
i 
 

 

 
 

Faculty of Science and Technology 

 

MASTER’S THESIS 

 

Study program/ Specialization: 

 

Offshore Technology/ Risk Management 

 

Spring semester, 2015 

 

Open / Restricted access 

 

 

Writer:  

Sharmin Sultana 

 

………………………………………… 
(Writer’s signature) 

 

Faculty supervisor: Eirik Bjorheim Abrahamsen (University of Stavanger) 

 

External supervisor(s): 

 

 

 

Thesis title:  

 

A new approach of uncertainty treatment in the verification of safety integrity level of safety 

instrumented system 

 

 

 

 

Credits (ECTS): 30  

 

Key words: 

Safety instrumented system 

Safety integrity level 

Uncertainty  

IEC 61508 

PDS 

Monte Carlo 

 

 

 

 

         Pages: 71 

     

     + enclosure: 7 pages 

 

 

         Stavanger, 15.06.2015 

 

      Date/year 



i 
 

 
 
 
 
 
 
 
A new approach of uncertainty treatment in 
the verification of safety integrity level of 
safety instrumented system 
  



ii 
 

PREFACE 

This master thesis is written, as a requirement to my master’s degree in offshore technol-

ogy in the specialization of Risk Management at the University of Stavanger during the 

spring semester of 2015. The title of the thesis is “A new approach of uncertainty treatment 

in the verification of safety integrity level of safety instrumented system”.  

 

The main objective is to investigate the treatment of uncertainty in SIL verification and the 

possible decision making process on the basis of the investigation. Basic knowledge of 

risk and reliability analysis, IEC standards and PDS method will help readers to better 

understand this thesis. However, it is tried to give these basic ideas in relevant sections. 

 

I wish to thank my supervisor Professor Eirik Bjorheim Abrahamsen at the Department of 

Industrial Economics, Risk Management and Planning at the University of Stavanger for 

his invaluable suggestions, comments and advice throughout the entire master thesis pro-

ject. Without his help and guidance, this intensive work would not have become possible. 

 

Stavanger, June, 2015 

Sharmin Sultana  
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ABSTRACT 

Reliability is very important aspect of any safety instrumented system. The standard IEC 

61508, widely accepted in field of reliability of instrumented systems, entails the quantifi-

cation of achieved risk reduction to be expressed as a safety integrity level (SIL). The 

required SIL can be determined by various methods like risk graph method, risk matrix, 

markov process, petri-nets. The standard also instruct that reliability data uncertainty 

should be taken into account when calculating target PFDavg.  

 

Even in the recent past, it was common practice to overlook the existence of uncertainty. 

Uncertainty encountered during design, operation and maintenance should be an integral 

part of the decision making process, not an afterthought and should be treated with the 

same attention as the other requirements. The main objective of this research is to de-

velop a systematic approach to assess the effect of uncertainty on SIL level, where SIL is 

determined by PDS method.  

 

The research was motivated by five research questions: 1) How to propagate uncertainty 

in SIL level, where SIL is calculated by PDS method? 2) Is objective uncertainty analysis 

established in literature is adequate for modern system? 3) What are the limitations of this 

objective approach? 4) How can MTO perspectives and operational constraints be in-

cluded in uncertainty analysis? 5) What should be the basis for overall decision making? 

To answer these questions, a literature study was performed to review existing theories, 

models and their prospects. The study attracts the focus to the point that there is a lack 

of objective along with subjective uncertainty analysis for PDS method. Few works has 

been done to verify uncertainty in SIL verification where SIL has been determined by reli-

ability block diagram or risk graph method proposed by IEC standard.  

PDS method uses approximated formula for SIL calculation and is said to follow conserva-

tive approach. This means calculated SIL value will show conservative result compared 

to the results determined by other methods. One may argue about the necessity of uncer-

tainty analysis after getting such conservative result. Logic for this further study is to es-

tablish a structured framework for the analysis. Objective quantitative analysis is carried 

out with Monte Carlo simulation using @risk software applied to a practical case applica-

tion of subsea well isolation system. The simulation case is checked with one program-

ming language (Scilab) to check consistency of the result of @risk. However, this thesis 

does not focus on the accuracy of the result, rather more focus is given to the development 

of framework.   

During the literature study, it is also observed that there is a lack of literature on the inclu-

sion of MTO perspective and operational constraint in uncertainty analysis. It is termed as 

background knowledge in risk management point of view. Exception is the paper of Abra-

hamsen and Røed (2011) where the authors have proposed a qualitative uncertainty as-

sessment of background knowledge in SIL verification. Schönbeck, Rausand, and Rou-

vroye (2010) in their paper also presented an approach to include human and organization 

factor in the operation phase of SIS. Part of this research is motivated by these two pa-

pers. Now a days wide spread research is going on to include human-organizational fac-

tors in risk analysis or others. Aramis project, bora approach, work process analysis 
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method are such examples. A quantification method is proposed to take into account of 

uncertainty in background knowledge.  

Final task in reliability analysis is decision making of SIL compliance. If it does not meet 

the requirement, one option is to modify SIS architectural configuration or modifying test 

interval, using highly reliable equipment. However the question may arise about the po-

tential contribution of uncertainty result in decision making, use of suitable tool and proper 

phase to use. Is the result only carry significance or other factors need to be considered 

also? This thesis tries to cover answers of all these questions in a systematic way. Anal-

ysis are carried out with the help of a case study. To draw confident conclusions from the 

development, it is necessary to verify the methods with more case applications and see 

their effects applied in practice. Recommendations for further work are included in the 

final part of the thesis.  

 

Uncertainty analysis should not be considered as an unnecessary burden, rather it should 

be thought as a mean to be informed about risk in the decision process that will be helpful 

in a broader sense to reduce risk.  
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1 INTRODUCTION 

 

Nothing can be more important than safety, whether it is related to our daily lives or in-

dustrial sector. Risk1 cannot be reduced to zero level, which means absolute safety cannot 

be achieved, but can be reduced to a tolerable level (Redmill 1999). Safety instrumented 

systems are used to reduce risk to an acceptable level which is less hazardous for people, 

society and environment, in other word to balance between risk and profit.  

Modern engineering systems and processes has become complex, both in their function-

ality and their interaction with environment. This growing complexity demands more ca-

pability and more advanced methodology instead of traditional methodologies. System 

failure does not evolve from single component failure, rather software element, human 

factor, operating conditions, and environmental factors play important role in the availa-

bility of safety systems.  

Safety instrumented systems are comprised of input elements, logic solvers and final el-

ements. SIL or safety integrity level is used to express the level of risk reduction. Various 

methods are established in industry in selecting the appropriate SIL, which is the foremost 

step in any safety specification. The challenge of system engineers are to design a user 

friendly, reliable and efficient system which is able to prevent dangerous failures/hazard. 

An example of such safety system is fire and gas detection system, which will give alarm 

on the detection of fire or gas to control room operator, so control room operator can take 

necessary step. In modern times, they are designed in such a way so that system can 

initiate further step for example controlling the process flow, prevention of material flow 

into the detected segment, initiation of process shutdown valve, vice versa. In such com-

plex system, prediction of safety performance and system behavior on demand has be-

come more difficult. 

Various Methods were developed for identifying hazards and for quantifying the conse-

quences of failures to help in decision making. Two standards IEC 61508 and IEC 61511 

were established after through research and is accepted throughout the world by industry 

personnel. These two standard quantifies safety issue related to reliability engineering 

and give a direction about safety life cycle. The IEC standards define four safety integrity 

levels (1-4). to define safety integrity level IEC uses the terms ‘Probability of failure on 

demand (PFD)’ and ‘Demand mode of operation’ (Abrahamsen and Røed 2011). Accord-

ing to the IEC 61508 standard, PFDavg should be used for low demand systems (one de-

mand per year) (Hui Jin, Lundteigen, and Rausand 2011).   

IEC standards entails that safety integrity levels for the different safety instrumented func-

tions should be verified. In traditional approach, this verification is usually done by the 

calculation of PFD. If the calculated PFD is higher than the target value, risk reducing 

measures should be implemented (Abrahamsen and Røed 2011). In broader risk per-

spective, uncertainties and background knowledge should be taken into consideration. 

The assigned PFD is conditioned on a number of assumptions and suppositions (Abra-

hamsen and Røed 2011). A large number of qualitative criteria must be considered for 

                                                           
1 Risk is defined as event (A), consequences (C) and associated uncertainty (U) 
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decision making. Many fields can be affected and the impact of a wrong decision would 

impact the organization.  

 

1.1 OBJECTIVE 
In this thesis uncertainty treatment in SIL verification is presented and analysed with de-

tails. There are various methods for SIL calculation, established theoretically and in prac-

tice.  Here, The PFDavg is considered as a measure of safety integrity level. For PFDavg 

calculation, PDS method, introduced by SINTEF, is used. Quantification of induced un-

certainty in the PFD estimation is the main concern of the thesis. 

To reach the main objective, sub-objectives are developed as below: 

 To perform literature review for existing models and methods with the special at-

tention to uncertainty treatment 

 To propose methods for uncertainty treatment in SIL verification with focus for in-

clusion of MTO and operational perspectives  

 To check the models with a case study of practical application 

 To propose a strategy to help decision making about use of suitable model in 

proper phase and to propose possible risk reducing solutions 

1.2 LIMITATIONS 
It has been a great discussion on the industry of the best suitable method to deal with 

uncertainty for SIL verification. These assessments are beyond the scope of this thesis. 

Focus is given on uncertainty treatment for one specific method. PDS method is used for 

PFD calculation as it is well embraced by Norwegian oil and gas sector.  A case study is 

chosen for better realization of the concept. System considered here is subsea well isola-

tion system. This thesis tries to give a systematic structure in the inclusion of uncertainty 

in SIL estimation by PDS method. During the analysis, focus is given only to system 

safety. Environmental and asset protection are not focused. Hardware failure is only in-

cluded in PFD calculation without taking into account of systematic failure. Only parameter 

uncertainty and its treatment is given importance without consideration of model and com-

pleteness uncertainty. Further is discussed in chapter 5.  

The thesis focuses on the method and how to apply the mathematics, not so much on 

result. In semi-quantitative uncertainty assessment, uncertainty ratings and weight ratings 

are made anonymously, as no data exists for such type of evaluation. Uncertain factors 

are considered independent. Overlaps and interdependencies are not taken into account.  

1.3 STRUCTURE OF THE REPORT 
Some prior knowledge about reliability analysis and the mathematical background of sta-

tistics and probability is beneficial when reading this report. Even so, some basic terms 

used in reliability analysis and SIL estimation along with uncertainty is described in rele-

vant chapters.  

Overall report have eight chapters. Chapter 1 introduces the concept of this research to 

the reader with its objective and limitation. Chapters 2 provides theoretical framework: the 

necessary background information to support the thesis work for the reader. This chapter 
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looks into details in some of the common terminology used in the field of reliability engi-

neering that is related to the scope of this thesis. It also includes a review of the standards 

used in reliability field and a review of SIL calculation approach as described in PDS 

method.  

 

Chapter 3 is the presentation of the concept of uncertainty and representation recognised 

in the field of risk analysis and related application.  Chapter 4 identifies and discusses the 

existing models in literatures used in uncertainty analysis in reliability estimation. A sys-

tematic literature study is conducted and the relevant articles are sorted and selected to 

extract the concept. Uncertain parameters effecting the reliability estimation are also dis-

cussed in details in first part of this chapter. 

 

In Chapter 5 possible work flow for SIL verification are presented. Models are proposed 

for uncertainty assessment with their framework and methodology. Of them one is semi-

quantitative models and one is quantitative model. Monte Carlo simulation is proposed as 

quantitative analysis. Finally a strategy for decision making is proposed about the suita-

bility of the specific method on specific situation. Chapter 6 makes a comparative study 

between proposed models presented in chapter 5 and existing models presented in chap-

ter 4. Pros and cons of each models are also discussed.  

 

Chapter 7 presents the SIL calculation for a case study of subsea well isolation system. 

PFD calculation are performed by making reliability block diagram following the method 

described in the PDS method handbook.   A description of all components used in the SIS 

are illustrated. Component reliability data, used is taken from PDS data handbook. At last 

uncertainty assessment are carried out for the case study following the methods described 

in chapter 5. Microsoft excel and @risk software was used for Monte Carlo simulation. a 

discussion is made on the results obtained from the analysis with its meaning and signifi-

cance. Possible risk reducing measures are also proposed in short. Chapter 8 makes a 

conclusion on the achievement of this research and recommends on future work.  

 

Appendix A presents the acronyms, mathematical notation and terminology used in the 

thesis.  

Appendix B presents the results obtained from quantitative uncertainty analysis graph-

ically along with the calculation procedure by @risk software. In appendix C programming 

codes are shown to run the simulation along with graphical result. These codes are exe-

cutable with open-source Scilab software which is very closer to Matlab.  
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2 THEORETICAL FRAMEWORK 

2.1 RELIABILITY THEORY 

2.1.1 Safety instrumented systems  

Safety instrumented system provides a protective layer around process system by imple-

menting one or more safety instrumented functions. A SIS is composed of one or more 

sensor, logic solver and final element. 

Sensors: It detects the potential or cause of an unwanted incident by producing appropri-

ate electrical signal which is sent to logic solver (Redmill 1999). Examples are pressure 

transmitters, level transmitters, temperature gauges, and so on.  

Logic Solver: It detects the electrical signals which exceed a given threshold and sends 

signal for action to the final elements (Redmill 1999). Logic solvers can be computers, 

programmable electronic controllers (PLCs), and relay circuits.  

Final Control Element: It implements the required action as instructed by the logic system 

(Redmill 1999). This final control element is typically a pneumatically actuated on-off valve 

operated by solenoid valves. 

2.1.2 Safety instrumented functions 

A SIF, implemented by a SIS, detects a hazard and bring the process to a safe state 

(Redmill 1999). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: SIS-SIF-SIL relationship (Redmill 1999) 

  

 
 

 
 
 
 
 
 
 
 
 
 

Every SIS has one or more safety 
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2.1.3 Failure classification 

Failures of SIS elements can be classified as dangerous and safe failures. Dangerous 

failure can be detected and undetected failures. Dangerous detected failures are revealed 

by regular diagnostic testing, but undetected failures are only revealed by proof testing. 

In sis reliability calculation often it is assumed that dangerous detected failures have a 

very less impact on the safety integrity (H. Jin, Lundteigen, and Rausand 2012). 

A safe failure does not lead the SIF to an unsafe state when failed. Failures of SIS ele-

ments can also be classified as random hardware failures and systematic failures. 

 A random hardware failure: Occurs due to one or more possible degradation in the 

hardware at a random time (H. Jin, Lundteigen, and Rausand 2012).  

 A systematic failure: A systematic failure or a functional failure may be related to 

the design or operational procedures or other relevant factors. When systematic 

failure occurs, the item cannot perform its specified function though is able to op-

erate. It cannot be easily detected by regular proof testing (H. Jin, Lundteigen, and 

Rausand 2012). 

  

2.1.3.1 Common cause failure (CCF) 

A CCF failure causes failure of more than one channel in a multiple channel system lead-

ing to system failure. Having same type of components or design deficiency or inadequate 

maintenance in redundant channel, or are located in the same area may be the reasons 

of CCF (H. Jin, Lundteigen, and Rausand 2012, Lundteigen and Rausand 2007). Several 

methods exist to describe CCFs in SIS. Beta factor model is most popular today. β is the 

conditional probability of a CCF, when a failure has occurred (Lundteigen and Rausand 

2007). 

2.1.3.2 Test-independent failures (TIF) 

TIF were introduced in the PDS-method. TIF are those failures which passes the proof 

test, but still remain undetected. If TIF are present in the system, after proof test the sys-

tem cannot retain to ‘as good as new’ condition (H. Jin, Lundteigen, and Rausand 2012). 

2.1.3.3 Safety integrity requirements  

Safety integrity level indicates achieved level of risk reduction implemented by safety func-

tion. Four discrete levels of safety is described in IEC standard. Each level represents the 

measure of risk reduction. IEC standards require that the SIS design, operation and 

maintenance choices must be verified against the target SIL (IEC 2000). SIL is not a 

measure of risk, it indicated reliability of a safety function/system required to achieve the 

necessary amount of risk reduction (Charlwood, Turner, and Worsell 2004). 

A safety function can operate in low demand mode or high demand mode. In low demand 

mode, the frequency of demand of a SIS is not greater than one per year and no greater 

than twice the proof test frequency (Spellemaeker and Witrant 2007). In this mode, safety 

function is operated only when required to ensure that the equipment and environment 

remains in a safe state (e.g. gas detection system in boiler room). In case of high demand 

mode system, the frequency of demand of a SIS is greater than once per year or greater 

than twice the proof test frequency (Spellemaeker and Witrant 2007).  
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According to IEC, for these two modes of operation, the safety integrity level of a safety 

function should be expressed as (Spellemaeker and Witrant 2007): 

 The PFD: the average Probability of Failure to perform its intended function on 

Demand, used in the case of low demand mode (Spellemaeker and Witrant 2007).  

