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Abstract

In cancer research, one is often interested in the part of the hazard which corresponds to the
disease. If the cause of death is unknown as in cancer registry data, the standard methods in
survival analysis do not distinguish between the mortality due to disease and other causes. This
issue becomes the main motivation for the development of relative survival methods. First, the
main concepts in relative survival are presented. Both non-parametric estimators and models of
the excess hazard are studied and discussed. Simulation studies show that even if the Pohar-Perme
method is an unbiased estimator of the so-called net survival, the traditional Ederer 2 estimator
might still be preferable in certain situations due to its lower variance. When informative
censoring is present, the degree of bias looks to be the same on average for both estimators.

When it comes to modelling of the excess hazard, we cover two different types of models. The first
group corresponds to parametric models where the baseline excess hazard is a piecewise constant
function. For real-life data, this is usually not the case and a more flexible and semi-parametric
model based on the EM-algorithm is therefore considered. By simulation, the piecewise constant
models still perform decent if the gradient of the baseline excess hazard is not large and there
are enough data such that a finer splitting of the follow-up interval can be used in the estimation
procedure.

In some situations, one might also want to monitor the excess hazard over time in order to detect
a change. An approach based on methods from relative survival and statistical process control is
proposed for this intention. Different simulation setups are used in order to illustrate the purpose
of the method. Finally, most of the methods presented are applied to colon and rectum cancer
data from the Norwegian Cancer Registry. Interesting results are obtained from the analysis. For
instance, the effect of tumour location seems to vary between age groups. Similar arguments
are observed related to cancer stage as well. The CUSUM charts show a clear improvement in
the excess hazard over time, which agree with the results from non-parametric methods when
stratified by diagnosis year period.
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CHAPTER 1

Introduction

Survival analysis has been an essential part of medical research due to the large amount of
lifetime data appearing in medical studies. Over the years, the field has also split into subtopics
where each area has its own expertise of applications. In this project, we will consider the part of
survival analysis known as relative survival. This approach is mostly applied in medical studies
related to survival data from cancer registries.

As a motivation for the development of the methodology in relative survival, let us consider first
the general methods in survival analysis, e.g. Kaplan-Meier or Nelson-Aalen estimator and the
Cox regression model. The first two estimators are well-known non-parametric routines used to
estimate the overall survivor function and cumulative hazard. We will review these quantities
later, but in summary the first function tells us the probability of an observation surviving after
a time t when the event of interest is e.g. death. The last one represents the total risk of an
event up to a time t. Notice however that if the data set of interest corresponds to patients
with a specific disease, the procedures do not separate between death due to the disease and
death related to other causes if this information is unknown. The same goes for the famous Cox
regression model, which only models the overall hazard in this scenario, i.e. a quantity measuring
the instantaneous risk of death at a given time t.

In certain applications, the probability and risk of an event due to a particular cause is more of an
interest. The methods mentioned above are therefore not able to take this fact into considerations.
Thus, more sophisticated techniques are needed. This leads to the topic of competing risks, which
are methods in lifetime analysis that can calculate quantities related to an event due to different
causes separately. In order to use these methods, the cause of event must be available for all
observations in the data set. However, this is mostly not the case when dealing with e.g. data
from cancer registries. Usually, the cause of death is unknown or incomplete in this type of data
sets. Nevertheless, we still want to distinguish between the risk of death due to the cancer itself
and to other natural causes. For instance, one might be interested in the probability of death
purely due to the disease in order to compare the burden of disease across different populations.
The last example is one of the core motivations for the development of relative survival methods.
Consequently, these techniques are vital in cancer studies.

The article [1] from Ederer et al. marked the main birth of the relative survival methods. In
the paper, the traditional concepts of relative survival were introduced, including two different
non-parametric estimators that would later be known as the Ederer I and II estimator. Over the
years, clinicians started to become more interested in a hypothetical situation where the disease
is the only cause of death. The given setting removes everything related to the general population
and makes it convenient to compare the disease mortality across countries. Mathematically, this
turns out to be a different measure than the ones defined in [1]. Hence, the Ederer I and II
estimator will in general give biased estimates of this quantity named net survival. Throughout
the following years, researchers tried to minimize the bias in the non-parametric methods like e.g.
the Hakulinen method [2], which is an extension of the Ederer I method. Eventually, Perme et al.
[3] proposed an estimator that has been proven to be an unbiased estimator of the net survival
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1. Introduction

when certain conditions are fulfilled. However, this does not come without any issues as there is
still some sort of a bias-variance trade-off in many situations between the new estimator and the
two Ederer methods.

If one is interested in the effect of explanatory variables on the disease mortality, one needs to
rely on modelling. For data from cancer registries, it has been proposed in the literature that an
additive model is suitable, i.e. the overall risk of death is the sum of two contributions: The first
being natural causes that exist in the disease-free population and the second term corresponds
to the risk due to the disease. Then, the main goal is to model the latter quantity. Due to the
additive relation and the fact that the population hazard can be found from national life tables,
the estimation procedure becomes a bit more complicated than a standard Cox regression model.
Different assumptions and simplifications have been done over the years in order to estimate
this excess hazard quantity. For instance, the earlier models developed by Estève et al. [4] and
Dickman et al. [5] assume a piecewise constant baseline excess hazard. More specifically, this
means that the excess hazard of a reference observation (usually an observation with all covariates
equal to zero) is piecewise constant over time. Later, more flexible methods have been proposed
like the model based on the EM-algorithm by Perme et al. [6]. Some of these models will be
presented later in the text, including various measures of goodness of fit for model adequacy
checking. In order to assess the performance and properties of the different methods, different
simulation studies are also conducted.

In certain scenarios, we might be interested in monitoring the excess hazard over time to check if
there is any change in the quantity. For more general time to event models, Gandy et al. [7]
proposed a CUSUM chart based on the log-likelihood ratio between a so-called out-of-control
and in-control hazard rate. The latter can be interpreted as the acceptable hazard rate based on
e.g. past history while the former corresponds to the new hazard rate that potentially occurs
at a specific time during the monitoring period. The main purpose of the CUSUM chart is to
detect the change in the hazard if this is indeed the case. For additive models in the relative
survival setting, the results from [7] are however not applicable directly. Nevertheless, the same
methodology still holds such that the work from [7] can be extended to the relative survival
setting. A chapter in this project is dedicated to different possibilities and developments related
to this matter.

Lastly, a real data set regarding colon and rectum cancer patients is received from the Norwegian
Cancer Registry. The data set contains all patients diagnosed with colon or rectum cancer from
the beginning of 1953 to January 2022. For the purpose of this project, it is used to demonstrate
the utility of the methods mentioned above in a practical application.

With that in mind, the text is built up as follows: The first part of Chapter 2 gives a small review
of the quantities of interest in traditional survival analysis. Later, these notions are extended to
the relative survival setting. Chapter 3 considers the most popular non-parametric methods in
relative survival. In Chapter 4, we introduce the main excess hazard models that are frequently
mentioned in the literature and cancer studies. A simulation study examining the performance
of the different methods from Chapter 3 and 4 is presented in Chapter 5. The main task in
Chapter 6 is to combine both relative survival models from Chapter 4 and statistical process
control in order to make a CUSUM chart that monitors the excess hazard over time. Chapter 7
illustrates the relative survival methods and proposed CUSUM charts with the real data set from
the Norwegian Cancer Registry. Finally, the appendices contain some notions and concepts that
prove to be useful in the construction of relative survival methods.
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CHAPTER 2

Concepts in relative survival methodology

In this chapter, the main purpose is to introduce the quantities of primary interest in the relative
survival setting. We will start out by first briefly reviewing some of the fundamental notions in
traditional survival analysis as the measures in relative survival are all based on these definitions.
This first section is inspired by [8].

2.1 Review of notions in traditional survival analysis

Assume T ≥ 0 is a stochastic variable representing the time to an event of interest. In the
literature, it is also often referred to as the lifetime or survival time. If T follows a distribution
with a probability density function f(t), we define the corresponding survivor function of the
random variable at a given time t as

S(t) = P (T ≥ t) =
∫ ∞

t

f(u) du = 1 − F (t). (2.1)

Here, F (t) = P (T < t) =
∫ t

0 f(u) du is the probability of the lifetime being less than t. The
survivor function evaluated at t is therefore simply the probability that the lifetime will be larger
than or equal to t.

Another useful quantity in survival analysis is the hazard function, which indicates the
instantaneous risk of an event at a given time t. Formally, the hazard function is defined
as follows:

λ(t) = lim
δt→0

{
P (t ≤ T ≤ t + δt | T ≥ t)

δt

}
(2.2)

From the equation above, the hazard function λ(t) is just the limit when δt approaches to zero
of the probability that the event of interest occurs in the time interval between t and t + δt,
conditioning on the fact that the event has not happened before time t and divided by δt. Because
we divide by the length of this infinitesimal time period, λ(t) is often called the hazard rate as
well. In many cases, we are also interested in the "total" risk of an event from time 0 up to a
given time t, and this can be summarised by the cumulative hazard function Λ(t) defined as

Λ(t) =
∫ t

0
λ(u) du. (2.3)

This definition will come in handy when we consider different estimators in the relative survival
setting.

The three quantities above are the main ones used in survival analysis. It turns out that there
exists a connection between the survivor function and the hazard function of a non-negative
random variable T . Observe that the numerator of λ(t) can be written as

P (t ≤ T ≤ t + δt | T ≥ t) = P (t ≤ T ≤ t + δt)
P (T ≥ t) = F (t + δt) − F (t)

S(t)

3



2. Concepts in relative survival methodology

using the definition of the survivor function from equation (2.1). Inserting everything back to
equation (2.2), the hazard function can then be expressed as

λ(t) = 1
S(t) lim

δt→0

{
F (t + δt) − F (t)

δt

}
.

Noting that the limit in the equation above is simply the derivative of F (t), and thereby equivalent
to f(t), we get the identity

λ(t) = f(t)
S(t) , (2.4)

which is a very useful relation between the hazard and survivor function.

Based on the observation above, we can also express the cumulative hazard function defined in
equation (2.3) in terms of the corresponding survivor function. Since d

dt log {S(t)} = 1
S(t)

d
dt S(t)

by the chain rule and d
dt S(t) = −f(t), equation (2.4) says that

λ(t) = − d

dt
log {S(t)} . (2.5)

Thus, the relation between the cumulative hazard and the survivor function is given as

Λ(t) = − log {S(t)} , (2.6)

or equivalently,
S(t) = exp {−Λ(t)} . (2.7)

We will be using some of these relations to define some quantities of interest in the relative
survival setting later.

One very crucial aspect that distinguishes lifetime data from other types of data is the occurrence
of censoring. A survival time of an individual is censored if the event of interest has not taken
place for this individual when the observation has ended [8]. The simplest example of censoring
is when a patient has not died at the end of a medical study. Then, the observed time is said
to be censored as the event of interest (in this case death) has not occurred, and thus the true
survival time of this patient is unknown. Another situation where censoring can appear is when a
patient has moved during the study and therefore cannot be followed up anymore. Consequently,
the true survival time of the individual is unknown since we only know that the event had not
happened until the time the patient moved.

These situations are also illustrations of a specific type of censoring called right-censoring.
Informally, this means that the true survival time of a patient is larger than the observed time
given in the data. More specifically, if a patient joins a study at time t0, let t0 + t be the event
time of the individual. If the patient is still alive at the end of a study or has been "lost to
follow-up" before t0 + t, then t is unknown. In that case, we say that c is the censored survival
time of the individual if the patient was last known to be alive at time t0 + c [8]. For us, this
type of censoring will be the main focus as it occurs in most of the situations we will be looking
at here. In many studies, a date corresponding to the end of the study is also set beforehand. If
an observation is still alive when the study ends, this type of right censoring is often referred to
as administrative censoring.

Other than the situation above, there also exist other forms for censoring like left-censoring
and interval-censoring. The former appears when the time to event is less than the observed
time. Consider a situation where we are interested in the time until failure after installing a new
graphics card to a mining rig. After two months, we check the rig and see if the graphics card
is still working or not. If it has failed, the survival time for this specific component is said to
be left-censored as we know that the time until failure is less than two months, but we do not
know exactly when. The latter type of censoring appears when the card is working fine after two
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2.1. Review of notions in traditional survival analysis

months but has failed when we check in again after another two months. As a result, the survival
time is said to be interval-censored since the true value of the time until failure is between two or
four months. For our applications, these types of censoring are more uncommon, and we will
therefore not give any further details here.

A very important assumption that is frequently used to simplify the problems in survival analysis,
and hence also relative survival, is the concept of non-informative and independent censoring. As
the definitions of these notions may vary from author to author, we will give a short summary of
how these are defined in different textbooks and articles that are relevant for us. Later, we will
refer to which of these definitions of either non-informative or independent censoring that have
been used in some of the calculations.

According to Collett’s book [8], the censoring mechanism is called independent or non-informative
if the actual survival time of an individual is not affected by the reason that causes the censoring
of this individual. This implies that an observation who is censored at a given time c must be
representative for all the other individuals with similar prognostic variables (like age, gender etc.)
who have survived to time c. Equivalently, we have independent censoring if the hazard rate of a
censored individual in each subgroup is equal to the hazard of an uncensored person in the same
group [9].

In the article by Perme et al. [3], non-informative censoring is stated to occur if SC = SCi

for all individual i, where SCi
is the survivor function corresponding to the censoring time

Ci. Alternatively, we have non-informative censoring if the distribution of censoring time is
identical for all observations. This turns out to be a stronger condition than the formulation
of non-informative censoring from [9]. Here, it is stated that if the distribution of the survival
time Ti does not contribute any extra information to the distribution of the censoring time
Ci, then the censoring mechanism is non-informative. We will make use of both statements in
Chapter 3. A small note is that the former definition usually does not hold in many cases. In
practice, administrative censoring appears to be the standard censoring type in different studies
as an end date of the research is often determined beforehand. Thus, individuals who arrive
later in the study will automatically have a higher chance of being censored compared to the
observations appearing in the start of the study. For this reason, SCi is not identical for all i in
these situations.

Finally, we will briefly present the concept of cancer-specific crude mortality in competing risks
situations as a motivation for the relative survival methodology. Consider a study with a group of
patients in which death can occur due to two causes: Either as a result of a specific disease/cancer
denoted as C or because of other causes that appear in the general population. Also, assume
that the cause of death is known for each patient. We split the overall mortality of the cohort,
given as 1 − SO(t), into two probabilities denoted as FC(t) and FP (t). The former represents the
probability of dying up to time t due to the disease and is referred to as the cancer-specific crude
mortality or cumulative incidence function in a competing risk setting. The latter describes the
probability of dying due to other causes up to time t. Now, if λC corresponds to the hazard due
to cancer, a similar calculation as was used to arrive at equation (2.4) yields

λC(t) = fC(t)/SO(t), (2.8)

where fC(t) is the cancer-specific density function. Since the cancer-related crude mortality FC(t)
is by definition equal to

∫ t

0 fC(u) du, we can express FC(t) as

FC(t) =
∫ t

0
SO(u−)λC(u)du (2.9)

using equation (2.8). Here, the notation u− is to denote the time just before time u. An
interpretation of the quantities inside the integral of equation (2.9) is as follows: If a patient is
supposed to die due to cancer at time u, he or she must at least survive until just before time u,
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2. Concepts in relative survival methodology

hence the factor of SO(u−). The latter corresponds to the fact that the patient, after surviving
all causes right before time u, actually passes away because of cancer at this specific time, and
thus due to λC(u) [10]. If the main interest is mortality due to other causes, similar quantities
like (2.8) and (2.9) can also be defined for this situation.

2.2 Main quantities in relative survival

To make use of the concepts described in the last paragraph of the preceding section, we require
that the cause of death must be known for each observation. However, this is usually not the
case when dealing with cancer registry data. Still, the main goal is to say something about the
mortality about a specific disease, and this is the motivation for the development of relative
survival methods. In this section, we will introduce the quantities that are commonly used to
summarise a given data set under the relative survival setting and how they differ from each other
mathematically. For consistency when various non-parametric estimators in relative survival are
introduced, we will adopt the same notations used in [3]:

We denote TEi as the time until death due to a certain disease while TP i represents the time
until death due to other causes that can occur for an individual in the general population. Since
death due to disease prevents the same event due to other causes and vice versa, we can in reality
only observe Ti = min(TEi, TP i). Now, if Ci is the time until censoring as before, we define
T ∗

i = min(Ti, Ci) to be the follow-up time given in the data with the censoring indicator δi

taking the value 0 if the observed time is censored (i.e. Ti > Ci) and 1 otherwise. Furthermore,
let Xi be some covariates such that Di is a subset of Xi containing the demographic variables
like gender and age. Usually, an observation in a data set is then summarised by T ∗

i , δi and Xi.

In addition, an extra assumption that distinguishes between the different causes of death is also
required to be able to define some of the concepts precisely. More specifically, for a specific
patient number i, we assume an additive model of the overall/observed hazard (i.e. the hazard
due to all causes of death) of the individual with two additive components as follows:

λOi(t) = λEi(t) + λP i(t) (2.10)

This means that the observed hazard is a sum of two different hazards: The excess/cause-specific
hazard λEi due to the disease of interest and the population hazard λP i, which can be seen as
the hazard due to other causes. In practice, a population table is used to get the values of
λP i(t) by assuming that the risk associated with other causes in the general population is similar
for the patient group, as for a group from the general population with the same demographic
variables such as gender, age and birth year [3]. Based on the gender, calendar year and age at a
specific time t, λP i(t) can be found from the national life tables. Thus, λP i(t) is predictable and
considered as non-stochastic.

But when is it reasonable to adopt an additive model for the overall hazard? It turns out that
this specific splitting of λOi is valid only if TEi and TP i are conditionally independent given the
covariates Xi. To see this, let us require that the given assumption about independence between
TEi and TP i is true. The overall probability of surviving up to time t for patient number i is then

SOi(t) = SEi(t)SP i(t), (2.11)

where we have defined SOi(t) = P (Ti ≥ t | Xi), SP i(t) = P (TP i ≥ t | Xi) and SEi(t) = P (TEi ≥
t | Xi). Next, using equation (2.7) and taking the logarithm on both sides of the relation above
yields

−
∫ t

0
λOi(u)du = −

∫ t

0
λEi(u)du −

∫ t

0
λP i(u)du.

Finally, after multiplying with −1 and differentiating on both sides with respect to t, we arrive
at the same result as equation (2.10). Thus, the conditional independence between TEi and TP i

given the covariates Xi implies the additive model for the overall hazard. In fact, equation (2.11)
only holds if and only if TEi and TP i are conditionally independent given the covariates Xi.
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2.2. Main quantities in relative survival

2.2.1 Overall survival of a patient group

Assume now that we have a group of patients with a disease of interest instead of a situation
where we only look at one single individual like before. The overall/observed survival at time t
of this group, denoted as SO(t), is simply defined as the probability that the survival time of a
patient is greater than t [10]. Using the result from equation (2.7), a representation of the overall
survival is given as

SO(t) = exp {−ΛO(t)} = exp
(

−
∫ t

0
λO(u)du

)
, (2.12)

where λO(t) is known as the overall hazard, i.e. the hazard due to all causes of death of a patient.
If the disease population is finite and of size N , we can denote the overall survival of this cohort
as the average of the individual overall survivals in the population, i.e. SO(t) =

∑N
i=1 SOi(t)/N .

2.2.2 Net survival of a patient group

At the start of this chapter, we specified that the excess hazard of patient number i, λEi,
represents the hazard related to the disease. We can interpret this as the hazard in a hypothetical
scenario where the only possibility of death is due to the disease [3]. Based on this observation,
the quantity is formally defined as

λEi(t) = lim
δt→0

{
P (t ≤ TEi ≤ t + δt | TEi ≥ t)

δt

}
. (2.13)

The corresponding survivor function SEi(t), often called the net survival, can be found respectively
by using equation (2.7). In reference to the definition of the excess hazard, SEi can be interpreted
as the probability of patient i being alive after a time t in the hypothetical situation where the
patient can only die due to the disease of interest.

Like in the subsection about overall survival, we now want to look at the case where we have a
finite population of N patients. As before, the net survival of the group can simply be seen as
the average of the individual net survivals, i.e. SE(t) =

∑N
i=1 SEi(t)/N . In many cases, it is also

convenient to have an expression of the excess hazard of the group, λE , in terms of λEi. Since
SE(t) = exp

(
−
∫ t

0 λE(u)du
)

, this implies that

exp
(

−
∫ t

0
λE(u)du

)
= SE(t) = (1/N)

N∑
i=1

SEi(t).

Taking the logarithm on both sides of this equation and noting that d
dt Λ(t) = λ(t), the equation

above can be rewritten (after multiplying with a factor of -1 and noticing that ΛE(0) = 0 by
definition) as

ΛE(t) = log N − log
{

N∑
i=1

SEi(t)
}

.

After differentiating on both sides (using the chain rule on the right-hand side) and multiplying
with a factor of -1, we get

λE(t) = − 1∑N
i=1 SEi(t)

d

dt

{
N∑

i=1
SEi(t)

}
.

Applying again the chain rule for the differentiation of the terms in the sum and some
simplifications (e.g. using the relation between survivor and hazard function) gives us an
important result:

λE(t) = − 1∑N
i=1 SEi(t)

N∑
i=1

SEi(t)
d

dt
(−ΛEi(t) + ΛEi(0))

= 1∑N
i=1 SEi(t)

N∑
i=1

SEi(t)λEi(t)

(2.14)
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2. Concepts in relative survival methodology

This implies that the hazard associated with the net survival of the patient group is a weighted
average of the individual excess hazards. In this case, the weight Wi is the net survival of patient
number i. Hence, the overall excess hazard can be written in the form

λE(t) =
∑N

i=1 Wi(t)λEi(t)∑N
i=1 Wi(t)

(2.15)

with Wi(t) = SEi(t). The concept of net survival might be seen as too hypothetical according
to the definition above. However, it turns out that from all the measures we will present, only
net survival is independent of the population mortality. Thus, it is the most useful quantity e.g.
when comparing the survival of cancer patients in different countries [10].

2.2.3 Cause specific survival

As mentioned before, in real-life situations when there are other causes of death, we cannot
observe TEi but rather Ti. The individual net survival defined in equation (2.13) is therefore
not observable, and the same issue happens for the overall net survival of a group of patients.
Instead, we define

λCi(t) = lim
δt→0

{
P (t ≤ TEi ≤ t + δt | Ti ≥ t)

δt

}
, (2.16)

where we condition on Ti instead of TEi as Ti is the observable quantity. We will refer to equation
(2.16) as the cause-specific hazard when the population risk is present [11]. Notice that this
definition is the same as (2.8) on an individual level.

When we look at the excess hazard of a specific patient λEi, it can be shown that λEi = λCi due
to the assumed conditional independence between TEi and TP i that we have stated earlier. To
see this, notice that Ti > t implies that both TEi and TP i is greater than t. Inserting this back
into equation (2.16) and using the multiplication rule, we get that

λCi(t) = lim
δt→0

{
P (t ≤ TEi ≤ t + δt | min(TEi, TP i) ≥ t)

δt

}
= lim

δt→0

{
P (t ≤ TEi ≤ t + δt ∩ TP i ≥ t)

δt P (TP i ≥ t)P (TEi ≥ t)

}
.

Here, we have used the independence assumption in the denominator. The same condition can
be applied to split up the numerator such that the factor of P (TP i ≥ t) cancels from the fraction:

λCi(t) = lim
δt→0

{
P (t ≤ TEi ≤ t + δt)

δt P (TEi ≥ t)

}
Going in reverse to write this as a conditional probability, we finally arrive at the result:

λCi(t) = lim
δt→0

{
P (t ≤ TEi ≤ t + δt | TEi ≥ t)

δt

}
= λEi(t)

(2.17)

In the same manner, we can also express λ∗
P i as follows:

λ∗
P i(t) = lim

δt→0

{
P (t ≤ TP i ≤ t + δt | Ti ≥ t)

δt

}
By doing similar calculations like we have done to arrive at equation (2.17), we can also deduce
that λP i(t) = λ∗

P i(t). It follows that the observed hazard of the patient number i according to
the additive model is the sum of these two hazards that we just defined.

Whereas λEi = λCi on an individual level, the same relation does not hold when we consider
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a cohort of patients. Following a similar calculation like we did to derive the net survival of a
group as a weighted average, it can be shown that

λC(t) =
∑N

i=1 SOi(t)λEi(t)∑N
i=1 SOi(t)

=
∑N

i=1 SOi(t)(λOi(t) − λP i(t))∑N
i=1 SOi(t)

=
∑N

i=1 SOi(t)λOi(t)∑N
i=1 SOi(t)

−
∑N

i=1 SOi(t)λP i(t)∑N
i=1 SOi(t)

= λO(t) −
∑N

i=1 SOi(t)λP i(t)∑N
i=1 SOi(t)

,

(2.18)

where λO(t) can be expressed in a similar way as equation (2.14) in the following way [3]:

λO(t) =
∑N

i=1 SOi(t)λOi(t)∑N
i=1 SOi(t)

Compared to equation (2.15), we see that the difference between λE(t) and λC(t) lies in the
weight Wi(t). For the cause-specific hazard, the weight is now the overall survival Wi = SOi.
Intuitively, this is not unreasonable at all as we are in a situation where we can only observe Ti.
This quantity is related to SOi, in contrast to the original excess hazard where we assume that
no other causes of death exist except for the disease such that SEi is the only source of survival.
Inserting λC into equation (2.7), we get the relation

SC(t) = exp
(

−
∫ t

0
λC(u) du

)
, (2.19)

which is also labelled as the observable net survival [12]. If cause of death is known, this quantity
can be estimated by using the Kaplan-Meier estimator from traditional survival analysis when
considering deaths due to other causes as censoring. However, this leads to informative censoring
as the distribution of the censoring time will vary depending on the demographic variables D.
This type of censoring mechanism implies that older patients will be censored much earlier
compared to the rest and will therefore violate the non-informative censoring assumption. Thus,
SC(t) cannot be regarded as a proper survivor function with respect to a random variable [3].
More importantly, it is not suitable to use SC as a measure of disease burden because it depends
on the population mortality via SOi in equation (2.18).

2.2.4 Relative survival ratio

Next, let SP (t) be the survival of a disease-free group of people with similar demographic
characterizations like age or gender, often called the expected survival. Then, the relative survival
ratio at a time t, denoted as SR(t), is given as the ratio between the observed survival of a patient
from the disease cohort SO(t) and the expected survival of their "healthy" counterpart SP (t):

SR(t) = SO(t)
SP (t) (2.20)

We can therefore interpret SR(t) as a measure of how large the survival of the cancer group is
compared to the population without the disease, given that both cohorts have similar values of
demographic variables.

For the case with a finite population of size N , the population survival SP (t) can again be defined
as the average of the expected survival of each individual like we did for SO(t). Thus, the relative
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2. Concepts in relative survival methodology

survival ratio is given as

SR(t) = SO(t)
SP (t) =

1
N

∑N
i=1 SOi(t)

1
N

∑N
i=1 SP i(t)

=
∑N

i=1 SOi(t)∑N
i=1 SP i(t)

=

∑N
i=1 exp

(
−
∫ t

0 λOi(t)du
)

∑N
i=1 exp

(
−
∫ t

0 λP i(t)du
)

= exp
(

−
∫ t

0
λ∗∗

E (t)du

)
,

(2.21)

where λ∗∗
E (t) can be expressed as

λ∗∗
E (t) = λO(t) −

∑N
i=1 SP i(t)λP i(t)∑N

i=1 SP i(t)
(2.22)

by doing a similar calculation to the one where equation (2.14) was derived. Notice that unlike
the two hazards defined previously, λ∗∗

E does not need to be non-negative. In most cases, it
will be non-negative as the survival of the patients tends to be worse compared to the general
population. When λ∗∗

E is less than 0, this corresponds to a situation where the patient group
has higher survival compared to the general population, which in most medical studies are not
common unless we are dealing with e.g. a cohort of patients requiring a hip surgery.

In the past, the relative survival ratio had been misunderstood to be the same as the net
survival. In some situations, the two quantities might actually coincide. However, this is not
true in general. To see this, note that equation (2.11) can be rewritten in terms of SEi(t) as
SEi(t) = SOi(t)/SP i(t). Remembering that SE(t) is defined as an average of individual net
survival and combining the recent observation, we arrive at

SE(t) =
∑N

i=1 SEi(t)
N

= 1
N

N∑
i=1

SOi(t)
SP i(t)

. (2.23)

We see that equation (2.21) and (2.23) are mathematically different. The degree of discrepancy
between the two measures depends on the heterogeneity of the individual excess hazards SEi [10].
This can be seen from equation (2.14) and (2.23). If all patients have the same excess hazard, i.e.
λE = λEi, the weights in the averages cancel and the two measures agree. But in practice, the
excess hazard depends on demographic variables and especially on the age at diagnosis date [3],
which means that the individual excess hazard will differ from patient to patient according to
Di. Thus, net survival and relative survival ratio will usually deviate from each other. Also, an
important consequence from equation (2.23) is that the relative survival ratio also depends on
the survival of the general population. Hence, it is again not useful as a measure to compare
disease survival across e.g. countries or groups with different demographic variables.

The fact that the relative survival ratio and net survival do not represent the same quantity
was a very important issue in the early days of relative survival methods. Estimators that were
developed with a purpose of estimating the net survival, ended up estimating other quantities like
the relative survival ratio or the observable net survival. It was not until 2012 that an unbiased
non-parametric estimator of the net survival was developed in [3]. We will take a further look at
some of these estimators in the next chapter.
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CHAPTER 3

Non-parametric estimators in relative
survival setting

In Chapter 2.2, we reviewed the quantities of interest in a relative survival setting. Our main
focus in this chapter is to introduce the traditional relative survival methods that were developed
in the earlier times. Subsequently, we will investigate the method from Perme et al. [3] proposed
in 2012, which is able to estimate net survival without any bias when certain conditions are
fulfilled. An examination of how the estimator is derived and its variance compared to the other
estimators is also carried out. Before we start, we will again have to set up some more notations
that follow [3] as the estimators are given in a continuous-time form. A small review of the
concepts related to counting processes and martingale theory needed in this chapter is given in
Appendix A.

Assume we are working with a finite population of size N . We denote n as the size of a sample from
this population. Further, let Ni(t) = I(Ti ≤ t, Ti ≤ Ci) represent a counting process of the event
for individual i. Similarly, we define Yi(t) = I(Ti ≥ t, Ci ≥ t) = I(T ∗

i ≥ t) as the at-risk process
for the same individual. Using (A.5) from the theory of counting processes, the intensity process
of each individual counting process is given as γi(t) = Yi(t)λOi(t) = Yi(t) {λP i(t) + λEi(t)} when
we assume an additive model for the overall hazard as in equation (2.10). In all cases, λP i is
again considered as non-stochastic and can be obtained from general population tables. Finally,
we aggregate the individual counting processes of the sample and define N(t) =

∑n
i=1 Ni(t). The

same thing is done for the individual at-risk processes so that Y (t) =
∑n

i=1 Yi(t).

3.1 Ederer II estimator

The article by Ederer et al. [1] gave birth to the field of relative survival when they introduced
some of the quantities in Chapter 2.2. In the same paper, a few estimators with the main purpose
of estimating the net survival were also proposed. In this section, we will firstly look at the
continuous-time version of the so-called Ederer II estimator.

First, assume that the excess hazard is equal for all individuals in the sample. Also,
J(t) = I(Y (t) > 0) is introduced to avoid division by zero such that J(t)/Y (t) := 0 if Y (t) = 0.
Then, the continuous-time version of the Ederer II estimator is given as

Λ̂C(t) =
∫ t

0

J(u)
Y (u)dN(u) −

∫ t

0

J(u)
∑n

i=1 Yi(u)dΛP i(u)
Y (u) . (3.1)

We notice that the first term is just the Nelson-Aalen estimator of the cumulative observed hazard
ΛO [13]. Also, the second term has to represent the estimator of the cumulative population hazard
Λ∗

P . If we denote the quantity inside the integral of the second term as dΛ̃∗
P , the denominator

of this measure only changes when u surpasses a follow-up time in the sample. Thus, for the
period between two consecutive follow-up times, dΛ̃∗

P is given as the average change in cumulative
population hazard over this interval contributed by the patients that are at risk during this
specific period of time [3].

11



3. Non-parametric estimators in relative survival setting

Now, assume that both formulations of non-informative censoring from [9] and [3] mentioned in
Chapter 2.1 are valid. Since each Yi is a binary variable, the expectation of Yi(t) is simply the
probability that Yi(t) takes the value 1. Returning to the definition of Yi(t) in the start of this
chapter, the observation above implies that

E {Yi(t)} = P {Yi(t) = 1} = P {Ti ≥ t, Ci ≥ t} . (3.2)

However, P {Ti ≥ t, Ci ≥ t} = P (Ti ≥ t)P (Ci ≥ t) = SOi(t)SCi
(t) due to the assumption of

non-informative censoring from [9]. But the stricter definition of non-informative censoring from
[3] also implies that SCi = SC . Hence, equation (3.2) can be expressed as

E {Yi(t)} = SOi(t)SC(t). (3.3)

When the sample size n is getting closer to the population size N , we have that the term
1
n

∑n
i=1 Yi(t)dΛP i(t) converges in probability to

1
n

n∑
i=1

Yi(t)dΛP i(t) → 1
N

N∑
i=1

E {Yi(t)} dΛP i(t)

= 1
N

N∑
i=1

SOi(t)SCi(t)dΛP i(t)

= SC(t)
N

N∑
i=1

SOi(t)dΛP i(t)

after inserting equation (3.3) for the expectation of Yi(t). Similarly, we can show that 1
n

∑n
i=1 Yi(t)

converges in probability to SC(t)
N

∑N
i=1 SOi(t). Substituting all of these limits back into the second

term of the Ederer II method from equation (3.1) yields∫ t

0

∑n
i=1 Yi(u)dΛP i(u)

Y (u) →
∫ t

0

SC(t)
∑N

i=1 SOi(u)dΛP i(u)
SC(u)

∑N
i=1 SOi(u)

=
∫ t

0

∑N
i=1 SOi(u)dΛP i(u)∑N

i=1 SOi(u)
.

Comparing the quantity inside the integral given above, this is exactly the differential form of
the second term in equation (2.18) when ignoring the indicator function J(t). Thus, we have
shown informally that under the given assumptions, the Ederer II method consistently estimates
the cumulative hazard corresponding to the observable net survival.

3.2 Ederer I and Hakulinen estimator

In this section, we will present two additional estimators that were proposed during the early
days of the relative survival methodology. All of these differ from the Ederer II estimator by a
certain choice of the weight factor in the term estimating the cumulative population hazard. The
Ederer I estimator [1] is expressed as

Λ̂∗∗
E (t) =

∫ t

0

J(u)
Y (u)dN(u) −

∫ t

0

J(u)
∑n

i=1 Y ∗∗
i (u)dΛP i(u)

Y ∗∗(u) (3.4)

with Y ∗∗
i (t) = SP i(t). Unlike equation (3.1), the individual at-risk process is now replaced with

the corresponding population survival of the individuals instead in the second term. We see that
the formula of the estimator given in (3.4) is simply the cumulative version of the hazard given
in equation (2.22). Subsequently, the Ederer I method estimates the hazard associated with the
relative survival ratio.
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However, the Ederer I estimator is biased if the censoring mechanism is informative as a
consequence of the first term being a biased estimator of the cumulative overall/observed survival
under informative censoring. Therefore, Hakulinen [2] proposed a method to alleviate this issue.
Consider a situation where a study occurs over a long period of time. During the study period,
the distribution of the variable representing age at diagnosis has changed. This happens for
instance in an ageing population such that the mean age of diagnosed patients increases over time
[14]. In that case, older patients will have shorter planned follow-up times as they are diagnosed
towards the end of the study. But the same patients are also subject to shorter time until death
Ti due to the larger age. Therefore, we have a situation with informative censoring since the
distribution of censoring times differ between individuals. Moreover, the planned follow-up times
(also called potential follow-up times) of these patients are correlated with the times to event.
Shorter times to event will usually imply shorter potential follow-up times due to the reasons
above.

As a further motivation, we know that the Nelson-Aalen estimator can be written as∑
j:Tj<t 1/Y (Tj) when there are no ties. Here, Tj denotes the j-th ordered time to event

in the sample such that Tj−1 ≤ Tj and Y (t) is the usual at-risk process [8]. If we have positive
correlation between times to event and potential follow-up times like in the case of an ageing
population, there will be more occurrences of censoring compared to a situation where this
correlation does not exist. Many observed times that are supposed to be survival times in the
normal sense become censored due to the correlation. As a consequence of this fact, there will be
less terms in the sum of the Nelson-Aalen estimator. Therefore, the estimated overall hazard is
usually smaller in comparison to the case without this type of informative censoring, which in
turn means that the overall survival is overestimated in this case.

Since the situation above implies an underestimation of the overall hazard, the main purpose of the
Hakulinen method [2] is to introduce a similar bias to underestimate the cumulative population
hazard as well. To construct the estimator, we follow the steps in [3] and split the censoring into
two cases: One due to a patient being alive at the end of the potential follow-up time and one
due to interim censoring. Let τi be the former quantity for patient i. For each patient i, the value
of τi is assumed to be known, i.e. the time between the entry of the patient in the study and
the closing date of the study is decided in advance. If C̃i corresponds to the interim censoring
time, the actual censoring time of patient i is given as Ci = min(C̃i, τi). To adjust the Ederer II
method in cases where the potential follow-up time is correlated with the time to event Ti like in
the situation with ageing populations, Hakulinen [2] proposed a modification to Y ∗∗

i established
for the Ederer I method. More specifically, Y ∗∗

i (t) is now defined as Y ∗∗
i (t) = SP i(t)I(Ci ≥ t)

for individuals where δi = 0. Otherwise, we have that Y ∗∗
i (t) = SP i(t)I(τi ≥ t) for individuals

with δi = 1. The purpose of Y ∗∗
i (t) given in the Hakulinen estimator is to introduce a negative

bias to the cumulative population hazard such that this quantity is also underestimated. It can
be shown that both the Ederer I and Hakulinen method estimate the same measure when the
censoring time Ci is independent of the time to event Ti [3]. Under the circumstances where
no form of interim censoring exists and each τi is greater or equal to the largest observed time,
we can deduce that Y ∗∗

i (t) = SP i(t) for both values of δi. Thus, the Hakulinen and Ederer I
estimator are identical when this situation arises.

3.3 Pohar-Perme estimator

For many years, researchers have been trying to find a way to estimate the net survival in a
non-parametric sense. None of the estimators we have seen so far are unbiased estimators of
this quantity, they all estimate other measures that depend on the general population mortality.
However, the article [3] from 2012 authored by Pohar-Perme, Stare and Estève introduced a
new proposal of a non-parametric procedure to estimate the net survival. In this section, we
will examine how the estimator (often called the Pohar-Perme estimator) was derived and its
properties in some more details.
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3.3.1 The estimator

To construct the Pohar-Perme estimator, we first look at the Nelson-Aalen estimator under the
cause-specific setting. In this situation, we know the cause of death for each observation. Let
NEi(t) = I {Ti ≤ t, Ti ≤ Ci, TEi < TP i} be the counting process for the death due to a disease of
interest. Now, if we regard death times due to other causes as censored, the censoring mechanism
will be informative if both population and excess hazard depends on the same demographic
variables. Like before, we aggregate the individual processes to arrive at NE(t) =

∑n
i=1 NEi(t).

Putting the newly defined counting process back into the Nelson-Aalen estimator yields

Λ̂C(t) =
∫ t

0

dNE(u)
Y (u) . (3.5)

This is a biased estimator of the cumulative version of equation (2.14) under the type of censoring
mentioned above. However, it can be shown that if we weight the counting and the at-risk process
with a specific factor, then using these weighted processes in the Nelson-Aalen estimator will give
an unbiased estimator of the cumulative excess hazard (in the cause-specific setting) [3]. More
specifically, we define

Nw
Ei(t) = NEi(t)

SP i(ti−) , Y w
i (t) = Yi(t)

SP i(t−) , (3.6)

where SP i(t−) corresponds to the population survivor function for individual i evaluated at
time t from the left. In most cases, we assume that SP i is continuous so that we can write
SP i(t−) = SP i(t). This will be the case for our applications since λP i is obtained from the life
tables. Usually, it is assumed in such tables that the population hazard is a piecewise constant
function, e.g. constant in yearly intervals. ΛP i is therefore a piecewise linear and continuous
function, which implies that SP i is continuous from (2.7) as the composition of two continuous
function is continuous. If we now define Nw

E (t) =
∑n

i=1 Nw
Ei(t) and Y w(t) =

∑n
i=1 Y w

i (t), the
new proposed estimator

Λ̂w
E(t) =

∫ t

0

dNw
E (u)

Y w(u) (3.7)

is unbiased when estimating equation (2.14) [3]. Intuitively, the choice of dividing the original
individual processes with SP i is to increase both the number of events and number at-risk for a
specific time t in order to reduce the loss of patients due to the population hazard [3].

