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Real time simulation of quarkonium in a thermal medium

using a 3D Lindblad equation

Aslak Matre

15.06.2022

Abstract

Using a new �nite di�erence operator RN-SBP that has recently been developed and used

for 1D simulations of the Lindblad equation, we extend it to the 3D case. We have not quite

been able to implement the RN-SBP properly for 3D, but we have proved that it will preserve

the trace if implemented correctly. We have also showed that the coherent dynamics of the

Lindblad equation in 3D, and the recoiless limit in 3D works as intended.
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1 Introduction

We humans have always been a curious kind. All since we �rst appeared on the east African
plateau some 300 thousand years ago, we have been trying to �gure out how the world we live in
works. It may have been simple at �rst, possibly smashing rocks together to see what it is made
up. But as we humans grew more and more technologically advanced, our methods of �nding out
how the universe works have grown more sophisticated as well. But it is not only technology that
has grown, but also our understanding, and model of how and what the universe is made up of
and works. Our history can trace its origin all they way back to pre-Socratic Greece, with the
philosopher Democritus, with his atomic theory of the universe. But it is in the last 150 years or
so, that our understanding of the microscopic world has really accelerated. From Einsteins nobel
winning treaty of Brownian motion, the discovery of the electron by J. J. Thomson, Rutherfords
discovery of the nucleus of the atom, our current model of the subatomic world, the Standard
Model has a proud lineage to look back on. But our understanding isn't complete, and may
never be. Currently, to �nd out what is beyond the Standard Model, we are crashing protons and
protons, and heavy ions together at the LHC. In these collisions, brie�y, the conditions inside will
be extreme, to the point where ordinary matter break down to its constituent components, into a
new state of matter, which we call quark gluon plasma. This state of matter has been theorized
to have �lled the early universe before it cooled down. So understanding the behavior of this state
of matter isn't just useful in understanding of quantum chromodynamics, but also in our quest of
understanding the origin and the early universe.

But then how can we understand the behavior of the quark gluon plasma? How can measure
the conditions inside the quark gluon plasma? Since the time duration of these collision are so
shor, on the order of femtoseconds, there is no chance that we can put any sort of external probe
into the quark gluon plasma, let it thermalize, and then measure the properties of the probe. But
what we can do, is to use collision byproducts, that can thermalize inside the collision center, and
then measure the properties of that particle to reconstruct the collision center. And we have just
such a candidate that is a good match for the job we are looking for. And that particle is heavy
quarkonium.

Then the question we want to answer becomes, how can we use quarkonium particle to get
information about the collision? To answer that question, we will turn to the framework of open
quantum systems. We will be treating the quarkonium as a distinguishable particle from medium,
and then evolve the particle forwards, to get an understanding of how the medium impacts the
evolution of the particle.

In the �rst section of the thesis, we will go into some background knowledge that might be
useful before going forward. In the next section, we will be talking about the in�uence functional
from Feynman and Vernon. In the third section, we will be talking about the Lindblad equation,
that we will use to simulate the system. The next section will be about numerics, such as the new
RN-SBP �nite di�erence operator. Next section we will be discussing the results we got from our
simulations. And �nally in the last section, we will be wrapping things up with the conclusion and
outlook towards the future.

Throughout this thesis we will working in natural units, that is c = ~ = me = ε0 = 1, unless
explicitly stated otherwise. Other units will be derived from this. Most things will be measured
in electron volts, eV , such as mass, energy, temperature, and more.
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1.1 Short intro QCD

For our introduction to quantum chromodynamics, shorthanded to QCD, let us start with QCD
Lagrangian, for one particle

LQCD = ψ̄i (iγ
µ(Dµ)ij −mδij)ψj −

1

4
Ga
µνG

µν
a (1.1)

where Ga
µν is the gluon �eld strength tensor

Ga
µν = ∂µA

a
µ − ∂νAaν + gfabcAbµA

c
ν (1.2)

described by the potential Aaµ. g is the strong coupling constant, which decides the strength of the
QCD interaction, fabc are the structure constants. ψ is the quark �eld. The covariant derivative
Dµ for QCD is

Dµ = ∂µ − igGa
µt
a, (1.3)

where Ga
µ is gluon gauge tensor(?) and ta = λa

2
, where λa is the Gell-Mann matrices which are

representations of the SU(3) group, in which QCD are built upon. The indices written in the
Latin script, such as a in ta are color indices, and takes values from 1 to 8.

One curious fact is that of asymptotic freedom in QCD. In short, it says that interactions
become weaker the shorter the distance is. This contrast starkly towards both electromagnetism
and gravity, where interactions become stronger the shorter the distance is. Due to this, quarks
inside the proton, for example, can act almost like a free particle, while it can never escape from
it.

One simple model describing the con�nement, is that of a Cornell potential

v(r) = −α
r

+ σr + c (1.4)

At short distances the Coulombic part of the potential, −α
r
, will dominate. This part describes

the gluon exchange between the quark and its anti-quark. The second linear part describes the
con�nement of the quark, as the interaction becomes larger and larger the further away two quarks
move from each other.

What we are interested in, quarkonium. A type of heavy meson, there are two types of quarko-
nia, charmonium cc̄ and bottomonium, bb̄. So, why are we interested in using quarkonium as a
probe? The biggest reason, is that it has a very clean decay channel, mainly decaying dileptons.

There have been several approaches to try to describe quarkonium in medium, for a comprehen-
sive review, see [14]. We will only summarize things here. Some have tried to work with non-linear
stochastic Schrödinger equations, one of them being the Schrödinger-Langevin equation, or SLE[7].
This equation is a Langevin like extension to the regular Schrödinger equation,

i~
∂

∂t
ψ = [H0 + ~A(S(x, t)−

∫
ψ∗S(x, t)ψdx)− xFR(t)]ψ (1.5)

where H0is the Hamiltonian for the subsystem, A is a friction coe�cient, S is the real phase of the
wavefunction ψ, and FR is the �uctuation operator.

Another approach would be that of the rate equation[4]

dNγ(τ)

dτ
= −Γγ(T )[Nγ −N eq

γ (T )] (1.6)
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1.2 The density matrix

The density matrix ρ was introduced in 1927 by John von Neumann[13]. It allows for descriptions
of mixed ensambles of states. Therefore it contains, in addition to the quantum uncertainty, also
a statistical uncertainty. The density matrix operator ρ̂ can be de�ned as an other outer product
of a statevector if we have a pure state

ρ̂ = |ψ〉 〈ψ| , (1.7)

where |ψ〉† = 〈ψ| or, if we have a mixed state

ρ̂ =
∑
i

pi |ψi〉 〈ψi| . (1.8)

This is the density matrix operator. To get the density matrix, in a certain basis, one can write it

ρ = 〈ei| ρ̂ |ej〉 , (1.9)

or
ρ = 〈ei|ψ〉 〈ψ|ej〉 (1.10)

for an orthonormal basis e. If one has a initial density matrix ρ(0) at time t = 0, one can evolve
it using the time evolution operators U and U †,

ρ(t) = Uρ(0)U † (1.11)

where U(t, 0) = τe−i
∫
H(t)dt, or in the case where the Hamiltionian H is time independent, U(t) =

e−
iHt
~ . One can then show that the equation of motion for the density matrix will be the von

Neumann equation
d

dt
ρ = −i[H, ρ]. (1.12)

For the density matrix to have physical meaning, there are three important properties it must
satisfy. These three properties are: positivity of the density matrix,

〈ψ| ρ |ψ〉 > 0, (1.13)

hermiticity
ρ† = ρ, (1.14)

and unit trace, if it describes a pure state

Tr[ρ] = 1, (1.15)

other wise, if it is a mixed state
Tr[ρ] < 1 (1.16)

One more property that the density matrix ful�lls if it is pure, is that it is idempotent

ρ2 = ρ. (1.17)

Finally, observables can be found by tracing the density matrix with an hermitian operator Â〈
Â
〉

= Tr[ρ̂Â]. (1.18)

5



1.3 Path integrals

One approach towards quantum mechanics and quantum �eld theory, contrasting the canonical
approach,

