
Approved by the Dean 30 Sep 21
Faculty of Science and Technology

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER THESIS

Study programme / specialisation:
Data Science

The spring semester, 2022
Open

Author:
Ali Akbar Rehman

(signature author)

Course coordinator:
Prof. Chunming Rong

Supervisor(s):
Prof. Chunming Ron and Geng Jiahui

Thesis title:
System for Workflow Design and Execution on Data Shared Between Untrusting
Organizations for Analytics

Credits (ECTS):
30

Keywords:
Blockchain, Hyperledger Fabric, Data
Sharing, Kubernetes, JupyterHub

 Pages: 52

 + appendix: 5 and code on Github

 Stavanger, 13/06/2022

ALI AKBAR REHMAN
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

System for Workflow Design and Execution on
Data Shared Between Untrusting
Organizations for Analytics

Master's Thesis - Data Science - June 2022

I,Ali Akbar Rehman, declare that this thesis titled, “System forWorkflow

Design and Execution on Data Shared Between Untrusting Organizations for An-

alytics” and the work presented in it are my own. I confirm that:

■ This work was done wholly or mainly while in candidature for a master’s

degree at the University of Stavanger.

■ Where I have consulted the published work of others, this is always clearly

attributed.

■ Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

“Learn patterns not technologies.”

– Unknown

Abstract

Performance of complex analytics&AI algorithms typically involves large amounts

of data. The data may originate from multiple sources and is typically compiled

and moved to a central location before it can be consumed by the algorithms,

making this approach impractical for untrusting organizations interested to share

analytics and results but not risking the exposure of the dataset in its entirety.

Current approaches to support such a scenario for data consumption is to move

the computation closer to the data instead of the other way around. But that in-

volves writing code for distributed file systems like Hadoop File System (HDFS),

which demands professional expertise in writing Map-Reduce jobs and parallel

code design patterns. In this thesis, we demonstrate a proof of concept allow-

ing organizations to share their datasets for consumption by inter-organizational

workflowswithout exposing the data itself and avoiding distributed programming

expertise. We propose an approach using Hyperledger Fabric for untrusting en-

tities to advertise their datasets for consumption by other organizations without

demanding extensive knowledge of writing distributed code, and all this without

ever exposing the data itself to the user. Hence the analytics can be run on the data

while maintaining ownership. A permissioned blockchain network is established

using Hyperledger Fabric and organizations can join the mentioned consortium.

A JupyterHub server is hosted on a Kubernetes cluster that services users with a

Jupyter instance where users can explore the datasets available through our cus-

tom extension, write code and construct workflows running the algorithms on

the datasets. The required datasets are consumed as persistent volumes when

running the workflow; only exposing the data to the job requiring it. To ensure

the privacy of sensitive information committed to the blockchain, organizations

encrypt the sensitive information with keys that are internal to the organization.

iii

Acknowledgements

For Kausar, my mother, a fountain of benevolence and composure.

And Maqsood, my father, whose persistence and perseverance are what made it

all possible.

A bout of gratitude is due to my supervisors Prof. Chunming Rong and Jiahui

Geng for their support, guidance and ideas with writing this thesis.

A thankful nod to my colleagues and friends at work would not be remiss.

And everything to my tenacious brother, Osama, for who I am today.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 2

1.1 Background and Motivation . 2

1.2 Objectives . 3

1.3 Approach and Contributions . 5

1.4 Outline . 6

1.4.1 Chapter 2 - Related Work 6

1.4.2 Chapter 3 - Background . 6

1.4.3 Chapter 4 - Approach . 7

1.4.4 Chapter 5 - Experiment and Demo 7

1.4.5 Chapter 6 - Conclusions and Future Work 7

2 RelatedWork 8

3 Background - Tools and Technologies 12

3.1 Blockchain . 12

3.1.1 Hyperledger Fabric . 14

3.2 Kubernetes . 17

3.2.1 Containers . 18

3.2.2 Jupyterhub . 19

3.2.3 Argo Workflow . 21

3.2.4 JupyterFlow . 21

3.3 Storage Solutions . 23

v

4 Approach 25

4.1 Introduction . 25

4.2 Proposed Solution & How it Works 26

4.3 Implementation Details . 28

4.3.1 Setting up Blockchain Network 28

4.3.2 Chaincode . 30

4.3.3 REST API . 32

4.3.4 JupyterHub . 36

4.3.5 Extension . 37

4.3.6 JupyterFlow . 38

5 Experiment 40

5.1 Usecases and Overview . 40

5.2 Deploy the System and Setup . 41

5.2.1 Deploy Hyperledger Fabric 41

5.2.2 Deploy JupyterHub on Kubernetes 42

5.3 Experiments . 44

5.3.1 Linear Workflow with Local Dataset 44

5.3.2 Complex Workflow with Azure and Local Datasets 45

6 Conclusions and Future Work 49

6.1 Integration with Relevant Projects 50

6.2 Secure Transfer of Storage Secrets 50

6.3 Clean Up of Resources . 51

6.4 Extending Capabilities of JupyterFlow 52

A Code and Instructions 55

A.1 Instructions . 56

Chapter 1

Introduction

1.1 Background and Motivation

The most important asset a company possesses in this day and age is its data

and with increasing volume and awareness the challenges around data storage,

security, and consumption are also growing exponentially. Some organizations

either have already shifted towards a cloud or hybrid architecture and some are

in the process of this shift. The move to the cloud offers a flexible and robust

solution for data storage as well as access control to the data through some kind

of Role-Based Access Control (RBAC).

Many organizations, often competitors, possess datasets with similar infor-

mation. These organizationsmay be interested in sharing insights from their data

but are reluctant to expose their data and transfer ownership to others. The goal

of such knowledge sharing would be to drive the research of the entire industry

but concerns over data privacy and ownership hinder such collaboration.

The traditional approach towards complex analytical algorithmson somedatasets

involve transferring data, whichmay be originating from several sources, close to

the compute resources, and then running the algorithms or training an AImodel.

But the approach becomes impractical when multiple organizations become in-

volved and data sharing becomes complicated owing to regulations and privacy.

An approach garneringmore andmore focus is tomove the computation closer

to the data residence; solvingmost of the storage and security concerns. One con-

2

cern, however, would be to develop the expertise inwriting distributed codewhich

could be expensive and time-consuming.

We propose a solution allowing orchestration of complex workflows where

each job in the workflow consumes some data from one or multiple sources and

results from individual jobs can be compiled when the workflow finishes. Such

a design would allow organizations to share their data for consumption by algo-

rithms while still maintaining the ownership of the data. And also eliminating

the need to invest heavily into developing knowledge of writing distributed algo-

rithms for utilization of data from multiple sources.

1.2 Objectives

The aim of this thesis project is to develop a proof of concept that will enable

untrusting organizations to share their datasetswhilemaintaining ownership and

access control over the data. The system would allow users to write code and

complex workflows to consume datasets frommultiple sources without exposing

the data itself to the users. The integration of this thesis with [1], in the future,

will help in proving ownership of datasets and computed results as Non-Fungible

Tokens.

The overarchingMinimumViable Product (this thesis in integrationwith Dis-

tributed Identity - DID and Data & Results as NFTs) will allow for workflow de-

sign and development with access control of the entire system through DID and

incentivization for contribution to the consortium through NFTs. The figure 1.1

illustrates the architecture of the complete MVP. However, the scope of this the-

sis is highlighted by the green portions and is solely focused on the system for

workflow design and data consumption. The DID and Reward Framework along

with integrations highlighted in red fall outside the scope of this thesis.

The scope of this project comprises of following parts:

• Establishing a blockchain network for containing meta-data of available

datasets and a log of lease history of the data along with the chain code for

committing the transaction to the ledger. The blockchain is constructed on

Hyperledger Fabric.

Figure 1.1: Architecture of the overarching MVP that this thesis is a part of and
the scope of the thesis

• A REST API for keeping track of encryption keys in a MySQL Database and

invoking the chain-code for respective requests.

• JupyterHubonaKubernetes clusterwhere each organization can contribute

nodes that will host Jupyter notebooks for users and act as an orchestrator

for the entire system allowing design and execution for the workflows.

• An extension for JupyterHub that the users can utilize to explore and start

work with a dataset.

• Extending JupyterFlow tomount Persistent Volumes onKubernetes, create

Persistent Volume Claims and trigger ArgoWorkflows on the cluster to run

the user’s code in a containerized form.

1.3 Approach and Contributions

The first component of our proposed system is to set up a blockchain network in

Hyperledger where metadata of the datasets will be hosted. The idea behind us-

ing a blockchain is to enable organizations complete control over the information

without trusting a third party as the maintainer of the system. The ledger keeps

a track of all the datasets available from different organizations and a ledger of

which organizations are using or have used the data. And the chaincode that could

read and modify the state of the ledger.

Thenext component is aRESTAPI acting as the gatewaybetween the blockchain

and JupyterHub. We develop theAPI that responds to calls from the JupyterHub,

does the validations on the requests, and invokes the corresponding chaincode.

The API also stores and keeps track of the keys used to encrypt the sensitive in-

formation before committing to the blockchain. This API is going to be internal

to the organization to keep the security of the keys integral.

The next key to the solution is the development of a custom Data Explorer

extension for JupyterHub that will be interacting with the REST API and will be

the interface for exploring and leasing the datasets as well as some admin opera-

tions for the maintenance of datasets. In this thesis the admin portion is visible

to all however the integration with DID will enable fine-grain access control over

the system. On triggering the lease of a dataset, a transaction is submitted to the

blockchain, then a folder structure of the data is created in the user’s Jupyter-

Hub environment to allow them to write code for the dataset and finally make

the metadata ready for JupyterFlow to use by reading un-encrypted information

vital for mounting the dataset on Kubernetes.

Finally, we fork and further develop the JupyterFlow 1 to add the functionality

enabling the mounting of data as persistent volumes in Kubernetes. The data can

either be fromanode in theKubernetes cluster that the organization owns or from

an Azure Fileshare. JupyterFlow then reads the information from the extension

and creates persistent volume and persistent volume claims, generates an Argo

workflow from the provided workflow YAMLwritten by the user, and triggers the

workflow to run.

Additionally, during the setup phase, we create a Kubernetes service account

and set the token in the docker image where we also install the data explorer ex-

tension, our custom JupyterFlow, and some other dependencies. This docker im-

age is used to spin up instances of Jupyter whenever a user logs in to the Jupyter-

Hub.

1.4 Outline

1.4.1 Chapter 2 - RelatedWork

This chapter presents some of the related work for this thesis and discusses the

differences in our approach in comparison to the previous research and inspira-

tions for some of the ideas in our thesis.