An analogous idea can be applied to the relative survival setting. Using the Ederer II estimator
as the starting point, we weight the relevant individual counting process Ni(t) with a factor of
1/SP i(t−). Let Nw

i (t) = Ni(t)/SP i(t−) denote the newly weighted individual counting process.
The weighted individual at-risk process is still Y w

i (t) like we defined in the cause-specific setting.
Then, the estimator proposed by Perme et al. [3] is given as

Λ̂∗
E(t) =

∫ t

0

J(u)
Y w(u)dNw(u) −

∫ t

0

J(u)
∑n

i=1 Y w
i (u)dΛP i(u)

Y w(u) . (3.8)

To formally arrive at (3.8), we start out with the Doob-Meyer decomposition given in (A.40) for
each individual counting process from martingale theory reviewed in Appendix A. Applying this
result for Ni(u), the increment of Mi(u) in our case can be written as

dMi(u) = dNi(u) − Yi(u)λOi(u)du

= dNi(u) − Yi(u)dΛOi(u)
= dNi(u) − Yi(u)dΛP i(u) − Yi(u)dΛE(u).

(3.9)

Dividing this equation with SP i(u), we can express everything in terms of the weighted processes
as follows:

dMw
i (u) = dNw

i (u) − Y w
i (u)dΛP i(u) − Y w

i (u)dΛE(u) (3.10)
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After aggregating all of the individual processes and integrating, we arrive at

Mw(t) = Nw(t) −
∫ t

0

n∑
i=1

Y w
i (u)dΛP i(u) −

∫ t

0
Y w(u)dΛE(u). (3.11)

It turns out that the sum of all the weighted individual martingales Mw(t) is also a mean zero
martingale with respect to the history Ft = σ {Ni(u), Yi(u+), SP i(u+) : 0 ≤ u ≤ t, i = 1, ..., n}
since SP i(t) is a predictable process [3]. Because each Mw

i (t) is simply the original martingale Mi

multiplied with a scalar at a given time t, it is easy to see that Mw
i (t) is a mean zero martingale

as well with respect to its own history σ {Ni(u), Yi(u+), SP i(u+) : 0 ≤ u ≤ t}. Since Ft collects
the history of all the individual processes, we also have that Mw

i (t) is a mean zero martingale
with respect to Ft. Therefore, if t > s, using the martingale property of Mw

i (t) with respect to
Ft yields

E {Mw(t) | Fs} =
n∑

i=1
E {Mw

i (t) | Fs} =
n∑

i=1
Mw

i (s) = Mw(s).

Thus, we have informally argued that Mw(t) is indeed a mean zero martingale with respect to
Ft. This is an important result that we will make use of later in the calculations.

Returning to the increment form of equation (3.11) and dividing all terms with Y w(u), we get

J(u)
Y w(u)dMw(u) = J(u)

Y w(u)dNw(u) −
J(u)

∑n
i=1 Y w

i (u)dΛP i(u)
Y w(u) − J(u)dΛE(u). (3.12)

Integrating equation (3.12) and isolating the term with the cumulative excess hazard yields

Λ∗
E(t) =

∫ t

0
J(u)dΛE(u)

=
∫ t

0

J(u)
Y w(u)dNw(u) −

∫ t

0

J(u)
∑n

i=1 Y w
i (u)dΛP i(u)

Y w(u)

−
∫ t

0

J(u)
Y w(u)dMw(u).

(3.13)

From Appendix A.3.3, the last term is simply a stochastic integral. This is valid as the first
factor of the integrand J(t)/Y w(t) is a predictable process due to SP i(t) and Y (t) both being
predictable with respect to the history Ft defined earlier. Because any stochastic integral of a
mean zero martingale is again a mean zero martingale itself, the latter term of equation (3.13)
has mean zero and can be interpreted as the noise term when estimating the excess hazard.
Disregarding the noise term, we finally arrive at (3.8) corresponding to the Pohar-Perme estimator
developed in [3]. To check which measure the estimator is actually trying to estimate, we can
either follow the same steps that we did to answer the same question for the Ederer II estimator
or use martingale theory. We will apply both methods to solve this issue and show that the
results from both methodologies are consistent.

For the first approach, assume that the censoring mechanism is non-informative in the sense
that we defined earlier (SC = SCi for all i). Note that the main goal is to find an unbiased
estimator for ΛE(t). In practice, this is not possible in a non-parametric method because
λE(t) cannot be estimated when Y (t) = 0 [13]. As a substitute, we rather want to estimate
Λ∗

E(t) =
∫ t

0 J(u)λE(u) du introduced in (3.13), and the objective is an unbiased estimator for
this quantity. Now, observe that E {Y w

i (t)} = P {Yi(t) = 1} /SP i(t) = SC(t)SOi(t)/SP i(t) =
SC(t)SEi(t) by using equation (2.11) to simplify the expression in the last equality. Similarly,
E {dNw

i (t) | Ft} = P (dNi(t) = 1 | Ft)/SP i(t) = Yi(t)λOi(t)dt/SP i(t) = Yi(t)dΛOi(t)/SP i(t)
after we have applied the definition of an intensity process in the second equality and defined
dΛOi(t) = λOi(t)dt. Looking at the situation where the sample size n reaches the population size
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3. Non-parametric estimators in relative survival setting

N , the expression 1
n

∑n
i=1

Yi(t)dΛOi(t)
SP i(t) converges in probability to

1
n

n∑
i=1

Yi(t)dΛOi(t)
SP i(t)

→ SC(t)
N

N∑
i=1

SOi(t)dΛOi(t)
SP i(t)

= SC(t)
N

N∑
i=1

SEi(t)dΛOi(t).

So, when n → N , the terms inside the integral of the estimator become

J(t)SC(t)
∑N

i=1 SEi(t)dΛOi(t)
SC(t)

∑N
i=1 SEi(t)

−
J(t)SC(t)

∑N
i=1 SEi(t)dΛP i(t)

SC(t)
∑N

i=1 SEi(t)

= J(t)
∑N

i=1 SEi(t)(dΛOi(t) − dΛP i(t))∑N
i=1 SEi(t)

= J(t)
∑N

i=1 SEi(t)dΛEi(t)∑N
i=1 SEi(t)

= J(t)dΛE(t).

Therefore, we have informally shown that equation (3.8) consistently estimates the cumulative
version of equation (2.13) in cases where Y (t) > 0, which can then be used to estimate the net
survival by applying equation (2.7).

To show in a more formal manner that equation (3.8) is indeed an unbiased estimator of the
cumulative excess hazard, we need to again rely on some facts from martingale theory. First, the
difference between Λ̂∗

E(t) and Λ∗
E(t) is given as

Λ̂∗
E(t) − Λ∗

E(t) =
∫ t

0

J(u)
Y w(u)dNw(u)

−
∫ t

0

J(u)
∑n

i=1 Y w
i (u)dΛP i(u)

Y w(u)

−
∫ t

0
J(u)λE(u)du.

(3.14)

Multiplying by Y w(u) both in the numerator and denominator of the last term and then factorizing
out J(u)/Y w(u), we see that the difference above can simply be expressed by the increment of
the process Mw(t) from equation (3.11) in the following manner:

Λ̂∗
E(t) − Λ∗

E(t) =
∫ t

0

J(u)
Y w(u)dMw(u) (3.15)

This expression is again a stochastic integral due to the same reasons as before. Hence, equation
(3.15) is also a mean zero martingale since Mw is a mean zero martingale. This implies that

E
{

Λ̂∗
E(t) − Λ∗

E(t)
}

= E

{∫ t

0

J(u)
Y w(u)dMw(u)

}
= 0. (3.16)

The result that Λ̂∗
E(t) is an unbiased estimator of Λ∗

E(t) follows therefore immediately. A small
note concerning the Pohar-Perme estimator is that even if the method is supposed to estimate
the net survival, which theoretically should be a value between 0 and 1, the weighting with SP i

can in practice give estimates that are larger than 1. We will discuss this issue a bit further in
the next section.

3.3.2 Estimated variance of the estimator

In this section, we will explore an estimator of the variance corresponding to the Pohar-Perme
estimator. For this purpose, we must again depend on the concepts of martingales, and more
specifically the optional variation process of a martingale. Following Appendix A.3.2, we know
that the expectation of the optional variation process is the same as the variance of the mean
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3.3. Pohar-Perme estimator

zero martingale itself, i.e. E[M ](t) = Var {M(t)}. Since we have shown that Λ̂∗
E(t) − Λ∗

E(t) is
a stochastic integral and therefore a mean zero martingale, let us now try to find the optional
variation process of this difference as

Var
{

Λ̂∗
E(t)

}
= Var

{
Λ̂∗

E(t) − Λ∗
E(t)

}
= E

[
Λ̂∗

E − Λ∗
E

]
(t).

Since equation (3.15) tells us that Λ̂∗
E(t) − Λ∗

E(t) is a stochastic integral, we can utilize the result
from (A.35) to find the optional variation process of this difference. The resulting expression is
given as follows:

[Λ̂∗
E − Λ∗

E ](t) =
∫ t

0

J(u)2

Y w(u)2 d[Mw](u). (3.17)

From the calculation above, we need to compute the optional variation process of Mw to advance
any further. Another convenient rule related to the calculations of optional variation processes is
simply [aM ] = a2[M ], which can be seen directly from (A.27). Since Mw

i = Mi/SP i, the formula
implies that [Mw

i ] (t) = [Mi] (t)/S2
P i. But we also know that [Mi] (t) = Ni(t) for a martingale

obtained by applying the Doob-Meyer decomposition on a counting process from (A.41). Hence,
equation (3.17) can be rewritten as

[Λ̂∗
E − Λ∗

E ](t) =
∫ t

0

J(u)
Y w(u)2

n∑
i=1

dNi(u)
S2

P i(u)

=
∫ t

0

J(u)
∑n

i=1 dNi(u)/S2
P i(u)

{
∑n

i=1 Yi(u)/SP i(u)}2

(3.18)

as J(t) = J(t)2 due to the fact that J(t) can only take the value 0 or 1. Ideally, we need to take
the expectation of this expression to get the variance. However, this can be very cumbersome
and a proposal is therefore to simply use the equation above as the estimator of the variance
itself [3], i.e. σ̂2(t) = [Λ̂∗

E − Λ∗
E ](t).

A similar argument can be done to find the variance estimator of the Hakulinen and both the
Ederer methods. In this case, the variance is given by [15]

σ̂∗2(t) =
∫ t

0

J(u)
Y (u)2 dN(u), (3.19)

which coincides with the variance estimator of the Nelson-Aalen estimator [13] since the second
term is related to the population survival and therefore regarded as non-stochastic. Compared to
equation (3.18), we see that the estimated variance of both the Hakulinen and Ederer methods
tends to be smaller than the same quantity of the Pohar-Perme estimator because of the factor
1/S2

P i inside the sum in the numerator. Intuitively, this is a result of the Pohar-Perme estimator
taking into account the unobserved information due to population censoring [3]. Thus, the
variation of the estimate might be larger using this estimator compared to the traditional ones.

As a final comment, we want to mention a small issue related to the weighting procedure that
leads to the Pohar-Perme estimator. In theory, the net survival should always be regarded as
a probability measure such that the possible values of net survival are the numbers inside the
closed interval between 0 and 1. However, even if the Pohar-Perme estimator is an unbiased
estimator of net survival, there is no guarantee that the estimates will be less than 1 throughout
the follow-up interval. The larger variance could in practice yield estimates larger than 1 at given
time periods. Usually, this happens when there is a lack of excess events such that the true net
survival curve is very close to 1 over the whole follow-up interval. From the expressions of the
estimator itself and the corresponding variance estimator, this issue will be of a more severe
degree when dealing with an elder population due to SP i being relatively small. We will see some
examples of this matter later in Chapter 5.

17





CHAPTER 4

Modelling in relative survival

Up until now, we have only looked at the case of estimating net survival in a non-parametric
procedure, i.e. we have not estimated any parameters that are related to the effects of different
explanatory variables. In some cases, the net survival of a certain cohort is simply the main
interest such that the methods in Chapter 3 are suitable. The limitations of these estimators
arrive when we want to do inference and explore which factors that affect the excess hazard.
There exist log-rank types of tests which can be used to test if the net survival is significantly
different across certain groups, see for instance [16]. Nevertheless, we will not go into the details
of these tests as modelling is much more diverse in inference settings. In this chapter, we will
therefore present some models that have been used to estimate excess hazard in a relative survival
setting.

4.1 Excess hazard model setup

Recall the additive model of the overall hazard given in equation (2.10). In a regression model
of the excess hazard, it is usually assumed that the excess hazard of individual number i is
represented in the form

λEi(t, Xi) = λ0(t) exp (βXi), (4.1)

where Xi = (Xi1, ..., Xip)T is the vector of e.g. p covariates, β = (β1, β2, ...βp) is the parameter
vector and λ0 is the baseline excess hazard [4], which reassembles a similar structure to the
well-known Cox regression model. Equation (4.1) is often referred to as the proportional excess
hazard assumption. Therefore, the overall hazard can be expressed as

λOi(t, Xi) = λP i(t) + λ0(t) exp (βXi). (4.2)

In the early days, due to estimation purposes, the baseline excess hazard was specified as a
piecewise constant function over a partition of the follow-up time interval denoted as [0, τ ] [6].
More explicitly, we have that λ0(t) = exp [

∑
k χkIk(t)], where Ik(t) is an indicator function that

takes the value 1 if t is located in the k-th partition (often called a band) of the follow-up interval.
This choice of a parametrization is simply for convenience so that λEi can be rewritten in terms
of a single exponential function. Usually, the length of each band is typically one year, but there
exist some arguments for using bands with shorter lengths in the beginning of the follow-up and
longer bands later [5]. This specification of the baseline excess hazard has been used in many
proposed models, for instance the Estève et al. full likelihood approach [4] or the models based
on GLM theory like the Poisson error structure [5]. For practical purposes, this option of the
baseline excess hazard is not realistic, and we will therefore only give a brief presentation of these
types of models mainly because of the historical meanings.

Because of the limitations with the stepwise model, many researchers have tried to develop a
flexible method to estimate the baseline excess hazard. Some of them are fully parametric, see
for instance [17]. In the fully parametric models, the estimation of baseline excess hazard is done
simultaneously with the parameters related to the covariates. Thus, if the baseline excess hazard
is incorrectly specified, the resulting estimated coefficients for the covariate effects may be biased
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4. Modelling in relative survival

as well [6]. The concern of the misspecification of a baseline form leads to the development of the
semi-parametric procedure based on the EM-algorithm [6]. The baseline misspecification will not
occur when the EM-based approach is applied, and this model will be the preferred one in this
text.

As a small final notice, instead of an additive model like in equation (4.2), it has also been
suggested to use a multiplicative model of the overall hazard such that

λOi(t, Xi) = λP i(t)λ0(t) exp (βXi). (4.3)

This forms the basis of e.g. the Andersen multiplicative model [18], but the success of the additive
model has made this assumption the preferred one in cancer registry studies. Hence, we will
focus on the additive model for now.

4.2 Estève et al. full likelihood approach

Let t∗
i be the observed time of patient i and δi the death indicator of the same individual with

i = 1, ..., n. Consider the case where λ0 is a piecewise constant function like we mentioned
in Chapter 4.1 such that the excess hazard is constant over each band of the follow-up time
interval. Since the population hazard is in practice also a piecewise constant function as well
(often available in yearly intervals), it follows that the overall hazard also has the same traits. For
convenience, we define Zi as the combining vector of both the covariates and indicator variables
Ik(t). Then, the parameter vector becomes ϕ = (β, χ), where χ corresponds to the parameter
vector of the piecewise constant baseline excess hazard. Thus, we can write the excess hazard
simply as λEi = exp (ϕZi). Inspired by the arguments related to (2.8) and (2.9), it is possible to
see that the likelihood function is given as follows:

L =
n∏

i=1
exp

(
−
∫ t∗

i

0
λOi(u) du

)
[λOi(t∗

i )]δi (4.4)

Inserting equation (4.2) into the expression above, we get the following result of the log-likelihood:

l(ϕ) = −
n∑

i=1

∫ t∗
i

0
λP i(u) du −

n∑
i=1

∫ t∗
i

0
λEi(u) du

+
n∑

i=1
δi log {λP i(t∗

i ) + λEi(t∗
i )}.

(4.5)

This method is somewhat computationally efficient as the first term of equation (4.5) is independent
of the parameters. The parameters are then estimated by maximizing the log-likelihood
by standard routines. A small note is that the overarching idea will also work with other
parametrizations of the baseline excess hazard, e.g. a Weibull baseline. In practice, this specific
choice is not implemented due to difficulties in estimation procedure and baseline misspecification
as mentioned before.

For the method above, we have used exact survival times to calculate the parameters, i.e. the
data are on a so-called individual level [5]. In some cases, the estimation procedure may be
simplified when we split the individual level data into separate observations for each band of the
follow-up time interval. To illustrate this idea, we adopt an example from [5]:

Consider an individual who dies 5.25 years after being diagnosed with a specific disease such that
t∗
i = 5.25 and δi = 1. Then, we can for instance split this patient into 6 subject-band observations

where the time at risk is e.g. y = 1 year and death indicator δ = 0 for the first five bands. Since
the combined time at risk for the first five bands is 5 years, the time at risk in the final band
will be y = 0.25 with δ = 1. By doing this for each patient, we end up with J subject-band
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4.3. GLM-based models

observations based on the n original patients/observations. Finally, we evaluate the log-likelihood
for each subject-band observation and sum over all of these.

More generally, each subject-band observation (indexed now by j) corresponds to the survival
experience of a given patient in a particular band of follow-up. The information that we have
for each of these is the time at risk during this band yj and death indicator δj . The values of
covariates is extracted directly from the original observation. By omitting the first term of (4.5)
as it does not depend on the parameters, we obtain the log-likelihood for this setting as

l(ϕ) =
J∑

j=1
[δj log [λP j(yj) + exp (ϕZj)] − yj exp (ϕZj)] . (4.6)

Notice that the term with the integral of the excess hazard from (4.5) simply becomes yj exp (ϕZj).
This corresponds to the fact that the excess hazard is assumed to be constant in each interval
and therefore the integral simply becomes the length of the time interval yj multiplied by the
function [5].

4.3 GLM-based models

Back in the early days, none of the methods based on the full likelihood had any form of regression
diagnostics accessible. However, since we have assumed that the overall hazard is piecewise
constant over a given band, it follows that the number of deaths in each interval can be seen
as a homogeneous Poisson process. Accordingly, it is possible to apply theory from generalized
linear models for the estimation procedure. This implies that the different quantities of goodness-
of-fit and regression diagnostics from the GLM framework can also be implemented, which is
a huge advantage over the full-likelihood approach. We will now briefly present some ideas of
"transforming" the relative survival model into GLM-based models that have been proposed
throughout the years.

4.3.1 Poisson error structure

First, let us assume the case where we have subject-band observations. Let δj be the number of
deaths for observation j, which is assumed to follow a Poisson distribution, i.e. δj ∼ Poisson(µj).
Here, µj = λOjyj with yj representing the person-time at risk for this observation. Since
λOj = λP j + exp (ϕZj), we get that

µj = yj(λP j + exp (ϕZj)).

Dividing by yj on both sides yields

µj/yj = λP j + exp (ϕZj).

Now, if d∗
j is the expected number of deaths due to other causes than the disease of interest, the

population hazard can be expressed as λP j = d∗
j /yj . Inserting this observation back into the

relation above, taking the logarithm on both sides and rearranging some terms, we arrive at

log(µj − d∗
j ) = log(yj) + ϕZj . (4.7)

This is simply a Poisson regression model of the response δj with link function log(µj − d∗
j ) and

offset log(yj) [5]. The interesting fact here is that the log-likelihood can be shown to be exactly
the same as equation (4.6). Therefore, the estimates from this method are identical to those
acquired from the procedure described in Chapter 4.2 with subject-band observations. To see
this, the likelihood obtained in this case based on the probability mass function of a Poisson
distribution is

L(ϕ) =
J∏

j=1

{yj (λP j + exp (ϕZj))}δj

δj ! e−{yj(λP j+exp (ϕZj))}.
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Taking the logarithm of this equation yields

l(ϕ) =
J∑

j=1
{δj log(yj(λP j + exp (ϕZj))) − yj(λP j + exp (ϕZj)) − log(δj !)}

=
J∑

j=1
{δj log(yj) + δj log(λP j + exp (ϕZj)) − yjλP j − yj exp (ϕZj) − log(δj !)}

Disregarding everything unrelated to the parameters ϕ, the final result is exactly equation (4.6)
as we have mentioned.

It is also possible to estimate the model by merging all the subject-band observations into one
single observation for each covariate pattern. Then, δ, d∗ and y are summed up within the given
combination of covariates and the data are summarised in a similar form as the individual level
mentioned earlier in Chapter 4.2. A small note is that these two types of data will give identical
estimates when dealing with the standard Poisson regression model and the usual logarithmic
link. This is not the case when we estimate the model in equation (4.7) with respect to the
collapsed data since the expected number of deaths due to other causes d∗

j could vary within
each covariate pattern [5]. An example of this situation could be when including age group as
a predictor. For instance, let us divide age from 40 to 70 in 3 categories: age between 40-49,
50-59 and 60-70. If the values of the other predictors between a patient with age 41 and 48 are
identical, the two individuals will have the same covariate pattern by being in the same age
group. However, the population hazard (and thereby d∗

j ) of a person at age 41 will in practice be
different from a person at age 49. Therefore, the estimated parameters for the model based on
these two forms of data might slightly differ in practice.

Finally, we will briefly look at the procedure to estimate the Poisson model when we have grouped
data. In many studies, rather than having the exact survival time of each individual, we only
know the number of deaths in a given time interval. Everything described up until now in this
section requires exact survival times and will therefore not be appropriate for this situation.
However, it turns out that a similar model can be estimated for grouped data where life-table
methods are also adopted into the procedure.

Consider the case where all the individuals in the data are stratified into K strata. Each stratum,
indicated by the index k, defines a specific combination of relevant predictors like age, gender etc.
A corresponding life table, with time interval indexed by i, is also estimated. Then, for a given
stratum k during the i-th life-table interval, we will adopt the following quantities from [5] for
later use:

• dki: Overall number of deaths during the i-th life-table interval.

• nki: Number of individuals at risk at the start of the i-th interval.

• wki: Number of individuals censored during the i-th interval.

• l
′

ki: Effective number at risk given as l
′

ki = nki − wki/2.

• yki: Total person-time at risk during the i-th inteval.

• p∗
ki: Expected proportion of individuals who survived the i-th interval due to other causes

than the disease of interest estimated from life-tables.

• d∗
ki: Expected number of deaths due to other causes than the disease of interest estimated

from life-tables.

It follows that all the life-table intervals form together the observations when estimating the
additive hazard model from (4.2). Inserting the quantities defined from the list above into this
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4.4. A model based on EM-algorithm

relation, expressing µki in terms of the overall hazard rate via the intensity process and dividing
by yki on both sides yields

µki/yki = d∗
ki/yki + exp (ϕZki).

We therefore arrive at an expression similar to (4.7) by taking the logarithm. The resulting
model is a Poisson response dki with link function log(µki − d∗

ki) and offset log(yki). In practice,
we need to estimate the person-time at risk if exact survival times are not available. If the
grouped data are based on annual life-table intervals, then an approximation of this quantity is
yki = nki − (wki + dki)/2. The underlying assumption of this approximation lies in the fact that
the occurrences of death and censoring are evenly distributed over a given interval. In most cases,
this is reasonable except sometimes in the first interval. This issue can be resolved by either
applying a correction factor or using shorter life-table intervals at the start of the follow-up [5].
To approximate d∗

ki, there are two preferred ways according to [5]. Either we use

d∗
ki = (nki − wki/2)(1 − p∗

ki) (4.8)

or
d∗

ki = − log (p∗
ki)yki/∆ki, (4.9)

where ∆ki is the length of the i-th life-table interval for stratum k. The first one corresponds to
a situation where proportions are utilized. On the other hand, using (4.9) implies working with
rates [5].

4.3.2 Binomial error structure (Hakulinen-Tenkanen approach)

In the end, we want to shortly mention another method relying on GLM theory as its basis. The
model proposed by Hakulinen and Tenkanen [19] is based on the fact that the number of patients
surviving the i-th interval, i.e. l

′

ki − dki, follows a binomial distribution. More precisely, if pki

corresponds to the observed survival proportion, then it has been shown that the additive model
from (4.2) can be rewritten as

log (− log pki

p∗
ki

) = ϕZki. (4.10)

This is simply a generalized linear model of a binomial response in which the link function is the
complementary log-log with a division by p∗

ki [20]. However, this model is not used frequently
in practice since the patients at risk during the start of each life-table interval tend to differ in
some way. In such cases, the probability of surviving until the end of the interval is not the same
for each individual and the binomial assumption is therefore not suitable [5].

4.4 A model based on EM-algorithm

So far, we have only discussed methods where the baseline excess hazard is assumed to be
piecewise constant. As mentioned before, this might not be the most realistic choice of λ0. In
this section, we will therefore look at a procedure proposed by Perme et al. [6] to estimate
the additive hazard model without specifying the form of λ0. By doing this, there is no risk of
incorrectly specifications of λ0 that can lead to biased estimates of the parameters. The approach
itself is based on the expectation-maximization algorithm (or just the EM-algorithm), a method
in statistical computing used to estimate parameters when dealing with missing variables within
the data or other forms of latent variables. A short introduction to the general EM-algorithm is
given in Appendix B.

4.4.1 The algorithm

Assume we are interested in the excess hazard of a cohort with a specific disease denoted as C.
To adopt the EM-algorithm for the additive hazard model from (4.2), the cause of death for
each patient is treated as a potential missing variable [6]. More specifically, denote δEi as the
indicator of death due to the condition C and δP i related to the other causes. Thus, it follows
that δi = δEi + δP i. We also order the patients with respect to time such that t∗

i ≥ t∗
i−1. The
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next step in the EM-algorithm is to obtain a so-called full-data likelihood, which corresponds to
the likelihood in a situation when all the variables are observable. In our case, this corresponds
to the situation where cause of death is known for each patient. Usually, working with the full
likelihood may simplify calculations by a lot in comparison to the observed likelihood, which is
only based on the observed quantities. With the EM-based method by Perme et al. [6], we will
now see that the full likelihood in this case is much more beneficial to deal with as it turns out
that a Cox-type of likelihood can be used in the maximization procedure instead.

In an ideal scenario where we have information about cause of death for all patients, a Cox model
used specifically to model the excess hazard might be viable. If this is the choice of a model,
δEi will represent the death indicator. Running through a similar calculation as in [8] for the
standard Cox model, we obtain

L(β | F) =
n∏

i=1

{
exp (βXi)∑

j∈Ri
exp (βXj)

}δEi

(4.11)

as the partial likelihood function. Here, n is the usual number of patients in the data, Ri is the
risk set at the follow-up time of patient number i and F = {δ, t∗, X, δE} denotes the complete/full
data. If the baseline excess hazard is needed, the usual Breslow estimator for the standard Cox
model can also be adopted for this situation and applied to obtain an estimate of λ0.

However, we have mentioned before in Chapter 2.2 that TEi is usually not observable in practice.
This implies that δEi is unknown for most of the cases. The preceding statement is the reason
why Perme et al. [6] developed a procedure of estimating the additive hazard model using the
EM-algorithm. Based on the partial likelihood given in (4.11), δEi can be regarded as the missing
values in the data. Even though we have assumed a proportional excess hazard rather than a
proportional overall hazard, it has been proven that the full-data likelihood yields the same score
equations as the ones obtained from (4.11) after profiling out λ0 [6]. To see this, note that the
full-data likelihood can be written as

L(Θ | F) =
n∏

i=1

(
λ0(t∗

i )eβXi
)δEi

λP i(t∗
i )(1−δEi)δie−{Λ0(t∗

i ) exp(βXi)+ΛP i(t∗
i )} (4.12)

due to (2.8) and where we have defined Θ = {λ0, β}. After omitting the parts of the log-likelihood
that do not depend on Θ, we get the following expression:

log L(Θ | F) =
n∑

i=1

{
δEi(log λ0(t∗

i ) + βXi) − Λ0(t∗
i )eβXi

}
(4.13)

We can now introduce a non-parametric maximum likelihood estimator of λ0. This function only
takes non-zero values at observed death times [21]. Hence, after defining λ0j = λ0(t∗

j ), we can
rewrite Λ0(t∗

i ) as

Λ0(t∗
i ) =

∑
j:t∗

j
≤t∗

i

λ0j .

Inserting everything back into (4.13) yields

log L(Θ | F) =
n∑

i=1

δEi(log λ0i + βXi) −
∑

j:t∗
j

≤t∗
i

λ0jeβXi

 . (4.14)

However, to profile out the baseline excess hazard, we need everything in terms of e.g. λ0i.
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4.4. A model based on EM-algorithm

Observe that the second term of equation (4.14) can be expressed as
n∑

i=1
eβXi

∑
j:t∗

j
≤t∗

i

λ0j = eβX1λ01 + eβX2(λ01 + λ02) + ... + eβXn(λ01 + ... + λ0n)

= λ01(eβX1 + ... + eβXn)
+ λ02(eβX2 + ... + eβXn) + ... + λ0neβXn

=
n∑

i=1
λ0i

∑
j∈Ri

eβXj .

Thus, rewriting equation (4.14) in terms of λ0i implies that

log L(Θ | F) =
n∑

i=1

δEi (log λ0i + βXi) − λ0i

∑
j∈Ri

eβXi

 . (4.15)

The resulting maximum likelihood estimator of λ0i is therefore

λ̂0i = δEi∑
j∈Ri

eβXi
, (4.16)

which can be seen as some sort of a Breslow type of estimator. Finally, substituting this expression
back into (4.15) gives us

log L(Θ | F) =
n∑

i=1

δEi

βXi − log
∑
j∈Ri

eβXi

+ δEi

 (4.17)

after profiling out the baseline excess hazard. This expression compared to the logarithm of
equation (4.11) is the same except for a difference in the constant term, which implies that the
score equations obtained by (4.17) are identical to those from the cause-specific Cox model. Hence,
this ensures that the Cox likelihood can be used in the procedure. Given δEi for i = 1, 2, ..., n, β
is therefore estimated easily first before using the Breslow estimator for estimating λ0 [6].

On the contrary, assume that the baseline excess hazard λ0 and the parameter vector β are both
known. Then, it is easy to see that the probability of δEi being 1 given the observed time t∗

i and
the censoring indicator δi = 0 for patient i is simply 0:

P (δEi = 1 | δi = 0, t∗
i ) = 0

To find P (δEi = 1 | δi = 1, t∗
i ), which corresponds to the probability that the event is caused by

the condition C given that an event has occurred at time t∗
i , we set up the multiplication rule for

this case:
P (δEi = 1 | δi = 1, t∗

i ) = P (δEi = 1 ∩ Ti = t∗
i )

P (δi = 1 ∩ Ti = t∗
i )

Manipulating the relation above in a way such that something related to the definition of a
hazard function from (2.2) shows up yields

P (δEi = 1 | δi = 1, t∗
i ) =

limδt→0
P (t∗

i ≤TEi≤t∗
i +δt)

δt

limδt→0
P (t∗

i
≤Ti≤t∗

i
+δt)

δt

=
limδt→0

P (t∗
i ≤TEi≤t∗

i +δt)
δtP (Ti≥t∗

i
)

limδt→0
P (t∗

i
≤Ti≤t∗

i
+δt)

δtP (Ti≥t∗
i

)

=
limδt→0

P (t∗
i ≤TEi≤t∗

i +δt|Ti≥t∗
i )

δt

limδt→0
P (t∗

i
≤Ti≤t∗

i
+δt|Ti≥t∗

i
)

δt

.
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4. Modelling in relative survival

The fraction in the numerator in the limit of δt approaching zero is nothing more than the
definition of the cause-specific hazard λCi from (2.16) in Chapter 2.2.4. In the same section, we
also showed that λCi = λEi if TEi and TP i are conditionally independent given the covariates.
Correspondingly, the fraction in the denominator when δt → 0 is the definition of the overall
hazard. Using the additive model of the overall hazard, the final result of the probability of
interest is thus

P (δEi = 1 | δi = 1, t∗
i ) = λ0(t∗

i ) exp (βXi)
λP i(t∗

i ) + λ0(t∗
i ) exp (βXi)

.

In summary, the probability of the cause of death being the condition C given the observed time
t∗
i and censoring indicator δi is expressed as follows:

E(δEi | δi, t∗
i ) = P (δEi = 1 | δi, t∗

i ) = δi
λ0(t∗

i ) exp (βXi)
λP i(t∗

i ) + λ0(t∗
i ) exp (βXi)

(4.18)

When going back and forth between iterating the partial likelihood maximization and updating
the value of δEi, we get the procedure that is formally known as the EM-algorithm. Consequently,
inspired by the general steps of the EM-algorithm from [22], we introduce the following procedure
to estimate the unknown Θ given in [6]:

1. First, we specify some initial values of Θ denoted as Θ(0) =
(

λ
(0)
0 , β(0)

)
.

2. E-step: In this step, we need to find the expectation of the full-data likelihood conditional
on the observed data denoted as O = {δ, t∗, X}. However, we have seen that the Cox
likelihood from (4.11) can replace the full-data likelihood. Accordingly, the log-likelihood
of the Cox model is

log L(Θ | F) =
n∑

i=1

δEi

βXi − log
∑
j∈Ri

eβXi

 .

Taking the expectation with respect to (4.18) yields

Q(Θ, Θ(0)) = E


n∑

i=1

βXi − log
∑
j∈Ri

eβXj

 δEi

∣∣∣∣∣δi, t∗
i


=

n∑
i=1

βXi − log
∑
j∈Ri

eβXj

E(δEi | δi, t∗
i )

=
n∑

i=1

βXi − log
∑
j∈Ri

eβXj

( λ
(0)
0 (t∗

i ) exp (β(0)Xi)
λP i(t∗

i ) + λ
(0)
0 (t∗

i ) exp (β(0)Xi)

)
δi

(4.19)

3. M-step: The maximization step consists first of maximizing equation (4.19) with respect
to β and obtaining the new values of the parameters β(1) with e.g. the Newton-Raphson
method. Afterwards, we use the newly estimated parameters in the Breslow estimator to
find a new estimate of the baseline excess hazard at the observed times:

λ
(1)
0 (t∗

i ) = E(δEi)∑
j∈Ri

exp β(1)Xj

= δi

(
λ

(0)
0 (t∗

i ) exp (β(0)Xi)
λP i(t∗

i ) + λ
(0)
0 (t∗

i ) exp (β(0)Xi)

)
1∑

j∈Ri
exp β(1)Xj

.

(4.20)

4. We stop the procedure if a certain convergence criterion has been met, for instance if the
difference in the log-likelihood evaluated at two consecutive estimated parameters is less
than or equal to a given ϵ. If not, we return to step 2.
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4.4. A model based on EM-algorithm

We see from the steps above that the method is easy to implement as it combines two standard
routines that can be done in simple software packages [6]: Fitting a Cox model and some ratio
calculations. In fact, the function given in (4.19) is just the log-likelihood of a weighted Cox
model, where the weight at some step ι is simply the ratio between λEi and λOi evaluated at
the parameters from step ι − 1. Extensions like splines, time-dependent covariates or ties can
therefore be applied in the usual way due to this fact. Also, for patients that are not censored,
we only need the population hazard at their death times in the estimation procedure. A small
issue mentioned by the authors when dealing with this model occurs if there exist some intervals
of the follow-up time with essentially no deaths due to the condition C. Since estimates of λ0(t)
will be non-negative, there is a possibility of some finite positive bias in λ̂0(t) for some values of
t in these periods of time. As a a consequence, the baseline cumulative excess hazard will be
overestimated. To resolve this issue, some sort of local kernel smoothing of the baseline excess
hazard in the E-step of the algorithm above is applied [6]. In general, the standard kernel density
estimation formula is given as

f̂(x∗, b) = 1
nb

n∑
i=1

K

(
x∗ − X∗

i

b

)
,

where X∗
1 , ..., X∗

n correspond to n independent and identically distributed variables from the
distribution represented by the true density f , b is the so-called bandwidth and K represents a
kernel function. Taking the expectation of the expression above yields

E
(

f̂(x∗, b)
)

= 1
n

n∑
i=1

1
b

E

(
K

(
x∗ − X∗

i

b

))

= 1
n

n∑
i=1

1
b

∫ ∞

−∞
K

(
x∗ − u

b

)
f(u) du

= 1
b

∫ ∞

−∞
K

(
x∗ − u

b

)
f(u) du

Inspired by the result above, Ramlau-Hansen [23] proposed the following kernel smoothing
estimator for the hazard rate:

λ̂(t) = 1
b

∫ ∞

0
K

(
t − u

b

)
dΛ̂(u)

To accommodate the number of events throughout the follow-up interval, Perme et al. [6] also
let the bandwidth to change four times. The overarching idea is to split the follow-up time into
quartiles. In each interval, the bandwidth is then proportional to the largest time difference
between two consecutive events from the same period. However, it is also mentioned that during
the beginning of the follow-up when the time is still smaller than the bandwidth, the bandwidth
is set to the time itself [6]. Thus, the kernel smoothed estimated baseline excess hazard at step k
evaluated at any time point t becomes

λ
(k)
0 (t, b(t)) = 1

b(t)

∫ ∞

0
K

(
t − u

b(t)

)
λ

(k)
0 (u) du.

Using the non-smoothed estimates at the different observed times in the sample and the nature of
counting processes in cumulative hazard estimators, we can rewrite the equation above as follow:

λ
(k)
0 (t, b(t)) = 1

b(t)

n∑
i=1

K

(
t − t∗

i

b(t)

)
λ

(k)
0 (t∗

i ) (4.21)

For the kernel function, Perme et al. [6] decided to work with the Epanechnikov kernel function
defined on the interval between 0 and 1 given as K(x) = 1.5(1 − x2). In addition to the bias
issue mentioned by Perme et al. [6], the smoothing procedure also ensures that the cumulative
baseline excess hazard is non-decreasing.
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4. Modelling in relative survival

4.4.2 Standard error estimation

To estimate the standard errors of the parameters, we need to refer to the observed Fisher
information matrix. When dealing with the EM-algorithm, the Louis method [24] can be applied
to find the observed information by taking the difference between the complete and missing
information. To see this, recall the full-data likelihood given in equation (4.12). In a similar
manner, we have that the observed data likelihood is expressed as

L(Θ | O) =
n∏

i=1

{
λ0(t∗

i )eβXi + λP i(t∗
i )
}δi

e−{Λ0(t∗
i ) exp(βXi)+ΛP i(t∗

i )}. (4.22)

Then, we have from EM-algorithm theory introduced in Appendix B that

log L(Θ | O) = log L(Θ | F) − log f(δE | O, Θ), (4.23)

where f(δE | O, Θ) is the ratio between L(Θ | F) and L(Θ | O). Taking expectation with respect
to (4.18) yields

log L(Θ | O) = E {log L(Θ | F)} − E {log f(δE | O, Θ)} (4.24)

since L(Θ | O) does not depend on δE . Differentiating the equation above twice, negating both
sides and using the definition of the information matrix implies that the observed information is
exactly the complete minus the missing information.

The complete information, which is the first term on the right-hand side and differentiated twice,
can be found by the Hessian matrix obtained by fitting the Cox model at the final M-step [6].
This corresponds to

IC = E


n∑

i=1


∑

j∈Ri
XjXT

j eβXj∑
j∈Ri

eβXj
−

(∑
j∈Ri

XjeβXj

)(∑
j∈Ri

XT
j eβXj

)
(∑

j∈Ri
eβXj

)2

 δEi


=

n∑
i=1

E(δEi)


∑

j∈Ri
XjXT

j eβXj∑
j∈Ri

eβXj
−

(∑
j∈Ri

XjeβXj

)(∑
j∈Ri

XT
j eβXj

)
(∑

j∈Ri
eβXj

)2

 .

Using (4.18), we arrive at

IC =
n∑

i=1
δi

λEi

λOi


∑

j∈Ri
XjXT

j eβXj∑
j∈Ri

eβXj
−

(∑
j∈Ri

XjeβXj

)(∑
j∈Ri

XjeβXj

)T

(∑
j∈Ri

eβXj

)2

 . (4.25)

For the missing information, the Louis method [24] states that

Im = Var
{

∂ log L(Θ | F)
∂Θ

}
,

where the variance is as usual taken with respect to (4.18). However, by recognizing that the Cox
partial likelihood from (4.11) can replace L(Θ | F) due to the arguments leading up to (4.17),
the calculation is simplified by a lot. Thus,

Im = Var
{

∂ log L(Θ | F)
∂Θ

}
= Var

{
n∑

i=1

(
Xi −

∑
j∈Ri

XjeβXj∑
j∈Ri

eβXj

)
δEi

}

=
n∑

i=1

(
Xi −

∑
j∈Ri

XjeβXj∑
j∈Ri

eβXj

)(
Xi −

∑
j∈Ri

XjeβXj∑
j∈Ri

eβXj

)T

Var(δEi).
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4.5. Residuals and goodness of fit tests

We know that the variance of a binary random variable with success probability p is just p(1 − p).
If δi = 1, the variance becomes

Var(δEi) = P (δEi = 1 | δi = 1, t∗
i )(1 − P (δEi = 1 | δi = 1, t∗

i )) = λEi

λOi

(
1 − λEi

λOi

)
.