The probability that a SIL 3 safety function will fail on demand is 0.1%-0.01% or in 

other words, it will work on demand in 99.9% to 99.99% case and associated risk 

reduction factor is 1000 to 10000.  

 The PFH: the Probability of a dangerous Failure per Hour, used in the case of high 

demand or continuous mode (Spellemaeker and Witrant 2007). 

Table 1: PFD and RRF (risk reduction factor) for SIL level as defined in IEC 61508 (Spellemaeker and Witrant 2007) 

SIL 
 

PFD: Low demand 
mode 

PFH: high de-
mand mode 

Risk reduction 

4 ≥ 10-5 to < 10-4 ≥ 10-9 to < 10-8 10000 - 100000 

3 ≥ 10-4 to < 10-3 ≥ 10-8 to < 10-7 1000-10000 

2 ≥ 10-3 to < 10-2 ≥ 10-7 to < 10-6 100-1000 

1 ≥ 10-2 to < 10-1 ≥ 10-6 to < 10-5 10-100 

 

 

2.1.4 Architectural constraint 

For each part of the SIS, the architectural constraints are expressed by the hardware fault 

tolerance (HFT), which again is determined by the type of the components (type A or B), 

the safe failure fraction (SFF2), and the specified SIL.  

2.1.5 Hardware fault tolerance (HFT) 

The HFT expresses the maximum number of faults that a SIS can tolerate to perform the 

SIF. A HFT of M means that M+1 faults will cause a loss of the safety function. A KooN 

architecture tolerates N–K failures (faults) (Lundteigen and Rausand 2009).  

The second parameter that is used to determine the HFT, is the component type. IEC 

61508 defines them type A and type B components. A type component is characterized 

by: (i) well defined failure modes, (ii) well known behavior of the component under fault 

conditions and (iii) dependable field data to confirm the claimed failure rates. B type com-

ponent does not fulfill one or more of these criteria. 

2.1.6 Reliability block diagram 

A Reliability Block Diagram (RBD) is a graphical presentation of a system showing the 

logical connections of functioning items needed to fulfil a specific function.  

  

                                                           
2 SFF is the proportion of ‘‘safe’’ failures among all failures 
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Each component in the system is represented by a block. Reliability block diagrams are 

often applied to determine the PFD of a SIF.  

 

 

 

 
a)  b) 

Figure 2: a) 1oo1 configuration b) 1oo2 configuration 

 

2.1.7 Impact of testing 

To keep the SIL level at the initial value, it is mandatory to perform a proof test to check 

the availability of the safety function. A proof test is assumed to lead the SIS to the normal 

situation. These tests are designed to detect random hardware failures. There is a link 

between the average PFD, proof test interval and the mean time to repair (Spellemaeker 

and Witrant 2007). A proof test can be manual or automatic. 

2.1.7.1 Functional testing 

Functional testing is manual test performed at definite time intervals, can be typically 3, 6 

or 12 months intervals.  

2.1.7.2 Automatic self-test  

Modern system often have in-built-system to detect random hardware failures by auto-

matic self-test. Moreover, as a part of self-test, the system may determine the failed mod-

ules by itself (PDS method 2013). But all random hardware failures cannot be detected 

automatically, its performance depends on voting logic and operating philosophy.  

 

2.2 STANDARDS AND GUIDELINES 

2.2.1 IEC 

Various international standards are used to verify compliance with legal requirement for 

organization/system. IEC 61508 (generic standard applicable to all industries) and IEC 

61511(applicable to only process industry) are used as a benchmark for acceptable good 

practice for industry by worldwide Safety regulators for industry. For estimating reliability 

of a SIS, the IEC standard describes a number of possible calculation approaches includ-

ing analytical formula, reliability block diagrams, fault tree analysis, Markov modelling, 

petri nets (Innal 2008). IEC standard do not mandate one particular approach or a partic-

ular set of formulas , but leave it to the user to choose the most appropriate approach for 

quantifying the reliability of a given system or function (IEC 2000). 

The standard specifies the risk and measures in the design of safety functions. It provides 

the functional safety requirements covering random hardware failure, systematic failure 

and common cause failures.  IEC 61508 and IEC 61511 guides all necessary activities 

during the entire lifecycle of the systems for the management of functional safety. IEC 

615081 entails to consider only random hardware failures in PFDavg calculations and 

Component 

A 

Component 

type A

Component 

type B
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further recommends a proper safety management program to control systematic failures. 

Since systematic failures do not follow the same failure processes as random hardware 

failures (H. Jin, Lundteigen, and Rausand 2012). The standard gives a number of require-

ments to reduce the systematic failures (OLF 2004). 

 

2.2.2 OLF 70 

This standard provides a guideline for minimum SIL requirements on the basis IEC 61508, 

IEC 61511 and gained experience with a purpose to gain adequate safety level for petro-

leum activities in Norway. In comparison to fully risk based perspective as described in 

IEC 61508, this standard will directly focus toward hazard identification and identification 

of deviations from minimum SIL requirement. To ensure a better performance level, 

stricter SIL requirement has been chosen. 

OLF describe minimum SIL requirement instead of fully risk based approach as described 

in IEC 61508 for determining SIL requirement. It helps the organization to avoid time con-

suming calculations and documentation is possible. According to this guideline, in case of 

deviation from requirements due to technological advances or due to operational aspects, 

IEC 61508/61511 should be followed.   

 

2.2.3 PDS method 

The PDS method (developed by SINTEF AS, Norway) is said to account the major factors 

affecting system reliability during operation (PDS method 2013).  

1. The model takes into account of random hardware and systematic failures and  so 

on relevant failure causes such as: 

 Normal ageing or wear out 

 Software failures 

 Stress induced failures 

 Hardware related failures 

 Installation failures 

2. The model accounts for common cause failures and the effect of testing. 

 

2.2.3.1 Operational failures 

PDS method counts safety unavailability due to systematic failures and random hardware 

failures. The PDS method uses extended β factor model which depends on the voting 

configuration (PDS method 2013).  

2.2.3.2 Contributions to Loss of Safety 

PDS identifies three main contributors to loss of safety or safety unavailability (PDS 

method 2013). They are: 

 PFD: Unavailability due to dangerous undetected failures 

 PTIF: Unavailability due to TIF failures 

 DTU: Unavailability due to known or planned downtime 
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2.3 PFD CALCULATION BY PDS METHOD 
              

Main input parameters for the PFD calculation: 

λDU   = Rate of DU (Dangerous Undetected) failures 

𝜏   = Test period for manual functional testing 

β =   Beta factor value 

 

For a single (1oo1) component the PFD can be approximated by: 𝑃𝐹𝐷1𝑜𝑜1 ≈  𝜆𝐷𝑈. 𝜏 2⁄  

 

2.3.1 Calculation of common cause failures and 𝛃 factors 

In PDS method uses an extended or modified version of beta factor model. Some as-

sumptions in this version, are different from actual beta factor model. In this model, the 

rate of common cause failures explicitly depends on the configuration of system. Beta 

factor of a MooN voting logic may be expressed as: 

𝛽 (𝑀𝑜𝑜𝑁) =  𝛽. 𝐶𝑀𝑜𝑜𝑁  (M<N)      (PDS method 2013) 

Where, CMooN is a modification factor for various voting configurations.  

The system failure rate due to CCF of MooN configuration = 𝐶𝑀𝑜𝑜𝑁. 𝛽. 𝜆𝐷𝑈 

For N different components voted MooN, PFD subjected to CCF then becomes (PDS 

method 2013): 

𝑃𝐹𝐷𝑀𝑜𝑜𝑁
(𝐶𝐶𝐹)

= 𝐶𝑀𝑜𝑜𝑁 . 𝛽𝑚𝑖𝑛 . √𝜆1. 𝜆2 … . 𝜆𝑁
𝑁 . 𝜏̅ 2⁄  

For a duplicated module, voted 1oo2, PFD, including common cause failure and contribu-

tion from independent failures (PDS method 2013): 

𝑃𝐹𝐷1𝑜𝑜2 ≈  𝛽. ( 𝜆𝐷𝑈. 𝜏 2⁄ ) + (𝜆𝐷𝑈. 𝜏)2/3 

Table 2: Summary of formulas for PFD for duplicated system (PDS method 2013) 

Voting PFD calculation formulas 

 Common cause 

contribution 

 Contribution from independ-

ent failures 

1oo1 -  𝜆𝐷𝑈. 𝜏 2⁄  

1oo2 𝛽. ( 𝜆𝐷𝑈. 𝜏 2⁄ ) + ((1 − 𝛽)(𝜆𝐷𝑈. 𝜏))2/3 

2oo2 -  (2 − 𝛽). 𝜆𝐷𝑈. 𝜏 2⁄  

1oo3 𝐶1𝑜𝑜3. 𝛽. ( 𝜆𝐷𝑈. 𝜏 2⁄ ) + ((1 − 1.5𝛽). 𝜆𝐷𝑈. 𝜏). 3 4⁄  

 

Table 3: Numerical values for configuration factor, CMooN  (PDS method 2013) 

M/N N = 2 N = 3 N = 4 N = 5 

M = 1 C1oo2 = 1.0 C1oo3 = 0.5 C1oo4 = 0.3 C1oo5 = 0.2 

M = 2 - C2oo3 = 2.0 C2oo4 = 1.1 C2oo5 = 0.8 

M = 3 - - C3oo4 = 2.8 C3oo5 = 1.6 

M = 4 - - - C4oo5 = 3.6 

M = 5 - - - - 
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2.3.2 Calculation for multiple SIS 

For a multiple SIS comprising of two layers, the average PFD of the multiple SIS can be 

calculated as: 

PFDavg = CF . PFDavg(SIS1). PFDavg(SIS2) 

Where CF is a correction factor and depends on a voting logic, Using CF will give a con-

servative result. 

Table 4: Correction factors for multiple SIS (PDS method 2013) 

Number of SISs CF 

1 1 

2 1.33 

3 2 

4 3.2 

N 2𝑁

𝑁 + 1
 

 

 

 

 
a) b) 

Figure 3: a) 1oo2 configuration b) 1oo3 configuration 

 

Taking into consideration of common cause failures and independent failures, following formulas 

are applied to calculate PFD for multiple SIS: 

𝑃𝐹𝐷1𝑜𝑜2 =  𝐶𝐹1𝑜𝑜2 ∗ 𝑃𝐹𝐷𝐴 ∗ 𝑃𝐹𝐷𝐵 + 𝐶1𝑜𝑜2. 𝛽 √𝑃𝐹𝐷𝐴 ∗ 𝑃𝐹𝐷𝐵 

 

𝑃𝐹𝐷1𝑜𝑜3 =  𝐶𝐹1𝑜𝑜3 ∗ 𝑃𝐹𝐷𝐴 ∗ 𝑃𝐹𝐷𝐵 ∗ 𝑃𝐹𝐷𝐶 + 𝐶1𝑜𝑜3. 𝛽 √𝑃𝐹𝐷𝐴 ∗ 𝑃𝐹𝐷𝐵 ∗ 𝑃𝐹𝐷𝐶
3  

 

 

 

  

Component 

type A

Component 
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Component 
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Component 
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3 CONCEPT OF THE UNCERTAINTY AND REPRESENTATION 

3.1 CONCEPT OF UNCERTAINTY  
Uncertainty means the state of being uncertain or something that is uncertain or that 

causes one to feel uncertain. The term uncertainty is used different ways in different fields.  

In the scientific world, representative model or theory is used to describe the real phe-

nomena. To establish the model, several assumptions are made, which is done on the 

basis of background information. For modern complex applications the number of back-

ground assumptions increases. Often the analyst becomes unsure about the choice of 

theoretical model, adequacy and accuracy of the model.  

Uncertainty arises due to the following facts (Oberkampf and Roy 2010): 

 Lack of adequacy and level of detail to represent the physical system properly 

 Lack of adequacy and accuracy of the model or theory for particular proposed 

application 

 Deviation between the real world and simplified representations in models. 

 

Before treatment of uncertainty, it is important to know the sources of uncertainty which 

can be evolved from Inherent uncertainty in random variables, from the selection of the 

probabilistic or physical sub model, measuring or observation error, computational or nu-

merical error (Kiureghian and Ditlevsen 2009). 

 

3.1.1 Classification  

Uncertainty is classified in different ways in different fields. Scientists often distinguish 

uncertainty as aleatory and epistemic as they originate from different conditions. Aleatory, 

also referred as stochastic or objective uncertainty, arises due to randomness property in 

the inherent variability of the system or nature. Variables describing the system are not 

always known to the sufficient degree to possibly assign the variable to a constant.  

Epistemic uncertainty evolves due to imprecise knowledge about the system. This type of 

uncertainty can be reduced by further analysis of the problem and experiments. Both 

types of uncertainty can be described by the probability distribution of the variable (Zio 

2013).  

Sometimes it is difficult to distinguish between these two types of uncertainties. With in-

crement of new knowledge, the epistemic uncertainty will be reduced. While the aleatory 

uncertainty is inherent in system behavior and cannot be reduced. Different mathematical 

structures (probability or possibility or combination of both) can be used in the same anal-

ysis to represent aleatory and epistemic uncertainty (Helton et al. 2008 , Kiureghian and 

Ditlevsen 2009). 

In nuclear industry uncertainty is classified as parameter uncertainty, model uncertainty 

and completeness uncertainty. 

  

http://www.researchgate.net/publication/240954643_Representation_of_analysis_results_involving_aleatory_and_epistemic_uncertainty
http://www.researchgate.net/publication/240954643_Representation_of_analysis_results_involving_aleatory_and_epistemic_uncertainty
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3.1.2 Parameter uncertainty 

This uncertainty evolves due to imprecise knowledge about the parameters and other 

model input. It is related to the uncertainty in the computation of input parameter values 

to quantify the model or due to lack of accuracy of assigned parameter values in the phys-

ical model. In reliability application, such parameter can be component failure rates and 

probability.  

These uncertainties are often characterized by probability distributions which expresses 

the analyst’s degree of belief about the values of these parameters. Many methods are 

available for parameter estimation from experimental data, e.g. Bayesian, maximum like-

lihood.  

3.1.3 Model uncertainty:  

This uncertainty arises due to the difference between model and reality. This is related to 

the effectiveness of the model to reproduce the physics of the system due to limitation of 

computational model or coding error.  (Oberkampf and Roy 2010) 

3.1.4 Completeness uncertainty 

This uncertainty can be known uncertainties (which were not included in the model) or 

unknown uncertainties. This uncertainty cannot be properly quantified and it is difficult to 

estimate its magnitude, because it represents those aspects of the system which was not 

addressed in the model.  

In the following, there are some examples how this uncertainty can arise: 

 Methods of analysis have not been developed for some issues or for specific ap-

plication. 

 Resources to develop the complete model is limited. 

 Some phenomena, knowingly or unknowingly, was omitted because their exist-

ence was not recognized. 

3.2 REPRESENTATION  
Scientist expresses different opinions for the presentation of uncertainty.  Some scientists 

like Lindley, Oakley suggests only probabilistic approach for the representation of uncer-

tainty.  Whereas others (e.g. Terje Aven) proposes semi-quantitative approach, which 

postulates that risk and uncertainty cannot be expressed in full dimension by any mathe-

matical or probability formula (Aven et al. 2014). Aven et al. (2014) identifies five measures 

for the uncertainty representation in the context of risk analysis:  

 Probabilistic approach 

 Non-probabilistic approach with help of interval probabilities  

 Non-probabilistic approach with help of other than interval probabilities  

 Hybrid approaches  

 Semi-quantitative methods 

3.2.1 Probabilistic approach 

Probability is a measure of expressing uncertainty of the possible outcomes, on the basis 

of assessor’s background information and knowledge. It is said to well represent aleatory 

uncertainty in the presence of lots of historical data or strong background knowledge.   
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3.2.2 Interval analysis 

The interval analysis is useful when only the bounds of a quantity is known without any 

other knowledge which refers to weak background knowledge. It can be used to propagate 

uncertainty of input parameters with the help of a model. The analyst may reflect his lim-

ited knowledge and associated uncertainty through an interval specification (Aven et al. 

2014). 

Interval analysis may be represented as: 

 Xi = {xi : ai ≤ xi ≤ bi} 

Where, Xi is set of possible value of variable xi, and [ai, bi] is the interval range that con-

tains the possible values of xi. 

Pros: This concept is computationally inexpensive and consistent which produces con-

servative result of an analysis. It is a straightforward method that generalizes the worst 

case analysis (Abrahamsson 2002). 

Cons: Often in times, interval may become wide rages which will produce less useful 

result in real-life situations. More information of the parameters cannot be obtained except 

only the ranges, which often shows excessive conservative results (Abrahamsson 2002). 