〈Ω|T{φ(x1)...φ(xn)} |Ω〉 =
〈0|T{φ(x1)...φ(xn)ei

∫
d4xLint[φ0]} |0〉

〈0|T{ei
∫
d4xLint[φ0]} |0〉

(1.19)

is that of Richard Feynman's path integral formulation. Let us have a look at the quantum
mechanical version of the path integral. Suppose we have a standard non-relativistic Hamiltonian

Ĥ =
p̂2

2m
+ v(x). (1.20)

To evolve it from state |xi〉 to a �nal state 〈xf |, assuming the Hamiltonian is not time dependent,

〈xf |xi〉 = 〈xf | e−i(tf−ti)Ĥ |xi〉 . (1.21)

If the Hamiltonian is time dependent, smoothly, we can solve for an in�nitesimal time step, from
some step n to n+ 1

〈xn+1|xn〉 = 〈xn+1| e−iĤδt |xn〉 . (1.22)

Expanding this, we can solve for 〈xf |xi〉

〈xf |xi〉 =

∫
dxn...dx1 〈xf | e−iĤ(tf )δt |xf−1〉 ... 〈xi+1| e−iĤ(ti)δt |xi〉 (1.23)

Inserting a complete set of momentum eigenstate |p〉 〈p| into the in�nitesimal time step above, and
the non relativistic Hamiltonian,

〈xn+1|xn〉 =

∫
dp

2π
〈xn+1| |p〉 〈p| e−i(

p̂2

2m
+v(x))δt |xn〉 (1.24)

Solving this integral we obtain

〈xn+1|xn〉 = Ne−iv(x)δtei
m
2
δt

(xn+1−xn)2

δt (1.25)

where N is normalization constant, we will just ignore. Recognizing there is a hidden Lagrangian
in the exponential, we obtain

〈xn+1|xn〉 = Ne−iLδt (1.26)

We can then insert this into the previous equation, and taking the limit of δt to zero, we get

〈f |i〉 = N

∫
Dx(t)eiS[x] (1.27)

This is the quantum mechanical version of the path integral. For a more in depth version of the
path integral, and the quantum �eld theory version, see Schwartz ch. 14[15].
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2 Open quantum systems

2.1 In�uence functional model

Feynman and Vernon's[5] in�uence functional model is one of the the de�ning models for open
quantum systems. Starting with the abstract density matrix ρ. Writing it down in coordinate
space, the density matrix will then take the form

〈xR| ρ(t) |yQ〉 =

∫
dx′dy′dR′dQ′

〈xR| e
−iHt

~ |x′R′〉 〈x′R′| ρ(0) |y′Q′〉 〈yQ| e
iHt
~ |y′Q′〉 . (2.1)

We recognize the two terms 〈xR| e− iHt~ |x′R′〉 and 〈y′Q′| e iHt~ |yQ〉 to be the path integral over the
paths x and R for

〈xR| e−
iHt
~ |x′R′〉 =

∫ ∫
DxDRe

i
~S[x,R], (2.2)

and over y and Q for

〈yQ| e
iHt
~ |y′Q′〉 =

∫ ∫
DyDQe−

i
~S[y,Q]. (2.3)

For shorthand notation we will call∫ ∫
DxDRe

i
~S[x,R] = K(x,R, t;x′,R′, 0), (2.4)

and ∫ ∫
DyDQe−

i
~S[y,Q] = K∗(y,Q, t; y′,Q′, 0), (2.5)

where S is the action. Similar to what we did for the Hamiltonian, we assume that the action can
be written as

Stot = SP + SE + Sint. (2.6)

The density matrix will then take the form of

〈xR| ρ(t) |yQ〉 =

∫
dx′dy′dR′dQ′

K(x,R, t;x′,R′, 0)K∗(y,Q, t; y′,Q′, 0) 〈x′R′| ρ(0) |y′Q′〉 (2.7)

The density matrix still contains all the information about the medium. This is not something we
are interested in right now. We will introduce what is called the reduced density matrix ρ̃, which
we will obtain by tracing out the environment of the full density matrix, such that

ρ̃ = TrE[ρ]. (2.8)

In coordinate space, the reduced density matrix will have the form

ρ̃(x, y, t) =

∫
dR 〈xR| ρ(t) |yR〉 =

∫
dx′dy′dR′dQ′dRKK∗ 〈x′R′| ρ(0) |y′Q′〉 (2.9)

We will also suppose we can write the initial density matrix ρ(0) in the the following form:

ρ(0) = ρP (0)ρE(0) (2.10)
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If we then plug this initial density matrix back into the de�nition of the reduced density matrix,
we will obtain

ρ̃(x, y, t) =

∫
dR 〈xR| ρ(t) |yR〉 =

∫
dx′dy′dR′dQ′dRKK∗ 〈x′R′| ρP (0)ρE(0) |y′Q′〉 (2.11)

which can be written in terms of the propagator J

ρ̃(x, y, t) =

∫
dx′dy′J(x, y, t;x′, y′, 0)ρP (x′, y′, 0) (2.12)

where

J(x, y, t;x′, y′, 0) =

∫ ∫
DxDye

i
~ [SP (x)−SP (y)]F (x, y), (2.13)

where

F (x, y) =

∫
dx′dy′dR′dQ′dRρE(R′,Q′, 0) ∫ ∫

DRDQe
i
~ (Sint[x,R]−Sint[y,Q]+SE [R]−SE [Q]) (2.14)

is the so called in�uence functional. The in�uence functional encodes the information about the
interaction between the particle, and the environment.

2.2 Caldeira Legget model

We will now be looking at speci�c model of the in�uence functional, namely the Caldeira-Legget
model[3]. Suppose we have a system or an environment, for example a hot thermal bath, and a
massive particle submersed in that system. Also suppose we can write the Hamiltonian for that
system in the form

Htot = HP +HE +Hint, (2.15)

where HTot is the total Hamiltonian for the combined system, HP is the Hamiltonian for the
Hamiltonian for the massive particle, HE is the Hamiltonian for the environment, and HInt is the
Hamiltonian for the interaction between the environment and the particle. We will then take HE

to have the form

HP = − ~2

2M

∂2

∂x2
+ vP (x), (2.16)

where M is the mass of the particle, and v(x) is some potential. For the Hamiltonian of the
environment, we will take it to have the form

HE = − ~2

2m

∂2

∂R2
+

1

2

∑
i 6=j

vE(Ri, Rj), (2.17)

where the environment is made up of N particles, with a mass m. R is a vector, made up of N
components, (R1, ..., RN), and vE(Ri, Rj) is the potential between the i′th and j′th particle in the
environment. Finally, the Hamiltonian for the environment-particle interaction will have the form

Hint =
∑
i

vi(x,Ri). (2.18)
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vi(x,Ri) is the potential between the massive particle, and the i′th particle of the environment.
The full Hamiltonian of the system will then be

Htot = − ~2

2M

∂2

∂x2
+ vP (x)− ~2

2m

∂2

∂R2
+

1

2

∑
i 6=j

vE(Ri, Rj) +
∑
i

vi(x,Ri). (2.19)

If we assume that particle is only weakly interacting with the medium, in the way that the system
and the environment only interact linearly, and the environment can be described as a collection
of n harmonic oscillators

Htot =
p2

2M
+ v(x) + x

∑
n

CnRn +
∑
n

p2
n

2m
+
∑
n

1

2
mω2

nR
2
n (2.20)

where ωn is the frequencies of the harmonic oscillators in the environment, and Cn are the coupling
constants between the environment and the particle. This setup has been solved in [5], and it can
be showed that the in�uence functional for this setup will be, if we assume the environment is in
thermal equilibrium at some temperature T

F (x, y) = e−
1
~
∫ t
0

∫ τ
0 [x(τ)−y(τ)][α(τ−s)x(s)−α∗(τ−s)y(s)]dτds (2.21)

where

α(τ − s) =
∑
n

C2
n

2mωn
[e−iωn(τ−s) +

eiωn(τ−s)

e
~ωn
kT − |

+
e−iωn(τ−s)

e
~ωn
kT − |

] (2.22)

where k is the Boltzmann constant. Since the system is in thermal equilibrium, the initial density
matrix for the environment can be written as