On the other hand, the variance of δEi is simply zero whenever δi = 0. In total, the variance of
δEi can be expressed as follows:

Var(δEi | δi, t∗
i ) = δi

λEi

λOi

(
1 − λEi

λOi

)
Consequently, the final expression of the missing information is

Im =
n∑

i=1

(
Xi −

∑
j∈Ri

XjeβXj∑
j∈Ri

eβXj

)(
Xi −

∑
j∈Ri

XjeβXj∑
j∈Ri

eβXj

)T
λEi

λOi

(
1 − λEi

λOi

)
δi. (4.26)

The resulting estimated observed information when inserting the estimated parameters β̂ and λ̂0
from the final M-step is therefore

ÎO = ÎC − Îm

=
n∑

i=1
δi

λ̂Ei

λ̂Oi


∑

j∈Ri
XjXT

j eβ̂Xj∑
j∈Ri

eβ̂Xj

−

(∑
j∈Ri

Xjeβ̂Xj

)(∑
j∈Ri

Xjeβ̂Xj

)T

(∑
j∈Ri

eβ̂Xj

)2


−

n∑
i=1

δi
λ̂Ei

λ̂Oi

(
1 − λ̂Ei

λ̂Oi

)(
Xi −

∑
j∈Ri

Xjeβ̂Xj∑
j∈Ri

eβ̂Xj

)(
Xi −

∑
j∈Ri

Xjeβ̂Xj∑
j∈Ri

eβ̂Xj

)T

.

(4.27)

Accordingly, the estimated variances of the parameters can be found from the diagonal elements
of the inverse matrix of Î−1

O from general maximum likelihood theory.

4.5 Residuals and goodness of fit tests

We have now seen several proposed methods to fit an additive hazard model with the excess
hazard represented in the form of (4.1). In practice, this implies a proportional excess hazard
model, i.e. the excess hazard ratio between two different patients is constant over time. However,
this property might not hold for some specific covariates. A natural example is when the effect of
the variable corresponding to age at diagnosis varies over time. Consequently, the parameter
related to this covariate will have to vary over time as well and the hazard ratio is now dependent
on time. Another situation where non-proportional hazard can appear is for instance related to a
treatment variable. The effect of treatment tends to be very essential at the beginning before
being less impactful later in the follow-up. For the usual Cox model, Schoenfeld [25] introduced
a type of partial residuals that can be used to detect time-varying effects of covariates. More
specifically, Grambsch and Therneau [26] showed that a weighted version of Schoenfeld residuals
can identify non-proportionality among the covariates. In the same article, some formal test
statistics for checking time-varying coefficients based on these residuals were also proposed. We
will see that the residuals proposed by Stare et al. [27] for the framework of excess hazard model
rely on the same idea.

Another issue that arises when fitting a model is related to the functional form of a specific
covariate. It might be the case that the correct form of e.g. age is non-linear and including only
a linear term of age will lead to some sort of bias. It turns out that the martingale residuals can
be used to evaluate the functional form of covariates when dealing with a standard Cox model
[28]. A similar type of residuals was developed by Danieli et al. [29] for the setting of an additive
hazard model, and they can be incorporated into a formal test which checks if the null hypothesis
of a linear term can be rejected.
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4. Modelling in relative survival

4.5.1 Schoenfeld-like residuals

For the standard Cox regression, the Schoenfeld residuals have the form of the difference between
the observed covariates and expected covariates. The latter is a weighted average of the covariate
values of individuals still at risk at a specific time to event, where the weight depends explicitly
on the overall hazard. This fact comes directly from the components of the score function for a
Cox model. In a similar manner, Stare et al. [27] defined the Schoenfeld-like residuals for the
additive hazard model as follows:

U∗
i (β) := Xi −

∑
j∈Ri

Xj

{
λP j(ti) + λ0(ti)eβXj

}∑
j∈Ri

λP j(ti) + λ0(ti)eβXj
(4.28)

To stress that the residuals are only defined for observations who experience an event just like in
the usual Cox setting, the different hazard functions are evaluated at the observed times to event
ti. Also, note that equation (4.28) is not related to the score of the additive hazard model at all.
However, it is convenient to use a similar notation to the score as these residuals do in fact have
some properties that remind of the score functions, and thereby the original Schoenfeld residuals.
For instance, the expected value of the residuals is zero under the true underlying model. To see
this, recall that the intensity process of each individual and independent counting process Ni(t)
is Yi(t)λOi. Also, we denote β0(t) as the true parameter vector, where the argument indicates
that the parameters do not need to be constant over time. Following equation (4.2), we have
that the true intensity process can be written as

Yi(t)
(

λP i(t) + λ0(t)eβ0(t)Xi

)
. (4.29)

Analogous to the score process in the standard Cox model, we define U∗
i (β, t) and Ê(β, u) such

that

U∗
i (β, t) :=

∫ t

0

{
Xi − Ê(β, u)

}
dNi(u)

=
∫ t

0

(
Xi −

∑n
j=1 XjYj(u)

(
λP j(u) + λ0(u)eβXj

)∑n
j=1 Yj(u) (λP j(u) + λ0(u)eβXj )

)
dNi(u).

(4.30)

If patient i does in fact experience an event at time ti, we recover (4.28) by letting t → ∞. This
means that the residuals can be written as U∗

i (β, ti) = Xi − Ê(β, ti) Additionally, we have that

n∑
i=1

{
Xi − Ê(β, u)

}
Yi(u)

(
λP i(u) + λ0(u)eβ0(u)Xi

)
(4.31)

is equal to 0 when β = β0(u) for any u. This can be shown by first inserting the definition of
Ê(β, u) into (4.31). The resulting two terms become

n∑
i=1

XiYi(u)
(

λP i(u) + λ0(u)eβ0(u)Xi

)
(4.32)

and ∑n
j=1 XjYj(u)

(
λP j(u) + λ0(u)eβ0(u)Xj

)∑n
j=1 Yj(u)

(
λP j(u) + λ0(u)eβ0(u)Xj

) n∑
i=1

Yi(u)
(

λP i(u) + λ0(u)eβ0(u)Xi

)
(4.33)

For the latter term, interchanging the index from i to j of the sum corresponding to the second
factor will imply a cancellation of the denominator. We therefore get that the second term can
be simplified to

n∑
j=1

XjYj(u)
(

λP j(u) + λ0(u)eβ0(u)Xj

)
,
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4.5. Residuals and goodness of fit tests

which is the same as (4.32) after interchanging j with i. Thus, the difference between (4.32) and
(4.33) is simply zero as we want to show.

Next, recall that by the Doob-Meyer decomposition, we have that the given expression is a mean
zero martingale for an individual counting process with the true parameters:

Mi(t) = Ni(t) −
∫ t

0
Yi(t)(λP i(u) + λ0(u)eβ0(u)Xi) du (4.34)

Thus, based on the relation above, the difference between (4.30) summed over all the individuals
and (4.31) evaluated at the true parameters can be written as

U∗(β0(t), t) =
n∑

i=1

∫ t

0

{
Xi − Ê(β0(u), u)

}
dMi(u). (4.35)

By noting the fact that Xi − Ê(β0(u), u) is a predictable process with respect to the history
Ft = σ {Xi, Ni(u), Yi(u+) : 0 ≤ u ≤ t, i = 1, ..., n}, equation (4.35) is expressed in the form∑∫

Hi dMi. Here, Hi = Xi − Ê(β0(u), u) is a predictable process and Mi is a mean zero
martingale. This means that U∗(β0(t), t) is a sum of stochastic integrals of mean zero martingales.
The results from Appendix A.3.3 imply that the expected value of U∗(β0(t), t) is zero. It follows
that

E(U∗
i (β0(t), t)) = 0 (4.36)

for any time t as well. Therefore, the residuals defined in (4.30) also attain the same property as
the original Schoenfeld residuals.

Another useful property that the residuals in (4.30) inherit is the fact that U∗
i (β, t) and U∗

j (β, t)
are uncorrelated for j ̸= i at any time t [27]. Consider U∗

i and U∗
j evaluated at the true parameter

vector β0(t). The covariance between U∗
i (β0(t), t) and U∗

j (β0(t), t) can be calculated with the
help of the optional covariation process from Appendix A.3.2:

Cov
{

U∗
i (β0(t), t), U∗

j (β0(t), t)
}

= E

[∫ t

0
Hi(u) dMi(u),

∫ t

0
Hj(u) dMj(u)

]
Equation (A.37) tells us that

E

[∫ t

0
Hi(u) dMi(u),

∫ t

0
Hj(u) dMj(u)

]
=
∫ t

0
Hi(u)Hj(u) d [Mi(u), Mj(u)] .

But we know that [Mi(t), Mj(t)] = 0 for all t ∈ [0, τ ] if Mi and Mj are obtained from two distinct
and independent counting processes from (A.44). Thus, the covariance between the residuals is
zero, which implies that they are uncorrelated. This property will prove to be a key point when
developing a formal test of the proportional excess hazard assumption based on the residuals.

A graphical application of the residuals can be done in the same way as for the scaled Schoenfeld
residuals in the ordinary Cox model. Consider the first order Taylor expansion of U∗

i around β.
Then, an approximation of U∗

i evaluated at the true parameters and the observed time to event
ti, β0(ti), is

U∗
i (β0(ti)) ∼ U∗

i (β) + ∂U∗
i

∂β∗

∣∣∣∣
β∗=β

(β0(ti) − β).

Here, β∗ is just a dummy variable used in the differentiation of U∗
i . Recall that U∗

i (β∗, t) =
Xi − Ê(β∗, t) and only the latter term in this expression is dependent on β∗. Accordingly, an
equivalent way of expressing the Taylor expansion above is

U∗
i (β0(ti)) ∼ U∗

i (β) − ∂Ê(β∗, ti)
∂β∗

∣∣∣∣
β∗=β

(β0(ti) − β).
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Taking the expectation on both sides, using (4.36) and approximating E
{

∂Ê(β∗,ti)
∂β∗

}
as simply

∂Ê(β∗,ti)
∂β∗ implies that

E(U∗
i (β)) ∼ ∂Ê(β∗, ti)

∂β∗

∣∣∣∣
β∗=β

(β0(ti) − β).

Finally, after solving for β0(ti), we arrive at a particular useful relation for graphical interpretation
of the residuals from (4.28):

β0(ti) ∼ β +
(

∂Ê(β∗, ti)
∂β∗

∣∣∣∣
β∗=β

)−1

E(U∗
i (β)) (4.37)

This suggests that a plot of the values obtained from the right-hand side of (4.37) against observed
survival times should be a horizontal line, i.e. β0 is approximately constant over time if the
proportional excess hazard is valid. In practice, β in (4.37) is replaced with the estimated
parameter vector β̂ from a model with constant effects [27]. Similarly, when calculating the
expectation is infeasible, E(U∗

i (β̂)) is exchanged with simply U∗
i (β̂).

4.5.2 Goodness of fit statistics based on Schoenfeld-like residuals

Consider a situation where we have plotted the residuals from last section against time and a
pattern is observed in the plot. However, by looking at the plot alone, we cannot be certain if
the shape of the residual curve over time is due to the violation of proportional excess hazard
assumption or natural variation. The graphical method is therefore limited unless the plot shows
a strong discrepancy from a horizontal line. A formal test is therefore needed.

For the standard Cox model, many formal tests are constructed with the help of the score process,
i.e. the cumulative sum of the Schoenfeld residuals. If certain conditions are satisfied, and in
particular when the null hypothesis of the fitted model being the true model holds, it can be
shown that a function of the score process converges to a certain class of stochastic processes
named Brownian bridge. A natural way to test the validity of proportional hazard is simply to
use measures of deviation from a Brownian bridge as test statistics. For instance, Therneau et al.
[28] and Lin et al. [30] used the maximum value of the score process as the basis of a test of the
proportional hazard assumption.

Returning to the main purpose of relative survival, a similar methodology was adopted for
checking the proportional excess hazard assumption by Stare et al. [27]. Before a cumulative
sum of the residuals is formed, the residuals are first standardized such that they all have a
variance equal to one. For an estimated parameter vector β̂ obtained from a certain choice of
model, Stare et al. [27] proposed the following expression to estimate the variance of the residual
based on a result from [21]:

V∗
i (β̂) =

∑
j∈Ri

XjXT
j

{
λP i(ti) + λ0(ti)eβ̂Xj

}
∑

j∈Ri

{
λP i(ti) + λ0(ti)eβ̂Xj

}
−

(∑
j∈Ri

Xj

{
λP i(ti) + λ0(ti)eβ̂Xj

})(∑
j∈Ri

Xj

{
λP i(ti) + λ0(ti)eβ̂Xj

})T

(∑
j∈Ri

{
λP i(ti) + λ0(ti)eβ̂Xj

})2

(4.38)

Note the similarity with the second factor inside the sum of (4.25). The only difference is that we
replace the relative risk function eβ̂Xj with the overall hazard from (4.2). In fact, the factor from
(4.25) that we just mentioned is exactly the minus derivative of the score in a Cox regression
setting, and thus related to the observed information matrix. Hence, the estimated variance in
this case is just the standard variance estimator of the Schoenfeld residual from a Cox model but
replaced with equation (4.2) to accommodate the relative survival setting.
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4.5. Residuals and goodness of fit tests

Accordingly, the standardized Schoenfeld-like residuals are defined as

R∗
i (β̂) = U∗

i (β̂)/
√

V∗
i (β̂). (4.39)

The cumulative sum of the residuals is then formed as follows:

Bd(β̂,
k

d
) := 1√

d

k∑
i=1

R∗
i (β̂), k = 1, ..., d, Bd(β̂, 0) := 0 (4.40)

Here, we have that d is the total number of events. Note that the times to event are also assumed
to be ordered just like in Chapter 4.4. Originally, the process above is only defined on d equally
spaced points inside the interval [0, 1]. Still, we can extend the definition of the process to the
whole interval by applying linear interpolation. Thus, for any u ∈ ( k−1

d , k
d ), we define the value

of the process at u as

B(c)
d (β̂, u) = Bd

(
β̂,

k − 1
d

)
+ (ud − (k − 1))

{
Bd

(
β̂,

k

d

)
− Bd

(
β̂,

k − 1
d

)}
. (4.41)

Because the residuals have been mentioned to be uncorrelated, the Central Limit Theorem tells
us that B(c)

d (β, u) converges in distribution to a normally distributed random variable denoted
as B(c)(β, u). Under the null hypothesis that β0(t) = β0, the mean of B(c)(β0, u) is simply zero
as a consequence of (4.36). If β̂ is an estimate of the true and constant parameters, the same
property should also be reflected in the process when evaluating at β̂. For the variance, observe
that

Var(B(c)
d (β̂, u)) = Var

(
Bd

(
β̂,

k − 1
d

))
+ (ud − (k − 1))2 Var

(
Bd

(
β̂,

k

d

))
+ (ud − (k − 1))2 Var

(
Bd

(
β̂,

k − 1
d

))
.

By inserting the definition of Bd from (4.40) in the first term, we get that

Var
(

Bd

(
β̂,

k − 1
d

))
= Var

(
1√
d

k−1∑
i=1

R∗
i (β̂)

)
= 1

d
Var

(
k−1∑
i=1

R∗
i (β̂)

)
= k − 1

d

due to the zero correlation property between the residuals. With a similar calculation,

Var
(

Bd

(
β̂,

k

d

))
= k

d

such that

Var(B(c)
d (β̂, u)) = k − 1

d
+ (ud − (k − 1))2 k

d
+ (ud − (k − 1))2 k − 1

d
.

When d increases, both k−1
d and k

d approach u. Asymptotically, we therefore have that k −1 ≈ ud.
Inserting these asymptotic observations back into the relation above, we arrive at the following
expression for the variance of B(c)(β̂, u):

Var(B(c)(β̂, u)) = u + (ud − ud)2u + (ud − ud)2u = u (4.42)

We will not go into the details of Brownian motions, but what we have shown above about the
variance being the same as the time argument is indeed one of the properties of a Brownian
motion. The independent increment property is also reasonable as B(c)(β̂, u) − B(c)(β̂, s) and

33



4. Modelling in relative survival

B(c)(β̂, s) should not have any common terms of residuals based on the definition of Bd from
(4.40). It can also be shown that the covariance between B(c)(β̂, u) and B(c)(β̂, u + s) is simply u
[27]. Thus, we can construct a Brownian bridge from the process given in (4.41). Again, we will
not explore the details of Brownian bridges. However, it has been proven that given a Brownian
motion X(t), the process X(t) − tX(1) for t ∈ [0, 1] attains the properties of a Brownian bridge
[31]. Using this result, Stare et al. [27] constructed a Brownian bridge process based on B(c)

given as
BP(β̂, u) = B(c)(β̂, u) − uB(c)(β̂, 1), BP(β̂, 0) = BP(β̂, 1) = 0. (4.43)

The sample path due to the d events becomes

BPd(β̂,
k

d
) = 1√

d

{
k∑

i=1
R∗

i (β̂) − k

d

d∑
i=1

R∗
i (β̂)

}
, (4.44)

and results from Brownian bridge theory that we will not look into any further can be used to
approximate the distributions of different test statistics.

Now, we have the foundation that is required to introduce some test statistics based on the
residuals proposed in [27]. In a similar fashion as in [30] and [28], the first one that we will
examine is based on the maximum value of the bridge process defined earlier. Under the null
hypothesis of the parameter vector β being constant over time, the Brownian bridge process
will fluctuate around zero on the whole interval between 0 and 1. Accordingly, if β actually
depends on time, this should be reflected in the path of BP(β, u) in which the value of the
process deviates largely from zero at many given time points. Consequently, a reasonable test
statistic proposed by Stare et al. [27] is the Kolmogorov-Smirnov type of test:

KS = max
k

|BPd(β, k/d)| (4.45)

It can be shown that the maximum absolute value of a Brownian bridge BB defined between 0
and 1 follows a distribution with the following probability density function, see for instance [32]
or [31]:

P

(
max

u∈[0,1]
(|BB(u)|) ≤ x

)
= 1 + 2

∞∑
k=1

(−1)ke−2k2x2
, x > 0. (4.46)

Therefore, (4.46) is a sensible approximation of the distribution of the test statistic KS under
the null hypothesis that β is constant over time.

Notice that the test statistic KS is constructed in a way such that all the standardized residuals
are given the same weight. In some cases, it is preferable to indicate that the residuals from
a given time period are of more importance than others, for example in the beginning of the
follow-up interval where the risk set is still large. Stare et al. [27] therefore proposed to modify
the setup of KS by introducing the weights wi, i = 1, ..., n, such that wi ≥ 0 and

∑n
i=1 wi = 1.

Usually, wi is proportional to the size of the risk set at the observed survival time i, specifying
that the earlier times to event will have a stronger influence in the setup. Also, the time scale is
transformed such that uk =

∑k
i=1 wi. Then, the cumulative weighted sum of residuals becomes

Bw
d (β, uk) =

k∑
i=1

R∗
i (β)√wi, (4.47)

which can be interpolated in the same way as before. In addition, when d increases, (4.46)
will converge to a Brownian motion Bw(β, u) when u ∈ [0, 1] with Var(Bw(β, u)) = u and
Cov(Bw(β, u), Bw(β, u + s)) = u just like for the unweighted process. Thus, we are able to
construct a Brownian bridge as in equation (4.43) with the sample path

BPw
d (β, uk)) =

k∑
i=1

R∗
i (β)√wi − uk

d∑
i=1

R∗
i (β)√wi. (4.48)
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4.5. Residuals and goodness of fit tests

Accordingly, the relevant test statistic in this case is simply the maximum bridge value of this
weighted process as before:

KSw = max
k

|BPw
d (β, uk)|. (4.49)

Under the null hypothesis of the parameter vector β being constant, KSw follows approximately
the distribution given in (4.46). If all the weights are equal for all i, i.e. wi = 1/d, the two
processes presented in (4.47) and (4.48) coincide.

Up until now, the two test statistics that we have introduced only depend on the maximum value
of the bridge processes. In the situation when dealing with a standard Cox model, instead of
looking purely at the maximum value of the bridge process, Kvaløy and Neef [33] argued that
the Cramér-Von Mises statistic should have greater power of detecting non-monotonic behaviour
since it explores the whole sample path and not only the maximum value. This can be seen from
the general definition of the modified version of the statistic [34] for any Brownian bridge process
BB(t) where t ∈ [0, 1]:

v2 :=
∫ 1

0
BB2(t) dt −

(∫ 1

0
BB(t) dt

)2

(4.50)

The distribution of v2 has been shown in [34] to be

P (v2 ≤ x) = 1 + 2
∞∑

k=1
(−1)ke−2k2π2x2

, x > 0. (4.51)

Inspired by (4.50), Stare et al. [27] defined another test statistic based on the sample path given
in (4.44) as follows:

CVM = 1
d

d∑
k=1

BP2
d

(
β,

k

d

)
−

(
1
d

d∑
k=1

BPd

(
β,

k

d

))2

(4.52)

As a final note, these tests can be applied for all the additive models we have considered in the
previous sections. To construct the test statistics, the baseline excess hazard is only required at
the times to event. With a parametric model like the full likelihood or GLM approaches, this
procedure is straightforward after obtaining the parameter estimates. For the EM-based model,
it is also possible to estimate the baseline excess hazard at the times to event through (4.20) and
potentially smoothing with (4.22) in each iteration of the EM-algorithm.

4.5.3 Martingale residuals

The previous sections are devoted to the Schoenfeld-like residuals with the purpose of checking
the proportional excess hazard assumption. Now, we will introduce martingale residuals for
the additive hazard model. These can be used both for checking the former condition, but
most importantly the functional form of a specific covariate can also be examined with these
residuals. Based on the martingale residuals, Danieli et al. [29] followed a similar strategy as in
[35], where some specific types of processes are obtained by the residuals. Formal tests can then
be constructed based on these processes.

As a motivation, we will first refer again to the case with the standard Cox or parametric overall
hazard model before moving on to the additive hazard model considered in the relative survival
setting. For generality, consider a parametric situation where the form of λ0 is determined before
fitting the model. Let ϕ = (β, χ) be the vector of parameters following a similar definition as in
Chapter 4.2. Then, the proportional hazard model of patient i becomes

λOi(t | ϕ) = λ0(t | χ) exp(βXi).

The notation for the hazards is now a bit different than before just to emphasize which part
depends on a particular parameter vector. Now, the Doob-Meyer decomposition of an individual
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counting process with the given hazard function is

Mi(t) = Ni(t) −
∫ t

0
Yi(u)λOi(t | ϕ) du.

The martingale residuals are then defined as the expression above with the estimated parameters
ϕ̂ inserted:

M̂i(t) = Ni(t) −
∫ t

0
Yi(u)λOi(t | ϕ̂) du. (4.53)

Therefore, the martingale residuals at time t can be interpreted as the difference between the
observed number of events at time t and the estimated expected number of events [8]. Note that
the meaning of martingale residuals might differ in literature. According to some authors, the
definition of martingale residual is simply (4.53) evaluated at the maximum follow-up time τ

in the sample. For us, we will denote this quantity as simply M̂i(τ) = M̂i. Returning to the
additive hazard model in the relative survival setting, the martingale residuals become equation
(4.34) with the estimated parameters ϕ̂ inserted.

4.5.4 Test of proportional excess hazard assumption based on martingale
residuals

For the Cox model, it has been shown in [28] that the martingale residuals plotted against the
values of a given covariate will approximately show the functional form of the covariate. But
just as before, we do not know if the pattern in the plot is due to the functional form being
wrongly specified or because of natural variation in the data. It turns out that analogous to the
Schoenfeld residuals, we can form some sort of a cumulative sum of martingale residuals defined
in (4.53) to develop formal tests related to these issues. This was done in [30] and [35], where a
given type of a multi-parameter stochastic process is considered:

Wx(t, x) = n−1/2
n∑

i=1
f(Xi)I(Xi ≤ x)M̂i(t) (4.54)

Here, f is a known function, x = (x1, ..., xp)T is a specific vector with values related to the
different predictors and I(Xi ≤ x) represents the indicator function taking the value 1 if each
component of the covariate vector of the individual i is less than or equal to the respective
component in x. We can see that the process in (4.54) is a cumulative sum of martingale residuals
weighted with the function f . Under the null hypothesis, the limiting distribution of this process
can be approximated by simulating convenient Gaussian processes with mean zero for any f , t or
x [35]. This yields a possibility of constructing formal tests related to the proportional hazard
assumption and functional form based on the distribution.

For exploring the validity of proportional hazard assumption of either a Cox model or parametric
overall hazard model, Lin and Spiekerman [35] chose f to be the identity function and
x = (∞, ..., ∞). Then, the process in (4.54) becomes

Wx(t, x) = n−1/2
n∑

i=1
XiM̂i(t). (4.55)

It can be shown that the components of the score process related to the covariates when evaluated
at time t and the estimated parameters, denoted as Ũ(ϕ̂, t), is exactly the equation above without
the factor of n−1/2 when the covariates are constant over time. To see this, let us work with the
likelihood in a parametric setting instead of the partial likelihood from Cox model, but the same
result can be obtained using the Cox likelihood as well (in this case, Ũ is simply the full partial
score of the Cox likelihood). Following (4.22), the likelihood of interest for individual i at the
observed follow-up time t∗

i is

Li(ϕ, t∗
i ) = (λOi(t∗

i | ϕ))δi e
−
{∫ t∗

i
0

λOi(u|ϕ) du

}
,
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where λOi(t | ϕ) = λ0(t | χ) exp(βXi) if we consider a parametric overall hazard model.
Accordingly, the log-likelihood becomes

li(ϕ, t∗
i ) = δi log λOi(t∗

i | ϕ) −
∫ t∗

i

0
λOi(u | ϕ) du

= Ni(t∗
i ) log λOi(t∗

i | ϕ) −
∫ t∗

i

0
λOi(u | ϕ) du,

which gives the following expression of the k-th component of the score vector Ũk(ϕ, t∗
i ) where

Xik denotes the k-th predictor of individual i :

Ũk(ϕ, t∗
i ) =

∑
i

∂

∂βk

li(ϕ, t∗
i ) =

∑
i

{
Ni(t∗

i )Xik −
∫ t∗

i

0
XikλOi(u | ϕ) du

}
In counting process notation, the equation above can be rewritten as

Ũk(ϕ, τ) =
∑

i

Xik

{∫ τ

0
(Yi(u) dNi(u) − Yi(u)λOi(u | ϕ) du)

}
=
∑

i

Xik

{∫ τ

0
(dNi(u) − Yi(u)λOi(u | ϕ) du)

}
.

Here, τ is the maximum follow-up time as usual and Yi(u) dNi(u) = dNi(u) as both quantities
are equal to zero for any u except at t∗

i if δi = 1. Finally, note that the terms inside the integral
correspond to the increment of a martingale obtained by the Doob-Meyer decomposition. Thus,
for any given t, the score process is

Ũk(ϕ, t) =
∑

i

Xik

∫ t

0
dMi(u) =

∑
i

XikMi(t).

Combining all the components and evaluating the expression above at the estimated parameters
ϕ̂, we arrive at the desired result that

Ũ(ϕ̂, t) =
∑

i

XiM̂i(t). (4.56)

Therefore, n−1/2Ũ(ϕ̂, t) = n−1/2∑n
i=1 XiM̂i(t) = Wx(t, x) from (4.55) and the score process

can also be approximated by simulating specific Gaussian processes. It turns out that this process
contains information about the proportional hazard assumption. Consider the k-th component
of the score process above, Ũk(ϕ, t), with k = 1, ..., p. If it is true that the proportional hazard
assumption is violated such that the parameter vector depends on time, we expect to get different
estimates of ϕ when fitting a model with constant effect at different final censoring time. This
also implies that if the data are censored at time t and the estimated parameter vector is denoted
ϕ̂t, the score is only zero at time t when we evaluate at ϕ̂t. However, if the proportional hazard
is indeed true, the estimated parameters must be somewhat comparable in value independent of
the censoring time, i.e. ϕ̂t is close to ϕ̂ for any t [29]. Consequently, under the null hypothesis of
proportional hazard being correct, Ũk(ϕ̂, t) should always be close to zero over time.

Returning to the additive hazard model in (4.2) where λOi = λP i + λEi, we have that the
likelihood is the same as equation (4.22) based on the usual observed data. Now, let U denote
the full score process containing both the components obtained from differentiating with respect
to the covariate and baseline parameters. If ϕ is such that β ∈ Rp1 and χ ∈ Rp2 , the first p1
components of U are associated with the covariates. By doing the same calculations leading up
to (4.56), the resulting k-th component of the full score process U with a factor of n−1/2 is

n−1/2Uk(ϕ̂, t) = n−1/2
∑
i=1

[
Xik

∫ t

0

λEi(u | ϕ̂)
λEi(u | ϕ̂) + λP i(u)

dM̂i(u)
]

, (4.57)
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where k = 1, 2, ..., p1. The remaining p2 components depend on the choice of the baseline excess
hazard and will not be discussed any further in order to keep the generality of the methods.
However, they are still required in order to calculate the limiting distributions as we will see later.

Compared to the case in the overall hazard setting, we cannot directly write Uk(ϕ̂, t) in terms of
the process Wx(t, x) given in (4.54). The integrand contains now the function λEi(u|ϕ̂)

λEi(u|ϕ̂)+λP i(u) ,
which based on (4.18) can be interpreted as the probability of an event due to the disease at time
u if an event has occurred. Hence, the integrand depends on u and it is not possible to get M̂i(u)
from this score process. Nevertheless, the underlying idea of finding a class of processes so that
U can be written in terms of these is still applicable. This leads to Danieli et al. [29] considering
the following class of stochastic process:

W(2)
x (t, x) = n−1/2

n∑
i=1

[∫ t

0
f(u | Xi, ϕ)I(Xi ≤ x)dMi(u)

]
(4.58)

This new class of processes is a generalization of (4.54) as when f is independent of the time
u, W(2)

x and Wx coincide. With (4.58), the score process obtained from (4.57) evaluated at ϕ̂

becomes a special case of W(2)
x with f(u | Xi, ϕ̂) = Xi

λEi(u|ϕ̂)
λEi(u|ϕ̂)+λP i(u) for the first p1 components.

To find the limiting distribution of W(2)
x under the null hypothesis, Danieli et al. [29] followed

the same principle as in [35]. First, consider the first order Taylor expansion of the score process
evaluated at time t around the true parameters ϕ0:

U(ϕ, t) ≈ U(ϕ0, t) − nI(ϕ0, t)(ϕ − ϕ0) (4.59)

Here, I(ϕ0, t) is a square matrix of size p = p1 + p2 with − 1
n

∂Uk

∂ϕj
(ϕ, t) corresponding to the

element in k-th row and j-th column. Therefore, it is also connected to the Fisher information
matrix in a natural way. When inserting the maximum likelihood estimate of ϕ and the maximum
follow-up time τ in (4.59), the left-hand side should be zero as the score vector is zero at the ML
estimate by definition. This yields

nI(ϕ0, τ)(ϕ̂ − ϕ0) ≈ U(ϕ0, τ)

such that
(ϕ̂ − ϕ0) ≈ n−1I−1(ϕ0, τ)U(ϕ0, τ). (4.60)

Substituting (4.60) back into (4.59), the score process evaluated at the estimated parameters ϕ̂
and time t can be expressed as follows:

U(ϕ̂, t) ≈ U(ϕ0, t) − I(ϕ0, t)I−1(ϕ0, τ)U(ϕ0, τ) (4.61)

The reason for going through these calculations is due to Lin et al. [30] proving that the Taylor
expansion of the general process given in (4.54) converges to a Gaussian process.

Now, recall the form of the k-th component of the scaled score process with the true parameters
ϕ0 such that we have dMi(u) instead of dM̂i(u) in (4.57). The structure of Mi(u) is unknown in
this case and simulating directly from (4.61) is therefore not possible. However, it has been argued
for instance in [30] and [36] that it is appropriate to replace Mi(u) by a process with a known
distribution, which in this case corresponds to Ni(u)Gi. Here, Gi follows a standard normal
distribution. Intuitively, this is not unreasonable as we have mentioned that (4.61) through the
Taylor expansion should converge to a Gaussian process, even though individually each Mi might
not be exactly Gaussian itself. It turns out that NiGi inherits the most important features of Mi,
including the mean and variance [30]. As a consequence, we can approximate Uk(ϕ0, t) using the
k-th component of D1(ϕ0, t) given as

D1k(ϕ0, t) =
∑
i=1

[
Xik

∫ t

0

λEi(u | ϕ0)
λEi(u | ϕ0) + λP i(u)dNi(u)Gi

]
, k = 1, 2, ..., p1
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or in a vector notation

D̃1(ϕ0, t) =
∑
i=1

[
Xi

∫ t

0

λEi(u | ϕ0)
λEi(u | ϕ0) + λP i(u)dNi(u)Gi

]
. (4.62)

Here, D̃1 ∈ Rp1 denotes the part of the full approximated score process corresponding to the
covariate parameters. Again, the latter components obtained from differentiating with respect
to the baseline parameters are not presented here to keep the generality in case of a different
choice of baseline. However, combining D̃ ∈ Rp1 with the elements we just mentioned as the full
approximated score process D1, we arrive at

n−1/2U(ϕ̂, t) = Ŵ(2)
x (t) = n−1/2

(
D1(ϕ̂, t) − I(ϕ̂, t)I−1(ϕ̂, τ)D1(ϕ̂, τ)

)
(4.63)

when substituting D1 for U in (4.61) on the right-hand side and using ϕ̂ as an approximation of
ϕ0. Thus, the limiting distribution of n−1/2U(ϕ̂, t) can be approximated by simulating a large
number of the process Ŵ(2)

x from above, which is much more manageable as this corresponds to
the procedure of simulating random Gaussian variables.

After all the intermediate results above, a reasonable test statistic to test the proportional excess
hazard assumption for the k-th covariate is to consider the following quantity [35]:

sup
t

|n−1/2Uk(ϕ̂, t)| (4.64)

An estimate of the p-value of this test can be found by calculating the proportion of the simulated
Gaussian processes obtained from (4.64) in which the supremum is larger than the observed
test statistic from (4.64). In particular, if we choose a significance level of 5% and the amount
of simulated Gaussian processes is 10000, we reject the null hypothesis if less than 500 of the
processes have supremum larger than the observed test statistic. When this does indeed happen,
we can also get a small idea of when the assumption is violated by plotting the observed score
process with the simulated processes over time. An indication of the time periods where the
proportional excess hazard assumption is not valid occurs when the score process moves away
from the simulated processes [29].

4.5.5 Test of functional form based on martingale residuals

In a similar manner, for the case of checking the functional form of the k-th covariate in the
overall hazard setting, Lin and Spiekerman [35] examined the special case of the process in (4.54)
with f(Xi) = 1, t → ∞ and x = (∞, ..., x, ..., ∞):

W (k)(x) = n−1/2
n∑

i=1
I(Xik ≤ x)M̂i (4.65)

We have already mentioned that the martingale residuals at the maximum follow-up time τ
can give information about the functional form of the covariates in the model. Therefore, the
cumulative sum of the residuals over the covariates value of the individuals should also be
informative about the functional form [29]. If the functional form is indeed correctly specified,
the martingale residuals should be close to zero. This implies that the cumulative sum should
also oscillate around zero.

When it comes to the additive hazard model in (4.2), the process in (4.65) from above can still be
directly applied. To find the limiting distribution of W (k)(x) under the null hypothesis of correct
functional form for the k-th covariate, let us denote the second factor of the general process
evaluated at the true parameters ϕ0 in (4.54) as K(t, x | ϕ0), i.e.

K(t, x | ϕ0) =
n∑

i=1
f(Xi)I(Xi ≤ x)Mi(t).

39



4. Modelling in relative survival

Then, the first order Taylor expansion of K around ϕ0 is

K(t, x | ϕ) ≈ K(t, x | ϕ0) + ∂K(t, x | ϕ)
∂ϕ

∣∣∣∣
ϕ=ϕ0

(ϕ − ϕ0). (4.66)

In addition, we have that

∂K(t, x | ϕ)
∂ϕ

∣∣∣∣
ϕ=ϕ0

=
n∑

i=1
f(Xi)I(Xi ≤ x)

∂
{

Ni(t) −
∫ t

0 Yi(u)λOi(u | ϕ) du
}

∂ϕ

∣∣∣∣∣
ϕ=ϕ0

= −
n∑

i=1
f(Xi)I(Xi ≤ x)

∫ t

0
Yi(u)∂λOi(u | ϕ)

∂ϕ

∣∣∣∣
ϕ=ϕ0

du.

Inserting these calculations and a similar form of (4.60) for a specific model back to (4.66), K
evaluated at the estimated parameters ϕ̂ becomes

K(t, x | ϕ̂) ≈ K(t, x | ϕ0) + n−1 ∂K(t, x | ϕ)
∂ϕ

∣∣∣∣
ϕ=ϕ0

I−1(ϕ0, τ)U(ϕ0, τ).

Finally, with the same arguments of replacing the Mi with Ni(u)Gi and ϕ0 with ϕ̂, we conclude
that the limiting distribution of the process in (4.54) can be approximated by simulating from

Ŵx(t, x) = n−1/2
{

K(t, x | ϕ̂) + J(x)I−1(ϕ̂, τ)U(ϕ̂, τ)
}

, (4.67)

where
J(x) = n−1 ∂K(t, x | ϕ)

∂ϕ

∣∣∣∣
ϕ=ϕ̂

.

Equation (4.67) is exactly the form that has been proven to converge towards a mean zero
Gaussian process [30].

Returning back to the special case of Wx given in (4.65), the result from (4.67) indicates that
W (k)(x) can be approximated by simulating the following process Ŵ (k)(x) [29]:

Ŵ (k)(x) ≈ n−1/2
(

P1(x) − Ĵ(x)I−1(ϕ̂, τ)D1(ϕ̂, τ)
)

(4.68)

Here,
P1(x) =

∑
i

∫ τ

0
I(Xik ≤ x)dNi(u)Gi

and the first p1-th components of Ĵ in this case is the p1-dimensional vector

J̃(x) =
∑

i

∫ τ

0
I(Xi ≤ x)Xi exp

(
β̂Xi

)
Yi(u)dΛ̂0(u)

=
∑

i

∫ τ

0
I(Xik ≤ x)Xi exp

(
β̂Xi

)
Yi(u)dΛ̂0(u)

Both D1 and I follow the same definitions as in the preceding section. Note that we have again
not mentioned the remaining components of Ĵ(x) for situations with a more general baseline
excess hazard. Accordingly, the relevant test statistic in this case is simply (4.64), but applying
to Ŵ (k)(x) instead:

sup
x

|Ŵ (k)(x)| (4.69)

The estimated p-value is obtained in a similar manner as before by the proportion of simulated
processes with a supremum larger than the test statistic.
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The test statistics based on martingale residuals are developed mainly for the parametric additive
models like the GLM-based models or the full likelihood approach [29]. To simulate the limiting
distributions of the processes introduced, we have seen that it is required to compute the matrix
I. This implies differentiating the score from the observed likelihood with respect to ϕ, i.e.
all the parameters incorporated in the excess hazard from the covariate parameters to the
baseline parameters. With the EM-based model, the form of λ0 is unknown and based on the
standard observed likelihood, it is incomplete to only differentiate with respect to the parameters
corresponding to the covariates and consider this part as the score when constructing the test
statistics. Nevertheless, there might be a possibility of approximating these tests to the EM-based
model by using a different likelihood, e.g. a version of (4.19).
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CHAPTER 5

Simulation study of the methods

In this section, we will illustrate the usage and properties of different concepts and methods
introduced previously in a series of simulated data sets. First, we will set up the simulation in
a way to showcase the performance of the non-parametric procedures: When does for instance
the Ederer 2 method estimate the same quantity as the Pohar-Perme estimator? What happens
when the proportion of events due to the condition C is too small? These are types of questions
that we will try to explore in this section. Later, we will also go through the same process with
the additive hazard models presented in Chapter 4, checking which approach is preferable in a
given situation.