1.4.2 Chapter 3 - Background

In chapter three we present some background knowledge about the tools and

technologies we have chosen for the development of our solution and discuss the

reasoning behind the tools we have chosen.

1https://github.com/hongkunyoo/jupyterflow

https://github.com/hongkunyoo/jupyterflow

1.4.3 Chapter 4 - Approach

In this chapter, we present and discuss our approach to developing the solution.

We describe in detail how we use the different technologies and discuss the ar-

chitecture of the proposed system.

1.4.4 Chapter 5 - Experiment and Demo

Here we demonstrate how we have set up the test environment and the experi-

ments we conducted on our system.

1.4.5 Chapter 6 - Conclusions and Future Work

Finally, we conclude our work, summarize the project and discuss the future di-

rections for the project.

Chapter 2

RelatedWork

The traditional architecture of applications forces the participating users to trust

a central authority. Such an architecture is proving to be outdated as we con-

tinue to realize the importance of our data. [2] Proposed a system employing

the blockchain technology to build a currency called Bitcoin that is maintained

on a completely distributed ledger between untrusting parties. The paper high-

lights the algorithm to update the ledgerwithout insertingmalicious transactions.

The paper proved that blockchain could be employed tomaintain a central ledger

without the need for a central authority. And the ledger records a tamper-proof

history of transactions continuously.

Some of the most important services today are seemingly offered free of cost.

However, the cost of these services is our personal data, and to use those indis-

pensable services we are forced to rely on third-party organizations. This is the

entire idea behind distributed apps and Web3.0 as discussed in detail here [3].

Web3.0 employs the concept behind the blockchain to develop completely dis-

tributed applications allowing complete freedom and Independence from third-

party corporations.

Since 2008whenBitcoin first cameout as the first application of the blockchain

concept, Web3.0 has been gaining continuous momentum. IBM and the Linux

foundation developed [4]Hyperledger Fabric, a private-permissioned blockchain

to facilitate distributed application development between enterprise organiza-

tions. In [5], researchers propose a system to improve the current process of

funds transfer between banks and parties from different countries for trading.

8

The process usually takes days or weeks. The proposed system, however, de-

veloped using Hyperledger, automates a lot of the processes using smart con-

tracts and reduces the time drastically. The research suggests a prototype based

on blockchain to provide and enforce a workflow ensuring valid transactions be-

tween banks.

[6] Explores the use of blockchain to enforce adversary parties to adhere to a

predefined workflow. They however used the Ethereum blockchain providing a

permissionless andpublic platformwhereaswewill be implementing our solution

on Hyperledger to avoid using a public blockchain and only allow permissioned

entities to join and keep the data private among organizations with a common

interest.

Blockchain can provide a tamper-proof, central ledger without the need for a

central authority. Mainly due to the fact that each block is vetted before addition

but once added becomes a permanent part of the chain. This leads to compli-

cations when it comes to ownership of data and when the entity might want to

remove its data. [7] Discusses among other things the very same idea tomake the

blockchain GDPR compliant so that once the data has served its purpose it can be

purged. The proposed solution uses off-chain technology for each organization to

maintain a set of encryption keys and only commit encrypted data to the chain.

And once the encryption key is destroyed the on-chain data becomes useless. We

employ a similar solution to share and maintain sensitive data on-chain. We em-

ploy the same technology to allow organizations to share the datasets and avoid

committing any sensitive information to the blockchain.

In [8] and [9], rather than compiling the datasets and running algorithms, the

authors discuss the approach of dockerizing the code and running the containers

on machines hosting the data. So the computation is moved to the place of resi-

dence of data rather than the other way around resulting in a solution where the

data is not exposed to the user for computation. The system takes Map-Reduce

code as input from the user and triggers them to run on the system hosting the

data. Their proposed architecture makes use of a ledger in the Hyperledger Fab-

ric network for governing access to remote resources and Hadoop for running

Map-Reduce jobs on the system hosting the data.

The paper proposes a concept similar to that of Ethereum gas to constrain

malicious users from running malicious code in the system. The users will obtain

a fixed totem value that will gradually be used as the code is running. Running out

of totem value revokes the user’s privileges to execute code. Our approach slightly

differs from the TOTEM architecture in that Organizations can use their current

or cloud for storing data as long as they contribute nodes to theKubernetes cluster

they can join the consortium. The users do not have to develop the expertise to

write Map-Reduce jobs and can use any language and design patterns they prefer

as long as it can work on a Jupyter instance. The datasets will be moved across

the network introducing the network overhead as compared to [9] but removing

the complexity of writing distributed code. And the end goal of the systems is the

same, some code is executed on the dataset but the user never gets to see the data

itself, and ownership of the data continues to belong to the owning organization.

And our recommendation to prevent users from writing code that simply copies

over the data or to prevent them from misusing the system is to later introduce

the step where the request to run some code would be reviewed and approved by

the owning organizations hence preventing malicious code from running.

[10] Presents a solution to construct and run workflows as a set of multiple

jobs. Each job is a command to run on a pod and we can define dependencies be-

tween the jobs as Directed Acyclic Graphs (DAG). It takes as input a workflow.yaml

file describing the jobs and their dependencies, converts it into an Argo Work-

flow, and runs it on the Kubernetes cluster hence introducing the requirement

that the JupyterHub setup on Kubernetes only can run JupyterFlow. Our contri-

bution takes the JupyterFlow plugin a step further. We develop and integrate the

capability of creating Persistent Volumes and using Persistent Volume Claims in

generated Argo workflows to mount datasets from different sources for the jobs

that need the data. We will look into the example workflow and implementation

details in Chapter 4. 2.1 Shows a simple workflow.yaml file that JupyterFlow can

consume currently.

1 jobs:
2 - bash hello.sh world
3 - bash hello.sh bob
4 - bash hello.sh foo
5 - ls
6 - echo 'jupyterflow is the best!'

7

8 dags:
9 - 1 >> 4
10 - 2 >> 4
11 - 3 >> 4
12 - 4 >> 5

Listing 2.1: Example JupyterFlow workflow.yaml file having 5 jobs, from

JupyterFlow official examples

Chapter 3

Background - Tools and

Technologies

3.1 Blockchain

Blockchain [2] serves as a ledger between untrusting parties. All the untrust-

ing parties start participating in the peer-to-peer (p2p) network as peers and the

algorithm allows for direct transactions to take place between the participating

parties. Eliminating the need for a central authoritymaintaining the transactions

altogether. All the transactions are vetted to be valid and non-malicious before

being added to a block and becoming a permanent part of the chain. Once a block

has been admitted into the chain, it can never be removed from the ledger.

The validation ofwhether to add a block to the chain is done through a consen-

sus algorithm. There is a choice of consensus algorithms dictating how a trans-

action is accepted into the chain. Over time several consensus algorithms have

been developed each with its pros and cons. Normally it is a trade-off between

speed and security, but the algorithms are being improved upon to come up with

a consensus algorithm that is both fast and safe. Bitcoin uses an algorithm called

proof-of-work as a consensus, which ensures the miner has done enough amount

of work to add the block to the chain and that to change it the same amount of

workwould go intomining every subsequent block. It has its shortcomings. Proof

ofWork is slow and energy inefficient, Ethereum is proposing tomove to a proof-

of-stake algorithm for consensus, where the network holds on to the stake of the

miner till it is verified that the blocks added are valid. The takeaway point here is

12

that the consensus algorithm is one of the core things setting apart a blockchain

from other blockchain networks. As wewill discuss later, Hyperledger uses a con-

sensus algorithmwhere the transactions have to be signed by the peers according

to a policy before being added to the chain, the benefit of having a private chain

with identified entities.

The distributed ledger technology is a lot older than Bitcoin. [11] and [12]

are papers from the 90’s discussing the establishment of a distributed ledger in a

peer-to-peer network. Bitcoin was the practical implementation of the algorithm

as a crypto-currency in 2008 by researcher(s) under the assumed name of Satoshi

Nakamoto. As discussed earlier, Bitcoin uses something known as proof-of-work

as the consensus algorithm where each transaction is timestamped and its hash

included in the chain ensuring that changing a transaction demands all the trans-

actions afterward need to be recomputed. Since this hashing is a computationally

expensive process, as long as a majority of the peers in the network are not con-

spiring for an attack (The probability of which happening is very low), the longest

chain can be accepted as an un-tampered ledger.

Themain characteristics, as apparent from [2], of the blockchain network and

a distributed ledger in general are:

• Distributed: The main building block of a blockchain is a Node. A node

can be thought of as a single machine that is part of the network. Once a

blockchain network is started, nodes can join the network and start partic-

ipating. Every node keeps a copy of the ledger and every suggested trans-

action is validated by comparing each node before being committed to the

chain. The validation process involves the comparison of hashes from pre-

vious blocks & suggested hashes. This distributed nature makes blockchain

resilient from takeover since a corrupted block will be immediately recog-

nized and discarded.

• Secured: Whenever a new transaction is to be added to the chain, a trans-

action is broadcasted to the entire network. Each node verifies if the trans-

actions, about to be committed, are legitimate. If they are, the block is ad-

mitted to the chain, and every node is made aware of the update else the

block is discarded. Since no authority is in charge of the majority of the

nodes the network cannot be hijacked and ensuring the ledger is secure

against attacks.

• Smart Contracts: Smart contracts are a supplement to the blockchain

technology because they were added as a functionality later on. They are

small pieces of code that reside on the nodes alongside ledger copies and

can be invoked when interacting with the blockchain, in a way enforcing a

contract. Smart contracts provide the flexibility to enforce contracts and

since they are written in code they can be very diverse in the kind of opera-

tions they perform.

Before moving on to the specific technology we have opted for let us discuss

a little about different types of the blockchain. There are two main types of a

blockchain networks and which are permissionless & permissioned networks.

A permissionless blockchain network, also known as a public blockchain is one

where anyone can choose to participate in thenetwork. The crypto-currencies like

Bitcoin, Ethereum, and countless others belong to this type of permissionless or

public blockchain. And since anyone can participate it becomes harder or nearly

impossible to identify and track users of the network. In contrast to permission-

less blockchain networks, permissioned blockchains are a new concept quickly

catching on. Instead of a completely public network, permissioned blockchains

allow the establishment of a network where users can be identified and need to

be enrolled before being allowed into the network. This type of blockchain is

best suited for the development of distributed applications or a distributed ledger

among organizations that need to collaborate but possess a certain distrust or

competitiveness between them. In such a network each user is identified by a dig-

ital certificate and users are assigned permissions by administrators. Thus giving

administrators control over the actions the users are allowed to perform in the

network. This gives another layer of security to private blockchains in compari-

son to public blockchains. Because of these principles, permissioned blockchains

are getting increasingly popular with enterprise organizations.

