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Abstract

Numerical solutions to partial di�erential equations (PDEs) will create varying

amounts of error depending on di�erent factors such as the numerical scheme

and how �ne the grid size is. In this thesis, we explored two di�erent methods

of discretizing a two dimensional domain in order to reduce this error. We

compared the numerical error created from a rectangular- and a hexagonal-

grid by using a speci�c type of PDE namely hyperbolic conservation laws. To

this end, we used an explicit �nite volume method not limited by the Courant-

Friedrichs-Lewy (CFL) condition. This method is referred to as a Large Time

Step (LTS) method and was proposed by LeVeque back in the 1980's. Since

the two di�erent grids are both what is called a structured grid, we were able

to pair up the LTS method with a method called dimension splitting in order

to both decrease the overall simulation time and increase the accuracy of the

simulation. Combining those two methods we tested against two separate test

cases for the �ux. One was a linear �ux while the other was a non-linear �ux,

namely a rotational �ux around a center point. We found that for the linear �ux,

LTS was not strictly necessary in order to achieve an exact solution, however

by utilizing LTS, an exact solution would be achievable for increasing amount

of �ux directions for both the rectangular and hexagonal grid. For the non-

linear �ux, no exact solution was found for any value of the Courant number

(C), however we found that there exists an optimal value for C depending on

the grid size which would minimize the numerical error. This value was clearly

larger than 1 meaning that LTS is needed in order to achieve minimal numerical

error on a rotational �ux. The results showed that a rectangular grid was better

suited in order to handle linear �ux as it is able to capture a wider range of �ux

directions with an exact solution for all values of C. As for the non-linear �ux,

the two grids seems to be about even in terms of numerical accuracy.
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1 Introduction

1.1 Scalar Conservation Law

A scalar conservation law in one space dimension is a �rst order partial di�er-

ential equation (PDE) of the form

ut + f(u)x = 0. (1.1)

Here u = u(x, t) is called the conserved quantity, while f is the �ux of that

conserved quantity. The variable x denotes the one dimensional space position,

while the variable t denotes the time. Equations of the form (1.1) often describe

transport phenomena and are useful for modeling water- and air- �ow which for

instance can help guide the architectural design for a safer living and working

environment. Another non-�uid example could be the density of cars on the

road which (1.1) also applies to. Integrating (1.1) over a given interval [a, b] you

get

b∫
a

ut(x, t)dx+

b∫
a

f(u(x, t))xdx = 0 (1.2)

or

b∫
a

ut(x, t)dx = f(u(a, t))− f(u(b, t)) = [in�ow at a]− [in�ow at b]. (1.3)

In other words, the total amount contained within an interval will only change

due to the �ow of u across the boundary points. Using the chain rule, (1.1) can

be written in its quasilinear form

ut + a(u)ux = 0 (1.4)

where a(u) is the derivative of the �ux f with respect to the space variable x.

Given a continuous smooth solution, (1.1) and (1.4) are equivalent, however if

there exists a discontinuity for u then ux will be unde�ned at the discontinuity.
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Example 1 (Bressan, 2013):

Let ρ(x, t) be the density of cars on a highway, at the point x at time t. As

an example, u may be the number of cars per kilometer. Assuming that ρ is

continuous and the velocity of cars v depends only on their density

v = v(ρ), dv
dρ < 0 . (1.5)

Given any two points a, b on the highway, the number of cars between a and b

therefore varies according to (1.3)∫ b

a
ρt(x, t)dx = [in�ow at a]− [in�ow at b]

= v(ρ(a, t))ρ(a, t)− v(ρ(b, t))ρ(b, t) =
∫ b

a
[v(ρ)ρ]xdx

. (1.6)

Figure 1.1: (Bressan, 2013)
The density of cars can be described by a conservation law

Since (1.6) holds for all points a, b this leads to the conservation law

ρt + [v(ρ)ρ]x = 0 (1.7)

where ρ is the conserved quantity and f(ρ) = v(ρ)ρ is the �ux function.

1.2 Hyperbolic Systems

In this thesis, we will focus on solving a single conservation law. However, if

multiple conservation laws are needed in order to describe the system then a(u)

turns into a matrix called the Jacobian matrix. In that case in order for (1.4)

to be strictly hyperbolic, the eigenvalues of a(u) needs to be real and distinct.

In the case of just a single conservation law, the value of a(u) just need to be

real in order for it to be strictly hyperbolic.
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Example 2 (Dam Break Problem):

A classic problem which requires a system of conservation laws is the dam break

problem, where one tries to model the water �ow after the wall separating two

di�erent water heights are removed. One set of equations that can be used are

called the Shallow Water Equations which in one dimension look like

ht + (hu)x = 0 (1.8a)

(hu)t + (hu2 +
1

2
gh2)x = 0 (1.8b)

where written in the quasilinear form now looks like

qt + a(q)qx = 0 (1.9)

where a(q) is the Jacobian matrix representing the velocity along the horizontal

direction, and is written like

a(q) =

[
0 1

−v2 + gh 2v

]
(1.10)

For further details on the shallow water equations and the jump from (1.8) to

(1.9) and the derivation of (1.10), see (LeVeque, 2002).

1.3 Previous Work

Finding new ways to solve hyperbolic conservation laws numerically or re�ning

old methods is something which is still being worked on in order to improve

simulation time and accuracy. In the 1980s LeVeque proposed the �rst LTS

methods in a series of papers(LeVeque, 1982, 1985; LeVeque and mathematics,

1984) which could increase the timestep size past the usual CFL criterion and

allow for faster simulations while using an explicit method of discretization.

Since then, others have taken this idea and tried to �gure out where one can

reasonably apply the method. In one paper(Morales-Hernandez et al., 2012),

it was used together with the upwind explicit scheme for the 1D shallow wa-

ter equations. Others tried to apply the LTS method on the two dimensional

Navier-Stokes equations and tested the results on transonic inviscid �ows over

the NACA0012 airfoil and ONERA M6 swept wing(Dong and Liu, 2018; Qian

and Lee, 2011). Working in two dimensions, the choice of grid structure can
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also help increase the numerical accuracy because of how some discretization

schemes leave a lot of false di�usion. This can be reduced by an increase in the

number of grid points, however that in turn increases the computational time.

Therefore, others have tried other ways of discretizing the grid in order to in-

crease simulation accuracy such as using a triangular grid(Morales-Hernández et

al., 2017) or hexagonal grid(Fabero et al., 2001; Karaa, 2006; Lee et al., 2014).

Hamilton and Bilbao also did a comparison between the rectangular and hexag-

onal grid for the two dimensional wave equation(Hamilton and Bilbao, 2013).

However, where previous work ends, and new work beings is in the combined

use of a hexagonal grid together with the LTS method of discretization. We will

test out whether or not there is any advantage in changing over to a hexagonal

grid rather than a rectangular grid by comparing test results from both a linear

and non-linear �ux example.