5.1 Illustration of non-parametric methods

5.1.1 General setup

Before we start out with the core content, we will describe the general simulation setup that
is mainly used for the section. Age is simulated from a normal distribution with a mean of 70
and standard deviation of 10. Most of the age values corresponding to the elders are therefore
considered. In the following examples, a simplification has also been done by rounding off age
values to nearest integers such that both age and year change at the same time. Of course, this
is not the most realistic assumption as not every individual is born on the first day of the year.
But for illustration purposes, the given choice is much more computationally efficient, and we
will therefore use this setup for now. Anyways, it is likely to have very little influence on the
result whether the patients are simulated to all have January 1 as birthday, or whether the
birthdays are evenly spread over the year. Gender of a given observation is simulated from a
Bernoulli distribution with equal probability of being a male as for being a female. Here, 0 is
taken to represent a male and 1 corresponds to a female. Since TP i and TEi are assumed to be
conditionally independent given the covariates, we can simulate each of them separately such
that both the true net and observable net survival can be computed. To simulate TP i, we use a
self-made function which picks out the relevant yearly population hazards during the follow-up
time based on the combination of age, gender and year from the Norwegian life tables obtained
from Human Mortality Database [37]. For the following examples, start year is set to 2000 unless
it is mentioned otherwise. Constructing the cumulative density function based on these hazards,
the inverse transform algorithm is then performed to get a simulated value of TP i.

Next, TEi is mainly chosen to follow a Weibull distribution. More specifically, we will work with
the following parametrization of the Weibull distribution:

f(t | a, b) = abta−1 exp (−bta) (5.1)

Here, a is the shape parameter and b corresponds to the scale parameter. Using (2.4), it is easy
to show that the hazard function of a Weibull distributed variable is given as

λ(t) = abta−1. (5.2)
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Now, if we set the hazard above as the baseline excess hazard, we can get a proportional excess
hazard model by setting the scale parameter of individual i as bi = b exp (βXi), where Xi is the
covariate vector of this observation as before. This leads to following expression of the excess
hazard of observation i:

λEi(t) = abta−1 exp (βXi) (5.3)

Note that for this choice of setup, we have assumed that the covariate vector does not include
a component with the constant value 1. The parameter corresponding to the constant term is
therefore already incorporated in b. With this in mind, we see from (5.3) that the proportional
excess hazard model is valid as λEi(t) can be written as λ0(t) exp (βXi) in which λ0(t) follows
(5.2). Then, TEi is simulated by using the inverse transform algorithm again. The censoring
time Ci is the minimum of either the maximum follow-up time or a simulated value from an
exponential distribution with rate parameter equal to 0.001. Also, we want to mention that the
selected examples, and especially the different baseline excess hazard functions considered in this
chapter, are not meant to replicate any real-life situations. In fact, the purpose is strictly to
illustrate the limitations of the methods instead.

5.1.2 Choice of R package

Before getting into the examples, we want to mention shortly about the choice of functions in R
to calculate the quantities of interest. For the net and observable net survival, the two curves
are computed by our own custom functions. To calculate the relative survival estimates like
Ederer 2 or Pohar-Perme, we have decided to use the survtab-function from the popEpi package
instead of the more traditional rs.surv in relsurv [16]. A short argument for the given choice
is that the output from survtab matches with our own implementations of the estimators for all
cases. This is not the case with rs.surv from relsurv. We will discuss this issue later in this
chapter. On the other hand, all calculations related to the section with additive hazard models
are performed using the relsurv package. This includes e.g. fitting different models, calculating
residuals and test statistics of interests. Note however that we have omitted the usage of the test
statistics based on martingale residuals as it seems like these methods have not been implemented
in the R package mexhaz yet during the time span of this project, unlike mentioned in [29].

5.1.3 The case with the regression parameter being a zero vector

Following the general setup from above, we simulate many data sets corresponding to different
scenarios, e.g. different values of baseline shape parameter a and b. The sample size of each
data set is equal to 10000 in this part of the simulation. Also, we consider age and gender as
the covariates that will have an impact on the excess hazard. For simplicity, all observations
enter the study at the start of 2000 and will be followed up until the start of 2021, unless an
event or interim censoring occurs during this time period. In Chapter 2.2, we mentioned that if
λEi = λE for all i, the net and observable net survival will coincide. In theory, this also means
that the Ederer 2 and Pohar-Perme method should estimate the same quantity. Such a setting
can arise in two ways: Either, β must be a zero vector such that the excess hazard does not
depend on any covariates. If not, the sample must be homogeneous with respect to the excess
hazard, i.e. every observation needs to have the same values of covariates that effect the excess
hazard. We will explore the first scenario for two different combinations of baseline parameters:
a = 1 & b = 0.0025 and a = 1 & b = 0.125. The first combination will give a case with little
excess events. In fact, the proportion of events due to excess hazard is roughly 5% for the first
choice of baseline parameters. On the other hand, the same quantity is much larger with a value
of almost 70% when adjusting b to 0.125.

For the case with b = 0.0025, Figure 5.1 shows the theoretical net and observable net survival
curve. We see that the two curves overlap each other perfectly, confirming that the net and
observable net survival are identical just as expected from the theory in Chapter 2.2. Using
the simulated data set, the estimated net and observable net survival curve calculated with the
Ederer 2 and Pohar-Perme method are shown in Figure 5.2a. Since the net survival is identical
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Figure 5.1: A plot of the true net and observable net survival curve when a = 1, b = 0.0025 and
β is the zero vector. The simulated data set is of size 10000.

for each simulated data set in this setup, we decide to plot the resulting estimated curves from
five different simulated data sets to see how the methods perform for different data sets.

With this specific choice of baseline parameters, all the curves obtained from the Ederer 2
method are much closer to the true net/observable net survival curve. The large variance of the
Pohar-Perme estimator is very noticeable here as each estimated curve tends to deviate a bit from
the true curve, especially in the longer follow-up time. In some cases, the net survival is slightly
underestimated. For other data sets, the same quantity is estimated to be considerably larger
than 1 at different time periods. The next step is therefore to adjust some of the parameters to
see if the same issue continues to appear. This leads us to consider the case where a and b are
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(a) a = 1 and b = 0.0025
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(b) a = 1 and b = 0.125

Figure 5.2: Comparison of Ederer 2 and Pohar-Perme method when β is the zero vector for two
different choices of baseline parameters. Each simulated data set is of size 10000.
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set to 1 and 0.125, which is a scenario with a lot more excess events.

Adjusting b from 0.0025 to 0.125, the Ederer 2 and Pohar-Perme methods seem to agree much
better as both the green and orange curve estimate the true net survival curve very well, see
Figure 5.2b. The green curve obtained from the Pohar-Perme estimator might deviate a bit
more from the black curve compared to the Ederer 2 curve for longer follow-up times, but the
difference between the two is minimal compared to the previous choice of baseline parameters.
Also, rerunning the simulation for different seeds has no effect on the overall picture, the end
result is essentially the same as Figure 5.2b for all simulated data sets. Therefore, both the
Ederer 2 and Pohar-Perme method try to estimate the net survival in this case, with the Ederer
2 outperforming Pohar-Perme for the first choice of baseline parameters due to the much lower
variance.

5.1.4 The case with a homogeneous sample

We now turn to the other scenario where λEi = λE , namely when we have a homogeneous sample
of observations. For our simulation, all patients correspond to 42-year-old males. First, we will
consider the case where a = 1 and b = 0.0025. The beta vector now is chosen such that the
parameters related to the effect of age and gender are 0.05 and 0.25, respectively. As before, we
start out by confirming that the net and observable net survival are the same for this situation
as well. Indeed, the net and observable net survival curve overlap each other as expected from
Figure 5.3. An interesting result appears when we compute the estimated curve with the Ederer
2 and Pohar-Perme method, which is shown in Figure 5.4a. In comparison to the situation with
all the covariate parameters set to zero, both estimators give identical estimates at any given
point of time.
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Figure 5.3: A plot of the true net and observable net survival curve when a = 1, b = 0.0025,
β = (0.05, 0.25) and all patients are 42-year-old males. The simulated data set is all of size 10000.
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(b) a = 1 and b = 0.0001

Figure 5.4: Comparison of Ederer 2 and Pohar-Perme method when all patients are 42-year-old
males and β = (0.05, 0.25). Each simulated data set is of size 10000.

A further investigation of this phenomenon is done by choosing an even more extreme value of
the scale parameter. We adjust it from b = 0.0025 to b = 0.0001, and it turns out that the same
exact result holds for this combination of parameters as well. The reason behind these results
will be discussed later.

5.1.5 The case with heterogeneous sample and non-zero parameter vector

Now, we assess the performance of the estimators in the case of a non-zero parameter vector and
heterogeneous sample. Age and gender of each individual will be simulated as described in the
beginning of this chapter. The chosen parameter vector of β = (0.05, 0.25) from the previous
subsection is carried over to this simulation as well. For the first example, we set the baseline
parameters to a = 1 and b = 0.0025. It is now clear that the net and observable net survival
differ from each other due to the excess hazard not being identical for all observations, see Figure
5.5. Therefore, from the discussion in Chapter 3, we expect that the Ederer 2 method should give
an estimate closer to the red line while the curve obtained from Pohar-Perme should fit better to
the black line. This is confirmed in Figure 5.6. From the plot, the green curve obtained from the
Pohar-Perme estimator follows the net survival curve nicely while the Ederer 2 overestimates net
survival. The same figure shows indeed that the Ederer 2 method estimates the observable net
survival, and thus it is a biased estimator of the net survival in this situation.

As a final experiment, we run through the same simulation again with an adjustment to the
baseline scale parameter from 0.0025 to 0.0001 such that the number of excess events decreases.
The theoretical net and observable net survival should again be different as before. This is shown
in Figure 5.7 with the latter being slightly larger than the former at the end of the follow-up
interval. However, the main contrast now lies in the results of applying the estimators on the
simulated data set. For this situation, we have also plotted the estimated curves for five different
simulated data sets to see the variability. Note that the true net survival will in theory change
when considering a new data set. However, the change is very minor in this situation such that
we will use the true net survival curve of the first simulated data set as reference. In a similar
manner as the first example when dealing with a zero parameter vector, the Ederer 2 method
seems to estimate the net survival better than the Pohar-Perme method, even though the curves
actually fit the best to the observable net survival. This is due to the minor difference between
net and observable net survival just as in the case with Figure 5.2a and can be seen from Figure
5.8. On the other hand, the Pohar-Perme estimator is very prone to random variation and
departs from the true net survival curve by quite a bit for longer follow-up times. Just like in the
first example, different simulated data sets will result in completely different estimated curves
compared to the Ederer 2 method. With the Pohar-Perme method, some curves moderately
underestimate the net survival while others become larger than 1 throughout the follow-up.
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Figure 5.5: Comparison of net and observable net survival when a = 1, b = 0.0025 and
β = (0.05, 0.25) with a heterogeneous sample. The simulated data set is of size 10000.
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Figure 5.6: Comparison of Ederer 2 and Pohar-Perme method in the case of heterogeneity and
non-zero parameter vector with a = 1, b = 0.0025 and β = (0.05, 0.25). The simulated data set is
of size 10000.
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Figure 5.7: Comparison of net and observable net survival when a = 1, b = 0.0001 and
β = (0.05, 0.25) with a heterogeneous sample. The simulated data set is of size 10000.
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Figure 5.8: Comparison of Ederer 2 and Pohar-Perme method in the case of heterogeneity and
non-zero parameter vector with a = 1, b = 0.0001 and β = (0.05, 0.25). The simulated data sets
are all of size 10000.
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5.1.6 Performance of the estimators when censoring mechanism is informative

In this section, we will see how the estimated curves from the Ederer 2 and Pohar-Perme method
compare to the true net survival curve when informative censoring is present. This is done
by extending the situation from above where individuals now arrive at the first day of a given
calendar year, which in our case runs from 2000 to 2010. The amount of years after 2000 is then
included as a covariate that effects the excess hazard for a specific observation, e.g. xyear = 3 if a
patient enters the study on the first day of 2003. If the parameter corresponding to the effect of
start year is non-zero, informative censoring is introduced as the time to event is now correlated
with the potential follow-up time. For instance, if the parameter is negative, patients who arrive
much later in the study tend to have larger times to event, in addition to the shorter potential
follow-up times as well. Thus, SCi is not identical for all patients in the sample and Ti is not
independent of Ci. Other than this addition and some adjustments to the baseline parameters,
the rest of the simulation setup will be the same as before.

For the first illustration, the baseline parameters are set to a = 1 and b = 0.05. The parameters
corresponding to the effect of age and gender are still 0.05 and 0.25, respectively. We start out
by letting βyear = −0.25 such that the parameter vector becomes β = (0.05, 0.25, −0.25). This
leads to slightly more than 90% of excess events. As in two of the previous examples, we will
look at five different simulated data sets to check if there is a systematic trend in the results.
Again, the true net survival curve of the first simulated data set is used as reference due to the
minimal differences between each simulation. Subsequently, the estimated curves for all five data
sets obtained from the two methods are plotted with the net survival curve. From Figure 5.9a,
there is a minor deviation between the "true" net survival and the estimated curves from the two
estimators. Some of the curves appear to underestimate the net survival slightly for the larger
part of the follow-up time in this case. However, the discrepancy is somewhat small in size such
that the results obtained still give a decent picture of the true nature as the correlation between
the time to event and censoring time is still weak with βyear = −0.25.

The same cannot be said when the effect of start year gets stronger, increasing in absolute value
from -0.25 to -0.50. With this choice, the proportion of excess events is almost 80% for each
simulated data set. Running through the same procedure as above, we see from Figure 5.9b that
all of the estimated curves start to underestimate the true net curve already from the beginning
of the follow-up. The extent of departure increases throughout the follow-up interval with the
gap being largest at the end where most of the excess events have already occurred. This is
because the correlation between the time to event and censoring time is getting much stronger
compared to the former case with βyear = −0.25.
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(a) β = (0.05, 0.25, −0.25)
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(b) β = (0.05, 0.25, −0.50)

Figure 5.9: Comparison of Ederer 2 and Pohar-Perme method when a = 1 and b = 0.05 with a
heterogeneous sample and informative censoring. The simulated data sets are all of size 10000.
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To check if the performance gets even worse with an even more powerful effect due to start year,
we tune βyear from -0.50 to -1.00. Approximately 54-55% of the events are caused by the excess
hazard in each data set with the given choice. The results are given in Figure 5.10a. It seems
like the variation between the estimated curves is more prominent than before, especially for
the ones acquired from the Pohar-Perme method. For instance, one of the curves obtained from
the Pohar-Perme estimator does not actually deviate by a lot from the true net survival curve
around the period of 15-20 years of follow-up. However, the biggest discrepancy from the true net
survival curve is also obtained from the same method with the gap being larger now compared to
the previous examples. In contrast, the behaviour of the Ederer 2 curves appears to be somewhat
the same as the case with βyear = −0.50.

Next, we adjust b from 0.05 to 0.005 and set βyear back to -0.25 to see if the results from the
first situation arise again. With the given choice, the amount of excess events is lower than last
time βyear was set to -0.25. It appears like the outcome is comparable to the third scenario with
b = 0.05 and βyear = −1.00 from Figure 5.10b. Based on this observation, the degree of bias
seems to depend on the combination of the effect from start year and the proportion of excess
events in the sample.

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Net vs Observable Net

Time (in years)

R
el

at
iv

e 
S

ur
vi

va
l

Net Survival

Ederer 2

PP

(a) a = 1, b = 0.05 and β = (0.05, 0.25, −1.00)

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Net vs Observable Net

Time (in years)

R
el

at
iv

e 
S

ur
vi

va
l

Net Survival

Ederer 2

PP

(b) a = 1, b = 0.005 and β = (0.05, 0.25, −0.25)

Figure 5.10: Comparison of Ederer 2 and Pohar-Perme method for two different combinations
of baseline parameters and β with a heterogeneous sample and informative censoring. The
simulated data sets are all of size 10000.

Now, we want to examine the opposite situation when the excess hazard rather increases for later
start years. As the previous examples yield underestimated curves, we expect an overestimation
in this case. Consider a situation where a = 1, b = 0.0005 and β = (0.05, 0.25, 0.25). Then, the
true net survival is comparable in shape and size as Figure 5.9b. Instead of underestimating the
net survival consistently, both methods usually overestimate the black curve just as expected.
This can be observed from Figure 5.11a.

Until now, we have only studied settings with a clear correlation between the times to event and
censoring times. As a final example, we set the parameter corresponding to the effect of start year
to 0. The Weibull baseline parameters are now chosen to be a = 1 and b = 0.001. Then, according
to the stronger condition of non-informative censoring from [3], the administrative censoring
introduced by setting the first day in 2021 as an end date of the study will be informative.
Recall that the start year of the observations can vary between 2000 and 2010. Thus, individuals
arriving in 2010 will have a different censoring distribution as they are more prone to censoring
in contrast to the ones with earlier start years. Consequently, SCi is not identical for all i, which
by the definition from [3] implies informative censoring. Figure 5.11b shows the Ederer 2 and
Pohar-Perme estimates of ten different simulated data sets for this specific situation. We can see
that the true net survival curve is located in the middle among the green curves. Therefore, it
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Figure 5.11: Comparison of Ederer 2 and Pohar-Perme method for two different combinations
of baseline parameters and β with a heterogeneous sample and informative censoring. The
simulated data sets are all of size 10000.

looks like the Pohar-Perme estimates will on average estimate the net survival curve. The same
cannot be said for the Ederer 2 estimates. There is a clear trend of overestimation when using the
Ederer 2 estimator in order to estimate the black curve. Hence, it seems like the Pohar-Perme
estimator is still unbiased in this type of scenarios.

5.1.7 Discussion and summary

First, we need to discuss our choice of using the survtab-function instead of the standard
rs.surv from the relsurv package. While working with the very first example in Chapter 5.1.3,
a problem occurs when we tried to compute the Pohar-Perme curve for one specific generated
data set. As net survival is a probability measure, the estimates should usually be contained in
the closed interval from 0 to 1. However, the Pohar-Perme estimator from the relsurv package
gave us in extreme cases a probability of up to 700, which of course does not make sense. This
is not reported or presented here, but the material to reproduce this finding can be found in
Appendix D.

On the other hand, we were pleased with the results obtained from the Ederer 2 method
implemented in the same package. To check if it was a possible error with the simulation
setup, we also tried the survtab-function in popEpi package, which also has these methods
implemented. The results of using this function to calculate the non-parametric estimates for
the first example are exactly Figure 5.2a. The Ederer 2 curve is almost identical between the
two functions depending on the choice of accuracy. However, the Pohar-Perme estimates from
survtab are clearly more sensible with none giving such an enormous value. Of course, we still
arrive at estimated curves which are moderately larger than 1. As a final test, we decided to
implement the Ederer 2 and Pohar-Perme method ourselves. Again, these can be found in the
Appendix D. Running these "homemade" functions, the resulting curves matched the outputs
from the survtab-function for both methods with some minor differences due to our approach of
numerical integration. Hence, we have chosen to use survtab for the rest of the simulations in
this section related to non-parametric methods. A final comment is that the tests have been done
on multiple machines with version 4.1.1/4.1.2 of R and 2.2-6 of relsurv. We also performed
the same procedure on the combination of R version 3.5.2 and relsurv version 2.2-3 with no
disagreement to the former results. A potential explanation could be that the implementation
in relsurv is somehow more sensitive to elder patients where SP i is small. Consequently, the
fraction of 1/SP i becomes larger, which might result in wild estimates when using the relsurv
implementation.

For the case with a zero parameter vector and small baseline scale parameter of 0.0025, we have
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5.1. Illustration of non-parametric methods

seen from Figure 5.2a that the Ederer 2 method is much more stable and performs better than
the Pohar-Perme method when estimating the net survival. However, by increasing b to 0.125,
the deviation between the two estimated curves is no longer major. Based on these observations,
it seems like the performance of the Pohar-Perme estimator becomes worse when the proportion
of events due to the excess hazard is decreasing. The combination of little excess events and
elders in the sample will result in curves being larger than 1 at some time periods. Even if not
reported here, there is likely a connection between how much larger the estimates can be above
the value 1 and age of the observations in the sample. With a slightly younger sample with
a maximum age of 85, the curves do not go above 1.2 as often as the case with observations
having age values larger than 100. The reason for this is exactly what we have mentioned back in
Chapter 3.3.2. For our simulation setup, we do have some individuals older than 100 years. Thus,
the results from Figure 5.2b are as expected. This issue could also be an explanation of why
relsurv produces a probability larger than 700. The implementation in relsurv seems to be
more sensitive to the given problem compared to the survtab-function from the popEpi-package.
In comparison, the Ederer 2 estimator is less sensitive to the extreme low proportion of excess
deaths with all estimated curves lying closely to the true curve. This is as anticipated due to the
form of the variance estimator of Pohar-Perme method in (3.18), which tends to be larger than
the standard Nelson-Aalen variance estimator, and hence the variance estimator of the Ederer 2
method given in (3.19).

A similar behaviour as mentioned above can be observed from Figure 5.8 for the situation where
we have a heterogeneous sample with a non-zero parameter vector and b = 0.0001. In this case,
the true net survival and observable net survival are clearly two distinct quantities based on Figure
5.7, even if the difference is not substantially large. Nonetheless, because of the Pohar-Perme
method being worse when there are few excess events, the curve from Ederer 2 is much closer to
both the true net and observable net survival. This is justified when the proportion of excess
deaths is calculated to be roughly 7%. When b is increased to 0.0025, 68% of the events are
related to the excess hazard. With a decent amount of events due to the condition C of interest,
we see that the green curve achieved from the Pohar-Perme estimator follows closely the true
net survival curve from Figure 5.6. From the same figure, it is clear that the Ederer 2 estimator
indeed is a biased estimator of net survival in such scenarios, overestimating the black curve by
quite a bit as it estimates the red observable net survival curve much better.

With a sample of only 42-year-old males, the estimates from both estimators are identical
independent of b, or equivalently the proportion of excess deaths. The results can be observed
from Figure 5.4a and 5.4b. This is as expected from the theory presented in Chapter 3. When
all individuals in the data set have the same values of demographic variables, the corresponding
SP i obtained from the life table is the same for all i. Thus, denoting the population survival as
simply SP , a factor of 1/SP can be factorized out from Nw and Y w such that the first term in
(3.8) is simply the standard Nelson-Aalen estimator. The same factorization and cancellation
can be done for the term related to the cumulative population hazard as well. Therefore, the
Pohar-Perme estimator from (3.8) coincides with the Ederer 2 estimator from (3.4). Accordingly,
the estimates from both methods must be the same for a homogeneous sample, which we have
shown empirically in this simulation study as well.

Overall, based on the results of all the different simulation setups with non-informative censoring,
it seems like the choice of method to estimate the net survival depends on the situation. Even
if the Ederer 2 estimator is theoretically proven to be biased when estimating net survival, the
estimates obtained from this method will often be closer to the true net survival and more stable
compared to the Pohar-Perme estimator when the proportion of excess deaths is considerably
small. The large variance will regularly become too problematic for each individual data set as
we have seen. The issue gets greater if the small number of excess events is combined with a
sample containing a lot of elders. Luckily, this is not a common situation in practice with data
from cancer registries. However, this is a decent illustration of the limitations concerning the
Pohar-Perme estimator. The estimator might be unbiased when estimating net survival, but the
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large variance can give unreliable results compared to the Ederer 2 method for certain data sets.
Thus, we have some sort of a bias-variance trade-off here as well.

When dealing with a homogeneous sample, either can be used to get identical results. If the
excess hazard is independent of covariates, Ederer 2 is also preferable due to the lower variance
and results from Figure 5.2b. Thus, we recommend using Pohar-Perme estimator only when it is
evident that the data set of interest contains a sufficient amount of events due to the condition C.
For instance, one can use the Ederer 2 method as a check to see if the estimates are close to 1
over the whole follow-up time. If this is indeed the case, we have an indication that the number
of excess events is not large enough for the Pohar-Perme estimator to outperform Ederer 2 in
estimating net survival on a single data set basis.

Finally, depending on which definition of non-informative censoring is violated, everything can
break down as expected based on the theory from Chapter 3. If there is a clear dependency
between the times to event and censoring times, we have that the censoring mechanism is
informative with respect to the definition from [9], and therefore from [3] as well. It follows
that none of the estimators consistently estimate the net survival. For our consideration of
informative censoring when time to event of each individual is correlated with the corresponding
censoring time, the level of bias will depend on the amount of excess events and the effect that
causes informative censoring. If the first quantity is large enough when ignoring the latter, the
underestimation only gets noticeable once the impact of start year is moderately large. Otherwise,
a small effect will already yield a noteworthy bias. Hence, all the estimators from Chapter 3 do
indeed require that censoring is non-informative in the sense of [9].

When there is no dependency between the times to event and censoring times, but individuals
arrive at different start points such that a form of administrative censoring is present, SCi is
not identical for all i either. According to the definition of non-informative censoring in [3], this
situation will also imply informative censoring. However, in the sense of [9], this is not the case.
From Figure 5.11b, the Pohar-Perme estimator still seems to be unbiased when estimating the
net survival curve. Thus, it might be that the stronger non-informative condition from [3] does
not need to hold in order for the Pohar-Perme method to be an unbiased estimator of the net
survival. Instead, it looks to be sufficient with the definition of non-informative censoring from
[9] being satisfied.

5.2 Illustration of additive hazard models

In this section, we will examine the additive hazard models from Chapter 4 for two different
simulation setups. The first one corresponds to a Weibull baseline similar to Chapter 5.1.1 with
some small adjustments. For the second one, we check the performance of the methods when the
baseline is a piecewise constant hazard to see if the traditional models with a piecewise constant
baseline assumption do outperform the flexible methods like the EM-based model in this scenario.

5.2.1 Performance of the models with a Weibull baseline

Consider the same setup of Weibull excess hazard for a specific observation i mentioned in
Chapter 5.1.1 and 5.1.3, i.e. the start date of follow-up is set to the first day of 2000 for all
patients with 21 years as maximum follow-up time and the excess hazard follows (5.3). The
baseline shape parameter is chosen to be a = 1 and the baseline scale parameter is given as
b = 0.0025. However, in addition to the effect of the demographic variables like age and gender,
we introduce another binary covariate which the population hazard does not depend on. For our
purposes, we can e.g. interpret it as a variable representing the two different treatment groups
of a given disease C. Summarised, Xi contains now age, gender and type of treatment. We use
0.05 and 0.1 as the parameters corresponding to the effect of age and gender. For the treatment
variable, we set the parameter to 0.5 such that an observation with the treatment covariate being
1 resembles a patient in the placebo group. Thus, we have that β = (0.05, 0.1, 0.5).
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Figure 5.12: Histograms of estimated coefficients for different covariates obtained from eight
particular methods and 500 data sets simulated from a Weibull baseline excess hazard with a = 1
and b = 0.0025. The sample size of each data set is 1000.
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Table 5.1: A table summarising the means of the parameter estimates obtained by applying eight
different models on 500 simulated data sets. The sample size of each data set is 1000. Here,
the Weibull baseline parameters are set to a = 1 and b = 0.0025. The quantity in parentheses
corresponds to the sample standard deviation.

Model Mean of β̂age Mean of β̂gender Mean of β̂treatment
EM (bwin=-1) 0.0544 (0.0062) 0.0498 (0.0868) 0.4642 (0.0873)
EM (bwin=0) 0.0448 (0.0056) 0.1289 (0.0984) 0.5278 (0.0969)
EM (bwin=1) 0.0503 (0.0053) 0.0948 (0.0907) 0.5044 (0.0904)

EM (bwin=100) 0.0499 (0.0052) 0.0986 (0.0909) 0.5085 (0.0907)
Poisson (Partition 1) 0.0501 (0.0052) 0.0965 (0.0899) 0.5071 (0.0898)
Poisson (Partition 2) 0.0502 (0.0052) 0.0966 (0.0899) 0.5073 (0.0896)

ML (Partition 1) 0.0501 (0.0052) 0.0965 (0.0899) 0.5071 (0.0898)
ML (Partition 2) 0.0502 (0.0052) 0.0966 (0.0899) 0.5073 (0.0896)

We start out by simulating 500 different data sets from the setup described in the preceding
paragraph, where each data set contains 1000 observations. The proportion of excess deaths
ranges from roughly 70% to 75% for most of the data sets. To fit any of the models presented in
Chapter 4, we use the function rsadd from the relsurv package [6] in R.

For the EM-based model, it is mentioned briefly in Chapter 4.4 that some sort of smoothing
applied on the estimates of baseline excess hazard at each E-step can be beneficial. This is
controlled in the rsadd-function by the argument bwin. By not specifying this value, the variable
itself is set to -1. This choice lets the function automatically choose a value of the so-called
bandwidth in a kernel smoothing procedure. With bwin=0, no smoothing is applied to the
baseline excess hazard estimates in each E-step. Otherwise, consider the expression given in
(4.21). Using the rsadd-function, the follow-up time is split into quartiles. For a time t between
two given quartiles, b(t) is proportional to the largest time between two consecutive events during
this interval with bwin as the constant of proportionality. A large value of bwin implies in a
sense a larger bandwidth in the kernel smoothing procedure. For our purposes, we will test out
four different values of bwin: -1, 0, 1 and 100.

When it comes to the models which are based on the piecewise constant baseline excess hazard,
we choose to work with the Poisson and the Estève full likelihood approach. Earlier, we stated
that a recommendation is to set the length of each band of the follow-up interval for these models
to one year at the beginning with longer bands in the end of the follow-up interval. To test if
the choice of partition does substantially impact the estimates, we decide to use two different
partitions. The first corresponds to the following bands of the follow-up interval: 0-2 years, 2-5
years, 5-10 years, 10-15 years and 15-21 years. The second division differs from the first one by
defining ten yearly bands between 0 and 10 years of follow-up. With that in mind, we end up
fitting eight different models for each simulated data set: Four EM-based models with different
values of bwin, two based on the Poisson and two based on the full likelihood approach.

Figure 5.12 shows the histograms of the parameter estimates related to the three covariates
obtained from the different models. From the plot, it seems like the distributions of the estimates
obtained from the two EM-based models using the default setting and no smoothing have a
shifted mean with respect to the true parameters. This happens for all three covariates. With the
given choice of Weibull baseline parameters, there are minor differences between the remaining
six models. The two choices of follow-up time partition for the Poisson and full likelihood model
giving fairly identical estimates are as expected considering that the true baseline excess hazard
is constant over the whole follow-up. Also, the fact that the results from the Poisson and full
likelihood for a given partition are the same up to four decimals is not a huge surprise here either.
For our setup, we use age directly as covariate rather than e.g. age group such that the difference
between the full likelihood approach and the Poisson model is minimal based on Chapter 4.
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Overall, the results are therefore comparable across all the explanatory variables considered in
this example: There is an indication that the performance of EM-based model is worse in the
case of automatic choosing of bandwidth or no smoothing applied. We therefore examine the
means of the estimates obtained from each method for the different covariates, which are given
in Table 5.1.

We see that the observations from the histograms seem to be true. The EM-based model with
automatic choice of bandwidth underestimates the parameter related to gender by a notable
amount, with the mean being half the size of the true parameter. A similar behaviour is observed
for βtreatment with the given model. Here, the mean is around 0.036 away from the true value.
The EM-based model with no smoothing of the estimated baseline excess hazard performs a tad
better, but it underestimates the effect of age and overestimates the other two by a larger margin
compared to the other six models. Among these, there are not many differences in the means.
All of them manage to have a perfect mean estimate of the effect of age. For the effect of gender,
the mean obtained from the EM-based model with bwin=100 is closest to the true value of 0.1
with the other giving quite impressive estimates as well. Finally, it seems like the EM-based
model with bwin=1 gives the best estimates for the effect of treatment. Nevertheless, except
for the first two models, the models considered provide on average reasonable estimates of the
covariate effects. Note however that with the chosen sample size, the variability corresponding
to the estimates of gender is substantial. The effect related to this variable is estimated to be
negative for some data sets. We will see that this issue occurs in the following examples as well.

To investigate the flexibility of the EM-based models, we plot both the estimated baseline excess
hazards and cumulative excess hazards for the 500 simulated data sets obtained from the four EM-
based models. From Figure 5.13, we see that the EM model with automatic choice of bandwidth
shows a pattern of overestimation regarding the baseline excess hazard for most of the simulated
data sets. On the other hand, using bwin=1 and bwin=100 will give somewhat a mixture of both
underestimated and overestimated curves, even though it seems to be more curves corresponding
to the latter situation. If no smoothing is applied, most of the LOWESS-produced estimated
baseline excess hazard curves become completely wild with some even having a negative hazard
at a few time periods. From Figure 5.14 representing the cumulative baseline excess hazards, the
models with bwin=1 and bwin=100 seem to behave similarly with the true cumulative excess
hazard lying in the middle with the same amount of underestimated and overestimated curves.
This cannot be said for the situations with no smoothing or automatic choice of bandwidth. Using
the true curve as the splitting boundary, we observe an unequal proportion of overestimated and
underestimated curves.

As a final illustration based on this specific baseline excess hazard, the three test statistics and the
corresponding p-values based on Schoenfeld-like residuals from Chapter 4.5.2 are calculated for
each combination of simulated data set and covariate. This is done in R with the function rs.br
from relsurv. Here, the significance level is chosen to be 5%. Accordingly, for any simulated
data set, the null hypothesis of proportional excess hazard is rejected for a specific variable if the
p-value of a test statistic is lower than 5%. In the end, we calculate the proportion of times that
the null hypothesis gets rejected across the three test statistics for each covariate. The results
are given in Table 5.2. Here, KS corresponds to the usual maximum value of a Brownian bridge,
KSw is the weighted version with wi being proportional to the size of the risk set at time to
event of patient i (i.e. ρ = 1 in the function rs.br in R) and CVM represents the Cramér-Von
Mises-type statistic. Note however that the outcomes based on KSw are not reported here due
to some computational issues resulting in NA for some explicit simulated data sets. This concern
will be discussed a bit further later. Nonetheless, the results obtained from KS and CVM are
assuring as none of them rejected the correct null hypothesis an unusual amount of times.

The next step is to verify if the previous results apply to a different form of a Weibull baseline.
To do this, we adjust the baseline parameters such that λ0(t) is no longer constant over the
whole follow-up interval by choosing a = 0.75 and b = 0.005. Consequently, we have a monotonic
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Figure 5.13: A plot of estimated baseline excess hazards received from the four different EM-based
models based on the 500 simulated data sets, smoothed by the LOWESS-procedure in R with
f = 0.15. The sample size of each data set is 1000. The red thick line corresponds to the true
Weibull baseline excess hazard with a = 1 and b = 0.0025.
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Figure 5.14: A plot of estimated cumulative baseline excess hazards received from the four
different EM-based models based on the 500 simulated data sets. The sample size of each data
set is 1000. The red thick line corresponds to the true Weibull cumulative baseline excess hazard
with a = 1 and b = 0.0025.
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5.2. Illustration of additive hazard models

Table 5.2: Proportion of times the null hypothesis of proportional excess hazard is rejected
per-variable among 500 simulated data sets from a Weibull baseline with a = 1 and b = 0.0025.
The sample size of each data set is 1000. Here, the simulation uncertainty in terms of SD of the
estimated value is approximately

√
0.05(1−0.05)

500 ≈ 0.01.

(a) Age

Model KS CVM
EM (bwin=-1) 0.036 0.046
EM (bwin=0) 0.030 0.046
EM (bwin=1) 0.036 0.052

EM (bwin=100) 0.040 0.054
Poisson (Partition 1) 0.042 0.050
Poisson (Partition 2) 0.040 0.052

ML (Partition 1) 0.042 0.050
ML (Partition 2) 0.040 0.052

(b) Gender

Model KS CVM
EM (bwin=-1) 0.046 0.046
EM (bwin=0) 0.044 0.036
EM (bwin=1) 0.048 0.040

EM (bwin=100) 0.050 0.044
Poisson (Partition 1) 0.044 0.038
Poisson (Partition 2) 0.046 0.036

ML (Partition 1) 0.044 0.038
ML (Partition 2) 0.046 0.036

(c) Treatment

Model KS CVM
EM (bwin=-1) 0.042 0.036
EM (bwin=0) 0.046 0.034
EM (bwin=1) 0.044 0.034

EM (bwin=100) 0.042 0.032
Poisson (Partition 1) 0.042 0.036
Poisson (Partition 2) 0.042 0.036

ML (Partition 1) 0.042 0.036
ML (Partition 2) 0.042 0.036

decreasing baseline excess hazard with a pronounced non-linear form at the beginning of the
follow-up. The effects of the three covariates are still set to 0.05, 0.1 and 0.5, respectively. With
the given choice of baseline parameters, the proportion of excess events increases slightly and
will vary between 75% and 80% for the larger part of the data sets. Again, we consider the same
four values of bwin for the EM-based model from the previous example. For the Poisson and
full likelihood approach, the same two partitions of the follow-up interval are also used in the
estimation procedure. With the given setup, we simulate 250 data sets and Figure 5.15 shows
the distributions of the estimated parameters from the different models. No different as before,
the histograms corresponding to the non-smoothing and automatic bandwidth EM-based models
tend to have a shifted mean. In fact, the pattern of deviation is exactly the same, with the
automatic bandwidth model seemingly giving a larger mean estimate compared to the true value
for age while the opposite is true for the effect of gender and treatment. The non-smoothing
EM-based model yields a smaller mean estimate compared to 0.05 for the effect of age and larger
for the other two variables, just like in the situation with a = 1 and b = 0.0025. In comparison
to the previous example when the results of the other six models are almost equal, it seems
like the EM-based model with bwin=100 yields a slightly smaller mean estimate of the effect of
gender compared to the EM-based model with bwin=1 and both versions of the Poisson and
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Figure 5.15: Histograms of estimated coefficients for different covariates obtained from eight
particular methods and 250 data sets simulated from a Weibull baseline excess hazard with
a = 0.75 and b = 0.005. The sample size of each data set is 1000.
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5.2. Illustration of additive hazard models

Table 5.3: A table summarising the means of the parameter estimates obtained by applying eight
different models on 250 simulated data sets. The sample size of each data set is 1000. Here,
the Weibull baseline parameters are set to a = 0.75 and b = 0.005. The quantity in parentheses
corresponds to the sample standard deviation.

Model Mean of β̂age Mean of β̂gender Mean of β̂treatment
EM (bwin=-1) 0.0542 (0.0055) 0.0594 (0.0803) 0.4708 (0.0736)
EM (bwin=0) 0.0465 (0.0048) 0.1251 (0.0893) 0.5301 (0.0881)
EM (bwin=1) 0.0507 (0.0046) 0.0985 (0.0830) 0.5069 (0.0808)

EM (bwin=100) 0.0518 (0.0044) 0.0869 (0.0813) 0.4964 (0.0788)
Poisson (Partition 1) 0.0523 (0.0048) 0.1000 (0.0854) 0.5202 (0.0824)
Poisson (Partition 2) 0.0512 (0.0047) 0.1009 (0.0843) 0.5143 (0.0815)

ML (Partition 1) 0.0523 (0.0048) 0.1000 (0.0854) 0.5202 (0.0824)
ML (Partition 2) 0.0512 (0.0047) 0.1010 (0.0843) 0.5143 (0.0816)

full likelihood approach. A further examination of the means confirms this fact for these 250
specific simulated data sets, with the results presented in Table 5.3. The choice of bwin appears
to have a slightly larger effect for this choice of baseline parameters compared to the preceding
case. Now, the results of bwin=100 deviate a lot more from the model with bwin=1 and the two
assumed piecewise constant baseline excess hazard models.

In addition to the observation above, this combination of baseline parameters also illustrates
the effect of the partition of the follow-up interval on the estimates from the Poisson and full
likelihood approach. Now, the two distinct partitions yield estimates that differ slightly from
each other. The second partition with yearly bands during the first 10 years appears overall to
give closer estimates to the true values, even if the first partition happens to provide a mean
estimate that is spot on for the effect of gender.

As before, we continue the illustration by plotting both the estimated baseline and cumulative
baseline excess hazards to see if there exist some systematic patterns in the estimated curves from
the different models. For these specific simulated data sets, almost all the estimated baseline
excess hazard curves from the EM-based model with automatic bandwidth are located above the
red true curve for the larger part of the follow-up interval. The estimated hazards obtained from
the EM-based model with no smoothing are again fluctuating randomly. However, it seems like
none of them give a negative value of the hazard at any given point of time in comparison to the
previous example. Other than these differences, the other plots seem to behave in the same way
as the case with a = 1 and b = 0.0025.

Finally, we calculate the test statistics from Chapter 4.5.2 for this setting as well. Just like before,
we will only present the results acquired from KS and CVM , despite being able to calculate
KSw for each data set from this collection of simulations. For the variable age, the EM-based
method with bwin=-1 gives estimated models that yield unnatural higher rejection rates for
both tests compared to the other methods. This can be seen by observing that the true value
of 5% is not contained in the interval with the limits being 0.084 ± 2 · 0.014. Otherwise, the
results are as expected, with around 5% of the data sets leading to an incorrect conclusion of
rejecting proportional excess hazard for each covariate among many of the different tests and
models. A marginally difference from the case with a = 1 and b = 0.0025 is that CVM results in
more rejected tests for the treatment variable. In particular, the opposite is true when dealing
with the constant baseline excess hazard from the previous example, where KS rejects the null
hypothesis slightly more often that CVM for treatment. However, this difference seems to arise
due to simulation uncertainties.