ρE(R′,Q′, 0) =
∏
n

ρkE(R′n, Q
′
n, 0) (2.23)

where

ρkE(R′n, Q
′
n, 0) =

mωn

2π~sinh(~ωn
kT

)
e
−{ mωn

2~sinh( ~ωn
kT

)
[R′2n+Q′2n cosh( ~ωn

kT
)−2R′nQ

′
n]

(2.24)

Writing the α in terms of real and imaginary components

αR(τ − s) =
∑
n

C2
n

2mωn
coth(

~ωn
2kT

)cos(ωn[τ − s]) (2.25)

αI(τ − s) = −
∑
n

C2
n

2mωn
sin(ωn[τ − s]) (2.26)

Writing down the propagator J for this gives us

J(x, t, t;x′, y′, 0) =

∫ ∫
DxDye

i
~ [SP (x)−SP (y)]

e−
1
~
∫ t
0

∫ τ
0 [x(τ)−y(τ)][αI(τ−s)[x(s)+y(s)]dτd

e−
1
~
∫ t
0

∫ τ
0 [x(τ)−y(τ)][αR(τ−s)[x(s)−y(s)]dτd (2.27)

This model describes quantum Brownian motion of a point particle, though it is not completely
obvious how it does it.

In the classical limit, it will turn into the Fokker Planck equations.
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3 Lindblad equation

So, why can't we use the Caldeira-Legget model? There are some shortcomings of that model that
we would like to address. The two main reasons being that it treats the particle in the medium
as a point particle, which, as a non elementary particle, it is not. Also, the Caldeira-Legget
model does also not take color rotations of the quarkonium into consideration. The approach,
however, that we would like to take, is that of the Lindblad master equation. The Lindblad, or
Gorini�Kossakowski�Sudarshan�Lindblad(GSKL) equation, derived independently by Lindblad[9]
and Gorini, Kossakowski and Sudarshan[6], both in 1976. We start with the same setup we had
before, with a environment, and a massive particle submersed into that environment. As one can
imagine, the central object in question becomes the density matrix ρ. Again, the density matrix
will describe the entire system, which we are not interested in this case. We will therefore trace
out the environment, such that we get the reduced density matrix ρ̃. We then want to �nd time
evolution of said reduced density matrix. So, how can we �nd the time evolution for the reduced
density matrix. The time evolution of it is implemented in what is called a dynamical map V (t),
such that

ρ̃(t) = V (t)ρ̃. (3.1)

What this dynamical map is, depends on the system, but can be in general highly complicated
and non trivial. But if we employ a markovian approximation of the system, IE. if the next
time step of the system has no memory e�ect, that it only depends how the system is at this
current step, and not on any other previous steps, we can reduce the complexity of V (t), to the
form V (t1 + t2) = V (t1)V (t2). Then the question becomes, when is the markovian approximation
applicable? The markovian approximation will, for our system in question, be applicable when
there is separation of time scales, between of the relaxation scale of the particle τre, and the fast
damping of correlations in environment τE, IE. we have

τE � τre. (3.2)

Fast damping of correlations in environment τE tells us about the timescale in which correlations
we have in the environment decays.

From this one, and using the born approximation, which says that the system is weakly coupled
witht the environment, will arrive at a linear evolution equation for ρ̃,

d

dt
ρ̃ = Lρ̃, (3.3)

where Lis a generator for the dynamical map V (t)

V (t) = eLt. (3.4)

As shown in [9, 6], the Lindblad equation will have this form:

d

dt
ρ̃ = TrM [ρ,H]

d

dt
ρ̃ = −i[H̃P , ρ̃] +

∑
k

γk(L̂kρ̃L̂
†
k −

1

2
L̂†kL̂kρ̃−

1

2
ρ̃L̂†kL̂k) (3.5)

Looking very much like a modi�ed von Neumann equation, the �rst part is just that, and governs
the coherent evolution of the density matrix. The real meat in this equation comes in the second
part, where γ

k
is the damping rates, and L̂ are the so called Lindblad operators. For a more proper

derivation of this equation, see[11].
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3.1 Lindblad Operators

The Lindblad operators are a manifestation of the in�uence functional F , as they are the ones
that carry the information about how the particle interacts with environment.

So, what is the Lindblad operators for our system. It has been shown that[1, 12], if we assume
that the energy density of the system is high enough, that is larger than ΛQCD, but still smaller
than the mass of the quark, such that it is the largest energy scale of the system,

mQ � T � ΛQCD (3.6)

the Lindblad operator will have the form of

L̂k,a =

√
D̃(k)

2L3
[e

ik·x̂Q
2 (1− k · p̂Q

4MT
)e

ik·x̂Q
2 (ta ⊗ 1)− e

ik·x̂Q̄
2 (1−

k · p̂Q̄
4MT

)e
ik·x̂Q̄

2 (1⊗ ta∗), (3.7)

and the Hamiltonian will have the form

H̃P =
p̂2
Q + p̂2

Q̄

2M
+ [v̂(x̂Q − x̂Q̄)− 1

8MT
{p̂Q − p̂Q̄,∇D(x̂Q − x̂Q̄)}] (3.8)

What does each term inside of Lindblad operators do? First up, is
√

D̃(k)
2L3 . This is the dissipative

kernel, in Fourier space. What does the next part does? We see that there are two terms, with
each term corresponding to the quark and the anti-quark that makes up the quarkonium particle.
Inside each if the terms, there are two parts. k·p̂Q

4MT
describes the recoil that the quarkonium particle

feel experience in the medium, when it collides with the particles in the medium, and takes care

of the dissipation of energy of the quarkonium. e
ik·x̂Q

2 ta ⊗ 1 relates to the color shifts that the
quarkonium can undergo, that is, it will rotate the color that the quarkonium have. It will also
shift the momentum it have by ~k[12]. The recoiless limit, which we will see more to later, is
achieved by setting the parenthesis in the Lindblad operators to 1, such that we are left with

L̂k,a =

√
D̃(k)

2L3
(3.9)

With a change of reference frame to the center of mass frame, and introducing relative coordinates
x̂ and ŷ, instead of the quark and anti-quark coordinates

x̂ =
x̂Q + x̂Q̄

2
, (3.10)

ŷ = x̂Q − x̂Q̄, (3.11)

P̂ = p̂Q + p̂Q̄, (3.12)

p̂ =
p̂Q − p̂Q̄

2
(3.13)

we can rewrite the Lindblad operator into the following form:

L̂relk,a =

√
D̃(k)

2L3
[1− k

4MT
·(1

2
P̂ + p̂)]e

ikr
2 (ta⊗1)−

√
D̃(k)

2L3
[1− k

4MT
·(1

2
P̂ − p̂)]e−

ikr
2 (1⊗ta∗). (3.14)

It was shown in [8, 12]that the dissipative kernel of the static pair of quark anti-quark pair would
be

D(~r) = g2T

∫
d3k

(2π)3

πm2
De

i~k·~r

k(k2 +m2
D)2

(3.15)
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3.2 Lindblad equation for quarkonium

Evaluating the Lindblad equation in position space, it will stay linear with respect to the density
matrix, but it will have spatial and temporal varying coe�cients. [10] showed that when we do
evaluate it in position space, it becomes

∂

∂t
ρ(x, y, t) = i[

∇2
x

M
+ v(~x)]− i[

∇2
y

M
+ v(~y)]ρ(~x, ~y, t)

+ [2F1(
~x− ~y

2
)− 2F1(~0) + F1(~x) + F1(~y)− 2F1(

~x+ ~y

2
)]ρ(~x, ~y, t)

− [
(∇2

x)
2A(~x)

4M2
+

(∇2
y)

2A(~y)

4M2
]ρ(~x, ~y, t)

+ [2F2(
~x− ~y

2
) + 2F2(~x)− 2F2(

~x+ ~y

2
)−∇x

(∇2
x)A(~x)

M2
]∇xρ(~x, ~y, t)

