can then be passed into the select_interval query to-
gether with the database connection to retrieve all records between those
timestamps. Code listing 4.19 shows how this could be accomplished.

Code 4.19: app.py GetInterval API
1 @app.route("/GetInterval", methods=['GET'])
2 def retrive_interval():
3 conn = get_db()
4 Delta = request.args.get("Delta")
5 return json.dumps(select_interval(conn, Delta))

4.4.6 GetStats API

The last API necessary to create the graphical interface is the GetStats

API. This API requires two arguments, Delta and Column where

Column is either the name of one of the petroleum data points or all. These

arguments are then passed to the select_stats query which returns key
statistical data points.

4.4.7 Securing the APIs

Since we are going to host all of our APIs on Azure its important that
only people with access are allowed to use them. We are therefore going to
implement something called API keys. An API key is a key that is used
to authenticate projects, clients or users that make a request to the API in
question [30].

It is used to restrict access, which in our case is important as we are working
with sensitive data. The API responsible for sending emails is also a prime
target for abuse as spamming the email sender API will result in the users
inbox being bombarded. To counteract this we are going to define a new
custom decorator as shown in code snippet 4.20.

38

4.5 Login and registration

Code 4.20: app.py Custom decorator
1 # Custom decorator function
2 def require_apikey(f):
3 @wraps(f)
4 def decorated_function(*args, **kwds):
5 if request.args.get('api_key') and ...

request.args.get('api_key') == config('api_key'):
6 return f(*args, **kwds)
7 else:
8 abort(401)
9 return decorated_function

To create our own custom decorator we import the wraps decorator
from the the functools module. The syntax for creating the decorator is
inspired by the functools documentation [31]. It is the code inside the
decorated_function that is being run when the decorator is called. The

function checks whether there is an api_key argument supplied and if it
is the same as the one stored in the .env file. It will return a 401 internal
server error if either is false. We can now add the custom decorator to the
APIs that require authentication like so: @require_apikey .
For creating the key value stored in the .env file we used the follow script:

Code 4.21: app.py Create key
1 from base64 import b64encode
2 from os import urandom
3 ## Creates the secret key that will be stored in a .env file
4 random_bytes = urandom(64)
5 token = b64encode(random_bytes).decode('utf-8')
6 print(token)

4.5 Login and registration

Allowing users to login and register for our applications requires user reg-
istry. We will be creating a new database table, Users , that will serve
as such a registry. The table should store the user’s name, email, hashed
password, role, permissions and the date the account was created. The code
listing for the Users table can be found in appendix A code listing A.9.

39

4.5 Login and registration

Once our table has been created we want to create some useful queries we
can run on the table. The following queries needed are:

• select_users query which will retrieve all users.

• add_user query that is going to add a new user to the database.

• get_user_by_email will return a user based on its email.

• get_hash_for_login used to validate login attempts.

All of these queries function in the exact same way as the ones in section
4.3 do. The major difference in the Users table is the hashedpassword

column. This will store a hashed value of the users password as it is un-
safe and considered bad practice to store the password as clear text. We
will be importing generate_password_hash and check_password_hash

from werkzeug.security to help us hash and verify passwords. When a

user register a new account we will be using the generate_password_hash

function to hash the password before adding it to the database.

Similarly when a user attempts to login we will use the check_password_has

function to check whether the hash of the password being sent in during
the login attempt matches the hash of the user stored in the database. The
function below shows how we use the queries created and the imported
functions to validate a login attempt from a user.

Code 4.22: app.py Validate_login function
1 def validate_login(email, password):
2 print(password)
3 conn = get_db()
4 hash = get_hash_for_login(conn, email)
5 if hash == None:
6 return False
7 return check_password_hash(hash, password)

The API endpoint for login and register will be /Login and /Register ,

40

4.6 Deployment to Azure

and both APIs will be using the POST and GET method. This is because
both endpoints will be updating/adding data and returning data.

4.6 Deployment to Azure

In this section we are going to cover the Azures App Service and how we
utilized that resource to host our backend APIs.

4.6.1 Creating the App Service on Azure

When creating the App Service resource we followed the procedure detailed
by the Microsoft documentation [32]. These are the key configurations set
for our App Service resource:

1. Resource group → rg-bachelor-development.

2. Name → bachelor-demo-ims.

3. Runtime stack → Python 3.8.

4. Region → Norway East.

We selected the App Service Plan B1 (basic plan) as recommended by Mi-
crosoft [32]. We then hit create and after a couple of minutes the App
Service is successfully deployed.

4.6.2 deploying the Flask app to Azure

There are several ways of deploying your application to Azure. For this
project we decided to deploy our application using Visual Studio Code.
To be able to deploy via VS Code we first have to install the following
extensions shown in figure 4.6.

41

4.7 Automated Reporting Feature

Once you have the extensions installed you are able to login to your Azure
account through the code editor. When you are logged into your Azure
account you are able to view all your Azure Services through the editor.

Figure 4.6: VS Code
extensions.

Before selecting the option to deploy the applica-
tion you first have to add a requirements.txt file
containing all the packages used in the project.
This needs to be done in able for the App Service
to successfully run your app. This can be done by
running the pip3 freeze > requirements.txt

command in your terminal as long as you are in the
correct directory. We can now go ahead and deploy
the Flask app to the App Service created earlier.
Once its successfully deployed you get access to
key information about your apps performance on
the Azure Portal website such as traffic in and out,
requests made per minute, time per request etc.

4.7 Automated Reporting Feature

This section will cover one of the main objectives for this project. An
automated email reporting feature. This feature requires the use of different
tools and can be divided into four steps:

1. Collecting the data for the last 24 hours.

2. Plotting the data in a satisfactory manner and saving the plot as a
PDF.

3. Sending an email containing the PDF to all registered users.

4. Automatically repeat steps 1-3 every 24 hours.

Before we start collecting the data we are going to create a new route
decorator like so:

42

4.7 Automated Reporting Feature

Code 4.23: Send Report route decorator
1 @app.routes("/SendReport", methods=["GET"])
2 @require.apikey
3 def send_email():

Now every time the /Send_email URL is hit the send_email() function
below will trigger if there is a valid API key supplied. It is inside this
function that the report will be generated and sent off to all the registered
users emails.

4.7.1 Collecting data

The first step to creating our plot is to gather the petroleum data for the
last 24-hours. To do that we are going to first establish a connection with
the database using the get_db() function. With the connection estab-

lished we can go ahead and use the select_interval query to retrieve
the desired records. Before executing the query we need to convert 24-hours
into seconds, which gives us Delta = 86400 . Now that the data has been
successfully collected we are going to need to create a satisfactory chart to
send to registered users.

4.7.2 Creating the plot

The code for generating the plot is going to take up a lot of space. In order
to keep the code clean we are going to create a new file in the same directory
as app.py that we are going to call generate_report.py . To start off
we are going to import the following:

Code 4.24: generate_report.py Imports
1 import pandas as pd
2 import numpy as np
3 from matplotlib import pyplot as plt

Numpy and Pandas are going to assist in the handling of data while mat-

43

4.7 Automated Reporting Feature

plotlib is going to be the library responsible for plotting the charts. Af-
ter importing the necessary libraries we are going to define a function
plot_report(datapoints) .

The function has one required argument which is the data points that will
be supplied by the select_interval query mentioned in the previous
subsection. Code listing 4.25 shows the first couple line of codes inside the
function.

Code 4.25: generate_report.py plot_report()
1 def plot_report(datapoints):
2 df = pd.DataFrame(datapoints)
3 ax = plt.subplots(figsize=(15,12))
4 ax1 = plt.subplot2grid((1,5), (0,0),
5 rowspan=1, colspan = 1)
6 ax2 = ax1.twiny()

We start off creating a DataFrame of the received data points. We then
continue creating the figure that will contain the subplots where the figure’s
width and height is 15 and 12 inches respectively. Next is setting up the
plot axis as shown in line 4-6.

When configuring the plot axis we specify how many there are (1,5) and its
position in the figure (0,0). The last line of code twins the second y-axis to
the first one. There are 10 such axis in total and they all follow the same
structure as above with shifting positions to the right. As all the axis and
subplots are in place we can now continue to plot our 24-hour data set onto
the individual axis.

Code 4.26: generate_report.py plotting the axis
1 ax1.plot("3_rpm", "Date", data=df, color = "green",)
2 ax1.set_xlabel("3 rpm")
3 ax1.set_ylabel("Date")
4 ax1.xaxis.label.set_color("green")
5 ax1.invert_yaxis()

The first line plots the 3_rpm and the Date column from the DataFrame
to the x and y axis respectively. Further on the x and y label is set and

44

4.7 Automated Reporting Feature

colored. To finish off we invert the y-axis as reading petroleum data from top
to bottom is preferred by most petrophysicists. This is because it intuitively
resembles the depth of any particular well.

In addition to setting x and y labels we also define the bounds of the x-axis
and x-ticks. This is not included in the code listing above as it takes up
a lot of space and will be covered in detail in chapter 5. The rest of the
axis follows a similar structure as ax1 . Towards the end of the function
we utilize the syntax shown in line 1 code listing 4.27 to make changes to
multiple axis at once.

Code 4.27: generate_report.py applying style changes
1 for ax in [ax1, ax3, ax5, ax7, ax9]:
2 ax.grid(which='major', color='lightgrey',
3 linestyle='-')
4 ax.xaxis.set_ticks_position("top")
5 ax.xaxis.set_label_position("top")
6 ax.spines["top"].set_position(("axes", 1.02))

in the code snippet above we configure the grid style of the subplots as well
as configuring the top spines position and visibility. Here spine refers to the
lines surrounding the subplot. The even number axis also have their top
spines visible and are position on top of the odd numbered axis spines.
To finish off we only want the outer left- and right-hand side subplot to
show their y-axis ticks. This is done by removing the y-axis ticks of axis
3-8 like so:

Code 4.28: generate_report.py applying style changes
1 for ax in [ax3, ax4, ax5, ax6, ax7, ax8]:
2 ax.set_yticklabels([])

We end the function by applying the tight_layout() method which ad-
just the padding of the subplots and save the figure as PDF using the
savefig() method. Passing some sample data into the function returns

the following PDF containing the figure 4.7.

45

4.7 Automated Reporting Feature

6.45 6.66 6.87
3 rpm

13 14:00

13 14:05

13 14:10

13 14:15

13 14:20

13 14:25

13 14:30

Da
te

8.76 8.98 9.19
6 rpm

30.92 31.32 31.73
100 rpm

45.64 46.21 46.77
200 rpm

58.92 59.35 59.79
300 rpm

91.79 92.92 94.06
600 rpm

24.92 25.56 26.20
yp

33.34 33.80 34.26
pv

21.53 21.98 22.42
t_inlet

13 14:00

13 14:05

13 14:10

13 14:15

13 14:20

13 14:25

13 14:30

1.04 1.11 1.19
rho

Figure 4.7: Plot produced by the plot_report function.

We can now import the plot_report() function into the app.py file
where we will be completing the API responsible for sending the emails.

4.7.3 Sending emails to users

This project included the Flask-Mail extension to be able to send emails
via the Flask application. Flask-Mail is not a built-in Flask extension,
but can be installed using pip3. Upon completing the installation we want
to import the Mail and the Message class. We now want to make the
following configurations to allow our application to send emails through a
Gmail account:

Code 4.29: app.py Flask app configurations for sending email via Google

46

4.7 Automated Reporting Feature

1 ## Flask mail configurations
2 app.config['MAIL_SERVER']='smtp.gmail.com'
3 app.config['MAIL_PORT'] = 465
4 app.config['MAIL_USERNAME'] = config('email_username')
5 app.config['MAIL_PASSWORD'] = config('email_password')
6 app.config['MAIL_DEFAULT_SENDER'] = config('email_username')
7 app.config['MAIL_USE_TLS'] = False
8 app.config['MAIL_USE_SSL'] = True

MAIL_SERVER is set to Googles SMTP server for Gmail services, allowing
us to connect to our own Gmail account using Flask [33]. In order for Flask
to login to our Gmail account we have to set the MAIL_USERNAME and

MAIL_PASSWORD configuration to our username and password.