3.1.1 Hyperledger Fabric

Hyperledger Fabric [4], is an Open Source project started by the Linux Founda-

tion. It provides the tools to set up a private & permissioned blockchain network

among parties. It has been designed from the ground up to bemodular where the

components are plug-n-play to support a wide area of scenarios and enterprises.

Once a network has been established, Organizations can join channels which is

the Hyperledger terminology of a blockchain. Each channel can have its ledger

and smart contracts. And because of this setup Hyperledger can support multi-

ple ledgers between the participating organizations. Another big reason to opt

for Hyperledger Fabric is the fact that it supports smart contracts (Chaincode in

Hyperledger Terminology) in multiple programming languages such as Java, Go,

or NodeJS. Listed below are the main components of the Hyperledger Fabric:

• Channel: Achannel canbe thought of as a dedicated communication chan-

nel between organizations in a network. Organizations with similar inter-

ests come together as a group and decide to set up a blockchain network.

They formulate an application channel; there is a system channel that Hy-

perledger uses internally for the maintenance of the network. After a chan-

nel has been created nodes can start to join and participate in this channel.

And each node that joins the channel gets a copy of the ledger. And each

channel supports a versioning setup for smart contracts. As discussed in

the [13] Hyperledger Docs, the ledger is physically hosted on the peer nodes

but logically hosted on the channel. Policies regarding endorsement of the

transactions are set up when starting the channel as well. Each channel will

have several peer nodes and one orderer node; which acts as the orchestra-

tor between the peer nodes. After a transaction has been signed/endorsed

by the required peers (as dictated by the policy), the orderer will distribute

the block containing the transaction to the peers to be added to the ledger.

• Membership ServiceProvider: Hyperledger being a permissioned net-

work needs some infrastructure to identify users before allowing them to

interact with the blockchain. This is where a membership service provider

(MSP) comes in. Each entity participating in the network requires a key

and a certificate according to the Public Key Infrastructure (PKI) from Cer-

tified Authority (CA) and the certificates are used to enroll the entity with

the MSP. Afterward, the MSP can identify the entity and the permissions it

possesses. To understand an MSP consider a scenario to add a new user to

an organization participating on the network, the scenario starts by getting

a Public-Private Key pair from a Certified Authority, and enrolling the user

in the organization using the MSP; this is the step user has it’s certificate

added and linked to a role in the organization by the MSP.

• Chaincode: Chaincode is the Hyperledger terminology for a smart con-

tract. It is the piece of code that dictates the interactions with the ledger.

Instead of getting the ledger directly, the chaincode is invokedwhich in turn

performs operations involving the ledger. In simple words, chaincode is the

business logic surrounding a blockchain ledger. Similar to the ledger, chain-

code is logically hosted on a channel while physically hosted on peers. As

discussed earlier, Hyperledger supports chaincode written in several lan-

guages like Java, NodeJS, and Go, making it easily adaptable in the indus-

try.

To better understand how all these different components inHyperledger Fab-

ric work and how the Fabric blockchain network is constructed, we use the exam-

ple of a sample network fromHyperledger Documentation 3.1. In 1Wehave three

organizations R1, R2, and R3 wanting to establish a consortium CC1. CC1 has the

policies and role definitions for organizations & their individual users along with

endorsement policies for transactions. CA0, CA1, and CA2 are the certified au-

thorities that organizations R0, R1, and R2 use respectively. They are responsible

for generating identities under the Public Key Infrastructure that will be regis-

tered by the Membership Service Provider. R1 and R2 join the logical commu-

nication channel C1 with Peers P1 and P2 while R0 only contributes an orderer

node. Each node hosts a copy of the ledger while the peer nodes also host Smart

Contracts or chain-code S5. And lastly R1 and R2 own Applications A1 and A2

that they use to interact with the network.

The flexibility thatHyperledger offers, in termsof setting up aprivate blockchain

network with a modular architecture makes it the first choice for enterprise use.

Pluggable CA and MSP framework, consensus policies along with the opportu-

nity to set up complex private channel structures on the same p2p network and

smart contracts in several mainstream programming languages, make it fit for

a wide spectrum of scenarios. You can find several systems already in produc-

tion developed using Hyperledger and a number of its sub-modules 2. These are

1https://hyperledger-fabric.readthedocs.io/en/latest/network/network.html
2https://www.hyperledger.org/learn/blockchain-showcase

https://hyperledger-fabric.readthedocs.io/en/latest/network/network.html
https://www.hyperledger.org/learn/blockchain-showcase

Figure 3.1: A sample blockchain network between two organizations and an or-
derer organization, one channel and smart contracts.

the reasons we decided to use blockchain and Hyperledger to maintain a list of

shared datasets where organizations are in control without trusting a third party

to maintain the system.

3.2 Kubernetes

Kubernetes or Kubernetes is an open-source tool developed by Google for orches-

tration, scaling, and management of containerized applications. Kubernetes op-

erates in a cluster, which is a collection of virtualmachines (VMs) overlooked by a

master node. Themaster node is only an API server for Kubernetes admins to in-

teract with the Kubernetes admin client instead of managing each VM separately.

Several cloud providers provide a managed Kubernetes cluster as Platform

As A Service (PAAS) where the cloud providers are responsible for maintaining

the underlying infrastructure. With implementation details like VMmanagement

and configuration of the Kubernetes cluster are kept hidden from the users and

users can start using Kubernetes right out of the box. However, such a setup is

not feasible for our use case. We need to set up andmaintain a Kubernetes cluster

ourselves so that organizations can join and leave the cluster at will and can also

join nodes where data is hosted on the node itself.

3.2.1 Containers

Before going intoKubernetes, we can briefly present a background regarding con-

tainer technology. Containers are the evolution of virtualization technology. Un-

like virtual machines where a complete system including the physical infrastruc-

ture alongwith a kernel andOperating System (OS) is virtualized, containers only

virtualize the OS, and off-loading themaintenance of the hardware to the host OS

and sharing the kernel results in computationally very cheap virtualization tech-

nology. Containers wrap around a bare-bones OS and package all the dependen-

cies inside an Image that can be used to spin up a replica of an application/system

anywhere on any machine. And containers run completely isolated from the host

system as an extra security layer so as not to affect the host machine.

The biggest service for container technology is Docker. Docker is available

for all major operating systems and architectures. Applications can be container-

ized using a simple Dockerfile. Docker uses the Dockerfile to create an image that

can then be used to spin up containers anywhere, with the same parameters, in

seconds compared to minutes of virtual machine allocation and start-ups.

Docker-Compose is a supplement to the bare bones docker system. Docker-

compose allowspackaging and runningmultiple containers as services; thatmight

be dependent on each other; with a single command. Yet Another Markup Lan-

guage (YAML) file can be used to describe different containers, their environ-

ment, volumes, and networks and the running of a single command spins up all

the dependent services with the parameters specified. We use docker and docker-

compose not only to spin up not only a test blockchain network usingHyperledger

but also to allocate isolated environments for each user that logs in to use Jupyter-

hub.

Coming back to Kubernetes offerings and why we decided to use Kubernetes

in our system. Kubernetes offers features such as health checks of running con-

tainers and restarts in case of node or container failures. Supports the scaling up

of applications depending on the resource demand and load balancing between

horizontally scaled services or scaling down in case demand goes down. Provides

several, easy plug-in storage options so applications do not care about the storage

infrastructure and Kubernetes can handle that whether a Cloud (Azure, AWS, or

GCP) storage solution is used or a node-local one or even a network shared file

system.

Because of the auto-scaling and optimized utilization of the resources, Kuber-

netes as a tool is very useful and interesting for data scientists, who frequently

need to run resource-heavy simulations or analytics on often gigantic data sets.

However Kubernetes has a steep learning curve and in practicality serves more

use cases froma software engineer’s perspective than adata scientist, even though

it can be an extremely useful tool for running compute-heavy workloads.

The first reasonwe incorporateKubernetes into our system is the obvious ben-

efit Kubernetes presents when running compute-heavy workloads. Also, we want

to allow organizations to contribute the compute resources in addition to sharing

datasets. Secondly, as discussed earlier Kubernetes offers a plug-n-play solution

for using data from several sources and storage systems. We intend to leverage

this feature to support a wide number of storage systems, allowing organizations

flexibility to use any storage system and not causing hindrance for organizations

to participate in our system. In the proof of concept we are only using Azure but

because of Kubernetes wide storage support can be easily extended. Next up we

intend to make use of JupyterHub, JupyterFlow, and Argo Workflow for giving

users an environment towrite code, constructworkflows and trigger them instead

of developing the environment ourselves and hence the choice to use Kubernetes.

And as discussed in future work can help give weightage to the computed results,

to the organizations contributing more resources towards computation as well as

datasets, and then incentivize when those results are utilized or even sell their

stake in the results.

3.2.2 Jupyterhub

Project Jupyter started as a simple interface providing a Jupyter notebook that

provides runnable modules within itself and thus supports interactive program-

ming. And in addition to the interactive programming support, Jupyter also pro-

vides support for running kernel commands directly from the notebook. It is one

of the most widely used Integrated Development Environment (IDE) for Python

and data science. Jupyter is a set of open-sourced software and standards for in-

teractive programming across several languages but is foundmost used in Python

settings. The notebook is still the most basic block of a Jupyter environment but

it has developed into a much more diverse set of tools. We will take a look a

JupyterHub in this section.

JupyterHub is an enterprise solution for big companies and research labs to

host multi-user Jupyter environments on a server. It runs on a central server or

a Kubernetes cluster and can spawn multiple instances of single-user notebook

servers and hence providing each user with an isolated environment (to avoid

conflicting processes and security of the underlying infrastructure). JupyterHub

is designed to be containerized andKubernetes friendly and thus can scale up and

down depending on the number of users. It provides a pluggable authentication

service to support several identity providers. Currently, it supports Privileged

Access Management (PAM), Lightweight Directory Access Protocol (LDAP), and

OAuthenticator out of the box and supports custom Authenticator Interface im-

plementation implemented followingOAuth standards. Oneof the projects along-

side this thesis is to develop a Distributed Identity using blockchain and a custom

Authenticator for JupyterHub. The integration with DID framework and using

the custom authenticator falls out of the scope of this project. These all features

combined make it a perfect tool for a consortium of organizations to serve users

with a single-point solution for data analytics.