1.4 Outline of Thesis

Exact solutions to PDEs are generally really hard to �nd or outright impossible

due to the complexity of some PDEs. Here is where the numerical schemes help

by discretizing the PDEs and iterating until an acceptable convergent solution

has been reached. However, the numerical solution depends on the discretization

and for a two dimensional system there exists in�nitely many ways of discretizing

the domain. One may categorize these discretization methods into two cases,

structured and unstructured, where the name refers to the grid cells that make

up the domain where a structured grid implies some symmetry between the cells,

while an unstructured grid implies no symmetry. The numerical inaccuracy of a

solution depends in part by the choice of discretization, where the most common

discretization method is a structured grid composed of equally sized rectangles.

What this paper aims to look at is to compare the numerical results resulting

from two di�erent choices of discretization. The two grids under comparison

are a rectangular- and hexagonal grid, and both are categorized as structured,

which imply some symmetry that we can take advantage of. LTS-Roe scheme

(Lindqvist et al., 2016) will be used and a comparison on the numerical accuracy

given an increasing Courant number for a linear- and non- linear conservation

law will be made. Given the structure of the hexagonal grid, our hypothesis is

that the hexagonal grid will perform better in the case of a rotational �ux due

to it naturally forming more of a circular shape compared to the rectangular

grid, and that the rectangular grid will perform better in the case of a linear
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�ux for the same reason.

In section 2, we classify what hyperbolic conservation laws are and solution

strategies to solve a Riemann problem in one dimension. In section 3, we go over

di�erent discretization schemes, among them is the Roe scheme, which we will

be using in order to simulate the results shown in section 8. Section 4 we de�ne

the LTS method which will be used in order to decrease the computational time

of the simulations. In section 5 and 6 we transition over to two dimensions

and go over how the discretized schemes changes from one dimension to two

dimensions as well as going over the two di�erent grids we will be using. Lastly,

in section 7 and 8, we go over the simulation setup and show the simulation

results.
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2 Hyperbolic Conservation Laws

Conservation laws are derived by considering conserved quantities of a system.

These quantities can be anything from density (Bressan, 2013), momentum

(Jenkins, 1992) or energy (McLachlan and Quispel, 2013) just to mention a

few. The change of a conserved quantity u inside the control volume CV with

surface ∂CV is given by

∂

∂t

∫
CV

udV +

∫
∂CV

f(u)n̂dA = 0. (2.1)

Here, f(u) is the �ux of u, dV is the di�erential volume, dA is the di�erential

area and n̂ is the normal vector to the �ux. Using the Gauss theorem, (2.1) can

be changed to a partial di�erential equation of the form

∂

∂t

∫
CV

udV +

∫
CV

∇f(u)dV = 0 (2.2)

and using the fundamental theorem of calculus (2.2) can be rewritten as a partial

di�erential equation of the form

∂u

∂t
+∇f(u) = 0. (2.3)

Note however, that (2.3) assumes u to be a continuous function, so if there

develops discontinuities (2.3) no longer applies.

2.1 Characteristics

Given a linear system of N conservation laws in one spatial dimension, the

quasilinear form of (2.3) can be written as (1.4) where u is now a vector of size

N and a is given by

a(u) ≡ ∂f(u)

∂u
(2.4)

and is the Jacobian matrix of the system. We say that a system in the form

(1.4) is hyperbolic if the matrix a is diagonalizable

a(u) = TDT−1 (2.5)

where D = diag(λ1(u), λ2(u), ..., λN (u)) is a diagonal matrix consisting of the

real eigenvalues of a. Multiplying (1.4) with T−1 from the left as well as sub-
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stituting for a(u) by using (2.5) we have

∂v

∂t
+D

∂v

∂x
= 0 (2.6)

where

dv = T−1du (2.7)

is the characteristic variable of the system. Since D is diagonalizable (2.6) can

be rewritten as

∂vi

∂t
+ λi(u)

∂vi

∂x
= 0. (2.8)

The implications of (2.8) is that the time evolution of each characteristic vari-

able can be described independently with the propagating speeds being the

corresponding eigenvalues.

2.2 Analytical Solution to Linear Systems

In order to understand better the spacial development of the system over time,

the time derivative of (2.3) is taken. The �rst term on the left hand side of the

equation equals

∂

∂t
(u) =

∂

∂t
(u(x(t), t)) = ux

∂x

∂t
+ ut

∂t

∂t
. (2.9)

Using ∂x
∂t = f′(u(x(t), t)) and noting that ∂t

∂t = 1, (2.9) equals

∂

∂t
(u) = uxf

′(u(x(t), t)) + ut. (2.10)

Assuming u to be smooth, (2.10) can be simpli�ed further to

∂

∂t
u(x(t), t) = f(u)x + ut (2.11)

where the right hand side is by de�nition equal 0 from (2.3). From this result,

one can conclude that

u(x(t), t) = constant = u(x(t = 0), t = 0) = u0(x0), (2.12)

which is the analytical representation of (2.3) for linear conservation laws in 1

dimension. Using the substitution from earlier ∂x
∂t = f′(u(x(t), t)), the path of

7



x(t) can be determined by

d

dt
x(t) = f′(u(x(t), t)) = f′(u0(x0)) = constant (2.13)

or

x(t) = x0 + f′(u0(x0))t. (2.14)

Equation (2.14) may indicate two di�erent behaviors for the time evolution of

the conserved variable. These two behaviors are called a rarefaction wave and a

shock wave and will be discussed in section 2.3 and 2.4 respectively. In order to

visualize the results of (2.14) and how it can be used to determine the properties

of a rarefaction- and shock- wave, an example will be given for each case. In

both examples, the Burgers' equation will be used to represent the �ux, which

is characterized by the �ux function f(u) = 1
2u

2.

2.3 Rarefaction wave

Figure 2.1:
Illustration of spreading characteristics

Suppose now that the initial condition is given in such a way that given two

points x1, x2 where x1 < x2, the conserved variable at those two points is ordered

such that u0(x1) < u0(x2). Constructing a picture of x1(t), x2(t) in x-t space

for given x1 = 1, x2 = 2, u0(x1) = 1 and u0(x2) = 2. the space evolution of x1

and x2 is given by (2.14) and can be written as

8



x1(t) = (x1)0 + u0((x1)0)t (2.15a)

x2(t) = (x2)0 + u0((x2)0)t (2.15b)

or

x1(t) = 1 + t (2.16a)

x2(t) = 2 + 2t (2.16b)

From Figure 2.1, we see that in x-t space, the two equations never cross paths,

which is the indication of a rarefaction wave.

2.4 Shock wave

Figure 2.2:
Illustration of crossing characteristics

Imposing similar initial conditions, where we have two points x1, x2 where x1 <

x2, however this time the initial conditions for the conserved variable at those

two points are swapped u0(x1) > u0(x2). Given x1 = 1, x2 = 2, u0(x1) = 2

and u0(x2) = 1. the space evolution of x1 and x2 is given by (2.15) and can be

written as

9



x1(t) = (x1)0 + u0(x1)t (2.17a)

x2(t) = (x2)0 + u0(x2)t (2.17b)

or

x1(t) = 1 + 2t (2.18a)

x2(t) = 2 + t (2.18b)

From Figure 2.2, we see that in x-t space, the two equations cross paths, which

is the indication of a shock wave. Note that in order to avoid ambiguity, the

time evolution of the conserved variable is only valid until the time Tb (breaking

time) where the characteristic equations intersect.