These values are accessed through a .env file instead of being hard coded di-
rectly. The MAIL_DEFAULT_SENDER configuration is set to the senders email
which makes the code responsible for sending the email cleaner as you wont
have to specify the sender email each time. Now that our configurations are
set we can create an instance of the Mail class as shown below.

Code 4.30: app.py Creates an instance of the Mail class
1 mail = Mail(app)

Before sending any emails we first have to call the select_users query in
order to collect all registered users and their emails. As the API will be send-
ing the same email to several recipients we will be using the mail.connect

method to send our emails as detailed in the Flask-Mail documentation [34].
Code snippet 4.31 shows the part of the code inside the SendReport API
responsible for retrieving the users and sending them the mail containing
the generated well report PDF shown in figure 4.7.

47

4.7 Automated Reporting Feature

Code 4.31: app.py Part of the code responsible for sending the actual emails.
1 users = select_users(conn)
2 with mail.connect() as mail_conn:
3 for user in users:
4 msg = Message('Well Report',
5 recipients = [user.email])
6 with app.open_resource("Well-Report.pdf") as fp:
7 msg.attach("Well-Report.pdf", ...

"application/pdf", fp.read())
8 mail_conn.send(msg)

The first line of code in the listing above retrieves the users while the second
line establishes a connection with the Google SMTP server. It thereafter
loops through every user and creates a new instance of the Message class
and is supplied with a subject string and the users email. Before the email
gets sent in line 8, the Well-Report PDF is attached. We can now use
Postman to trigger the API to test whether it works or not. When calling
the SendReport API we also have to remember to include the necessary

API key for it to go through as it uses the @require.appkey decorator.

Figure 4.8: Email received
with PDF.

After sending a successful request to the
API via postman, we can sign in to our
Gmail account and check our inbox for the
incoming email. The email has been sent
successfully and the result is shown in
figure 4.8.

Here we can see that the subject name of
the email is identical to the subject string
in code listing 4.31 and that the Well-
Report.pdf file is attached.
The PDF attachment can be opened for pre-
view or downloaded directly from the Gmail
inbox.

We now have an API that generates a plot
containing petroleum data over the last 24-
hours and sends that plot via an email.

48

4.7 Automated Reporting Feature

In order to complete this feature we need to be able to trigger this API at
time 00:00 every 24-hours. This is where Azures Logic Apps resource comes
in handy.

4.7.4 Azure Logic Apps

The Logic App resource is a cloud-based platform for developing automated
workflows. By workflow Azure simply means a set of triggers followed by
a set of actions [20]. The specifics regarding the triggers and actions are
customizable and up to the developer. The figure 4.9 below shows the
configuration chosen for our Azure Logic App.

Figure 4.9: Configurations for the Azure Logic App

The Recurrence tab specifies the automated workflow’s trigger. Here we set
the interval equal to 1 and frequency equal to the day. We want the trigger
to occur at 00:00 and the preview reveals that the current configurations
will run at 00:00 every day. Now that the trigger is configured correctly
we want to configure the following action. We specify the action to be a

49

4.7 Automated Reporting Feature

HTTP request using the GET method and the URL shown in the tab. Here
the API key argument being passed is a placeholder for the actual key that
is being used in production. We hit save and the resource is now up and
running.

Figure 4.10: List of all the Azure Resources used in this project.

Figure 4.10 shows all the Azure resources used in this project under the
rg-bachelor-development resource group.

50

Chapter 5

Web Development

5.1 Structure

There is not a strict way to structure react an application according to the
react documentation [35]. Although a common way of structuring your files
is to group by functionality to avoid several layers of nested folders. This is
the structure we chose to follow, creating folder for assets, components and
helper functions. Assets are any pictures or other media that needs to be
accessed. Components will contain all the components used in the project.
The helper folder contains all the helper functions needed. Helper functions
are JavaScript functions used by the components. Components themselves
are also JavaScript functions. The key difference between a helper function
and a component boils down to components returning JSX or a state while
helper functions modify data.

5.1.1 Routing

React is a framework primarily used to make Single Page Applications,
SPA‘s. This is also the case for our application. SPA‘s are web pages that
are only loaded once from the server and then the content is dynamically
changed by using JavaScript. To allow such applications to have different

51

5.1 Structure

pages a router is needed. A router intercepts https connections containing
the URL for a new route, then shows that route. For the user it looks like
a new web page has been retrieved form the server, but in actuality the
same page is still shown but with new content. This reduces the amount of
requests made to the server.
A popular library used for routing is React Router, which is used by com-
panies like Microsoft and Netflix [36].
To match incoming URLs with the right content the react router has to
maintain its own history stack that is based on how a web browser creates
a history stack. This allows the user to navigate with the backwards and
forwards pages as one would on a normal website [37].
To serve the right content to the user, React router will match the location
path of the URL with the router configuration and find a match [37]. The
location path of the URL is the part denoting which page it is looking for
example the URL, https://www.website.com/page, here /page is the loca-
tion path.
The router configuration is the route tree defined inside the react applica-
tion, it contains all the routes and its corresponding components [37].

Code 5.1: Route tree
1 <Router>
2 <div className="App">
3 <NavBar />
4 <div className='Content'>
5 <Routes>
6 <Route path="/" element={<LiveChart />}></Route>
7 <Route path="/historic" ...

element={<HistoricChart />}></Route>
8 <Route path="/LogIn" element={<LogIn />}></Route>
9 </Routes>

10 </div>
11 </div>
12 </Router>

Above is the route tree for our prototype application. The router compo-
nent wraps the entire application while the routes are defined inside the
Routes tag. This allow for components defined outside the routes tag to
be the same for all the routes, useful for headers, footers and navigation
bars. When the location has been matched, the component mapped to the
location will be rendered [37].

52

5.1 Structure

5.1.2 Rendering

In computer science rendering is used to describe the transformation of data
into a graphical representation. The use of rendering in react is similar. It
refers to the creation of the web page. One can think of it as the action
of translating the code into the visual representation of the web page. To
understand the implications of this we need to understand how a react page
functions.
In a regular web page the blueprint for the page is called a Domain Object
Model abbreviated to DOM. The DOM is a collection of object represen-
tations of the website. This allows programming languages like JavaScript
to interact with the website, changing and even adding content to the web
page [38].
A react page however maintains a Virtual-DOM. React’s virtual-DOM is a
collection of the react components as JavaScript objects. When the page is
being rendered react works through the virtual-DOM collecting all states,
props and runs any functions.
The entire virtual-DOM is not rendered on each re-render, only the objects
below the object that triggered the re-render. This has major performance
effects. Best case scenario being an object far down in the object tree
changes, only it and those objects below it re-renders. On the flip-side if
one is not careful this can cause a minor change at the top of the tree to
trigger a re-render of the whole page.
There are tools like memoization in the form of the UseMemo Hook to
prevent designated calculations from being re-run on each render.

5.1.3 State and props

There are two main tools for handling component data in react, state and
props.
A general rule of thumb is that state is data that lives inside a component
while props are passed into the component. Changing the state will also
trigger a re-render of the page, unlike props that can be changed without
causing a re-render.

53

5.1 Structure

Managing re-rendering is a key part of developing react components. A
common pattern is to pass a state from one component into another as a
prop. This is the pattern of state management that is used in this project.
It is easy to reason about in a small application with a unilateral data flow.
For applications with a more complex data flow, a more advanced pattern
is optimal, like the redux pattern.
When working with state in functional components one has to use something
called React hooks.

5.1.4 Hooks

Hooks are a novel concept in React. Definition from the react documenta-
tion reads as follows; "Hooks are functions that lets you hook into React
states and lifecycle features from function components."[39].
React provides a set of built in hooks to do common tasks, while also allow-
ing developers to create their own custom hooks. In this project the hooks
used are the useState, useEffect and useMemo hooks.
The useState hook is a hook used to work with states. When using useState
it creates the state and a function to update the state.

Code 5.2: example of useState
1 const [time, setTime] = useState(1800);

Above is an example of useState from the project. The state called time is
declared and initialized with the value 1800 and with a function setTime to
update the state.

The useEffect hooks is a hook that provides much of the same function-
ality as onMount and similar methods from regular JavaScript. It allows
the running of code based of the life-cycle of objects in the Virtual-DOM ,
often referred to as side effects in React [39].

54

5.1 Structure

Code 5.3: example of useEffect
1 useEffect(() =>{
2 fetch(`urlString`,{method: "GET",})
3 .then(res => res.json())
4 .then((data) =>{
5 setStats(data);
6 })
7 }, []);

Above is another example from our project where a useEffect hook is used
to fetch data from our API on the initial render of the page. Here we also
see the setStats method being used to update the state called Stats.
React hooks will run on every render of the application and by design is
not allowed to be run conditionally. Every render of the page must run
the same amount of hooks, one can therefore not put a hook inside an if
statement [39].
This can cause performance problems, especially when fetching data from
an API. This default behaviour would cause every change on the page to
run all the effects and calling the API for every re-render. React provides
a tool to solve this problem. A second parameter can be added to the use-
Effect. This parameter is often referred to as a dependency array. React
will not run the useEffect if the contents of the dependency array has not
changed.
In the above example an empty array is passed as this conditional argu-
ment. This means that the contents will never change and the effect will
only be run on the initial page load.

Another complication of every hook being ran on each render of the page
is when an expensive computation is required. This computation gets cal-
culated for each re-render even if its inputs has not changed.
The useMemo hook is reacts tool for solving this problem. Much in the
same way as in useEffect, a conditional argument is passed to the useMemo
hook. This conditional argument will be an array and checks for changes.

Code 5.4: example of useMemo
1 const data = useMemo(() => ...

CreateStatsData(stats,categories),[stats,categories]);

Above we see the useMemo hook used when creating a stats table in the

55

5.2 Charting

project. The result of the useMemo hook is memoized, meaning that that
value will be returned on future renders, unless the dependency array has
changed.

5.2 Charting

Figure 5.1: Sample Graph
provided by IMS

One if the main objectives of this project
is improving the graphical presentation of
the rheology data gathered by the RheoSense
unit. To do this we need to create a
chart that represent the data in a rec-
ognizable and useful form for mud engi-
neers.
One of the main requirements is that time
is represented as descending on the y-axis
with the data represented vertically. This
is to intuitively represent how the data
changes as the drill bit moves down the
well.

How deltas (variation) in the data value is
represented must also be kept in consider-
ation. The data being represented is used
to describe the properties of the drilling
mud. In section 4.2 we discussed how
the values are quite stable. This stability
has to be represented in the graph. This
means that the domain of the x-axis must
be small enough to show changes but not
to small such that a change of a few dec-
imal points is shown as a large fluctua-
tion.

With this in mind we set out to find a suitable charting library. Recharts
was a natural choice as it is a charting library based on d3.js made specifi-
cally for React.

56

5.2 Charting

It uses configurable components to build charts. It is also released under
the MIT licence allowing it to be used freely in a commercial product.

5.2.1 Chart component

When developing the graph we started by hard coding in each graph and
making changes in different graphs allowing us to compare designs easily.
We worked with our supervisor from IMS to come up with a working design
using this method. We determined that grouping two values in each graph
created a view that was space efficient and readable.
To allow for suitable domains on the x-axis stacking two x-axes was needed.
To improve the readability of the graph we also determined that each line
should not be centered on the middle of the x-axis, but rather shifted to
separate sides.
This lead us into the problem of defining the x-axis domains.