We have now considered two different combinations of Weibull baseline parameters: One which
admits a constant baseline excess hazard and one that generates a monotonically decreasing
hazard with a clear non-linear behaviour at the start of the follow-up. As a final example of the
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Figure 5.16: A plot of estimated baseline excess hazards received from the four different EM-based
models based on the 250 simulated data sets, smoothed by the LOWESS-procedure in R with
f = 0.15. The sample size of each data set is 1000. The red thick line corresponds to the true
Weibull baseline excess hazard with a = 0.75 and b = 0.005.
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Figure 5.17: A plot of estimated cumulative baseline excess hazards received from the four
different EM-based models based on the 250 simulated data sets. The sample size of each data
set is 1000. The red thick line corresponds to the true Weibull cumulative baseline excess hazard
with a = 0.75 and b = 0.005.
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5.2. Illustration of additive hazard models

Table 5.4: Proportion of times the null hypothesis of proportional excess hazard is rejected
per-variable among 250 simulated data sets from a Weibull baseline with a = 0.75 and b = 0.005.
The sample size of each data set is 1000. Here, the simulation uncertainty in terms of SD of the
estimated value is approximately

√
0.05(1−0.05)

250 ≈ 0.014.

(a) Age

Model KS CVM
EM (bwin=-1) 0.084 0.084
EM (bwin=0) 0.032 0.048
EM (bwin=1) 0.036 0.056

EM (bwin=100) 0.036 0.056
Poisson (Partition 1) 0.040 0.052
Poisson (Partition 2) 0.032 0.052

ML (Partition 1) 0.040 0.052
ML (Partition 2) 0.032 0.052

(b) Gender

Model KS CVM
EM (bwin=-1) 0.064 0.052
EM (bwin=0) 0.044 0.044
EM (bwin=1) 0.052 0.060

EM (bwin=100) 0.052 0.044
Poisson (Partition 1) 0.052 0.060
Poisson (Partition 2) 0.048 0.048

ML (Partition 1) 0.052 0.060
ML (Partition 2) 0.048 0.048

(c) Treatment

Model KS CVM
EM (bwin=-1) 0.036 0.056
EM (bwin=0) 0.040 0.068
EM (bwin=1) 0.040 0.060

EM (bwin=100) 0.044 0.064
Poisson (Partition 1) 0.044 0.068
Poisson (Partition 2) 0.040 0.064

ML (Partition 1) 0.044 0.068
ML (Partition 2) 0.040 0.064

methods in Chapter 4 for a Weibull baseline, we want to adopt a monotonic increasing baseline
excess hazard with an even more evident non-linear shape than before. For this purpose, we
decide to set the baseline parameters as a = 4 and b = 0.0001. With these values, the hazard
function will attain the desired properties. The scale parameter of 0.0001 ensures that the
simulated excess times are not too small with a decent amount of excess events throughout the
follow-up interval. This leads to around 85% to 90% of the events being related to the excess
hazard.

A major difference in this example compared to the previous ones arises when fitting the Poisson
and full likelihood approach using the partition with yearly bands during the first ten years.
The given choice of baseline parameters and partition of follow-up yields convergence issues
for some simulated data sets in the estimation procedure of these models. After testing out
various divisions, we decide to go for the following splitting: We merge the first two bands into a
single band ranging from 0 to 2 years. Between 2 and 6 years, we define four yearly bands and
set a small band between 6 and 6.5 years. Finally, we specify a band between 6.5 and 9 years
before partitioning the rest of the follow-up in yearly intervals. The reason for this choice will
be discussed later. Thus, we will test out two different partitions for both the Poisson and full
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Figure 5.18: Histograms of estimated coefficients for different covariates obtained from eight
particular methods and 250 data sets simulated from a Weibull baseline excess hazard with a = 4
and b = 0.0001. The sample size of each data set is 1000.
64



5.2. Illustration of additive hazard models

Table 5.5: A table summarising the means of the parameter estimates obtained by applying eight
different models on 250 simulated data sets. The sample size of each data set is 1000. Here,
the Weibull baseline parameters are set to a = 4 and b = 0.0001. The quantity in parentheses
corresponds to the sample standard deviation.

Model Mean of β̂age Mean of β̂gender Mean of β̂treatment
EM (bwin=-1) 0.0531 (0.0039) 0.0624 (0.0657) 0.4803 (0.0688)
EM (bwin=0) 0.0494 (0.0039) 0.0940 (0.0671) 0.5025 (0.0719)
EM (bwin=1) 0.0501 (0.0039) 0.0907 (0.0665) 0.5032 (0.0707)

EM (bwin=100) 0.0418 (0.0047) 0.1685 (0.0807) 0.5648 (0.0867)
Poisson (Partition 1) 0.0324 (0.0030) 0.0705 (0.0498) 0.3406 (0.0499)
Poisson (Partition 2) 0.0471 (0.0037) 0.0882 (0.0639) 0.4758 (0.0670)

ML (Partition 1) 0.0324 (0.0030) 0.0705 (0.0498) 0.3406 (0.0499)
ML (Partition 2) 0.0471 (0.0037) 0.0882 (0.0639) 0.4758 (0.0670)

likelihood model: Partition 1 being the first one from the two previous examples and Partition 2
being the division we just described.

Relative to the previous Weibull baselines, the EM-based model with bwin=100 now returns
mean estimates that deviate noticeably from the true parameters, see Figure 5.18. The mean
estimates from the model heavily overestimate the effect of gender and treatment. The sample
standard deviations of both the estimates of gender and treatment are also considerably larger
than the rest. As a matter of fact, this model performs way worse compared to the EM-based
model without any smoothing of the estimated baseline excess hazards based on Figure 5.18. The
latter approach yields surprisingly decent results according to the same figure. For the Poisson
and full likelihood model using the partition with longer bands, the accuracy of the estimates
turns out to be no way near the true values in comparison to the preceding examples. The red
vertical lines representing the true parameter values do not even touch the histograms of age
and treatment obtained from these choices. The poor performances of these two models and
the EM-based model with bwin=100 are also reflected in Table 5.5. An additional note worth
mentioning is that the performances of the Poisson and full likelihood model with shorter bands
have slightly decreased in contrast to the case before. From Table 5.5, there is a small sign of
these models underestimating the effect of both age and treatment. This should not come as a
surprise as the non-linear shape of the baseline excess hazard is much more prominent in this
example. Also, the partition of the follow-up interval is not as fine compared to the previous
examples due to the convergence issues. For the effect of age, the mean estimates are not too far
away from the mean estimates of the EM-based model with bwin=1.

The results from above suggest that the behaviour of the estimated baseline excess hazards from
the different EM-based models will also change a lot compared to the two previous cases. We
can observe from Figure 5.19 that the EM model with automatic choice of bandwidth gives rise
to a lot of estimated baseline curves that have a different shape from the true hazard function.
Letting bwin=1 looks to diminish this problem with the true baseline lying in the middle of the
streams of estimated baseline curves. If bwin=100, this issue is almost nonexistent. On the other
hand, most of the estimated baseline curves are substantially underestimated, indicating that the
given model is not suitable in this situation. When it comes to the EM-based model with no
smoothing, the behaviour of the estimated curves is uncontrolled and all over the place. Indeed,
some of the estimated baseline excess hazard curves are approaching towards negative values,
resulting in decreasing cumulative baseline excess hazards for the later part of the follow-up
interval. Based on the theory, this is of course not appropriate. Despite that, the distribution of
the estimated cumulative baseline excess hazards from this model looks comparable to the case
with bwin=1. Therefore, the mean estimates from the two models are very alike compared to the
rest. The EM-based model with bwin=100 tends to overestimate the cumulative baseline excess
hazard based on the bottom right plot. In contrast, the EM-based model with automatic choice
of bandwidth produces more underestimated curves.
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Figure 5.19: A plot of estimated baseline excess hazards received from the four different EM-based
models based on the 250 simulated data sets, smoothed by the LOWESS-procedure in R with
f = 0.15. The sample size of each data set is 1000. The red thick line corresponds to the true
Weibull baseline excess hazard with a = 4 and b = 0.0001.
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Figure 5.20: A plot of estimated cumulative baseline excess hazards received from the four
different EM-based models based on the 250 simulated data sets. The sample size of each data
set is 1000. The red thick line corresponds to the true Weibull cumulative baseline excess hazard
with a = 4 and b = 0.0001.

66



5.2. Illustration of additive hazard models

Table 5.6: Proportion of times the null hypothesis of proportional excess hazard is rejected
per-variable among 250 simulated data sets from a Weibull baseline with a = 4 and b = 0.0001.
The sample size of each data set is 1000. Here, the simulation uncertainty in terms of SD of the
estimated value is approximately

√
0.05(1−0.05)

500 ≈ 0.01.

(a) Age

Model KS CVM
EM (bwin=-1) 0.176 0.108
EM (bwin=0) 0.040 0.032
EM (bwin=1) 0.032 0.028

EM (bwin=100) 0.688 0.648
Poisson (Partition 1) 0.028 0.056
Poisson (Partition 2) 0.032 0.040

ML (Partition 1) 0.028 0.056
ML (Partition 2) 0.032 0.040

(b) Gender

Model KS CVM
EM (bwin=-1) 0.068 0.072
EM (bwin=0) 0.060 0.064
EM (bwin=1) 0.060 0.056

EM (bwin=100) 0.352 0.324
Poisson (Partition 1) 0.064 0.056
Poisson (Partition 2) 0.060 0.080

ML (Partition 1) 0.064 0.056
ML (Partition 2) 0.060 0.080

(c) Treatment

Model KS CVM
EM (bwin=-1) 0.112 0.072
EM (bwin=0) 0.056 0.052
EM (bwin=1) 0.060 0.056

EM (bwin=100) 0.252 0.228
Poisson (Partition 1) 0.068 0.056
Poisson (Partition 2) 0.056 0.056

ML (Partition 1) 0.068 0.056
ML (Partition 2) 0.056 0.056

Lastly, we check the proportion of times the null hypothesis of proportional excess hazard is
rejected across this collection of simulated data sets based on KS and CVM . It is also possible to
calculate KSw for all data sets from this batch as well, but we decide to not present the results
here due to the same reasons as before. According to Table 5.6, both test statistics seem to
reject the null hypothesis by an enormous amount of times across all variables when considering
the EM-based model with bwin=100. Indeed, the proportional excess hazard assumption for
age is incorrectly rejected almost 70% of the time with KS! With CVM , the same quantity
is approximately 65%, which is still enormous compared to the expected 5% under the null
hypothesis. A similar behaviour appears for this model with the variables gender and treatment,
even if the proportions of rejected null hypothesis are smaller for these covariates. Hence, the
EM-based model with bwin=100 produces estimates that yield too many incorrectly rejections of
the null hypothesis of proportional excess hazard for age, gender and treatment. This is definitely
not true based on our setup. Also, the EM-based model with automatic choice of bandwidth has
the same issue with the variable age and treatment, especially when using the test statistic KS.
Otherwise, the other models look to give reasonable amount of rejected null hypothesis, with a
slight surprise that CVM rejects 8% of the time for the Poisson and full likelihood model with
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shorter bands considering these perform better on the estimated effects of gender.

5.2.2 Performance of the models with a piecewise constant baseline

In the previous section, we considered three different Weibull baseline excess hazards: one that
implies a constant hazard over the follow-up interval and two representing a non-linear hazard
rate. With a sensible partition of the follow-up interval, both the Poisson and full likelihood
approach have the potential to perform almost on the same level as the more flexible EM-method
with appropriate choice of bandwidth. This depends of course on the true form of the baseline
excess hazard as well. We will now examine if the behaviour of the methods changes when we
have a piecewise constant baseline excess hazard, which in principle should favour the Poisson
and full likelihood approach.

Following the notation from Chapter 4.1, the piecewise constant baseline excess hazard that
we will simulate from is constructed in the given way: We split the follow-up interval into
eight bands. The first five bands are yearly intervals from 0 to 5 years. The last three bands
are defined between 5-10 years, 10-15 years and 15-21 years. With this partition, we choose
χ = (−7, −6.75, −6.5, −6.25, −6, −5.75, −5.5, −5.75). This will provide a decent number of excess
events spread over the whole follow-up interval when combined with the effect of the covariates,
which in this case is set to 0.05, 0.1 and 0.5 for age, gender and treatment, respectively. The
proportion of excess events alternates usually from 70% to 75%. Finally, the same division of the
follow-up interval is used in the first version of both the Poisson and full likelihood approach.
In that case, the two models are correctly specified in terms of the true excess hazard. This is
not always possible for all choices of piecewise baseline excess hazards, but this issue will be
discussed later. Nonetheless, for the setup we have described, no problems in the estimation
procedures occur when using the correct partition in the models. For the second partition, we
define four bands with a length of 2.5 years for the first 10 years of the follow-up. The remaining
11 years follow the same splitting as the first choice of partition. Like in the preceding section,
histograms of the estimated parameters are presented in Figure 5.21. At first glance, many of
the distributions look to follow the same structure as the third Weibull situation, although the
size of deviation is not as extreme.

According to Table 5.7, the estimates of the EM-based model with bwin=1 and both version of
Poisson and full likelihood are very similar for all variables. When bwin is either -1 or 0, the
results are comparable as in all of the Weibull cases. Increasing bwin to 100, the same issue
with noteworthy, overestimated effects of age and treatment just like the third Weibull situation
occurs. Also, we can observe that the Poisson and full likelihood model with correctly specified
partition of the follow-up interval produce slightly better mean estimates of the effect of age
and treatment compared to the ones with larger bands. However, between the EM-based model
with bwin=1 and the correctly specified models, the differences in the mean estimates are very

Table 5.7: A table summarising the means of the parameter estimates obtained by applying eight
different models on 250 simulated data sets with the presented piecewise constant baseline excess
hazard. The sample size of each data set is 1000. The quantity in parentheses corresponds to the
sample standard deviation.

Model Mean of β̂age Mean of β̂gender Mean of β̂treatment
EM (bwin=-1) 0.0553 (0.0067) 0.0427 (0.0868) 0.4552 (0.0843)
EM (bwin=0) 0.0451 (0.0052) 0.1261 (0.0925) 0.5214 (0.0953)
EM (bwin=1) 0.0505 (0.0053) 0.0923 (0.0853) 0.5009 (0.0839)

EM (bwin=100) 0.0458 (0.0056) 0.1366 (0.0894) 0.5384 (0.0924)
Poisson (Partition 1) 0.0505 (0.0052) 0.0936 (0.0829) 0.5012 (0.0837)
Poisson (Partition 2) 0.0482 (0.0050) 0.0979 (0.0820) 0.4943 (0.0836)

ML (Partition 1) 0.0505 (0.0052) 0.0936 (0.0829) 0.5012 (0.0837)
ML (Partition 2) 0.0482 (0.0050) 0.0980 (0.0820) 0.4944 (0.0836)
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Figure 5.21: Histograms of estimated coefficients for different covariates obtained from eight
particular methods and 250 data sets simulated from the piecewise constant baseline excess
hazard introduced. The sample size of each data set is 1000.
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minor with both giving the same value for age up to four decimals. The EM-based model has a
slight edge on the effect of treatment while the Poisson and full likelihood approach provide an
unimportant improvement to the mean estimate of the effect of treatment.

Since the partition is correctly defined in the first Poisson and full likelihood model, we can also
inspect if these methods are able to estimate the baseline parameters correctly. From Table 5.8,
this is indeed the case with the estimated parameters following closely to the true ones defined
earlier. The slightly larger deviations of the estimates for the first, third and fourth band seem
to arise from natural variation.

Table 5.8: A table summarising the means of the baseline parameter estimates obtained from the
Poisson model and Estève full likelihood approach on 250 simulated data sets with a piecewise
constant baseline excess hazard. The sample size of each data set is 1000.

Time interval Poisson Estève/ML True
[0, 1] -7.0462 -7.0461 -7.0000
(1, 2] -6.7584 -6.7583 -6.7500
(2, 3] -6.5580 -6.5580 -6.5000
(3, 4] -6.3017 -6.3015 -6.2500
(4, 5] -6.0393 -6.0392 -6.000
(5, 10] -5.7832 -5.7831 -5.7500
(10, 15] -5.5258 -5.5257 -5.5000
(15, 21] -5.7723 -5.7722 -5.7500

Next, we investigate if the EM-based models manage to capture the piecewise constant behaviour
of the baseline excess hazard by plotting both the estimates of λ0 and Λ0. For bwin equal to
-1 and 0, we have the same problem as in the previous examples with almost all the estimated
baseline curves lying above the true hazard function throughout a large part of the follow-up
interval. When bwin is 1 or 100, at least some of the structure related to the piecewise constant
is captured by the estimated curves. Moreover, Figure 5.23 indicates that only the model with
bwin=1 yields estimates of the cumulative baseline excess hazard such that the true curve is
located in the middle of all the estimates at all time points. The same cannot be said for the
three remaining situations.

At last, we compute the proportional excess hazard test statistics for the models and data sets
considered in this section. Most of the results from Table 5.9 seem to be consistent with what we
may expect. Only the choice of the EM-based model without any smoothing and the test statistic
CVM stands out from the rest. Merely 2.4% of 250 simulated data sets yield a rejection of the
null hypothesis when choosing the EM-based model without any smoothing and the test statistic
CVM for the gender variable. This is the lowest value of this quantity from all the situations we
have considered in this chapter. However, there is no indication that this is a systematic behaviour
when dealing with other simulated data sets obtained from the same baseline. Furthermore, it
looks like CVM leads to less rejected tests for both gender and treatment in this case compared
to all the Weibull cases.

5.2.3 Summary

After testing out four different forms of baseline excess hazard, the results from the previous
examples show that the EM-based model with automatic choice of bandwidth clearly performs the
worst. In all cases, the default setting of the EM-based model in the rsadd-function systematically
underestimates the effect of gender and treatment for most of the data sets. The given issue
also translates to the results of the proportional excess hazard tests, leading to an unusual large
amount of times when the null hypothesis is rejected like in the last Weibull example, especially
for the age variable when this is the only effect the model manages to capture somewhat correctly.
Primarily, the degree of the problem mentioned looks to depend on the shape of the baseline
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Figure 5.22: A plot of estimated baseline excess hazards received from the four different EM-based
models based on the 250 simulated data sets, smoothed by the LOWESS-procedure in R with
f = 0.15. The sample size of each data set is 1000. The red thick line corresponds to the true
piecewise constant baseline excess hazard.
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Figure 5.23: A plot of estimated cumulative baseline excess hazards received from the four
different EM-based models based on the 250 simulated data sets. The sample size of each data
set is 1000. The red thick line corresponds to the true piecewise constant cumulative baseline
excess hazard.
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Table 5.9: Proportion of times the null hypothesis of proportional excess hazard is rejected
per-variable among 250 simulated data sets from the given piecewise constant hazard baseline.
The sample size of each data set is 1000. Here, the simulation uncertainty in terms of SD of the
estimated value is approximately

√
0.05(1−0.05)

500 ≈ 0.01.

(a) Age

Model KS CVM
EM (bwin=-1) 0.044 0.056
EM (bwin=0) 0.036 0.032
EM (bwin=1) 0.040 0.036

EM (bwin=100) 0.052 0.068
Poisson (Partition 1) 0.044 0.036
Poisson (Partition 2) 0.048 0.064

ML (Partition 1) 0.044 0.036
ML (Partition 2) 0.048 0.064

(b) Gender

Model KS CVM
EM (bwin=-1) 0.056 0.044
EM (bwin=0) 0.048 0.024
EM (bwin=1) 0.048 0.036

EM (bwin=100) 0.044 0.040
Poisson (Partition 1) 0.044 0.032
Poisson (Partition 2) 0.044 0.044

ML (Partition 1) 0.044 0.032
ML (Partition 2) 0.044 0.044

(c) Treatment

Model KS CVM
EM (bwin=-1) 0.072 0.052
EM (bwin=0) 0.056 0.044
EM (bwin=1) 0.052 0.044

EM (bwin=100) 0.052 0.044
Poisson (Partition 1) 0.060 0.044
Poisson (Partition 2) 0.064 0.048

ML (Partition 1) 0.060 0.044
ML (Partition 2) 0.064 0.048

excess hazard. If non-linearity is more apparent over the whole follow-up interval, the proportion
of rejected tests also becomes larger as we have seen in Table 5.6. In some extent, the treatment
variable also experiences the same difficulty, e.g. when a = 4 and b = 0.0001. On the other
hand, it looks like the mean estimates of gender and treatment become slightly closer to the true
values when the degree of non-linearity is increased. Subject to the results we have obtained
from the simulation study, the default setting when fitting an EM-based model with the function
rsadd, i.e. when bwin=-1, is not recommended due to the inconsistency and systematic errors
introduced in the estimates.

When bwin=100, both the mean estimates and the results of the proportional excess hazard
tests are reasonable if the form of the baseline is simple, e.g. the first two Weibull cases except
for the effect of gender when a = 0.75 and b = 0.005. However, increasing the complexity
of the baseline excess hazard will produce worse mean estimates based on Table 5.5 and 5.7,
especially in the presence of strong non-linearity. This is one of the matters that distinguishes the
choice of bwin=100 from the default setting. The other point that sets the case with bwin=100
apart from bwin=-1 is the number of times the null hypothesis is rejected per-variable with a
highly non-linear hazard, which are enormous when bwin=100 compared to the case of bwin=-1.
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Overall, choosing bwin=100 implies a severe degree of oversmoothing of the estimated baseline
excess hazard, and this leads to a larger bias. The effect of oversmoothing becomes problematic
when the true hazard has a complex form, which is reflected through the estimated parameters.
Additionally, if the true hazard is a continuous and extremely non-linear function, the impact of
oversmoothing can also be seen from the proportion of times the null hypothesis is rejected for
each variable. Reducing to bwin=1, the results obtained are consistent across all four types of
baseline excess hazard. The EM-based model with bwin=1 gives mean estimates that are closely
to the true values for each choice of baseline. Also, no issues are visible from the proportional
excess hazard tests unlike the situation where bwin=100.

If we look at the EM-based model that does not apply any smoothing on the estimated baseline
excess hazard, the method overestimates the effect of gender and treatment frequently. This
seems to happen if the presence of non-linearity is absence in the baseline excess hazard, at
least in accordance with the setups and collection of simulated data sets considered here. In
the case where a = 4 and b = 0.0001, this method works apparently very well and outperforms
the model with bwin=1 in estimating the mean estimates of gender and treatment. In contrast
to the situation where bwin is equal to -1 and 100, the non-smoothing model does not lead
to bizarre proportions of rejected tests whenever the effects of covariates are overestimated or
underestimated. Overall, these examples shows that it is indeed important to choose appropriate
values of bandwidth in the smoothing procedure when fitting the EM-based model with the
rsadd-function. The size of this quantity depends heavily on the underlying true excess hazard
of the data set we are dealing with. From the results we have obtained, it looks like bwin=1 is
the best choice for all four cases. In reality, small adjustments like e.g. a slightly larger or smaller
value such as 5 or 0.5 could perform better for given data sets. All in all, manually choosing a
moderate value of bwin will in general yield the best results in almost any cases.

Switching to the Poisson and full likelihood model, no combinations of partition and baseline
excess hazard that we have considered give rise to abnormal proportions of rejected tests. It is no
surprise that the mean estimates obtained from these two are very close to the true parameters if
the actual baseline is either constant or piecewise constant. For the latter situation, the difference
between using the correct partition in the estimation procedure and a division with longer bands
is minor. A similar behaviour can also be seen in the second Weibull example between a partition
with shorter and longer bands. However, there is a clear evidence related to the limitations of
these types of models when the true hazard is highly non-linear like in the results from Table
5.5. The two models using the partition with longer bands underestimate all covariate effects
consistently. The results from splitting the follow-up in smaller bands appear to be better, even
if the mean effect of treatment is still slightly off from the real value. This makes sense as the
chosen division implies constant hazard over a smaller time interval. As a consequence, the
estimation procedure manages to capture some of the monotonic behaviour of the non-linear
baseline excess hazard.

A question that may arise from the observations above could be: Why did we not choose an
even finer partition of the follow-up interval in the last Weibull example to capture more of the
non-linear behaviour? The reason is that a finer splitting gives rise to convergence troubles in
some cases. According to Perme et al. [6], all models considered will struggle with this problem
when the proportion of excess deaths is around 30% or less. Even though not reported here,
this is pretty much what we have gotten when we test out different values of Weibull baseline
parameters and χ for the piecewise constant baseline before choosing the setups in the earlier
sections. However, the lack of excess events is not the only problem that causes complications
with convergence. As an example, among the 250 simulated data sets from the Weibull baseline
with a = 4 and b = 0.0001, the average proportion of excess events is approximately 88%, which
is way above the 30% borderline. Despite that, using e.g. two yearly bands instead of a single one
from 0 to 2 years of follow-up will lead to divergence for certain data sets. In fact, the Poisson
model converges in 242 out of 250 data sets. At the same time, only 199 of the data sets result
in convergence when applying the full likelihood approach. Based on the simulations done, it
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seems like if the Poisson method diverges for a given data set, the full likelihood model with the
same partition will most likely diverge as well. On the other hand, the converse is not necessarily
true. The Poisson method appears therefore to be somewhat more stable.

After examining different quantities, a reason behind this occurrence seems to be related to the
number of excess events during some particular bands. If the histogram of the observed follow-up
times in the sample follows a bell-shaped form, a criterion for convergence is that the two bands
at the tails of the distribution need to contain a decent amount of excess events. Especially the
band on the left tail should not be lacking in excess events as both methods seem to be very
sensitive to this one. To illustrate this fact, consider the second data set from the 250 simulated
ones mentioned above. Applying two yearly bands between 0 and 2 years will cause divergence
for both methods. Investigating the distribution of the observed follow-up times, it turns out that
the band between 0 and 1 year of follow-up contains 36 events. Nevertheless, only four of them
are due to the excess hazard and condition C. However, if the first band is defined between 0 and
2 years, both methods converge as the number of excess events in this particular band is now 67.

Exploring the right tail of the observed follow-up time distribution, consider the 28th simulated
data set from the same collection in the preceding paragraph. For this data set, dividing the
time interval between 6 and 9 years of follow-up into yearly bands also provokes convergence
issues when using the full likelihood approach and a single band between 0 and 2 years. However,
the same problem does not appear for the Poisson model with the identical partition of the
follow-up time period. As before, we examine the number of excess events that occur in the final
band which contains an observed time. In this case, only two observations are registered with
an observed time between 8 and 9 years and just one of them experiences an event due to the
excess hazard. Therefore, it appears that the Poisson model is less vulnerable to the lack of
excess events during the band on the right tail in contrast to the full likelihood approach. When
splitting the period between 6 to 9 years in two parts, one from 6 to 7 and one from 7 to 9, the
latter band contains 6 excess events. Hence, both methods are able to converge. Altogether, the
decision of splitting the time period between 6 to 9 years into yearly bands yield convergence for
all 250 generated data sets with the Poisson. On the other hand, the full likelihood approach
with the same partition diverges for 13 out of 250 data sets. To accommodate the convergence
issues for some specific data sets in the collection (e.g. the 37th one) where a band between 7
and 9 years is used, we decide to employ a large band ranging from 6.5 to 9 years such that the
full likelihood approach converges for the whole collection of data sets. For the later bands, the
choice of longer bands or yearly bands does not affect the results as no observations have an
observed time in these bands with this setup.

On the basis of the observations above, it seems like the Poisson method generally diverges mostly
due to the lack of excess events in the first band that contains an observed time. By comparison,
the full likelihood approach also encounters convergence problems if an insufficient amount of
excess events occurs during the last band with an observed time, in addition to the previous
statement. Thus, a small proportion of excess events is not the only issue that can contribute
to divergence for these two models. We also mentioned in Chapter 5.2.2 that it is not always
possible to use the correct partition in the estimation procedures of both models even when the
true piecewise constant baseline excess hazard is known. A similar check as we have done for
the former Weibull case leads to the same conclusion here as well. This is not a problem for
the choice of χ and partition we defined in Chapter 5.2.2. However, if we adjust the baseline
parameter vector to e.g. χ = (−10, −8, −6, −4, −2, 0, −2, −4), the same and correct partition
will result in divergence for some data sets when fitting the two models due to the lack of excess
events in the critical bands mentioned.

Finally, as long as the choice of models are reasonable, both KS and CVM operate well in
terms of testing the proportional excess hazard assumption. The number of times that the null
hypothesis is rejected remains close to 5% in almost all cases, which is the significance level that
we have set. When the models used are very inadequate, for instance when bwin=100 in the final
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Weibull example, both test statistics also reflect these issues as presented in Table 5.6. Hence,
tests of proportional excess hazard are not trustworthy when the estimated λ0(t) is heavily biased.
However, it looks like KS is a bit more sensitive to this issue than CVM by having a larger
proportion for the majority of the variables. An explanation could be that CVM explores the
whole follow-up interval and manages therefore in a few more cases to capture the fact that
the proportional excess hazard is valid for all variables. Furthermore, we mentioned earlier the
concern related to KSw when the rs.br-function in relsurv is not able to calculate the test
statistic for some specific data sets. Examining the data sets where this matter is present, it seems
like they all have in common that the minimum difference between two consecutive follow-up
times in each data set is in the order of 10−8 or smaller. Thus, the issue could potentially be
related to handling of ties in the implementation. However, there are also some data sets with
similar values of this difference where this problem does not appear. Nevertheless, most of the
data sets do have a larger minimum difference than a value of 10−8 if KSw yields NA as a result.

As a whole, the more flexible EM-method and the piecewise baseline models have their own
disadvantages and advantages. For both methods, we need to manually tune either the bandwidth
or the partition of the follow-up interval in order to get reasonable results. In that sense, the
EM-based model has a clear advantage as it does not run into convergence issues due to the
choice of bandwidth. Of course, it is also able to capture more exotic shapes of the baseline excess
hazard compared to the likes of Poisson or full likelihood approach. However, the EM-based
model could be a disadvantage when the explicit form of the baseline excess hazard is needed in
different scenarios. With the Poisson and full likelihood approach, the form of λ0 as a function of
time is decided in advance and therefore easily computed at any given time using the baseline
parameter estimates. From the rsadd-function, both the baseline and cumulative baseline excess
hazard estimates are only calculated at the observed times to event in the sample. To obtain
an estimate of λ0 at a certain time t, we may have to rely on a similar smoothing estimator
like (4.21) again. Furthermore, we need to integrate this equation in order to get an estimate
of the cumulative baseline excess hazard. With the bandwidth being also dependent on time,
the calculation is therefore substantially more complicated in this case. By the same reason,
the Poisson and full likelihood approach are therefore much more computational efficient when
dealing with larger data sets. But in general, the EM-method with moderate smoothing seems to
be a safer bet in real-life applications based on the simulations we have done.
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CHAPTER 6

CUSUM charts for additive hazard models

The methods of control charts from the subject of statistical process control have been an
indispensable aid for e.g. industrial companies in many decades. Standard applications could be
monitoring the manufacturing of a given product, checking for instance if all the wheels produced
have a diameter in the allowed range. Because the techniques became more versatile as time went
by, other fields like medicine have also started to employ control charts as an equipment in the
toolkit. In our case, we will propose a control chart which is based on some of the additive hazard
models, specifically to detect a change in the excess hazard over time, e.g. if there is a tendency
towards systematically shorter or longer recurrence times. But firstly, a small motivation of using
control charts where the quantity monitored is the time until an event of interest is presented,
based on the work of Gandy et al. [7].

6.1 Motivation

In some applications, monitoring time until an event may be of interest. An example could be
when clinics want to examine if the distribution of recurrence time deviates over calendar time.
For these situations, one is more interested in systematic changes over time rather than sudden
departures. CUSUM charts are developed specifically for such cases.

Consider now a setting where observations enter the monitoring system at the arrival times ω1, ω2,
... and encounter an event of interest after T1, T2, ... time units. The censoring time in the chosen
time unit and covariate vector of the i-th individual are denoted by Ci and Xi as before. Also,
for each i, Ti and Ci are assumed to be conditionally independent given ωi and Xi. At a calendar
time t ≥ ωi, the current time at risk for the given individual is simply Ai(t) = min(Ti, Ci, t − ωi).
The event indicator in this case at a time t ≥ ωi is defined as δi(t) = I {Ti <= Ai(t)}. Finally,
we assume that the relevant information about a given patient is available immediately after the
arrival of the individual.

With the preceding setup, Gandy et al. [7] defined two different hazard functions that vary across
the individuals depending on the covariate vectors. More specifically, the hazard function of
the time to event Ti when in an acceptable state is denoted as h0i(·) = h0(·, Xi). This is often
referred as the in-control hazard rate, established from e.g. past experience or decided beforehand.
Now, assume that the hazard rate changes its characteristic after an unknown time η ∈ [0, ∞)
to a so-called out-of-control hazard rate h1i(·) = h1(·, Xi). In practice, this means that if an
individual arrives at a time ωi ≤ η, the hazard rate of the time to event is h0i(u) if u ≤ η − ωi

and h1i(u) when u > η − ωi. Finally, Hji(t) =
∫ t

0 hji(u) du represents the cumulative hazard rate
in the two states with j = 0, 1. Based on these quantities, Gandy et al. [7] established a CUSUM
chart associated with a general time to event model by using the likelihood from (4.4). With the
notations introduced in this section, the likelihood for being in-control (j = 0) or out-of-control
(j = 1) is therefore

Lj(t) =
∏

i: ωi≤t

hji(Ti)δi(t) exp [−Hji {Ai(t)}] . (6.1)

77



6. CUSUM charts for additive hazard models

Notice that all the likelihoods we have considered so far are also often called partial likelihoods
as the contributions from the censoring and arrival time distributions are neglected [13].

A sensible measure based on the likelihood that quantifies the difference between the in-control
and out-of control is the log-likelihood ratio test statistic between the two states. Using (6.1)
and accumulating the likelihood ratio contributions up to time t, this becomes

R(t) =
∑

i: ωi≤t

δi(t) log
{

h1i(Ti)
h0i(Ti)

}
−
∑

i: ωi≤t

[H1i {Ai(t)} − H0i {Ai(t)}] . (6.2)

Accordingly, Gandy et al. [7] defined a CUSUM control chart using the log-likelihood ratio as
follows:

Ψ(t) = R(t) − mins≤tR(s) (6.3)

The latter part in the equation above makes sure that the CUSUM chart restarts when it reaches
0. In practice, the chart from (6.3) is calculated at each time point on a grid of values over the
monitoring time period of interest. Denoting the threshold at a value c > 0, the chart gives a
signal at a time τ∗ = inf {t : Ψ(t) > c}. To decide the value of c, one can relate it to a desired
in-control average run length. This corresponds to the expected time until the CUSUM chart
crosses the threshold when in reality the hazard never changes to the out-of-control state, i.e.
E(τ∗ | η = ∞). Another common strategy is to choose c such that the false alarm probability in
a given time period is equal to a specified value κ, i.e. P (τ∗ ≤ Υ | η = ∞) = κ with Υ > 0 and
0 < κ < 1.

Following the scheme we just described, Gandy et al. [7] explored the situation with a proportional
alternative, i.e. the out-of-control hazard rate is proportional to the in-control hazard such that
h1i(u) = ρh0i(u) for some 0 < ρ < ∞. In this case, the log-likelihood ratio test statistic from
(6.2) simplifies to

Ψ(t) = log(ρ)N(t) − (ρ − 1)Λ(t). (6.4)

Here, N(t) =
∑

i δi(t) is the number of events up to and including time t after the start of
monitoring and Λ(t) =

∑
i: ωi≤t H0i {Ai(t)}. One reason for considering a proportional alternative

is due to the fact that the threshold c can be analytically computed in this case. Since this
method will not fit into the relative survival setting as we will see later, the details associated
with the approach will be omitted. Instead, we will only give a brief review of the main results.
Rather than using the two quantities described earlier to choose c, Gandy et al. [7] looked at
the expected number of events until stopping or the probability that N(τ∗) is not larger than a
chosen value Nmax > 0 when in-control, i.e. E {N(τ∗) | η = ∞} or P (N(τ∗) ≤ Nmax | η = ∞).
Next, a method based on a discrete time Markov chain with finite state space has been derived
to calculate these two measures, which turns out to depend on c. Hence, for a pre-specified value
of E {N(τ∗) | η = ∞} or P (N(τ∗) ≤ Nmax | η = ∞), one can solve the relation with respect to c
and obtain a threshold without doing any sort of simulations under the proportional alternative.
For even more details, we refer to the Appendix of the main article [7].

6.2 Constructing a CUSUM chart for an additive hazard model with
piecewise constant baseline

In the previous section, we presented how the CUSUM chart works for a general time to event
model that considers the overall hazard. Now, we will extend the work done by Gandy et al.
[7] to the situation with an additive hazard model. For this part, we will mostly focus on the
parametric model with a piecewise constant baseline.

Recall that the overall hazard of a patient is the sum of the population hazard and the excess
hazard due to a condition C of interest as expressed in (4.2). In the relative survival setting, we
are only interest in the excess part as the population hazard is deterministic and can be found
from life tables. Since we want to detect a change in the excess hazard, it is not appropriate to
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consider a proportional alternative on the overall hazard like in the situations from Chapter 6.1.
Instead, we rather suggest a proportional alternative on the excess hazard. More specifically, if
the in-control hazard is h0i = λP i + λEi, the out-of-control hazard is given as h1i = λP i + ρλEi

for some ρ > 0. Inserting these assumptions back into (6.2), the log-likelihood ratio test statistic
for this particular case becomes

R(t) =
∑

i: ωi≤t

δi(t) log
{

λP i(Ti) + ρλEi(Ti)
λP i(Ti) + λEi(Ti)

}
− (ρ − 1)ΛE(t), (6.5)

where ΛE(t) is now defined as ΛE(t) =
∑

i: ωi≤t ΛEi {Ai(t)}. Correspondingly, we propose a
CUSUM chart for the additive hazard model by using (6.5) as R(t) in (6.3). With the assumption
of a proportional excess hazard, which is essential in all methods considered in Chapter 4, the
expression above can be rewritten as

R(t) =
∑

i: ωi≤t

δi(t) log
{

λP i(Ti) + ρλ0(Ti) exp (βXi)
λP i(Ti) + λ0(Ti) exp (βXi)

}
− (ρ − 1)ΛE(t). (6.6)

Here, λ0(t) is the usual baseline excess hazard function and

ΛE(t) =
∑

i: ωi≤t

Λ0 {Ai(t)} exp (βXi).

In practice, both λ0 and β are estimated from a baseline period where the hazard is assumed to be
in-control. When dealing with a piecewise constant baseline such that λ0(t) = exp [

∑
k χkIk(t)],

λEi (and therefore β and χ) can be estimated based on data from the past using any of the
GLM-based models or full likelihood approach from Chapter 4 under the given assumption. As
usual, λP i can be found from the population tables. Later, we will extend the methodology to
the setting with an EM-based model with a more flexible λ0(t).

A problem that arises for the given CUSUM chart is that the exact threshold c cannot
be analytically computed with respect to some quantities like e.g. E {N(τ∗) | η = ∞} or
P (N(τ∗) ≤ Nmax | η = ∞). The Markov chain method only works if R(t) can be expressed
in a form like in (6.4) where the process always jumps with the same height, i.e. when it is
possible to factorize out N(t) such that the coefficient in front of the counting process is constant
over time. This is indeed not possible when examining the expression given in (6.5). Now, the
height that R(t) jumps will differ depending on when the individuals experience an event via the
logarithm factor. Only when the jump height is constant like in (6.4), the threshold c obtained
from the Markov chain method will be exact. Therefore, c needs to be decided via simulations. In
applications, the procedure of finding c via simulations involves modelling the arrival distribution
ωi, the covariates Xi and the censoring distribution Ci [7]. As presented later, we opt for the
criteria of false alarm probability when choosing c based on simulations.

6.3 Testing the proposed CUSUM chart with piecewise constant baseline
on simulated data sets

Now, we will see how the proposed method from the previous section performs on simulated
data when all the parameters are known in advance. As a first note, the method will be used
retrospectively in the examples that we will introduce. In other words, we have that the data
set used in the monitoring process is already collected and finalized. Therefore, we know which
patient that will eventually die during the monitoring period. The main reason for focusing
on the usage of the method in this way is to apply the procedure for a real data set from the
Norwegian Cancer Registry later in Chapter 7. In summary, when implementing the method
for this specific purpose, we only need to consider the patients that will experience an event
during the whole period when evaluating the first term in (6.6) at a given time point on a grid.
The continuous part is computed by considering all patients who have arrived up to time t
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and evaluating the cumulative excess hazard at the corresponding at-risk times. For the first
illustrations, the same baseline parameters and partition of the follow-up interval as in Chapter
5.2.2 are used. The choices of age distribution, covariates that effect the excess hazard and the
corresponding parameter vector β are also identical. The only difference is that we want to
monitor the excess hazard from the beginning of 2010 to the beginning of 2020.