2.5 Riemann Problem

A Riemann problem is characterized by a discontinuity in the initial condition

of the conserved variable.

ut + f(u)x = 0 (2.19a)

u(x, 0) =

ul x < 0

ur x ≥ 0
(2.19b)

To understand how to solve Riemann problems, we will take a look at a couple

of examples. A Riemann problem can be characterized as a piece-wise function

where the solution depends on the relation between f ′(ul) and f ′(ur).

10



Case 1: f ′(ul) > f ′(ur)

Figure 2.3:
(Left) Illustration of the discontinuity in space

(Right) Representation of the solution to x between ul and ur.

Notice that we now have a shock wave and the solution strategy is to �nd a

discontinuous solution of (2.19a) where the jump satis�es the Rankine-Hugoniot

condition (Lin, 2000)

s[u] = [f(u)]. (2.20)

Here s = dx
dt is the shock speed,

[u] = u(x(t)r, t)− u(x(t)l, t) (2.21a)

[f(u)] = f(u(x(t)r, t))− f(u(x(t)l, t)) (2.21b)

stand for the jump of u and f(u) across the shock. In the case of scalar conser-

vation laws, (2.20) can be simpli�ed to

s =
f(ul)− f(ur)

ul − ur
(2.22)

turning the solution for the time evolution of the conserved variable equal to

u(x, 0) =

ul x < st

ur x ≥ st
. (2.23)

Case 2: f ′(ul) < f ′(ur)

Now we have a rarefaction wave forming and the solution strategy is to �nd a

continuous solution where ul and ur are connected by a rarefaction wave. Using

11



Figure 2.4:
Left) Illustration of the discontinuity in space

(Right) Representation of a speed k in between f ′(ul) and f ′(ur) which x may travel with.

the similarity solution

u(x, t) = v(
x

t
) (2.24)

and

f ′(ul) <
x

t
< f ′(ur), (2.25)

the time evolution for u can be written as

u(x, t) =


ul

x
t ≤ f ′(ul)

(f ′)−1(xt ) f ′(ul) <
x
t < f ′(ur)

ur
x
t ≥ f ′(ur)

. (2.26)

Proof:

Using (2.24) the time derivative of u can be written in terms of v as follows

ut =
∂

∂t
v(

x

t
) = v′(

x

t
)
∂

∂t
(
x

t
) = v′(

x

t
)(
−x

t2
). (2.27)

Similarly for the space derivative we get

ux =
∂

∂x
v(

x

t
) = v′(

x

t
)
∂

∂x
(
x

t
) = v′(

x

t
)(
1

t
). (2.28)

From here we have

f(u)x = f ′(u)ux = f ′(v)v′(
x

t
)
1

t
(2.29)

and substituting (2.27) and (2.29) into (2.19a) we have

12



− x
t2 v

′(xt ) + f ′(v)v′(xt )
1
t = 0, t > 0 (2.30)

or

[f ′(v)− x

t
]v′(

x

t
) = 0. (2.31)

Finding the zeros of (2.31), the two options are;

Case 1: v′(xt ) = 0

If the derivative of v is 0, then v(xt ) = constant which is only possible if ul = ur,

meaning that ul and ur are already connected.

Case 2: f ′(v)− x
t = 0

Solving for v leaves us with

v(
x

t
) = (f ′)−1(

x

t
) (2.32)

under the constraint that (f ′)−1 exists.

Given the combination of (2.14) and (2.32) the value of x at ul and ur can

be evaluated as

x = f(ul)t, for ul (2.33a)

x = f(ur)t, for ur (2.33b)

and a formulation for v(xt ) can be expressed in terms of u. For the left hand

side, v(xt ) turns into

v(
x

t
) = (f ′)−1(

x

t
) = (f ′)−1(f(ul)) = ul (2.34)

similarly for the right hand side we get

v(
x

t
) = (f ′)−1(

x

t
) = (f ′)−1(f(ur)) = ur. (2.35)

For the middle section where (2.25) applies the formulation of v(xt ) cannot be

evaluated further without further knowledge of the �ux function itself. Com-

bining these three cases for x
t , in particular x

t ≤ f ′(ul), f ′(ul) <
x
t < f ′(ur) and

x
t ≥ f ′(ur) we get exactly the formulation as required.

Since the solutions to the Riemann problem is essential to the computations

and their results shown later on in the thesis, ending with a concrete example

13



showcasing both the formation of a rarefaction wave and a shock wave will be

done.

Example 1

Consider (2.19) where the �ux function equals

f(u) =
1

2
u2, (2.36)

and the initial condition is given as

u(x, t = 0) =

0 x ≤ 0

1 x > 0
. (2.37)

From (2.36), we have f(u) = u and (f ′)−1(u) = u. The �rst thing we need

to �nd is if the behavior of the characteristics represent that of a shock- or

rarefaction- wave. Evaluating f ′(u) at ul and ur we have

f ′(ul) = ul = 0 (2.38a)

f ′(ur) = ur = 1 (2.38b)

and f ′(ul) < f ′(ur) which equate to spreading characteristics. Using (2.38) we

get

u(x, t) =


0 x

t ≤ 0

x
t 0 < x

t < 1

1 x
t ≥ 1

(2.39)

substituting the corresponding values in. Figure 2.5 illustrates the time evolu-

tion of the conserved variable at times t = {1, 2, 4}.

Example 2

Consider the same setup as in example 1, only that the initial condition for u

has changed where the values for ul and ur are swapped

u(x, t = 0) =

1 x ≤ 0

0 x > 0
. (2.40)

14



Figure 2.5:
An illustration of the time evolution of the conserved variable at t = {1, 2, 4}

Evaluating f ′(u) at ul and ur we have

f ′(ul) = ul = 1

f ′(ur) = ur = 0
, (2.41)

and f ′(ul) > f ′(ur) which equate to crossing characteristics. A discontinuous

solution that satis�es the Rankine-Hugoniot condition (2.22) is given by

u(x, 0) =

1 x < st

0 x ≥ st
(2.42)

where

s =
1
21

2 − 1
20

2

1− 0
=

1

2
. (2.43)

Figure 2.6, illustrates the time evolution of the conserved variable at times

t = {1, 2, 4}.
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Figure 2.6:
An illustration of the time evolution of the conserved variable at t = {1, 2, 4}
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3 Finite Volume Method

Figure 3.1:
Finite Volume Method

Consider the initial value problem

ut + f(u)x = 0 (3.1a)

u(x, 0) = u0(x) (3.1b)

In order to do numerical computations with (3.1a), it needs to be changed into

a more appropriate form. In the case of a one dimensional domain of size L,

one can divide the space into N ∈ N intervals that may or may not be evenly

spaced. Each area de�ned by its boundaries can be called a grid cell and in

this thesis we will use grid cells which are evenly spaced. We are interested in

�nding the time evolution of the average value of u in each cell during a small

time step ∆t. In order to do so we need to discretize each term in (1.1), the

�rst term can be discretized in the following manner

ut =
∂u

∂t
=

un+1
i − un

i

∆t
(3.2)

where n indicated the current time step, and n+1 indicated the next time step

given by n + 1 = t + dt. However, for the second term there are two ways

of handling the evaluation of the �ux term called the explicit- and implicit-

method. The implicit method is evaluating the �ux at the new time step and

is highly stable, but is more computationally heavy to solve, and the explicit

method evaluates the �ux at the current time step and is much simpler to solve,
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however is now also bound by a stability criterion. In this thesis, we will use

the explicit method, meaning that the �ux term in (1.1) can be discretized as

follows.

