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Abstract. The sum of δ-measures sitting at the points of a discrete set Λ ⊂ R forms a Fourier quasicrystal if
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1. Introduction

By a Fourier quasicrystal one usually means a complex measure with discrete support and
spectrum. This concept goes back to works of Yves Meyer in the 1970-ies and it reappeared later in
connection with an unexpected phenomenon in crystallography discovered by Dan Shechtman
in the 1980-ies, see [5].

More precisely, following [6] we call a measure µ on R a crystalline measure, if it is an atomic
measure which is a tempered distribution, its distributional Fourier transform µ̂ is an atomic
measure and both the support Λ and the spectrum S of µ are locally finite sets. If in addition the
measures |µ| and |µ̂| are also tempered, then µ is called a Fourier quasicrystal (FQ).

The classical example of an FQ is the Dirac comb (the crystal)

µ= ∑
k ∈Z

δk ,

where δx is the unit mass at point x. Then the Poisson summation formula reads µ̂=µ.
Examples of aperiodic quasicrystals were presented in [3] and then in [1, 6, 7]. Recently a new

progress was achieved by P. Kurasov and P. Sarnak [2] who discovered examples of FQs with unit
masses

µ= ∑
λ∈Λ

δλ, (1)

where Λ ⊂ R is a uniformly discrete aperiodic set. An alternative construction of such measures
was suggested by Y.Meyer [8].
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Below we present one more construction and prove that it characterizes all FQs of form (1).
A preliminary publication of our results was given in arXiv [9, 10].

The Theorem 1 below reveals a fundamental connection between FQs with unit masses and
the zero sets Z (p) := {z ∈C : p(z) = 0} of exponential polynomials p with imaginary frequencies.

Theorem 1.

(i) Let p be an exponential polynomial

p(t ) = ∑
1≤ j ≤N

c j e 2π i γ j t , N ∈N,c j ∈C,γ j ∈R, (2)

which has only simple real zeros. Then the measure µ defined in (1) with Λ = Z (p) is an
FQ.

(ii) Conversely, letµ be an FQ of form (1). Then there is an exponential polynomial p of form (2)
with real simple zeros such thatΛ= Z (p).

We will sketch the proof of part (ii), see [10] for the proof of part (i).
Using Theorem 1(i) one may construct simple examples of aperiodic FQs.

Lemma 2. Fix a real number ε satisfying 0 < |ε| ≤ 1/2 and set

pε(t ) := sin(πt )+εsin t . (3)

Then pε has only simple real zeros and

Z (pε) = {k +εk : k ∈Z} , εk ∈ [−1/6,1/6].

For a proof see [10].
Theorem 1 and Lemma 2 show that the sum of δ-measures sitting at the points of Z (pε) is an

FQ.
Let pε be given in (3). One may check that the numbers εk in Lemma 2 satisfy maxk |εk |→ 0 as

ε→ 0. Therefore, the set Z (pε) “approaches” the set of integers Z:

Corollary 3. For every ε> 0 there is an aperiodic set

Λ= {k +εk : k ∈Z} , 0 < |εk | < ε,k ∈Z,

such that the corresponding measure in (1) is an FQ.

2. Proof of Part (ii) of Theorem 1

In what follows we consider the standard form of the Fourier transform

ĥ(u) :=
∫
R

e−2πi ut h(t )d t , h ∈ L1(R).

Let us start with a result which may have intrinsic interest:

Proposition 4. Let µ be a positive measure which is a tempered distribution, such that its
distributional Fourier transform µ̂ is a measure satisfying∣∣µ̂∣∣ (−R,R) =O

(
Rm)

, R →∞, for some m > 0, (4)

which means that |µ̂| is a tempered distribution. Then there exists C such that

µ(a,b) ≤C (1+b −a), −∞< a < b <∞. (5)
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Proof. It suffices to prove (5) for every interval (a,b) satisfying b −a ≥ 2.
Fix any non-negative Schwartz function g (x) supported by [−1/2,1/2] and such that∫

R
g (x)d x = 1.

Set
f (x) := (

g ∗1(a−1/2,b+1/2)
)

(x) ∈ S(R).

Clearly, ∣∣ f̂ (t )
∣∣= ∣∣ĝ (t )1̂(a−1/2,b+1/2)(t )

∣∣≤ (1+b −a)
∣∣ĝ (t )

∣∣ .

Using this inequality and (4), we get∫
R

f (x)µ(d x) =
∫
R

f̂ (t )µ̂(d t ) ≤ (1+b −a)
∫
R

∣∣ĝ (t )
∣∣ ∣∣µ̂∣∣ (d t ) =C (1+b −a).

On the other hand, clearly,

f (x) = g (x)∗1(a−1/2,b+1/2)(x) = 1, x ∈ (a,b).

Hence, ∫
R

f (t )µ(d t ) ≥µ(a,b),

which proves the Proposition 4.
Recall that a setΛ⊂R is called uniformly discrete, if

inf
λ′,λ∈Λ,λ 6=λ′

∣∣λ−λ′∣∣> 0.

A setΛ is called relatively uniformly discrete if it is a union of finite number of uniformly discrete
sets.

Proposition 4 implies

Corollary 5. Let µ be a measure of form (1) whose distributional Fourier transform is a measure
satisfying (4). Then its supportΛ is a relatively uniformly discrete set.