Determining the x-axis

In most cases the x-axis can simply be determined automatically by the
charting library. This approach is problematic for live data representation,
as the domain will be calculated differently as the data changes.
This causes the x-axis ticks to shift, making it difficult to spot changes in
the values by observing the line. This problem is most observable in short
time representations.
We decided that the best cause of action would be to define a static x-axis.
This created desirable results. When working with hard coded graphs this
was easy as we could look at the graph and create the domain.
However for a general graph component we need a way to determine the
domain based on the values supplied to it. We decided that the most
consistent way of determining the axis was to look at the historical data.
To do this we require statistical data for the historical data. This lead
to the creation of the GetStats API endpoint detailed in 4.4.6. With the
introduction of stats we created several helper functions to create x-axes
from the supplied stats.

57

5.2 Charting

Code 5.5: The SetAxis function
1 export function SetAxis(stats,index){
2 let axis = CreateAxis(stats);
3 let amount = 0.125
4 if (isEven(index)){
5 return ModifyAxis(axis,"left",amount);
6 }
7 return ModifyAxis(axis,"right",amount)
8 }export default SetAxis;

The function above is responsible for creating the desired x-axis. It enables
two x-axis to be stacked on the same graph as it shifts the first axis to the
right, and the second axis to the left. The CreateAxis, ModifyAxis and
isEven functions can be found in the appendix A.10, A.11, A.12.
When determining the axis in CreateAxis we look at the difference between
the average value and maximum value. Then a value equal to 3 times this
difference is added to the average to create the upper bound of the axis
domain. To find the lower bound we subtract the same value from the
average.
It was necessary to use this convoluted method due to the presence of some
data readings with the value 0. These values should not be present in the
final Rheosense version as 0 values should be filtered out. In the future a
simpler function looking at the max and min values should be sufficient.
For cases where the difference is lower than 1, we set 1 as the domain,
subtracting 0.5 and adding 0.5 to the average for the respective start and
end points of the domain.
Then for even index numbers the axis is shifted to the left, moving the line
to the right of the original center. For odd index number the opposite is the
case. When these axes domains are provided it results in a graph with two
lines that are of center to different sides, making the graph easier to read.
With the problem of creating generalized axes solved we could then start
to create a generalized chart component.

General chart component

The goal of a General chart component is to create a component that creates
a chart based on the given data values. Due to the x-axis constraints the
stats are also needed. We also want the chart to contain multiple lines so

58

5.2 Charting

it needs to handle being supplied with more than 1 set of data.
After receiving the data from the API it is in the form of a JSON object.
When processed it then takes the form of a list of dictionaries.
The dictionaries has a key that is the name of the column and a value that
is a list of all the values in the column. When inputting the whole list to
the chart and setting the key for a line equal to one of the column keys this
creates a line with the values from the value list.
This allows us to create the following component:

Code 5.6: Chart.js - Generalized chart component
1 <LineChart className='charts' width={325} height={900} ...

data={items} margin={{MarginSpecifications }} ...
layout='vertical'>

2 {categories.map((category,index)=>{
3 return (<>
4 <Line
5 xAxisId={index} key = {"Line"+index} ...

dataKey={category}
6 type="monotone" stroke={colours[index]}
7 isAnimationActive={false} dot={false} ...

allowDataOverflow={true}
8 />
9 <ReferenceLine

10 xAxisId={index} key = {"refLine"+index}
11 x={stats[getStatsIndex(category,stats)].average}
12 stroke={colours[index]} strokeDasharray="3 3"
13 />
14 <XAxis
15 xAxisId={index} key={"axis"+index}type="number"
16 domain={
17 SetAxis(stats[getStatsIndex(category,stats)],
18 index)}
19 orientation="bottom" dataKey={category} ...

allowDataOverflow={true}
20 />
21 </>);
22 }
23)}
24 <CartesianGrid stroke="#ccc" strokeDasharray="5 5" />
25 <YAxis dataKey="Date" type="category" width={100}/>
26 <Tooltip />
27 <Legend verticalAlign="top" />
28 </LineChart>

59

5.2 Charting

There is a lot to unravel in this component, it follows the recharts pattern of
creating a chart. A rechart chart is a component containing the component
parts of a chart with options passed in as props.

• <LineChart /> , this is the main component containing all the parts
options configuring the layout is given as props alongside the data for
the chart.

• categories.map((category,index) ,
Here we see the power of JSX allowing us to write a JavaScript func-
tion mapping over the supplied array of columns names
creating a <line /> , <ReferenceLine /> and <Xaxis />

component for each category.

• <Line /> , the line component takes in all its settings as props.

Of particular interest is the xAxisID and key props, they are
present in all of the mapped components.
xAxisID ensures that the lines belong to the correct x -axis.
Key is strictly not necessary but the browser complains in the con-

sole if mapped items does not have unique ids, making troubleshooting
difficult. dataKey declares which dictionary is going to provide the
values for the line.

• <ReferenceLine /> , creates a line denoting the average value for
the last 24h.
the value x is average value that is found from the stats, like with
data all the stats are in a array. here the getStatsIndex function
gets the correct index for the category being mapped, this index is
then use to get the corresponding stats.

• <XAxis /> , the XAxis component uses the same props as the lines

to with some additional props for configuration. Here the SetAxis

detailed earlier is used to define the axis domain. The setting
allowDataOverflow is set to true, this is to handle the 0 value points.

If the 0 points are removed in a future version this should be set to
false.

• The next components are pretty self explanatory, for the <YAxis />

Date is supplied as the datakey and it is set to be a category. This

60

5.3 Stats

means that the y axis is not a true representation of time if there
are missing data points. How this can be solved in the future will be
covered in chapter 7

Now that we have a working chart component, for us to utilize it to make
live and historic charts we need a way to retrieve the correct data.

5.3 Stats

Figure 5.2: Chart
made by chart compo-
nent

Having collected statistics about the average, mini-
mum and maximum values for the previous 24 hours
to create the charts. We decided that it would be
relevant and easy to show them to the user.
We created a stats component that gets passed the
stats as a prop and returns a form displaying the
stats prop.
This component contains quite a bit of boilerplate
code and parts has been shown when describing use-
Memo. Thus it will only be shown in the appendix
A.14.
In short a list of dictionaries is defined to create a
coupling between data and table fields. Then the
table component is mapped over the data and this
dictionary. The code written here mostly follows the
documentation[40].

5.4 Obtaining data

We are making both a live and historic chart. Re-
trieving data for the historic chart is fairly triv-
ial when we have created an API. We can use
JavaScript‘s fetch API to make calls to our API end-
point specifying the time interval we want the data
from. Since we are using the previous 24 hours stats,

61

5.4 Obtaining data

we can use this method to get stats for both historic
and live charts. When creating a live chart however
each time one wants to get updated data a connection to the server needs to
be made. If this needs to happen in real-time sending an API call every few
seconds can be performance intensive for the server. For real-time updates
using a websocket connection is an alternative. If some delay is acceptable
buffering can be used instead. We did consider exploring this option, as cre-
ating a websocket connection with flask can be done easily with socket.io.
But after talking with IMS and considering how the charts would be used
it was decided that real-time representation of the data was not that im-
portant. Mud engineers want to see the data for the last 24,12 and 4 hours,
the second to second change is not that important. IMS‘s future RheoSense
algorithms will represent the data as 5 or 1 minute points. This means that
instead of an API call every few seconds a call every minute is made, this
reduces the performance impact on the server and we can use the same API
endpoint for both historic and live data.

5.4.1 Fetching data

To get the data needed for our charts we need to create 3 different fetches.

• A fetch for getting historical data, needs to run on page load.

• A fetch for getting live data, this fetch needs to run on page load and
at a set interval.

• A fetch for getting stats from the previous 24 hours data.

Utilizing useEffect we can achieve all 3 of the fetches. this results in the
following useEffects;

62

5.4 Obtaining data

Code 5.7: HistoricChart.js - fetch hook for historic data
1 useEffect(() =>{
2 fetch(`BaseURL/GetInterval?∆=${encodeURIComponent(time)}`
3 ,{mehtod: "GET",})
4 .then(res => res.json())
5 .then((result) =>{
6 setIsLoaded(true);
7 let formattedResult = Format(time,result)
8 setHistoricItems(formattedResult);
9 })

10 }, [time]);

This useEffect functions in the same way as the useEffect shown in sec-
tion5.1.4. The differences is the API endpoint and that the Format()

function is used to format the date. This function is shown in the ap-
pendixA.13. Before using setHistoricItems to set the HistoricItems state.
Since the stats fetch has been discussed earlier it wont be repeated here, we
will instead focus on the more interesting interval fetch hook instead.

Code 5.8: LiveChart.js - fetch hook for livec data
1 useEffect(() => {
2 const interval = setInterval(async () => {
3

4 await fetchData();
5 }, fetchInterval);
6 return () => {
7 clearInterval(interval);
8 }
9 }, [liveitems], time);

To make the code easier to read the fetch has been moved into the fetchData
function. We use the built in JavaScript method setInterval to run the
fetch function in an interval. This interval function is set on mount by the
useEffect, fetch will not keep running in an interval.
To ensure that the interval stops when the component is unmounted a
cleanup function is required. This is done by returning a function to remove
the interval. This function will then run when the component is unmounted.

63

5.4 Obtaining data

Code 5.9: LiveChart.js - function for interval fetch
1 const fetchData = async () => {
2 let fetchDelta = time
3 if(liveitems.length>0){
4 fetchDelta = fetchInterval/1000;
5 }
6 console.log(fetchDelta);
7 await fetch(`baseURL/GetInterval?∆=$
8 {encodeURIComponent(fetchDelta)}`,{
9 method: "GET",

10 })
11 .then(res => res.json())
12 .then(
13 (result) => {
14 setIsLoaded(true);
15 let formattedResult = Format(time, result);
16 if(liveitems.length>0){
17 let mergedResult = MergeResult(liveitems, ...

formattedResult);
18 setLiveItems(mergedResult);
19 }
20 else{
21 setLiveItems(result);
22 }
23 },
24 (error) => {
25 setIsLoaded(true);
26 setError(error);
27 }
28)
29 }

The fetch works similar to the historic fetch showed earlier with two addi-
tions to improve performance. First an if condition checks the length of the
liveitems array containing the data, if this list is empty it means that this
is the first API call. For the first API call we need the data for the entire
period we intend to visualize, we then use this period as the the delta. If
the data array has a length that is greater than zero, this means that data
from previous calls are already in the array. We can now fetch only the
data that has arrived from the previous call, we do this by setting the delta
equal to the interval.
The interval is set in milliseconds and the delta in seconds, hence the fetch-
Interval/1000. The MergeResult helper function is then use to append the
new data points to the liveitems array, and maintaining the length by re-

64

5.5 Creating Pages

moving the items no longer part of the time period.
For example in the case of a 12 hour visualization with 1 minute fetch in-
terval; the first call retrieves the data for the whole 12 hour period, while
following calls only retrieve data for the 1 minute interval between fetches.

5.5 Creating Pages

With routing, charts and fetches sorted we can now create the pages for
visualizing live and historic data. Since react router assigns components to
an URL these pages are made as components.
These components are rather large and the important code snippets are
shown above, we will therefore not show them in the text but they will be
present in the appendix A.15A.16.