f(u)x =
∂f(u)

∂x
=

fn
i+ 1

2

− fn
i− 1

2

∆x
. (3.3)

Substituting (3.2) and (3.3) into (3.1a) and isolating un+1
i on the left hand side

leaves us with

un+1
i = un

i − ∆t

∆x
(fn

i+ 1
2
− fn

i− 1
2
). (3.4)

In comparison, the implicit version of (3.4) can be written like

un+1
i = un

i − ∆t

∆x
(fn+1

i+ 1
2

− fn+1
i− 1

2

) (3.5)

where further evaluating of (3.4) and (3.7) depends on how the �ux at the cell

edges are handled.

3.1 Upwind Scheme

When evaluating the �ux term at the cell boundaries, what the upwind scheme

does is to select one of the cells adjacent to it rather than some combination of

the two. The motivation behind this choice is to imagine some kind of �ow across

the domain, for simplicity let us imagine that the �ow is uniform and traveling

towards the right in Figure 3.1. Then for the cell edge fi+ 1
2
, all information will

be coming from the left side and so we use the value of fi, likewise for �ow in

the opposite direction then we use the value of fi+1 instead. Given a uniform

velocity a across the entire domain and that fi+ 1
2
= aui+ 1

2
we are left with two

distinct discretized forms depending on the �ux directionun+1
i = un

i − a∆t
∆x (u

n
i+1 − un

i ) for a ≥ 0

un+1
i = un

i − a∆t
∆x (u

n
i − un

i−1) for a < 0
. (3.6)

Note that the stability criterion for explicit methods uses a constant factor called

the Courant number which is de�ned as

C = |a|∆t

∆x
. (3.7)
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For a 3-point stencil, which is what (3.4) and (3.6) represent, the Courant

number cannot exceed a value of 1(Courant et al., 1928)

C ≤ 1. (3.8)

This condition is named the Courant-Friedrich-Lewy condition and the intu-

itive explanation for this fact is that the Courant number represents how many

cells the conserved variable travels through from one time step to the next. Since

(3.4) and (3.6) only uses one neighboring cell on each end, the Courant num-

ber cannot exceed a value of 1 otherwise some information about the conserved

variable would be lost, and the numerical solution would become unstable. In

section 3.2 we will go over a variation of the upwind scheme, namely the Roe

scheme.

3.2 Roe Scheme

For scalar equations, a 3- point scheme in the form (3.4) can be split into left-

going and right-going waves as

fn
i+ 1

2
− fi− 1

2
= a+

i− 1
2

(un
i − un

i−1) + a−
i+ 1

2

(un
i+1 − un

i ) (3.9)

commonly denoted as the Flux-Di�erence Splitting (FDS) formulation (LeV-

eque, 2002). Substituting (3.9) into (3.4) leaves

un+1
i = un

i − ∆t

∆x
(a+

i− 1
2

(un
i − un

i−1) + a−
i+ 1

2

(un
i+1 − un

i )) (3.10)

which is essentially a more compact formulation of (3.6). For scalar equations,

the formulation of a± is de�ned as

a± = ±∆x

∆t
max(0,±C∗), (3.11)

where C∗ is the local Courant number de�ned with the �ux velocity at the cell

edge which handles the separate cases automatically. The advantage of using

the Roe scheme is that it linearizes a non-linear problem which simpli�es the

equation by transforming (3.4) into a set of linear equations. Note that by doing

so, the Roe scheme is not able to distinguish between a rarefaction- or shock-

wave formed by discontinuities and treats them all as if they were shock waves.
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3.3 Total Variation Diminishing

If compact support or periodic boundary conditions are assumed, weak solu-

tion to the scalar initial value problem (3.1) possess the following monotonicity

properties (Harten, 1997)

1. No new local extrema in x may be created

2. The value of a local minimum is non-decreasing, and the value of a local

maximum is non-increasing.

As a consequence, we have that

d

dt

∫ ∣∣∣∣∂u∂x
∣∣∣∣ dx ≤ 0. (3.12)

In (Harten, 1997), Harten introduced a concept called Total Variation Non-

Increasing (TVNI) which later is just referred to as Total Variation Diminishing

(TVD) which respect (3.12) on the discrete level. The total variation at time

step n is de�ned as

TVn =
∑
i

∣∣un
i+1 − un

i

∣∣ (3.13)

and the numerical scheme (1.1) is said to be TVD if

TVn+1 ≤ TVn. (3.14)
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4 Large Time Step Methods

Large Time Step methods are explicit �nite volume methods that are not limited

by the standard CFL condition C ≤ 1. In this chapter, we will highlight how

one can handle the �ux function in such a case when we relax the CFL criterion

and expand the time step length allowed for each iteration.

4.1 Large Time Step Methods

We saw in Section 3.1 that the stability of a 3 point stencil was tied to the CFL

condition. There we explored the idea where the Courant number represented

how far the conserved variable could travel for each iteration. We noticed that

the scheme (3.6) only took into account a single neighbor on each side of the cell

in question, and so the Courant number could not exceed the value 1 as that

would mean that some information would be lost, and the numerical scheme

became unstable. However now we want to explore what happens if we do let

the conserved variable travel further, what would need to be done in order to

keep the scheme stable and are there any assumptions that need to be made in

order for it to work.

Starting with the CFL condition, we would now like to increase the maximum

Courant number before the scheme becomes unstable. As such, a value k will

replace the number 1 in (3.8)

C ≤ k (4.1)

where k ∈ N. In order for (4.1) to have a chance at stability, the de�nitions

de�ned in (3.9), (3.10) and (3.11) needs to be updated. To begin with, the

previously 3 point stencil de�nition can be written like a (2(1)+1)- point stencil

and comparing (3.8) to (4.1) we need a (2k + 1) - point stencil. The extension

to the FDS formulation can be written like (Jameson and Lax, 1986)

un+1
i = un

i − ∆t

∆x

∞∑
m=0

(am+
i− 1

2−m
∆i− 1

2−m + am−
i+ 1

2+m
∆i+ 1

2+m) (4.2)

where
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∆i− 1
2
= ui − ui−1 (4.3)

and

am± = 0, m ≥ k . (4.4)

Secondly, when limiting the Courant number to be less than one, we did not need

to consider what would happen if multiple discontinuities interacted with each

other. However, now that the conserved variable is allowed to travel further

than one cell for each iteration, two discontinuities might interact with each

other given there exists a di�erence in propagating speed.
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5 2D Implementation

Expanding to the 2 dimensional plane, the �ux is now a vector of two velocity

components

f =

[
vx

vy

]
. (5.1)

Expanding (2.3) into two dimensions will now look like

∂u

∂t
+

∂f(u)

∂x
+

∂f(u)

∂y
= 0 (5.2)

for the simplest way of discretizing a two dimensional domain, namely the rect-

angular grid.