3.2.3 Probability interval or imprecise probability 

Upper and lower probabilities are more appropriate than precise probabilities in case of 

poor knowledge. It is a generalization of probability theory through the use of a lower 

probability and an upper probability where 0 ≤ P(A) ≤l 1 where probabilistic model relies 

incomplete statistical information (where the mean value or the variance are ill-known , 

only a set of conditional probabilities is available) (Baudrit and Dubois 2006).  

Pros: It can deal with uncertainty in parameter values, distribution shapes, dependencies 

and model form, which is very advantageous (Abrahamsson 2002).  

Cons: In case of repeated occurrences of parameters, it is difficult to obtain optimal 

bounds. Different kinds of uncertainties cannot be analyzed separately by this method 

(Abrahamsson 2002). 

 

3.2.4 Possibility theory 

Possibility theory uses a pair of dual set functions called possibility and necessity 

measures. (x) expresses the degree of the possibility of x. (x) = 0 means that the out-

come x is an impossible situation, whereas (x) = 1 indicates that the outcome x is possi-

ble or normal (Aven and Zio 2011).  

 

3.2.5 Evidence theory 

The evidence theory (Shafer, 1976) provides two quantitative indicators to describe un-

certainty. The belief (𝐵𝑒𝑙 𝐵) and the plausibility (𝑃𝑙 𝐵) functions both qualify the validity of 

the statement that the values of the variable X (with mass distribution (𝐴)) fall into set B 

(Aven and Zio 2011). Mathematically, 𝐵𝑒𝑙 𝐵 and 𝑃𝑙 𝐵 are defined as:  

𝐵𝑒𝑙 𝐵 = (𝐴𝑖),⊆𝐵 and 𝑃𝑙 𝐵 = 𝑣 𝐴𝑖 𝐴𝑖,𝐴𝑖∩𝐵≠∅=1−𝐵𝑒𝑙 𝐵 (18)  
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3.2.6 Semi-quantitative approach 

Semi-quantitative approach is a hybrid approach integrating both quantitative and quali-

tative framework to represent uncertainty. This approach represents a qualitative charac-

terization of the background knowledge K of the output to capture aspects beyond quan-

titative numbers. This approach consumes the belief that uncertainty cannot be accounted 

in full scope by a quantitative probabilistic or any other formula. Uncertain factors con-

cealed in the background knowledge should be assessed qualitatively (Aven and Zio 

2011). The uncertainty can be characterized in the format Q= (P, UF), where UF denotes 

a qualitative characterization of uncertainty factors in the background knowledge K on 

which P is conditional (Aven et al. 2014). 
  

3.3 UNCERTAINTY PROPAGATION 
Uncertainty propagation: methods for propagating the uncertainty in input parameters 

onto the output from the analysis.  

If the model can be described such that, Y is the function of x: 

Y = {y: x∈ X and y = F (x)}, X= X1, X2… Xn; 

An analysis outcome y = F(x) will have an uncertainty structure associated with uncertain 

structure x. If there is no uncertainty in the values of X, there is also no uncertainty in x 

and as a sequence to Y. the uncertainty associated with y may be represented by possi-

bilistic or probabilistic method in consistent with the uncertainty representation of x. An 

exact determination of the uncertainty of y is usually not possible in a real analysis (Rau-

sand 2005). 

 

 

Figure 4: Framework for uncertainty propagation (G. Rausand 2005) 
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Methods of uncertainty propagation can be classified as level 1 and level 2 setting de-

pending on the type of uncertainty effecting the model input ( Aven et al. 2014). For a level 

1 setting,  input quantities which are subjected to aleatory uncertainty are only considered 

for propagation in the output result. A level 2 uncertainty propagation setting applies if the 

input quantities X (subjected to aleatory uncertainty) are conditioned on parameter ϴ (sub-

jected to epistemic uncertainty) (Aven et al. 2014). Aleatory uncertainties in X are de-

scribed by frequentist probabilities. If the analyst has strong background knowledge about 

process or system, then all the epistemic uncertainties are removed and level 2 setting 

transforms to the level 1 setting (Aven et al. 2014). 

Three setting are commonly discussed for uncertainty propagation in level 1 setting (Aven 

et al. 2014): 

 Purely probabilistic framework 

 Purely possibilistic framework 

 Hybrid (probabilistic-possibilistic) framework 

3.3.1 Sampling based approach 

Sampling based uncertainty propagation can be a purely probabilistic framework or a 

purely possibilistic framework. Sampling-based procedures generates sample Xi= {X1, X2 

… XN,} for i = 1, 2... n. Uncertainty in with y = F(x) is derived by association with uncertain 

x.  

Monte Carlo simulation or Latin hypercube sampling are two methods to carry out sam-

pling based uncertainty propagation in a purely probabilistic framework.  

3.3.1.1 Monte Carlo Simulation 

MCS involves two steps. First, uncertain input variables, X, are generated according to 

their specified probability distributions which represents the random realization of X. As-

suming there are n input variables, n random variables are generated and y are evaluated 

for these samples in the next step. This procedure is repeated N times yielding N values 

of y. These N values of y can be represented by the PDF or CDF where the mean and 

other statistical characteristics of interest can be calculated.  

Pros: Implementation of this procedure is simple and user friendly software is available. 

The total distributions of the output can present the uncertainty of the model fully.  One 

can use the information of correlations and dependencies between the variables to see 

the impact in the final results (Abrahamsson 2002). 

Cons: To perform the analysis, a great deal of empirical information is necessary, e.g. the 

distributions of all variables and their correlations and dependencies, Lack of which may 

lead to make questionable assumptions (e.g. independence about system interaction) 

leading non-protective results. In this approach different kinds of uncertainties are not 

propagated separately. 

3.3.1.2 Latin hypercube sampling 

Latin hypercube sampling works in a quite similar way to Monte Carlo sampling. First 

probability distribution for xi set are constructed, where xi =[x1, x2… xn]. The range of xi 

is divided into equal probability interval and one random value of xi is selected from each 

interval (Helton et al. 2008). These randomly selected x1 values are paired with x2 values 
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without replacement. Again this pair is combined with x3 to form triplets. Process is con-

tinues in such a way to produce Latin hypercube sample (Helton et al. 2008). 

Pros: It is a good choice to study computationally demanding models (Helton et al. 2006).   

Cons: Less effective if large sample sizes are required to provide for appropriate cover-

age of low probability and high consequence (Helton et al. 2006). 

 

3.3.1.3 Two-phase sampling procedures 

Two-phase sampling procedures are suitable for level 2 propagation setting, where it is 

preferable to keep stochastic or epistemic uncertainties (stochastic or epistemic) separate 

in the analysis,. This can be based on traditional MC sampling or Latin hypercube proce-

dure. The sampling is performed in two “loops”. For each iteration in the outer loop (the 

values are sampled for the parameters subjected to epistemic uncertainty), a specified 

number of iterations is performed in the inner loop (a value is drawn for the parameters 

subjected to aleatory uncertainty). In the problem of risk analysis where it is desirable to 

keep distinct the epistemic and aleatory uncertainty, this model is used. Normally, the 

variables which are subjected to epistemic uncertainty are sampled in the outer loop and 

the variables which are subjected to aleatory uncertainty are sampled in the inner loop.  

Pros: The most obvious advantage is that it distinguishes between different kinds of un-

certainty.  

Cons: Not capable to handle uncertainty in distributional shapes. Calculations are quite 

complex and computational time increases rapidly in complex models. 

 

3.3.2 Fuzzy set theory 

Many studies have been carried out on the application of fuzzy sets theory which is based 

on purely possibilistic framework. A fuzzy probability, represented by a fuzzy number, can 

be 0 to 1 assigned according to the probability of an event occurrence. Membership func-

tion for fuzzy probability can be different, between [0, 1], where 0 represents less confi-

dence and 1 indicates more confidence (Sallak, Simon, and Aubry 2008). Fuzzy arithme-

tic, another representation of possibility theory, is a generalization of interval analysis. 

Fuzzy number approach is appropriate when sufficient statistical data are not available.  

 

Pros: Computations of fuzzy arithmetic is easy and does not require detailed empirical 

information. One can use subjectively assigned distributions in the event of sparse empir-

ical information. Dependencies and correlations between parameters need not be speci-

fied as this method is fundamentally conservative (Abrahamsson 2002). 

Cons: Some criticism has been raised in the risk analysis community about the funda-

mentals of the method. The level of conservatism is not clear. Repeated parameters may 

constitute a computational problem as the case of interval analysis. Different types of un-

certainty cannot be separately analysis in this method (Abrahamsson 2002). 
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4 UNCERTAINTY ASSESSMENT IN RELIABILITY ESTIMATION 

4.1 UNCERTAIN PARAMETERS IN RELIABILITY ESTIMATION 
Uncertainty expresses our degree of knowledge about the safety instrumented system.  

One input in SIS design is hardware safety integrity level (SIL) which can be expressed 

as the probability of failure on demand (PFD) for the low demand system (according to 

IEC 61508). Other inputs are related to systematic safety integrity and software safety 

integrity. Decision makers may have to balance safety requirements with production avail-

ability and maintenance strategies. 

The calculated PFD is influenced by three main factors: (i) the model, (ii) the data, and 

(iii) the calculation approach. Our ultimate goal is to arrive at a decision regarding safety 

integrity level that will keep the system safe.  

The PFD may be calculated by using mathematically exact expressions or approximation 

formulas. The Choice of the model is a great question concerning which model will be less 

uncertain. Level of uncertainty in various models is out of the scope of present work. In 

this thesis focus is limited to parameter uncertainty and PDS method.    

In reliability estimation, uncertain parameters can be component failure rates, beta factors, 

functional test intervals, mean repair times, mean restoration time, diagnostic coverage3 

and so on (H. Jin, Lundteigen, and Rausand 2012)(Wang, West, and Mannan 2004) . The 

level of uncertainty in the input data may be influenced by many factors which is discussed 

here.  

 

4.1.1 Failure rate data 

 In reliability calculation, constant failure rates are assumed which means elements 

do not have any deterioration while operation. This assumption may be valid for 

some electronic and electrical components. But in offshore production or subsea 

where the components are left for a long time in the harsh environment with mini-

mum maintenance, this assumption may become invalid (H. Jin, Lundteigen, and 

Rausand 2012, Hui Jin 2013) 

 Database (e.g. OREDA), is based on data from components installed a long time 

ago.  Failure rate estimates may become invalid due the advanced technology 

used in the new SIS (H. Jin, Lundteigen, and Rausand 2012, Hui Jin 2013) 

 Database (e.g. OREDA) is based on recorded maintenance actions which may not 

cover those failures which was performed without any formal maintenance (H. Jin, 

Lundteigen, and Rausand 2012) 

 Some failure rate data include items replaced during preventive maintenance 

which should be excluded, but not always possible in practice. This can affect  fail-

ure rates (Smith. 2001) 

 Failure rates may be affected by the tolerance of a design, as a consequence may 

vary from database value 

                                                           
3 A fault coverage factor (Diagnostic coverage, DC) is introduced to quantify the efficiency of the self-test. This factor 

equals the fraction of failures being detected by the automatic self-test (PDS method 2013) 
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 It is assumed that standby units have identical constant failure rates similar to the 

main unit and do not fail when idle (Smith. 2001) 

4.1.2 Availability 

 For subsea, repair of a failed component may take several weeks depending on 

the system and weather conditions. Sometimes the team has to wait several 

months due to unavailability of the intervention rig. In this case repair time cannot 

be assumed as negligible (M. Rausand and Høyland 2004). 

 While waiting for repair failed item may not function as a safety barrier. This una-

vailability is different from the unavailability in the test interval (M. Rausand and 

Høyland 2004). Restoration time should be considered in reliability calculation in-

stead of repair time.  

 For a safety system, failure of a single component may not lead to the unavailabil-

ity of safety function for which it was installed. From maintenance data of failure 

record, it may not become always clear whether the component failure was the 

reason for system failure or not. Uncertainty may exist in the capability of the sys-

tem to function after failure of one or more components.  

4.1.3 The environmental condition 

 Effect of environmental and quality assurance levels on the range of parameters 

are another source of variability (Smith. 2001). 

 System condition or environment under study can be different from which data 

were collected (Smith. 2001). 

4.1.4 Operational constraint 

PFD may not cover all operation aspects of SIS failure, so in real situation experience 

may be different from theoretical assessment.  

 

4.1.5 Common cause failure and β factor 

Uncertainty increases with increasing complexity, due to the difficulty of constructing ad-

equate architecture and reliability models. Systems are characterized by their degree of 

coupling4. In PFD calculations, a comprehensive set of data is needed to determine the 

degree of coupling. It is often difficult to collect detailed data, especially for the oil and gas 

industry where limited focus is given to CCFs in the data collection process. For this rea-

son, it is assumed that uncertainty increases with increasing coupling. Other factors are 

as bellows: 

 CCF rates are highly dependent on operational and environmental conditions. 

Therefore, it is difficult to claim that a CCF rate will be similar to all installation (H. 

Jin, Lundteigen, and Rausand 2012, Hui Jin 2013).  

 The OREDA database does not distinguish between independent failures and 

common cause failures since data were collected from the single maintenance 

report (H. Jin, Lundteigen, and Rausand 2012).  

 β-factor model seems adequate for parallel systems with two components but may 

not fit for more complex systems. A serious limitation is that it does not allow the 

                                                           
4  The ‘Coupling’ expresses the degree of dependencies between system components, and may vary from loose to 
tight. 
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failures of a certain fraction of the components as common cause failures (M. Rau-

sand and Høyland 2004). 

 Dependency other than CCF (e.g. cascading failure, negative dependencies) are 

not covered in the calculation (H. Jin, Lundteigen, and Rausand 2012). systematic 

failure was not considered in the availability calculation (H. Jin, Lundteigen, and 

Rausand 2012).  

 

 

4.2 RANKING UNCERTAIN PARAMETERS OR COMPONENTS 
Dealing with uncertainty is one of major challenges in complex systems. One way to per-

form the uncertainty analysis used in the industry is to rank the parameters or components 

with respect to their contributions to the uncertainty in the model prediction. This approach 

identifies the most critical components which affect most on SIL level determination. The 

configuration of these critical components can be modified then to reduce the SIL uncer-

tainty.  PFD is computed for various possible configurations (e.g. series or parallel) and 

overall decision is made.  

Sensitivity analysis illurstrates how the changes in one input parameter affect the output. 

It is used in industry to identify the critical parameters or components and to rank with 

respect to reliability and risk. Importance measures shows the relative contribution of the 

uncertainty in one input parameter in relation to the uncertainty in the output.  

 

A number of importance ranking measures have been developed, for example Birnbaum’s 

measure, the improvement potential measure, and the Fussel-Vesely’s measure (T. Aven 

and Nøkland 2010). 

 

Birnbaum measure is defined as the partial derivative of the system reliability with respect 

to component reliability. This measure ranks components according to the effect of a small 

change in component reliability to the system reliability (T. Aven and Nøkland 2010). It 

can be used if concerned about small changes in a component’s reliability. 

 

Importance measures are used to rank the importance of the components with respect to 

uncertainties. This measure expresses the maximum potential improvement in system 

reliability that can be obtained by improving the reliability of component i (T. Aven and 

Nøkland 2010). In general, birnbaum measure is used in operation whereas the 

improvement potential is typically used in a design phase (T. Aven and Nøkland 2010). 

 

Risk achievement worth, Fussel vesely’s importance measure are other two importance 

measure used in reliability applications (More details can be found in T. Aven and Nøkland 

2010). 

 

Advantage of Importance Measure is that, the knowledge of how input uncertainty influ-

ences the uncertainty in output advises to direct the limited resources to the most influen-

tial parameters or components in terms of reducing uncertainty and improving system 

safety (Aven and Nøkland 2010). For the new installation, especially in the design phase, 

this approach will give valuable direction for decision making. 
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However, situations may occur where the modification of the configuration of critical com-

ponents are not possible (e.g. an existing platform installed a long time ago). In this case, 

this type of analysis will be useless. In fact, sensitivity analysis is a method to reduce 

uncertainty. By identifying critical components and by modifying architecture of compo-

nents, uncertainty can be reduced from the system without being aware of the overall 

uncertainty. More detailed investigation is necessary for complete uncertainty analysis 

which will be able to give all information regarding the uncertainty in variables. 

4.3 EXISTING MODEL FOR UNCERTAINTY ASSESSMENT IN RELIABILITY ANALYSIS 

4.3.1 Standard Monte Carlo approach 

Sampling based method- Monte Carlo is often used to investigate the effects of the un-

certainties on SIL determination. Data sampling of uncertain input parameters is carried 

by assigning relevant probability density function. For each MC simulation run, random 

values for each uncertain parameter is obtained and then used as an input to calculate 

target SIL based on PFD. The uncertainties on input parameters (reliability data) can be 

modeled using relevant probability distributions. MC sampling presents the effects of un-

certainty of input parameters to the final outcome (PFDavg). Analysis can be standard or 

two phase setting. Standard setting is used to deal with aleatory uncertainty.  