Code 5.10: HistoricChart.js - fetch hook for historic data
1 const HistoricChart = () =>{
2 const [time, setTime] = useState(14400);
3 //...repeated for remaining states
4 const handleClick = (time) => {
5 setTime(time) }
6 useEffect(Stats);
7 useEffect(historicfetch);
8 if(!isLoaded){ return(<>Loading....</>)
9 }else if(!StatsLoaded){ return(<>Loading....</>) }

10 else{
11 return(
12 <> <div className='category-container'>
13 <Stats stats = {stats} ...

categories={["3_rpm","6_rpm"]}/>
14 <div className='chart-combiner'>
15 <Chart items={HistoricItems} stats={stats} ...

isLoaded={isLoaded}
16 error={error} categories= {categories} ...

colours={colours} />
17 </div>
18 #... repeated for desired categories
19 <button className='timeOption' onClick={ () => ...

handleClick(1800) }> 30 Minutes </button>
20 #... repeated for desired time options </>)}}

65

5.5 Creating Pages

Above is a shortened representation of the HistoricChart component, the
LiveChart component follows the exact same structure. In fact with some
further development this can be generalized to a single component receiving
the fetch method as a prop.
In both components the following 5 steps are performed;

• First the required states are defined, we see the time state being de-
fined. The time state defines the time period to visualize data for.
States to hold the data and stats are also defined, the use of them has
been shown earlier.
Additionally 3 states controlling the rendering of the component are
defined. These are error, isLoaded and statsLoaded. These states are
set in their respective fetches. They are necessary due to one of the
rule of react, namely that all components must be rendered. This
means that the Chart page components must be rendered before any
of the stats has been fetched. Thus if the stats are not loaded a loading
message will be shown instead, the same is true for error encountered
in the fetching.

• Then a function to set the time period by clicking on a button is
defined.

• Following this functon are the two useEffects used to retrive stats and
data

• Before JSX is returned the control states has to be checked to deter-
mine which JSX to return

• Lastly the JSX is returned. We see that the JSX returned when every-
thing has been loaded uses the Stats and Chart components shown
earlier in addition to buttons allowing the user to specify the time
period.

The next page will display what the resulting charts will look like on the
web page.

66

5.5 Creating Pages

Figure 5.3: A part from The Historical Data Page, showing 3 generated charts

67

Chapter 6

Mobile Development

6.1 Structure

Expo will be the framework used to build the React Native app as de-
tailed in section 3. Expo can be installed using the package manager for
JavaScript, npm. Scaffolding a new project in expo can be done by running
the command expo init project-name where project-name is replaced
by the actual name of the project. When Scaffolding a new project Expo
will serve you a prompt where you are asked to select one of the following
templates:

Figure 6.1: Selecting a template for the app

For this project we will select the blank template as we want to start fresh
and add tools and libraries as we go. Once the template has been selected
Expo will install all the packages and dependencies needed for the project.

68

6.1 Structure

When the installation is complete the files shown in figure 6.2a including
some Expo specific configuration files will appear in the project directory.
This includes a .gitignore and App.js file. App.js is the file that is being
executed when the app starts.

(a) App.js and configuration files (b) app folder structure

Figure 6.2: File structure for the app

For this app we want to add the folders shown in figure 6.2b. The folders
will contain the following:

1. assets → images and other media resources.

2. components → style components used to create custom JSX com-
ponents.

3. helper → helper functions similar to the one in chapter 5.

4. routes → will contain the stack navigator component.

5. screens → JavaScript files for displaying different screens.

Before diving into the code responsible for each individual screen we are
going to take a closer look at the styles.js file inside the components
folder. This file will be responsible for exporting style components to the
entire app.

69

6.1 Structure

6.1.1 Custom styled components

When creating our own custom style components we are going to import
the following:

Code 6.1: styles.js Imports
1 import {View, Text, Image, TextInput, TouchableOpacity} ...

from 'react-native';
2 import styled from 'styled-components';
3 import Constants from 'expo-constants';
4 const StatusBarHeight = Constants.statusBarHeight;

We start off by importing the default JSX components from the React Na-
tive library that has been covered briefly in chapter 3. These are the com-
ponents we will apply styling to. We then want to install styled-components
using npm and import it as shown in line 2 in the code snippet above. The
last import required for our custom components are the expo-constants.
expo-constants provide useful information about the system the app is be-
ing run on. This information lasts throughout the lifetime of your app’s
install and supports all devices and the web [41]. We will the system infor-
mation to find the height of the status bar on the device running the app.
The status bar of any given iOS or Android device is the top section of
the screen displaying thing like battery life and time as shown in the figure
below:

Figure 6.3: Status bar [42]

Finding the height of the device’s status bar is important as you don’t want
any of your components to end up at the top of your screen overlapping
with the status bar.

70

6.1 Structure

To the styling process smoother we will go ahead and define a set of colors
for our mobile app as such:

Code 6.2: styles.js const Colors
1 export const Colors = {
2 primary: "#ffffff",
3 secondary: "#E5E7EB",
4 tertiary: "#1F2937"
5 };

Now we have everything we need to create our first custom styled com-
ponent. When creating our components we will be following the styled-
components documentation [43]. The first custom component we want to
create is a styled container that is based off the standard view component.

Code 6.3: styles.js First custom style component.
1 export const StyledContainer = styled.View`
2 flex: 1;
3 padding: 25px;
4 padding-top: ${StatusBarHeight}px;
5 background-color: ${primary};
6 `;

Here flex: 1 means that the container will grow in proportion to the

screen size. padding-top is set to the height of the device’s status bar in

pixels and the background-color is set to primary. This container can
now be imported and used in all JavaScript files in the project.

There are several custom styled components like this in the project and
they all follow a similar structure, but with different styling depending on
their usage. As we now have the desired styling for the app we can now go
ahead and create our first screen.

71

6.2 Login screen

6.2 Login screen

The code responsible for creating the login screen will be put into a new file.
We will call this file Login.js and it will be placed inside of our screens

folder. To start off we are going to import React and useState to be
able to create our login component as shown in code listing 6.4. Component
states in React Native functions the same way it does in React which is
detailed in section 5.1.3.

Code 6.4: Login.js Login component.
1 import React, {useState} from 'react';
2

3 const Login = ({navigation}) => {
4 const [hidePassword, setHidePassword] = useState(true);
5 const [message, setMessage] = useState();
6 const [messageType, setMessageType] = useState();
7 const [googleSubmitting, setGoogleSubmitting] = ...

useState(false);
8 };
9 export default Login;

In the login component there are four states that we need to keep track
of. These states will be used to update and change the UI based on their
values. The four states introduced are responsible for keeping track of:

• hidePassword is a boolean that will be used to toggle password
visibility on or off. It should update every time the user presses a
toggle password button.

• message is the state responsible for returning a message to the user
regarding their login attempt. The state should update every time
the user attempts to sign in.

• messageType keeps track of whether the login attempt was successful
or not. It should also update every time the user attempts to sign in.

• googleSubmitting is a boolean that updates every time the google
sign in button gets pressed. This state should update every time the
user attempts to sign in via Google.

72

6.2 Login screen

6.2.1 Creating the form

The login screen must include a form to allow the user to enter their creden-
tials. There exists external libraries for creating forms using React Native.
This project includes the Formik open source library to assist in creating
forms for our app. A common problem when dealing with form on mobile
devices is that the keyboard that appears tend to cover the input section.
To counteract this we will be importing the react-native-keyboard-aware-
scroll-view component to our project. This component allows the app to
automatically scroll down if the appearing keyboard overlaps with the text
input field being used. Both these libraries needs to be installed via npm
before they can be imported into the project.
Code listing 6.5 shows how the login screen will be structured.

Code 6.5: Login.js Scroll view implementation.
1 return (
2 <KeyboardAwareScrollView>
3 <StyledContainer>
4 <InnerContainer>
5

6 </InnerContainer>
7 </StyledContainer>
8 </KeyboardAwareScrollView>
9);

Here the KeyboardAwareScrollView component wraps around our custom

styled components imported from styles.js . It is inside the

InnerContainer component we will create our form using Formik. We
want our login form to contain a text input field for the users email and
two text input fields for entering and verifying their password. At the end
of the form there should be two buttons. One for logging in with the input
credentials and one for signing in via Google.

The official Formik documentation offers guides and insight into creating
forms like the one needed for this app. The following code listing is inspired
by the Formik documentation [44].

73

6.2 Login screen

Code 6.6: Login.js Creating a form using Formik.
1 <Formik
2 initialValues={{email: '', password: ''}}
3 onSubmit={(values, {setSubmitting}) => {
4 if (values.email == "" || values.password == "") {
5 handleMessage("please fill in all the fields!");
6 setSubmitting(false);
7 } else {
8 handleLogin(values, setSubmitting);
9 }

10 }}
11 >

We start off by passing empty strings as the initial values for the email and
the password field. In line 3 the onSubmit function is run whenever the
form is submitted. It is supplied the values from the the input fields as well
as the setSubmitting method. This method is required as it needs to be
set to false at some point to finish the submission cycle as detailed in the
documentation [45].

The function then goes on to validate if both the email and password field is
left empty. If either one of them are, the handleMessage function will be
called with a string argument attached and the submission cycle will end.
The handleMessage function will update both the message state and

the messageType state. This will cause the DOM to re-render and show
the "Please fill in all the fields!" message to the user after the failed login
attempt.

If the email and password field is not empty however, the handleLogin

function will be called with the field values and the setSubmitting method.
This is the function responsible for carrying out the HTTP request to the
/Login API and will be covered the next subsection.

There are a total of three text input fields used for the form in the login
screen. We will take a closer look at how the email field works and how it is
structured. Code snippet 6.7 shows the options selected for the text input
component for the form.

74

6.2 Login screen

Code 6.7: Login.js Email field.
1 <MyTextInput
2 label="Email Address"
3 icon="mail"
4 placeholder="example@gmail.com"
5 placeholderTextColor={Colors.darkLight}
6 onChangeText={handleChange('email')}
7 onBlur={handleBlur('email')}
8 value={values.email}
9 keyboardType="email-address"

10 />

The options label , icon , Placeholer and PlaceholderTextColor

are all related to styling. The other options all serve some functionality
that we will take a closer look at.

• onChangeText function updates the email value to whatever is being
typed into the field.

• onBlur is useful when keeping track of which input has been touched.

• value sets the field value equal to email.

• keyboardType is going to set the keyboard type that will appear
when tapping the input field to the native email keyboard type. This
makes it easier for the user to enter their emails as the layout is
modified to include symbols like the at-sign as shown in figure 6.4.

Figure 6.4: Email keyboard type [46]

75

6.2 Login screen

The remaining two input fields, password and verify password both follow
the same structure as the input field in code listing 6.7 apart from some
styling options. Coming towards the bottom of the screen we are going to
want a JSX component to display error messages to the user and a login
button to submit the form. Code listing 6.8 introduces a new React concept
called conditional rendering.

Code 6.8: Login.js Error message and login button.
1 <MsgBox type={messageType}>{message}</MsgBox>
2 {!isSubmitting && (
3 <StyledButton onPress={handleSubmit}>
4 <ButtonText>
5 Login
6 </ButtonText>
7 </StyledButton>
8)}

Here isSubmitting is a boolean state that tells us whether the form is
in submission or not. Line 2 reads as follows; if the form is not submitted,
render the following. This is whats called conditional rendering and &&

is the React syntax for doing so. This also means that once the button
is pressed isSubmitting will be set to true and the condition in line 2
will not be met and the button will therefore not render. This is considered
good practice as the button press will go on to call an asynchronous function
when sending the credentials to the login API. During this time the user can
tap the login button 5 more times and cause a whole host of issues. What
we are going to do instead is to create a second button to be rendered as
shown in the code snippet below.

Code 6.9: Login.js Second login button.
1 {isSubmitting && (
2 <StyledButton disabled={true}>
3 <ActivityIndicator size="large" color={Colors.primary} />
4 </StyledButton>
5)}

As shown in the first line, this button will render if isSubmitting is set
to true. We want to disable this button as it serves no purpose outside of

76

6.2 Login screen

the visual. To finish off we add an ActivityIndicator component which
renders a smooth "loading" graphic inside the button, letting the user know
the login attempt is being processed.