5.1 Finite Volume Method

In order to better compare between the numerical results of the rectangular- and

hexagonal- grid, we will utilize the �nite volume implementation which describes

how much the �owrate �lls or empties a cell volume based on the �ow through

the cell edges. As such, we will modify ∆x in (2.3) to re�ect that. Rather than

being de�ned as the distance from cell center to cell center along the x-axis, ∆x

is now replaced by

∆x → A

L
. (5.3)

where A is the total area of a cell, and L is the length of the cell edge. Note

that for a rectangular grid, there would be no change as L = ∆xrectangle and

A = L2 = (∆xrectangle)
2 resulting in (5.3) evaluating to

A

L
=

(∆xrectangle)
2

∆xrectangle
= ∆xrectangle (5.4)

while it would di�er for the hexagonal grid where L = 1√
3
∆xhexagon and A =

√
3
2 (∆xhexagon)

2 resulting in (5.3) evaluating to

A

L
=

√
3
2 (∆xhexagon)

2

1√
3
∆xhexagon

=
3

2
∆xhexagon. (5.5)

This conversion shifts the perspective from ∆x describing the distance from cell

center to cell center, to one which describes how the volume of a cell changes
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based on the �ux along the cell edges.

Using the same discretization strategy as for the 1 dimensional case with

�nite volume method on (5.2) it can be written as

un+1
i,j = un

i,j −
L∆t

A
(fn

i+ 1
2 ,j

− fn
i− 1

2 ,j
+ fn

i,j+ 1
2
− fn

i,j− 1
2
) (5.6)

where each f represent its own cell edge (North, South, East, West).

Figure 5.1:
Rectangular neigbors to a point P

Using the same method as for (4.2), (5.6) can be written as

un+1
i,j = un

i,j −
L∆t

A

∞∑
m=0

(am+
i,j− 1

2−m
∆i,j− 1

2−m + am−
i,j+ 1

2+m
∆i,j+ 1

2+m

+am+
i− 1

2−m,j
∆i− 1

2−m,j + am−
i+ 1

2+m,j
∆i+ 1

2+m,j)

(5.7)

Currently, this scheme is not fully suited to capture �ux which are not �owing

normal to a cell edge. We will explore an alternative form of (5.7) in section 5.2

and explain why it is more suited in section 6.1 when we explore visually which

cells in (5.7) are being used on the grid.

In the case for the hexagonal grid structure, the �ux is no longer �owing

along the x- and y- direction, and so a modi�cation to (5.1) and (5.7) is needed.

Suppose the �ux �ow can be represented by the �ux direction perpendicular to

the cell edges of the hexagon
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f =

 vi

vj

vk

 (5.8)

where

vi = [1, 0]

vj =
1
2 [1,

√
3]

vk = 1
2 [−1,

√
3]

. (5.9)

Given that any two dimensional �ux is always written in the form (5.1), so the

corresponding velocities vi,j,k need to be calculated. Given that we know the

�ux velocities (5.9), (2.3) can now be represented by

∂u

∂t
+

∂f(u)

∂i
+

∂f(u)

∂j
+

∂f(u)

∂k
= 0 (5.10)

where the discretization (5.6) is now

un+1
i,j,k = un

i,j,k−
L∆t

A
(fn

i+ 1
2 ,j,k

−fn
i− 1

2 ,j,k
+fn

i,j+ 1
2 ,k

−fn
i,j− 1

2 ,k
+fn

i,j,k+ 1
2
−fn

i,j,k− 1
2
)

(5.11)

where each f represent its own cell edge (East, West, North-East, North-West,

South-East, South-West).

Figure 5.2:
Hexagonal neigbors to a point P

Lastly, to complete the discretization in 2 dimensions for both the rectangular-

and hexagonal- grid. The (5.2) equivalent version for the hexagonal grid can be

written as
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un+1
i,j = un

i,j −
L∆t

A

∞∑
m=0

(am−
i+ 1

2+m,j,k
∆i+ 1

2+m,j,k + am+
i− 1

2−m,j,k
∆i− 1

2−m,j,k

+am−
i,j+ 1

2+m,k
∆i,j+ 1

2+m,k + am+
i,j− 1

2−m,k
∆i,j− 1

2−m,k

+am−
i,j,k+ 1

2+m
∆i,j,k+ 1

2+m + am+
i,j,k− 1

2−m
∆i,j,k− 1

2−m)

(5.12)

which, as with (5.7) we will explore further in sections 5.2 and 6.1.

5.2 Directional Splitting

A popular method used by multiple authors in order to simplify the two dimen-

sional problem into a series of one dimensional problems is called the Dimension

Splitting method, see (LeVeque, 1982; Morales-Hernandez et al., 2014; Qian and

Lee, 2011) for full details. The essential idea behind this method is that the com-

ponents of the �ux function are orthogonal to each other, and so the discretized

equation (5.7) can be broken into multiple 1 dimensional equations where the

change in the conserved variable only depend on �ow in one direction at a time

un+1
i,j = un

i,j −
L∆t

A

∞∑
m=0

(am+
i,j− 1

2−m
∆i,j− 1

2−m + am−
i,j+ 1

2+m
∆i,j+ 1

2+m) (5.13a)

un+1
i,j = un

i,j −
L∆t

A

∞∑
m=0

(am+
i− 1

2−m,j
∆i− 1

2−m,j + am−
i+ 1

2+m,j
∆i+ 1

2+m,j) (5.13b)

This formulation also alleviate some of the numerical di�usion caused when the

�ux direction is not pointing directly orthogonal to a cell edge. In order to

compare the results, we need something similar to (5.13) for the hexagonal grid.

So even if the components of the �ux are no longer orthogonal to each other,

we will explore the case when (5.12) can be written as a series of 1 dimensional

equations, where each equation takes care of one of the �ux directions
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un+1
i,j,k = un

i,j,k − L∆t

A

∞∑
m=0

(am−
i+ 1

2+m,j,k
∆i+ 1

2+m,j,k + am+
i− 1

2−m,j,k
∆i− 1

2−m,j,k)

(5.14a)

un+1
i,j,k = un

i,j,k − L∆t

A

∞∑
m=0

(am−
i,j+ 1

2+m,k
∆i,j+ 1

2+m,k + am+
i,j− 1

2−m,k
∆i,j− 1

2−m,k)

(5.14b)

un+1
i,j,k = un

i,j,k − L∆t

A

∞∑
m=0

(am−
i,j,k+ 1

2+m
∆i,j,k+ 1

2+m + am+
i,j,k− 1

2−m
∆i,j,k− 1

2−m)

(5.14c)

Since the separated equations in (5.14) does not represent a unique dimension, a

more �tting name for such an implementation will be called directional splitting

from here on.
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6 Grid Analysis

Before heading into the core part of this thesis which is the comparison between

simulation results, some details about the di�erent grids needs to be discussed

�rst. For any grid structure, each cell in the domain needs a unique index to

identify the cell. For a 5x5 grid, the initial setup we chose as indexing for each

cell is shown in Figure 6.1.