 

Innal, Dutuit, and Chebila (2013) has used MC simulation to propagate uncertainty in 

SIL determination. They followed the following steps: 

 Probability density function (pdf) is constructed for each input parameter which 

expresses the knowledge about the value of the parameter. Randomness of all 

input parameters are (λD, DC, β, βD, MTTR and T1) considered for each subsystem. 

seven different probability distributions (Uniform, Triangular, Normal, Lognormal, 

Chi-square, Beta and Gamma) are implemented for input parameters for compar-

ison 

 Random numbers for all variable input parameters are generated according to as-

signed pdfs 

 The output function (PFDavg) is quantified using the set of random values which 

expresses the realization of a random variable (X) 

 The steps are repeated n times. These n output values represent the probability 

distribution of the output function. Statistics are generated from this outcome e.g. 

mean, standard deviation, confidence interval, percentiles, etc. 

 

4.3.2 Fuzzy set theory 

Fuzzy set theory can be applied to propagate uncertainty in SIL estimation. In Fuzzy Prob-

abilistic Approach, the uncertainty of components failure probabilities are expressed by 

fuzzy probabilities (Sallak, Simon, and Aubry 2008). Any shape (trapezoidal, peak, nor-

mal,) can be chosen to compute fuzzy probability. Fuzzy SIS PFD can be estimated from 

the fuzzy probabilities of components failure (Sallak, Simon, and Aubry 2008).  

One can see the work of Sallak, Simon, and Aubry (2008) where they used fuzzy 

probabilistic approach to determine SIL of SIS applied to a process example and 

compared it with conventional probabilistic approach. Their finding was that the 
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two approaches give similar result. To reduce uncertainty of SIS, they proposed a 

method called fuzzy probabilistic importance measure. This method finds the crit-

ical component is SIS and then uncertainty can be reduced by modifying compo-

nent architecture.   

 

 

 

 

Figure 5: a) Fuzzy probability of component failure (Sallak, Simon, and Aubry 2008);  b) The fuzzy 

SIS PFD (Sallak, Simon, and Aubry 2008) 

Sungteak Kima and others (Kima et al. 2014) has performed uncertainty analy-

sis, using fuzzy set approach and sampling-based method for two different SIL 

determination methods which are risk graph and OLF 070 minimum SIL require-

ment. Moreover, two PDS model has been used for comparison. The first PDS 

model, takes into account the probability of test independent failure (PTIF) to re-

flect the effect of incomplete testing and does not consider common cause failure. 

In the second PDS model, proof test coverage (PTC) is added as input parameters 

instead of PTIF. 

Result show that Fuzzy set and sampling approach (applied to first PDS model) 

gives similar SIL output when uncertainties are considered. However for the same 

SIS, result gives different SIL output for 2nd PDS method. It is said that, reason for 

this difference is due to difference in model for PFD estimation. PTC shows much 

sensitivity and are more vulnerable than other parameters. Trustworthy and relia-

ble database dealing with PTC does not exist yet. 

Mechri, Simon, and Ben Othman (2011) in their paper studied uncertainty anal-

ysis in SIL qualification by fuzzy approach. Epistemic and aleatory uncertainties in 

the values of  CCF factors in a SIS are modelled by fuzzy numbers. They com-

pared the result with probabilistic approach (second order) and showed that this 

approach gives same result as MC sampling in a short computing time and with 

less effort.  

 

Fuzzy set approach is appropriate for uncertainty analysis on SIL determination where 

SIL is determined by risk graph model in case of lack of sufficient data. Realistic approxi-

mate values can be modelled with help of Fuzzy number approach in case of lack of 
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knowledge to choose precise values. For a fuzzy risk graph, a range of SIL value (SIL 1 

to SIL 3) may be obtained from which dominant SIL value is taken as target SIL. However, 

limitation of this approach is that, a situation may occur when there is no dominant target 

SIL value (e.g., relative frequency of 35%, 35%, and 30% respectively for SIL 1 to SIL 3). 

For this case, target SIL is determined by using median or mean value. However, it is 

problematic for the decision makers to make a reasonable decision. The similar problem 

may evolve for MC sampling. 

 

4.3.3 Recommendation in the guidelines  

IEC 61508 recommends two procedures (Route 1H and Route 2H) to overcome the pre-

viously mentioned difficulties (in section 4.1) in the PFD calculation. Both ways helps to 

determine maximum SIL of the safety function. Route 2H is based on uncertainty analysis.   

4.3.3.1 Route 2H: Uncertainty analysis 

The IEC 61508 stipulates that If Route 2H is selected, then the reliability data uncertainties 

shall be taken into account when calculating the target failure measure (i.e. PFDavg) and 

the system shall be improved until there is a confidence greater than 90 % that the target 

failure measure is achieved (Innal, Dutuit, and Chebila 2013). 

The requirement of this procedure is as below: 

 “The failure rates data used should have a confidence level of at least 70%”. To 

meet this requirement, it is advised to express the failure rate with a probability 

distribution which expresses our belief in randomness of the failure rate (H. Jin, 

Lundteigen, and Rausand 2012, p-2).  

 “A confidence level of at least 90% shall be demonstrated on the reliability esti-

mates, in the selection of hardware architectures” (H. Jin, Lundteigen, and Rau-

sand 2012,p-2) . Monte Carlo simulation or fuzzy set can be used to fulfil this ob-

jectives. Overall objective is to demonstrate that the obtained value for PFDavg of 

the SIS performing a specified safety function belongs to the required SIL zone 

with probability of 90% (H. Jin, Lundteigen, and Rausand 2012).  

To reduce uncertainty, the PDS method considers some additional factors in the SIS reli-

ability calculations: (i) Test independent failures (TIF) that remain unrevealed during proof 

testing, and (ii) consideration of systematic failures in failure rates (H. Jin, Lundteigen, and 

Rausand 2012). It is said that random hardware failures only represent a limited fraction 

of the actual failures, so systematic failures should be included to predict the real perfor-

mance of SIS (Lundteigen and Rausand 2006, PDS method 2013) 

Suppliers often add conservatism by making the SIL requirement stricter e.g. SIL3, is 

claimed when PFDavg ≤ 0.7x10−3 (H. Jin, Lundteigen, and Rausand 2012). This decision 

criteria is based on the precautionary or cautionary principle which ensures adequate sys-

tem safety but lead to extra cost in terms of CAPEX and OPEX (Kima et al. 2014). This 

approach does not give any additional information about the level of uncertainty, hence 

scope is limited.  

 



23 
 

4.3.4 Hybrid approach 

In hybrid approach, probabilistic and possibilistic methods are applied simultaneously. 

Here, uncertainties of some model input quantities are represented by probabilistic distri-

bution whereas other model input quantities are represented by possibilistic distribution 

(Innal, Dutuit, and Chebila 2013). The logic behind this approach is that, sufficient histor-

ical data may be obtained for some input parameters or subsystem (e.g., failure rates of 

SIS that is used frequently). However, this may not be the case for some other parameters 

or subsystem (e.g., common cause failures). Moreover, in the case of new SIS elements, 

which are complex but highly reliable, relevant reliability data may not exist (Innal, Dutuit, 

and Chebila 2013). This combined approach is suitable to relieve these problems. 

Innal, Dutuit, and Chebila (2013) has proposed a combined approach of Monte Carlo 

and fuzzy set for uncertainty analysis in SIL estimation. To carry out MC simulation and 

fuzzy sets simultaneously, a computer code is developed under the MATLAB environ-

ment.  

 

Figure 6: Overall process for combining Monte Carlo and fuzzy sets (Innal, Dutuit, and Chebila 2013) 
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The problem of this approach is that, high competence is needed to carry out the compu-

tational simulation. Fuzzification of the probability parameters and defuzzification is not a 

simple process. To carry out the simulation properly is a time consuming process.  

 

 

4.3.5 Semi-quantitative approach  

This approach states that the calculation of probability of failure on demand should not be 

the only basis for verifying the established quantitative SIL requirements, rather uncer-

tainty aspects hidden in the background knowledge should be given special attention in 

relation to the assigned probabilities.  

The reason of this argument is that, the PFD number is conditional probability which can 

be expressed as P (failure on demand |K) where K is the background knowledge and 

information. The background knowledge includes system performance, characteristics, 

data and system knowledge. There are lots of assumptions and presumptions in the cal-

culation of PFD, so decision making should not be based on the PFD number only.   

Abrahamsen and Røed (2011) has proposed such an approach for SIL verification. Along 

with the qualitative assessment of background knowledge, they propose to add conserv-

atism in decision making depending on the result of qualitative assessment. An example 

for the application of this approach can be illustrated like this: determined SIL is SIL 3 

because the calculated probability number is within the range 10-4 to 10-3 without consid-

ering the uncertainty factors in the background knowledge. After uncertainty evaluation, it 

is found that considered case is highly uncertain considering all uncertainty factors. So 

the SIL for the safety function should be considered as SIL2 instead of SIL3. An uncer-

tainty evaluation should take into account of human aspects, technical aspects and oper-

ational aspects.  

The problem of this approach is that the uncertainty evaluation is quite difficult to judge 

for the decision makers and may be subjected to the analyst’s different view of perspec-

tive. 

 

Figure 7: An application example illustrated by Abrahamsen and Røed (2011) 
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5 PROPOSAL FOR UNCERTAINTY ASSESSMENT AND DECISION MAKING 

5.1 WORKFLOW OF SIL VERIFICATION  
In reliability analysis, uncertainty analysis should be included in the SIL verification pro-

cess. It is discussed earlier, that the uncertainties accompanying with system and process 

should be reported to the decision maker to make aware of the risks related to the deci-

sion. Decision context may be different due to the availability of resources for the assess-

ment and purpose of analysis. Moreover, it may be greatly influenced by the interest of 

the stakeholder.  

The SIL verification process should consist the following steps: 

Step 1 is initiating the reliability assessment, which includes to define the scope, to select 

the suitable model to carry the reliability assessment, search for available data.  

Step 2 is to carry out the reliability assessment based on the approach decided in the 

previous step 

STEP 3 comprises uncertainty analysis, expert review and judgement and review of 

knowledge dimension. Each of the steps are described below: 

 

 Uncertainty analysis 

It can be quantitative or qualitative or both. A presentation of only quantitative re-

sults may become less valuable if the decision maker does not have the compe-

tence to interpret quantitative results from an uncertainty assessment. 

The aim of the uncertainty analysis is to gain sufficient confidence to make the 

decision. Confidence is gained through critical evaluation of the information and 

methods used in modeling.  

 

 Expert review and judgement 

One SIL value cannot describe the system fully and there may remain uncertainty 

in the system which the analyst may become unaware of. Knowledge sharing 

among experts from different disciplines are very important therefore. The decision 

maker has not to fully trust in the single opinion of the technical person. Expert 

opinion includes technical background and consolidated experience. Analysis re-

sult should be presented to individuals or groups who have experience with a sim-

ilar system, including other analysts, managers responsible for analysis, outside 

reviewers, and formal decision makers who must make the decisions on the basis 

of analysis. The final decision making can be made by brain storming session, 

eliciting expert opinions.  

 

It should be kept in mind that, in practical application a mathematical or objective 

analysis cannot replace a management review and judgement. It is not desirable 

to develop tools that dictate the decision. Aim of analysis is to help make the de-

cision processes more fact based and transparent.  
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 The review of knowledge dimension 

Strength of knowledge means the available knowledge dimension of the system 

and phenomenon being studied. Whether the analysis is based or poor or strong 

background knowledge, this should be informed to the decision maker.   

 

Step 4 is decision making. The extracted conclusion from the uncertainty assessment, in 

step 3, should be included in the compliance report. Decision should be made based on 

the results of uncertainty analysis, limitation of tools, knowledge dimension and expert 

review. 

 

 
 

Figure 8: Proposed steps for SIL verification and decision making 

 

5.1.1 The need to consider of both uncertainty analysis and strength of knowledge 

 

One may ask about the need to take account of both uncertainty and strength knowledge, 

as showed in presented workflow (Figure 8). Here it is tried to answer this question in 

details. 

Uncertainty is an unavoidable part affecting the behavior of the system influenced by avail-

able information (Terje Aven and Krohn 2014). Uncertainty about input parameter X is 

propagated through the model F (figure 5), to get an uncertainty description of the result 

Y. The tool for analysis can be analytical approach (e.g. Monte Carlo simulation) (T. Aven 

2011). 

The issue is debatable in literature whether the knowledge dimension should be assesses 

after doing the uncertainty analysis. It is discussed earlier (section 3.2) that uncertainty 

can be represented by assigning probabilities. If the assessor assigns a probability based 

on background knowledge then why he should dispute his own assignment as this prob-
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ability number is expressing his /her uncertainties. The aim of the assignment of this sec-

ond order probability is not to express the belief of belief, rather to draw attention to the 

fact that probability or any other analysis tool has its own limitation to capture the relevant 

uncertainty aspects (Terje Aven 2010b). 

Assumptions and suppositions onto which probabilities are based on could turn out to be 

wrong if background knowledge K is poor (Terje Aven 2011). K is generally omitted as-

suming K as unknown quantities and as it is the basis for assignments. Whereas the entire 

K cannot generally be removed by treating as unknown quantity.  

Uncertainty representation based on a strong knowledge or based on poor knowledge 

can come out the same result. In a general sense, strong knowledge means the lower 

degree of uncertainty and poor knowledge indicates the higher level of uncertainty. One 

has to be careful when referring to both terms. The concept ‘strength of knowledge’ is 

considered more precise in reflecting the concept of the overall system (Terje Aven 2013). 

This term is described more clearly in the following paragraph with an example.  

It is supposed that assessor has to assign the uncertainty interval as a mean of probability 

of a risk event e.g. a violent storm. This probability is conditional on a number of factors 

such as the location of the storm, time, and previous weather statistics. It reflects a degree 

of belief of the assessor based on his background knowledge. He can have lack of avail-

able data or sophisticated tool to predict the weather. If he assigns a probability number 

of 0.01 that means he is 1% sure that the storm will occur. By this number it is not reflected 

whether he had sufficient available data or tool during the analysis. An assignment of 

strength of knowledge can help the assessor to express his uncertainty about his belief, 

can show the weakness/strength of the analysis to the decision maker. In two situations, 

the uncertainty result can be same, but the strength of knowledge supporting the proba-

bilities may be different. In case of new technology, where the proper prediction of system 

performance is difficult, the assignment of ‘strength of knowledge’ can nullify this concern. 

Here the focus is the safety integrity level of a safety instrumented system which ex-

presses a level of risk reduction from the system. Risk reduction is also about reducing 

uncertainties and strengthening knowledge. A probability (assigned based on the availa-

ble knowledge) changes by gathering more knowledge. A broader risk perspective should 

be adopted which considers a set of methods, both qualitative and quantitative to reflect 

this knowledge level.  Addressing uncertainties and knowledge we obtain a stronger focus 

on the resilient system (Veland and Aven 2013). 

 

Figure 9: A way of representing risk with respect to a risk event taking into consideration of knowledge dimension 

(Terje Aven and Krohn 2014) 
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There are several procedures to quantify the ‘strength of knowledge’. One method is direct 

grading of knowledge supporting the uncertainty analysis. According to this method, 

knowledge will be considered as weak if following conditions are met (Terje Aven 2013): 

 Strong simplifications were done to make assumptions 

 The lack of sufficient data 

 The lack of agreement among experts 

 complex or little understood phenomena  

This insight of the phenomena is not possible by uncertainty analysis, whether it is prob-

abilistic or non-probabilistic representation. 

This assessment of knowledge dimension can be viewed as a continuous improvement 

process. The goal is to focus on the overall performance of the activity that helps the 

continuous improvement, not only to be in compliance with stated regulation.  

 

5.1.2 Difference between uncertainty analysis and sensitivity analysis 

It is common in industry to perform sensitivity analysis as a requirement to uncertainty 

analysis. Though the actual fact is that sensitivity analysis in not a type of uncertainty 

analysis. Uncertainty analysis represents the determination of uncertainty in the analysis 

result that evolves due to uncertainty in the analysis input (Terje Aven 2010).  Sensitivity 

analysis represents the determination of the contributions of individual uncertain inputs to 

the analysis results (Terje Aven 2010). Sensitivity analysis shows how the uncertainty in 

specific model input may affect the uncertainty in the output. Here it is tried to explain the 

difference of both with help of model notation.  

Previously, it is shown (Figure 4) that model output Y= F(x,d) where, F(x,d) is the model, x 

is uncertain inputs and d is fixed input. Taking into consideration of uncertain input only, 

Y= F(x). An uncertainty analysis of Y represents an assessment of the uncertainties about 

X achieved by the uncertainty propagation through F (Terje Aven 2010). The uncertainties 

of these quantities can be expressed as subjective or objective probabilities. Sensitivity 

analysis shows how the variation of a quantity X affects Y or EY.  The uncertainties about 

X are unknown in this analysis. Thus, the analysis is not an uncertainty analysis. In relia-

bility application, the sensitivity analysis does not assess the uncertainties of safety integ-

rity level.  