Figure 6.5: Activity Indicator, iOS and Android [47]

The buttons for signing in via Google functions the exact same way as
the regular login button except for the boolean that is responsible for the
conditional rendering. Instead of using the isSubmitting Formik state

we will be using our own googleSubmitting state.

6.2.2 Sending a login request

When the form is submitted it should send a HTTP request to the backend
login API. We are going to create a function handleLogin that will be
responsible for sending the request. The function should accept the form
credentials and the setSubmitting method as arguments. The login cre-

dentials will be sent to the backend for validation and the setSubmitting

method will be used to end the submission cycle when the request is fin-
ished. We will be using React’s built in function fetch to send our request
using the URL below.

Code 6.10: Login.js Login URL
1 const url='https://bachelor -demo-ims.azurewebsites.net/Login'

We will use the method POST when sending the request and add the login
credentials supplied to our request body as shown in the code snippet below.

77

6.2 Login screen

Code 6.11: Login.js Request body
1 body: JSON.stringify({
2 email: credentials.email,
3 password: credentials.password
4 })

The JSON.stringify method will convert the JavaScript values into the
JSON format. It then goes on to catch the response from the server. An
error message will be shown to the user if the request was not successful and
if it was successful it will redirect the user to the home screen. The process
for navigating between screens will be covered in section 6.5. At the end of
the request, whether it was successful or not setSubmitting will be set to
false to end the submission cycle. To make the login screen more appealing
we will add an IMS logo, page title and icons where it makes sense. Figure
6.8 shows what the login screen looks like on both iOS and Android.

(a) Login screen for iOS (b) Login screen for Android

Figure 6.6: Login screen for both iOS and Android.

The screen looks mostly identical between iOS and Android except for the
Google button text. A bug appeared where the button text would disappear

78

6.2 Login screen

on Android whenever padding was applied. As a temporary solution we
deployed platform specific code that would not add this padding to the
button text if the device was an Android.

6.2.3 Sign in via Google

To be able to utilize Google OAuth 2.0 in our app we need to first obtain
the OAuth 2.0 client ID’s for both iOS and Android. Following Google’s
documentation[48] we were able to create the necessary client ID’s as shown
below:

Figure 6.7: Activity Indicator, iOS and Android [47]

We can now go ahead and install and import the expo-google-app-auth

module as it provides Google authentication integration with our Expo app
[49].

Code 6.12: Login.js Imports
1 import * as Google from 'expo-google-app-auth';

Once the module has been imported into the project we want to create a
new function handleGoogleSignin . This function will be responsible for
handling the authentication via Google. Inside our function we want to
declare a new constant config that is going to store our iOS and Android

client ID’s. We can then use the logInAsync function from the imported
Google module to start the authentication process. The function requires
the config constant to be passed as an argument. We will take a close

look at how the logInAsync works in code listing 6.13.

79

6.2 Login screen

Code 6.13: Login.js Authentication process
1 Google
2 .logInAsync(config)
3 .then((result) => {
4 const {type, user} = result;
5

6 if (type == 'success') {
7 const {email, name} = user;

The asynchronous function returns a promise of type Google.LogInResult .
If the promise gets rejected we will return an error and set
googleSubmitting state to false. If, however, the promise gets fulfilled

we will extract both type and user from the result as shown in line 3.
Type has two potential values, 'cancel' or 'success' . If type is equal

to 'success' we continue to extract necessary information from the user.
Here user refers to the authorized Google account and there a multitude of
values you are able to collect. We are however only interested in the users
name and email. Figure 6.8 illustrates the Google authentication process
for our app.

(a) iOS native prompt (b) Google sign in

Figure 6.8: Google Sign in process

80

6.3 Registration screen

6.3 Registration screen

The registration screen should look almost identical to the login screen with
just a few tweaks. It will therefore follow the same structure as detailed
in the previous section. They key modifications made to the registration
screen are:

• An additional input field for the user’s name and only a single register
button. The Google button should not be included.

• A function, handleSignUp responsible for carrying out the HTTP

request made to the /Register API. This function works exactly

like the handleLogin function in the previous section.

There are no new concepts introduced for the development process of the
registration screen and the code follows an identical structure as the code
in Login.js. We will therefore not spend much time detailing the code
generating the registration screen. The Figure below shows what the sign
up screen looks like for both iOS and Android.

(a) iOS (b) Android

Figure 6.9: Registration screen for iOS and Android

81

6.4 Home screen

6.4 Home screen

The home screen for the mobile app should be where the charts are displayed
to the user. Selecting a charting library for React Native was quite difficult
as the library used for the web application (Recharts.js) does not support
React Native. We therefore had to find a new library to assist in creating our
charts. After testing numeral libraries we ended up going with the victory-
native charting library. We start off by creating the Home component as
shown below.

Code 6.14: Home.js Home component
1 const Home = ({navigation, route}) => {
2 }
3 export default home;

The component receives two props, navigation and route which will
be discussed in section 6.5. The goal of this component is to return a UI
containing live charts. As victory-native does not access values the same
way Recharts does we have to declare a state for each data point in our
data set. The first step towards having a continuously updating chart is
to obtain data continuously. We will therefore start by implementing a
function, getDataAsync that is going to responsible for fetching data. We

will also be importing and utilizing the useEffect hook for calling the
getDataAsync function at a set interval. The process for fetching data in

React Native is very similar to how its done in React. We will therefore not
spend much time going through all the details as it’s already been covered
in section 5.4.

What is different however, is the victory-native library and how its used to
create charts. Before importing victory-native into our project it first has
to be installed using npm.

Code 6.15: Home.js victory-native Import
1 import { VictoryChart, VictoryLine, VictoryTheme } from ...

'victory-native';

82

6.4 Home screen

We import two components, VictoryChart and VictoryLine , and the

VictoryTheme constant from the library. The two imported components
lets us create the necessary lines and graphs while the constant gives us out
of the box styling.

Code 6.16: Home.js VictoryChart and VictoryLine component
1 <VictoryChart
2 scale={{x: 'time'}}
3 theme={VictoryTheme.material}
4 height={200}
5 >
6 <VictoryLine
7 style={{
8 data: { stroke: "#c43a31" },
9 parent: { border: "1px solid #ccc"}

10 }}
11 data={chartPv}
12 />
13 </VictoryChart>

Code listing 6.16 shows we can use the VictoryChart and VictoryLine

components to create a chart containing a single line. We specify the theme
of the chart using VictoryTheme . The data used for plotting the graph is

accessed directly through the chartPv state which is of the format:

Code 6.17: Home.js chartPv format
1 chartPv = [{x: Date, y: pv}...]

The charts are set up to show one dta line. There are 10 data points in
our data sets which means there will be a total of 10 charts visible on our
homepage. As every chart is 200 pixels in height plus padding and margins,
this is going to take up a lot of space. This will lead to charts ending up
"outside" our screen. To counteract this we are going to wrap all of our
charts inside a ScrollView component. The ScrollView component
can be imported through the react-native library and enables scrolling on
our screen. Figure 6.10 shows what the charts on the home screen looks
like.

83

6.5 Routing

(a) VictoryChart top (b) VictoryChart scrolled down

Figure 6.10: Home.js Illustrates some of the charts created by victory-native

6.5 Routing

As all the screens for our app are now assembled, we can go ahead and
connect them together. To do this we are going to create a new file,
RootStack.js inside of our routes folder. To be able to navigate to differ-

ent screens we are going to import all of our components inside the screens
folder and the following react navigation libraries:

Code 6.18: RootStack.js Imports
1 import { NavigationContainer } from ...

'@react-navigation/native';
2 import { createNativeStackNavigator } from ...

'react-native-screens/native-stack';

84

6.5 Routing

The stack navigator functions just like a normal stack. You start of with
an inital screen at the bottom of the stack and every time you navigate
to a different screen that screen gets put on the stack. Whenever you
exit said screen it gets popped of the stack. To get started we will create
a stack using the createNativeStackNavigator function. We then con-

tinue creating our RootStack component. Following the React Navigation
documentation[50] we will implement the following into our component:

Code 6.19: RootStack.js RootStack component
1 <NavigationContainer>
2 <Stack.Navigator initialRouteName="Login">
3 <Stack.Screen name="Login" component={Login} />
4 <Stack.Screen name="Signup" component={Signup} />
5 <Stack.Screen name="Home" component={Home} />
6 </Stack.Navigator>
7 </NavigationContainer>

We include the components we want to be able to navigate between, and set
the initial screen to be displayed when opening the app as the login screen.
To finish off we import our RootStack component in our App.js file. We
have to do this because the App component gets rendered first as the app
is launched.

Code 6.20: App.js Adding the RootStack component.
1 import RootStack from "./app/routes/RootStack";
2

3 export default function App() {
4 return <RootStack/>;
5 }

Code listing 6.21 shows an example of how to navigate between screens once
the RootStack has been created and configured properly. The app can be
published to Expo with the command expo publish .

Code 6.21: Login.js Example of how to navigate between screens.
1 <TextLink onPress={() => navigation.navigate("Signup")}>

85

Chapter 7

Results, Conclusion and future
development

To conclude the project we will summarize the result of our work and if we
managed to achieve our goals set in the outline in section 2.5. Then we will
outline how future development can improve the result.

7.1 Results

Starting with the minor objectives;

• We created a script that could push RheoSense data to our develop-
ment Microsoft SQL-Server database that was hosted on azure.

• We designed a graph that displayed data in a format recognizable to
mud engineers.

• we created an API for the database and hosted the API on azure. We
were able to use this API in our other tools. With some changes to
the SQL queries this API can be used with IMS‘s database.

• A log in system was created for the app, this log in system could be
migrated to the website to enable authorization.

86

7.2 Discussion and further work

Our performance in the minor objectives directly impacted the results of
our main goals.

• We created components for displaying the data in a satisfactory manor.

• With the components we created we were able to create a website
displaying data received from our API. We did not host this website
as we were not able to migrate our authorization system from the
mobile application.

• We built a tool that could use our API to generate 24h reports. By
hosting it on Azure we were able to automate the creation and sending
of reports at set time intervals. We also protected the API endpoint
with an API Key.

• We created and published a mobile application that had a login and
registration system and some rudimentary charts created with data
from our API. Due to limitations in the charting libraries for React-
Native we were not able to replicate the charts from the website.

7.2 Discussion and further work

7.2.1 Web application

We are pleased with the charting components and the fetching of data for
the we application.
One problem we encountered is that with live charting for 12 and 24 hour
periods hovering over the charts to display the tool tips can be unresponsive.
Likely due to the sheer amount of data points. As IMS‘s plans to move
towards reporting the data as averages of say 1 or 5 minutes this would
likely not be an issue. We can still do some more work making the chart
pages more generalized. Mainly using mapping to create the individual
chart components based on a list of categories.
Log in and authorization however is the pain point in the web application.
We intended to use Google’s OAuth 2.0 for the login section just like with
the mobile application, as the client ID for the web is already configured.
Since we had some difficulties with setting up Microsoft SQL Servers locally

87

7.2 Discussion and further work

we had to start development using PostgreSQL for mobile and Sqlite3 for
the web application. This meant that we did not have time to migrate the
login system and implement authorization via protected routes in flask and
JSON Web tokens.
This is the first thing to be done for further development. The library used
for creating the forms on mobile, Formik, is also support by React and can
be used to implement the login and registration forms our web application.

Mentioned earlier was IMS‘s intent to represent data as averages of 1 or 5
minutes blocks instead. Included in this is also the option of then zooming
in on each of these blocks to reveal the full data.
We believe this can be implemented in the application by using caching,
Where the data is fetched and then cached on the client side. From this
cache the display data is calculated and shown. Clicking on a point can
then zoom the chart in on the raw data from the cache. The chart compo-
nents we have made can handle this, all that is needed is caching and some
middle-ware to calculate the averages.
We could also consider using the stats API to calculate this on the server
side. Further investigation would be needed to determine the best course
of action.
The most important part however is to get the log in and authorization
working, after this the web application can be hosted on azure in the same
manner as the API. It would then be ready for live demos using their test
database. As such this is the first course of action when continuing devel-
opment.