+ [−2F2(
~x− ~y

2
) + 2F2(~y)− 2F2(

~x+ ~y

2
)−∇y

(∇2
y)A(~y)

M2
]∇yρ(~x, ~y, t)

+ [2F ij
3 (
~x− ~y

2
) + 2F ij

3 (
~x+ ~y

2
)]
∂

∂xi

∂

∂yj
ρ(~x, ~y, t)

+ [
1

3
F kk

3 (~0)δij + F ij
3 (~x)]

∂

∂xi

∂

∂xj
ρ(~x, ~y, t)

+ [
1

3
F kk

3 (~0)δij + F ij
3 (~y)]

∂

∂yi

∂

∂yj
ρ(~x, ~y, t) (3.16)

where we have summarized most of the D(~x) into 3 di�erent F terms. Here, A(~x) = D(~x)
8T 2 . They

read

F1(~x) = D(~x) +∇2
x

D(~x)

4MT
+

(∇2
x)²A(~x)

8M²
(3.17)

F2(~x) = ~∇x(
D(~x)

4M
+
∇2
xA(~x)

4M2
) (3.18)

F ij
3 (~x) = − ∂

∂xi

∂

∂xj

A(~x)

4M2
(3.19)

3.3 Trace preservation in the continuum

One of the de�ning features of the Lindblad equation, is the preservation of the trace of the reduced
density matrix ρ̃. Let us �rst start with the coherent dynamics part of the Lindblad equation.

T1 =

∫
d3x

∫
d3yδ(3)(~x− ~y)(i[

∇x
2

M
+ v(~x)]− i[∇y

2

M
+ v(~y)])ρ(~x, ~y, t) (3.20)

We �rst observe that the potentials v(~x) and v(~y) will cancel each other due to the trace condition
~x = ~y. This means that we are left with the kinetic part, but for these to vanish, we need to be
able to transform derivatives in x into derivatives in y. Luckily for us, this is something we are
able to do, due to the presence of the delta function. Let us have a look how.∫

d³x

∫
d³yδ(3)(~x− ~y)(

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

− ∂2

∂y2
1

− ∂2

∂y2
2

− ∂2

∂y2
2

)ρ(~x, ~y, t) (3.21)
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Using integration by parts, twice, on each of the six terms, we get∫
d³x

∫
d³y(

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

− ∂2

∂y2
1

− ∂2

∂y2
2

− ∂2

∂y2
2

)δ(3)(~x− ~y)ρ(~x, ~y, t), (3.22)

which we can do since we have periodic boundary conditions. Using the anti symmetry of the
argument of the delta function, we can exchange a ∂

∂x
with a ∂

∂y
twice, and then using integration

by parts again twice, we get∫
d³x

∫
d³yδ(3)(~x− ~y)(

∂2

∂y2
1

+
∂2

∂y2
2

+
∂2

∂y2
3

− ∂2

∂y2
1

− ∂2

∂y2
2

− ∂2

∂y2
2

)ρ(~x, ~y, t) (3.23)

From this, the kinetic terms will vanish, and therefore T1 = 0. Moving on to the F1 terms.

T2 =

∫
d3x

∫
d3yδ(3)(~x− ~y)[2F1(

~x+ ~y

2
)− 2F1(~0) + F1(~x) + F1(~y)− 2F1(

~x+ ~y

2
)]ρ(~x, ~y, t). (3.24)

Here, due to the trace condition, 2F1(~x+~y
2

) and 2F1(~0) will cancel each other out, and, F1(~x) and
F1(~y) will together cancel out 2F1(~x+~y

2
). This means that trace will vanish, IE. that T2 = 0, for

any choice of D(~r). There is a similar story to some of the F2 terms.

T3 =

∫
d3x

∫
d3yδ(3)(~x− ~y)[2F2(~x)− 2F2(

~x+ ~y

2
)]∇xρ(~x, ~y, t) (3.25)

will vanish due to the trace condition, and

T4 =

∫
d3x

∫
d3yδ(3)(~x− ~y)[2F2(~y)− 2F2(

~x+ ~y

2
)]∇yρ(~x, ~y, t) (3.26)

will also vanish, independent of choice of D(~r). There are still two terms left including F2, namely

T5 =

∫
d3x

∫
d3yδ(3)(~x− ~y){2F (

~x− ~y
2

)(∇x −∇y)}ρ(~x, ~y, t). (3.27)

Recall that F2 is dependent on �rst and third derivatives of D(~r). Also recall that for our case

D(~r) = g2T
∫

d3k
(2π)3

πm2
De

i~k·~r

k(k2+m2
D)2 . Ignoring the constants that go into the F2 terms, the �rst derivative

of D(~r) becomes

~∇rD(~r) = k

∫
d3k

i~kei
~k·~r

k(k2 +m2
D)

= k′
∫
d3k

 sin θ cosφ
sin θ sinφ

cos θ

 ei
~k·~r

(k2 +m2
D)

(3.28)

We only need to check one coordinate, and choosing a suitable coordinate system, we obtain �rst
obtain that ~k · ~r = kr cos θ, and ∫

dkdθdφ sin θ cos θ
eikr cos θ

(k2 +m2
D)
. (3.29)

eikr cos θ will just be 1 since we are evaluating ~x−~y
2

at ~x = ~y, which turns the argument into ~0. This
means that we can rewrite the integral in the following way∫ 1

−1

ydy = 0 (3.30)
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The same argument follows also for the third derivative of F2. This means that 2F2(~x−~y
2

) is 0 for
~x− ~y, and also T5 = 0.

T6 =

∫
d3x

∫
d3yδ(3)(~x− ~y){2F ij

3 (
~x− ~y

2
)
∂

∂xi

∂

∂yj

+
1

3
F kk

3 (~0)δij
∂

∂xi

∂

∂xj
+

1

3
F kk

3 (~0)δij
∂

∂yi

∂

∂yj
}ρ(~x, ~y, t) (3.31)

As we saw earlier, we can transform second derivatives in x into second derivatives in y in the
trace computation using integration by parts, we obtain

T6 =

∫
d3x

∫
d3yδ(3)(~x− ~y){F ij

3 (
~x− ~y

2
)
∂

∂xi

∂

∂yj
+

1

3
F kk

3 (~0)δij
∂

∂xi

∂

∂xj
}ρ(~x, ~y, t) (3.32)

Again, we can turn one of the ∂
∂x

into a ∂
∂y
, giving us

T6 =

∫
d3x

∫
d3yδ(3)(~x− ~y){F ij

3 (
~x− ~y

2
)− 1

3
F kk

3 (~0)δij} ∂
∂xi

∂

∂yj
ρ(~x, ~y, t), (3.33)

which means that for the trace to vanish

F ij
3 (~0)− 1

3
F kk

3 (~0)δij = 0. (3.34)

Let us look at F ij
3 (~x). Recalling the de�nition of F ij

3 (~x) = ∂
∂xi

∂
∂xj

A(~x)
2M2 .

∂

∂xi

∂

∂xj
F ij

3 (~r) |~r=~0 = k′
∫
d3k

kikje
i~k~r

k(k2 +m2
D)

(3.35)

First, we will be looking when i 6= j. First case, i = x, and j = y, will give us

k′
∫
dkdθdφk3 sin θ[sin θ cosφ sin θ sinφ]

ei
~k~r

(k2 +m2
D)

(3.36)

Since the integral
∫ 2π

0
dφ cosφ sinφ = 0, the entire expression also vanishes. For the case i = x,

and j = z, we will get

k′
∫
dkdθdφk3 sin θ[sin θ cosφ cos θ]

ei
~k~r

(k2 +m2
D)

(3.37)

∫ 2π

0
dφ cosφ = 0, again, the integral vanishes. The �nal case when i = y, and j = z, the integral

will be

k′
∫
dkdθdφk3 sin θ[sin θ sinφ cos θ]

ei
~k~r

(k2 +m2
D)

(3.38)

The same story here,
∫ 2π

0
dφ sinφ = 0, that integral will also vanish. Therefore, F ij

3 (~x) = 0 when
i 6= j. Let us now check for the case when i = j, at ~r = 0.