Sampling-based approaches can be used both for uncertainty and sensitivity analysis. 

The focus is given here to Monte Carlo approaches.  A framework is presented here to 

show the difference between both analyses. 

Framework to perform standard MC sampling is as follows (Helton et al. 2006): 

1. Output function is defined as y(x) = [y1(x), y2(x)… yn(x)] where, y1(x), y2(x)… yn(x) 

are functions of uncertain inputs x = [x1, x2… xn]. Uncertainty in x will induce un-

certainty in y(x). Here arises two questions: (i) what is the uncertainty of y(x) due 

to uncertain input x? And (ii) How the individual elements of x effects the uncer-

tainty in y(x)? Uncertainty analysis answers the first question and sensitivity anal-

ysis answers the second question. 

2. Probability distributions are assigned to characterize the aleatory uncertainty in 

the elements xi of x where, i = 1, 2… n.  

3. Samples xi are generated from the assigned distributions.   
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4. Sample is propagated through model from analysis inputs to analysis results. After 

each iteration model output is calculated. The result will be a distribution which is 

governed solely by the uncertainty in the stochastic parameters. 

5. Uncertainty analysis results are presented by the distributions of the elements of 

y constructed from the corresponding elements of xi.  

6. Sensitivity analysis results are determined by the exploration of the mapping [xi, 

y(xi)], i = 1; 2; . . . ; n) 

This framework focuses only probabilistic characterizations of uncertainty. Presentation 

of uncertainty analysis results involves means and standard deviations of the obtained 

distribution, density functions, cumulative distribution functions, and box plots (Helton et 

al. 2006). Cumulative distribution and box plot are usually preferable to mean and stand-

ard deviation. Presentation of sensitivity analysis results involves the exploration of the 

mapping [xi, y(xi)], i = 1; 2; . . . ; n, to assess the effects of individual elements of x on the 

elements of y (Helton et al. 2006). 

In reliability application birnbaum measure, improvement potential are widely used to iden-

tify critical components and to rank components with respect to reliability and risk where 

the criticality or importance of component are presented by a tornado chart. 

 

5.2 UNCERTAINTY ASSESSMENT 
Various models for uncertainty analysis in SIL estimation, established in literature and 

industry, is presented and discussed in details in the previous section. It is found that fully 

quantitative uncertainty analyses like sampling based approach, fuzzy probabilistic ap-

proach are well established in literature. However, in a complex system’s reliability anal-

ysis, proper characterization, representation, and propagation of uncertainty is a critical 

task. 

This thesis gives weight to the parameter uncertainty analysis adopting the idea of Nilsen 

and Aven. According to Nilsen and Aven (2003), the concept of model uncertainty does 

not add any value to the uncertainty analysis. Rather, it may divert the attention of the 

analyst away from what is uncertain and the outcome of the activity being studied. The 

aim of the uncertainty assessment is to clarify or to reduce the uncertainty related to ac-

tivity or relevant information of the system. The quantification of model deviation may mis-

guide the decision maker about the actual finding of the analysis (Nilsen and Aven 2003).  

To propagate the parameter uncertainty in SIL verification two approaches are proposed 

in this thesis. Along with the presentation of already established quantitative uncertainty 

analysis, an approach is proposed for quantification of uncertain factors hidden in the 

background knowledge. The overall aim is to have a complete presentation of uncertainty 

in the system and the inter-connection between system and environment that will help the 

decision making on target SIL determination. Quantitative uncertainty analysis can be 

performed with MC sampling. For the uncertainty assessment of background knowledge, 

technical, operational and organizational aspects which may affect the safety integrity 

level should be taken into consideration. The uncertainty assessment of background 

knowledge is termed as the ‘semi-quantitative’ assessment in the rest part of the thesis. 
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Figure 10: The proposed uncertainty treatment for SIL verification 

 

5.2.1 Quantitative uncertainty assessment 

5.2.1.1 Introduction 

The uncertainty factors in reliability estimation is discussed earlier with their causes. For 

quantitative uncertainty analysis MC approach is adopted here because it gives the flexi-

bility on selecting different probability distribution or different interval in the input parame-

ters and to observe their effect on the overall PFD result. Probability is regarded as a 

perfect tool to describe aleatory uncertainty. Uncertainty will not be a concern if subjective 

probabilities are allocated because the analyst is well known with his subjective belief. 

However, objective probabilities (known from observations) can be uncertain. As dis-

cussed earlier that, for PFD calculation, failure rate and common cause failure data is 

taken from observation (e.g., OREDA database). 

5.2.1.2 Assumptions 

As discussed earlier in section 3.3, depending on the type of uncertainty affecting model 

input quantities, methods of uncertainty propagation can be classified into level 1 and level 

2 setting (Aven et al. 2014). For reliability estimation, case level 1 setting is adopted, as-

suming that only aleatory uncertainty will be dealt here. The rest of variables will be as-

sumed as constant on the assumption of having sufficient system information and 

knowledge.  

 

5.2.1.3 Procedure 

The following framework is followed to perform MC simulation which resembles the stand-

ard MC sampling procedure and adopts the probabilistic approach: 

1. Uncertain input are identified which may affect the SIL. If PDS method is adopted 

for SIL calculation, uncertain inputs are failure rate of components (λ), common 

cause failure (β factor) and proof test interval (τ). It is tried to find ‘what is the 

uncertainty in SIL level given the uncertainty in these input parameter?’ in the next 

steps. 

Uncertainty 

assessment

Quantitative uncertainty

assessment

Assessment of background 
knowledge (semi-

quantitative uncertainty 
assessment
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2. Appropriate probability distribution are assigned to characterize aleatory uncer-

tainty for each uncertain input. The distributions are typically defined through an 

expert review process.  

3. Samples are generated for uncertain inputs according to the assigned probability 

distribution. 

4. Sample is propagated through the analysis from analysis inputs to analysis results. 

After each iteration model output is calculated. The result will be a distribution 

which is governed solely by the uncertainty in the stochastic parameters. 

5. The uncertainty analysis results are presented by the distributions of the elements 

of y constructed from the corresponding elements of xi. Other statistical properties 

(mean, percentiles value, standard deviation) are also presented to analyze the 

results of the analysis. 

 

An example of how to perform this analysis is presented in chapter 8.  

 

5.2.2 Semi-quantitative assessment  

5.2.2.1 Introduction 

The reason for the semi-quantitative assessment is due to the acknowledgement that it is 

not possible to quantify the uncertainty of PFDavg estimate in any objective way. Rather 

Probability of failure on demand (PFD) is conditional on a background knowledge K, which 

includes assumptions of the model, data, expert statements and phenomenological un-

derstanding. All probabilities need to be considered in relation to K. If background 

knowledge changes, probability may also change.  

 

All assessment of events, consequences and uncertainties are affected by the back-

ground knowledge. There may be inherent uncertainties hidden in the background 

knowledge. Screening background knowledge and identifying uncertainty factors in the 

background knowledge also provides the analyst with a clearer view of where special 

considerations should be taken.  

The reliability analysis of modern complex systems demand an integrated approach in 

which the hardware, software, organizational and human elements are treated in a com-

bined framework accounting their inter-dependencies. In the MC simulation framework for 

reliability analysis, the information about the system discrepancy of system behavior is 

hidden. The deviated result after the simulation may not be meaningful without the evolu-

tion of physical parameter which influence and characterize the system behavior. A model 

is required, which captures the behaviors of the physical system such as hardware, soft-

ware, and environmental factors adequately affecting the safety integrity of safety instru-

mented system. 

 

To focus on the safe system, a broader perspective should be taken which will include all 

the physical aspects influencing system behavior. Today’s complex organizational system 

cannot be studied fully as a technical system, rather multidimensional approach should 

be taken into consideration to include other dimension such as organizational culture, 

organizational environment. For example, organizational factors influence local workplace 
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conditions, which may increase failure events. Organizational factors includes organiza-

tional processes, organizational culture, time pressure, insufficient training, ambiguous 

procedures, etc. The increased complexity of engineering systems has increased the un-

certainty in the system behavior and their modelling. The component failure rate collected 

from the existing database may be inconsistent due to improved maintenance practice 

and more reliable software. 

The proposal, presented here, is motivated from previous work of Schönbeck, Rausand, 

and Rouvroye (2010). Schønbeck in his master’s thesis has evaluated safety influencing 

factors on SIL of SIS. His proposal captures human and organizational factors along with 

their structural and behavioral aspects. He used eight failure types which considered hu-

man and organizational factors in the operation phase of safety instrumented systems and 

presented an equation to predict operational SIL which is different from design SIL. This 

thesis adopts the similar approach. However, this is further developed in order to include 

technical and operational aspects along with human and organizational aspects that may 

affect the SIL rating. 

 

5.2.2.2 Framework  

To consider the impact of physical aspects on the achieved SIL in a practically feasible, 

all physical factors, which may influence SIL of SIS, are screened and assessed. These 

physical factors are called uncertainty influencing factors. Next, a model is proposed to 

quantify the relationship between physical factors and the achieved SIL. Thus, influencing 

factors are linked directly to the safety integrity level.  

 

 

 

 

Figure 11: Linking background knowledge directly to PFD 

  

Affected by 
background 
knowledge: 

- Human and 
organization factors

- Technical aspects

- Operational aspects

Affected by:

Failure rate (λ), 

Common cause failure 
(β),

Test interval (τ)

Safety integrity level 
(SIL) defined by PFD
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Examples of such safety influencing factors are presented below: 

Table 5: Example of uncertainty influencing factors 

Main categories Sub-catego-

ries 

Evaluation with 

details 

Impact on the system as 

a measure of uncertainty 

Human aspects -- -- High/medium/low 

Technical as-

pects 

-- -- High/medium/low 

Operational as-

pects 

-- -- High/medium/low 

 

Basic steps of this framework is as bellows: 

1. For simplicity, it is assumed that the predicted SIL calculated by the deterministic 

model (the PDS model in this thesis) is based on an ideal situation where all the 

physical factors function optimally. But in practice, the calculation of the SIL is 

based on field data, so a certain influence of these factors is already included in 

the predicted SIL. 

 

2. The first step is to identify the qualitative factors which may affect the SIL of SIS. 

Focus is given on the details of technical, operational aspects and human aspects. 

Here human aspects include organizational factors also.  

 

 

3. The second step is the assessment of the impact of influencing factors. A weight 

is given to each factor depending on their contribution on system behavior. This 

weight should be given following a comparative study, whether any factor has 

more or less contribution to system behavior than other or not. The highest weight 

ratings factors contribute most to SIL uncertainty, and are therefore needs to be 

improved priory. After completing weight assignment to each factor, these weights 

have to be normalized. The weight factor Wi for qualitative factor i is calculated in 

such a way that ∑ 𝑊𝑖 = 1:𝑛
𝑖=1   

𝑊𝑖 =
𝑊�̌�

∑ 𝑊�̌�
𝑛
𝑖=1

 

 

 

4. In the next step the state of each influencing factors is assessed. The influencing 

factors are rated as a contributor to uncertainty which may influence the calculated 

SIL and try to classify their uncertainty severity as low, medium, high. To quantify 

this severity a scale is assigned to quantify this uncertainty severity, where Ri=1/3 

expresses low uncertainty, Ri=2/3 indicates medium uncertainty and Ri=3/3=1 in-

dicates high uncertainty. These severity of uncertainty should be established using 

expert judgment for the specific system under consideration. If these severity are 

established from accident statistics, they may induce further uncertainty in the es-

timation. A rate is given to each factor depending on the severity of uncertainty. 
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5. This step is to determine the strength of knowledge, ξ. ξ can be from 0 to 1 where 

ξ = 1 indicates high strength of knowledge and ξ = 0 indicates poor strength of 

knowledge. To determine the value of ξ, following strategy can be considered: 

Strength of knowledge will be poor: 

a. If the system under study is new (e.g. a new system installed in a new built 

platform), 

b. The system under study have never assessed before for SIL calculation 

and verification 

c. Analyst is unknown with the system performance and other criteria that can 

affect the SIL 

d. Some safety instrumented systems can be more prone/vulnerable compar-

ative to the other system depending on the system configuration and oper-

ating conditions. If the analyst is well aware of this, he can put the 

knowledge dimension as poor as these systems cannot be predicted 

properly with this type of analysis 

In case of known system and/or for which SIL analysis has been done before, strength 

of knowledge will be considered as high.  

 

6. The actual SIL rating after taking into consideration of the uncertainties can be 

calculated as follows: 

𝑆𝐼𝐿𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 = [1 − {(1 − 𝜉). (∑ 𝑅𝑖𝑊𝑖

𝑛

𝑖=1

)}] .  SIL𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 

 

Where, ξ is strength of knowledge of the analyst (0 ≤ ξ ≤ 1); 

Ri the uncertainty rating for factor i (0 ≤ R ≤ 1for all i),  

Wi the weight factor for factor i (0 ≤ Wi ≤ 1 for all i),  

SILCalculated is previously determined SIL calculated by deterministic method. 

A similar equation is proposed by Schönbeck, Rausand, and Rouvroye (2010). Instead of 

ξ factor they introduced a factor , where  expresses a measure of the uncertainty level 

of the system toward the human and organizational factors. 
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5.3 SELECTION OF UNCERTAINTY ASSESSMENT METHOD  
 

Required Level of uncertainty analysis may be different for different decision context. De-

pending on the problem addressed, framework conditions, organizations involved and 

motivations, different methods may be advisable in practical decision-making context5.  

 

The question may arise how to determine the requirements of uncertainty analysis, based 

on the situation under consideration.  

This depends on: 

- Scope and motivation of the analysis 

- Complexity of the system under consideration 

- Available resources and skills for the analysis 

- Availability of tools 

- Limitation of various tool for practical application 

5.3.1 In Design phase or early phase of a new installation 

In design phase of new installations, following methods should be followed for detailed 

analysis: 

 Sensitivity analysis 

 Qualitative or semi-quantitative uncertainty analysis 

 Quantitative analysis 

 Expert review 

 Consideration of other risk reduction measure 

In design phase of the new installation, sensitivity analysis and importance measure 

should be given most weight. The uncertainty is at the highest level in early life-cycle 

phase. At this stage most compliance studies are executed. During decision phase, it is 

important to predict the performance of several (perhaps many) design alternatives.  

 
Figure 12: Priority chart for use of method in design phase 

 

                                                           
5 The decision context involves defining what decision is being made and why, as well as its relationship to other deci-
sions previously made or anticipated (Compass Resource Management 2015) 
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Statistical quantities may be difficult to interpret. The qualitative framework facilitates a 

whole view for the decision maker of all involved fields. It provides a more rational scenario 

for making a choice.  A semi-quantitative or qualitative uncertainty assessment will be 

helpful in this regard. An overall evaluation of the uncertainty should be discussed based 

on subjective judgements of analysts and experts. 

 

In design phase, one can increase the SIL by using more reliable equipment or by reduc-

ing the test interval, or by improving the diagnostic test coverage. The System can be less 

sensitive to one specific factor which leads to a lower value of SIL (Schönbeck, Rausand, 

and Rouvroye 2010). Alternative option may be to increase the redundancy of a system 

by adding a similar component in a parallel setting. However, decision maker has to select 

a suitable one.  

 

5.3.2 At modification phase of the existing installation 

In modification phase of existing installations following workflow can be followed: 

 
Figure 13: Priority chart for use of method in modification phase 

 

In the modification phase of existing installations which was installed a long time ago, 

semi quantitative uncertainty analysis will help the decision maker about the possible im-

provement in the specific sector (e.g., if any technical aspect is the reason for the reduc-

tion of SIL rating, it can be easily visible by a semi-quantitative assessment. If the modifi-

cation of the system configuration is possible, then importance measure can be used to 

check the effect of the possible alternative configuration in SIL rating, otherwise it will be 

of no use. Alternative risk reducing measures should be assessed for their applicability, 

costs and other benefit/dis-benefit. Quantitative uncertainty analysis can be a supplement 

of semi-quantitative analysis if the analysis is not confident about the parameters and 

result of the semi assessment.   
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6 COMPARATIVE STUDY WITH EXISTING MODELS 

 

In the previous section, two different approaches are presented to assess uncertainty. 

One is probabilistic based quantitative uncertainty analysis and another is semi-quantita-

tive approach. 

6.1 QUANTITATIVE ANALYSIS 
In quantitative uncertainty analysis, MC sampling approach based on the purely probabil-

istic approach is used. Motivation is that, MC can well handle precise or interval variables 

in input parameters, and their effects on the output value can be observed simultaneously. 

Probability can perfectly describe aleatory or epistemic uncertainty. As an alternative to 

‘precise’ subjective probabilities, Interval or imprecise probabilities are proposed when the 

analyst has less confidence about the value any parameter due to the existence of less 

amount of data. 