7.2.2 Mobile application

We are pleased with how the both the login and registration screen turned
out for our mobile application. The charts however, is quite lackluster
compared to the charts produced by both the email report system and the
web app. This comes down to mainly two reasons. First off we had a
different development cycle for the mobile application. Our plan was to
start of with developing both the login and register screen first and then
reuse much of the code for the live charting from the web app. This led to
much of the time spent on the mobile app was used developing the login
and registration and screen and left little time left for the home screen.
The second reason for our charts not being quite satisfactory for the app is

88

7.3 Conclusion

that the library used for the web app was not compatible with React Native.
Quite a lot of time went into understanding, reading the documentation and
developing using the Recharts library. Finding a new library that supports
React Native and repeating the same process was both difficult and time
consuming. We tested multiple libraries to find one that best suits the needs
for our application. The library we ended up going with, victory-native, did
not have everything we needed for our charts, but it was the best we could
come up with given the time we had left. Our charts on the mobile app
suffered as a result. Further development will go into exploring new options
for charting with React-Native.

7.3 Conclusion

We set ourselves some ambitious goals when starting the project. In many
ways we feel that we achieved most of them, while still leaving room for
improvement in all parts of the project.
Even when focusing on technologies that we were familiar with we still had
to research plenty of new technologies and libraries.
We had no previous experience hosting projects, and this required quite a
bit of research. We still feel like there is plenty of room for improvements
in this aspect.
We could possibly have benefited from cutting parts out of the projects. By
cutting out the mobile part more care could have been put into the creation
of the web application. Our intent behind using React and React-Native
was to reuse code from the web application in the mobile app. Due to the
difference in charting libraries for web and mobile this was not possible. To
achieve this we would most likely have to create our own charting library
which would be a massive undertaking.
By not creating a back end we could also have focused on creating all the
front end visualization. Freeing up more time for bells and whistles, like
buttons to control the axes as we already have the underlying functions.
This would severely limit the possibility of creating the reporting tool and
result in limited viability for live demos.
Our exploration of mobile development also provides insight in to the work
required to represent the data as a phone app. Taking this into consideration
we are happy with our choices and feel that the results of the project offer
an excellent starting point for further development.

89

Bibliography

[1] D. Williamson, “Drilling-fluids.” https://www.slb.com/
resource-library/oilfield-review/defining-series/
defining-drilling-fluids. Accessed: 02.03.2022.

[2] Kirk-Othmer, “Rheology and rheological mea-
surements.” http://www.123seminarsonly.com/
Seminar-Reports/008/62345855-Rheology-One.pdf?msclkid=
13f15e34c7a711ec8b38b34cdba91096. Accessed: 07.05.2022.

[3] Schlumberger, “Oilfield glossary.” https://glossary.oilfield.slb.
com/en/terms/s/shear_stress. Accessed: 07.05.2022.

[4] Schlumberger, “Oilfield glossary.” https://glossary.oilfield.slb.
com/en/terms/s/shear_rate. Accessed: 07.05.2022.

[5] Schlumberger, “Oilfield glossary.” https://glossary.oilfield.slb.
com/en/terms/p/plastic_viscosity. Accessed: 07.05.2022.

[6] Schlumberger, “Oilfield glossary.” https://glossary.oilfield.slb.
com/en/terms/y/yield_point. Accessed: 07.05.2022.

[7] “Gitflow-image.” https://www.bitbull.it/en/blog/
how-git-flow-works/. Accessed: 14.04.2022.

[8] “Mobile-market-share.” https://gs.statcounter.com/
os-market-share/mobile/norway/#monthly-202103-202203-bar.
Accessed: 15.04.2022.

[9] “Web-frameworks-figure.” https://www.statista.com/statistics/
1124699/worldwide-developer-survey-most-used-frameworks-web/
#professional. Accessed: 15.04.2022.

90

https://www.slb.com/resource-library/oilfield-review/defining-series/defining-drilling-fluids
https://www.slb.com/resource-library/oilfield-review/defining-series/defining-drilling-fluids
https://www.slb.com/resource-library/oilfield-review/defining-series/defining-drilling-fluids
http://www.123seminarsonly.com/Seminar-Reports/008/62345855-Rheology-One.pdf?msclkid=13f15e34c7a711ec8b38b34cdba91096
http://www.123seminarsonly.com/Seminar-Reports/008/62345855-Rheology-One.pdf?msclkid=13f15e34c7a711ec8b38b34cdba91096
http://www.123seminarsonly.com/Seminar-Reports/008/62345855-Rheology-One.pdf?msclkid=13f15e34c7a711ec8b38b34cdba91096
https://glossary.oilfield.slb.com/en/terms/s/shear_stress
https://glossary.oilfield.slb.com/en/terms/s/shear_stress
https://glossary.oilfield.slb.com/en/terms/s/shear_rate
https://glossary.oilfield.slb.com/en/terms/s/shear_rate
https://glossary.oilfield.slb.com/en/terms/p/plastic_viscosity
https://glossary.oilfield.slb.com/en/terms/p/plastic_viscosity
https://glossary.oilfield.slb.com/en/terms/y/yield_point
https://glossary.oilfield.slb.com/en/terms/y/yield_point
https://www.bitbull.it/en/blog/how-git-flow-works/
https://www.bitbull.it/en/blog/how-git-flow-works/
https://gs.statcounter.com/os-market-share/mobile/norway/#monthly-202103-202203-bar
https://gs.statcounter.com/os-market-share/mobile/norway/#monthly-202103-202203-bar
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/#professional
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/#professional
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/#professional

BIBLIOGRAPHY

[10] “React-components-image.” https://ixorasolution.com/blog/
context-a-way-to-communicate-between-components-in-reactjs.
Accessed: 15.04.2022.

[11] “React-native-documentation.” https://reactnative.dev/. Ac-
cessed: 25.04.2022.

[12] M. Budziński, “React-native.” https://www.netguru.com/glossary/
react-native. Accessed: 25.04.2022.

[13] “Expo-documentation.” https://docs.expo.dev/. Accessed:
25.04.2022.

[14] “Python-documentation.” https://docs.python.org/3/. Accessed:
25.04.2022.

[15] “Python-survey.” https://www.jetbrains.com/lp/
python-developers-survey-2020/. Accessed: 26.04.2022.

[16] “Flask-documentation.” https://flask.palletsprojects.com/en/
2.1.x/foreword/. Accessed: 26.04.2022.

[17] “Pandas-documentation.” https://pandas.pydata.org/. Accessed:
26.04.2022.

[18] “Matplotlib-documentation.” https://matplotlib.org/. Accessed:
28.04.2022.

[19] “Azure-data-center-regions.” https://azure.microsoft.com/en-us/
global-infrastructure/geographies/#geographies. Accessed:
29.04.2022.

[20] “Azure-logic-apps.” https://docs.microsoft.com/en-us/azure/
logic-apps/logic-apps-overview. Accessed: 01.05.2022.

[21] “Azure-app-service.” https://docs.microsoft.com/en-us/azure/
app-service/. Accessed: 02.05.2022.

[22] “Microsoft-pyodbc.” https://docs.microsoft.com/en-us/
sql/connect/python/python-driver-for-sql-server?view=
sql-server-ver15. Accessed: 03.05.2022.

[23] “Flask-application-context.” https://flask.palletsprojects.com/
en/0.12.x/tutorial/dbcon/. Accessed: 03.05.2022.

91

https://ixorasolution.com/blog/context-a-way-to-communicate-between-components-in-reactjs
https://ixorasolution.com/blog/context-a-way-to-communicate-between-components-in-reactjs
https://reactnative.dev/
https://www.netguru.com/glossary/react-native
https://www.netguru.com/glossary/react-native
https://docs.expo.dev/
https://docs.python.org/3/
https://www.jetbrains.com/lp/python-developers-survey-2020/
https://www.jetbrains.com/lp/python-developers-survey-2020/
https://flask.palletsprojects.com/en/2.1.x/foreword/
https://flask.palletsprojects.com/en/2.1.x/foreword/
https://pandas.pydata.org/
https://matplotlib.org/
https://azure.microsoft.com/en-us/global-infrastructure/geographies/#geographies
https://azure.microsoft.com/en-us/global-infrastructure/geographies/#geographies
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-overview
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-overview
https://docs.microsoft.com/en-us/azure/app-service/
https://docs.microsoft.com/en-us/azure/app-service/
https://docs.microsoft.com/en-us/sql/connect/python/python-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/python/python-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/python/python-driver-for-sql-server?view=sql-server-ver15
https://flask.palletsprojects.com/en/0.12.x/tutorial/dbcon/
https://flask.palletsprojects.com/en/0.12.x/tutorial/dbcon/

BIBLIOGRAPHY

[24] “Python-json.” https://docs.python.org/3/library/json.html.
Accessed: 03.05.2022.

[25] “Flask-cors.” https://flask-cors.readthedocs.io/en/latest/.
Accessed: 03.05.2022.

[26] “Python-decouple.” https://pypi.org/project/python-decouple/.
Accessed: 03.05.2022.

[27] “Database-connection-expense.” https://quick-adviser.com/
is-database-connection-expensive/. Accessed: 03.05.2022.

[28] “Flask-routes-decorator.” https://flask.palletsprojects.com/en/
2.1.x/api/#flask.Flask.route. Accessed: 03.05.2022.

[29] “Get-vs-post.” https://lazaroibanez.com/
difference-between-the-http-requests-post-and-get-3b4ed40164c1.
Accessed: 03.05.2022.

[30] “Api-keys.” https://cloud.google.com/endpoints/docs/openapi/
when-why-api-key. Accessed: 05.05.2022.

[31] “Python-functools.” https://docs.python.org/3/library/
functools.html. Accessed: 05.05.2022.

[32] “Azure-app-service-documentation.” https://docs.microsoft.com/
en-us/azure/app-service/quickstart-python?tabs=flask. Ac-
cessed: 05.05.2022.

[33] “Google-smtp-server.” https://pythonbasics.org/flask-mail/. Ac-
cessed: 04.05.2022.

[34] “Flask-mail.” https://pythonhosted.org/Flask-Mail/. Accessed:
04.05.2022.

[35] “React file stucture.” https://reactjs.org/docs/faq-structure.
html. Accessed: 28.04.2022.

[36] “React router.” https://reactrouter.com/. Accessed: 01.05.2022.

[37] “React router concepts.” https://reactrouter.com/docs/en/v6/
getting-started/concepts. Accessed: 01.05.2022.

[38] “Dom.” https://developer.mozilla.org/en-US/docs/Web/API/
Document_Object_Model/Introduction. Accessed: 07.05.2022.

92

https://docs.python.org/3/library/json.html
https://flask-cors.readthedocs.io/en/latest/
https://pypi.org/project/python-decouple/
https://quick-adviser.com/is-database-connection-expensive/
https://quick-adviser.com/is-database-connection-expensive/
https://flask.palletsprojects.com/en/2.1.x/api/#flask.Flask.route
https://flask.palletsprojects.com/en/2.1.x/api/#flask.Flask.route
https://lazaroibanez.com/difference-between-the-http-requests-post-and-get-3b4ed40164c1
https://lazaroibanez.com/difference-between-the-http-requests-post-and-get-3b4ed40164c1
https://cloud.google.com/endpoints/docs/openapi/when-why-api-key
https://cloud.google.com/endpoints/docs/openapi/when-why-api-key
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html
https://docs.microsoft.com/en-us/azure/app-service/quickstart-python?tabs=flask
https://docs.microsoft.com/en-us/azure/app-service/quickstart-python?tabs=flask
https://pythonbasics.org/flask-mail/
https://pythonhosted.org/Flask-Mail/
https://reactjs.org/docs/faq-structure.html
https://reactjs.org/docs/faq-structure.html
https://reactrouter.com/
https://reactrouter.com/docs/en/v6/getting-started/concepts
https://reactrouter.com/docs/en/v6/getting-started/concepts
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

BIBLIOGRAPHY

[39] “React hooks.” https://reactjs.org/docs/hooks-overview.html/.
Accessed: 07.05.2022.