Figure 6.1:
(Left) Cell mapping for a rectangular grid
(Right) Cell mapping for a hexagonal grid

Here we start in the bottom left corner and set each index corresponding to

a �ux direction equal to 0, and then we incremented the index depending on

which �ux direction you are moving along. This method is straight forward for

the rectangular grid, however for the hexagonal grid, there is no way to move

in the k- th direction from the bottom left cell. As a consequence, we chose the

j- and k- th index for the entire bottom row to have index 0 and then followed

the pattern described earlier. Noting that for the hexagonal grid, the j- and k-

th index are equal for all rows, so some �nal simpli�cations were done which

is showcased in Figure 6.2, where those two indexes were merged together into

one index representation.
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Figure 6.2:
(Left) Cell mapping for a rectangular grid

(Right) Simpli�ed cell mapping for a hexagonal grid

6.1 Visualization of the Numerical Scheme

Now that the indexing has been taken care of, next we need an illustration

of what (5.7) and (5.12) would look like, and how using directional splitting

changes the scheme.

Figure 6.3:
(Left) Rectangular cell and its neighbors
(Right) Hexagonal cell and its neighbors

In Figure 6.3, we see that for Courant numbers up to 1, (5.7) will be un-

suited given a diagonal �ux while (5.12) will continue to be stable for all �ux
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Figure 6.4:
(Left) Odd row value
(Right) Even row value

directions. Another thing to note for the hexagonal grid is that the indexing for

the neighbors changes depending on if the row is even or odd.

If we now increasing to larger values of C, the rectangular grid will be more

and more limited to which �ux directions will continue to be stable, and the

hexagonal grid will start to have the same problem the rectangular grid has,

just not nearly as bad, as shown in Figure 6.5.

Figure 6.5: C = 3
(Left) Rectangular cell and its neighbors
(Right) Hexagonal cell and its neighbors

From Figure 6.3 and 6.5 we can see that (5.7) and (5.12) will poorly capture

any �ux which �ows towards a white cell. Since the discretized scheme is only
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using cells which are highlighted in blue. As an example, if the �ux were to

move diagonally to the top right corner with a �ux

f =

[
1

1

]
, (6.1)

then the rectangular grid will have some of the conserved variable move east and

some move north which creates di�usion. Using the same �ux, we can showcase

the steps of directional splitting for the rectangular grid in Figure 6.6.

Figure 6.6:
Directional Splitting on a rectangular grid

In each step, the position of cell which is being updated (green) and the neighboring cells
which contribute to the position updating (blue) are shown

It is a two-step procedure where we arbitrarily choose a �ux direction to

start, and update the conserved variable based on only the �ux along that

direction. Once the conserved variable is update, the second �ux direction is

used to update the conserved variable from that updated position which lands

it in its desired position. In Figure 6.3 (Left) a �ux equal to (6.1) would result

in an unstable scheme without directional splitting.

Directional splitting on a hexagonal grid will be a three step process shown

in Figure 6.7.
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Figure 6.7:
Directional Splitting on a hexagonal grid

In each step, the position of cell which is being updated (green) and the neighboring cells
which contribute to the position updating (blue) are shown

Similarly to Figure 6.6, the order of which direction will update the conserved

variable is chosen arbitrarily. Each �ux direction will update the conserved

variable step-wise until it reaches its updated position.

6.2 Ghost Cells

As a �nishing topic to discuss around the grid and how to update the conserved

variable, we need to mention how the boundaries of the domain will be handled.

The method we will be using to handle boundary conditions is a method which

utilizes so called �ghost cells�. Ghost cells are additional cells added to the

perimeter of the domain which help with boundary cell updating. Figure 6.8

illustrate the one dimensional case with a particular boundary condition

∂u

∂x
= 0. (6.2)
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Figure 6.8:
Ghost cells on a 1 dimensional grid

Given the boundary condition (6.2), the respective ghost cell values can be

calculated. Discretizing equation (6.2) we have

ui+1 − ui

∆x
= 0 (6.3)

or

ui+1 = ui. (6.4)

Using (6.4), the left and right boundary cells of Figure 6.8 are the following

ui−2 = ui−1

ui+2 = ui+1

. (6.5)

Extending to a two dimensional grid, the same calculations are done in order to

determine the values for the ghost cells. When using LTS, the number of ghost

cells needed at each boundary edge equals k in a (2k+1) stencil system, where

re�ective boundary conditions are used. The LTS extension to (6.2), for a grid

with N number of cells, is depicted in Figure 6.9 and is equal to

uk−m = uk+1+m, m ∈ {0, 1, 2, ..., k − 1}
uN−k−1−m = uN−k+m, m ∈ {0, 1, 2, ..., k − 1}

. (6.6)
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Figure 6.9:
Re�ective boundary conditions using multiple ghost cells

(Above) Left boundary
(Below) Right boundary
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7 Simulation Setup

In this thesis, we will consider both the case when the conservation law is linear

and when it is non-linear. As such, we will go over a brief overview of the

simulation setup for each case before showing the simulation results.

7.1 Computational Domain

The computational domain will di�er slightly in size for the rectangular and

hexagonal grid, the reason for this is that we prioritized having equally many

cells for both grid types rather than keeping the domain shape equal. This

will only result in a vertical stretch for the hexagonal domain compared to the

rectangular domain. As for the rectangular grid, the computational domain

used will be a square with side lengths equal

L = 50. (7.1)

The domain will then be divided into N cells along the horizontal and vertical

direction creating a NxN grid where N ∈ N, where the width and height of the

cell dx, dy equaling

dx = dy =
L

N
(7.2)

which is shown in Figure 7.1.
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Figure 7.1:
Re�ective boundary conditions using multiple ghost cells

Discretized rectangular setup with dx, dy in terms of L and N

As for the hexagonal grid, the computational domain is set to

Lx = L (7.3a)

Ly = L

√
3

2
(7.3b)

where Lx, Ly represent the length of the domain along the horizontal and vertical

direction respectively. Given this vertical stretch, the hexagonal grid can now

�t an equal number of cells as the rectangular grid, which is what was needed.

The values for dx, dy can be written as

dx =
Lx

N + 1
2

(7.4a)

dy = dx

√
3

2
(7.4b)

showcased in Figure 7.2 below.
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Figure 7.2:
(Above) dx in terms of Lx and N

(Below) dy in terms of dx

7.2 Linear Flux

In the case of the linear �ux, the �ux �eld across the computational domain

is unidirectional, uniform and non-changing throughout the entire simulation.

The domain is centered at the origin and the initial condition of the conserved

variable will be a square given

|x|, |y| ≤ 10 (7.5)

where the square has a value of 3 and everything else has a value of 1. Given

this initial condition, we will run two di�erent comparison tests simulating

1. the numerical error with �ux pointing along the directions dictated by the

angle θ ∈ [0, 2π) with increments of π
12 (or 15◦)
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2. the time used during the simulation along the �ux direction [1, 0] for vary-

ing values of C

In order to keep the entire initial condition still within the computational domain

after the simulation, the simulation will start at time 0 and will terminate once

it has passed 1. Note however, that in order to keep the time step consistent

with the de�ned Courant number, the total time may severely exceed the value

1 given a large enough C value. This may a�ect our results since the initial

condition will have partially or entirely left the computational domain, so the

upper limit for the value for the Courant number will be set to 10% of the value

of N , which we found keeps the initial condition within the boundaries after the

simulation.