The advantage of this tool is that it is a highly innovative, high-tech and high-performance 

tool. Concepts used are well established and accepted in science and business and re-

sults are generally understood by proficient users. Numerical results turned out to be sta-

ble, precise and reliable. Commercial software is also available. But it requires a huge 

amount of work for a new system and interpretation of the results in a theoretical correct 

way is a critical task. 

Objective reliability assessments are based on the belief that reliability can be estimated 

and has valuable meaning for decision makers. However, such assessments are based 

on various assumptions. When the complexity of the system increases, the uncertainty in 

the obtained result also increases (Lundteigen and Rausand 2006). In the standard MC 

setting, epistemic and aleatory uncertainty can be propagated simultaneously. However, 

scientists are on behalf of the opinion that different types of uncertainties should be treated 

separately. This will reduce the total uncertainty of the model by understanding what steps 

can be taken and what potential change to the system one can make. 

Researcher previously adopted MC approach for uncertainty analysis in SIL verification, 

but there were lacking in the following factors: 

- Did not take into account background knowledge 

- Did not take into account of human and operational factors 

- Uncertainty was not given much attention with broader perspective, only stochastic 

uncertainty was treated 

 

MC is able to propagate uncertainty evolved from randomness of the system, but back-

ground knowledge hidden in the uncertainty was out of focus. The information about the 

system discrepancy of system behavior is hidden. The deviated result after the simulation 

may not be meaningful without the evolution of physical parameter which influence and 

characterize the system behavior.  In the complex system, there is a need to take into 

account of Man-technology-organization aspects. Human interaction is important for a 

manually activated instrumented system, whereas for subsea instrumented system, oper-

ational factors are more important than human involvement.   
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One should keep in mind that, this quantitative uncertainty analysis just provides an esti-

mate of the uncertainty (variation) of the output quantity. This estimate may be subjected 

to an error that depends on the number of MC sampling of the aleatory quantities.  

6.2 SEMI-QUANTITATIVE ANALYSIS 
Semi-quantitative uncertainty analysis proposed in the thesis follows the previous work 

presented by Abrahamsen and Røed (2011). In Abrahamsen and Røed (2011), human 

and operational aspects are covered in a systematic way to consider the uncertainty of 

background knowledge in SIL verification. The uncertainty influencing factors are evalu-

ated in a qualitative way and categorized into three level of uncertainties such as high, 

low or medium. This thesis adopts the same evaluation process with slight modification.  

 

The method, proposed in this thesis, tries to quantify the effect of these qualitative factors 

on SIL rating and a formula is proposed to calculate deviated SIL due to the effects of 

these uncertainty factors. For quantification, the concept of Schönbeck, Rausand, and 

Rouvroye (2010) is adopted (details are described in section 5.2.2). The logic behind this 

is that only semi-quantitative evaluation of these factors may create confusion to the tech-

nical staff about their overall effects on system SIL. This quantification method is proposed 

to become aware of the overall effect on system SIL. Therefore, the technical staff may 

show the effects of a specific criterion to the decision maker in a numerical way. 

 

The pros of the method is as below: 

 Final output is fully understandable so the decision maker may take a decision 

based on the provided/available data. 

 The method itself is easy to use and follows a very straightforward and structured 

workflow. The complexity lies at the starting point, in the process of screening and 

defining the uncertainty influencing factors and effects. Expert involvement in 

therefore recommended in this step. 

 

However, following cons can be faced: 

 This method is quite new, technical staffs may be unfamiliar with this work process 

and relevant required information 

 The effort of weighting can be high as understanding of the complex environment 

is critical. The feasibility of each weight assignment should be evaluated. 

 Can be quite time consuming depending on the dimension and complexity of the 

system. 

 Overlapping, inter-dependencies was not taken into account, it may influence the 

correctness of evaluations.  

 One may raise the question that this approach is subjected to analysts’ point of 

view. Expert judgments may vary due to different background knowledge and ex-

perience. This may lead to two different results for the same analysed system if 

studied by two independent reliability experts.  If the technical expert have an over-

confidence about the system they are working daily, the result of uncertainty anal-

ysis may result into low uncertainty instead of high uncertainty. The analysis may 

lose its importance due to this type of subjective judgement. As a conclusion, it 

can be said that, analytically correct evaluations require the mutual independence 
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and minimum overlap between each criteria. A correct result thus requires a de-

tailed understanding and analysis of the criteria in the specific context of the use 

case. Treatment of interdependencies and overlaps is not implemented in the tool 

but requires further analysis and treatment in the selection and weighting process. 

Sophisticated scientific investigations are thus necessary. 
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7 A CASE STUDY WITH PROPOSED MODEL 

In section 5.1, it is discussed that the SIL verification process should consist the following 

steps: 

 

 

 
Figure 8: Proposed steps for SIL verification and decision making 

How this model can be implemented in reality is shown in this section with a case example. 

7.1 INITIATING STEP 

7.1.1 Scope 

The system taken for case study in this thesis is the subsea well isolation system or sub-

sea ESD system. This case is in the modification phase for an existing platform which was 

installed a long time ago. The safety instrumented system is analyzed to check compli-

ance with safety integrity level (SIL) requirement. 

7.1.2 Overview of the safety instrumented system 

The function of the subsea ESD system is to Isolate well from manifold/flow line by acti-

vation through topside ESD logic solver and closure of well valves (relevant XT-valves, 

including DHSV). In case of an emergency situation, activation of the subsea Emergency 

Shutdown (ESD) system shall isolate one well from the manifold flow line and service 

lines. In the case study, SIS is composed of the following systems: 

 ESD node 

 Electrical power control unit 

 Subsea control module 

 X-mas tree valves 

 Downhole safety valves 
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(a) (b) 

 

Figure 14: a) An overview of the functional blocks and components that comprises the SIS; b) SIF components 

 

Table 6: SIS functionality and related information 

 Subsystem Location SIS functionality SIS related info 

1 ESD node 

 

Onshore Carries ESD signals SIS logic solver common to all 

SIF’s 

2 EPCU (safety 

relay and 

main contac-

tor) 

Onshore Isolates electric power 

from subsea EPCU 

channels 

Part of SIF final element; 

equipped with ESD relays/con-

tractors necessary for isolating 

power to subsea control systems 

during certain shutdowns. 

3 Subsea con-

trol module 

Subsea Depressurize function 

lines by venting hydrau-

lic fluid to sea 

Part of SIF final element; 

Equipped with fail safe quick 

dump solenoid valves to vent hy-

draulics subsea.  

4 Xmas tree 

(valves with 

hydraulic ac-

tuators 

Subsea Isolate the well using 

XMT valve (e.g. PMV, 

PWV) 

Part of SIF final element; 

Equipped with main well isolation 

valves, forms the secondary well 

barrier. 

5 Downhole 

safety valve 

Subsea 

(down-

hole) 

Isolation of the produc-

tion bore 

Part of SIF final element; 

Downhole safety valve forms the 

primary well control barrier. 
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7.1.3 Detailed study of the system and operating condition 

7.1.3.1 ESD signal 

The SIS shall receive a continuous ESD signal directly from the ESD Node. Removal of 

the ESD signal shall trip the safety relays.  

7.1.3.2 EPCU Safety relays 

The ESD function is hardwired into the EPCU as a discrete signal. The safety relay is held 

by, and will trip upon a loss of the ESD signal. 

7.1.3.3 EPCU Main contactors 

Tripping the safety relays will, in turn, causes the two EPCU main contactors to go open 

circuit resulting in removal of power from EPCU channel.  

7.1.3.4 Subsea Control Module (SCM) 

Removal of subsea electric power de-energizes the solenoid of the dump DCV valve in 

the SCM. This action disconnects the hydraulic supply and vents the SCM hydraulic pres-

sure to sea. A chain of events crucial for the shut in of the tree is then triggered within the 

SCM. All DCV control valves controlling the individual functions (i.e. XT valves) closes 

due to loss of pilot pressure, in turn depressurizing its external output line.  

7.1.3.5 Directional Control Valves (located inside SCM) 

The DCV‟s are two positions, control valves mounted in the protective dielectric oil envi-

ronment inside the SCM. Each of the external hydraulic functions (i.e. tree valve actuators, 

DHSV) are controlled by directional control valves. The two positions noted are: 

Open: The position in which the DCV connects the hydraulic function to its supply line 

Closed: Default, de-energized and the position in which the DCV disconnects from the 

supply and connects the hydraulic function to its return line (safe state). 

The continuously energized (CE) DCV is a solenoid operated hydraulic piloted valve.  It 

requires a continuous electrical power to its solenoid, and hydraulic pressure to its pilot 

stage, in order to remain in the open position. In an ESD event, loss of this electrical signal 

to the solenoid will cause the valve to return to its default closed position venting pressure 

downstream in the SCM.  

 

7.1.3.6 Other components 

The safety loop contains other components such as pipe work. The pressure accumula-

tors are omitted in calculation of the PFD since all failure modes are believed to lead to a 

safe state with regards to the safety function. 

 

7.1.3.7 Operation Environment 

The ESD SIS is to operate subsea at 350 m with a seawater temperature of +4 °C. Any 

other specific extremes of environmental conditions are not considered to be likely in the 

study. It is understood that components are suitable for the environment where they op-

erate both in the term of pressure, temperature, vibrations, corrosion. It is assumed that 

the SIF will be initiated manually by the ESD push button detection of the hazardous situ-

ation within the topside system or automatically via the ESD node.  
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7.1.3.8 Diagnostic function and HMI 

The SIF operates on an on-demand basis, it is evident that the ESD function shares final 

elements (DCV and Xmas tree gate valves) with general process control functions. This 

opens for incidental detection of faulty control valves and/or gate valves. Detection of a 

dangerous fault (by diagnostic testing, proof testing, during process control or by other 

means) related to components that is part of the safety critical function shall immediately 

result in specified action to achieve a safe state. The reason is that the safety system is 

degraded. After a safe state has been achieved, repairs shall be completed prior to restart.  

7.1.3.9 Safe state 

The safe state of SIF corresponds to complete isolation of one well from the manifold flow 

line and the utility/service lines (i.e. valves closed and leakage free). Well stream isolation 

is here understood as closure of both the main production bore and the annulus. All the 

logics are hardwired, de-energized and de-pressurized to the safe state. Hence, the func-

tional components and software used during the normal operation (not safety critical) can-

not force the SIS to a dangerous state nor prevent execution of the SIF. 

7.1.3.10 Degraded operation 

Operation shall not be carried on with degraded safety function. On detection of faults on 

any components related to the SIS, the system shall immediately be taken to a safe state, 

or alternative risk reducing measures be put in place, which is assessed to reduce the risk 

by the same factor as the SIS. 

 

7.1.3.11 Safety requirements 

Some general requirements for the subsea ESD function are listed below: 

ESD valves shall isolate and sectionalize process segments in a fast and reliable man-

ner according to dimensioning fire and explosion scenarios on the loss of ESD signal, or 

power, or hydraulic pressure. 

The ESD function of well stream isolation should, for subsea installations, apply a fail-to 

safe principle, ensuring immediate closure of the wing valve and Master Valve, e.g. utili-

zation of energized electrical circuits to keep the valves in open position” 

 

7.1.4 Selection of SIL assessment method 

ESD safety function is defined as a “low demand mode function” because the frequency 

of demands for operation is no greater than one per year or twice the proof test frequency 

(IEC 2000). So SIL classes will be defined as average probability of failure (PFDavg) to 

perform its design function. PDS method will be adopted here for PFD calculation. 
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7.2 PRIMARY ANALYSIS: SIL ESTIMATION BY PDS METHOD 

7.2.1 Assumptions 

7.2.1.1 Calculation approach 

 When calculating PFD, the contribution from unavailability due to repair 

and testing of components is not included.  

 The PFD of the function (safety system) is obtained by summing the PFD 

of each set of redundant modules.  

 The term 𝜆𝐷𝑈. 𝜏, is assumed as small enough to allow 𝑒−𝜆𝐷𝑈.𝜏 ≈ 1 −  𝜆𝐷𝑈. 𝜏. 

 The self-test period is small compared to the interval between functional 

testing. 

 Classification of all failures is made on the basis of an assessment from 

safety function’s point of view. The impacts on other function or systems 

are not evaluated. 

 All failure rates are considered constant with respect to time, an exponen-

tial failure model is assumed. Although it is acknowledged that failures may 

be more prone to occur a short time after commissioning and in the end of 

the life cycle due to aging, wear and tear 

 PFD is calculated as average values and are used as unavailability 

measures. 

 When calculating PFD, it is assumed that the component can be consid-

ered as good as new after a repair or a functional test 

 There exist no dependency between elements 

 Only random hardware failures are included in the calculations without tak-

ing into consideration of the systematic failure (H. Jin, Lundteigen, and 

Rausand 2012) 

 Human and organizational errors are disregarded (H. Jin, Lundteigen, and 

Rausand 2012) 

 Maintenance errors are not considered (H. Jin, Lundteigen, and Rausand 

2012) 

 The SIS is not influenced by any factors outside the physical boundaries of 

the SIS (H. Jin, Lundteigen, and Rausand 2012) 

 The test and repair times are negligible compared to the length of the func-

tional test interval  

 On detection of safe and DD failures, the system is restored immediately 

within a short time compared to functional test interval 

 All elements are proof tested at the regular time interval, t (H. Jin, 

Lundteigen, and Rausand 2012) 

 

7.2.1.2 Reliability data 

1. The components are operated in an environment comparable to other subsea sys-

tems where reliability data origins from. 

2. Hydraulic lines and connectors are most often regarded as passive components 

and hence disregarded in computation of the PFD: generally, failure of pipes, 
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hoses ore connectors will result in the system to fail to a safe state. The most 

prominent exception is the blockage. 

3. The analysis is based on data for dangerous undetected failures. Generic failure 

data is used for PFD calculation. 

7.2.1.3 Systematic and common cause failure 

Systematic failure and Common Cause Failures (CCF), both largely contribute to the un-

reliability of a system. Since one single failure or condition affects the operation of multiple 

components that would otherwise be considered independent, these failures by definition 

defeat the randomness of failures.  

 

The potential for dangerous CCF exists between similar redundant XT-valves and their 

actuators, DCVs inside the SCM, hydraulic lines and couplings, and between the redun-

dant hydraulic dump valves. There are numerous methods that can be employed to esti-

mate the probabilistic contribution of CCF to redundant systems. The PDS method as-

sumes that a certain fraction of the failures (β) are common cause (PDS method 2013). 

Such failures will cause all the redundant components to fail simultaneously or within a 

short time period.  

7.2.1.4 Diagnostic  

1. The SCM contains numerous pressure, temperature and flow sensors which could 

in theory provide information about the status of some components (e.g. valve 

profiling). No online diagnostic has been defined to support the Safety Instru-

mented System. 

2. A consequence of ESD activation is necessarily loss of subsea power, including 

the instrumentation power. The operators are thus unable to monitor the execution 

of the ESD function.  

7.2.1.5 Maintenance interface  

1. The equipment is designed to be maintenance free for the design life when in-

stalled subsea, with the exception of periodic proof testing. 

7.2.1.6 Proof testing 

1. A full proof test is performed periodically with one (1) year intervals.  

2. 100 % proof test coverage is assumed, meaning that proof test is carried out such 

that all faults critical to the safety function are detected, and thereafter corrected. 

3. Operation shall not be resumed until full functionality of the safety system is re-

stored. 

7.2.1.7 Mean-time to repair 

For the purpose of this safety analysis it is assumed that in the event of detecting danger-

ous – which is anticipated to happen only during proof test –the system is brought to a 

safe state and repairs are made before production is restarted. This corresponds, calcu-

lation wise, to an MTTR of 0. On this basis, the MTTR has not been taken into account in 

the quantitative functional safety analysis since it is not considered to be appropriate in 

this implementation. 

 



46 
 

7.2.2 Reliability block diagram 

The RBD is roughly arranged by the timeline of events, starting from the initial activation 

of the ESD signal and ending with closure of the valves representing the final element.  

Closure of the well can be achieved in three different ways which split the RBD into three 

parallel branches for the final elements. The DCV (control valves) are placed adjacent to 

their respective valve in the RBD, even though they are physically located inside the SCM.  

The calculated PFD for each subsystem of the analyzed function performing its SIF is 

detailed in 

 

 
Figure 15: Reliability block diagram of subsea ESD system 

7.2.3 PFD calculation 

The PFD calculations are based on the formulas stated in the PDS Method Handbook. 

PFD calculation is carried out on the spreadsheet (MS-Excel) and results are listed in the 

table. One can see the theoretical framework section for calculation details. Failure rate 

and beta factor data are collected from PDS data handbook (PDS Data Handbook 2013). 

              
Table 7: Characteristics data for each SIS component 

Group  Sub-sys-
tem 

Component typical λDU  
(1/hrs.) 

Test in-
terval 
(hrs.) 