We start out by looking at three different values of ρ: 0.75, 1.25 and 1.50. The arrival process
follows a homogeneous Poisson process with intensity equal to 100. Throughout the 10 years of
monitoring, around 1000 observations arrive into the monitoring system in each data set. To
find the threshold c for the three different values of ρ, we fix the false alarm probability to be
P (τ∗ ≤ 10 | η = ∞) = 0.05. 1000 data sets are then simulated under the assumption that the
hazard stays in-control throughout the 10 years of follow-up. For every data set, the CUSUM
chart is calculated with the maximum value being stored in a vector. Note that we have now
used the true parameters in calculating the CUSUM chart to look at the theoretical performance.
Finally, the 5% upper quantile of the distribution of the maximum CUSUM chart values among
the 1000 data sets corresponds to the threshold c. With ρ = 1.25, we have that c = 4.46 while
ρ = 1.50 yields c = 5.76. Setting ρ = 0.75, the resulting threshold is c = 4.55.

After obtaining the values of c, we consider for all values of ρ three cases where the overall
hazard changes from h0i = λP i + λEi to h1i = λP i + ρλEi. The first situation corresponds to
η = 5, which implies that the hazard jumps to the out-of-control state 5 years after the start of
monitoring in 2010. In the second circumstance, η = 0 such that the hazard is already equal
to the out-of-control hazard at the beginning of monitoring. The last one confronts a situation
which should not be suitable for the CUSUM charts considered. Now, only the individuals who
arrive 5 years after the beginning of monitoring will experience the out-of-control hazard. This
scenario is denoted with η∗. For each case, we simulate 1000 data sets and check whether the
calculated CUSUM charts signal or not. The results are summarised in the Table 6.1, and one
example of a CUSUM is plotted in Figure 6.1.

Table 6.1: A table summarising the performance of the proposed CUSUM chart for the different
combinations of ρ and η with the setup from Chapter 5.2.2. 1000 data sets are simulated in each
combination and the monitoring runs over 10 years. A single data set contains roughly 1000
observations with arrival intensity equal to 100.

Combination Proportion with signals
ρ = 0.75 & η = 0 94.6%
ρ = 0.75 & η = 5 90.2%
ρ = 0.75 & η∗ = 5 17.4%
ρ = 1.25 & η = 0 89.6%
ρ = 1.25 & η = 5 79.3%
ρ = 1.25 & η∗ = 5 15.7%
ρ = 1.50 & η = 0 100.0%
ρ = 1.50 & η = 5 99.9%
ρ = 1.50 & η∗ = 5 33.0%

For all three values of c, we observe that the procedure manages to detect the change more often
when η = 0 compared to η = 5. Increasing the absolute value of ρ will also imply more signals for
a fixed value of η, which is very natural if the hazard actually jumps to this specific out-of-control
state. A potential reason why the number of signals is much larger for a fixed ρ when η = 0
is, in addition to twice as long monitoring period after the shift, due to the chosen baseline
excess hazard and partition of the follow-up interval. With the selected setup, it seems like the
difference between the cumulative baseline excess hazard when in-control and out-of-control does
not become noticeable in size until after approximately 5 years of monitoring. Thus, if the jump
from the in-control to the out-of-control state is supposed to happen at η = 5 years and we stop
the monitoring after 10 years, the CUSUM chart ends in most cases at the time point when the

80



6.3. Testing the proposed CUSUM chart with piecewise constant baseline on simulated data
sets

increase in Ψ(t) would start to kick in. Furthermore, the population hazard is somewhat larger
than the excess hazard for the individuals that experience an event. This is the main issue with
the CUSUM chart based on the additive hazard model in the relative survival setting compared
to the general ones discussed in [7]. Thus, it should be more difficult for the chart to signal fast
right away after η = 5 in the presence of λP i. An example of a CUSUM chart that signals in
the described situation is shown in Figure 6.1. On the other hand, if the hazard is already in
the out-of-control state at the start, the 10 years of monitoring is long enough to detect the
noteworthy difference that appears around 5 years after changing to the out-of-control hazard.

Considering the situation with η∗, the proportion of signals is much smaller compared to the
standard scenarios that the CUSUM charts are intended for. An explanation of this outcome is
due to the fact that much less individuals will encounter the out-of-control state. All patients
who arrive before 5 years of monitoring are set to endure the in-control state for the rest of
their respective follow-up times. Consequently, we will have fewer jumps corresponding to the
out-of-control state and this leads to much less signals. Overall, the proposed CUSUM charts do
not work very well for this particular setting.
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A signal from a CUSUM chart for a piecewise constant baseline when η=5 and ρ=1.25
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Figure 6.1: An example of a CUSUM chart resulting in a signal when the hazard corresponds to
the out-of-control state 5 years after the start of monitoring in 2010. Here, λ0 follows a piecewise
constant baseline described in Chapter 5.2.2. The arrival intensity is equal to 100 and ρ = 1.25.
The red line corresponds to the threshold c.

As a further test, we increase the arrival intensity from 100 to 1000. For each data set, this implies
that around 10000 observations arrive in the span of 10 years. Due to computational limitations,
we only run 100 iterations both when attempting to find c and checking the performance of the
charts. With ρ = 1.50, the approximated value of c is 7.77 while fixing ρ = 0.75 yields c = 6.93.
However, letting ρ equal to 1.25 grants uncommonly a smaller threshold with c = 6.05. Looking
from the opposite perspective, it could also be that the simulated values of c that we obtained for
ρ = 0.75 or ρ = 1.50 are unusually large. Now, if we somehow rerun the same simulation again
with a different seed for ρ = 1.25, the procedure leads to c = 6.62, which is closer to the value of
c that we obtained for ρ = 0.75 compared to the first iteration. This shows a disadvantage of
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both the CUSUM chart based on relative survival models and other time to event models with
non-proportional alternatives: The process of simulation to arrive at a value of c can give quite
varying results for each loop if the number of iterations is rather small. But increasing this value
in each simulation will be computationally demanding, especially if the number of observations is
large as in the case where the intensity is set to 1000.

Table 6.2: A table summarising the performance of the proposed CUSUM chart for the different
combinations of ρ and η with the setup from Chapter 5.2.2. 100 data sets are simulated in each
combination. A single data set contains roughly 10000 observations with arrival intensity equal
to 1000. For the case with ρ = 1.25, the largest value among the two values obtained from
simulations is used (i.e. c = 6.62).

Combination Proportion with signals
ρ = 0.75 & η = 0 100%
ρ = 0.75 & η = 5 100%
ρ = 0.75 & η∗ = 5 52%
ρ = 1.25 & η = 0 100%
ρ = 1.25 & η = 5 100%
ρ = 1.25 & η∗ = 5 46%
ρ = 1.50 & η = 0 100%
ρ = 1.50 & η = 5 100%
ρ = 1.50 & η∗ = 5 81%

Table 6.2 shows that for all combinations of η and ρ considered in this example, the 100 simulated
data sets yield in each case a signal. We expect this to happen when η = 0 as the proportion
with signals is already roughly 90 percent when the arrival intensity is set to 100 for all values of
ρ. Now, the case with ρ = 1.25 also yields signals for all the 100 simulated data sets compared
to the previous choice of arrival intensity, resulting in an increase of 21.7% in the proportion
with signals. Even with 100 iterations, we can see a considerably difference in the power of the
CUSUM charts when the number of observations in the monitoring system increases.

In addition, it looks like the detection power has somewhat increased for the cases with η∗ = 5
when the arrival intensity is larger. If ρ = 1.5, we obtain a signal ratio of 81 percent compared to
the previous case where the same quantity is roughly 33 percent. In addition, this proportion
has also increased when ρ = 1.25 and ρ = 0.75. It is sensible that a larger sample size will always
give better results here as well. Thus, we will have more observations that will reach the 5-year
mark, where the difference between the two states becomes noticeable in terms of the excess
event times. This leads to better power at the end due to more events such that the CUSUM
chart manages to signal more often right before the monitoring stops.

Table 6.3: A table summarising the performance of the proposed CUSUM chart for the different
combinations of ρ and η with the setup from Chapter 5.2.2. 1000 data sets are simulated in each
combination. A single data set contains roughly 250 observations with arrival intensity equal to
25.

Combination Proportion with signals
ρ = 0.75 & η = 0 53.9%
ρ = 0.75 & η = 5 41.7%
ρ = 0.75 & η∗ = 5 9.4%
ρ = 1.25 & η = 0 45.0%
ρ = 1.25 & η = 5 36.3%
ρ = 1.25 & η∗ = 5 10.9%
ρ = 1.50 & η = 0 86.1%
ρ = 1.50 & η = 5 81.5%
ρ = 1.50 & η∗ = 5 18.4%
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Finally, we look at the other end of the scale regarding the arrival intensity by decreasing this
quantity to 25. This leads to around 250 arrivals in a 10-year time period for each data set.
Again, 1000 iterations are done due to the lower amount of observations in this case. Using the
same criteria as before to find the threshold, we arrive at c = 3.07 for ρ = 0.75. Letting ρ = 1.25
and ρ = 1.50, the simulations yield 2.89 and 4.12 as the threshold values, respectively. Table
6.3 shows that the power has decreased for every combination of ρ and η as anticipated due to
the smaller number of observations in each simulation. For the case with ρ = 0.75 & η = 0, the
proportion with signals has decreased by 40.7% compared to the results from Table 6.1. Similar
reductions can also be observed for the remaining situations with η. A small decrease in power
when considering the scenarios with η∗ is also perceived compared to the outcomes from Table
6.1. The minor decline is due to the fact that the signal ratio is already very small in the first
example.

To check that the shape and size of the baseline excess hazard have an impact on the performance
of the method, we now look at a somewhat different shape of a piecewise constant baseline.
Instead of a choice where the baseline excess hazard is largest between 5 and 10 years, we consider
again a piecewise constant λ0(t) such that χ = (−5, −10, −11, −12) with the following partition
of the follow-up interval: 0-0.25 years, 0.25-5 years, 5-10 years and finally 10-21 years. Again, we
start the monitoring from the start of 2010 to the start of 2020 such that the latter partitions can
be omitted. The intensity is also set to 100 like in the scenario leading up to Table 6.1. Running
1000 iterations to estimate c based on the criteria P (τ∗ ≤ 10 | η = ∞) = 0.05 yields a threshold
value of 3.18. Finally, the hazard alters to the out-of-hazard after η = 5 years of monitoring with
ρ = 1.25 for the next batch of simulations. Out of 1000 data sets, 311 of them result in a CUSUM
chart which crosses the threshold. If we let η = 0, 585 signals are obtained out of 1000 iterations.
For the case with η∗ = 5, the proportion with signals is now 29.4%, which is nearly twice as large
compared to the situation with an identical combination of ρ and η∗ from Table 6.1.

Also, the excess event ratio among these simulated data sets ranges from 34.6% to 55.7% with an
average of roughly 44%. In contrast, the baseline and partition of follow-up interval in Chapter
5.2.2 will result in the same quantity varying from 68% to 82% with a mean of 74% when ρ = 1.25
and η = 5. Similar values are obtained for the situation with ρ = 1.25 and η∗ = 5. This shows
that the power depends on the combination of shape and size of the baseline excess hazard, excess
event ratio and sample size in each data set. If the situation is similar to the case with η∗ = 5,
which we want to stress again is related to a scenario where the proposed CUSUM charts are not
intended for, the reduction in excess events does not necessarily lead to decreasing power. Here,
the shape seems to be the most important factor that impacts the increase in the proportion with
signals. On the other hand, for the regular circumstances that the CUSUM charts are originally
aiming at, the smaller amount of excess events does reduce the power as seen from Table 6.1.

6.4 Extending to the EM-based model

The constructed CUSUM chart from Chapter 6.2 assumes a piecewise constant baseline function
for the excess hazard, which is not always appropriate in many practical applications. This
is one of the motivations for the development of the EM-based model [6]. In this section, we
will propose an extension to the work done in Chapter 6.2 such that a CUSUM chart can be
calculated based on the results from the EM-based model.

Looking at (6.6), the only main difference in the procedure from Chapter 6.2 is to modify λ0.
This sounds like a simple task, but the problem lies in both the values of baseline and cumulative
baseline excess hazard obtained from the EM-routine in R. In practice, we need to fit a model
with this procedure based on past data. Then, the rsadd-function from relsurv will only return
estimates of the baseline and cumulative baseline excess hazard at the uncensored survival times
from the given data set. Notice however that we require the values of the baseline excess hazard
at the times to event of the future observations that will arrive in the monitoring system. For the
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cumulative baseline excess hazard, it is required to evaluate this quantity at all different times
due to the diversity of at-risk times in future data when calculating Ψ(t) at a specific time point.
Thus, we cannot use directly the outputs received from the rsadd-function.

In order to get estimates of λ0 for the incoming individuals, we suggest smoothing the hazard
outputs again from rsadd-function by fitting a non-linear model with the estimated outputs as
the response variable and the corresponding times to event as the predictor. For instance, we
have chosen the method of local regression [38] in our implementation. However, one can also
apply e.g. smoothing splines if this is preferable. The same idea can be used to obtain Λ0(u) at
any given time u > 0 for the part with ΛE(t).

A potential issue with our proposal lies in the fact that local regression is applied on the already
kernel smoothed estimates if bwin is different from 0. The best-case scenario would have been
that the function from (4.21) is available from the rsadd-function. An estimate of the baseline
excess hazard can then be calculated at all times. Consequently, one can also obtain an estimate
of the cumulative baseline by simply integrating this equation. Instead, we only get λ̂0 and Λ̂0 at
the times to event of the patients used in fitting the model. Since the kernel smoothing is applied
at each step of the EM-procedure, equation (4.21) is therefore unobtainable unless we implement
the whole method from scratch or receive the hazard estimates at the second to last iteration
of the EM-routine. Hence, the only way to use the hazard outputs from EM-based model is to
apply another procedure on the already smoothed estimates. Therefore, one may argue that this
could potentially lead to some sort of oversmoothing of the baseline excess hazard. Nevertheless,
as long as the tuning parameter of the chosen model is sensible, one should expect the method to
capture the important trends in a reasonable way. Compared to the scenario with a piecewise
constant baseline, the computational time of the CUSUM chart based on the EM-based model
should also be larger due based on the statements above. As a result, doing simulations to obtain
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Figure 6.2: An example of a CUSUM chart based on the EM-based model when the hazard
corresponds to the out-of-control state at the start of monitoring in 2010. Here, λ0 follows a
Weibull baseline with a = 0.75 and b = 0.005. The arrival intensity is equal to 100 and ρ = 1.25.
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the threshold c with this method will be even more demanding from a computational point of
view.

As an illustration of when this method can be suitable, consider now the Weibull baseline example
from Chapter 5.2 with a = 0.75 and b = 0.005. In theory, using the CUSUM chart based on a
piecewise constant baseline will introduce systematic error for this particular case. Therefore, it
is sensible that the recent proposal of a CUSUM chart based on the EM-based model will be
appropriate here. We start out by simulating data from the in-control hazard as in Chapter 5.2,
where observations now arrive in the period of 2000 to 2010. Both the covariates considered and
the corresponding effects are identical as before. The arrival intensity is again set to 100. Using
the resulting data set, we fit an additive hazard model with the EM-approach where bwin=1. All
sorts of hazard outputs and estimated parameters are then stored in order to utilize them when
calculating the CUSUM chart. Next, we simulate observations that arrive between 2010 and 2020
with the excess hazard being ρλEi and ρ = 1.25 such that the hazard is in the out-of-control state
at the start of the monitoring in the beginning of 2010. The resulting CUSUM chart is presented
in Figure 6.2. Here, we have chosen 0.5 as the value of the span in the local regression procedure
for both λ0 and Λ0. We can observe that Ψ(t) has an increasing trend starting from the beginning
of the monitoring system in 2010 and throughout the whole 10-year period. The chart might not
necessarily signal right away as CUSUM charts generally need to accumulate evidence over time
first. Nonetheless, it is clear from the plot that the chart captures steadily the change in hazard.
Again, the size of deviation between τ∗ and η depends on many different factors including shape,
size, proportion of excess events of a given baseline and arrival distribution.

As a final example, we let the excess hazard for observations that arrive between 2010 and 2020
to be in-control during the monitoring time period. Everything else will still be the same as
the preceding situation. The corresponding CUSUM chart in this case is much more random,
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Figure 6.3: An example of a CUSUM chart based on the EM-based model when the hazard
corresponds to the in-control state throughout the monitoring period. Here, λ0 follows a Weibull
baseline with a = 0.75 and b = 0.005. The arrival intensity is equal to 100 and ρ = 1.25.
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fluctuating back and forth with no clear trend as seen in Figure 6.3. Except for an unusual spike
at around t = 2 (i.e. in 2012), which could potentially give a false signal in this case, Figure 6.3
is a very common result when the quantity of interest stays in-control over time.

6.5 Pros and cons of the two proposed methods

So far, we have proposed two different ways to construct a CUSUM chart in order to monitor the
excess hazard from an additive hazard model. Both seem to perform decently for its purposes,
and we will now discuss generally the advantages and disadvantages of each method.

The main underlying assumption for the proposal from Chapter 6.2 is that the baseline needs to
be a piecewise constant function since it is based on the GLM-based and full likelihood models.
As mentioned before, this is the biggest disadvantage with the method as the given choice of
baseline is not realistic in many situations. We have seen in Chapter 5.2 that the accuracy of
the Poisson and full likelihood model drops when the baseline has a clear non-linear trend, e.g.
when the Weibull baseline parameters are set to a = 4 and b = 0.0001. However, if the level of
non-linearity is not high, one can still use these two models as a very good approximation. Thus,
the CUSUM chart based on piecewise constant baseline models might still be useful in these
scenarios as well. The reason for this is because the given implementation of a CUSUM chart
is computationally faster. More specifically, it requires fewer heavy computations, making the
simulation process of getting a value of the threshold c much quicker.

In contrast, the CUSUM chart based on the outputs from the EM-based model could be more
computational demanding. One of the main reasons for the lack of speed is due to the procedure
running local regression twice for both the baseline and cumulative baseline excess hazard.
Moreover, at each time point on a grid of values over the monitoring time period, we need to use
the two fitted models of λ0 and Λ0 in order to predict an estimate of the two hazards for the
individuals who have arrived at a time t. If a data set is large enough, the process of calculating
the chart at a grid of values throughout the time interval of interest could take at least a few
seconds extra. We have also chosen to use the local regression function in R which can extrapolate
for values of predictors outside the training data if necessarily. This function is much slower
compared to the standard one without the possibilities of extrapolation. Consider that we have
collected data from 2000 to 2010 in order to fit an EM-based model. Let the smallest time to
event in the sample be for instance 0.1 years. We then set the outputs from the resulting model
as the foundation of a CUSUM chart intended to monitor from 2010 to 2020. However, for the
data set that will be considered in the monitoring system, the smallest time to event is now
0.05 years. The faster and standard local regression of the baseline excess hazard is not able to
predict when t = 0.05 years as it is outside of the range of predictor values from the training data.
Thus, an extrapolation is needed to get the baseline excess hazard at t = 0.05 years. For the
local regression, this can be done by specifying control=loess.control(surface="direct")
inside the loess-function. The implementation actually gives a very decent prediction for values
outside the training data. The same issue also arises for the cumulative baseline excess hazard,
specifically when an observation arrives closely to a time point where the CUSUM chart is
evaluated. Then, the at-risk time of the individual will be less than the smallest time to event
from the training data. A downside is that the calculation becomes much slower. Consequently,
in addition to the sample size, the time using to simulate a lot of data sets in order to find a
value of c will be even larger depending on the fineness of the time grid.

As a final comment about the implementation above, we want to stress that the purpose of
the extrapolation is to obtain estimates of the hazards at the boundaries of the time period
elapsed by the data used to fit the EM-based model. Otherwise, it is not recommended to use
the extrapolation to monitor far past the maximum observed time from the training data. This
implies that if the training data are obtained from 2000 to 2010 and the maximum observed time
to event is only 8 years, the monitoring system can only be trusted between 2010 and 2018, even
if we have data for a time length of 10 years and want to monitor the same period of time. The
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extrapolation is intended for the situation when the maximum time to event in the training data
is close to the desired monitoring time period, e.g. if this quantity corresponds to 9.75 years and
we want to monitor from 2010 to 2020.

One could opt for replacing local regression with smoothing splines for more computational
efficiency. In exchange, the accuracy of the extrapolation will be lower as the prediction is linear
outside the range of training data with this method. For practical purposes, this is only done
for the short time intervals at both ends of the range in times to event from the training data
when needed. The effect of using smoothing splines instead of local regression is therefore not
immense, but the resulting chart will be slightly different between the two methods depending
on the situation. Also, different values of the effective degrees of freedom in the smoothing spline
procedure and span in the local regression will result in completely distinct curves. Thus, there
are a lot of different factors that affect the result of a CUSUM chart based on the EM-based
model. Nevertheless, if a suitable tuning parameter is chosen, the flexibility of the EM-based
model will become beneficial in problems where the baseline is undoubtedly non-linear. This leads
to a trade-off question that one needs to decide when choosing a specific method: Depending on
the applications, we might want to rather lose some computational efficiency and prefer a flexible
method. In other situations, the model assuming a piecewise constant baseline is good enough
such that the first CUSUM method can be used while also gaining in computational time.

6.6 Checking the adequacy of the Markov Chain method for the relative
survival setting

In the final study, we observe that when the excess hazard is much larger than the population
hazard, the Markov chain method from [7] to calculate c could still be useful and a very good
approximation instead of the time-consuming simulation method we have considered so far.
The argument for this fact is that if λP i is small compared to λEi, λP i can be essentially
neglected from equation (6.5). Accordingly, we can approximate the log-likelihood ratio with
(6.4), thus implying that the Markov chain method is applicable again. This is reflected by an
investigation with simulated data sets. Consider the same partition of the follow-up interval
like in Chapter 6.3. Now, let χ1 be the baseline parameter vector from the same section while
χ2 = (−6, −5.75, −5.5, −5.25, −5, −4.75, −4.5, −4.75). If P (N(τ∗) ≤ Nmax | η = ∞) = 0.05
with ρ = 1.25 and Nmax = 100, the resulting threshold value from the Markov chain method is
c = 3.35. For each choice of baseline parameter vector, we examine two different samples of age.
The first one contains a lot of older patients simulated from a normal distribution with mean and
standard deviation equal to 70 and 10. For the other case, the mean is decreased to 50 while the
standard deviation is adjusted to 5. To see how adequate the Markov chain method is for each
situation, we check how many of the 1000 data sets in each combination of baseline parameters
and distribution of age that yield a CUSUM chart which signals when the number of events up
to the stopping time is less than or equal to Nmax. The results are summarised in Table 6.4. Not
surprisingly, the proportion is closer to the true value of 5% when the calculations are performed
on the younger sample. For the situation with a lot of elders, we see that the simulated ratio is
somewhat off from 5%. The population hazard in this case is extensively larger compared to

Table 6.4: A table summarising the proportion of CUSUM charts that signal when in-control
and the number of events is less than or equal to Nmax = 100. 1000 data sets are simulated for
each combination. A single data set contains roughly 1000 observations with arrival intensity
equal to 100 and ρ = 1.25.

Combination Ratio
χ1 & Age ∼ N(70, 10) 0.007
χ1 & Age ∼ N(50, 5) 0.039
χ2 & Age ∼ N(70, 10) 0.018
χ2 & Age ∼ N(50, 5) 0.041
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the excess hazard such that we cannot omit λP i and approximate the log-likelihood ratio with
(6.4). On the other hand, the approximation is quite decent for the younger patients where λP i

is small. In each case, the ratio is larger for the situation with χ2 because this choice of baseline
parameter vector implies a greater excess hazard compared to the case with χ1 throughout the
monitoring period.

A similar result can also be observed when applying the CUSUM chart based on the EM-based
model. Consider the second Weibull example with a = 0.75 and b = 0.005 from Chapter 5.2.
Again, we investigate the accuracy of the Markov chain method for two different age distributions:
The first one being N(70, 10) like before while the younger sample is now obtained from N(40, 5).
Setting P (N(τ∗) ≤ Nmax | η = ∞) = 0.1 with ρ = 1.25 and Nmax = 100, around 10.1% of the
1000 data sets containing the younger age distribution signal when the number of events up to
the stopping time is less than or equal to Nmax = 100. On the other hand, if we examine the 1000
data sets containing the elder patients, only 4.4% of the iterations result in a signal satisfying
the condition above. Hence, the Markov chain method can be used to approximate the threshold
c if the majority of the individuals are young enough. Note that we have used the theoretical
values of both the baseline and cumulative baseline excess hazard at a grid of time points as
input in the calculations of the CUSUM charts. The value of span is set to 0.5 when performing
local regression on both the baseline and cumulative baseline excess hazard values. If we instead
apply the CUSUM chart using smoothing splines on the same collection of data, the proportion
becomes 9.9% for the first situation and 3.9% among the data sets containing the elders. Here,
the effective degrees of freedom used is 5 for both the baseline and cumulative baseline excess
hazard. This shows again that the implementation with smoothing spline can still work well
while also gaining in computational efficiency. We will opt for this implementation in Chapter 7
when we illustrate the methodology with a real data set from the Norwegian Cancer Registry.

6.7 Summary and future improvements

In this chapter, we have proposed and constructed two different CUSUM charts based on two
of the frequently used additive models in the relative survival setting. Both are of course not
perfect and have their own flaws and benefits. As we have seen, there are many different factors
that affect how quickly the chart signals after a finite value of η. This means that the chart
will not always be able to detect the change in hazard in time if the consequence of the hazard
difference is too subtle. Nevertheless, they still prove to be useful in more pronounced situations
as illustrated in Figure 6.1. Thus, for cases where one is interested in monitoring the excess
hazard over time, the proposed methods could be a decent contribution in this aspect.

There are certainly many more interesting expansions that could be done for the methods we
have described. Until now, all of the charts rely on the fact that the information of an observation
is available throughout the time that the patient is at risk. However, this might not be possible
in certain circumstances. As noted by Gandy et al. [7], the information about a patient could
potentially be accessible only after the patient has been censored or experienced an event. For
the relative survival setting, one should be able to redefine Ai(t) just like in the given article
without any issues to incorporate this fact.

Whenever the hazard changes to the out-of-control state in the beginning of the monitoring like
in Figure 6.1, Gandy et al. [7] also mentioned including a head start, i.e. setting Ψ(0) equal to
a positive value in order to attain a faster signal. The same idea and adjustment can also be
applied in the case with excess hazard monitoring.

Also, in the examples we have considered, we assume that the data used in the baseline period
are collected over a specific number of years. Subsequently, we wish to monitor the excess hazard
over the same number of years. However, one could also monitor the survival after e.g. 5 years.
Then, even if the data used in the baseline period span over 20 years, the individuals are assumed
to be censored if they are alive 5 years after arrival when modelling the baseline and in-control
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hazard rate. Accordingly, the problem of extrapolating in order to calculate estimates of λ0
and Λ0 decreases for future observations since these will also be regarded as censored once they
are alive after 5 years of follow-up. Nevertheless, how useful this type of monitoring will be in
practical applications is a different question.

Finally, our main focus when proposing the methods from this chapter has been on proportional
alternatives of the excess hazard. However, there are also other alternatives that could be of
interest when the proportional alternative does not make sense. For instance, Gandy et al. [7]
discussed about the choice of a time-transformation alternative such that H1(u) = H0(f(u)) for
a monotonically increasing and non-negative function f , which might imply a non-proportional
alternative. Like before, an analogous way of such an alternative in the relative survival
setting could be to only insist the time-transformation on the excess part. By letting H0(u) =
ΛP i(u) + ΛEi(u), the statement above yields H1(u) = ΛP i(u) + ΛEi(f(u)). After differentiating
H1 with respect to u, we have that if the in-control hazard rate is h0(u) = λP i(u) + λEi(u), the
out-of-control hazard rate is equal to h1(u) = λP i(u) + λEi(f(u))f ′(u). To incorporate this fact
requires only a small modification on the excess hazard part in the code for the earlier methods.
Thus, it should be relatively straightforward as long as the function f is easy to work with.
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CHAPTER 7

Application to colorectal cancer data

So far, we have only dealt with simulated data used to assess the performance of the different
methods in the relative survival setting. In this chapter, we will look at a real-life application
of the methodology by analysing a data set on colorectal cancer patients received from the
Norwegian Cancer Registry.

7.1 An overview of the data set

Colorectal cancer is one of the most common cancer types in many Western countries. This
cancer type occurs when the cells in the colon or rectum area start to expand disorderly. Most of
the patients with this specific disease develop a certain form of cancer named adenocarcinoma,
which in non-clinical term means that the cancer happens in the cells that produce mucus. The
degree of severeness is usually described by four different stages corresponding to how much the
cancer has spread out to different parts of the body. This matter is related to the SEER stadium
variable which we will describe later.

The part of the data set that is available for this project contains 171087 individuals that have
been diagnosed with either colon or rectum cancer in the period between the beginning of 1953 to
the end of 2020. The maximum follow-up calendar date corresponds to the end of January 2022.
Due to a few issues in the data set itself and advice from clinicians, some of the observations have
been omitted in later applications. A more detailed explanation will come after the introduction of
the relevant variables contained in the data. A starting point for this work was that the clinicians
were particularly interested in the burden of disease among the younger patients. Therefore,
most of the results will be obtained for each age group separately.

Overview of variables:

• Gender: Takes on the value 1 if the individual is a male and 2 if female.

• Diagnosis year: Indicates only the year that the patient is diagnosed with colorectal cancer.
Due to data protection laws, the date is unknown in the data set received for this project.
Nevertheless, when applying the relative survival methods, a date is required. We have
therefore assumed that all patients are diagnosed on the 30th of June in the year that
is given in the data. In some parts of the application, it is also convenient to group the
diagnosis year into several categories. This procedure is explained in the next presented
variable.

• Diagnosis year period: Following the recommendation of clinicians based on the changes in
diagnosis and treatment over the years, we opt for the following division of diagnosis year:

– Diagnosis year period 1 → Diagnosis year from 1953 up to and including 1970.
– Diagnosis year period 2 → Diagnosis year from 1970 up to and including 1985.
– Diagnosis year period 3 → Diagnosis year from 1985 up to and including 2005.
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– Diagnosis year period 4 → Diagnosis year from 2005 up to and including 2020.

• Morphology codes: A variable that basically describes the cancer tissue. The data set
contains 234 different values of the variable. As the clinicians are mostly interested in two
particular subgroups, we introduce a new variable that takes into consideration this matter
of fact.

• Morphology types: Clinicians have decided that not all of the 234 codes above are relevant
in this case. Instead, only 37 of them are essential. Among these 37, 23 of them belong
to the type of adenocarcinoma. This corresponds to the following values of morphology
code: 814031, 814032, 814033, 814034, 814039, 814431, 814432, 814433, 814439, 821031,
821032, 821033, 821034, 821039, 821131, 821132, 821133, 821139, 826331, 826332, 826333,
826334, 826339. The remaining 14 are related to another type of cancer called mucinous
carcinoma such that the tumour is covered by a certain amount of mucus. These have the
codes 848031, 848032, 848033, 848034, 848039, 848131, 848132, 848133, 848139, 849031,
849032, 849033, 849034, 849039.

• ICD7: Briefly, this is a coding variable that describes the position where the cancer is
discovered. As this variable contains many levels, we have decided to group them according
to the location in the following variable.

• ICD indicator: If ICD7 is either 153.0, 153.1 or 153.6, the variable is set to 1. The first two
correspond to the cancer being discovered in the right part of the colon while the last one
resembles cancer in the appendix. When ICD7 is 153.2, 153.3 and 153.4, ICD indicator
gets the value 2. This indicates cancer in the left region of the colon. With 153.5 or 153.9
as ICD7, we set the ICD indicator equal to 3, which represents unspecified location or
colon polyps. The remaining unmentioned ICD7 value that appears in the data set yields a
value equal to 0 for ICD indicator. This corresponds to 154.0, a code that reflects cancer in
rectum area.

• SEER stadium: Describes the severity of the disease in the context of how much the cancer
has spread to other regions of the body. The variable contains four different levels:

– Localised: Directly from the name of the level, this corresponds to a tumour which is
localised. Thus, the cancer has not spread out to different areas.

– Regional: A localised tumour which has expanded to the regional lymph nodes. Hence,
this level is more severe compared to the situation with a localised tumour as it has
slightly spread out from the original location.

– Unknown: As in the name, the stage is unknown for the given patient. Different
circumstances could potentially explain this issue, i.e. if a patient is too sick when
being diagnosed such that an examination of the stage is not possible.

– Distant: The most serious level, represents a patient with cancer tumours already
spreading out to different areas of the body, i.e. to other internal organs like liver.

• Surgery group: There are three different levels related to surgery type: The surgery type is
set equal to 0 when a patient has endured a major and complicated form of surgery. The
next one corresponds to the patients which have undergone a minor type of surgery. In our
definition, the variable will take the value 1 if this is the case. Finally, if a patient has not
gone through any surgery, the surgery group variable is equal to 2.

• Age group: 0 if a patient is less than or equal to 50 years of age on the diagnosis date, 1 if
otherwise.

• Time until diagnosis: Number of days starting from the date of birth until diagnosis, thus
related to age and age group.

• Duration: Number of days starting from the date of diagnosis until an event occurs or the
patient is censored. The event indicator is explained in the next paragraph.
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• Status: The event indicator itself. Originally, there are three values in the received data
set, where the variable takes on the value 1 if a patient is still alive on the end date, 2
corresponds to death and 3 indicates a patient that is lost to follow-up. We readjust the
variable in the following way: 0 if the original variable is equal to 1 or 3, 1 if a patient dies
on the end date.

Based on the variables above and after consulting with clinicians, only the patients with
adenocarcinoma or mucinous carcinoma will be considered further. Also, 46 patients have
a negative recorded duration. This is an error in the data, and these are therefore omitted as
well. After disregarding all observations which are not classified in the two subgroups mentioned,
those with negative follow-up and one case with recorded age equal to 0 at diagnosis date, the
final data set that we will be working with contains 150654 observations. Among these, 9741
patients belong to the younger age group while the remaining 140913 correspond to the elder
patients. Table 7.1 summarises the number of observations in each strata of a given variable
divided by the two age groups.

As a final remark before some results are presented, we want to stress that the Norwegian
population tables used are acquired from Human Mortality Database [37], which again collected
the data from Statistics Norway. The time period available in these life tables is between 1846
and 2020. Since some of the observations have the combination of diagnosis year and follow-up
time that correspond to calendar dates in 2021 and 2022, an approximation is done by simply
extending the values of the population tables from 2020 to 2021 and 2022. This should be a
feasible solution as the population hazard does not tend to change dramatically in a span of a
year.

Table 7.1: A table summarising the number of observations in each strata of a variable in the
two age groups. The first value corresponds to how many patients that belong to the given
combination of age group and category of a particular variable. The second value represents the
proportion of observations in a specific age group that is contained in a explicit category of a
variable. The last column shows the p-value from a chi-squared test checking if the distribution
of a given variable is different across the two age groups. Note that the sum of the percentages
might not be exactly equal to 100% due to rounding errors.

Variable Age ≤ 50 Age > 50 p-value
Gender = Female 4953 (50.8%) 69390 (49.2%) 0.0023Gender = Male 4788 (49.2%) 71523 (50.8%)

Diagnosis year period 1 1331 (13.7%) 10858 (7.7%)

< 2.2 · 10−16Diagnosis year period 2 1633 (16.8%) 22478 (16.0%)
Diagnosis year period 3 3394 (34.8%) 52670 (37.4%)
Diagnosis year period 4 3383 (34.7%) 54907 (39.0%)

ICD indicator = 0 3289 (33.8%) 43704 (31.0%)

< 2.2 · 10−16ICD indicator = 1 3211 (33.0%) 54538 (38.7%)
ICD indicator = 2 3060 (31.4%) 40123 (28.5%)
ICD indicator = 3 181 (1.9%) 2548 (1.8%)
Surgery group = 0 8218 (84.4%) 113591 (80.6%)

< 2.2 · 10−16Surgery group = 1 1327 (13.6%) 23744 (16.8%)
Surgery group = 2 196 (2.0%) 3578 (2.5%)

SEER stadium = Localised 2398 (24.6%) 38989 (27.7%)

< 2.2 · 10−16SEER stadium = Regional 4283 (44.0%) 65280 (46.3%)
SEER stadium = Unknown 330 (3.4%) 6523 (4.6%)
SEER stadium = Distant 2730 (28.0%) 30121 (21.4%)

Morphology type = Adenocarcinoma 8736 (89.7%) 128779 (91.4%)
< 8.7 · 10−9

Morphology type = Mucinous carcinoma 1005 (10.3%) 12134 (8.6%)
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7.2 Preliminary analysis and results

To get a general sense of the data set, non-parametric methods from Chapter 3 are used based on
all 150654 patients. This is done seven times where we stratify by each variable and calculate the
Pohar-Perme, Ederer 2 and Ederer 1 estimate using relsurv package in R. As this part is not of
clinical interest, but rather a worthy example of how the results from the various estimators differ
in real applications, we will only present the outcome of the variable SEER stadium. Looking at
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Figure 7.1: Non-parametric methods applied to the overall data set containing the two morphology
types of interest stratified by SEER stadium.

Figure 7.1, we see a clear pattern of discrepancy between the estimators, except for the group of
patients with cancer already spreading out to other regions of the body. As the number of excess
deaths dominates in this category, it is no surprise that the difference between the estimators is
negligible. For the other three, there are disagreements between the curves, and in particular
for the group of patients with unknown stage or localised tumour. In all cases, the estimates
obtained from the Ederer 1 method deviate the most from the other two. This is reasonable as
Ederer 1 estimates the relative survival ratio, which mathematically is much more different from
net survival compared to the observable net survival that the Ederer 2 method estimates.

Also, notice how the variances become very large and the curves fluctuate a lot more for the
Pohar-Perme estimates in most of the categories after 10 years. We know from both the simulation
study and theory from Chapter 3 and 5 that the variance of the Pohar-Perme method tends
to be larger than the other two estimators in practice. However, another potential reason that
could also explain the fluctuating behaviour is the fact that the baseline excess hazard seems to
be essentially zero after 10 years of follow-up. This can be seen by the baseline excess hazard
outputs obtained when fitting an EM-based model with bwin=1 based on the 150654 observations
and including all variables from Table 7.1, see Figure 7.2. As a reminder, bwin corresponds
to the proportionality factor between the bandwidth b(t) and the maximum time between two
consecutive events in the interval defined by two sequential quartiles. Here, natural cubic splines
with three knots chosen automatically by the ns-function in R are utilized for the variable related
to diagnosis year as an illustration of the flexibility regarding the EM-based model. Also, the
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complete information from the data is used such that we get an estimate of the baseline excess
hazard until the maximum observed time to event in the data, which in this case is around 64
years. We see that the estimated baseline excess hazard is essentially flat in the time period
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Figure 7.2: A plot of estimated baseline excess hazard received from fitting an EM-based model
with bwin=1 on all 150654 observations using complete information. The curve is smoothed by
the LOWESS-procedure in R with f = 0.15.

between 10 and 30 years of follow-up. The small increase after 30 years cannot be trusted as
there is too little data in this region of time. Thus, the test EM-based model illustrates why we
observe such a varying behaviour from the Pohar-Perme estimates after 10 years. For future
applications in this section, and in particular those that are of clinical interest, we will therefore
look at 10-year-survival instead such that patients with times to event larger than 10 years will
be regarded as censored.

Next, the difference in net survival between the two age groups stratified by each variable could
be of interest for clinicians. We therefore divide the full data set into two parts based on the age
group. For each age category, we perform the Pohar-Perme method stratified by each variable
in the same way as above. This yields six different cases. We will examine one of the variables
in detail in this section while the remaining plots are presented in the Appendix C without
any further details. As a motivation for applying the proposed CUSUM charts from Chapter 6
later, the factor variable corresponding to the diagnosis year group is chosen. The outcomes are
presented in Figure 7.3. For each age group, the results are as anticipated with the net survival
increasing throughout the different time periods. Indeed, the development of treatment methods
for patients took a huge leap during the late 1970s and there is no surprise that the survival
changes substantially thereafter. For instance, better diagnostic tools like CT and MR were
employed, and this enabled better staging. Enhanced surgery procedures and treatment methods
in the form of chemotherapy and radiotherapy also contributed heavily to the improvement
during this period of time. As a matter of fact, clinicians are mainly interested in the time period
after 1985 because it reflects the present time better with the current status of treatment options
and modern technology used for staging. For the purpose of illustrating the methods in a real-life
situation, we will still consider the whole time span for now.
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Figure 7.3: Pohar-Perme estimates stratified by the variable representing time period of cancer
diagnosis for the two age groups.

A fascinating point is that when we look at each age group separately and stratify with respect to
diagnosis year group, the net survival in the latest time period seems to be lower for the younger
age group when the follow-up time is larger than 5 years. Also, the change in survival when going
from the time period between 1970 and 1985 to the time frame between 1985 and 2005 is not as
dramatic for the younger patients compared to the elders. Without an advanced background in
this area of medical research, it is quite difficult to comprehend this result. At first glance, one
might think that the larger survival is associated with the older age group. However, by looking
at Table 7.1, a potential explanation for both cases could be that the proportion of patients
having cancer spread out to other regions is notably higher for the younger age group. Thus,
the lower survival for the younger age group in this time period could be explained by SEER
stadium rather than the effect of age itself. A similar result can be observed when stratifying
by surgery type as well, see Appendix C. In addition, the Pohar-Perme estimate for the elder
patients in the latest diagnosis year period does not seem to be monotonically decreasing, an issue
that might be related to the weighting process in the method when considering elder patients
with smaller SP i. The difference could therefore also just be an example of the weakness of the
method. Nevertheless, these observations are obtained by looking at each variable separately.
The conclusions might therefore change when we consider many variables at the same time, e.g.
when fitting an additive model.