∂2

∂x2
i

D(~r) = k′
∫
d3k

k2
i e
i~k·~r

k(k2 +m2
D)

(3.39)
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Moving to Cartesian coordinates

k′
∫
dk1dk2dk3

1√
k2

1 + k2
2 + k2

3

k2
i

(k2
1 + k2

2 + k2
3 +m2

d)

As we can see, this will be the same no matter what i is, it will be the same. This implies that

F ij
3 (~0) =

1

3
F kk

3 (~0) (3.40)

and therefore T6 = 0. Let us now have a look at

T7 =

∫
d³x

∫
d³yδ(3)(~x−~y)[2F ij

3 (
~x+ ~y

2
)
∂

∂xi

∂

∂yj
+F ij

3 (~x)
∂

∂xi

∂

∂xj
+F ij

3 (~y)
∂

∂yi

∂

∂yj
]ρ(~x, ~y, t) (3.41)

As we saw above, for our choice of D(~r), F ij
3 (~x) = 0 when i 6= j. This leaves us with three cases.∫

d³x

∫
d³yδ(3)(~x− ~y)[2F 11

3 (
~x+ ~y

2
)
∂

∂x1

∂

∂y1

+ F 11
3 (~x)

∂

∂x1

∂

∂x1

+ F 11
3 (~y)

∂

∂y1

∂

∂y1

]ρ(~x, ~y, t) (3.42)

∫
d³x

∫
d³yδ(3)(~x− ~y)[2F 22

3 (
~x+ ~y

2
)
∂

∂x2

∂

∂y2

+ F 22
3 (~x)

∂

∂x2

∂

∂x2

+ F 22
3 (~y)

∂

∂y2

∂

∂y2

]ρ(~x, ~y, t) (3.43)∫
d³x

∫
d³yδ(3)(~x− ~y)[2F 33

3 (
~x+ ~y

2
)
∂

∂x3

∂

∂y3

+ F 33
3 (~x)

∂

∂x3

∂

∂x3

+ F 33
3 (~y)

∂

∂y3

∂

∂y3

]ρ(~x, ~y, t) (3.44)

Let us introduce T71 as

T71 =

∫
d³x

∫
d³yδ(3)(~x− ~y)[2F 11

3 (
~x+ ~y

2
)
∂

∂x1

∂

∂y1

+ 2F 22
3 (

~x+ ~y

2
)
∂

∂x2

∂

∂y2

+ 2F 33
3 (

~x+ ~y

2
)
∂

∂x3

∂

∂y3

]ρ(~x, ~y, t) (3.45)

As T71 only depends on ~x+ ~y and ~x− ~y, we reparametrize in terms of ~z and ~z′, where

~z′ = ~x− ~y (3.46)

~z = ~x+ ~y (3.47)

Introducing
∂

∂xi
= (

∂

∂z′i
+

∂

∂zi
) (3.48)

∂

∂yi
= (

∂

∂z′i
− ∂

∂zi
) (3.49)

∂

∂z′i
=

1

2
(
∂

∂xi
+

∂

∂yi
) (3.50)

∂

∂zi
=

1

2
(
∂

∂xi
− ∂

∂yi
) (3.51)

2
∂

∂xi

∂

∂yi
= (

∂

∂xi
+

∂

∂yi
)
∂

∂z′i
− ∂2

∂x2
i

− ∂2

∂y2
i

(3.52)
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Plugging in into T71will give us

T71 =

∫
d³x

∫
d³yδ(3)(~z){F 11

3 (
~z′

2
)[(

∂

∂x1

+
∂

∂y1

)
∂

∂z′1
− ∂2

∂x2
1

− ∂2

∂y2
1

]

+ F 22
3 (

~z′

2
)[(

∂

∂x2

+
∂

∂y2

)
∂

∂z′2
− ∂2

∂x2
2

− ∂2

∂y2
2

] + F 33
3 (

~z′

2
)[(

∂

∂x3

+
∂

∂y3

)
∂

∂z′3
− ∂2

∂x2
3

− ∂2

∂y2
3

]}ρ(~x, ~y, t).

(3.53)

Inserting T71 back into T7we obtain

T7 =

∫
d³x

∫
d³yδ(3)(~z){F 11

3 (
~z′

2
)(

∂

∂x1

+
∂

∂y1

)
∂

∂z′1

+ F 22
3 (

~z′

2
)(

∂

∂x2

+
∂

∂y2

)
∂

∂z′2
+ F 33

3 (
~z′

2
)(

∂

∂x3

+
∂

∂y3

)
∂

∂z′3
}ρ(~x, ~y, t). (3.54)

Here we see that the F ij
3 (~x) and F ij

3 (~y) have been canceled by 2F (~x+~y
2

), though there is a remnant
left of it. Integrating by parts on T7 with respect to ∂

∂z′i
, and using the fact that the delta function

only depends on zi and not z′i, we get

T7 = −
∫
d³x

∫
d³yδ(3)(~z)2{ ∂

∂z′1
F 11

3 (
~z′

2
)(

∂

∂x1

+
∂

∂y1

)

+
∂

∂z′2
F 22

3 (
~z′

2
)(

∂

∂x2

+
∂

∂y2

) +
∂

∂z′3
F 33

3 (
~z′

2
)(

∂

∂x3

+
∂

∂y3

)}ρ(~x, ~y, t). (3.55)

Let us introduce the A terms, written in terms of F ij
3 .

T8 =

∫
d³x

∫
d³yδ(3)(~x− ~y){∇2

x

1

2
F kk

3 (~x) +∇2
y

1

2
F kk

3 (~y)

+ ~∇x2F
kk
3 (~x) ~∇x + ~∇y2F

kk
3 (~y) ~∇y}ρ(~x, ~y, t) (3.56)

Let us go back to T7 for a bit, where we will introduce a new variable ui = xi+yi
2

= zi
2
, ∂
∂ui

= 2 ∂
∂z′i

.
We get

T7 = −
∫
d³x

∫
d³yδ(3)(~z){+ ∂

∂u1

F 11
3 (~u1) |~u=~x+~y

2
(
∂

∂x1

+
∂

∂y1

)+
∂

∂u2

F 22
3 |~u=~x+~y

2
(~u2)(

∂

∂x2

+
∂

∂y2

)+
∂

∂u3

F 33
3 |~u=~x+~y

2
(~u3)(

∂

∂x3

+
∂

∂y3

)}ρ(~x, ~y, t)

Adding T7 and T8, we obtain

T7+8 =

∫
d³x

∫
d³yδ(3)(~z){− ∂

∂u1

F 11
3 (~u1) |~u=~x+~y

2
(
∂

∂x1

+
∂

∂y1

)− ∂

∂u2

F 22
3 |~u=~x+~y

2
(~u2)(

∂

∂x2

+
∂

∂y2

)

− ∂

∂u3

F 33
3 |~u=~x+~y

2
(~u3)(

∂

∂x3

+
∂

∂y3

) + ~∇x2F
kk
3 (~x) ~∇x + ~∇y2F

kk
3 (~y) ~∇y}ρ(~x, ~y, t) (3.57)

Rewriting the nablas, we obtain

T7+8 =

∫
d³x

∫
d³yδ(3)(~z){− ∂

∂u1

F 11
3 (~u1) |~u=~x+~y

2
(
∂

∂x1

+
∂

∂y1

)

− ∂

∂u2

F 22
3 |~u=~x+~y

2
(~u2)(

∂

∂x2

+
∂

∂y2

)− ∂

∂u3

F 33
3 |~u=~x+~y

2
(~u3)(

∂

∂x3

+
∂

∂y3

)+

∂

∂x1

(F 11
3 + F 22

3 + F 33
3 )

∂

∂x1

+
∂

∂x2

(F 11
3 + F 22

3 + F 33
3 )

∂

∂x2

+
∂

∂x3

(F 11
3 + F 22

3 + F 33
3 )

∂

∂x3

+
∂

∂y1

(F 11
3 + F 22

3 + F 33
3 )

∂

∂y1

+
∂

∂y2

(F 11
3 + F 22

3 + F 33
3 )

∂

∂y2

+
∂

∂y3

(F 11
3 + F 22

3 + F 33
3 )

∂

∂y3

}ρ(~x, ~y, t)

(3.58)
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Let us have a look at ∇i∇j∇jD(~r). This is, based on or dissipative kernel

∇i∇j∇jD(~r) = k′
∫
d3k

k2
jkie

i~k·~r

k(k2 +m2
D)

(3.59)

Going through all the di�erent combinations of k2
jki will yield that for i 6= j, ∇i∇j∇jD(~0) = 0.