Jupyter has grown from a single notebook to an array of tools and JupyterLab

is the next generation of the Jupyter interface. JupyterLab is a completely new ex-

tensible interface for Jupyter. Unlike the classic notebook interface, JupyterLab

is designed from the ground up to be a modular solution and a complete inte-

grated environment with powerful tools like a file explorer, multiple program-

ming language kernels and terminals, and editors with embedded debuggers. In

addition to all this, JupyterLab allows the use and motivates the development

of community-driven third-party extensions. We turn on the JupyterLab inter-

face on JupyterHub and develop a custom extension to explore the datasets. All

these features of JupyterHub and JupyterLab make it the ideal tool for the de-

velopment of a workflowmanagement system aimed at allowing organizations to

collaborate.

3.2.3 ArgoWorkflow

Argo workflow is an open-source tool or Custom Resource Definition for Kuber-

netes that provides the ability to define complex workflows and can trigger them

on Kubernetes. In Argo we can specify each job in the workflow as a collection of

Docker images, volumes and environment variables and Argo can spin up the

respective pods. Argo also provided the functionality to specify dependencies

amongworkflow jobs asDirectedA-cyclic Graphs (DAG) and takes care of trigger-

ing jobs in the order of our workflow, triggering parallel jobs together andwaiting

for dependant jobs to finish before triggering the next one.

After installing ArgoWorkflow, we can start writing YAML files for workflows

that can be consumed by Argo to trigger pods on Kubernetes. Argo also exposes a

webUser Interface (UI) for users to see theworkflows triggered,monitor them for

errors and check logs, etc. Another useful feature of Argo is exit handlers, which

enable the user to specify exit strategies in case of success or failure both, to clean

up the resources that Argo was consuming. We have not managed to utilize this

feature in this thesis but we discuss how it can be useful in future work 6.

3.2.4 JupyterFlow

As discussed earlier, the auto-scaling nature of Kubernetes and now tools like

JupyterHub that run natively on Kubernetes, make it the ideal solution to run

computationally heavy machine learning or statistical workflows on. However

Kubernetes has a relatively steep learning curve and as data scientists, our en-

ergies need to be focused on data rather than configuring and working towards

running our workflows on Kubernetes. Before we can run our workflows on Ku-

bernetes we need to containerize our code alongwith any environment configura-

tions. To allow data scientists to use Kubernetes to run their workflows without

tinkering too much with Kubernetes we need an abstract tool that can handle

Kubernetes configuration and configuration details on its own and allow us as a

user to just run workflows. JupyterFlow [10] is this tool, distributed as a Package

Installer for Python (PIP) package.

JupyterFlow is a tool that is logically built on top of JupyterHub on K8s and

Argo Workflows. As discussed in the previous subsection Argo allows writing

YAML workflows as custom Kubernetes objects and takes responsibility to trig-

ger the respective pods in the order that workflow requires. JupyterFlow uses

Argo and Kubernetes API under the hood andmakes it even simple for us as data

scientists to focus on data and not take on a role of a software engineer. It takes

the image and environment that JupyterHub uses to spin up the Jupyter instance

for the user and a very simplified YAML file and constructs an Argo workflow and

then triggers it on the Kubernetes cluster.

The only limitation for JupyterFlow is that it only works on JupyterHub on

Kubernetes. Since we already have chosen to use JupyterHub on Kubernetes as

a platform for users to work on, JupyterFlow fits perfectly into our scenario and

we can extend it to use custom volumes on each job while still maintaining the

simplicity, that JupyterFlow brings.

JupyterFlow removes the overhead of containerizing the code and writing in-

sanely complex Argo YAML files to run the complex workflows on a Kubernetes

cluster. Since JupyterHub on Kubernetes can spawn up a separate single-user

Jupyter instance for every user that logs in by using a pre-built docker image with

all the dependencies installed and environment setup. As JupyterFlow runs on

top of JupyterHub on K8s, it can use the Kubernetes API to get the image used

for setting up the environment and fetch the volume details for the user’s home

directory. JupyterFlow can use these two details to containerize the environment

without users’ intervention. To pass the code the user has been working with in-

side the Jupyter server, it utilizes the shared storage solutions that JupyterHub

on Kubernetes offers natively. Since each user gets their shared access storage

so the code and files the user works with are already accessible to Kubernetes we

only need tomake it available to theworkflow that Kubernetes is gonna run. After

these details have been fetched, JupyterFlow uses a template of Argo workflows

to compile the Argo workflow YAML file from the simple YAML file provided by

the user. In this way, JupyterFlow removes the overhead of learning Kubernetes

and writing complex workflow YAML files. It can take a simple YAML file 2.1 and

takes care of containerizing, creating Argo workflows from it, and triggering it on

Kubernetes.

3.3 Storage Solutions

The last piece of the puzzle for our proof of concept is the storage solutions we can

support to consume. Most organizations are moving their on-premise infrastruc-

ture to the cloud or a hybrid model. And cloud storage gives them the flexibility

to store enormous amounts of data without the hassle of maintaining the infras-

tructure. Cloud Providers offload the responsibility and make the data highly

available, scalable, and secure through Role-Based Access Control (RBAC).

Kubernetes can support mounting volumes for containers from several stor-

age sources. In this thesis, we develop the system to support Azure Fileshare and

Storage on Kubernetes Nodes as the two available storage solutions. We opt for

Microsoft’s Azure platform owning to the huge presence in the Nordics and the

great resources available. We make use of Azure Fileshare which organizations

can use to store their data and when needed we can mount the Fileshare on the

Kubernetes Cluster, may be residing in the same data center and using the data

for analytics without giving up the ownership of the data itself to the consuming

user.

To summarize we have discussed in this section the technologies we have cho-

sen to develop our proof of concept and why we have chosen the technologies.

And a brief overview of what is the responsibility of each component. 3.2 high-

lights a visual representation of all the components involved in the system and

what function each component serves in our architecture.

Figure 3.2: The tools and technologies discussed in background section and how
they all integrate and work together in the proposed system.

Chapter 4

Approach

4.1 Introduction

In chapter 2 we discuss the object of the thesis, which is to design and develop

the workflow that enables organizations to share their datasets for consumption

by users from other organizations without exposing the dataset itself. And the

system that we are trying to develop should allow users to write code without

developing expertise to write distributed code like Hadoop’s MapReduce Jobs.

This thesis is part of a bigger proof of concept that incorporates this system to-

getherwithDistributed Identity Framework (DID) and authenticator for Jupyter-

Hub as well as integrating this with the NFT Framework for proving ownership

and stake in data as well as results. The integration between the workflow and

other parts of the final proof of concept does not fall under the scope of this the-

sis.

The overview of our approach is briefly demonstrated in 3.2. We set up a

Hyperledger network using docker-compose with three organizations and smart

contracts/chaincode that will be invoked by a REST API. The REST API is an

application that will be owned by the organization and can be made internal to

the organization since it will be interacting and storing with the MySQL database

to store keys for encryption/decryption of sensitive data before committing to the

blockchain. However, as part of this proof of concept, we only create one instance

of the API. As the next step, we set up a Kubernetes cluster and install Argo and

JupyterHub on the cluster. The users can log in to this JupyterHub environment

25

to use it as an IDE and explore the datasets available. We develop a custom exten-

sion for JupyterHub for navigating the datasets and develop JupyterFlow further

to create Persistent Volumes, mount Persistent Volume Claims on Kubernetes,

and create Argo Workflow from a template and trigger the workflow with those

volumes mounted for jobs requiring the data.

Before delving into the details of the implementation we want to acknowledge

that the workwe present here is only a proof of concept and contains several loop-

holes and security vulnerabilities that need to be addressed in future work before

this work can be considered to be production-ready. Moreover, we assume that

one organization takes charge of initiating the consortium and that organizations

agree to the policies and rules before joining in. Moreover, we acknowledge the

system can be exploited very easily given that the secrets after reading from the

blockchain are stored in a plain text hidden file and are only secure by obscurity.

This can be improved later to stop the user from reading these sensitive values.

Moreover, the details like user id and roles will be available from the Distributed

Identity framework once integrated, which right now are input and any user can

take the role of any other user.

4.2 Proposed Solution & How it Works

Figure 4.1 highlights a step-by-step process of how the entire proof of concept

works to consume datasets from multiple sources in a workflow without ever

sharing the ownership and not allowing the user to even see the data.

1. Read a list of all the datasets available from theHyperledger Fabric network

by calling the REST API that invokes the necessary chaincode.

2. User selects one or more datasets to consume in jobs inside the workflow

that will be triggered later.

3. The extension triggers the lease endpoint in the REST API.

4. The REST API invokes the chaincode that will submit the transaction to

lease the data. If the data is free it will be leased else an error thrown.

Figure 4.1: Step by step process of the workflow of the information and instruc-
tions in the system.

5. The chaincode to get the block using the ID is invoked. The REST API gets

the decryption keys for the specific data block from the database and returns

the decrypted data.

6. Extension received a response from the API and creates a directory struc-

ture for the user to experiment with and write the code.

7. Extension creates a hidden file with the credentials to mount the data as a

persistent volume claim in Kubernetes.

8. User writes a workflow.yaml

9. JupyterFlow creates a persistent volume on Kubernetes, creates a claim,

and uses those claims for relevant jobs. Creates an ArgoWorkflow and trig-

gers it.

10. The Argo workflow runs and computes the results.

4.3 Implementation Details

4.3.1 Setting up Blockchain Network

In the systemwepropose organizationswill be storingmetadata about their datasets

on a blockchain to have full control of themselves and not a trusted third party

that in traditional architecture will be maintaining the system. We will set up a

blockchain network in Hyperledger Fabric with three organizations and one or-

derer organization. Each organization in the test network will contribute only a

single peer node.

Since Hyperledger is a permissioned/private blockchain, every entity on the

chain needs private keys and certificates following public key infrastructure is-

sued by a certified authority to identify them. In a production scenario, each or-

ganization will have a different CA who will be responsible for providing certifi-

cates not only for the users but also for the peer nodes. In our test environment,

we use the CA tools provided by Hyperledger designed and available specifically

for test environments. We spin up docker containers for each organization and

the identities of an admin, a user, and a peer are generated by the CA. We enroll

them in the respective organizations as part of the setup process.

Hyperledger uses the identities to identify the participating entity and see if

the policies allow the specific entity to perform the requested operation. Policies

are rules that each organization sets up when joining a channel to specify who

can perform which operations on the network. Consider the following policies

that we have for UiS (One of our test organizations). For testing, we use the same

policies for each organization. These policies can be configured in configtx.yaml

and each organization can write its own users’ and peers’ policies according to its

internal structure.