Beta-fac-
tor 

1 ESD node ESD node 8.00E-07 2190 0.05 

2 EPCU and 
Dump 
valve 

ESD relay 2.00E-07 8760 0.05 

ESD contactor  1 3.00E-07 8760 0.05 

ESD contactor 2 3.00E-07 8760 0.05 

Dump valve 1.60E-07 8760 0.05 

3 XT valves PWV (Production wing valve) 1.80E-07 8760 0.05 

DCV (Directional control valve) 6.00E-07 8760 0.05 

CIV (Chemical injection valve) 2.20E-07 8760 0.05 

DCV (Directional control valve) 6.00E-07 8760 0.05 

PMV (Production master valve 1.80E-07 8760 0.05 

DCV (Directional control valve) 6.00E-07 8760 0.05 

4 DHSV DSHV 3.20E-06 8760 0.05 

DCV (Directional control valve) 6.00E-07 8760 0.05 

 

  

DCV

ESD 

node
ESD 

relay 

ESD Contactor 1

ESD Contactor 2

PMV

DHSV

LP Dump 

Valve

CIV DCVDCVPWV

DCV Safe
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Table 8: PFD calculation for each component and subsystem 

Group  Sub-sys-

tem 

Component typi-

cal 

Voting 

level 1 

Voting 

level 2 

PFD level 

1 

PFD level 

2 

1  ESD node ESD node 1oo1   8.76E-04   

2 EPCU and 

Dump 

valve 

ESD relay 1oo1   8.76E-04   

ESD contactor  1 1oo1 1oo2 1.31E-03 6.80E-05 

ESD contactor 2 1oo1 1.31E-03 

Dump valve 1oo1   7.01E-04   

3 XT valves PWV  

4oo4 

 

 

 

1oo3 

 

 

7.01E-03 

 

 

 

 

1.85E-04 

DCV 

CIV 

DCV 

PMV 2oo2 3.42E-03 

 DCV 

4 DHSV DSHV 2oo2 1.66E-02 

 DCV 

 

Table 9: Calculated PFD for each subsystem and overall SIS 

Subsystem PFD Relative con-

tribution to 

PFD 

SIL3 compli-

ant 

SIL2 com-

pliant 

ESD Node 8.76E-04 34.75 % Yes  

EPCU (Electrical) 9.44E-04 37.45 % Yes  

SCM (Dump) valve 7.01E-04 27.80 % Yes  

XT valves, DHSV 

valves 

1.85E-04 6.83 % 

 

Yes  

Total PFD 2.71E-03 

 

100.00 % No Yes 

 

 

The overall conclusion is that above mentioned SIS does not fulfil the SIL3 requirements. 

The reason of un-fulfilment of the SIL3 requirement of the SIS is beyond the scope of the 

thesis.  
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7.3 DETAILED ANALYSIS 

7.3.1 Selection of tool for analysis 

This the case study is for the modification phase of an existing installation, where the 

modification of SIS configuration is not possible. So, sensitivity study or importance meas-

ure will be of no use. Semi-quantitative uncertainty assessment should be given more 

weight. However, a quantitative uncertainty assessment is also presented here to show 

the work procedure for practical case example.  

7.3.2 Semi-quantitative uncertainty assessment  

When selecting a framework for semi-quantitative analysis, one should keep in mind that, 

capturing the entire complexity of the system and all the physical influencing factors in a 

model is not possible. But one can try to identify the most dominant factors that signifi-

cantly influence safety (Schönbeck, Rausand, and Rouvroye 2010). Safety influencing 

factors which are considered for current case study are presented below along with the 

detailed evaluation and impact on the system. 

Table 10: Example of uncertainty influencing factors (Abrahamsen and Røed 2011) 

Main cate-

gories 

Sub-categories Evaluation with details Impact on system 

as a measure of the 

uncertainty 

Human as-

pects 

Competence and training Lack of experience among the crew 

about dealing with the same opera-

tion 

High 

Training for operating per-

sonnel 

Will be trained in advance before 

starting the operation 

Medium 

 

 

 

 

Technical 

aspects 

Environmental aspects Harsh environment at offshore Medium 

Internal: fluid composition High uncertainties on fluid 

Composition. May result in 

corrosion and other 

challenges 

High 

New or well-known technol-

ogy 

New equipment: Limited 

experience with the 

equipment to be installed 

subsea 

High 

Well characteristics Challenging condition: High pres-

sures and unknown 

reservoir characteristics 

High 

 

 

 

 

 

Operational 

aspects 

Experience with subcon-

tractors 

New subcontractor (first 

Operation). Limited 

experience from Norwegian 

Continental Shelf 

High 

Planning, coordination, 

control 

Have the necessary preparation for 

the execution of operational and 

maintenance tasks 

Low 

Maintenance 

 

No specific challenges Low 

Documentation Have adequate written and oral in-

formation about performing the op-

erational and maintenance tasks in 

a correct and safe manner 

Low 
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At first, as described in section 5.2.2.2, a weight is given to each factor depending on their 

contribution to the system behavior. These weights have to be normalized then. The 

weight factor, Wi for qualitative factor, i is calculated in such a way that ∑ 𝑊𝑖 = 1:𝑛
𝑖=1   

𝑊𝑖 =
𝑊�̌�

∑ 𝑊�̌�
𝑛
𝑖=1

 

In our case study, it is assumed that each factor has equal contribution to SIS perfor-

mance. Weight factor (W i) is calculated according to that. 

In the next step, (described in section 0), to quantify the uncertainty severity of these 

uncertainty influencing factors (i), a scale is assigned, where Ri=1/3 expresses low uncer-

tainty, Ri=2/3 indicates medium uncertainty and Ri=3/3=1 indicates high uncertainty. Un-

certainty weighted rating (RiWi) is calculated by multiplying Ri and Wi. Details calculations 

are shown in the next table. 

Table 11: Calculation of weight factor, uncertainty rating and uncertainty weighted rating 

Uncertainty 

influencing 

factor, i 

 

Weight  

Weight fac-

tor  

Wi 

Uncertainty 

Rating  

Ri 

Uncertainty 

weighted 

rating RiW i 

1 1 0.10 1.000 0.111 

2 1 0.10 0.667 0.074 

3 1 0.10 0.667 0.074 

4 1 0.10 1.000 0.111 

5 1 0.10 1.000 0.111 

6 1 0.10 1.000 0.111 

7 1 0.10 1.000 0.111 

8 1 0.10 0.333 0.037 

9 

10 

1 

1 

0.10 

0.10 

0.333 

0.333 

0.037 

0.037 

 

The actual SIL rating after taking into consideration of the uncertainties can be calculated 

as follows (shown in section 0): 

𝑆𝐼𝐿𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 = [1 − {(1 − 𝜉). (∑ 𝑅𝑖𝑊𝑖

𝑛

𝑖=1

)}] .  SIL𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 

 

Where, ξ is the strength of knowledge.  

SILCalculated is previously determined SIL calculated by deterministic method. Obtained SIL 

value is 2, calculated by PDS method. 
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Taking different ξ values, following SILuncertain values can be obtained: 

 
Table 12: SIL value after the semi-quantitative uncertainty assessment 

Value of ξ SIL value after 

the uncer-

tainty analysis 

Value of ξ SIL value 

after the un-

certainty 

analysis 

0.1 0,680 0.6 1,413 

0.2 0,827 0.7 1,560 

0.3 0,973 0.8 1,707 

0.4 1,120 0.9 1,853 

0.5 1,267 1 2,000 

 

As the weight factor and the uncertainty rating is assigned arbitrarily in the first case, to 

check the consistency of the analysis result, some additional calculations is performed 

(case 2 and case 3).  

 

Case 2 

For this case, the same weight factor is assigned and it is assumed that each uncertainty 

influencing factor affects the system highly. So in this case uncertainty contribution of 

these factors will be high. Therefore, the overall system is highly uncertain. The uncer-

tainty rating (Ri) will be equal to 1 for each factor i. SIL value after implementing the un-

certainty model is shown here: 

 
Table 13: Semi-quantitative uncertainty assessment and obtained SIL value for case 2 

Un-

cer-

tainty 

influ-

encin

g 

fac-

tor, i 

Weight 

Wi 

Weight 

factor Wi 

Uncer-

tainty Rat-

ing Ri 

Uncertainty 

weighted 

rating RiWi 

Value 

of ξ 

SIL value af-

ter uncer-

tainty analy-

sis 

1 1 0.10 1.000 0.111 0.1 0.20 

2 1 0.10 0.667 0.074 0.2 0.40 

3 1 0.10 0.667 0.074 0.3 0.60 

4 1 0.10 1.000 0.111 0.4 0.80 

5 1 0.10 1.000 0.111 0.5 1.00 

6 1 0.10 1.000 0.111 0.6 1.20 

7 1 0.10 1.000 0.111 0.7 1.40 

8 1 0.10 0.333 0.037 0.8 1.60 

9 1 0.10 0.333 0.037 0.9 1.80 

10 1 0.10 0.333 0.037 1 2 
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Case 3 

For this case, the same weight factor is assigned and it is assumed that the contribution 

of each uncertainty influencing factor of the system is low. In this case the uncertainty 

rating will be equal to 1/3. SIL value after implementing the uncertainty model is shown 

below: 
Table 14: Semi-quantitative uncertainty assessment and obtained SIL value for case 3 

Uncertainty 

influencing 

factor, i 

Weight 

Wi 

Weight 

factor 

Wi 

Uncertainty 

Rating Ri 

Uncertainty 

weighted 

rating RiWi 

Value 

of ξ 

SIL value 

after un-

certainty 

analysis 

1 1 0.10 0.333 0.033 0.1 1,406 

2 1 0.10 0.333 0.033 0.2 1,472 

3 1 0.10 0.333 0.033 0.3 1,538 

4 1 0.10 0.333 0.033 0.4 1,604 

5 1 0.10 0.333 0.033 0.5 1,67 

6 1 0.10 0.333 0.033 0.6 1,736 

7 1 0.10 0.333 0.033 0.7 1,802 

8 1 0.10 0.333 0.033 0.8 1,868 

9 1 0.10 0.333 0.033 0.9 1,934 

10 1 0.10 0.333 0.033 1 2 

 

Results are plotted in a chart for a better review.  

 
Figure 16:  SIL value after semi-quantitative Uncertainty analysis for the system 
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From the chart it can be seen that for the highly uncertain system if strength of knowledge 

is poor, then SIL value after uncertainty analysis deviates much from the SIL value calcu-

lated by deterministic method. For the little uncertain system this difference is very low. 

The difference between uncertain SIL value and the deterministic SIL value reduces with 

the increase of strength of knowledge. For ξ=1, which means the analyst is 100% sure 

about the system and analysis, the uncertain SIL value will be equal to the deterministic 

SIL value, which can be very rare in the practical situation. However, the overall trend 

shows the consistency of the proposed formula. In this framework, system uncertainty 

factors and strength of knowledge dimension are considered simultaneously. The neces-

sity to take into consideration of both the uncertainty factors and strength of knowledge is 

described in section 5.1.1 in details. One may raise the question that as in the semi-quan-

titative analysis we are analyzing the uncertainty factors concealed in the background 

knowledge, why do we need to consider the strength of knowledge assignment again. It 

is tried to give the answer to this question is that section. 

 

7.3.3 Quantitative uncertainty analysis: MC simulation 

7.3.3.1 Procedure 

Here, uncertainty analysis in SIL estimation is performed by MC simulation where PFD is 

calculated by the PDS method of approximated formula.  

Following the proposed framework presented in section 5.2.1.3, sampling is done for fail-

ure rate data, common cause failure and test interval. To treat uncertainty in the failure 

rate of various components in the system, exponential distribution is assigned to failure 

rate with a median. The median value, collected from the database, is frequentist proba-

bility (failure rate data obtained from similar installation). For β factor, interval probabilities 

are assigned with a range of 1% to 10%. This interval is assigned on the basis of database 

value, from which it is seen that for various components like topside/subsea equipment, 

β factor value lies in the interval.  Constant value is assigned for the test interval, as this 

value is known exactly.  

The present SIS has 13 components. For each component, PFD1…PFD13 are calculated 

using each uncertain input variables. The number of iterations in this step is 50000 to 

increase accuracy of the result.  Overall PFD is calculated simultaneously for each varying 

PFD. Several test cases for variable input parameters are simulated and resulted are 

summarized in the Table 16. 95 percentile value is taken as the final outcome which means 

that we are 95% sure that the value lies at or below the value.  

To specify the obtained results more precisely, SIL level is defined in details according to 

the PFD value in the similar way as shown in table 15. 

Where, SIL level follows the following interval of PFD: 

SIL 3 region: 0.0001 to 0.001 

SIL 2 region: 0.001 to 0.01 

SIL 1 region: 0.01 to 0.1 
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Table 15: PFD value and corresponding SIL level 
  

PFD value 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001 

SIL Approx-

imated 

value 

3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3 

PFD value 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 

SIL Approx-

imated 

value 

2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2 

PFD value 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

SIL Approx-

imated 

value 

1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1 

7.3.3.2 Result 
Table 16: Results of various case studies of MC simulation (using @risk software) 

case Input parameters PFD (50 

percentile) 

PFD (95 

percentile) 

SIL 

level 

1 λ is exponentially distributed with mean value taken from 

database (PDS Data Handbook 2013) 

Test interval – constant 

β –constant (0.05, (PDS Data Handbook 2013)) 

2.68E-3 5.39E-3 2.5 

2 λ is exponentially distributed with mean value taken from 

database 

Test interval – constant 

β –uniformly distributed (1% to 10%) 

2.73E-3 5.44E-3 2.5 

3 λ is exponentially distributed (mean=0.00001) 

Test interval – constant 

β –uniformly distributed (1% to 10%) 

1.11E-01 

 

2.36E-01 

 

0 

4 λ is exponentially distributed with mean value taken from 

database 

Test interval – constant 

β –beta distribution (2,2) 

4.65E-3 8.21E-3 

 

2.2 

5 λ is uniformly distributed taking 90% interval of mean 

value taken from database 

Test interval – constant 

β –interval value (0.045,0.0552) 

2.71E-3 2.84E-3 2.8 

6 λ is Weibull distributed (α=2,β=0.00001) 

Test interval – constant 

β –uniformly distributed (1% to 10%) 

9.65E-2 1.49E-1 

 

1 

7 λ is lognormal distribution (µ=0.00001,σ=0.00001) 

Test interval – constant 

β –uniformly distributed (1% to 10%) 

1.12E-1 

 

2.32E-1 

 

0 

8 λ is uniformly distributed (0.00001,0.00001) 

Test interval – constant 

β –uniformly distributed (1% to 10%) 

5.3E-2 8.34E-2 1.2 

9 λ is triangular distribution (0.000001,mean value, 

0.00001) 

Test interval – constant 

β –constant 

3.88E-02 

 

6.45E-2 

 

1.4 

10 λ is uniformly distributed (0.000001,0.00001) 

Test interval – constant 

β –constant 

5.84E-2 

 

8.56E-2 

 

1.2 
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The simulation case was also checked with a programming language (Scilab) to check 

the consistency of the result of @risk. The result shows the similar tendency. Two test 

cases are performed by Scilab. The first case is for variable failure rate. The number of 

trial was 50000 in this case. The second case is for variable failure rate and beta factor. 

The number of trial is 500 for lambda value and 50 for beta factor value. For each variable 

input parameter output PFD is calculated and results are obtained both numerically and 

graphically. The test case 2 shows a little unexpected result (less uncertainty compared 

to case 1). The increasing number of trial will give more sophisticated result. One can see 

the code lines and plots in appendix C. 

Table 17: Obtained PFD result for case 1, simulation carried by Scilab programming language 

Subsec-

tion 

Min Max St.Dev 50 percen-

tile 

95 percen-

tile 

SIL 

ESD node 1.38E-04 1.38E-04 2.06E-04 3.46E-04 7.93E-04 3.3 

EPCU 5.79E-04 3.67E-03 8.68E-04 1.46E-03 3.35E-03 2.7 

LPDV 5.51E-04 3.48E-03 8.23E-04 1.39E-03 3.17E-03 2,9 

XTV 6.13E-05 3.94E-04 9.32E-05 1.55E-04 3.59E-04 3.9 

Overall 1.33E-03 8.41E-03 1.99E-03 3.34E-03 7.67E-03 2.3 

 

Table 18: Obtained PFD result for case 2, simulation carried by Scilab programming language 

Subsection Min Max St. Dev 50 percen-

tile 

95 percentile SIL 

ESD node 1.38E-04 8.70E-04 2.06E-04 3.46E-04 7.96E-04 3.3 

EPCU 5.57E-04 3.84E-03 8.63E-04 1.44E-03 3.32E-03 2.7 

LPDV 5.51E-04 3.48E-03 8.25E-04 1.39E-03 3.18E-03 2.7 

XTV 1.23E-05 7.81E-04 1.26E-04 9.87E-05 4.14E-04 3.6 

total 1.26E-03 8.97E-03 1.97E-03 3.29E-03 7.57E-03 2.3 

 

7.3.3.3 Discussion 

After the MC simulation, Output distribution is obtained for each input distribution from 

which statistical data is extracted. 95 percentile of PFD value is used to determine SIL 

rating after the uncertainty assessment, which will give higher confidence in decision mak-

ing.  