7.3 Non-Linear Flux

For the non-linear �ux, the �ux �eld can be represented by

F =

[
−y

x

]
(7.6)

which creates a circular �ux around the origin �owing in the anti-clockwise

direction. In this case, the �ux will be di�erent for each position of the grid,

however it does not change over time. The initial condition will be a quarter

circle located in the upper right quadrant where the quarter circle has a value

of 3 while the rest has a value of 1. We will be running one type of simulation

� Rotate the initial condition a full revolution 2π around the origin

in order to compare with an analytical solution. The simulation results will be

tested for varying values of C and the total time will be measured for each C

value to see if we can locate an optimal value in terms of simulation time and

error. For our non-linear �ux experiment, it is important that the simulation

terminates exactly at one full revolution and does not continue past that. Since

the analytical solution is static having the simulation terminate at a time not

as a multiple of 2π will give inaccurate results as we will be comparing two

di�erent things. In order to prevent this, a check on if the next time step will

exceed the value of 2π will be done, and if that is the case, the time step will

be changed to 2π − t where t is the current time.
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7.4 Boundary Updating

Given the speci�c examples we will go through, updating the values of the

ghost cells in order to re�ect a zero gradient boundary reduces to evaluating the

ghost cells to be equal to the value 1 since neither of the test cases reaches the

boundary.

7.5 Error Calculation

In order to compare simulation results, we are calculating the absolute di�erence

between the analytical solution and numerical results in each cell.

For the linear �ux, the analytical solution is given in (2.12) where the value

of x is taken to be the point value in the center of a cell. To distinguish between

the numerical results and the analytical solution, let us denote the analytical

solution in a speci�c cell as Ui,j and the numerical value of the same cell as ui,j .

Given this, the error calculation can be written as

Error =
∑
i,j

|(Ui,j − ui,j) ·Ai,j | (7.7)

By multiplying with the area of each cell, we are able to compare between results

using di�erent grid sizes. For the non-linear �ux, the analytical solution will be

the initial condition, so one would just replace Ui,j by the initial value of the

cell.

7.6 Criterion for Exact Solution

In order for (5.13) and (5.14) to achieve analytical solutions, the Courant number

along each direction needs to be an integer value. Visually, one can think of it

as the conserved variable fully moving from one cell to another in all directions.

Following the center cell, Figure 6.6 and 6.7 showcases an example of how an

exact solution would look like for the rectangular and hexagonal grid.
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8 Simulation Results

Implementing what was described in section 7 we are now ready to test our

initial hypothesis.

8.1 Implementation

All necessary code has been written from scratch in Python with standard li-

braries such as numpy and matplotlib. In addition, since Python is not known

for its fast for/while loops, the library called numba was used in order to signi�-

cantly speed up the computations which was especially needed in the case of the

non-linear �ux where the �ux was unique at all cell edges. In order to create the

hexagonal shapes, we used already created github code(Kazakov, 2021) which

was a huge help as matplotlib does not easily create non-rectangular grids for

plotting.

8.2 Linear Flux

Starting with the linear �ux, we will start by calculating the error for di�erent

�ux directions. Since there will be a total of 24 error plots for both the rectan-

gular and hexagonal grid, we decided to split the graphs into �ve categories.

1. Normal to a cell face of the rectangle

2. Diagonal to a cell face of the rectangle

3. Normal to a cell face of the hexagon

4. Diagonal to a cell face of the hexagon

5. Remaining angles not present in the other four categories

Note that there are some angles which �t more than one category, in that case

they will show up in all places. For these simulations we will use a grid size N

of 500 creating a 500x500 grid for both the rectangle and hexagon.
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Figure 8.1:
Numerical error based on �ux direction for a rectangular grid.

From top left corner and across are the error resulted from the 5 di�erent categories
visualized.

Starting with the rectangular grid, we see in Figure 8.1 that both category

1 and 2 give exact results when the Courant number is of an integer value. This

indicates that as long as the �ux is pointing out from a cell face or through

the diagonals, the numerical scheme is able to capture the exact solution. From

category 3 and 4, the only lines which give exact results are repeated from
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category 1 and 2. The new values present in category 3 and 4 are not able to

capture the analytical solution exactly given any value of the Courant number,

although some do come close to it. For category 5, we see that the scale does

not even reach 0, so no value of the Courant number will yield exact results. To

summarize, looking at what �ux direction a rectangular grid is able to capture,

it looks like it is only able to capture �ux �owing orthogonal to a �ux face or

across the diagonals of the rectangle.
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Figure 8.2:
Numerical error based on �ux direction for a hexagonal grid.

From top left corner and across are the error resulted from the 5 di�erent categories
visualized.

For the hexagonal grid, we notice in Figure 8.2 that category 4 is similar

to category 1 and 2 for the rectangular grid where an exact solution occurs

for every integer value of the Courant number. However, what di�ers between

them is that given a �ux normal to the cell faces, an exact solution is no longer

possible without the use of directional splitting since an exact solution only
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occurs for even values of the Courant number. In order to understand why this

is the case we will plot the path the initial condition takes on the hexagonal

grid as it is updated along the i-,j- and k- th direction. First let us start with a

�ux �owing along the i- th direction, namely f =

[
1

0

]
and see what happens

when the Courant number equals 1.

Figure 8.3: N = 10
Initial condition is shown in the top left and then it moves in all three directions where the

�nal solution is shown in the bottom right

Here we see that the initial condition will move an entire grid cell along

the i-th direction while that is not the case along the j-th and k-th direction

meaning we do not get an analytical solution with C = 1. Results for C = 2

are visualized in Figure 8.4

44



Figure 8.4: N = 10
Initial condition is shown in the top left and then it moves in all three directions where the

�nal solution is shown in the bottom right

Here, the initial condition moves two cells along the i-th direction and one

cell along the j-th and k-th direction resulting in an exact solution. The theory

behind this result lies in how ai, aj , ak was de�ned to be the magnitude of f

along the i, j, k directions. In this speci�c example, the magnitude of aj and

ak turns out to be exactly half the magnitude of ai. This means that when the

magnitude of ai is an even number, the other two values will become an integer

which results in an exact solution. Now, changing the Courant number back to

1 and setting the �ux to f =

[
0

1

]
which is in category 4, we expect to see an

exact solution even though the Courant number is not even.
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Figure 8.5: N = 10
Initial condition is shown in the top left and then it moves in all three directions where the

�nal solution is shown in the bottom right

In Figure 8.5 we now have ai = 0, meaning that as long as the Courant

number along the j-th and k-th direction are integers then we have an exact

solution. Remember that ai,j,k are calculated using the dot product ai,j,k =

f · ni,j,k, so the velocities along the j-th and k-th direction equals

aj =

[
0

1

]
· 1
2

[
1√
3

]
=

√
3

2
(8.1a)

ak =

[
0

1

]
· 1
2

[
−1√
3

]
=

√
3

2
. (8.1b)

Since the time step length is de�ned by �rst de�ning a target Courant number

and using the max value between the three velocities ai,j,k, an exact solution
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shown in Figure 8.5 suggests that aj = ak = max(|ai|, |aj |, |ak|) which is indeed

the case since ai = 0. For the other categories, we see that category 2 and 5 give

similar results which makes sense since the �ux is 15◦ o� being normal to a cell

face for all angles tested in category 2 and 5. To summarize, given the Courant

number is equal to 1, then the hexagonal grid is only able to capture an exact

solution along the diagonals and we need to increase the Courant number to be

an even number in order to achieve exact solutions at the cell faces.