1 Policies:
2 Readers:
3 Type: Signature
4 Rule: "OR('UiSMSP.admin', 'UiSMSP.peer', 'UiSMSP.client ')"
5 Writers:
6 Type: Signature
7 Rule: "OR('UiSMSP.admin', 'UiSMSP.client ')"
8 Admins:
9 Type: Signature
10 Rule: "OR('UiSMSP.admin')"
11 Endorsement:
12 Type: Signature
13 Rule: "OR('UiSMSP.peer')"

Listing 4.1: Policies for UiS (one of our test organization). We use the same

policies for other organizations as well.

So we have four roles stating who can read, write, administer the organization

(Add users, peers, etc.) and endorse transactions. And policies can use AND, OR

and other binary operators to define rules for each role. Herewewant to highlight

also why participants need to be enrolled in the MSP because the network uses

MSP to attach identities to their roles. As an example, once an entity is registered

in theMSP either as an admin, peer (because chaincode runs with peers identity),

or a user they are eligible to read from the ledger.

We have already seen the policies that dictate in a network and that they are

specified in a configtx.yaml file. configtx.yaml hosts a few other configurations as

well in addition to the policies. In this file, first, we define the organizations in the

network with the name, location for identities, and policies for each organization.

Also, keep in mind that organizations can later be added to the network. That is

the reason we set up a network with two test organizations and add a third one

later but we will discuss more on that in 5. Next, we configure the capabilities

section which is left default since this section is internal to Hyperledger to dic-

tate which features are available in the version being used. The application-level

configuration and policies dictate how smart contracts are configured to behave

and which organizations are allowed to endorse the addition of a new version of a

chaincode or a new chaincode altogether on the channel. And finally, we have the

profile configuration, stating the organizations that will be part of an application

channel.

After the initial setup, we create similar configurations for the third organiza-

tion and follow the same procedure to add it to the channel by creating identities

and enrolling these identities with theMSP, and then adding them to the channel

we created previously. The only difference is that the Majority of other organiza-

tions need to approve or endorse when adding a new organization as specified in

the policies of the application channel when setting up the network.

4.3.2 Chaincode

Hyperledger applications can not read or update the ledger directly, rather they

interface with the blockchain and the ledger through the chaincode. Chaincode

is Hyperledger terminology for smart contracts and contains the business logic

of the network whenever processing a transaction on the block. So chaincode is

a vital part of any network.

As mentioned before, Hyperledger, unlike other blockchain frameworks pro-

vide the opportunity to write chaincode in languages like Go, Java, and NodeJS.

We develop our chaincode in JavaScript. Chaincode needs to implement the

Contract class provided by the fabric-contract-api package for Node. And each

method in the class is auto-injected with context that allows it to read from the

world state of the ledger and submit transactions tomodify the ledger. The trans-

actions then need to be endorsed by peers from other organizations as stated in

the policies when setting up the channel. These methods are then invoked by

external, off-chain applications in our case the REST API.

Eachblock on the chain ismetadata about a dataset that an organizationwants

to share. And apart from the organization having complete control over who can

access this on the blockchain, this being a ledger we are continuously getting an

immutable log of who and when updated the block and also who the dataset was

leased to. As part of designing the workflow that allows for the consumption of

data, a Create, Read, Update and Delete (CRUD) chaincode would suffice. In

addition to the update chaincode, we have another chaincode that only leases a

dataset from one organization to another after validating that the dataset is not

in use.

Here are the outlined steps needed to add chaincode to the channel and are

implemented in deploy.sh. Also mentioned are the commands for each step.

• Packaging The first step is to package the chaincode into a tar archive.

If same chaincode is going to be running for every organization then only

one organization can complete this step and share the packaged code off-

channel.

1 peer lifecycle chaincode package data-chaincode.tar.gz --
path chaincode/ --lang node --label data-chaincode -1

• Installation Each organization intending to use the chaincode needs to

install the chaincode on their peers.

1 peer lifecycle chaincode install data-chaincode.tar.gz

• ApprovalOrganizations need to approve a chaincodebefore it canbe added

to the channel. LifecycleEndorsement in configtx.yaml dictates how many or-

ganizations need to approve a chaincode before it is considered eligible to

be added to the channel. By default and in our scenario this policy is set to

Majority so a chaincode has to be approved by a majority of organizations

before it will be installed on the peers.

1 peer lifecycle chaincode approveformyorg -o --
ordererTLSHostnameOverride --channelID --name --version 1.0
--package-id --sequence --tls --cafile

To this command we provide orderer address, channel id, chaincode name

and version, package id gotten from

1 peer lifecycle chaincode queryinstalled

And the certificate for the approving organization. Moreover, this com-

mand picks the MSPID, and peer address from environment variables.

• CommitOnce the chaincodehas garnered the requirednumber of approvals,

the chaincode can be committed to the channel. Once it has been approved

only a single organization can do this step and submit the transaction for

the commit of the chaincode definition.

1 peer lifecycle chaincode commit

Similar to the last command we provide the path to certs and orderer ad-

dress.

Once the chaincode has been committed, it is now ready to be invoked by

applications hosted off-channel. Hyperledger provides several SDKs to develop

applications that have the capability to connect to the network through a gateway

and invoke the chaincode. The SDK is available in Go, Java, NodeJS, and the SDK

for Python is in development. We will be using the NodeJS SDK in our REST API

that will be invoking the chaincode.

4.3.3 REST API

To enable communication between the extension developed for JupyterHub and

the blockchain network in Hyperledger we set up a REST API. The REST API also

can store and retrieve the encryption/decryption keys in aMySQL database. This

REST API is the application we were shown in the Hyperledger Sample Network

figure 3.1.

The Minimum Viable Product (MVP) API that we introduce here should be

internal to each organization since this setup also introduces a MySQL database

to store encryption keys but in this thesis, for the sake of simplicity, we set up and

use one application only. And since transactions to the blockchain can be long-

running we also introduce a Redis Cache. We set up MySQL database and Redis

as docker containers, the credentials to connect can be set in the environment

variables and the NodeJS API can read it from there. MySQL is initialized by

running the following queries.

1 CREATE DATABASE thesis;
2

3 USE thesis;
4

5 CREATE USER rest_sa IDENTIFIED BY 'rest_sa_pwd';
6

7 CREATE TABLE key_mappings (
8 id varchar(255) not null,
9 crypto_key varchar(255) not null,
10 iv varchar(255) not null
11);
12

13 GRANT ALL PRIVILEGES ON thesis.* TO 'rest_sa'@'%';

Listing 4.2: Database initialization queries to create user, database and table

consumed by the application

As we know in a Hyperledger network, each user needs to be identified when

interacting with the chain. How we enable that in an application, is that the ap-

plication interacting with the blockchain hosts a wallet. A wallet is nothing more

than just a collection of user identities. Each application that interacts with Hy-

perledger canmaintain a wallet and at run-time one of these identities is selected

and used when connecting to a channel. At the startup of the API, we use the

identities generated by the CA and provided to the MSP to create a File System

wallet for users. In a production-ready system, the File System wallet should be

replaced with a CouchDB wallet. The concept of a wallet for application interfac-

ing with the blockchain can be read up from 1.

After an identity has been selected from a wallet, the application can connect

to the channel and invoke chaincodes, and submit transactions. The connection

to the channel is initiated and maintained by creating a gateway to the network,

which is created using configurations specified in a connection profile. A connec-

tion profile is generatedwhen an organization is added to the blockchain network.

The connection profile includes the information like organization, its peers, and

the certificates to connect to the channel.

Once a connection with the channel has been established, we use the NodeJS
1https://hyperledger-fabric.readthedocs.io/en/release-2.2/developapps/wallet.

html

https://hyperledger-fabric.readthedocs.io/en/release-2.2/developapps/wallet.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/developapps/wallet.html

Figure 4.2: The architecture and all the operations permissible on the wallet pro-
vided by the Hyperledger SDK

SDK provided by Hyperledger to invoke the chaincodes on the channel. We have

endpoints in our API for different operations and after doing some validations,

each endpoint prepares a transaction andpasses it alongwhen invoking the chain-

code. Once a transaction is submitted the API gets a transaction id and maps it

in the cache. And is returned to the caller of the API. Once the transaction is

complete the cache is updated. The below listing shows the code when we are

creating a block on the chain. The start of the function is cut off for better read-

ability, we create an encryption key and store it against the id of the data, which is

the hash of the data to avoid creating duplicates on the chain. The keys are stored

in the MySQL database and then we create the data transaction and submit it to

the blockchain. And the functions used to encrypt and decrypt the data are also

shown in the listing.

1 ...
2 const assetId: string = crypto.createHash('sha256').update(JSON.

stringify(asset)).digest('hex');
3 asset.id = assetId;
4 const volumeDetails = asset.storageType.toLowerCase() == 'azure' ?

asset.azure : asset.local;
5 delete asset.azure;
6 delete asset.local;
7 asset.lease = '';
8 // Encrypt volumeDetails here with a key
9 const iv = Buffer.from(crypto.randomBytes(16)).toString('hex').slice(0,

16);
10 const key = crypto.createHash('sha256').update(JSON.stringify(Math.

random())).digest('hex').slice(0, 32);

11 const key_mapping = { id: assetId, crypto_key: key, iv: iv };
12 const insertedData = await insertData('INSERT INTO key_mappings SET ?',

key_mapping);
13 // Code contracted in this listing
14 const encryptedVolumeDetails = encrypt(JSON.stringify(volumeDetails),

key, iv);
15 asset.volumeDetails = encryptedVolumeDetails;
16 try {
17 const submitQueue = request.app.locals.jobq as Queue;
18 const jobId = await addSubmitTransactionJob(
19 submitQueue ,
20 mspId,
21 'AddDataBlock',
22 JSON.stringify(asset)
23);
24 return response.status(202).json({
25 status: "Accepted",
26 jobId: jobId,
27 });
28 }

Listing 4.3: Endpoint to create a block in the chain

1 //Encrypting text
2 function encrypt(text: string, key: string, iv:string) {
3 let cipher = crypto.createCipheriv(ALGORITHM , Buffer.from(key), iv);
4 let encrypted = cipher.update(text);
5 encrypted = Buffer.concat([encrypted , cipher.final()]);
6 return encrypted.toString('hex');
7 }
8 // Decrypting text
9 function decrypt(text: string, key: string, iv:string) {
10 let encryptedText = Buffer.from(text, 'hex');
11 let decipher = crypto.createDecipheriv('aes-256-cbc', Buffer.from(

key), iv);
12 let decrypted = decipher.update(encryptedText);
13 decrypted = Buffer.concat([decrypted , decipher.final()]);
14 return decrypted.toString();
15 }

Listing 4.4: Functions used for encrypting and decypting text

4.3.4 JupyterHub

JupyterHub is used to provide an interface for users frommultiple organizations

to explore the datasets and use the IDE to write code and workflows. And since

it is set up on a Kubernetes cluster the workflows are then triggered on it. It

can host multiple single-user Jupyter servers whenever a user logs in. We set

up JupyterHub on a local Kubernetes cluster for development and testing. In

a production environment, this can be swapped with a multi-node cluster setup

where each organization can contribute one or more nodes to the cluster.