Therefore, we get that ∂
∂xi

(F 11
3 + F 22

3 + F 33
3 ) ∂

∂xi
= ∂

∂x1
(F 11

3 ) ∂
∂x1

. Same applies to all the other
coordinates as well. Rewriting T7 as∑

i

∂

∂xi
(F kk

3 (~x))
∂

∂xi
+

∂

∂yi
(F kk

3 (~y))
∂

∂yi
(3.60)

Rewriting in terms of zi and z′i∑
i

(
∂

∂z′i
+

∂

∂zi
)(F kk

3 (
~zi
′ + ~zi
2

))(
∂

∂z′i
+

∂

∂zi
) + (

∂

∂z′i
− ∂

∂zi
)(F kk

3 (
~zi
′ − ~zi
2

))(
∂

∂z′i
− ∂

∂zi
) (3.61)

Using the fact that in the trace, we can turn ∂
∂zi

into ∂
∂z′i

, and then integrating by parts, we get

−
∑
i

2F kk
3 (

~zi
′ + ~zi
2

)
∂

∂z′i
(
∂

∂z′i
+

∂

∂zi
)− 2F kk

3 (
~zi
′ − ~zi
2

)
∂

∂z′i
(
∂

∂z′i
− ∂

∂zi
) (3.62)

Using the trace condition zi = 0,we obtain

−
∑
i

4F kk
3 (

~zi
′

2
)
∂

∂z′i

∂

∂z′i
(3.63)

We can �nally combine everything together to see that the trace vanish

1

2

∑
i

∂2

∂x2
i

F kk
3 (~x) +

∂2

∂y2
i

F kk
3 (~y) =

1

2

∑
i

{( ∂
∂zi

∂

∂zi
+

∂

∂zi

∂

∂z′i
+

∂

∂z′i

∂

∂zi
+

∂

∂z′i

∂

∂z′i
)F kk

3 (
~z′i + ~zi

2
)

+ (
∂

∂zi

∂

∂zi
− ∂

∂zi

∂

∂z′i
− ∂

∂z′i

∂

∂zi
− ∂

∂z′i

∂

∂z′i
)F kk

3 (
~z′i − ~zi

2
) (3.64)

This turns into

2
∑
i

{( ∂
∂z′i

∂

∂z′i
)F kk

3 (
~z′i + ~zi

2
) + (

∂

∂z′i

∂

∂z′i
)F kk

3 (
~z′i − ~zi

2
)} (3.65)

Integrating by parts gives us

∑
i

{2F kk
3 (

~z′i + ~zi
2

)
∂

∂z′i

∂

∂z′i
+ 2F kk

3 (
~z′i − ~zi

2
)
∂

∂z′i

∂

∂z′i
} (3.66)

Using zi = 0, we get ∑
i

4F kk
3 (

~zi
′

2
)
∂

∂z′i

∂

∂z′i
(3.67)

Which we see that is the exact opposite as the remnant of the F ij
3 terms. And by that we can

conclude that the trace is indeed preserved. To summarize, we have found out, that our F ij
3 terms

have these properties:
F ij

3 (~x) = δijF kk
3 (~x) (3.68)

17



F 11
3 (~0) = F 22

3 (~0) = F 33
3 (~0) (3.69)

∂

∂x1

(F 11
3 + F 22

3 + F 33
3 ) =

∂

∂x1

F 11
3 (3.70)

∂

∂x2

(F 11
3 + F 22

3 + F 33
3 ) =

∂

∂x2

F 22
3 (3.71)

∂

∂x3

(F 11
3 + F 22

3 + F 33
3 ) =

∂

∂x3

F 33
3 (3.72)
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4 Numerics and discretization

4.1 RN-SBP operator

Why cannot we use the regular �nite di�erence operators DOld
xk

and DOld
yk

to build DOld
zk

and DOld
z′k

?
Assuming that we have the same spacing in all direction ∆xk = ∆yk = ∆, and with some abuse
of notation

1

2
(DOld

xk
+ DOld

yk
)f(~x, ~y) =

1

4∆
(f(xk + ∆, yk)− f(xk −∆, yk) + f(xk, yk + ∆)− f(xk, yk + ∆))

6= DOld
z′k
f(~x, ~y) =

1

2∆z

(f(xk +
∆z

2
, yk +

∆z

2
)− f(xk −

∆z

2
, yk −

∆z

2
)) (4.1)

As this is clearly not what we are looking for, we need to construct new �nite di�erence operators
that do ful�ll the reparametrization. To start, we have ordered our density matrix in such a way
that

ρ =



ρ(x0,0,0, y0,0,0)
ρ(x0,0,0, y0,0,1)

...
ρ(x0,0,0, y0,1,0)

...
ρ(x0,0,1, y0,0,0)

...
ρ(x1,1,1, y1,1,1)

...
ρ(xN−1,N−1,N−1, yN−1,N−1,N−1)



(4.2)

i.e., we are always shifting y3 one up, then, as we reach the box size, shifting then y2 one up, and
etc. for all coordinates in our six dimensional space. Introducing the shift operators S+ and S−,
which when we have periodic boundary conditions will be

S+ =



0 0 0 . . . 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
...

... 0
. . .

...
...

0 0 . . . 0 1 0


(4.3)

S− = ST+ (4.4)

S+will shift us upwards in the in the grid, and S− will shift us downwards in the grid. S+ +S− = 1

Q = −S+ + S− =


0 1 −1
−1 0

−1
. . . 1

0 1
1 −1 0

 (4.5)

where D ≡ H−1Q. H = ∆1 is the integration prescription. Trivially, Q + QT = 0 One can
show[10] that the summation by parts, or SBP, property will be (u,Dv)H = −(Du, v)H . For the
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reparametrizatrion condition to be ful�lled, we need to create a �nite di�erence operator that
evaluates at all the neighboring corners. How do we do that? We will do that by essentially
shifting the old �nite di�erence operator, in for example the x1 direction, along the y1 one up and
one down, do the old �nite di�erence operator at those two points, and average the result together.
We will then construct our new �nite di�erence operators Dxk and Dyk as

Dxk = (D ⊗ S+ +D ⊗ S−) (4.6)

Dyk = (S+ ⊗D + S− ⊗D) (4.7)

These are the RN-SBP operators. As for the explicit representation of the Dxk and Dykacting on
ρ is, using the same abuse of notation as before

Dxkρ(~x, ~y) =
1

2
(
ρ(xk + 1, yk + 1)− ρ(xk − 1, yk + 1)

2∆
+
ρ(xk + 1, yk − 1)− ρ(xk − 1, yk − 1)

2∆
)

(4.8)

Dykρ(~x, ~y) =
1

2
(
ρ(xk + 1, yk + 1)− ρ(xk + 1, yk − 1)

2∆
+
ρ(xk − 1, yk + 1)− ρ(xk − 1, yk − 1)

2∆
) (4.9)

We de�ne the reparametrizations zk = (xk + yk) and z′k = (xk − yk) in the same way that we did
in the continuum

Dzkρ(~x, ~y) =
1

2
(Dxk − Dyk) (4.10)

Dz′k
ρ(~x, ~y) =

1

2
(Dxk + Dyk) (4.11)

Evaluating it explicitly, we obtain

Dzkρ(~x, ~y) =
ρ(xk − 1, yk + 1)− ρ(xk + 1, yk − 1)

2∆
(4.12)

Dz′k
ρ(~x, ~y) =

ρ(xk + 1, yk − 1)− ρ(xk − 1, yk + 1)

2∆
(4.13)

Suppose we have two functions, u and v, where u only depends on z′ and v only on z.