[40] “Reacttable.” https://react-table.tanstack.com/docs/examples/
basic. Accessed: 07.05.2022.

[41] “Expo-constants.” https://docs.expo.dev/versions/latest/sdk/
constants/. Accessed: 05.05.2022.

[42] “Status-bar-image.” https://www.educative.io/edpresso/
how-to-add-a-status-bar-in-react-native. Accessed: 05.05.2022.

[43] “Styled-components.” https://styled-components.com/docs. Ac-
cessed: 05.05.2022.

[44] “Formik.” https://formik.org/docs/overview. Accessed:
05.05.2022.

[45] “Formik-submissions.” https://formik.org/docs/guides/
form-submission. Accessed: 05.05.2022.

[46] “Keyboard-type-email-image.” https://infinitbility.com/
how-to-set-keyboard-type-in-react-native. Accessed:
06.05.2022.

[47] “Activity-indicator-image.” https://docs.microsoft.com/en-us/
xamarin/xamarin-forms/user-interface/activityindicator.
Accessed: 06.05.2022.

[48] “Goole-oauth-2.0.” https://support.google.com/cloud/answer/
6158849?hl=en. Accessed: 07.05.2022.

[49] “Expo-google-authentication.” https://docs.expo.dev/versions/
v44.0.0/sdk/google/. Accessed: 07.05.2022.

[50] “React-native-navigation.” https://reactnavigation.org/docs/
getting-started/. Accessed: 07.05.2022.

93

https://reactjs.org/docs/hooks-overview.html/
https://react-table.tanstack.com/docs/examples/basic
https://react-table.tanstack.com/docs/examples/basic
https://docs.expo.dev/versions/latest/sdk/constants/
https://docs.expo.dev/versions/latest/sdk/constants/
https://www.educative.io/edpresso/how-to-add-a-status-bar-in-react-native
https://www.educative.io/edpresso/how-to-add-a-status-bar-in-react-native
https://styled-components.com/docs
https://formik.org/docs/overview
https://formik.org/docs/guides/form-submission
https://formik.org/docs/guides/form-submission
https://infinitbility.com/how-to-set-keyboard-type-in-react-native
https://infinitbility.com/how-to-set-keyboard-type-in-react-native
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/activityindicator
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/activityindicator
https://support.google.com/cloud/answer/6158849?hl=en
https://support.google.com/cloud/answer/6158849?hl=en
https://docs.expo.dev/versions/v44.0.0/sdk/google/
https://docs.expo.dev/versions/v44.0.0/sdk/google/
https://reactnavigation.org/docs/getting-started/
https://reactnavigation.org/docs/getting-started/

Vedlegg A

Programlisting

A.1 LiveData.py

Code A.1: livedata.py Duplicate removal
1 def clean_data(raw):
2 data = []
3 for line in raw:
4 datapoint = []
5 line = line.strip('\n')
6 rawline = []
7 for word in line.split('\t'):
8 rawline.append(word)
9 datapoint.append(rawline[2])

10 datapoint.append(rawline[3])
11 datapoint.append(rawline[4])
12 data.append(datapoint)
13 cleanedData = remove_duplicates(data)
14 del cleanedData[0]
15 return cleanedData

Code A.2: liveData.py Support functions
1 def check_if_duplicate(data, newDatapoint):
2 result = False
3 for datapoint in data:

94

A.1 LiveData.py

4 if newDatapoint[0] == datapoint[0] and ...
newDatapoint[1] == datapoint[1]:

5 result = True
6 print('Found a duplicate')
7 break
8 return result
9

10 def remove_duplicates(data):
11 cleanedData = []
12 for datapoint in data:
13 if check_if_duplicate(cleanedData, datapoint):
14 pass
15 else:
16 cleanedData.append(datapoint)
17 return cleanedData

Code A.3: liveData.py Method for finding the limit
1 def find_limit(self):
2 minrange = len(self.sample[0])
3 for datatype in self.sample:
4 length = len(datatype)
5 if length < minrange:
6 minrange = length
7 return minrange

Code A.4: liveData.py Method for generating datapoints
1 def generate_datapoints(self):
2 datapoints = []
3 for i in range(len(self.sample)):
4 datapoint = self.sample[i][self.counter]
5 datapoints.append(datapoint)
6 return datapoints

Code A.5: liveData.py Method for updating the counter
1 def update_counter(self):
2 if self.counter == self.limit :
3 self.counter = 0
4 else:
5 self.counter += 1

95

A.1 LiveData.py

Code A.6: liveData.py Method for pushing data
1 def push_datapoints(self,datapoints):
2 response = requests.post(self.target, ...

verify=False, json = {
3 'rpm_3': float(datapoints[8][-1].replace(',','.')),
4 'rpm_6':float(datapoints[9][-1].replace(',','.')),
5 'rpm_100':float(datapoints[1][-1].replace(',','.')),
6 'rpm_200':float(datapoints[2][-1].replace(',','.')),
7 'rpm_300':float(datapoints[3][-1].replace(',','.')),
8 'rpm_600':float(datapoints[0][-1].replace(',','.')),
9 'rho':float(datapoints[4][-1].replace(',','.')),

10 't_inlet':float(datapoints[5][-1].replace(',','.')),
11 'yp':float(datapoints[6][-1].replace(',','.')),
12 'pv':float(datapoints[7][-1].replace(',','.')),
13 #'Date': date
14 })
15 print(datetime.now())
16 if response.json()["msg"] == "ok":
17 print("Successful")
18 else:
19 print("Unsuccessful call")

Code A.7: Switch for stats selection
1 def select_stats(conn,category,start,end):
2 result = None
3 if category == "all":
4 result = select_all_stats(conn,start, end)
5 elif category =="3_rpm":
6 result = select_stats_3rpm(conn,category,start,end)
7 elif category =="6_rpm":
8 result = select_stats_6rpm(conn,category,start,end)
9 elif category =="100_rpm":

10 result = select_stats_100rpm(conn,category,start,end)
11 elif category =="200_rpm":
12 result = select_stats_200rpm(conn,category,start,end)
13 elif category =="300_rpm":
14 result = select_stats_300rpm(conn,category,start,end)
15 elif category =="600_rpm":
16 result = select_stats_600rpm(conn,category,start,end)
17 elif category =="rho":
18 result = select_stats_rho(conn,category,start,end)
19 elif category =="t_inlet":
20 result = select_stats_tinlet(conn,category,start,end)
21 elif category =="pv":
22 result = select_stats_pv(conn,category,start,end)
23 elif category =="yp":

96

A.2 Setupdb.py

24 result = select_stats_yp(conn,category,start,end)
25 return result

Code A.8: Schema for database
1 sql_create_Rheosense_table = """ IF NOT EXISTS (SELECT * ...

FROM sysobjects WHERE name='Rheosense' and xtype='U')
2 CREATE TABLE RheosenseData (
3 id INTEGER,
4 rpm_3 REAL,
5 rpm_6 REAL,
6 rpm_100 REAL,
7 rpm_200 REAL,
8 rpm_300 REAL,
9 rpm_600 REAL,

10 rho REAL,
11 t_inlet REAL,
12 yp REAL,
13 pv REAL,
14 Date datetime
15);"""

A.2 Setupdb.py

Code A.9: setupdb.pyUserstable

1 def create_tables(conn):
2 # Drop previous table of same name if one exists
3 cursor = conn.cursor()
4 cursor.execute("DROP TABLE IF EXISTS Users;")
5 print("Finished dropping tables (if existed)")
6 cursor.execute("""
7 CREATE TABLE Users (
8 id serial PRIMARY KEY,
9 name TEXT NOT NULL,

10 email TEXT UNIQUE NOT NULL,
11 hashedpassword TEXT NOT NULL,
12 role TEXT NOT NULL,
13 permissions TEXT[],
14 created TIMESTAMP
15

16);""")

97

A.3 Helper Functions

17 print("Finished creating table")
18 conn.commit()

A.3 Helper Functions

Code A.10: CreateAxis.js Method for creating the axis
1 export function CreateAxis(stats){
2 console.log(stats)
3 console.log(`creating axis for:${stats.name}`)
4 const spread = stats.max-stats.average
5 console.log(`spread is:${spread}`)
6 if (spread<1){
7 const start= ...

parseFloat((stats.average-0.5).toFixed(1))
8 const end= parseFloat((stats.average+0.5).toFixed(1))
9 const axis =[start, end]

10 return axis
11 }else{
12 const start = Math.round(stats.average-spread*3)
13 const end = Math.round(stats.average+spread*3)
14 const axis =[start, end]
15 return axis
16 }
17 }
18 export default CreateAxis;

Code A.11: ModifyAxis.js Method for modifying the axis
1 export function ModifyAxis(axis,direction,amount){
2 console.log(`Shifting axis:${axis[0]},${axis[1]} ...

direction:${direction} with a modifier of: ${amount}`)
3 let axisLength = axis[1] - axis[0];
4 function leftShift(axis,amount){
5 axis[0]=parseFloat(
6 (axis[0]-axisLength*amount).toFixed(1));
7 axis[1]=parseFloat(
8 (axis[1]-axisLength*amount).toFixed(1));
9 };

10 function rightShift(axis,amount){
11 axis[0]=parseFloat(
12 (axis[0]+axisLength*amount).toFixed(1));

98

A.3 Helper Functions

13 axis[1]=parseFloat(
14 (axis[1]+axisLength*amount).toFixed(1));
15 };
16 function scaleAxis(axis,amount){
17 axis[0]=parseFloat(
18 (axis[0]-axisLength*amount/2).toFixed(1));
19 axis[1]=parseFloat(
20 (axis[1]+axisLength*amount/2).toFixed(1));
21 };
22 if (direction==="left"){
23 leftShift(axis,amount)
24 }else if(direction==="right"){
25 rightShift(axis,amount);
26 }else{
27 scaleAxis(axis,amount)
28 }
29 console.log(`new axis is:${axis[0]},${axis[1]}`)
30 return axis
31 }
32 export default ModifyAxis;

Code A.12: Method for determining if axis index is even
1 function isEven(index){
2 if(index%2 ==0){
3 return true
4 }
5 return false

Code A.13: Format.js - Code for formatting the date
1 import moment from 'moment';
2

3 export function Format(timeDelta, result) {
4

5 if(timeDelta === 1800) {
6 result.forEach(element => {
7 console.log("formating date:")
8 console.log(element.Date)
9 element.Date = moment(element.Date).format("LT");

10 console.log(element.Date)
11 });
12 return result
13 }
14 if(timeDelta === 30 || timeDelta === 120) {
15 result.forEach(element => {

99

A.4 Stats component

16 element.Date = moment(element.Date).format("LTS");
17 });
18 return result
19 } else {
20 result.forEach(element => {
21 element.Date = moment(element.Date).format("LTS");
22 });
23 return result
24 }
25 }
26

27 export default Format;

A.4 Stats component

Code A.14: Stats.js - The stats component
1 export const Stats = (props) =>{
2 const { stats } = props;
3 const { categories } = props;
4 const data = useMemo(() => ...