As part of the setup we create a Kubernetes service account that will enable

JupyterFlow to perform the operations of volume management.

1 rules:
2 - apiGroups: [""]
3 resources: ["persistentvolumes"]
4 verbs: ["get", "watch", "list", "create", "update", "patch", "delete

"]
5 ...
6 rules:
7 - apiGroups: [""]
8 resources: ["persistentvolumeclaims"]
9 verbs: ["get", "watch", "list", "create", "update", "patch", "delete

"]
10 ...
11 rules:
12 - apiGroups: [""]
13 resources: ["secrets"]
14 verbs: ["get", "create", "delete"]

Listing 4.5: Rules for volume-manager service account YAML configuration

The service account cando all the operations onpersistent-volumeandpersistent-

volume-claims and only get, create and delete operations on secrets. ClusterRole

is a role that can be bound to a service account enabling operations on a clus-

ter level instead of a namespace level. And we create a service account volume

manager with the above-created roles bound to it.

We create a docker image with the necessary dependencies like our custom

Data Explorer extension and Extended JupyterFlow plugin installed and service

account token configured. These are the dependencies necessary for the proof of

concept to function. The token for the service account is configured as an envi-

ronment variable. To start up the JupyterHub Instance on the cluster, we have a

script runJupyterhub.sh. When run, it adds JupyterHubhelm repositories andArgo

helm repositories and applies them to start JupyterHub and Argo deployments

on Kubernetes, using a config.yaml file specifying the docker image for spawning

Jupyter instances and some configurations for that. A complete list of details can

be found at 2. Helm is a package management tool for Kubernetes deployments.

The Argo helm repo also creates a service exposing the servers to the host ma-

chine. And finally, we create a headless service in Kubernetes for allowing the

cluster to call the REST API hosted on another machine.

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: blockchain -service
5 spec:
6 clusterIP: None
7 ports:
8 - protocol: TCP
9 port: 3000
10 targetPort: 3000
11 type: ClusterIP
12 ---
13 apiVersion: v1
14 kind: Endpoints
15 metadata:
16 name: blockchain -service
17 subsets:
18 - addresses:
19 - ip:
20 ports:
21 - port: 3000

Listing 4.6: Configuration for a headless service on Kubernetes

4.3.5 Extension

The extension is a React JupyterLab extension enabling end-users to view the

datasets available, submit transactions to consume them inworkflows, and admin
2https://zero-to-jupyterhub.readthedocs.io/en/latest/jupyterhub/customizing/

user-environment.html

https://zero-to-jupyterhub.readthedocs.io/en/latest/jupyterhub/customizing/user-environment.html
https://zero-to-jupyterhub.readthedocs.io/en/latest/jupyterhub/customizing/user-environment.html

Figure 4.3: Screenshot of the extension in the proof of concept.

users to do administrative tasks. 4.3 Shows how the extension looks like. We

emphasize again that the Wallet id and is admin are simple input fields which

will be removed upon integration with Distributed Identity framework and the

respective values received from DID framework.

Upon selection of a dataset for consumption, the extension creates a directory

structure of the dataset in question with an id as the root of this directory struc-

ture. The user can write code experimenting with that directory structure. The

extension also gets the decrypted sensitive information that can be used tomount

the dataset and sets them in a hidden file on the File System. As mentioned be-

fore right now it is only secured by obscuring the information and hiding it from

the user and can be improved upon in later work.

4.3.6 JupyterFlow

The last piece of the puzzle is JupyterFlow. It enables the users to run com-

plex, compute-intensive workflows on a Kubernetes cluster while removing all

the complexities of writing complicated YAML files for Argo and containerizing

the code and the environment.

We have extended the JupyterFlow to enable users to specify the volumes

that a job in the workflow consumes and mount that volume before triggering

the workflow. 2.1 shows the basic YAML files that users could write to design

complex workflows and JupyterFlow will convert it to the respective Argo Work-

flow and trigger it. 4.7 Is the YAML in our extended JupyterFlow plugin. The

users can now specify the volumes as part of the jobs and these volumes will be

mounted and consumed by that job only once the workflow is triggered. The id is

received from the extension when a dataset is selected, the name can be a random

name and the path is the path to mount the volume inside the container. ’dags’

is the section describing workflow dependencies and the order to run the jobs in.

The index starts at 1 for the first job, so the following workflow will run job 1 then

after it has succeeded will run job 2 and job 3 in parallel.

1 jobs:
2 - command: 'pwd'
3 - command: 'ls -la /home/jovyan/uis'
4 volumes:
5 - id: ''
6 name: ''
7 path: ''
8 - command: 'ls'
9

10 dags:
11 - 1 >> 2
12 - 1 >> 3

Listing 4.7: YAML for mounting volumes using JupyterFlow in workflows in our

custom JupyterFlow

Chapter 5

Experiment

5.1 Usecases and Overview

We take inspiration from a supply chain network to design the workflow that will

allow organizations to share datasets and other organizations to consume them

without exposing the data itself. We think of data as an asset comparable to a

physical asset, and use a blockchain as a centralized ledger between organiza-

tions to lease the data back and forth. The use of blockchain ledger allows the

organizations to maintain their ownership over their datasets without trusting a

third party maintaining the system, while others could lease and use the data to

perform some analytics.

To test the system we design two main experiments to demonstrate the two

different sources where data could be stored to be consumed by this proof of con-

cept and also to demonstrate linear and parallel workflow design. In the next sec-

tion, we will demonstrate how we can deploy the system and set it up for testing.

Most of the same procedure can be used to set it up on VMs to set up a produc-

tion environment. And finally, we will discuss the following two scenarios and

how their workflow files are constructed and data sources for tests:

• The workflow is linear and the data is hosted on a Kubernetes node.

• Theworkflow is parallel and results are combined and also the data for these

parallel jobs are sourced in Azure File Shares.

40

5.2 Deploy the System and Setup

As 1.1 highlights we have a couple of components that need to intercommunicate.

So we will divide this deployment into two sections. In section one we discuss the

deployment of the Hyperledger Fabric network and the REST API on a machine.

And in the next section, we discuss building and deploying a JupyterHub server

on a Kubernetes cluster.

5.2.1 Deploy Hyperledger Fabric

In a production-ready system, each organization will set up Hyperledger on their

own machines or nodes and join them to a network. We have already discussed

the steps to join peers in a network. For the test here we use Docker to spin up

nodes belonging to different organizations. We spin up a network with two par-

ticipating organizations and a third orderer organization. And as the next step,

we add a third participant organization or the fourth organization in total to this

network. The docker-compose setup also starts certified authorities for the orga-

nizations.

It is recommended to run this on a machine separate from the Kubernetes

cluster and accessible on a public IP since the project is configured to call a hard-

coded IP from the browser and a Kubernetes headless service with the same IP.

The pre requisites for the setup are Docker, Docker Compose, NodeJS, and NPM

for the REST API. Following are the outlined steps to spin up and start a Hyper-

ledger Fabric network with the chaincode and a REST API with Redis Cache and

MySQL database on a machine using docker.

1. SSH into the machine and get a shell session into the machine.

2. Clone the repository for this thesis. https://github.com/aliakbarrehman/
master-thesis-uis

1 git clone https://github.com/aliakbarrehman/jupyterflow && cd
master-thesis-uis

3. Run the following commands. The Script installs the Pre-Requisites as well

as spins up the network with keys in hyperledger-network/crypto-config, in-

stalls the chaincode for all organizations and spins up Rest API as well as

Redis Cache and MySQL database.

https://github.com/aliakbarrehman/master-thesis-uis
https://github.com/aliakbarrehman/master-thesis-uis

Figure 5.1: The containers running on the Hyperledger VM after running the
spinUpNetwork.sh script successfully

1 chmod +x spinUpNetwork.sh
2 sudo ./spinUpNetwork.sh

After the script finishes running the containers for certificates authorities,

peers and chaincode containers for all organizations and orderer organizations

along with the API, Redis and MySQL containers should be up. If the script run

successfully docker ps should show the output as in 5.1

5.2.2 Deploy JupyterHub on Kubernetes

The next component to set up for the demo is JupyterHub onKubernetes. The pre

requisites are Docker, NodeJS, NPM, Python, PIP, Kubernetes, and helm. The

pre-requisites need to be installed following their respective setup instructions.

Refer to the links in the footnotes for individual instructions. 1 2 3 4

1https://docs.docker.com/engine/install/ubuntu/
2https://github.com/nodesource/distributions/blob/master/README.md
3https://linuxize.com/post/how-to-install-pip-on-ubuntu-20.04/
4https://microk8s.io/#install-microk8s

https://docs.docker.com/engine/install/ubuntu/
https://github.com/nodesource/distributions/blob/master/README.md
https://linuxize.com/post/how-to-install-pip-on-ubuntu-20.04/
https://microk8s.io/#install-microk8s

1. Clone the repository for this thesis. https://github.com/aliakbarrehman/
master-thesis-uis

1 git clone https://github.com/aliakbarrehman/jupyterflow && cd
master-thesis-uis

2. Change IP in jupyterhub/extension/thesis_extension/src/utils/api.ts and jupyterhub

/blockchain-service.yaml with the public IP of the Hyperledger network as

obtained from the previous section setup.

3. Create a docker registry account and login to it docker login hub.docker.com

4. The first step to set up JupyterHub on Kubernetes is to build the extension

and JupyterFlow into pip packages and build a docker image that will be

used to spin up Jupyter Server for each user that logs in. We can run the

buildJupyterhub.sh with your docker hub repository.

1 chmod +x jupyterhub/*.sh
2 ./buildJupyterhub.sh aliakbarrehman/jupyterhub

• This script first creates a Kubernetes service account with permissions

to manage secrets, persistent volumes, and persistent volume claims.

• Next it packages extension from jupyterhub/extension/thesis_extension,

extracts the wheel package name and copies it into docker context.

• Next the script packages our developed JupyterFlow from jupyterhub/

jupyterflow, extracts the wheel package name, and copies it into docker

context.

• And finally the script builds a docker image with the extension and

JupyterFlow installed and configured and the service account token

set in environment variables.

5. Change singleuser.image.name and singleuser.image.tag in jupyterhub/config.

yaml with your own.