Dzk(u ◦ v) = u ◦ Dzkv (4.14)

Dz′k
(u ◦ v) = v ◦ Dz′k

u (4.15)

Though we have by created a �nite di�erence operator that by construction is reparametrization
neutral, it has value in showing explicitly that it preserves the trace preservation. First, the ability
to transform a derivative in x into one in y with the help of the delta function

Dxkδ(~x− ~y) = (Dz′k
+ Dzk)δ(~z) = (−Dz′k

+ Dzk)δ(~z) = −Dykδ(~x− ~y) (4.16)

Another computation in the trace that was performed, was in T7, where we needed to reparametrize
it

2DxkDyk = [(Dxk + Dyk)(Dxk + Dyk)− D2
xk
− D2

yk
]

= [2(Dxk + Dyk)Dz′k
− D2

xk
− D2

yk
] (4.17)

As we saw in the start of this subsection, if we had used the old �nite di�erence operators, this
step would no longer have been valid. The last manipulation we did in the trace preservation, was

Dz′K
(δ(zk) ◦ F3(

z′k
2

)) = δ(zk) ◦ Dz′k
(F3(

z′k
2

) (4.18)

As seen above, this also holds. We have now created a new �nite di�erence operator, the RN-SBP
operator, that does preserve the trace.

For a more thorough introduction to SBP operators, see for example [16].
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4.2 Crank-Nicholson method

The time evolution of the system is given by ∂
∂t
ρ̃ = eiM∆t. Naively, one would �rst try to Taylor

expand the exponential, such that it gives us

ρ̃(t+ ∆t) = (1 + iM∆t)ρ̃(t). (4.19)

But as we can see, the norm of the system is no longer preserved, as |(1 + iM∆t)| 6= 1. That was
the forward time stepping. We could also have done the backwards time stepping,

(1− iM∆t)ρ̃(t+ ∆t) = ρ̃(t). (4.20)

Again we have the same issue. But, if we combine these two together, �rst stepping halfway
forwards in time from the current time, and then halfway back in time from the next step, into

(1− iM∆t

2
)ρ̃(t+ ∆t) = (1 + iM

∆t

2
)ρ̃(t), (4.21)

or equivalently

ρ̃(t+ ∆t) =
(1 + iM ∆t

2
)

(1− iM ∆t
2

)
ρ̃(t). (4.22)

This is now norm preserving as | (1+iM ∆t
2

)

(1−iM ∆t
2

)
| = 1.

So, why go with the Crank-Nicholson method? The Crank-Nicholson preserves both hermiticity,
and positivity, in addition, if employed with the new derivative operator, also the trace[10]. It does
have the issue of being more computational heavy compared to other methods, but the bene�ts
listed above outweigh the slower performance.
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5 Simulation results and discussions

We've come to section were we will be getting some results from the code we have written. We
ran the coherent dynamics simulation once, the recoiless limit twice, at T = 0.1M and T = 0.3M ,
and the full Lindblad simulation was ran three times, with T = 0.1M , T = 0.3M , and one with
more di�erent simulation parameters, with will be mentioned later.

Our density matrix is expressed in the eigenstate basis,

ρnm(t) =

∫
dx

∫
dy 〈ψn(x)|ρ(x, y, t)|ψm(x)〉 (5.1)

ρnm(t) =

∫
dx

∫
dy 〈ψn|x〉 〈x|ψk〉 〈ψk|y〉 〈y|ψm〉 (5.2)

We read of the survival probability Pn as the diagonal entries of the density matrix Pn = ρnn.
Energy of the system is computed as 〈E〉 = Tr[HPρ]

5.1 Simulation parameters and numerical tolerances

5.1.1 Numerical step sizes and tolerances

For all of the simulations, we used 8 grid points per dimension, as that was the highest possible
we could go, when using 16GB of memory. The spatial step size ∆x was set at ∆x = 1, and the
temporal step size ∆t was set at ∆t = 0.1. Regarding the numerical tolerances, for all simulations,
it was set at ∆GMRES = 10−12 for the GMRES algorithm, and the max number of iterations for the
solver was set at NGMRES = 1000. The number of iterations for the quarkonium simulation itself,
was set at 5000 iterations for all cases. This fairly low was set to avoid too lengthy simulations,
due to the limited available computing power we had at our disposable.

5.1.2 Simulation parameters

All simulations ran using a Gaussian dissipative kernel

D(~r) = γe
− ~r2

l2cor , (5.3)

and the Cornell potential
v(~r) = −α

~r
+ σ~r + c. (5.4)

The values for α, σ and c was set at α = 0.3, σ = 0.03248 and c = 0 respectively. These
values for the potential comes are from �rst principle calculations from lattice QCD(?)[2]. The
other simulation parameters were chosen to correspond as closely as possible to [10], as to allow as
accurate comparison of the 1D simulation to the 3D simulation as possible. Therefore, γ was set at
T
π
, and the correlation length lcor was ∆x

T
. Mass of the quarkonium particle was set atm = 0.479188.

The initial density matrix was initialized with 100% ground state in all simulations.

5.2 Coherent dynamics

As a �rst test of the code, we ran only the coherent dynamics part of the Lindblad equation

∂

∂t
ρ(x, y, t) = i[

∇2
x

M
+ v(~x)]ρ(~x, ~y, t)− i[

∇2
y

M
+ v(~y)]ρ(~x, ~y, t). (5.5)
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This is essentially just the Schrödinger equation for the density matrix. It serves as an important
milestone in the project, as it allows us to make sure that the coherent dynamics works, not just
alone, but also for the recoiless limit and the full Lindblad equation.

What do we expect to see from the coherent dynamics? The ground state is a stationary state,
and the Schrödinger equation cannot transform one stationary state to another on. Since the
density matrix was initialized with 100% ground state, we expect the system to stay that way. It's
a similar story for the total energy of the system. As there is no medium for the system to gain
or shed energy, we would expect the energy to stay constant during the entire simulation. As for
the trace, as we showed in the trace preservation part, the trace should also remain unity.
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Figure 1: Coherent dynamics, system energy
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Figure 2: Coherent dynamics, survival probability for P0
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Figure 3: Coherent dynamics, trace

How do the result we got, compare to what we expect? Looking at the survival probability of
the ground state, we see no deviation from the expected value of 100%. The energy tells us the
same story. There is no energy deviation from the initial energy of the density matrix over the
run of the simulation, just as we expected. The absolute value of the trace stays at unity, within
machine precision, for the entirety of the simulation. The imaginary part of the trace starts on the
order of 10−13, and after 5000 iterations, it is at the order of 10−10, which is what we would expect
when using a tolerance of 10−12. We can therefore, based on these results, the coherent dynamics
part of the code works as intended, and produces the results we would expect. We can then move
on the recoiless limit.

5.3 Recoiless limit approximation

The second results that we got, was for the recoiless limit approximation of the Lindblad equation.
This limit is when we are leaving out all the A terms, F2 terms, the F ij

3 terms, and all parts of F1

besides D(~r). The Lindblad equation will then look like

∂

∂t
ρ(x, y, t) = i[

∇2
x

M
+ v(~x)]ρ(~x, ~y, t)− i[

∇2
y

M
+ v(~y)]ρ(~x, ~y, t)

+ [2D(
~x− ~y

2
)− 2D(~0) +D(~x) +D(~y)− 2D(

~x+ ~y

2
)]ρ(x, y, t). (5.6)

The recoiless limit ignores all dissipative e�ects on the quarkonium, and thus only have �uctuations.
This means that the quarkonium would only take up energy, and never shed any of it away.
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Figure 4: Recoiless limit, system energy
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Figure 5: Recoiless limit, survival probabilities
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Figure 6: Recoiless limit, trace

When T = 0.3M , we see a fairly rapid heating of the system, with a peak P1 at tM = 37. The
reason for the peak, is that, as the system picks up more and more energy, some of the ground
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state will excite into the �rst excited state. As the system continuous to take up energy from
the environment, some of the �rst excited states will either jump up into a higher state, or melt
away. This is why we see a drop in P1 after a certain point. We do believe the same will happen
at T = 0.1M , though the simulation was performed long enough to observe this happening. As
for the relative di�erence in the survival probabilities between T = 0.1M and T = 0.3M , this is
explained by the Boltzmann factor

Pj
Pi

= e
Ei−Ej
kT . (5.7)

As the temperature T increases, the ratio between the di�erent survival probabilities will shrink,
which is what we do observe. Though the simulation length is on the short end, it does not look like
the system is able to thermalize, just as we would expect, since the system has no way of shedding
any energy back into the environment. Regarding the energy, one would naively expect the energy
to grow to in�nity, as the system is taking up more and more energy from the environment. This
is not quite what we are seeing, as the energy increase is steadily decreasing, suggesting that it will
converge at some point. The reason we are not surprised seeing this, is that it reaches an in�nite
temperature limit on a �nite lattice[10].