Next, we will single out a �ux direction, namely the �ux f =

[
1

0

]
since

it is perpendicular to a cell face in both the rectangular and hexagonal grid,

and because similar results were found for all other �ux directions. Using this

�ux, we will look at the simulation time required as the Courant number grows

larger. Remember that the number of cells required to update a cell grows with

the Courant number by the relation (2k + 1) in every direction the discretized

scheme was split into. This means that although a larger Courant number will

reduce the number of iterations required in order to complete the simulation,

each iteration will be more computationally intensive which may slow the overall

simulation time more than what was gained by reducing the number of itera-

tions. In this case, we will increase the number of up to 50 which is 10% of

the the value N and see if we can �nd a value for the Courant number which

minimizes the simulation time.

Figure 8.6:
Comparison between simulation time and accuracy given a Courant number

(Left) Rectangular Grid
(Right) Hexagonal Grid

From Figure 8.6, we see a fast decrease in the simulation time up to C =

0.1 and then roughly no change for higher Courant numbers. Comparing the

numerical error, it seems to give no additional accuracy past a Courant number
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of 10 for the rectangular grid and 8 for the hexagonal grid. Comparing these

numbers with the chosen grid size where N = 500 there seems to be no reason

to go above a Courant number of 1-2% of N . Similar results were also found

for grid sizes N = {100, 200, 300, 400}.

8.3 Non-Linear Flux

Moving over to the non-linear �ux, we are using a grid size N of 500 again

and then comparing the numerical error using varying values for the Courant

number. Similar to the linear �ux, the goal is to �nd an optimal value for the

Courant number which both minimizes the simulation time and numerical error.

Figure 8.7 is similar to Figure 8.6 in that both the error and computation time

is plotted based on the Courant number.

Figure 8.7:
Comparison between simulation time and accuracy given a Courant number

(Left) Rectangular Grid
(Right) Hexagonal Grid

Figure 8.7 shows that there exists some optimal value for the Courant num-

ber, of which going above or below it will increase the numerical error. However,

after testing di�erent grid sizes of N = {100, 200, 300, 400, 500} with the upper

bound of the Courant number corresponding to the value of N . The shape of

the graph was similar for both the rectangular and hexagonal grids however the

optimal Courant number seems to increase linearly with N for the rectangular

grid and stay relatively constant for the hexagonal grid. In order to investi-

gate the results of Figure 8.7 further, we will plot the results for a grid size of

N = 100 using their respective optimal value for C which was 24 and 7 for the

rectangular and hexagonal grid.
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Figure 8.8:
Simulation results after 1 revolution using the optimal Courant number when N = 100

(Left) Rectangular Grid
(Right) Hexagonal Grid

Here we see that the rectangular grid has much less di�usion than the hexag-

onal grid given what the optimal value of the Courant number. Being skeptical

of this result for the hexagonal grid and by extension the results in Figure 8.7 for

the hexagonal grid we will compare the grids given the same Courant number

of 24.

Figure 8.9:
Same as Figure 8.8 with equal value of C = 24 for both plots

(Left) Rectangular Grid
(Right) Hexagonal Grid

Here we see that the di�usion from the hexagonal grid has clearly been

reduced to be more in line with the rectangular grid, however the reason for

a higher numerical error comes from the initial condition having traveled more

than 360◦.
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9 Conclusion

When working with simulations in two dimensions there are multiple ways to

discretize the domain. To that end we set out to compare two di�erent ways

of discretizing when working with hyperbolic conservation laws, namely the

rectangular and hexagonal grid. Both of these grids are structured grids, which

meant that we could use strategies such as dimension splitting on the discretized

conservation laws in order to treat the problem as a series of one dimensional

problems rather than a single two dimensional problem. We found that by using

the �nite volume method rather than the �nite di�erence method, dimension

splitting was not restricted by the normal vectors being normal to each other.

Instead, it could be used with normal vectors going in any direction and thus we

called it directional splitting rather than dimensional splitting since we thought

that was a more �tting name.

9.1 Assessment of Numerical Results

Together with directional splitting we used the LTS method in order to extend

the time step length of explicit methods before achieving a divergent solution.

This meant that the simulations would require less iterations overall, however

each iteration needed to keep track of more cells in order to keep the simulation

results stable. We tested the use of directional splitting together with LTS

on two examples, one with linear and one with non-linear �ux. For the linear

�ux, we noticed that the rectangular grid gave an analytical solution when the

Courant number was an integer value when the �ux was normal to the cell

edges and along the diagonals. For the hexagonal grid, it did manage to achieve

analytical results with integer value of C, meaning that LTS is not required.

However, the hexagonal grid only managed those results when the �ux was

along the diagonals, if the �ux was normal to a cell edge, then an analytical

solution was only possible for even value of C meaning that LTS is required for

analytical solutions along those directions.

Exact Numerical Solutions

Courant Number Rectangular Grid Hexagonal Grid
1 8 6
2 16 12

Table 9.1:
Nr. of angles which result in an exact numerical solution
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In table 9.1, we see that the rectangular grid manages to capture more angles

of which an exact numerical result can be achieved and as the Courant number

increases, the di�erence between the two numbers will only continue to increase.

Second, we tested a non-linear �ux which was a rotation around the center

point. Here there was a clear optimal value for the Courant number where the

numerical di�usion would be the lowest. For the rectangular grid, the optimal

value of the Courant number was somewhere between 15 − 20% of the value

for N , however for the optimal Courant number for the hexagonal grid was

roughly constant. Being skeptical of that result we tested out why that was the

case by plotting the results in Figure 8.8 and 8.9. Those results showed that

the hexagonal travels too far given larger Courant numbers which gave rise to

larger numerical error. We did not �gure out if that was a feature of directional

splitting on hexagonal grid or if there were some errors in the code which made

it travel further than it was supposed to. If it is the �rst option then there is

not much to be done and one would just have to accept it as is, however if it is

the latter than the hexagonal grid has the potential to give better results than

the rectangular grid.

9.2 Future Prospects

The main objective of this thesis was to compare between di�erent ways of dis-

cretizing a two dimensional domain. In the process we found that the dimension

splitting method could be generalized to something we called directional split-

ting. From this one could explore new ways of discretizing the domain and see

what results would arise by using directional splitting. Another thing to explore

is to see if the results we got for the hexagonal grid in Figure 8.8 and 8.9 is due

to some properties of the hexagonal grid or if it were due to an oversight on our

part that we could not �gure out.
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