6. Run ./runJupyterhub.sh. This script installs the JupyterHub from the helm

charts, and the Argo workflow from helm charts, creates the load balancing

services and creates roles, and binds them to the Argo workflow.

https://github.com/aliakbarrehman/master-thesis-uis
https://github.com/aliakbarrehman/master-thesis-uis

Finally, once both the systems have been deployed, JupyterHub should be

accessible on port 80 (http://localhost) and the Argo Workflow dashboard

should be accessible at port 2746 (https://localhost:2746). And now users

can log in to the JupyterHub and use the extensions to explore datasets, write

code to consume datasets and trigger workflows that can be monitored on the

Argo dashboard.

5.3 Experiments

5.3.1 Linear Workflow with Local Dataset

In the first experiment, we create two blocks on the blockchain for local datasets.

By local here we mean datasets on the Kubernetes node. The workflow is linear

where each job is run after the previous job has succeeded. The workflow for this

example is presented in the listing 5.1 The Ids are received when the user clicks

to use a data.

1 jobs:
2 - command: 'ls /home/jovyan/'
3 - command: 'ls /home/jovyan/uis > result.txt'
4 volumes:
5 - id: '6

de22e830ce4661cbeb6b9b2167c3f206dd946eb89beecd2f20bb17e85e64995'
6 name: 'uis'
7 path: '/home/jovyan/uis'
8 - command: 'ls /home/jovyan/uio >> result.txt'
9 volumes:
10 - id: '

e8a019a72cd8da522f620ab5561f5ada0143ea136ef71d8e601f6007c9386269'
11 name: 'uio'
12 path: '/home/jovyan/uio'
13

14 # Job index starts at 1.
15 dags:
16 - 1 >> 2
17 - 2 >> 3

Listing 5.1: Simple linear workflow.yaml consuming data from the Kubernetes

node

http://localhost
https://localhost:2746

Figure 5.2: Linear workflow generated by the YAML file shown in listing 5.1

Figure 5.3: Datasets for the complex workflow example. Azure File Shares and
local dataset shown in VSCode

When JupyterFlow is triggered with the command jupyterflow run -f workflow

.yaml, it mounts the data at /home/jovyan/uis and /home/jovyan/uio respectively. As

dags (Directed Acyclic Graphs section) of the workflow state, the workflow is lin-

ear. It generates the Argo workflow as shown in 5.2

5.3.2 ComplexWorkflow with Azure and Local Datasets

In the second experiment, we design and run a complex workflow that runs jobs

in parallel and combines the results from them in the last job. Moreover, each job

consumes data from different data sources. Two datasets are hosted in an Azure

Storage Account in two different File Shares and the dataset for one job is hosted

on the Kubernetes node itself.

In this experiment, we have the data hosted in azure and locally on the Ku-

bernetes node as shown in the 5.3 datasets for UiO and UiS are in Azure and UiB

hosted their data on the Kubernetes node. UiO, UiS, and UiB are test organiza-

tions and we have no formal dataset agreement for this demo.

The listing 5.2 shows the workflow.yaml for this experiment that JupyterFlow

consumes. Dags section here sets up the workflow to run parallel jobs. And the

last job combines and outputs the result of the workflow. The Ids are received

when the user clicks to use data. This produces the 5.4 workflow in Argo.

1 jobs:
2 - command: 'ls /home/jovyan/'
3 - command: 'python uis.py'
4 volumes:
5 - id: '36

b0c4d057e1bf9c0915e66330d18299d0f08c0c0f0340847cc879b3fbf73b4d '
6 name: 'uis'
7 path: '/home/jovyan/uis'
8 - command: 'python uio.py'
9 volumes:
10 - id: '

c12e28fb1d8c4bb243d5e7622afd90fde92ddb53971be384b92c33a464c80451 '
11 name: 'uio'
12 path: '/home/jovyan/uio'
13 - command: 'python uib.py'
14 volumes:
15 - id: '3011

ffd02613bb0971fb14b3bcbfea54ab1141afcd78c06ca18337f29740abbc '
16 name: 'uib'
17 path: '/home/jovyan/uib'
18 - command: 'python final-result.py'
19

20 dags:
21 - 1 >> 2
22 - 1 >> 3
23 - 1 >> 4
24 - 2 >> 5
25 - 3 >> 5
26 - 4 >> 5

Listing 5.2: Complex workflow consuming data from Azure

Figure 5.4: Parallel Workflow generated by the YAML file shown in listing 5.2

The listings 5.3 and 5.4 show the python code that is run for each job in the

complexworkflow. The code counts the occurrences of work lorem in files under

a dataset. And the final-result.py has code that aggregates and outputs the final

results to a file.

1 import os
2

3 path = '/home/jovyan/uis'
4 files = []
5 for (dirpath, dirnames , filenames) in os.walk(path):
6 for i in filenames:
7 files.append(os.path.join(dirpath, i))
8 break
9

10 count = 0
11 for i in files:
12 f = open(i, 'r')
13 for line in f:
14 count += line.count('lorem')
15

16 f = open('/home/jovyan/uis-count.txt', 'a')
17 f.write('UiS: ' + str(count) + '\n')
18 f.close()

Listing 5.3: uis.py similar to uio.py anduib.py. The code that is run for the parallel

jobs

1 import os
2

3 path = '/home/jovyan/uis'
4 files = ['uis-count.txt', 'uio-count.txt', 'uib-count.txt']
5

6 result = ''
7 for i in files:
8 f = open(i, 'r')
9 for line in f:
10 result += line + '\n'
11

12 f = open('/home/jovyan/result.txt', 'a')
13 f.write(result)
14 f.close()

Listing 5.4: final-result.py that combines the output of the parallel jobs and

computes the output

A complete demonstration of the experiments canbe found at https://github.
com/aliakbarrehman/master-thesis-uis/blob/master/Demo%20-%20Parallel.
webm and https://github.com/aliakbarrehman/master-thesis-uis/blob/master/
Demo.mp4

https://github.com/aliakbarrehman/master-thesis-uis/blob/master/Demo%20-%20Parallel.webm
https://github.com/aliakbarrehman/master-thesis-uis/blob/master/Demo%20-%20Parallel.webm
https://github.com/aliakbarrehman/master-thesis-uis/blob/master/Demo%20-%20Parallel.webm
https://github.com/aliakbarrehman/master-thesis-uis/blob/master/Demo.mp4
https://github.com/aliakbarrehman/master-thesis-uis/blob/master/Demo.mp4

Chapter 6

Conclusions and Future Work

In this thesis, we present a Proof of Concept (PoC) that allows data sharing be-

tween untrusting organizations to run complex workflows on the data while also

maintaining the ownership of the data. Another goal achieved from such a sys-

tem is that we remove the need to develop the expertise of users to write complex

algorithms following the Hadoop MapReduce pattern.

We go through the scenarios that could benefit from such a system and some

background about research in this direction as well as tools and technologies we

have used. We have proposed a solution to allow data sharing and workflow ex-

ecution. The proposed system makes use of Hyperledger Fabric to establish and

maintain a blockchain between organizations and JupyterHub on Kubernetes for

users to write code and runworkflows. We build a Docker image with Kubernetes

service account configured and JupyterHub Extension and JupyterFlow already

installed on it and use the said image for JupyterHub. Each logged-in user gets

their own instance of Jupyter hosted on the Kubernetes server. And after writ-

ing code and triggering workflow, the data is mounted as persistent volumes on

the Kubernetes pods where it is used. And finally, we demonstrate how we set

up our test environments and ran linear and parallel workflows on the system,

consuming data from Azure and Kubernetes nodes.

The system is far from a production-ready system and can be improved upon

in many different aspects regarding security and capabilities. Next up we discuss

the shortcomings in our system and the future directions for the thesis and how

the research in this domain can be carried forward.

49

6.1 Integration with Relevant Projects

Asmentioned in the chapter on introduction, this proof of concept is being devel-

oped in parallel to a few other projects aimed toward a solution with access con-

trol andmotivating organizations tomake and join such consortiums. As demon-

strated in 1.1 the scope of this thesis was to design and test a system that can be

used to orchestrate all the moving parts and enable users to explore the datasets

from the blockchain and consume the said datasets for analytics.

During this thesis, we have been using test accounts to log into the Jupyter-

Hub server. Moreover, for interactionwith the blockchain the RESTAPI sets up a

file system wallet to identify the users when invoking chaincode. There is a thesis

that is aiming to develop a distributed identity token system that maintains the

users and their access control on the blockchain itself. As the next natural step

to take this proof of concept further is to integrate it with the aforementioned

project. That will allow not only this system users to log in to JupyterHub with

this but also remove the need for each organization to maintain their respective

wallets.

[1] Is developing a system that represents resources as a token with stakes of

different organizations in the token. If we integrate this solution into our proof

of concept, we can store the computed results onto the blockchain and Inter-

Planetary File System (IPFS) as well, and anytime the results are used we can

incentivize the organizations with a stake in that token to motivate organizations

to contribute. Moreover, we can take inspiration to use IPFS to store metadata of

the datasets instead of storing it directly on the blockchain and peer nodes.

6.2 Secure Transfer of Storage Secrets

In the current implementation once the user elects to use a dataset the Jupyter-

Hub extension that we have developed does a couple of steps to ensure its usage.

• First of all the extension submits a transaction to the blockchain to lease the

dataset, so as to avoid others leasing it at the same time causing conflicts.

• After the transaction, the extension reads decrypted values of sensitive in-

formation that will be used to mount the actual data inside Kubernetes.

• Now the extension creates a directory structure in the JupyterHub environ-

ment for the user to write the code following that directory structure and

avoid errors when running the workflow.

• As a final step the extension creates a hidden file in the environment with

the sensitive information that can be used tomount the data as volume. The

JupyterFlow plugin uses this hidden file tomount the data onto Kubernetes

before triggering the Argo workflow.

As apparent from the last step mentioned above, the security we have at the

moment is only security by obscurity and is very easy to bypass because the user

can view the hidden files very easily either through the terminal in the Jupyter

Instance of or through python code. The security regarding this can be improved

upon a lot and the flow of information from the extension to the JupyterFlow

plugin can be improved and made secure. Either by limiting users to not being

able to access the file or by developing a protocol for the transfer of information

directly between these components instead of using the file system.

6.3 Clean Up of Resources

When the user elects to consume a dataset and after the execution of theworkflow

finishes the volume claim in Kubernetes needs to be released and volume to be

deleted. Moreover, a transaction should be submitted to the blockchain notifying

the release of the resource so as another organization may use that data.

Also, there could be the need to do a few more steps such as computing the

result NFT and committing it to the chain when the computation has finished

when integrating with [1].