The trace is also excellently preserved in the recoiless limit. There is a somewhat mysterious
behavior of the imaginary component of the trace. We would expect it to rise or decrease linearly,
with the slope depending on the tolerances used. What we see is a quite erratic behavior, with
even a discontinuity at around tM = 45, though all of it are within machine precision level. We
cannot explain why the imaginary part of the trace behaves in this erratic fashion, but it is most
likely related to some numerical imprecision.

In an in�nite box, we would expect the survival probabilities in the recoiless limit to approach
0 for t(∞). If we are looking at the Boltzmann distribution

F (E) = Ae−
E
kT (5.8)

where A is a normalization constant. During the normalization procedure, one has to divide by
the sum over all states. With an in�nite box, the normalization procedure would require a division
by in�nity, such that, indeed, the survival probability for any state would go towards zero. In a
�nite box, however, the normalization procedure will longer have a division by in�nity, but some
�nite number. Therefore, we would expect the survival probabilities to go to some small, but non
zero number.

Overall, the recoiless limit exhibits the behavior that we would expect, and we can then move
on to the full simulation of the Lindblad equation.

5.4 Full Lindblad equation

Coming to the simulation of the full we do know from beforehand testing of the code, that the
trace is not preserved properly. We also know where the cause of the non preserved trace is. In
the trace preservation calculations, we saw that we had to discretize the A terms

− [
(∇2

x)²A(~x)

4M²
+

(∇2
y)²A(~y)

4M²
]ρ(~x, ~y, t) (5.9)

and

− [∇x
(∇2

x)A(~x)

M²
∇x +∇y

(∇2
x)A(~y)

M²
∇y]ρ(~x, ~y, t) (5.10)

in a particular way, such that they cancel out with some remaining F ij
3 terms

[2F ij
3 (
~x+ ~y

2
)
∂

∂xi

∂

∂yj
+ F ij

3 (~x)
∂

∂xi

∂

∂xj
+ F ij

3 (~y)
∂

∂yi

∂

∂yj
]ρ(~x, ~y, t) (5.11)
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We do know from debugging that the rest of the F ij
3 , and the F2 do preserve the trace, as shown

in the trace preservation, we can with high con�dence that it is here the issues is.
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Figure 7: Full Lindblad equation, system energy
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Figure 8: Full Lindblad equation, survival probabilities
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(b) Trace, imaginary component

Figure 9: Full Lindblad equation, trace
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As we can see from the plots, there is a quite signi�cant decrease of the trace, even in this
relatively short simulation. The loss of the trace is equivalent to loosing probability, which we see
quite clearly in the survival probabilities of the di�erent states, in both of the simulations. We
also see this in the energy, which is also calculated from the trace. We would expect it to converge
to a �xed value as the system thermalizes, but it starts to decrease fairly rapidly as the trace is
shrinking.

We do in the beginning, see a rapid heating of the system when T = 0.3M , and a much slower
heating when T = 0.1M , with P1, when T = 0.3M , reaches it's peak at roughly tM = 20, before
it starts to drop, quite quickly, due to the non preservation of the trace.

As the decrease of the trace was quite severe, we did a �nal simulation, decreasing the strength
of the interaction to try to tame the trace. The simulation parameters we choose for this run was,
T = 0.2, γ = 0.01, and lcor = 2ds, with the rest of the parameters and tolerances being the same
as all the previous simulations.
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Figure 10: Full Lindblad equation, γ = 0.01, system energy
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Figure 11: Full Lindblad equation, γ = 0.01, survival probabilities
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Figure 12: Full Lindblad equatuin, γ = 0.01, trace

The systems heats up quite rapidly, with P1 peaking at tM = 15. The system also thermalizes
fairly quickly, reaching thermal equilibrium at roughly tM = 100, with a minimum at tM = 111.
The survival probabilities, will then start to rise, as a consequence of the non preserved, rising
trace. There is a similar story with the energy, reaching equilibrium at the same point.

We recognize from this three simulations, that, in particular, γ, the strength of the interaction
between the system and the environment, has a signi�cant impact on the trace, when it is not
conserved.
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6 Conclusions and outlook

As far as I can tell, there have been no equivalently done simulations with other approaches in
the three dimensional case, only in the one dimensional case. When the discretization of the A
terms have been �xed, and done correctly, this will den serve as a comparison towards other, more
computational e�cient approaches, such as the stochastic unraveling of the master equation is
done.

We would have liked to compare the recoiless limit with the full Lindblad equation, at the same
parameters, as to see if, and when, the recoiless is a good approximation for the full Lindblad
equation. This is out of the question, due to the complete breakdown of the simulation of the full
Lindblad equation.

As a comparison with the one dimensional case of the Lindblad equation[10], though, not
entirely applicable due to the usage of the Cornell potential in the 3D version, as compared to
the Yukawa potential employed in the 1D case, we see the same behavior for the recoiless limit,
and the behavior that we would expect. We are therefore con�dent in the validity of the recoiless
approximation of the code. As far as the full simulation, due to the incorrect discretization of the
A terms in the 3D code, it is more di�cult to compare these two results with one another. This
can be done when the proper discretization of the A terms is implemented in the 3D code.

In conclusion, we have showed that the trace of the density matrix will be preserved using the
RN-SBP, at least for our particular choice of D(~r). In addition, we've also seen the importance of
the preservation of the trace, and how changes to how the system is coupled to the medium has
an e�ect on the trace of the density matrix. Both the coherent part, and the recoiless limit of the
code works as intended. The only thing left, is to �x the wrongly discretized A terms, such that
we can get the full Lindblad equation simulated.

Though e�ort has gone into this project, by no means is the work done. The most pressing
concern would be that of the incorrectly discretized A terms. Once those are implemented, we
have a more solid base for any future comparison, with for example the 1D code, as to make sure
that the 3D version is actually correct. Another improvement that can be done is to implement
the real time static potential for hot QCD[8], in addition to the current Gaussian dissipative
kernel that is already implemented. In addition, the half box size periodic boundary conditions
for the dissipative is not implemented in the code. However, to get a truly better simulation,
one would need to signi�cantly increase the grid size of the simulation. With 16GB of RAM,
the current maximum number of grid points in a single direction would be 8, in comparison to
the one dimensional case ability to easily run 256 grid points per dimension on the same memory
budget. As a rough estimation, for the same number of grid points, 256, in the three dimensional
case, we would need approximately 4PB of memory just to house the density matrix vector itself,
using double precision �oating point numbers. This is not even taking the operator matrix in
consideration. This is unfeasible in the near future, so we would need to make use of other
methods to keep the memory usage to a manageable level. One such possibility would be that of
the PETSc matrix free methods, to limit the usage of memory. Other more minor changes to the
code that could be implemented, is a check of hermiticity and positivity of the density matrix.
Though, if we ignore the broken A terms, and look at the recoiless limit, the fact that it gives us
the expected results, suggest that it does not violate both of them, though, we cannot be certain
of it without actually doing the check of it.

As for improvements related to the physics side of things, one could check if any of founding
assumptions that went into creating the master equation are valid. Is the markovian approximation
a good approximation? When does it break down? What about the non-relativistic behavior of
the quarkonium we have assumed?

We hope that in the near future, we can �x the discretized A terms, such that we can get an
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accurate simulation of the system, which in turn can be helpful as a cross-check between other,
less computational heavy methods.
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