CreateStatsData(stats,categories),[stats,categories]);
5

6 const columns = useMemo(() =>[
7 {
8 Header:'Name',
9 accessor:'name'

10 },
11 {
12 Header:'Average',
13 accessor:'average'
14 },
15 {
16 Header:'Minimum',
17 accessor:'minimum'
18 },
19 {
20 Header:'Maximum',
21 accessor:'maximum'
22 }
23],[]);
24

25 const {
26 getTableProps,

100

A.4 Stats component

27 getTableBodyProps,
28 headerGroups,
29 rows,
30 prepareRow,
31 } = useTable({
32 columns,
33 data
34 });
35

36 return(
37 <div className="Stats-Table-Container">
38 <table className="table table-striped" ...

{...getTableProps()}>
39 <thead >
40 {headerGroups.map((headerGroup)=>(
41 <tr {...headerGroup.getHeaderGroupProps()}>
42 {
43 headerGroup.headers.map(column =>(
44 <th {...column.getHeaderProps()}> ...

{column.render('Header')} </th>
45))}
46 </tr>
47))}
48 </thead>
49 <tbody {...getTableBodyProps()}>
50 {rows.map((row)=> {
51 prepareRow(row)
52 return (
53 <tr {...row.getRowProps()}>
54 {row.cells.map((cell) =>{
55 return <td
56 {...cell.getCellProps()}>
57 {cell.render('Cell')}
58 </td>
59 })
60 }
61 </tr>
62)})}
63 </tbody>
64 </table>
65 </div>
66);
67

68 }

101

A.5 Page components

A.5 Page components

Code A.15: HistoricData.js - The historic Data page
1 const HistoricChart = () =>{
2 const [time, setTime] = useState(14400);
3 const [stats, setStats] = useState([]);
4 const ∆ = 14400;
5 const [error, setError] = useState(null);
6 const [isLoaded, setIsLoaded] = useState(false);
7 const [StatsLoaded, setStatsLoaded] = useState(false);
8 const [HistoricItems, setHistoricItems] = useState([]);
9 const fetchInterval = 2000;

10

11 const handleClick = (time) => {
12 setTime(time)
13 }
14

15

16

17

18 useEffect(() =>{
19 fetch(`https://bachelor -demo-ims.azurewebsites.net/
20 GetStats?collum=all&∆=${encodeURIComponent(43200)})`,{mehtod: ...

"GET",})
21 .then(res => res.json())
22 .then((result) =>{
23 setStats(result)
24 setStatsLoaded(true)
25 })
26 }, []);
27

28

29

30

31 useEffect(() =>{
32 fetch(`https://bachelor -demo-ims.azurewebsites.net/
33 GetInterval?∆=${encodeURIComponent(time)}`,{mehtod: ...

"GET",})
34 .then(res => res.json())
35 .then((result) =>{
36 setIsLoaded(true);
37 let formattedResult = Format(time,result)
38 setHistoricItems(formattedResult);
39 })
40 }, [time]);
41 if(!isLoaded){

102

A.5 Page components

42 return(<>Loading....</>)
43 }else if(!StatsLoaded){
44 return(<>Loading....</>)
45 }
46 else{
47 return(
48 <>
49 <div className="stats-container">
50 <div className='category -container'>
51 <Stats stats = {stats} ...

categories={["3_rpm","6_rpm"]}/>
52 <div className='chart-combiner'>
53 <Chart items={HistoricItems} stats={stats} ...

isLoaded={isLoaded}
54 error={error} categories= ...

{["3_rpm","6_rpm"]} ...
colours={["green","purple"]} />

55 </div>
56 </div>
57 <div className='category-container'>
58 <Stats stats = {stats} ...

categories={["100_rpm","200_rpm"]}/>
59 <Chart items={HistoricItems} ...

stats={stats} isLoaded={isLoaded}
60 error={error} categories= ...

{["100_rpm","200_rpm"]} ...
colours={["orange","purple"]} />

61 </div>
62 <div className='category-container'>
63 <Stats stats = {stats} ...

categories={["300_rpm","600_rpm"]}/>
64 <div className='chart-combiner'>
65 <Chart items={HistoricItems} ...

stats={stats} isLoaded={isLoaded}
66 error={error} categories= ...

{["300_rpm","600_rpm"]} ...
colours={["blue","orange","purple"]} ...
/>

67 </div>
68 </div>
69 <div className='category-container'>
70 <Stats stats = {stats} ...

categories={["yp","pv"]}/>
71 <div className='chart-combiner'>
72 <Chart items={HistoricItems} ...

stats={stats} isLoaded={isLoaded}
73 error={error} categories= ...

{["yp","pv"]} ...
colours={["green","red"]} />

103

A.5 Page components

74 </div>
75 </div>
76 <div className='category-container'>
77 <Stats stats = {stats} ...

categories={["rho","t_inlet"]}/>
78 <div className='chart-combiner'>
79 <Chart items={HistoricItems} ...

stats={stats} isLoaded={isLoaded}
80 error={error} categories= ...

{["rho","t_inlet"]} ...
colours={["blue","orange"]} />

81 </div>
82

83 </div>
84 </div>
85 <button className='timeOption' ...

onClick={ () => handleClick(1800) ...
}> 30 Minutes </button>

86 <button className='timeOption' ...
onClick={ () => handleClick(3600) ...
}> 1 Hour </button>

87 <button className='timeOption' ...
onClick={ () => handleClick(14400) ...
}> 4 Hours </button>

88 <button className='timeOption' ...
onClick={ () => handleClick(43200) ...
}> 12 Hours </button>

89 <button className='timeOption' ...
onClick={ () => handleClick(86400) ...
}> 24 Hours </button>

90

91 </>)
92 }
93 }
94

95 export default HistoricChart;

Code A.16: LiveData.js - The live Data page
1 const LiveChart = () =>{
2 const [time, setTime] = useState(1800);
3 const [stats, setStats] = useState([]);
4 const ∆ = 1800;
5 const [error, setError] = useState(null);
6 const [isLoaded, setIsLoaded] = useState(false);
7 const [liveitems, setLiveItems] = useState([]);
8 const fetchInterval = 2000;

104

A.5 Page components

9

10

11 const fetchData = async () => {
12 let fetchDelta = time
13 if(liveitems.length>0){
14 fetchDelta = fetchInterval/1000;
15 }
16 console.log(fetchDelta);
17 await fetch(`https://bachelor-demo-ims.azurewebsites.net/
18 GetInterval?∆=${encodeURIComponent(fetchDelta)}`,{
19 method: "GET",
20 })
21 .then(res => res.json())
22 .then(
23 (result) => {
24 setIsLoaded(true);
25 let formattedResult = Format(time, result);
26 if(liveitems.length>0){
27 let mergedResult = MergeResult(liveitems, ...

formattedResult);
28 setLiveItems(mergedResult);
29 }
30 else{
31 setLiveItems(result);
32 }
33

34 },
35 (error) => {
36 setIsLoaded(true);
37 setError(error);
38 }
39)
40 }
41

42 useEffect(() =>{
43 fetch(`https://bachelor -demo-ims.azurewebsites.net/
44 GetStats?collum=all&∆=${encodeURIComponent(43200)})`,{mehtod: ...

"GET",})
45 .then(res => res.json())
46 .then((data) =>{
47 setStats(data);
48 })
49 }, []);
50

51 const handleClick = (time) => {
52 setTime(time)
53 setLiveItems([])
54

55 }

105

A.5 Page components

56

57 useEffect(() => {
58 const interval = setInterval(async () => {
59

60 await fetchData();
61 }, fetchInterval);
62 return () => {
63 clearInterval(interval);
64 }
65 }, [liveitems], time);
66

67 return(
68 <>
69 <div className="panel-container">
70 <div className='panel panel-primary'>
71 <Stats stats = {stats} ...

categories={["3_rpm","6_rpm"]}/>
72 <div className='panel-body'>
73 <Chart items = {liveitems} isLoaded = {isLoaded}
74 error = {error} stats = { stats } ...

categories={["3_rpm","6_rpm"]} colours = ...
{['red','blue']}/>

75 </div>
76 </div>
77 <div className='panel panel-primary'>
78 <Stats stats = {stats} ...

categories={["100_rpm","200_rpm"]}/>
79 <div className='panel-body'>
80 <Chart items = {liveitems} isLoaded = {isLoaded}
81 error = {error} stats = { stats } categories = ...

{["100_rpm","200_rpm"]} colours = ...
{['green','orange','blue']} />

82 </div>
83 </div>
84 <div className='panel panel-primary'>
85 <Stats stats = {stats} ...

categories={["300_rpm","600_rpm"]}/>
86 <div className='panel-body'>
87 <Chart items = {liveitems} isLoaded = {isLoaded}
88 error = {error} stats = { stats } ...

categories={["300_rpm","600_rpm"]} colours = ...
{['green',"purple"]}/>

89 </div>
90 </div>
91 <div className='panel panel-primary'>
92 <Stats stats = {stats} categories={["yp","pv"]}/>
93 <div className='panel-body'>
94 <Chart items = {liveitems} isLoaded = {isLoaded}
95 error = {error} stats = { stats } ...

106

A.5 Page components

categories={["yp","pv"]} colours = ...
{['blue','orange']}/>

96 </div>
97 </div>
98 <div className='panel panel-primary'>
99 <Stats stats = {stats} ...

categories={["rho","t_inlet"]}/>
100 <div className='panel-body'>
101 <Chart items = {liveitems} isLoaded = {isLoaded}
102 error = {error} stats = { stats } ...

categories={["rho","t_inlet"]} colours = ...
{['green','red']} />

103 </div>
104 </div>
105 </div>
106 <div>
107 <button className='timeOption' onClick={ () => ...

handleClick(1800) }> 30 Minutes </button>
108 <button className='timeOption' onClick={ () => ...

handleClick(3600) }> 1 Hour </button>
109 <button className='timeOption' onClick={ () => ...

handleClick(14400) }> 4 Hours </button>
110 <button className='timeOption' onClick={ () => ...

handleClick(43200) }> 12 Hours </button>
111 </div>
112 </>)
113 }
114

115 export default LiveChart;

107

	Content
	Summary
	Terminology
	Introduction
	Project Description
	Objective
	Outline

	Background
	Drilling fluids
	Industry use of rheology data
	Rheology
	Intelligent Mud Solutions AS
	Defining the project

	Development Tools & libraries
	Development methodology & choice of platforms
	Development methodology & Git
	Browser, iOS & Android

	React
	Expo & React Native
	React Native & Cross-platform
	Expo

	Python
	Flask
	Pandas
	Matplotlib

	Microsoft Azure
	Azure SQL Database
	Logic App
	App Service

	Backend Development
	Setting up a development environment
	Simulating The Rheosense
	Cleaning the data

	Building the database
	Creating the database schema
	Connecting Python with the database
	Inserting data
	Querying data
	Stats query

	Creating The APIs
	Configuring the app
	Establishing a connection with the database
	Closing the connection to the database
	Creating the first API
	Get and GetInterval API
	GetStats API
	Securing the APIs

	Login and registration
	Deployment to Azure
	Creating the App Service on Azure
	deploying the Flask app to Azure

	Automated Reporting Feature
	Collecting data
	Creating the plot
	Sending emails to users
	Azure Logic Apps

	Web Development
	Structure
	Routing
	Rendering
	State and props
	Hooks

	Charting
	Chart component

	Stats
	Obtaining data
	Fetching data

	Creating Pages

	Mobile Development
	Structure
	Custom styled components

	Login screen
	Creating the form
	Sending a login request
	Sign in via Google

	Registration screen
	Home screen
	Routing

	Results, Conclusion and future development
	Results
	Discussion and further work
	Web application
	Mobile application

	Conclusion

	Bibliography
	Vedlegg
	Programlisting
	LiveData.py
	Setupdb.py
	Helper Functions
	Stats component
	Page components