The next iteration of this proof of concept could leverage exit handlers [14]

provided by Argo to trigger an HTTP endpoint that can perform all the above-

mentioned steps and cleans up the resources or could use a shell script to clean

up. That if triggering a shell script the workflow role created for Argo would need

privileges to clean up the resources from Kubernetes. It does not need access to

create or update the Persistent Volume and Persistent Volume Claim objects but

rather just the permissions to delete these objects.

And to avoid users running aworkflow that never finishes the keeps the dataset

occupied for a longer period of time we should introduce a scheduled trigger to

force the release of the resources.

6.4 Extending Capabilities of JupyterFlow

Apart from changing the patterns to improve security and implementing cleanup

of resources the capabilities of the JupyterFlow plugin could be improved upon

more. We could integrate more and more storage solutions into the system. So

that the next phase of the thesis would support the mounting of Google Cloud

Storage, Amazon S3 Buckets, Network File Systems, and many more.

List of Figures

1.1 Architecture of the overarchingMVP that this thesis is a part of and

the scope of the thesis . 4

3.1 A sample blockchain network between two organizations and an

orderer organization, one channel and smart contracts. 17

3.2 The tools and technologies discussed in background section and

how they all integrate and work together in the proposed system. 24

4.1 Step by step process of the workflow of the information and in-

structions in the system. 27

4.2 The architecture and all the operations permissible on the wallet

provided by the Hyperledger SDK 34

4.3 Screenshot of the extension in the proof of concept. 38

5.1 The containers running on the Hyperledger VM after running the

spinUpNetwork.sh script successfully 42

5.2 Linear workflow generated by the YAML file shown in listing 5.1 . 45

5.3 Datasets for the complex workflow example. Azure File Shares and

local dataset shown in VSCode . 45

5.4 Parallel Workflow generated by the YAML file shown in listing 5.2 47

53

Listings

2.1 Example JupyterFlowworkflow.yaml file having 5 jobs, fromJupyter-

Flow official examples . 10

4.1 Policies for UiS (one of our test organization). We use the same

policies for other organizations as well. 29

4.2 Database initialization queries to create user, database and table

consumed by the application . 33

4.3 Endpoint to create a block in the chain 34

4.4 Functions used for encrypting and decypting text 35

4.5 Rules for volume-manager service account YAML configuration . 36

4.6 Configuration for a headless service on Kubernetes 37

4.7 YAML for mounting volumes using JupyterFlow in workflows in

our custom JupyterFlow . 39

5.1 Simple linear workflow.yaml consuming data from the Kubernetes

node . 44

5.2 Complex workflow consuming data from Azure 46

5.3 uis.py similar to uio.py and uib.py. The code that is run for the

parallel jobs . 47

5.4 final-result.py that combines the output of the parallel jobs and

computes the output . 48

54

Appendix A

Code and Instructions

The GitHub Repository with the code and resources for this thesis can be found

at https://github.com/aliakbarrehman/master-thesis-uis.

The code has the following directories:

• bin This directory has the binaries for the Hyperledger Fabric commands.

This is included in the repository to make this self-hosted without external

dependencies to download and set up.

• hyperledger-networkThedirectory holds the configuration files, docker-

compose files, chaincode, and scripts to spin up the network, add organiza-

tions and commit chaincode to the network.

• jupyterhub This directory hosts everything JupyterHub-related. The root

directory hosts the scripts, and configurations to build the image for Jupty-

erHub Kubernetes, and create the required service accounts and scripts to

spin up the Kubernetes itself with JuptyerHub and Argo enabled.

– extensionThedirectory contains the code for the extension for Jupyter-

Hub that enables exploration of datasets stored on the blockchain.

– jupyterflowThis directory hosts the code for the JupyterFlowplugin.

• resourcesResources directory has the architecture diagrams and endpoint

information and examples.

• rest-api REST API that interacts with the blockchain.

The video demo can be found in the repository as well.

55

https://github.com/aliakbarrehman/master-thesis-uis

A.1 Instructions

Following are the instructions to setup the project for testing.

• Get a machine with a public IP that k8s cluster can call, Pre-Requisites

Docker, Docker Compose, NodeJS and NPM.

• SSH into the machine

• Clone this repository git clone https://github.com/aliakbarrehman/jupyterflow

&& cd master-thesis-uis

• Run chmod +x spinUpNetwork.sh && ./spinUpNetwork.sh that Installs thePre-Reqs

aswell as spins up thenetworkwith keys in hyperledger-network/crypto-config

and spins up Rest API as well as REDIS Cache and MySQL DB

• Alternatively for more granular control you can install requirements and

run cd hyperledger-network && ./start.sh

• Run ./start.network.sh

• Run cd ../rest-api and then docker-compose up -d

• For testing import resource/endpoints.json into postman and create some

datablocks on blockchain

• On another machine. Pre-Requisites Docker, NodeJS, NPM, Python, PIP,

Kubernetes and helm

• Clone this repository git clone https://github.com/aliakbarrehman/jupyterflow

&& cd master-thesis-uis

• Change directory to jupyterhub cd jupyterhub

• Create a docker registry account and login to it docker login hub.docker.com

• Runwith your own registry namee.g ./buildJupyterhub aliakbarrehman/jupyterhub

. This script creates a k8s service account, packages extension from jupyterhub

/extension/thesis_extension (Someuseful commands in extension/usefulCommandsForDevelopment

.sh for development), packages extension from jupyterhub/jupyterflow and

builds a docker image with all the previous packages installed and config-

ured (This image will be used for spinning up a users notebooks / Jupyter-

Hub instances and pushes that image)

• Change singleuser.image.name and singleuser.image.tag in jupyterhub/config.

yaml with your own

• Change IP in jupyterhub/blockchain-service.yamlwith the public IP of theHy-

perledger network

• Change IP in jupyterhub/extension/thesis_extension/src/utils/api.tswith the

public IP of the Hyperledger network

• Run ./runJupyterhub.sh

Jupyterhub can be accessed at http://localhost and Argo can be accessed at lo-

calhost:2746. After logging into Jupyterhub (for testing you can use user as user-

name and password as password). Explore datasets available on DataExplorer.

Use it by writing code and workflow.yaml and running the workflow as described

above. View the workflow status on Argo at https://localhost:2746/workflows

Bibliography

[1] NFT-Thesis. URL: https://github.com/asahicantu/NFT-Thesis.

[2] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. In:

().

[3] Web2.0 vs Web3.0. URL: https://ethereum.org/en/developers/docs/
web2-vs-web3/.

[4] What is Hyperledger. URL: https://www.ibm.com/topics/hyperledger.

[5] Gilbert Fridgen; SvenRadszuwill;NilsUrbach; LenaUtz. “Cross-Organizational

Workflow Management Using Blockchain Technology-Towards Applica-

bility, Auditability, and Automation”. In: Proceedings of the 51st Hawaii

International Conference on System Sciences (2018).

[6] Mads Frederik Madsen; Mikkel Gaub; Trondur Hognason; Malthe Ettrup

Kirkbro; Tijs Slaats; SorenDebois. “Collaboration amongAdversaries: Dis-

tributed Workflow Execution on a Blockchain”. In: ().

[7] Florian Guggenmos; Annette Wenninger; Alexander Rieger; Gilbert Frid-

gen; Jannik Lockl. “How to Develop a GDPR-Compliant Blockchain Solu-

tion for Cross-Organizational Workflow Management: Evidence from the

GermanAsylumProcedure”. In: 53rdHawaii International Conference on

System Sciences (2020).

[8] Dhanya Therese Jose; Antorweep Chakravorty; Chunming Rong. “TOTEM

: Token for controlled computation: Integrating Blockchainwith Big Data”.

In: 10th International Conference onComputing, CommunicationandNet-

working Technologies (ICCCNT) (2019).

[9] Jorgen Holme. “Secure Distributed Computing Managed by Blockchain”.

In: (2020).

58

https://github.com/asahicantu/NFT-Thesis
https://ethereum.org/en/developers/docs/web2-vs-web3/
https://ethereum.org/en/developers/docs/web2-vs-web3/
https://www.ibm.com/topics/hyperledger

[10] JupyterFlow - Better way to scale your ML job. 2021. URL: https : / /
coffeewhale.com/kubernetes/mlops/2021/03/02/mlops-jupyterflow-
en/.

[11] David Chaum. “Blind Signatures for Untraceable Payments”. In: (1982).

[12] W. Scott Stornetta StuartHaber. “SecureNames forBit-Strings”. In: (1993).

[13] HowFabric networks are structured. 2021. URL: https://hyperledger-
fabric.readthedocs.io/en/latest/network/network.html.

[14] Exit Handlers. URL: https://argoproj.github.io/argo-workflows/
walk-through/exit-handlers/.

https://coffeewhale.com/kubernetes/mlops/2021/03/02/mlops-jupyterflow-en/
https://coffeewhale.com/kubernetes/mlops/2021/03/02/mlops-jupyterflow-en/
https://coffeewhale.com/kubernetes/mlops/2021/03/02/mlops-jupyterflow-en/
https://hyperledger-fabric.readthedocs.io/en/latest/network/network.html
https://hyperledger-fabric.readthedocs.io/en/latest/network/network.html
https://argoproj.github.io/argo-workflows/walk-through/exit-handlers/
https://argoproj.github.io/argo-workflows/walk-through/exit-handlers/

4036 Stavanger

Tel: +47 51 83 10 00

E-mail: post@uis.no

www.uis.no

© 2022 Ali Akbar Rehman

	Abstract
	Acknowledgements
	Introduction
	Background and Motivation
	Objectives
	Approach and Contributions
	Outline
	Chapter 2 - Related Work
	Chapter 3 - Background
	Chapter 4 - Approach
	Chapter 5 - Experiment and Demo
	Chapter 6 - Conclusions and Future Work

	Related Work
	Background - Tools and Technologies
	Blockchain
	Hyperledger Fabric

	Kubernetes
	Containers
	Jupyterhub
	Argo Workflow
	JupyterFlow

	Storage Solutions

	Approach
	Introduction
	Proposed Solution & How it Works
	Implementation Details
	Setting up Blockchain Network
	Chaincode
	REST API
	JupyterHub
	Extension
	JupyterFlow

	Experiment
	Usecases and Overview
	Deploy the System and Setup
	Deploy Hyperledger Fabric
	Deploy JupyterHub on Kubernetes

	Experiments
	Linear Workflow with Local Dataset
	Complex Workflow with Azure and Local Datasets

	Conclusions and Future Work
	Integration with Relevant Projects
	Secure Transfer of Storage Secrets
	Clean Up of Resources
	Extending Capabilities of JupyterFlow

	Code and Instructions
	Instructions