7.3 Further analysis and results

Basic excess hazard models

In this part, we will follow the recommendation mentioned before by clinicians and consider
10-year survival. Patients with observed times larger than 10 years are thus censored at 10 years.
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Table 7.2: Estimated effects of different variables in an EM-based model with all variables
considered at the same time for the two age groups. The following indicator variables represent
the reference category of a given variable: Gender = Male, SEER = Distant, Diagnosis Year:
(1953, 1970], Morphology type = Adenocarcinoma, ICD indicator = 0 (Rectum), Surgery type =
Major. For each variable, β̂, SE

(
β̂
)

, HR = eβ̂ and the p-value of the hypothesis test H0 : β = 0
vs H1 : β ̸= 0 are presented.

Variable Age ≤ 50 Age > 50
Estimate (SE) HR p-value Estimate (SE) HR p-value

Gender = Female -0.10 (0.03) 0.90 0.0036 -0.04 (0.01) 0.96 < 10−4

SEER = Localised -2.74 (0.06) 0.06 < 10−4 -2.34 (0.01) 0.10 < 10−4

SEER = Regional -1.64 (0.04) 0.19 < 10−4 -1.53 (0.01) 0.22 < 10−4

SEER = Unknown -1.79 (0.11) 0.17 < 10−4 -1.27 (0.02) 0.28 < 10−4

Diagnosis Year ∈ (1970, 1985] -0.27 (0.07) 0.76 < 10−4 -0.29 (0.02) 0.75 < 10−4

Diagnosis Year ∈ (1985, 2005] -0.65 (0.06) 0.52 < 10−4 -0.52 (0.02) 0.59 < 10−4

Diagnosis Year ∈ (2005, 2020] -1.49 (0.06) 0.23 < 10−4 -1.21 (0.02) 0.30 < 10−4

Morphology type = Mucinous Carcinoma -0.21 (0.06) 0.81 0.0010 -0.05 (0.02) 0.95 0.0035
ICD indicator = 1 (Right) 0.01 (0.04) 1.01 0.7652 0.18 (0.01) 1.20 < 10−4

ICD indicator = 2 (Left) -0.10 (0.04) 0.90 0.0145 0.01 (0.01) 1.01 0.2722
ICD indicator = 3 (Other) 0.28 (0.10) 1.32 0.0070 0.33 (0.03) 1.39 < 10−4

Surgery type = Minor 0.99 (0.05) 2.69 < 10−4 1.09 (0.01) 2.97 < 10−4

Surgery type = None 0.40 (0.13) 1.49 0.0019 0.90 (0.03) 2.46 < 10−4

For each age group, an EM-based model that contains all the variables from Table 7.1 is fitted.
Here, we opt for bwin=1 again such that the estimated baseline excess hazard is only slightly
smoothed at each iteration of the EM-algorithm. Overall, when setting the significance level at
5%, all variables seem to be significant, see Table 7.2. The estimated effect of morphology is
somewhat surprising. In general, we expect patients with mucinous carcinoma to have worse
prognosis relative to the observations with adenocarcinoma. The reason is simply because the
effect of morphology type is somewhat explained through the other variables, especially SEER
stadium and ICD indicator. If we fit a model with only morphology type as covariate for the
elder patients, we get that mucinous carcinoma indeed yields worse prognosis. Including SEER
stadium, a negative estimated parameter for mucinous carcinoma is obtained just like in Table
7.2. The outcome is identical when considering the younger patients.

To complement the results from Table 7.2, the estimated baseline excess hazard curves for the
two models are plotted. According to Figure 7.4, the difference in λ̂0 between the two different
age groups is largest at the start with respect to the chosen references. The estimated baseline
excess hazard corresponding to the older patient group remains noticeably larger at the start
before the two curves intersect each other at around a year of follow-up. Subsequently, λ̂0 flattens
out towards 0 for both age groups. This indicates that the instantaneous risk of dying for an
older patient with the reference covariate pattern is much larger right after diagnosis compared
to a younger patient with similar covariate values. For this group of patients, the risk is at its
highest after a year and a half from diagnosis date. After this period, the estimated baseline
excess hazard of the younger group is greater throughout the rest of the follow-up period. This
is also reflected in the estimated cumulative baseline excess hazard plot from Figure 7.4, the
gap between the two curves starts to grow after a year of follow-up with Λ̂0 being larger for the
younger age group in the remaining period of time.

Before interpreting the results, it is appropriate to check the adequacy of the model. As mentioned
in Chapter 5, the tests based on martingale residuals are not implemented in R. Since we are also
considering the EM-based models, the main interest point of model adequacy in this case is the
proportional excess hazard assumption. For this purpose, Schoenfeld-like residuals from Chapter
4.4 and test statistics based on these are calculated for the two models. According to Table 7.3,
there are a number of indicator variables where the tests indicate a violation of the proportional
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Figure 7.4: A plot of estimated baseline excess hazards smoothed by the LOWESS-procedure in
R with f = 0.15 and cumulative baseline excess hazards received from the two final EM-based
models in consideration.

Table 7.3: Different proportional hazard tests for the variables included in the two EM-based
models in consideration. KS corresponds to the unweighted maximum value Brownian bridge
test, KSw is the weighted version (ρ = 1) and CVM represents the Cramér-Von Mises-type
statistic. The values in parentheses are the p-value of the tests.

Variable Age ≤ 50 Age > 50
KS KSw CVM KS KSw CVM

Gender = Female 1.021 (0.2484) 1.020 (0.2489) 0.064 (0.5524) 4.565 (< 10−4) 4.420 (< 10−4) 2.499 (< 10−4)
SEER = Localised 2.050 (0.0004) 1.714 (0.0056) 0.452 (0.0003) 17.199 (< 10−4) 20.291 (< 10−4) 19.170 (< 10−4)
SEER = Regional 3.013 (< 10−4) 3.152 (< 10−4) 1.169 (< 10−4) 5.953 (< 10−4) 7.370 (< 10−4) 2.249 (< 10−4)
SEER = Unknown 2.688 (< 10−4) 2.692 (< 10−4) 0.595 (< 10−4) 6.307 (< 10−4) 6.213 (< 10−4) 5.024 (< 10−4)
Diagnosis Year ∈ (1970, 1985] 1.737 (0.0048) 1.577 (0.0138) 0.269 (0.0099) 2.704 (< 10−4) 3.330 (< 10−4) 0.788 (< 10−4)
Diagnosis Year ∈ (1985, 2005] 0.833 (0.4918) 0.781 (0.5762) 0.066 (0.5286) 1.761 (0.0040) 1.265 (0.0816) 0.255 (0.0130)
Diagnosis Year ∈ (2005, 2020] 1.894 (0.0015) 1.739 (0.0047) 0.443 (0.0003) 4.430 (< 10−4) 5.202 (< 10−4) 1.250 (< 10−4)
Morphology type = Mucinous carcinoma 0.965 (0.3100) 0.958 (0.3179) 0.120 (0.1871) 1.335 (0.0565) 1.613 (0.0110) 0.230 (0.0213)
ICD indicator = 1 (Right) 4.842 (< 10−4) 4.836 (< 10−4) 2.631 (< 10−4) 11.871 (< 10−4) 12.416 (< 10−4) 18.750 (< 10−4)
ICD indicator = 2 (Left) 0.973 (0.3003) 1.032 (0.2375) 0.126 (0.1647) 3.403 (0.0012) 3.257 (< 10−4) 1.271 (< 10−4)
ICD indicator = 3 (Others) 1.463 (0.0277) 1.487 (0.0240) 0.174 (0.0648) 3.572 (< 10−4) 4.088 (< 10−4) 0.989 (< 10−4)
Surgery type = Minor 4.545 (< 10−4) 4.596 (< 10−4) 2.091 (< 10−4) 7.693 (< 10−4) 6.925 (< 10−4) 7.764 (< 10−4)
Surgery type = None 2.305 (< 10−4) 2.586 (< 10−4) 0.308 (0.0045) 8.983 (< 10−4) 10.601 (< 10−4) 6.420 (< 10−4)

hazard assumption. In fact, all the variables from the model regarding the older age group result
in a rejected test across all three test statistics with a 5% significance level. However, the reason
for such a result could be due to the fact that the sample size is enormous, especially among
the elders. Also, we are testing multiple hypothesis at the same time and the issue of multiple
testing appears here too. Thus, even if the tests might suggest the rejection of proportional
excess hazard assumption, we need to check the scaled Schoenfeld-like residuals calculated by the
function rs.zph as well in order to determine the degree of deviation from this statement. Note
that the scaled residuals calculated from rs.zph are not the same as the standardized version
from (4.40). Instead, even if this is not specifically documented, the procedure is some sort of
a scaling with the inverse variance of the residuals similar to the traditional scaled Schoenfeld
residuals for a Cox regression model.

As there are so many variables, we decide to only present the scaled Schoenfeld-like residuals for
some of the variables for the purpose of illustration. We know from Table 7.3 that none of the
tests reject the proportional excess hazard assumption for gender in the younger age group in
contrast to the seniors. From the first plot in Figure 7.5, we can observe a minor gradient of
the smoothed curve for the younger age group, but not substantial enough in order to reject the
assumption. However, the plot of smoothed scaled residuals from the model based on the elders
is essentially flat even though all three test statistics hint at a rejection of the null hypothesis.
This illustrates the argument that the small p-value in this case is simply just a result of a very
large sample size.
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Figure 7.5: Plots of scaled Schoenfeld-like residuals for three chosen variables and the
corresponding smoothed residual curves using the LOWESS-procedure with f = 0.50.
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For the variable corresponding to ICD indicator = 1, the smoothed residual curves for both age
groups are slightly more non-linear. Consequently, the test statistics might potentially be correct
about proportional excess hazard being violated. We see that for the younger age group, this
issue mostly appears in the first two years of follow-up before being slightly horizontal in the
end. For the elder age group, a similar behaviour is seen at the first three years before the curve
increases with a minor gradient afterwards. Nevertheless, all the results up until now might still
be useful as the non-horizontal effect does not seem to be very dominant.

Looking at the last included plot, Figure 7.5 shows that the smoothed residual curve of the
variable representing the last diagnosis year period for the elders is literally horizontal, and
thereby no sign of non-proportional excess hazard. On the other hand, the values of all test
statistics related to this variable are very large such that the null hypothesis is rejected in all
cases. This variable is another good example of the argument about large sample size affecting
the tests. The curve corresponding to the younger age group is a bit wigglier, but a horizontal
line could still be a good approximation. For the elders, the remaining variables behave in a
similar way as the curve for the last diagnosis year period. On the other hand, the three given
variables ICD indicator = 1, ICD indicator = 2 and SEER stadium = Localised show a similar
decreasing trend as the plot of ICD indicator = 3 for the younger age group, thus potentially
yielding a non-proportional hazard structure.

Based on the results from Table 7.2, many of the variables affect the excess hazard differently
across the two age groups. For example, the estimated parameter for the effect of a diagnosis
year between 2005 to 2020 is roughly 0.3 smaller for the younger age group compared to the
elders. The logarithm of relative excess hazard ratio between a young patient diagnosed in
the final time interval compared to an observation from the period between 1985 and 2005 is
slightly above -0.8 when conditioning on the fact that the remaining covariates are identical
between the two observations. The same quantity is calculated to be almost -0.7 for the elder
patients. The two models therefore indicate that the improvement of the survival prognosis
from the third diagnosis year period to the fourth is slightly better among the younger patients
when adjusting for the other significant variables. A similar story could be said for the other
subsequent combinations of diagnosis year period, except for the transition between the first
and the second one. This example is a proper illustration of why we should consider modelling
when dealing with many variables. When looking at each variable separately, this single variable
needs to take into account the effect of other variables that might be related. Consequently, it
might give misleading results when considering the effect of this specific variable alone, due to
the confounding with other variables. Like in Figure 7.3, a first thought is that the net survival
improves more from the second time period to the third for the older patients. After modelling
and including more variables, the estimated parameters from the two models yield quite the
reverse result from the non-parametric estimates only stratified by diagnosis year group. These
observations also strengthen the argument that the surprising result from Figure 7.3 is simply
due to the larger number of younger patients with a widely spread tumour at diagnosis date. In
summary, we need to be careful with the occurrence of confounding when dealing with a lot of
variables.

Another interesting outcome from the models is that the effect of the major form of surgery is
associated with age groups. Consider two young patients which have the same covariate values
except for surgery type. No operations have been performed on the first individual while the
second has undergone a major surgery. The excess hazard ratio in this case becomes 1.49 from
Table 7.2. On the contrary, an identical situation with two elder patients results in the value 2.46
for the same quantity. The reason for this huge difference is quite hard to explain without any
clinical experience. Having said that, the categories like e.g. minor or no surgery are therefore
often omitted from clinical analysis as they contain a lot of uncertainties in the classification
procedure. Thus, the observation above might not be of any medical interest.

When it comes to the location of the tumour, the effect of each location is also related to age
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groups. While there is no significant difference in the excess hazard ratio between two young
individuals with cancer in the right region and rectum area as long as the remaining covariates
are identical, the same cannot be said for the older age group. In this case, right colon cancer is
affiliated with poorer survival in contrast to rectum cancer as the excess hazard ratio is now 1.20.
Moreover, the model suggests a moderate reduction in the excess hazard for left colon cancer
patients relative to rectum cancer among the younger observations. This is not the case for the
older age group based on Table 7.2 as it looks like the effect of left colon cancer is essentially
the same as rectum cancer for this specific collection of patients. In both age categories, the
group corresponding to unknown location and colon polyps comes out with the worst prognosis.
Nevertheless, this category of observations is usually omitted as well due to the same reasons as
before.

Furthermore, we see that the estimated parameters of the different indicator variables representing
the levels of SEER stadium are always smaller for the younger age group compared to the
opposite category. At first glance, an unexpected result appears when the estimated parameter
corresponding to SEER stadium = Unknown is smaller than the same quantity for SEER stadium
= Regional regarding the younger age group. This is not the case when we look at the elders.
Here, the opposite situation is observed. Based on the slightly higher estimated standard error, it
seems like this issue arises only because of the small sample size with the combination of younger
patients and unknown stage. Again, clinicians have been discussing to remove the individuals
with SEER stadium = Unknown due to the level of vagueness in the description of this category.
Finally, the effect of gender is more pronounced for the younger age group in contrast to the
elders based on the two models.

Adding interaction effects

Until now, we have not considered any interactions between variables. As a further improvement
of the two previous models, we try out interaction terms between diagnosis year period and the
remaining variables. This is done by including each of the interactions separately. The main
interest is to examine if the effects of the other variables have changed according to the diagnosis
year period. After testing all possible combinations, only the interactions of diagnosis year period
with SEER stadium and ICD indicator seem to be relevant for the younger age group. However,
when including both in the same model, half of the terms related to the latter interaction become
insignificant on a 5% level based on standard Wald tests. Because we are dealing with multiple
testing in this case, we have therefore decided to omit the interaction between diagnosis year
period and ICD indicator for easier interpretation as well. Ideally, we could approximate this
setting by doing some sort of a likelihood ratio test. Nevertheless, in very rare occasions, one
could actually decrease the log-likelihood output obtained from the EM-based model by including
more terms due to the fact that the model is semi-parametric, and the shape of the estimated
baseline excess hazard might change considerably by adding some additional covariates.

For the elders, the following combinations yield significant interaction terms with diagnosis year
period separately: SEER stadium, surgery type, ICD indicator and morphology type. Including
all four interactions implies a model with 40 parameters. Just like before, we run through the
same process as for the younger age group in order to reduce the number of parameters without
losing too much power. In the end, we decide to only keep two of the interactions in order to
keep the interpretability somewhat simpler. These correspond to the interactions of diagnosis
year period with SEER stadium and surgery type. One extra option is to replace the interaction
containing surgery type with ICD indicator. However, this yields three extra parameters, and
the largest estimated parameter in absolute value among those cross terms is much smaller than
the one obtained by keeping the interaction between diagnosis year period and surgery. This
results in the following two models for the two respective age groups presented in Table 7.4.

For the younger age group, including the interaction between SEER stadium and diagnosis
year period changes the estimated parameters of the main effects slightly. The main noticeable
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Table 7.4: Estimated effects of different variables in an EM-based model with all variables and
interactions considered at the same time for the two age groups. The following indicator variables
represent the reference category of a given variable: Gender = Male, SEER = Distant, Diagnosis
Year: (1953, 1970], ICD indicator = 0, Surgery type = Major. For each variable, β̂, SE

(
β̂
)

,

HR = eβ̂ and the p-value of the hypothesis test H0 : β = 0 vs H1 : β ̸= 0 are presented.

Variable Age ≤ 50 Age > 50
Estimate (SE) HR p-value Estimate (SE) HR p-value

Gender = Female -0.09 (0.03) 0.91 0.0071 -0.03 (0.01) 0.97 0.0002
SEER = Localised -2.09 (0.11) 0.12 < 10−4 -1.31 (0.04) 0.27 < 10−4

SEER = Regional -1.04 (0.10) 0.35 < 10−4 -0.57 (0.04) 0.57 < 10−4

SEER = Unknown -1.20 (0.34) 0.30 0.0004 -0.87 (0.14) 0.42 < 10−4

Diagnosis Year ∈ (1970, 1985] 0.08 (0.10) 1.08 0.4286 0.27 (0.04) 1.31 < 10−4

Diagnosis Year ∈ (1985, 2005] -0.24 (0.09) 0.79 0.0059 0.13 (0.04) 1.14 0.0005
Diagnosis Year ∈ (2005, 2020] -1.07 (0.09) 0.34 < 10−4 -0.66 (0.04) 0.52 < 10−4

Morphology type = Mucinous carcinoma -0.22 (0.06) 0.80 0.0004 -0.05 (0.02) 0.95 0.0064
ICD indicator = 1 (Right) 0.01 (0.04) 1.01 0.7824 0.18 (0.01) 1.20 < 10−4

ICD indicator = 2 (Left) -0.08 (0.04) 0.92 0.0468 0.01 (0.01) 1.01 0.3009
ICD indicator = 3 (Others) 0.25 (0.11) 1.28 0.0197 0.27 (0.03) 1.31 < 10−4

Surgery type = Minor 1.03 (0.05) 2.80 < 10−4 1.09 (0.03) 2.97 < 10−4

Surgery type = None 0.43 (0.12) 1.54 0.0004 2.38 (0.09) 10.80 < 10−4

SEER = Localised : Diagnosis Year ∈ (1970, 1985] -0.81 (0.16) 0.44 < 10−4 -0.79 (0.05) 0.45 < 10−4

SEER = Regional : Diagnosis Year ∈ (1970, 1985] -0.56 (0.13) 0.57 < 10−4 -0.76 (0.05) 0.47 < 10−4

SEER = Unknown : Diagnosis Year ∈ (1970, 1985] -0.92 (0.49) 0.40 0.0639 -0.40 (0.16) 0.67 0.0141
SEER = Localised : Diagnosis Year ∈ (1985, 2005] -0.91 (0.15) 0.40 < 10−4 -1.41 (0.05) 0.24 < 10−4

SEER = Regional : Diagnosis Year ∈ (1985, 2005] -0.69 (0.11) 0.50 < 10−4 -1.06 (0.04) 0.35 < 10−4

SEER = Unknown : Diagnosis Year ∈ (1985, 2005] -0.93 (0.37) 0.39 0.0117 -0.75 (0.14) 0.47 < 10−4

SEER = Localised : Diagnosis Year ∈ (2005, 2020] -1.18 (0.24) 0.31 < 10−4 -1.84 (0.05) 0.16 < 10−4

SEER = Regional : Diagnosis Year ∈ (2005, 2020] -0.93 (0.13) 0.39 < 10−4 -1.19 (0.05) 0.30 < 10−4

SEER = Unknown : Diagnosis Year ∈ (2005, 2020] -0.21 (0.38) 0.81 0.5801 -0.21 (0.14) 0.81 0.1357
Surgery = Minor : Diagnosis Year ∈ (1970, 1985] NA NA NA -0.08 (0.04) 0.92 0.0649
Surgery = None : Diagnosis Year ∈ (1970, 1985] NA NA NA -1.88 (0.09) 0.15 < 10−4

Surgery = Minor : Diagnosis Year ∈ (1985, 2005] NA NA NA 0.05 (0.04) 1.05 0.2046
Surgery = None : Diagnosis Year ∈ (1985, 2005] NA NA NA -0.08 (0.27) 0.92 0.7513
Surgery = Minor : Diagnosis Year ∈ (2005, 2020] NA NA NA 0.23 (0.04) 1.26 < 10−4

Surgery = None : Diagnosis Year ∈ (2005, 2020] NA NA NA 0.17 (0.48) 1.19 0.7263

difference related to the main effects is the change in sign of the parameter corresponding to
diagnosis year ∈ (1970, 1985]. The estimated parameter of the given variable went from being
negative from Table 7.2 to positive, with the p-value of the usual test indicating that the effect is
not significantly different from the reference category. More specifically, this means that there is
no improvement of the excess hazard from the period of 1953-1970 to 1970-1985 when looking
purely on the effect of diagnosis year period. Of course, when taking into account the interaction
terms related to diagnosis year ∈ (1970, 1985] and SEER stadium, the risk score still becomes
smaller due to the negative estimated parameters of the cross terms. Hence, the excess hazard
should in total decrease when a patient is being diagnosed between 1970-1985 compared to the
first period. Otherwise, the trend of the levels for the remaining main effects is still the same.

Another interesting fact that appears as a consequence of the interaction terms is that the
estimated parameter of a given level of SEER stadium usually becomes smaller in total when a
patient is being diagnosed at a later time period, given the fact that SEER stadium = Distant
is the reference level. More specifically, this happens when SEER stadium = Localised and
SEER stadium = Regional. For instance, the excess hazard ratio between a patient with cancer
localised at a specific region diagnosed in the period of 1970-1985 and a patient with SEER
stadium = Distant diagnosed during 1953 and 1970 is exp(−2.09 + 0.08 − 0.81) = 0.06. The same
quantity becomes exp(−2.09 − 1.07 − 1.18) = 0.01 if the diagnosis year of the first observation
is between 2005 and 2020. However, there is a strange behaviour for the level corresponding
to SEER stadium = Unknown. From Table 7.4, we see that the estimated parameter related
to the cross term between SEER stadium = Unknown and diagnosis year group is much larger
for the years between 2005 and 2020 compared to e.g. diagnosis year ∈ (1985, 2005]. Also, the
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standard Wald test yields a p-value of almost 58%, which is insignificant on a 5% level. In other
words, this means that the effect of SEER stadium = Unknown is somehow the same for a young
patient diagnosed in the recent time as in the time period between 1953-1970. This abnormal
result also illustrates why clinicians want to neglect this category in future work.

For the older age group, the changes in the main effects are even more noticeable after the addition
of the two interactions. As an example, the estimated parameter of SEER stadium = Localised
alone has now increased by almost 1 compared to the results from Table 7.2. Consequently, the
interactions terms containing SEER stadium are even smaller compared to the younger age group
for the later diagnosis year periods. Based on this observation, the improvement in excess hazard
over time due to SEER stadium is associated with the age groups as well. From Table 7.4, the
betterment is more prominent among the elder patients. Also, when looking purely at the main
effect of diagnosis year period, the estimated parameters corresponding to the second and third
diagnosis year period have now changed signs from negative to positive. This means that if all
the other variables except for diagnosis year period belong in the reference category, the excess
hazard gets larger if a patient is diagnosed in the period of 1970-1985 or 1985-2005 compared
to the first period. From a clinical point of view, it is very hard to see why this is the case.
Thus, this could simply be a procedure to balance out the negative parameters corresponding to
the interaction between SEER stadium and diagnosis year period that have grown in absolute
value. Another reason of this outcome could be to target the unusual hazard ratio value of
exp(−1.88) = 0.15 related to the cross term between surgery type being none and the second
diagnosis year period. Since only two out of six terms among the interactions between diagnosis
year period and surgery type are significant, one might even argue to omit the given interaction
as well for a simpler model. But all in all, based on the model from Table 7.4, the excess hazard
does decrease in total whenever an elder is diagnosed at a later time period.

In addition, from a clinical perspective, combining both the interactions mentioned yield a very
interesting result for the elders. According to Table 7.4, the hazard ratio between an elder patient
experiencing a minor surgery and a major surgery is 2.97. On the other hand, if the first patient
has not undergone any surgery, the hazard ratio is now increased to 10.80. This is not the
case when looking at the younger age group and the previous examples from Table 7.2. After
including the interaction between surgery and diagnosis year period, the minor surgery type
is associated with the improvement of prognosis, except for maybe the second diagnosis year
period. In fact, if we remove the interaction between diagnosis year period and surgery type
and only keep the cross terms with SEER stadium, the outcome will be similar to the younger
patients and results from Table 7.2. When focusing on surgery type and combining the results
from the last six rows of Table 7.4, there is an association between the minor surgery type and
the improvement in survival, especially for the years after 1985. Of course, this interpretation is
only valid when looking purely at surgery type. To check that this is somewhat the case, consider
an elder patient with SEER stadium = Localised and diagnosed in the period between 1970-1985.
First, assume that the patient has not experience any sort of operation. Then, the excess hazard
ratio related to the mentioned variables becomes exp(−1.31 + 0.27 + 2.38 − 0.79 − 1.88) = 0.26.
In contrast, an observation with similar covariates except for surgery type being minor will have
exp(−1.31 + 0.27 + 1.09 − 0.79 − 0.08) = 0.44 as the corresponding excess hazard ratio. Thus, the
patient with no surgery will have a better prognosis according to the model, given that the ICD
indicator and morphology type are the same between the two individuals. On the contrary, let
us examine a similar situation like the two patients above, but the diagnosis year period for both
is now 2005-2020. The excess hazard ratio of the variables in consideration is calculated to be
exp(−1.31 − 0.66 + 2.38 − 1.84 + 0.17) = 0.28 if the patient has not undergone any surgery. By
comparison, the same quantity is calculated to be exp(−1.31 − 0.66 + 1.09 − 1.84 + 0.23) = 0.08
for the individual who has received a minor surgery. Based on these observations, the model
from Table 7.4 indicates a relation between the minor surgery type and the improved prognosis
of the elder patients at certain diagnosis year periods, unlike the models without any interactions.
However, the result could also simply be a consequence of the fact that most of the patients
with surgery type equal to none were diagnosed in the period between 1970 and 1985. It is likely
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that this category was used more differently in this specific time period such that the results
above might not be medically valid at all. Again, this observation could also support the idea of
omitting the patients with no surgery or minor surgery.

To end this part of the chapter, we will briefly look at the baseline and cumulative baseline excess
hazards of the two models with interactions and the corresponding Schoenfeld-like residuals.
The addition of the chosen interaction terms does not appear to change the shape, but rather
the scale of the baseline excess hazards. Now, the maximum value of λ̂0(t) is around 1 for the
younger age group in contrast to the model without the interaction between SEER stadium and
diagnosis year period from Figure 7.4. A similar trend can be observed for the elders, where the
values of λ̂0(t) are smaller at all times compared to the model without interactions.
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Figure 7.6: A plot of estimated baseline excess hazards smoothed by the LOWESS-procedure in
R with f = 0.15 and cumulative baseline excess hazards received from the two final EM-based
models with interactions in consideration.

Finally, we check the Schoenfeld-like residuals and calculate the three test statistics for all
variables considered in the two models. For the younger age group, the behaviours of the residuals
and test statistics are very similar in the case without interactions. Most of the included variables
yield test statistics that correspond to the rejection of the proportional excess hazard assumption.
Checking among these variables, a few of them have the same issues as before with some sort
of non-linearity for the first two years and otherwise horizontal (like e.g. diagnosis year period
4 for the older patients from Figure 7.5). In fact, Figure 7.7 shows how the smoothed residual
curve has transformed for the variable SEER stadium = Localised after including the interaction
term. Instead of a decreasing smoothed residual curve, the new curve has only a non-linearity
and decreasing behaviour at the first two years before being approximately flat. Otherwise, many
of the remaining variables literally have a horizontal smoothed residual curve while still attaining
a very small p-value. Therefore, the matter related to the sample size and multiple hypothesis
testing also occurs here as well.

For the model considering the elders, similar results as above are also observed. Based on the
test statistic corresponding to (4.45), SEER stadium = Localised yields the largest value of 16.76
among the variables considered in the interaction model. Nevertheless, the smoothed residual
curve is now essentially flat after a year of follow-up as seen in Figure 7.7. On the other hand, the
same curve when examining the model without interaction indicates a somewhat non-horizontal
behaviour. Thus, the inclusion of interactions seems to make the smoothed residual curves of
the main effects even more horizontal, specifically the likes of SEER stadium and diagnosis year
period. The remaining residual curves of the other variables remain unchanged going from the
model without interaction to the one where these terms are included.
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Figure 7.7: Scaled Schoenfeld-like residuals for SEER stadium = Localised plotted against time
for both age groups. Left plot corresponds to the residuals based on the model presented in Table
7.2. Right plot is acquired from the model shown in Table 7.4. The smoothed residual curves are
obtained using the LOWESS-procedure with f = 0.50.
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7.4 Monitoring changes over time using the CUSUM charts

In this final section, we will illustrate the utility of the proposed methods from Chapter 6 by
applying them to this data set. For this purpose, each age group is considered separately just
like before. We start out by using the first 17 years of data (i.e. individuals diagnosed from the
start of 1953 to the end of 1969/beginning of 1970) as the baseline period. In order to mimic
a realistic scenario when the CUSUM charts might be appropriate, any patient in this sample
with an event date later than the start of 1970 is therefore censored. Also, instead of using the
approximation that all patients are diagnosed at the same date in a given year like before, we
simulate a diagnosis date in the year from a uniform distribution. This ensures a continuous
stream of patients arriving in the monitoring system and the arrivals are spread out over a year
like a real-life situation.

Subsequently, we fit a simple EM-based model containing all variables, except for diagnosis year
period, with bwin=1 based on this subset. Accordingly, a CUSUM chart is calculated for the
next 17 years of data, i.e. patients diagnosed in the time period between the start of 1970 to the
end of 1986/beginning of 1987. Afterwards, we fit an EM-based model again based on this set of
data, where patients with observed time corresponding to a date later than the start of 1987 are
censored. This will correspond to the new baseline when monitoring the period between the start
of 1987 to the end of 2003/beginning of 2004. This is done repeatedly until we have monitored
the period between the start of 2004 to the end of 2020/beginning of 2021. Hence, we arrive at
three different CUSUM charts monitoring three time periods for each age group.

A question that arises before calculating the CUSUM charts based on proportional alternatives
is the choice of ρ. We expect the prognosis to improve over time, or equivalently that the excess
hazard decreases as time goes by. For that reason, it is reasonable that ρ must be a value less
than 1. We end up trying out four different values of ρ: 1.10, 0.90, 0.75 and 0.50. The first
one is simply to check that we have indeed a decreasing excess hazard over time in each period.
Following the description above, the results of the CUSUM charts for each age group are shown
in Figure 7.8. Here, we also opt for the CUSUM chart with smoothing splines for the estimated
excess hazard outputs obtained from the EM-based method. The effective degrees of freedom is
set to 5 both for the baseline excess and cumulative baseline excess hazard.

Examining first the situation with the younger age group, we see that the three chosen values
of ρ < 1 yield increasing charts over time. This indicates an improvement in survival over time
in each period with respect to its preceding time period. However, in all cases, the blue curves
corresponding to the chart monitoring the excess hazard during the years between 2004 and 2021
are always larger compared to the rest due to the larger gradient over time. The burden of disease
also seems to improve steadily in the period between 1987-2004 compared to the preceding time
interval based on the plot corresponding to ρ = 0.75, even though the change is not as substantial
as the period of 2004-2021. Throughout the years of 1970-1987, the improvement does not kick in
greatly until the beginning of the 1980s based on the same ρ. Consequently, the CUSUM charts
behave in the same way as we would expect for the younger sample based on Figure 7.3: The
difference in net survival between two consecutive periods is largest between the third and last
diagnosis year period. The same result is also reflected here by the helps of the CUSUM charts,
even if the splitting of the follow-up time is slightly different. Additionally, Figure 7.3 shows that
the improvement in survival looks to be smaller going from the second to the third diagnosis year
period. A similar outcome is apparent from the CUSUM charts as well, mostly when ρ = 0.50 in
which the green curve is smaller at almost all time points. When setting ρ = 1.10, the charts
fluctuate randomly on a small scale and it is clear that the excess hazard does not increase over
time as anticipated.

Looking at the elders, comparable results to Figure 7.3 are also obtained using the proposed
CUSUM charts. We see that the CUSUM chart corresponding to the monitoring period between
1987-2004 is not as large compared to the other two periods, even if the excess hazard consistently
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Figure 7.8: CUSUM charts for each age group in three different diagnosis year period calculated
by the proposal containing smoothing splines. For this application, the effective degrees of
freedom is set to 5 for both Λ0 and λ0 in the smoothing spline procedures.
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improves over time here as well from the plot obtained when ρ = 0.75. The same effect is
demonstrated in Figure 7.3, where the improvement in 10-year survival is smaller between the
two periods 1970-1985 and 1985-2005 compared to the rest. From the same figure, we can also
observe that the change in survival is greatest when transitioning from the period of 1985-2005
to 2005-2020. In the same manner, Figure 7.8b shows a steadily, but large increase in Ψ(t)
throughout the 17 years of monitoring data of patients diagnosed between 2004 and to the end of
2020. Otherwise, Ψ(t) of the time span between 1970 and 1987 becomes larger than the previously
mentioned period due to the extreme improvement in the start of the 1980s. This corresponds
to the fact that new technology and tools for cancer diagnostics at an early stage were applied
like we have mentioned previously. The same behaviour is also observed from Figure 7.8a for
the younger patients as noticed in the preceding paragraph. However, the improvement is not
enormous compared to the elders. Consequently, this helped the burden of disease among the
elder patients, which were more commonly affected by the disease. This is clearly indicated by
the orange curves from Figure 7.8b. Also, the same curves could also be used to explain why the
height of the green curves is always smaller. Compared to the period between 1970-1987, the
improvement during the larger part of 1987-2004 was not as massive compared to the transition
from 1953-1970 to the revolutionary period of 1970-1987. Nevertheless, the green charts still
increase more steadily over time such that the excess hazard improves consistently over time
from the start when based on the plots obtained by letting ρ = 0.75.

When it comes to the choice of ρ, it seems like decreasing this parameter from 0.90 to 0.50 implies
faster increasing charts for the periods of 1970-1987 and 2004-2021 in both age groups. However,
the charts corresponding to the period of 1987-2004 do not behave in a similar fashion when
changing ρ from 0.75 to 0.50. In fact, for the older age group, it seems like the green curve is
essentially flat during the first 10 years of follow-up when ρ = 0.50. The maximum value of Ψ(t)
is also smaller when ρ = 0.50 compared to ρ = 0.75. Hence, this might be an indication that
ρ = 0.75 is a more suitable choice for this specific time period in both age groups. For the other
two periods, ρ = 0.50 seems to fit better based on the large increase in Ψ(t).

Overall, in accordance with the outcomes from the previous sections in this chapter, we are all in
all satisfied with the results from the CUSUM charts. Figure 7.8 illustrates when the improvement
in prognosis becomes noticeable after adjusting for potential explanatory variables. It also tells
us which pair of consecutive time periods that results in the largest improvement. As mentioned
in Chapter 6.1, to actually detect when the charts signal, simulations are needed to compute
the thresholds depending on some criteria. Due to time constraints, we have decided to omit
these procedures as the computational time needed for calculating somewhat accurate threshold
values is very large because of the huge sample size of the older age group. Of course, we also
need to model the covariates, arrival and censoring distribution to be able to simulate these
quantities. Then, it is also required to simulate excess times based on the estimated cumulative
baseline excess hazard outputs from the EM-based model and population times. The latter
seems to be the most computationally demanding. In fact, simulating 10000 population times
takes 10-20 seconds depending on the computer specifications. It becomes clear that this will be
very cumbersome when dealing with over 100000 observations for each iteration and at least 100
simulations are necessary to get a decent estimate of c. Nevertheless, from the simulation study
in Chapter 6, typical values of c when setting a 5% probability of a false alarm during a 10-year
monitoring period are less than 10. Since all of the curves have a maximum value much larger
than 10, using all of these threshold values obtained in Chapter 6 will imply a signal.

Finally, the results of the CUSUM charts and Figure 7.3 also suggest that the censoring mechanism
in the raw data set is informative. Recall from Chapter 5.1.6 that we explored a case of informative
censoring that was present due to the excess hazard being dependent on the start year. More
specifically, patients with a later start year will have a lower excess hazard compared to earlier
patients. This implies that TEi for these individuals tend to be larger compared to the observations
who arrived at the early stage. When setting a common date for the end of study among all
individuals, the patients with large TEi are also the observations with smaller potential follow-up
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times. There is a negative correlation between excess times and censoring times, which again
implicates informative censoring as SCi is not identical for all observations. The same phenomenon
seems to appear here based on all the results up until now. The CUSUM charts clearly show a
decrease in the excess hazard over time. Thus, when considering patients from two consecutive
periods of time, the individuals from the later period will in most cases have larger excess times.
As mentioned before, the end of the study is set to January 2022 for all observations based on
the raw data set from the Norwegian Cancer Registry. Patients who are alive after this month
will therefore be censored. Consequently, the corresponding potential follow-up times for the
patients diagnosed in the latest time period are much shorter compared to the rest. All together,
we see that there is indeed a negative correlation between excess and potential follow-up (and
thus censoring) times subject to the given censoring procedure. For that reason, the censoring
mechanism in the raw data set is informative and using directly the full information might give
biased results, e.g. Figure 7.1. Nevertheless, this issue is less apparent in the results from Chapter
7.3. Unless a patient is diagnosed later than the beginning of 2012, all observations are censored
if they are still alive after 10 years of follow-up.
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CHAPTER 8

Conclusion and summary

Throughout this project, we have introduced different examples to motivate the reason behind
the development of relative survival methods. We started out by introducing the main quantities
in relative survival and explained the differences between them. This specific matter has caused
misunderstandings over the years, e.g. when net survival is mixed with relative survival ratio or
observable net survival. Therefore, the purpose of Chapter 2.2 is to resolve these issues. The next
natural step was to study and discuss the most common non-parametric methods and additive
hazard models. For the non-parametric estimators, we mainly focused on the Ederer 2 and
Pohar-Perme methods. Among the many additive hazard models that have been developed, we
covered the piecewise constant baseline excess hazard models like the full likelihood approach
and GLM-based models. A semi-parametric model based on the EM-algorithm, which ends up
being connected to the Cox regression model, was reviewed as a more flexible approach to model
the excess hazard. Different relevant residuals and test statistics associated with these models
were also presented.

By several simulation studies, we determined which estimators and models should be applied in
different scenarios. In a rare situation when the amount of excess hazard is very small, Ederer 2
is usually preferable due to the lower variance. Also, there are much less occasions of estimates
being larger than 1 compared to the outputs obtained from the Pohar-Perme estimator. However,
for real data when there is usually a moderate amount of excess deaths, the Pohar-Perme method
will overall manage to give an unbiased estimate of the net survival. Nevertheless, due to the
tendency of a larger variance of the Pohar-Perme estimator, there are also many cases where the
Ederer 2 method wins in the bias-variance trade off if the small bias is not a concern.

When informative censoring is introduced by e.g. letting arrival year impact the excess hazard,
both methods struggle to estimate either of the net or observable net survival. This is as expected
based on Chapter 3 when we informally showed that the assumption of non-informative censoring
is critical to arrive at the fact that the Pohar-Perme method is unbiased. A similar argument is
also done for the Ederer 2 method regarding the observable net survival. If this type of censoring
mechanism occurs due to the potential follow-up time being correlated with the excess times, the
two methods can both underestimate and overestimate depending on the situation. When the
correlation is negative, the two estimators systematically underestimate the true net survival
as long as the proportion of excess deaths is moderate. In contrast, a trend of overestimation
is observed if the excess and potential follow-up times are rather positively correlated. On the
other hand, whenever the excess hazard dominates in the sample, the degree of bias reduces as
we have seen in Figure 5.9a. In the final example, we also showed that informative censoring
due to administrative censoring did not seem to increase the bias of the Pohar-Perme method
relative to the net survival, given that there is no correlation between the times to event and
censoring times. Thus, it could be that the stricter definition of informative censoring from [3] is
not necessary if the relaxed version from [9] is satisfied.