Various cases are simulated to make a comparison. For the first case, exponentially dis-

tributed failure rate with mean value, constant β factor and constant functional test interval 

is used. Mean failure rate value, is taken from PDS handbook. The result of PFD distribu-

tion deviates much from the deterministic result obtained by PDS method. The overall 

PFD is more than 2 times when 95 percentile of the distribution is considered, but the SIL 

rating still belongs to the SIL2 zone. 

After analyzing the other case study it is seen that, SIL rating may vary from SIL2 to SIL0 

for various case study. Functional test interval time is assumed constant for all cases as 

this is normally fixed by the operation team before carrying out the activity. SIL0 rating is 

not so expectable, because these are the cases where failure rate is assumed to be 
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Weibull or lognormal distributed. However, it is a questionable topic to scientists whether 

failure rate should be assumed as exponentially distributed or Weibull distributed.  

The same question remains for the other input parameter e.g., whether β factor should be 

assumed as constant or uniform distributed or beta distributed. In PDS data handbook, β 

factor ranges are observed as maximum 10 % and minimum 2% for various safety instru-

mented components including topside equipment. So in the present cases β factor interval 

(1% to 10%) are used as input distribution and changes in the output result is observed, 

which indicates that for this small variation for β factor values does not impact much the 

output distribution.  SIL0 rating is obtained for one additional case, where a very high 

failure rate is assumed for each component of the system which may not be true for to-

day’s modern, highly reliable instrumented system. 

Overall analysis gives the indication to the decision maker that in certain situations, the 

overall SIL of the SIS may reduce to SIL1 or lower SIL 2 value. MC simulation just provides 

an estimate of the uncertainty of the output quantity. The accuracy of the result depends 

on the number of MC sampling of input parameters. Higher values of sampling yields a 

higher accuracy of the output uncertainty distribution estimate, but increases computa-

tional time. In present case, simulation is performed by using 50000 random trial by check-

ing that this number of trial will give a stable result. This estimate may be subjected to an 

error that depends on the number of MC sampling of the aleatory quantities. Higher values 

of sampling yields a higher accuracy of the output uncertainty distribution estimate.  

 

7.3.4 Review of result and limitation of analysis 

As a part of detailed analysis of the SIL verification process, semi-quantitative uncertainty 

analysis is proposed as starting analysis method. As the case study is for a system of an 

existing platform where the modification of the system configuration is not possible, sen-

sitivity analysis and importance measure were not performed. As a supplement of this 

semi-quantitative uncertainty analysis, quantitative uncertainty analysis is also performed. 

The results of  two analyses are shown below: 

Table 19: SIL value after quantitative and semi-quantitative uncertainty analysis: 

 Determined by 
PDS method 

After semi-quantitative 
uncertainty analysis (for a 
medium uncertain sys-
tem, assuming ξ=0.5) 

After quantitative 
uncertainty anal-
ysis (MC simula-
tion) 

SIL value 2 1.2 1.2 

%Factor 
subjected 
to uncer-
tainty 

 57.1% 57.1% 

 

From overall analysis, it can be seen that SIL value may range from lower value of SIL2 

to SIL1 after implementing the uncertainty model. The quantitative uncertainty analysis 

result shows a quite higher percentage of uncertainty comparative to semi-quantitative 

uncertainty analysis. In semi-quantitative uncertainty analysis, strength of knowledge of 

the analyst may affect the SIL value in a large amount (Figure 16). So the results shown 

in the table cannot be taken as absolute value.  
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The developed semi-quantitative uncertainty model is quite straight-forward to follow and 

contains a simple calculation method. This model needs to be further tested for different 

SIS for different applications. Moreover, the dimension of strength of knowledge is difficult 

to predict in practical situation. Uncertain factors are considered independent. Overlaps 

and interdependencies are not taken into account. More details are discussed in section 

6.2. 

On the other hand, quantitative uncertainty analysis performed by MC simulation is a well-

established method in literature and industry. However, MC simulation just provides an 

estimate of the uncertainty (variation) of the output quantity. This estimate may be sub-

jected to an error that depends on the number of MC sampling of the aleatory quantities. 

50000 random trial is performed for the present case. Higher values of sampling yields a 

higher accuracy of the output uncertainty distribution estimate.  

The scope of the thesis is not to assess which method is better. This thesis proposes 

semi-quantitative uncertainty analysis as a starting point in detailed analysis of SIL verifi-

cation. In the case of further investigation of the system or the analyst is not confident 

about semi-quantitate uncertainty analysis, quantitative analysis can be carried out as a 

supplement to semi-quantitative analysis.  

 

7.4 DECISION MAKING 

7.4.1 Risk mitigation 

Overall analysis gives the indication to the decision maker that in certain situations, the 

overall SIL of the SIS may reduce to SIL1 or lower SIL 2 value. So enough risk mitigation 

measures should be proposed for current SIS.  

Depending on the SIL decision, the decision maker may choose analysis based approach 

or cautionary or precaution based approach for risk mitigation. Decision analysis should 

reveal the potential costs associated with an alternative. The analysis-based approach 

gives weight to the traditional assessment method like statistical analysis, risk assess-

ment, cost benefit analyses. Stakeholder may become involved also in this process which 

is called discourse based approach. Different prevention measures may be appropriate 

for various situations. In times, decision makers have to choose one specific option from 

a set of possible options.  

 

How to select the best suitable measure for specific situation or organization needs de-

tailed analysis, which is not focus of this thesis and not discussed here.  The result of 

current cases (subsea SIS, which was installed a long time ago and no equipment modi-

fication is possible) advises the decision maker that potential risk reduction measures 

should be implemented. The cautionary or precautionary principle may be given weight to 

reduce risks and uncertainties. However, the level of caution should to be balanced with 

other concerns like costs, operating constraint. All industries are advised to follow some 

minimum requirements to protect people and the environment as a priori requirement.  
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As a summary, the following work process is followed for present case study: 

 
Figure 17: Performed steps for SIL verification for the presented case study 
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8 CONCLUSION AND FUTURE WORK 

 

This thesis proposes a systematic work flow of the SIL verification process. A framework 

is proposed for the treatment of uncertainty in various decision context.  The overall idea 

is to present a systematic approach to merge the proposed approaches to support deci-

sion making. Two methods are presented for uncertainty treatment, between them one is 

the quantitative method based on MC simulation and another is the semi-quantitative 

method which takes into account uncertainty factors concealed in the background 

knowledge. The motivation of the development of the framework of semi-quantitative 

method is based on the logic that the uncertainty analysis should not be carried out only 

in the mathematical or quantitative framework. One should look beyond this objective 

evaluation. One should look ahead of the background knowledge which affects the safety 

integrity level of safety instrumented system. Qualitative or semi-quantitative uncertainty 

analysis should be a starting point of detailed analysis of SIL verification in practical ap-

plication. 

The proposed methods are executed with a case study. Case study was the subsea well 

isolation system for an existing installation.  Quantitative uncertainty analysis based on 

MC simulation, proposed in the thesis, is already established in literature. However, for 

most of the simulation cases, SIL was determined by the method proposed by IEC stand-

ard. For this thesis, SIL is determined by PDS method and MC simulation is carried out 

based on PDS method.  

The semi-quantitative method proposed in the thesis, takes into consideration of MTO 

perspectives for uncertainty treatment. This work is motivation of the previous two works 

presented by Abrahamsen and Røed (2011) and Schönbeck, Rausand, and Rouvroye 

(2010). The present approach combines the above mentioned two ideas into one frame-

work. The whole framework is described in the view of risk management perspective. The 

framework is executed with the same case study and model is checked for consistency 

by varying various parameters.  

This semi-quantitative model is verified in the sense that obtained results by this model 

have been compared with the results obtained from MC simulation applied in the practical 

case example. However, overlapping, inter-dependencies was not taken into account 

which may influence the correctness of evaluations. Correct evaluations require the mu-

tual independence and the minimum overlap between every criteria. Treatment of inter-

dependencies and overlaps is not implemented in the tool and requires further analysis 

and treatment in the selection and weighting process. Further scientific investigations and 

a number of case studies can be performed in the future with this semi-quantitative model 

which may direct the researchers toward the more developed and sophisticated approach 

of the model.  

Overall analysis can be a guide work for the SIL analysts how the uncertainty analysis 

can be done in a practical case example and how the decision should be made. Further, 
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the presentation of this semi-quantitative approach will provide a robust and simplified 

new model toward the uncertainty treatment of SIL verification. 
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APPENDIX A: ACRONYMS AND MATHEMATICAL NOTATION 

A.1 ACRONYMS 
 

CCF  Common Cause Failure 

CIV  Chemical Injection Valve 

DC  Diagnostic coverage 

DCV  Directional Control Valve 

DD  Dangerous Detected 

DHSV  Downhole Safety Valve 

DU  Dangerous Uundetected 

ESD  Emergency Shut Down 

EUC  Equipment under control 

FMEA  Failure Mode and Effects Analysis 

FMECA  Failure Mode Effects and Criticality Analysis 

HAZID  Hazard identification 

HFT  Hardware Fault Tolerance 

IEC  International Electrotechnical Commission 

MC  Monte Carlo 

MooN  M out of N 

MTO  Man-Technology-Organization 

MTTR  Mean Time to Repair 

NPD  Norwegian Petroleum Directorate 

OREDA  Offshore Reliability Data 

PDS  Reliability of Safety Instrumented Systems (Norwegian Abbreviation) 

PFD/PFDavg  Probability of Failure on Demand 

PFH  Probability of Failure per Hour 

PMV  Production Master Valve 

PWV  Production Wing Valve 

SCM  Subsea Control Module 

SD  Safe Detected 

SFF  Safe Failure Fraction 

SIF  Safety Instrumented Function 

SIL  Safety Integrity Level 

SIS  Safety Instrumented System 

SU  Safe Undetected 

XT  X-mas Tree 
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A.2 MATHEMATICAL NOTATION 
 

β the fraction of random hardware failures of a single item that causes both items of a 

redundant pair to fail simultaneously, or within a short time interval, as a direct result of 

a shared cause. 

 

λS Rate of safe (spurious trip) failures, including both undetected and detected failures 

λS = λSU + λSD 

 

λDD  rate of dangerous detected failures 

 

λDU Rate of dangerous undetected failures 

 

λSD  

 

λSU  

 

rate of safe detected failures; detected both by automatic self-test or manual test 

 

rate of safe undetected failures; undetected both by automatic self-test or manual test 

 

CMooN Modification factor for voting configuration  

 

ξ Strength of knowledge 

 

Wi Weight of uncertainty influencing factors 

 

Ri Uncertainty rating 
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APPENDIX B: @RISK RESULT 

B.1 CALCULATION WITH @RISK 

Here it is shown how the calculation was done in MS-excel using @risk add-on software. 

The first thing necessary is to define the distribution of failure rate (λ). In order to create 

the exponential distribution with constant failure rate, riskexpon (λ) function is used which 

creates the distribution automatically. For each failure rate PFD of each component is 

calculated for each varying failure rate. For the first case, constant beta factor and con-

stant proof test interval are used. The output distribution is given as RiskOutput () + PFD 

formula. To define variable beta factor value, uniform distribution is given using riskunifor 

() function. Simulation is carried out using 50000 trial. The risk output can be found in a 

separate @RISK sheet with graph which are shown here. 

B.2 PLOTTING RESULTS 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 

Figure 18: Output PFD distribution for a) Overall SIS b) ESD node c) EPCU d) SCM valve e) Xmas valve 
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APPENDIX C: SIMULATION BY SCILAB PROGRAMMING LANGUAGE 

PROGRAMMING CODE 
#Test case 1 

#start the simulation 

clear all 

#number of trial 

nr=50000; 

# constant value of proof test interval and beta factor 

tau1=2190; 

tau2=8760; 

beta1=0.05; 

# variable failure rate (in the interval of 10-5 to 10-6) for each component,  

lamda_du1=logspace (-6.1 ,-6.9 ,nr); 

lamda_du2=logspace (-6.1 ,-6.9 ,nr ); 

lamda_du3=logspace (-6.1 ,-6.9 ,nr ); 

lamda_du5=logspace (-6.1 ,-6.9 ,nr ); 

lamda_du6=logspace (-6.1 ,-6.9 ,nr ); 

lamda_du7=logspace (-6.1 ,-6.9 ,nr ); 

lamda_du8=logspace (-6.1 ,-6.9 ,nr ); 

lamda_du9=logspace (-6.1 ,-6.9 ,nr ); 

lamda_du10=logspace (-6.1 ,-6.9 ,nr ); 

lamda_du11=logspace (-6.1 ,-6.9 ,nr ); 

lamda_du12=logspace (-5.1 ,-5.9 ,nr ); 

lamda_du13=logspace (-6.1 ,-6.9 ,nr ); 

# do the simulation 

for i =1:nr 

ESDnode(i)=(lamda_du1(i)*tau1)/2; 

PFD2(i)=(lamda_du2(i)*tau2)/2; 

PFD34_common(i)=beta1*lamda_du3(i)*tau2/2; 

PFD34_ind(i)=((lamda_du3(i)*tau2)^2)/3; 

PFD34(i)= PFD34_common(i)+PFD34_ind(i); 

EPCU(i)=PFD2(i)+PFD34(i); 

LPDV(i)=(lamda_du5(i)*tau2)/2; 

PFD6(i)=tau2*(lamda_du6(i)+lamda_du7(i)+ lamda_du8(i)+ lamda_du9(i))/2; 

PFD10(i)=tau2*(lamda_du10(i)+ lamda_du11(i))/2; 
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PFD12(i)=tau2*(lamda_du12(i)+ lamda_du13(i))/2; 

PFD610_ind(i)=2*PFD6(i)*PFD10(i)*PFD12(i); 

PFD610_common(i)=0.5*beta1*((PFD6(i)*PFD10(i)*PFD12(i))^(1/3)); 

XTV(i)=PFD610_ind(i)+PFD610_common(i); 

total(i)=ESDnode(i)+EPCU(i)+LPDV(i)+XTV(i); 

save('ESD.sod','ESDnode', 'EPCU', 'LPDV', 'XTV', 'total') 

end 

# Finding min, max, percentiles value for each subsection  

a_esd=min(ESDnode) 

b_esd=max(ESDnode) 

P50_esd=perctl(ESDnode,50) 

P95_esd=perctl(ESDnode,95) 

S=stdev(ESDnode) 

#result plotting 

clf(); histplot(90,total); 

#define number of trial for lamda and beta 

nr=500; 

nrb=50; 

#define constant value for proof test interval 

tau1=2190; 

tau2=8760; 

#variable beta factor (from 0.01 to 0.1, taking 50 trial in each case) 

beta1= logspace(-1,-2,nrb); 

#variable failure rate (interval same as case 1, 500 trial in each case) 

lamda_du1=logspace (-6.1 ,-6.9 ,nr); 

#run the simulation 

for i =1:nr 

for j=1:nrb 

ESDnode(i,j)=(lamda_du1(i)*tau1)/2; 

PFD2(i,j)=(lamda_du2(i)*tau2)/2; 

PFD34_common(i,j)=beta1(j)*lamda_du3(i)*tau2/2; 

PFD34_ind(i,j)=((lamda_du3(i)*tau2)^2)/3; 

PFD34(i,j)= PFD34_common(i,j)+PFD34_ind(i,j); 

EPCU(i,j)=PFD2(i,j)+PFD34(i,j); 

LPDV(i,j)=(lamda_du5(i)*tau2)/2; 

PFD6(i,j)=tau2*(lamda_du6(i)+lamda_du7(i)+ lamda_du8(i)+ lamda_du9(i))/2; 

file:///C:/Users/Sharmin/AppData/Roaming/Microsoft/Word/clf.html
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PFD10(i,j)=tau2*(lamda_du10(i)+ lamda_du11(i))/2; 

PFD12(i,j)=tau2*(lamda_du12(i)+ lamda_du13(i))/2; 

PFD610_ind(i,j)=2*PFD6(i,j)*PFD10(i,j)*PFD12(i,j); 

PFD610_common(i,j)=0.5*beta1(j)*((PFD6(i,j)*PFD10(i,j)*PFD12(i,j))^(1/3)); 

XTV(i,j)=PFD610_ind(i,j)+PFD610_common(i,j); 

total(i,j)=ESDnode(i,j)+EPCU(i,j)+LPDV(i,j)+XTV(i,j) 

save('try.sod','ESDnode', 'EPCU', 'LPDV', 'XTV', 'total') 

end 

end 

#finding results similar as case 1 

PLOT 
Only test case 2 results are shown here: 

   
a) b) c) 

  

 

d) e)  
 

Figure 19: Output PFD distribution of a) ESD node b) EPCU c) SCM valve d) XT valves e) overall 