Assume µ is an FQ of form (1). This means that a Poisson-type formula∑
λ∈Λ

f (λ) = ∑
s∈S

as f̂ (s), f ∈ S(R), (6)

is true where S(R) denotes the Schwartz space, S is locally finite set and the coefficients as satisfy∑
s∈S, |s|<R

|as | ≤C Rm , R > 1, for some C ,m > 0. (7)

To prove part (ii) of Theorem 1 we have to show that Λ= Z (p) for some exponential polynomial
p of form (2). We will prove this under the additional restrictions that Λ is a symmetric set,
−Λ=Λ and 0 6∈Λ. For the general case see [9].

Set

ψ(z) := ∏
λ∈Λ

(
1− z

λ

)
= ∏

λ∈Λ,λ>0

(
1− z2

λ2

)
, z ∈C. (8)

The product converges (uniformly on compacts) due to Corollary 5.

Lemma 6. ψ is an entire function of order one and finite type, i.e. there exist C ,σ> 0 such that∣∣ψ(z)
∣∣≤Ceσ|z|, z ∈C.

This lemma follows from Corollary 5 and the symmetry ofΛ by standard estimates.

Lemma 7. The following representation is true:

ψ′(z)

ψ(z)
=−2πi

(
a0/2+ ∑

s∈S∩(−∞,0)
as e−2π i s z

)
, Im z > 0, (9)

where as are the coefficients in (6).

C. R. Mathématique, 2020, 358, n 11-12, 1207-1211



1210 Alexander Olevskii and Alexander Ulanovskii

By (7), the series in (9) converges absolutely for every z, Im z > 0.
Let us sketch a proof of Lemma 7. It follows from (8) that

ψ′(z)

ψ(z)
= ∑

λ∈Λ

1

z −λ , z ∈C. (10)

The next step is to check that∑
λ∈Λ

1

z −λ =−2πi

(
a0/2+ ∑

s∈S∩(−∞,0)
as e−2π i s z

)
, Im z > 0. (11)

This can be done as follows: For every fixed z, Im z > 0, set

ez (u) =
{

2πe−2πi zu u < 0

0 u ≥ 0

Then the inverse Fourier transform of ez is the function i /(z − t ). Fix any function h ∈ S(R) such
that h(0) = 1 and the Fourier transform H := ĥ is even, non-negative and vanishes outside (−1,1).
Then use (6) with f (t ) = h(εt )/(z − t ):∑

λ∈Λ

h(ελ)

z −λ =−i
∑
s∈S

as

(
ez (u)∗ 1

ε
H(u/ε)

)
(s).

Finally, to prove Lemma 7 one lets ε → 0 and checks that the right and left hand-sides above
converge to the corresponding sides of (11).

Now, it follows from (9) that there exists K ∈C such that

ψ(z) = K exp

(
−πi a0z + ∑

s∈S∩(−∞,0)
(as /s)e−2π i s z

)
, Im z > 0.

Set

p(z) := eπi a0zψ(z)/K = exp

( ∑
s∈S∩(−∞,0)

(as /s)e−2π i s z

)
, Im z > 0. (12)

Recall that S is a locally finite set. Therefore, by (7) the series above converges absolutely for every
z, Im z > 0.

Denote by Sk the sets

S1 := S ∩ (−∞,0), S2 := S1 +S1, S3 := S1 +S1 +S1, . . .

Denote by as,k the coefficients of the series

1

k !

( ∑
s∈S∩(−∞,0)

(as /s)e−2πi sz

)k

= ∑
s∈Sk

as,k e−2π i sz , k ∈N, Im z > 0.

Then by (12) we get a representation

p(z) = 1+
∞∑

k=1

∑
s∈Sk

as,k e−2π i sz ,

where the double series converges absolutely for every z, Im z > 0. Set

U := {0}
∞∪

j=1
S j ⊂ (−∞,0].

One may check that U is a locally finite set and that p admits a representation

p(z) = ∑
u∈U

due−2π i uz , Im z > 0, (13)

where the series converges absolutely.
To prove part (ii) of Theorem 1 it remains to check that the series in the right hand-side

of (13) contains only a finite number of terms. This can be done as follows: Since ψ is an entire
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function of order one and finite type, the same is true for p. By (13), p is bounded on every
line Im z = const > 0. It follows that (see [4, Lecture 6, Theorem 2]) p is an entire function of
exponential type, i.e. it satisfies ∣∣p(x + i y)

∣∣≤Ceσ|y |, x, y ∈R,

with some C ,σ > 0. Now, to check that in (13) we have du = 0 for every u ∈ U , |u| > σ, one
simply integrates both sides against e2πi uz (sinεz/εz)2, where ε > 0 is so small that |u| − ε > σ

and U ∩ (u −ε,u +ε) = {u}.
We note that one can extend Theorem 1 to measures with integer masses,

µ= ∑
λ∈Λ

cλδλ, cλ ∈N,λ ∈Λ. (14)

Theorem 8.
(i) If a measure µ of form (14) is an FQ, then there is an exponential polynomial p of form (2)

with real zeros such thatΛ= Z (p) and c(λ) is the multiplicity of zero λ.
(ii) Conversely, let p be an exponential polynomial of form (2) with real zeros and let c(λ) be

the multiplicity of zero λ. Then the measure µ of form (14) whereΛ= Z (p) is an FQ.
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