When it comes to the additive hazard models, it is natural that the baseline excess hazard is not
piecewise constant like the assumptions made for the parametric GLM-based and full likelihood
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models. Nevertheless, we have also seen that if the degree of a constant baseline is rather weak
such that it is possible to partition the follow-up interval in somewhat small intervals based on
the sample, these models could still yield decent parameter estimates if this is the main purpose
of the analysis. Otherwise, the EM-based model might be the better choice. We also want to
mention that there have been developed even more sophisticated models than the ones we have
managed to consider in this project. For instance, Royston and Parmar [39] proposed a so-called
flexible parametric model for the Cox regression setting by modelling the log cumulative baseline
excess hazard with natural cubic splines. This has been further extended to the relative survival
setting by Nelson et al. [40]. Recently, a flexible model based on link functions has also been
examined in [41]. The overarching idea is to relate the individual net survival with an additive
linear predictor containing a baseline function of time by a link function. These types of models
applied to the colon cancer data from the Norwegian Cancer Registry could potentially be of
interest in the future to see if the results are comparable to what we have achieved here. As a
consequence of the model choice, the proportional hazard tests can also provide a wrong picture of
the different variables if an inappropriate model is selected, as was illustrated in the simulations.

Nevertheless, by simply using the EM-based model due to the evident non-linear baseline excess
hazard, the interesting results obtained are still decently appropriate for inferences. From the
analysis of the data, we learned for instance that the differences in survival across surgery types
are associated with age groups. Also, the severeness of a tumour in a given location can vary
between younger and elder patients. Similar conclusions arise when looking at the different
cancer stages as well. This application is a perfect example of the practicality of relative survival
methods. Without any information on cause of death among the patients, one is still able to say
something about the burden of disease.

Finally, we have also proposed a method which combines topics from statistical process control
and additive hazard models in relative survival to monitor the excess hazard over a given time
period. Following the work of Gandy et al. [7], the CUSUM chart in this case is based on a
cumulative sum of the log-likelihood ratio between the out-of-control and in-control excess hazard
rate such that the alternative is only applied on the excess hazard part. In this project, we
focused mostly on the proportional alternative. However, even with this choice of alternative,
the transition from the general time to event models considered in [7] to the additive models
implies that an analytically way of calculating the threshold c in order to capture the signal is not
possible. Nevertheless, the proposed method could still be useful in order to observe a specific
trend in the excess hazard over time. If the sample size is moderate during the monitoring period,
we can always resort to simulations for the purpose of finding c based on some criteria under the
in-control state.

The implementation of the CUSUM charts mentioned above was firstly done for the piecewise
constant baseline models. Due to the parametric nature of these models, the log-likelihood ratio
is easily computed in this case. We also tried to extend the methodology to EM-based models.
Since the baseline excess hazard does not cancel in contrast to the models considered in [7],
estimates of λ̂0 and Λ̂0 at different times for future observations are required in order to construct
the CUSUM chart. However, the EM-based model only returns λ̂0 and Λ̂0 at the times to event
of the patients used to estimate the in-control state. To resolve this issue, we decided to use either
smoothing splines or local regression in order to get a reasonable estimate of these quantities
at all times, as long as the time evaluated is close to the interval defined by the maximum and
minimum time to event in the training baseline data. Also, a clear downside of the method is that
a set of tuning parameters needs to be chosen reasonably. Consequently, different combinations
of tuning parameters can yield distinct results.

Overall, the proposed CUSUM charts could be useful for cancer registries in order to prospectively
monitor the excess hazard continuously, conditional on the fact that relevant information becomes
available right away when a patient is diagnosed. This is not necessarily possible, and this issue
has been mentioned as a future extension. Other possible ideas regarding further developments
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in a similar manner as in [7] have been presented as well, and these could potentially be of
interest in future work. This is related to e.g. other alternatives like time-transformations or
incorporating head start in order to achieve a faster signal in certain situations. The method used
retrospectively, as we have done in Chapter 6 and 7, can produce valuable plots that indicate
when the change in the excess hazard has happened over time. In addition, it also suggests how
large the shift is compared to the baseline period, which again might be relevant for clinical
purposes if one is interested in knowing the period that yields the largest improvement.
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APPENDIX A

Counting processes and martingales

In this section, we will give a short summary of the concepts related to counting processes and
martingales. It is very natural that the first topic appears in the field of survival analysis. Most
of the time, we have a particular type of event that we are interested in, e.g. death among a
group of patients. To say something about the risk of an event at a time t, it is natural that we
need the number of events that has occurred up to this time. The latter situation is a specific
example of a counting process N(t).

Although the direct applications of martingale theory occur in finance and economics, it is also
an essential tool in survival analysis mainly to deduce some properties of different estimators.
In Chapter 3.3.1 and 3.3.2, we demonstrated the power of martingale theory when variance
estimators of the different relative survival methods encountered in the same chapter were
developed. Now, we will look a bit further into the details of these notions. This whole chapter
is motivated by [13].

A.1 Counting processes

Assume we are interested in a particular type of event. Then, we have that the number of events
up to (and including) time t, denoted as N(t), is a counting process. An important premise
required to define further concepts is to assume that a maximum of one event can happen in
a small time interval [t, t + dt]. This implies that the process can only jump with one unit at
each time to event. Between two consecutive times to event, the process will stay constant.
Also, notice that a counting process is continuous from the right by the definition stated in the
beginning of this section.

Recall that for a homogeneous Poisson process, the intensity γ can be interpreted as a measure
of the expected number of events per unit of time. This is a special case of the intensity process
associated with a general counting process, which for such a Poisson process is independent of
time. Let us denote dN(t) = N(t + dt) − N(t). Informally, the intensity process γ(t) is defined
via the following relation:

γ(t)dt = P (dN(t) = 1 | past) (A.1)
Thus, γ(t)dt is the conditional probability that an event occurs in the time interval between
t and t + dt, given all the history up to time t [13]. Since dN(t) is a binary variable due to
the assumption of exactly one event in an infinitesimal time period, an equivalent way to write
equation (A.1) is

γ(t)dt = E(dN(t) | past). (A.2)

We will now look at an example of calculating the overall intensity process when we have recorded
n uncensored survival times T1, ..., Tn. Let λi(t) denote the corresponding hazard rate of
individual i. The individual counting process is then given as Ni(t) = I(Ti ≤ t). Also, we need
to define each of the individual intensity processes. Equation (A.1) yields

γi(t)dt = P (dNi(t) = 1 | past) = P (t ≤ Ti ≤ t + dt | past).
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There are two distinct situations of the past: Either we know that Ti ≥ t, otherwise Ti < t. For
the latter case, the probability above is simply zero as the event has already happened before
t. Thus, we know that it cannot happen in the time interval between t and t + dt as counting
processes related to death are not recurrent event processes. For the first state where Ti ≥ t, by
using the definition of a hazard function from equation (2.2), we can write

γi(t)dt = P (t ≤ Ti ≤ t + dt | past) = λi(t)dt. (A.3)

Overall, the individual intensity process γi(t) is therefore simply equal to

γi(t) = λi(t)I(Ti ≥ t). (A.4)

Next, let us define N(t) as the sum of all the individual counting processes, i.e. N(t) =
∑n

i=1 Ni(t).
Then, by following the same pattern as above, the overall intensity process γ(t) is given as

γ(t)dt = P (dN(t) = 1 | past) = E(dN(t) | past)

= E(
n∑

i=1
dNi(t) | past) =

n∑
i=1

E(dNi(t) | past)

=
n∑

i=1
P (dNi(t) = 1 | past).

Replacing the last equality with equation (A.4) and dividing by dt, we arrive at

γ(t) =
n∑

i=1
λi(t)I(Ti ≥ t).

For the special case when λi(t) = λ(t) for all i = 1, ..., n, we have that

γ(t) = λ(t)Y (t), (A.5)

where Y (t) =
∑n

i=1 I(Ti ≥ t) is the usual number of observations at risk at a given time t. This
is an example of a so-called multiplicative intensity model which we have introduced and used in
Chapter 3.

Assume now that we have censored times where the censoring mechanism is independent.
Mathematically, this condition is satisfied if

P (t ≤ T ∗
i < t + dt, δi = 1 | T ∗

i ≥ t, past) = P (t ≤ Ti < t + dt | Ti ≥ t), (A.6)

where T ∗
i = min(Ti, Ci) like in Chapter 2. In words, independent censoring occurs if an individual

who has not encounter any form of censoring or event at time t has the same risk of experiencing
the event in a small time interval [t, t + dt) as it would have been in the case when censoring is
absent [13]. Going through a similar calculation as earlier yields also a multiplicative intensity
model with Y (t) =

∑n
i=1 I(T ∗

i ≥ t) if λi(t) = λ(t) for all i = 1, ..., n.

A.2 Discrete time martingales

Now, we will present the notion of a martingale in discrete time. In Chapter 3, we relied on
continuous time martingales to derive some properties of different estimators. However, many of
the concepts in continuous time are based on the discrete time setting and we will therefore start
out with this situation as it is much simpler to handle. Later, we will generalize to continuous
time martingales that we had been using regularly in Chapter 3.
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A.2.1 Definition

Let M = (M0, M1, ...) be a stochastic process defined in discrete time. For our purposes, it is
usually assumed that M0 = 0. Also, denote Fn as the history of the process up to and including
time step n. We want the process M to be adapted to Fn, which essentially means that at time
step n, we know the value of the process for all m ≤ n. Then, M is said to be a martingale if

E (Mn | Fn−1) = Mn−1 (A.7)

for all n ≥ 1. An analogous way to express the martingale property from above is

E (Mn | Fm) = Mm (A.8)

for all n > m. It is easy to see that equation (A.8) implies (A.7). If we choose m = n − 1, which
is of course smaller than n, then inserting back to equation (A.8) implies (A.7) immediately. For
the opposite implication, we need to use the general law of double expectation, which says that

E (Mn | Fm1) = E (E (Mn | Fm2) | Fm1) (A.9)

for all 0 ≤ m1 ≤ m2 < n. Now, if we have that 0 ≤ m ≤ n − 1 < n, equation (A.9) implies

E (Mn | Fm) = E (E (Mn | Fn−1) | Fm) = E (Mn−1 | Fm) , (A.10)

where the last equality follows from the martingale property given in equation (A.7). A similar
argument yields that E (Mn−1 | Fm) = E (Mn−2 | Fm). This suggests that E (Mn | Fm) =
E (Mn−2 | Fm) as well from equation (A.10). Iterating until the case where m1 = m2 = m, we
arrive at E (Mn | Fm) = E (Mm | Fm). But since M is adapted to the history, E (Mm | Fm) =
Mm when we know the history of the process up to and including time step m. Hence, the final
result is exactly equation (A.8) and the proof is complete.

Recall that we defined M0 = 0 for our purposes. Using this assumption with the law of double
expectation and the martingale property from equation (A.8), we arrive at the following result:

E(Mn) = E (E (Mn | F0)) = E (M0) = 0 (A.11)

This shows that the expected value of a martingale process at time step n is the same as the
initial time step. More specifically, it is equal to zero for all n from the result above whenever
M0 = 0. This type of process is usually referred to as a mean zero martingale. The given property
is crucial when we use martingale theory to derive properties of estimators as we have seen in
Chapter 3.

A.2.2 Variation processes

In this subsection, we will define two different processes that are closely related to the variation
of a martingale. Assume that we have a martingale M defined in the same manner as the one in
the previous section. The predictable variation process, denoted as ⟨M⟩, is defined for n ≥ 1 as

⟨M⟩n =
n∑

i=1
Var(∆Mi | Fi−1), (A.12)

where ∆Mi = Mi − Mi−1. The predictable variation process is therefore a sum of conditional
variances of the martingale differences [13]. Since M is a mean zero martingale, we can also
rewrite the equation above as

⟨M⟩n =
n∑

i=1
E
{

(Mi − Mi−1)2 | Fi−1
}

, (A.13)

where we have applied the usual definition of variance to arrive at this expression. For n = 0, the
predictable variation process is equal to zero because the martingale process will always be zero
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at this specific time step by definition. Thus, there is no variation in the martingale at this point
of time.

The optional variation process, denoted as [M ], is simply the sum of the martingale differences
squared:

[M ]n =
n∑

i=1
(Mi − Mi−1)2 =

n∑
i=1

(∆Mi)2 (A.14)

The definition above is valid when n ≥ 1. For n = 0, the optional variation process is also zero
due to the same reason as for the predictable variation process.

From the definitions of the two variation processes above, we can deduce two crucial results
for any mean zero martingales. More specifically, it can be shown that both M2 − ⟨M⟩ and
M2 − [M ] are mean zero martingales as well. We will here give a proof of the former statement;
the latter can be shown in a similar manner. Firstly, since ⟨M⟩0 = 0 by definition, we have that
M2

0 − ⟨M⟩0 = 0. Now, we need to show that M2 − ⟨M⟩ indeed inherits the martingale property.
For this purpose, it is easier to show that M2 − ⟨M⟩ satisfies equation (A.7), i.e. we have to
prove that

E(M2
n − ⟨M⟩n | Fn−1) = M2

n−1 − ⟨M⟩n−1. (A.15)

From the equation above, we see that we need a term of M2
n−1 on the right-hand side. Therefore,

it is convenient to rewrite M2
n as

M2
n = (Mn−1 + Mn − Mn−1)2 = M2

n−1 + 2Mn−1(Mn − Mn−1) + (Mn − Mn−1)2.

With the same logic, we express ⟨M⟩n as

⟨M⟩n =
n∑

i=1
E
{

(Mi − Mi−1)2 | Fi−1
}

= E
{

(Mn − Mn−1)2 | Fn−1
}

+
n−1∑
i=1

E
{

(Mi − Mi−1)2 | Fi−1
}

= E
{

(Mn − Mn−1)2 | Fn−1
}

+ ⟨M⟩n−1.

Inserting everything back to the left-hand side of equation (A.15) yields

E(M2
n − ⟨M⟩n | Fn−1) = E

(
M2

n−1 | Fn−1
)

+ 2E (Mn−1(Mn − Mn−1) | Fn−1)
+ E

{
(Mn − Mn−1)2 | Fn−1

}
− E

(
E
{

(Mn − Mn−1)2 | Fn−1
}

| Fn−1
)

− E (⟨M⟩n−1 | Fn−1) .

(A.16)

Since Mn−1 is known when we have the history up to and including time step n − 1 (i.e. Fn−1),
the first term of E

(
M2

n−1 | Fn−1
)

is simply equal to M2
n−1. A similar argument implies that the

second term can be rewritten as

2E (Mn−1(Mn − Mn−1) | Fn−1) = 2Mn−1(E {Mn | Fn−1} − Mn−1).

But M is a martingale, and using equation (A.7) gives

2Mn−1(E {Mn | Fn−1} − Mn−1) = 2Mn−1(Mn−1 − Mn−1) = 0

so that the second term is equal to zero. As E
{

(Mn − Mn−1)2 | Fn−1
}

is a function of the past,
the fourth term can also be simplified to E

{
(Mn − Mn−1)2 | Fn−1

}
. In the end, ⟨M⟩n−1 is also

120



A.2. Discrete time martingales

known when we have a specific history Fn−1. Putting all these observations back into equation
(A.16) implies that

E(M2
n − ⟨M⟩n | Fn−1) = M2

n−1 + E
(
(Mn − Mn−1)2 | Fn−1

)
− E

(
(Mn − Mn−1)2 | Fn−1

)
− ⟨M⟩n−1

= M2
n−1 − ⟨M⟩n−1,

which is the same relation as equation (A.15). Henceforth, we have shown that M2 − ⟨M⟩ is
indeed a mean zero martingale.

A very important consequence of the results above is that the variance of a mean zero martingale
can be calculated based on the variation processes. In particular, since we have shown that
E(M2 − ⟨M⟩) = E(M2) − E(⟨M⟩) = 0 and E(M2) = Var(M) as M is a mean zero martingale,
we can deduce that

Var(Mn) = E(M2
n) = E (⟨M⟩n) , (A.17)

i.e. the variance of the martingale itself is the expectation of the corresponding predictable
variation process. The same identity holds true for the optional variation process as well. Thus,
the variation processes can be used to calculate the variance of a mean zero martingale.

A.2.3 Transformation

Now, we will look at a certain operation that will preserve the martingale property when applied
to a martingale. More generally, let X = {X0, X1, ...} be a general stochastic process with a
history {Fn}. Also, let H = {H0, H1, ...} be a predictable process, meaning that Hn is known
when the history at the time step right before, Fn−1, is given. Then, the process Z defined as

Zn = H0X0 + H1(X1 − X0) + H2(X2 − X1) + ... + Hn(Xn − Xn−1) (A.18)

is said to be the transformation of X by H and is denoted by Z = H • X. Now, let us consider
the transformation of a martingale process. To show that this manipulation still preserves the
martingale property, we need to prove that E (Zn | Fn−1) = Zn−1 following equation (A.7),
where Z = H • M in this case. Inserting equation (A.18) on the left-hand side of this expression
gives

E (H0M0 + ... + Hn−1(Mn−1 − Mn−2) + Hn(Mn − Mn−1) | Fn−1) .

Since H is predictable, only Mn is stochastic when we have a given history Fn−1. Thus, the
expectation above can be simplified to

H0M0 + ... + Hn−1(Mn−1 − Mn−2) + Hn {E(Mn | Fn−1) − Mn−1} .

Because M is a martingale, using the martingale property of M implies that the last term is
zero. Hence, we get that

E (Zn | Fn−1) = H0M0 + ... + Hn−1(Mn−1 − Mn−2) = Zn−1,

which proves that Z is a martingale. Note that if M is a mean zero martingale, then
Z0 = H0M0 = 0. Thus, the transformation Z will also be a mean zero martingale.

A natural question that arises from this definition is as follows: Since the transformation Z of
a mean zero martingale M is itself a mean zero martingale, how is the variability of this new
process? Can it be expressed by the same quantities of the original martingale process? It turns
out that the predictable variation process of the transformation Z is given as

⟨H • M⟩ = H2 • ⟨M⟩ ⇔ ⟨H • M⟩n =
n∑

s=1
H2

s ∆⟨M⟩s. (A.19)
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Similarly, we can express the optional variation process of the transformation Z as

[H • M ] = H2 • [M ] ⇔ [H • M ]n =
n∑

s=1
H2

s ∆ [M ]s . (A.20)

We will now prove the last statement; the first one can be shown in a similar manner. As a
preliminary observation, note that using the definition from equation (A.18) implies

∆(H • M)s = (H • M)s − (H • M)s−1 = Hs∆Ms

and
∆ [M ]s = [M ]s − [M ]s−1 = (∆Ms)2

from the definition given in equation (A.14). Then, we can use these two remarks to deduce that

[H • M ]n =
n∑

s=1
(∆(H • M)s)2

=
n∑

s=1
(Hs∆Ms)2

=
n∑

s=1
H2

s (∆Ms)2

=
n∑

s=1
H2

s ∆ [M ]s ,

which is exactly the relation on the right-hand side of equation (A.20).

A.2.4 Doob decomposition

For the last topic of the introduction in discrete time martingale theory, we will introduce the
so-called Doob decomposition. Consider a general stochastic process X = {X0, X1, ...} associated
with a history {Fn} such that X0 = 0. Next, we define a process M = {M0, M1, ...} by

M0 = X0 and Mn = Mn−1 + Xn − E [Xn | Fn−1] .

Then, we can show that M is a (mean zero) martingale. Observe that the last term in the
definition of Mn is a function of X0, ..., Xn−1, which implies that the first term is also a function
of the past. Thus,

E [Mn | Fn−1] = E [Mn−1 + Xn − E [Xn | Fn−1] | Fn−1]
= Mn−1 + E [Xn | Fn−1] − E [Xn | Fn−1]
= Mn−1

and M is indeed a martingale due to equation (A.7). By rewriting the relation of Mn, we get
that

Xn = E [Xn | Fn−1] + ∆Mn, (A.21)

and the result above tells us that a general process X can therefore be decomposed into two
parts: The first term E [Xn | Fn−1] is as mentioned a function of the past and corresponds to the
predictable part of the process. The second term is a martingale increment. This contribution
is often called the innovation of the process X as it represents the unexpected change in the
process [13]. The decomposition in equation (A.21) is called the Doob decomposition named
after the American mathematician J.Doob who discovered this result.
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A.3 Continuous time martingales

Now, we will extend the notion of martingales to the situation with continuous time. Since a
continuous time interval can be seen as a discretization into infinitely many discrete time steps,
it turns out that many of the results from the last section are still valid in the continuous case.
But for now, let us look at how martingales in continuous time are defined.

A.3.1 Definition

Let M = {M(t) : t ∈ [0, τ ]} be a stochastic process defined on the finite interval between 0 and τ .
Then, M is said to be a martingale relative to the history {Ft} if it is adapted to the history and

E(M(t) | Fs) = M(s) for all t > s. (A.22)

This formulation of the martingale property follows closely to equation (A.8) in the discrete case.
If we want to express the property in a similar manner as equation (A.7), we can express it in
continuous time as

E(dM(t) | Ft−) = 0, (A.23)

where dM(t) is the increment of the process M over the infinitesimal time interval [t, t + dt) and
Ft− is the history up to and just before time t. When M(0) = 0, we have that

E [M(t)] = E [E [M(t) | F0]] = E [M0] = 0 (A.24)

using the law of double expectation and equation (A.22). If this is the case, then M is said to be
a mean zero martingale.

A.3.2 Variation processes

We can also define the predictable and optional variation process for a given martingale M in a
continuous setting based on what we have known for the discrete time processes. By dividing
the time interval [0, t] into n subintervals with length t/n and letting n be larger and larger to
get a finer grid, we can use equation (A.12) and define the predictable variation process of a
continuous time martingale M as follows:

⟨M⟩(t) = lim
n→∞

n∑
k=1

Var(∆Mk | F(k−1)t/n) (A.25)

Here, ∆Mk = M(kt/n) − M((k − 1)t/n) is the increment of the martingale over the k-th
subinterval [13]. From this definition, we can write the increment of the predictable variation
process over an infinitesimal time interval [t, t + dt) as

d⟨M⟩(t) = Var(dM(t) | Ft−), (A.26)

which simply means that the increment of (A.26) is the variance of the martingale increment
conditioned on the history up to and right before time t. Based on the discretization of the time
interval and equation (A.14), the optional variation process of a continuous time martingale can
therefore be defined in a similar manner as

[M ] (t) = lim
n→∞

n∑
k=1

(∆Mk)2. (A.27)

Since the two newly defined variation processes are just generalizations of equation (A.12) and
(A.13), we also have that M2 − ⟨M⟩ and M2 − [M ] are mean zero martingales. More specifically,
both M2(t) − ⟨M⟩(t) and M2(t) − [M ] (t) will have mean zero for all t. This implies that

Var(M(t)) = E(M2(t)) = E⟨M⟩(t) = E [M ] (t). (A.28)
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As in the discrete time setting, by calculating either the predictable or optional variation process,
we can find the variance of the martingale itself. This result proves to be very useful as it is often
much simpler to calculate either of the variation processes than the variance directly itself. An
example of this is when we used this result to derive an estimated variance estimator of equation
(3.8).

In some cases, we have to deal with more than one martingale. Then, it is useful to define the
covariation processes between two martingales M1 and M2. Inspired by equation (A.26) and
(A.27), we define the predictable covariation process as

⟨M1, M2⟩(t) = lim
n→∞

n∑
k=1

Cov
(
∆M1k, ∆M2k | F(k−1)t/n

)
. (A.29)

Similarly, the optional covariation process is given as

[M1, M2] (t) = lim
n→∞

n∑
k=1

(∆M1k)(∆M2k). (A.30)

Note that if M1 = M2 = M , we arrive at equation (A.26) and (A.27) when using these definitions
of covariation processes. Another helpful fact is that the statements similar to M2 − ⟨M⟩ being
a mean zero martingale can be also be shown for covariation processes, i.e. M1M2 − ⟨M1, M2⟩
and M1M2 − [M1, M2] are both mean zero martingales. It follows that

Cov(M1(t), M2(t)) = E (M1(t)M2(t)) = E⟨M1, M2⟩(t) = E [M1, M2] (t) (A.31)

for all t ∈ [0, τ ].

In the end, it is useful to notice that the rules for calculating variation processes of linear
combinations of martingales are analogous to the situation with random variables. This means
that e.g. the predictable variation processes of a sum of two martingales can be calculated as
follows:

⟨M1 + M2⟩(t) = ⟨M1⟩(t) + ⟨M2⟩(t) + 2⟨M1, M2⟩(t) (A.32)
The same relation also holds for optional variation processes.

A.3.3 Stochastic integrals

Recall that for discrete time martingales, we defined in Chapter A.2.3 the so-called transformation
of a general stochastic process. This procedure has the property of preserving the martingale
property: A transformation of a martingale is itself a martingale. Now, we will generalize this
notion to the case with continuous time martingales.

Let M = {M(t) : t ∈ [0, τ ]} be a mean zero martingale relative to the history Ft. Also, let
H = {H(t) : t ∈ [0, τ ]} be a predictable process relative to the same history, which in nontechnical
details means that H(t) is known just before time t. It can also be shown that being predictable
is equivalent to being adapted to the history and that the sample paths are left-continuous [13].
Then, by dividing the time interval [0, t] in the same way as we did for the variation processes,
the stochastic integral of a continuous time martingale is defined as follows:

I(t) =
∫ t

0
H(s)dM(s) = lim

n→∞

n∑
k=1

Hk∆Mk (A.33)

As this is just a generalization of the transformation from Appendix A.2.3, it can be shown that
stochastic integrals also preserve the (mean zero) martingale property. Based on equation (A.19)
and (A.20), we also have that 〈∫

H dM

〉
=
∫

H2 d⟨M⟩ (A.34)
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and [∫
H dM

]
=
∫

H2 d [M ] . (A.35)

For the covariation processes, it can also be proven that〈∫
H1 dM1,

∫
H2 dM2

〉
=
∫

H1H2 d⟨M1, M2⟩ (A.36)

and [∫
H1 dM1,

∫
H2 dM2

]
=
∫

H1H2 d [M1, M2] . (A.37)

A.3.4 Doob-Meyer decomposition

We have seen in Chapter A.2.4 that any general discrete-time stochastic process can be decomposed
into a part which is predictable and a martingale increment corresponding to the surprising
element of the process. A similar decomposition exists for continuous-time stochastic process.
But unlike the other concepts, which have the natural ability to extend from discrete time to
continuous time without any issues, such a decomposition in the latter scenario requires an extra
special class of stochastic processes. Consider as usual a stochastic process X = {X(t) : t ∈ [0, τ ]}
adapted to the history {Ft}. X is called a submartingale if

E(X(t) | Fs) ≥ M(s) for all t > s. (A.38)

In words, X(t) will tend to increase over time and is therefore a less restricted condition compared
to the martingale property. Hence, martingales correspond to a specific subclass of submartingales.

It turns out that for a given submartingale X, we can uniquely decompose it into two parts as
follows:

X = X∗ + M (A.39)
Here, X∗ is a non-decreasing predictable process called the compensator of X while M denotes
as usual a mean zero martingale. Informally, the increment of the compensator can be written as

dX∗(t) = E(dX(t) | Ft−)

such that
dM(t) = dX(t) − E(dX(t) | Ft−).

This way of expressing dX∗(t) shows the similarity with the term E [Xn | Fn−1] from the discrete
time setting. Thus, X∗(t) is the part that can be predicted from the past while M(t) is the
surprise or the innovation at time t as before.

A.3.5 Applications on counting processes

Now, we are in a position where we can apply the preceding sections to a special case of stochastic
processes, namely counting processes from Appendix A.1. Using the Doob-Meyer decomposition
given in (A.39), we have that the counting process N(t) can be rewritten as

N(t) = Γ(t) + M(t)

Here, the compensator is denoted as Γ(t). Often, it is also referred to as the cumulative intensity
process in the context of counting processes. The decomposition from above can be done since
N(t) is non-decreasing over time. Therefore, it fulfills the requirements of being a submartingale.
Assuming that Γ(t) is a continuous, we can write Γ(t) =

∫ t

0 γ(u) du for some non-negative function
γ(u). This is the precise definition of the intensity process γ(t) which we have introduced in an
informal way by equation (A.1). Therefore, the resulting decomposition of N(t) is

N(t) =
∫ t

0
γ(u) du + M(t). (A.40)
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In many situations, we are also interested in the variation processes of a martingale obtained from
the decomposition in (A.39). First, consider the optional variation process of this martingale.
In general, we need to calculate the limit in equation (A.27). However, note that when n → ∞,
∆Mk → 0 for intervals with no jumps in N(t). This is a direct consequence of (A.40) as the
cumulative intensity process evaluated at kt/n and (k − 1)t/n should be the same when n is
very large. Therefore, ∆Mk = N(kt/n) − N((k − 1)t/n) when n → ∞. However, if an event
has occurred between time (k − 1)t/n and kt/n, we have that N(kt/n) − N((k − 1)t/n) = 1.
In conclusion, we have argued that the optional variation process for this type of martingale is
simply the counting process itself:

[M ] (t) = N(t) (A.41)
For the predictable process, it is convenient to use the form given in (A.26). Inserting (A.40)
into this definition, we get

d⟨M⟩(t) = Var(dM(t) | Ft−)
= Var(dN(t) − γ(t)dt | Ft−)
= Var(dN(t) | Ft−),

where the transition from the second to third equality comes from the fact that γ(t) is predictable.
Using the standard rules of variance, Var(dN(t) | Ft−) can be expressed as

Var(dN(t) | Ft−) = E
[
dN(t)2 | Ft−

]
− (E [dN(t) | Ft−])2

.

Note that dN(t)2 = dN(t) as the possible values of dN(t) are 0 and 1. Thus,

E
[
dN(t)2 | Ft−

]
− (E [dN(t) | Ft−])2 = E [dN(t) | Ft−] − (E [dN(t) | Ft−])2

= E [dN(t) | Ft−] (1 − E [dN(t) | Ft−]),

which is equivalent to γ(t) dt(1 − γ(t) dt) from (A.2). However,

γ(t)dt(1 − γ(t)dt) = γ(t)dt − γ(t)2dt2 ≈ γ(t)dt

since dt is infinitesimally small such that dt2 ≈ 0. Combining all the results, we arrive at

d⟨M⟩(t) = γ(t) dt

such that the predictable variation process is the cumulative intensity process:

⟨M⟩(t) =
∫ t

0
γ(u) du = Γ(t) (A.42)

In the end, let us consider the case where we have two independent counting processes N1(t) and
N2(t) that are adapted to the same history {Ft} in such a way that they do not have jumps at
the same time. It can be shown that both of the covariation processes between the martingales
obtained from (A.40) are identically zero:

⟨M1, M2⟩(t) = 0, ∀t ∈ [0, τ ] (A.43)

[M1, M2] (t) = 0, ∀t ∈ [0, τ ] (A.44)
To see this for the latter case, note that the sum of the two counting processes can be uniquely
written as follows from (A.40):

N1(t) + N2(t) =
∫ t

0
{γ1(u) + γ2(u)} du + M1(t) + M2(t)

Following along, the result from (A.41) tells us that

[M1 + M2](t) = N1(t) + N2(t)
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and
[M1](t) = N1(t), [M2](t) = N2(t).

Combining these results with a similar expression as (A.32) for the optional covariation process,
we arrive at

[M1 + M2](t) = [M1](t) + [M2](t) + 2[M1, M2](t)
N1(t) + N2(t) = N1(t) + N2(t) + 2[M1, M2](t),

and the result follows immediately. A similar calculation can also be done to show that (A.43)
holds.
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APPENDIX B

EM-algorithm

In Chapter 4.4, we presented a method from [6] to fit a flexible excess hazard model without any
assumption on the baseline excess hazard. The main idea behind the fitting procedure is based
on the EM-algorithm. Here, we will briefly introduce this technique developed in [22] for a more
general setting.

B.1 The algorithm

Let y be the observed data with density given as f(y | θ). Then, we have that the observed
log-likelihood is lf (θ | y) = log Lf (θ | y) = log f(y | θ). Similarly, denote z as the missing data
such that the complete data are summarised by x = (y, z) with g(x | θ) = g(y, z | θ) representing
the complete density, i.e. g is the joint density of the observed data y and missing data z. The
complete log-likelihood is expressed as lg(θ | x) = lg(θ | y, z) = log Lg(θ | x) = log g(y, z | θ).
Finally, the density of z conditional on the observed data y is defined as

h(z | y, θ) = g(x | θ)
f(y | θ) = g(y, z | θ)

f(y | θ) (B.1)

following the definition of conditional probability.

The marginal density of y, which is of course equal to f in this case, can be obtained by integrating
out the missing variable from the complete density. Thus, we have that

f(y | θ) =
∫

g(y, z | θ) dz.

In general, we want to find an estimate of θ based on the observed data y. This corresponds to
the process of maximizing lf (θ | y) with respect to θ. However, in the situation with missing
data, the integral above is hard to evaluate such that maximizing the observed likelihood is not a
simple task. On the other hand, if the missing data z is somehow known, g(x | θ) tends to have
a simpler form that is easier to maximize. To make use of g in the maximization procedure of lf ,
Dempster et al. [22] proposed the following algorithm:

1. E-Step: Let θ(t) be the present estimate of θ. We define Q(θ | θ(t)) to be the expectation of
the complete likelihood with respect to the missing variable z, conditional on the observed
data y:

Q(θ | θ(t)) = Eh(z)

{
lg(θ | x)

∣∣∣y, θ(t)
}

= Eh(z)

{
log g(y, z | θ)

∣∣∣y, θ(t)
}

=
∫

log {g(y, z | θ)} h(z | y, θ(t)) dz

Note that we have evaluated the conditional density of z at θ(t) as θ is of course unknown
and represents the quantity we want to estimate. Also, the last equality highlights the fact
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B. EM-algorithm

that when given the observed data y, only z is the part of the complete data x that is
random.

2. M-step: After computing Q(θ | θ(t)), we maximize this function with respect to θ. The
value of θ which maximises Q is then denoted as θ(t+1).

3. Iterate this procedure until a given criterion is satisfied. For instance, we stop if
Lf (θ(t+1) | y) − Lf (θ(t) | y) ≤ ϵ, where ϵ is a pre-specified small number.

A rigorous proof of why the procedure above actually gives an estimate of θ that maximizes lf is
beyond the scope of this project. Nonetheless, we will at least try to give a brief explanation of why
this method actually works. More specifically, we will show that lf (θ(t+1) | y) − lf (θ(t) | y) ≥ 0.
Thus, the sequence of lf (θ(t) | y) is non-decreasing and will converge if it is bounded.

Consider first the relation between the different densities in (B.1). Based on this expression, we
can express f as

f(y | θ) = g(y, z | θ)
h(z | y, θ) ,

which in terms of log-likelihood is simply

lf (θ | y) = lg(θ | x) − log {h(z | y, θ)} . (B.2)

Taking the conditional expectation with respect to h from (B.1) under the current estimate of θ
at step t yields

lf (θ | y) = Eh(z)

{
lg(θ | x)

∣∣∣y, θ(t)
}

− Eh(z)

{
log {h(z | y, θ)}

∣∣∣y, θ(t)
}

= Q(θ | θ(t)) − H(θ | θ(t)).
(B.3)

Here, the left-hand side is a constant with respect to the missing data z such that the
expectation can be omitted. The first term on the right-hand side is simply the definition
of the function Q from the algorithm and the second term is now denoted as H(θ | θ(t)) =
Eh(z)

{
log {h(z | y, θ)}

∣∣∣y, θ(t)
}

. Hence, in terms of θ(t), we have that

lf (θ(t+1) | y) − lf (θ(t) | y) = Q(θ(t+1) | θ(t)) − H(θ(t+1) | θ(t))

−
{

Q(θ(t) | θ(t)) − H(θ(t) | θ(t))
}

= Q(θ(t+1) | θ(t)) − Q(θ(t) | θ(t))

−
{

H(θ(t+1) | θ(t)) − H(θ(t) | θ(t))
}

.

(B.4)

Since θ(t+1) is exactly the estimate that maximizes Q given the current estimate at time step t,
this implies that

Q(θ(t+1) | θ(t)) − Q(θ(t) | θ(t)) ≥ 0.

For the second difference, we need to rely on the Jensen’s inequality, which states that for a
random variable X and a convex function Φ(x), the following inequality holds [42]:

E {Φ(X)} ≥ Φ {E(X)}

Notice that for any given θ,

H(θ | θ(t)) − H(θ(t) | θ(t)) = Eh(z)

{
log
{

h(z | y, θ)
h(z | y, θ(t))

}∣∣∣∣∣y, θ(t)

}
.
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B.2. Louis method - standard error estimation

Since − log(x) is a strictly convex function, applying Jensen’s inequality for the right-hand side
of the relation above results in

Eh(z)

{
− log

{
h(z | y, θ)

h(z | y, θ(t))

}∣∣∣∣∣y, θ(t)

}
≥ − log Eh(z)

{
h(z | y, θ)

h(z | y, θ(t))

∣∣∣∣∣y, θ(t)

}

Eh(z)

{
log
{

h(z | y, θ)
h(z | y, θ(t))

}∣∣∣∣∣y, θ(t)

}
≤ log Eh(z)

{
h(z | y, θ)

h(z | y, θ(t))

∣∣∣∣∣y, θ(t)

}
.

On the other hand,

log Eh(z)

{
h(z | y, θ)

h(z | y, θ(t))

∣∣∣∣∣y, θ(t)

}
= log

∫
h(z | y, θ)

h(z | y, θ(t))
h(z | y, θ(t)) dz

= log
∫

h(z | y, θ) dz

= log 1
= 0.

Therefore, we have shown that

H(θ(t+1) | θ(t)) − H(θ(t) | θ(t)) ≤ 0.

Finally, after inserting all of these preliminary results back into (B.1), we conclude that
lf (θ(t+1) | y) − lf (θ(t) | y) is indeed greater than or equal to 0. Accordingly, the iterations from
the EM-algorithm will never decrease the log-likelihood.

B.2 Louis method - standard error estimation

When it comes to the uncertainty of the estimated parameter obtained from the algorithm, we
need to rely on the concept of information matrix. Recall that the Fisher information matrix is
defined to be the variance of the score function, i.e. the variance of the first derivative of the
log-likelihood. Under a correctly specified model, it can be shown that this quantity is equivalent
to the minus expectation of the second derivative of the log-likelihood [43]. Returning to our
situation with the observed data y, this means that we have to be able to compute the second
derivative of lf in order to find the observed information matrix. But this is of course difficult as
the underlying reason for developing the EM-algorithm is to avoid working with the observed
log-likelihood due to the missing data.

However, Louis [24] showed that the observed information matrix is completely determined by
the complete likelihood. By differentiating (B.2) twice with respect to θ and multiplying with
−1 on both sides, we get that

Eh(z)

{
−∇2

θlf (θ | y)
∣∣∣∣∣y, θ

}
= Eh(z)

{
−∇2

θlg(θ | x)
∣∣∣∣∣y, θ

}

− Eh(z)

{
−∇2

θ log {h(z | y, θ)}
∣∣∣∣∣y, θ

}
after taking the expectation with respect to the conditional distribution of the missing data z
given the observed data y. By definition, the left-hand side is simply the observed information
matrix Iy(θ). Just as before, since lf does not depend on z, we can omit the expectation on the
left-hand side. The first term on the right-hand side is the complete information matrix Ix(θ), i.e.
the information matrix based on the complete likelihood. Finally, the last part is often referred
to as the missing information matrix, which we have denoted by Iz|y. Thus, a shorter way to
summarise the result above is

Iy(θ) = Ix(θ) − Iz|y(θ), (B.5)
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B. EM-algorithm

i.e. the observed information matrix is the difference between the complete and missing
information. The main result from Louis’ article [24] was the fact that the missing information
matrix can be expressed by the complete likelihood. More specifically, it has been shown in the
article that

Iz|y(θ) = Var
{

∇θlg(θ | x)
∣∣∣∣∣y, θ

}
. (B.6)

Computing the missing information matrix is therefore equivalent to calculating the variance of
the first derivative of the complete log-likelihood with respect to (B.1). Consequently, we only
need to work with the complete log-likelihood in order to find the observed information matrix,
which in practice turns out to be a much simpler task. Finally, the standard errors of all the
estimated parameters in θ̂ are the square root of the diagonal elements of I−1

y (θ̂).
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APPENDIX C

Pohar-Perme estimates for data from the
Norwegian Cancer Registry stratified by

different variables
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Figure C.1: Pohar-Perme estimates stratified by gender variable for the two age groups.
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C. Pohar-Perme estimates for data from the Norwegian Cancer Registry stratified by different
variables
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Figure C.2: Pohar-Perme estimates stratified by ICD indicator for the two age groups.
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Figure C.3: Pohar-Perme estimates stratified by morphology type for the two age groups.
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Age ≤ 50 Age > 50
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Figure C.4: Pohar-Perme estimates stratified by SEER stadium variable for the two age groups.
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Figure C.5: Pohar-Perme estimates stratified by surgery type for the two age groups.
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APPENDIX D

R-codes

A selection of relevant R-codes from Chapter 5 and 6 can be found here: https://github.com/jihut/
masterproject
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