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Abstract

Drilling performance is directly related to fundamental aspects such as drilling
variables that can affect the performance of the operation, the well stability, efficiency
of drilling equipment, use of new technologies and operational parameters.
Approximately 30% of the total time of construction of a well corresponds to the time
rotating and sliding, in this order of ideas the optimization of the rate of penetration
“ROP” has a direct impact on time and cost reduction. This reduction has as an added
value: making viable economically the drilling campaigns and development of the
fields. That is why one of the main objectives of the operating companies is to reduce
the total time in which the true depth is reached, to reduce the costs of the operation
but without affecting the main objective of the well drilling operations. To consider a
good performance of the operations, many factors are involved being the rate of
penetration one of the most important, without leaving behind the HSE performance,
the stability of the well, integrity of the formation and final cost of the project.

On the other hand, the data driven machine learning models are significantly different
in conception process from physics-based models. The physic-based models try to
understand the problem and propose proper models resembling he problem under
certain assumptions and constraints. They seek methodology to reasonably determine
the results given input. On the contrary, the machine learning models consider little
about the details of the problem but train a working model mapping directly from
inputs (knowns) to outputs (unknowns) through a black box of neutral networks. After
that, researchers try to unveil the black box to analyze what happens there and
enlighten what knowledge learned from there as to improve the model interpretability.

Along the project, the relevant parameters for the machine learning predictive model
were chosen considering the correlation and their dependency to ROP, the model was
fed up, trained, and tested with the data set of one well and its accuracy was improved
using hyperparameter tunning. After it, the algorithm was tested with five different
data sets keeping constant the chosen parameters. Among them it was possible to
determine that the Random Forest, Gradient Boosting and K Neighbors regressor were
the ones with the highest coefficient of determination and the best performance,
considering that any model in general can be improved reckoning also the importance
of the learned lessons or field experience from petroleum engineering knowledge to
enhance the quality of the inputs and the outputs of the model.
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Field-Scale Generality of the Machine Learning Models

Chapter 1.
Introduction

1.1. Background, Motivation, and Challenge

Drilling performance is directly related to fundamental aspects such as drilling
variables that can affect the performance of the operation, the well stability, efficiency
of drilling equipment, use of new technologies and operational parameters.
Approximately 30% of the total time of construction of a well corresponds to the time
rotating and sliding, in this order of ideas the optimization of the rate of penetration
“ROP” has a direct impact on time and cost reduction. This reduction has as an added
value: making viable economically the drilling campaigns and development of the
fields.

According to the above, it can be said that one of the main objectives of the operating
companies is to reduce the total time in which the TD is reached, to reduce the costs of
the operation but without affecting the main objective of the well drilling operations.
To consider a good performance of the operations, many factors are involved being the
rate of penetration one of the most important, without leaving behind the HSE
performance, the stability of the well, integrity of the formation and final cost of the
project.

Many theoretical and practical studies have been developed previously giving a
technical way of what happens operationally, being now, an investigation with so much
future since different models with different variables can be developed in order to meet
the final objective, to achieve an increasingly accurate prediction of ROP. Lately, the
interest in data science and machine learning has been increasing and many studies,
not only in the oil and gas industry, have focused their methodology on model
development with the aim of finding adequate solutions to different problems.
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The motivation of this study is to perform and implement a code to select the relevant
parameters from a general data set and to generate a model able to predict ROP and
compare these values to the real data obtained from the drilled well.

1.2. Objectives and Scopes

The main objective of the present study is to compare and identify the parameters that
can affect the accuracy of ROP prediction modelling process. Taking into account that
the general objective can address too many years of research, conditions and methods,
the specific objectives of this project are considered below:

e Understand all the parameters and factors that can be involved or affect the ROP
behavior during the drilling phase of a well.

e Identify the importance and relevancy of some of the parameters measured
during drilling operations.

e Use a well data set to train and test the model and to predict ROP, choosing an
appropriate data set that contains relevant and consistent information.

e Make a comparison among all methods considering their accuracy.

e Build the model and verify the prediction accuracy with never-before-seen data
taken from other drilled wells, predicted ROP vs actual ROP.

The first objective is very important since it is relevant to understand everything that
can affect the ROP of the wells and factors that can become relevant in their behavior,
after being clear about the above, a decision can be made on its relevance and
importance.

Currently, service companies have been developing high-tech tools that allow having
as much data as possible, both in memory and in real time, which help to make
decisions, but it is important to determine and classify which of the measured
parameters are relevant to have a good prediction and optimization of ROP.

One of the wells, the well N-NA_F-9_Ad, was selected with the aim of training and
testing the model so that it could later be implemented in the other wells to be studied.
Finally, and as the last objective, it was defined which of the techniques evaluated are
the ones that deliver a better prediction of the ROP having as baseline the actual
information.

1.3. Tool Box and Structure

The base of this project is coding and building a machine learning model that helps to
analyze ROP behavior and a way to predict. Jupyter Notebook [1] will be the
application of choice as it is user-friendly, handles the selected programming language
Python [2], and is helpful to analyze the results from the data.

Several packages were installed and used as a tool to develop the coding work related
to the project, see Appendix A.
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One of the main steps was to review, collect and select the input data. Collecting the
data depends on the number of sensors run in the BHA and the quality and continuity
of the information given by them since the accuracy and quality of the built model
depends on that. Along the Chapter 4, a Machine Learning model was developed using
random forest algorithm where the inputs were identified, data set was split into
testing and training data set and a hyperparameter tuning was performed in order to
improve the accuracy and to reduce the coefficient of determination. Finally, the
Machine Learning model was implemented to verify its accuracy against never-before-
seen data to make an analytical comparison of the results explained in Chapter 5.
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Chapter 2.
Theoretical background

2.1. Drilling Operations

To understand the topics that are going to be developed throughout the project,
performing a short briefing can be considered very important. Despite not being the
first step when it comes to exploration and exploitation of oil basins, drilling a well is
one of the most important steps during the productive life of a field.

2.1.1. Drilling Rig Components — Surface

A drilling rig, no matter if it is offshore or onshore operations, consists of five (5) main
components:

2.1.1.1. Rotary System

The term rotary comes from the physical movement of the drill string and bit, which
applies a rotary shear force to the rock at the bottom of the hole. The rotation can be
applied on the surface to the entire string or by a downhole motor to a part of the
assembly bottom (Bottom hole assembly, BHA). The drill string consists of a steel pipe
that conducts the drilling fluid inside it to the drilling bit. This pipe or string is a mix
of standard drill pipe, heavyweight drill pipe, drill collars, or pipes of different
diameters and caliber.

It is also very important to have an efficient rotation system, that mainly includes a
swivel, Kelly rotary drive, and rotary table. The working principle of the rotation
system is the Kelly, which is connected to the drill pipe driven by the rotary table and
then the whole drilling string can be rotated for drilling the well [3].
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2.1.1.2. Circulation System

The drilling fluid is normally called drilling mud and it is the first barrier when talking
about well control operations. The drilling fluid is stored in tanks or pools, and from
there the mud can be pumped through the standpipe to the swivel where it enters into
the Kelly or the top drive, then down the drill string to the bit. After it, the fluid is
recirculated returning to the surface through the annulus. When fluid is returned to
the surface, the mud is passed through various elements of the solid control system,
such as screens, desanders, or centrifuges in order to remove all drilling cuttings before
returning to being treated with certain chemicals and sending it back to mud tanks to
complete de cycle.

2.1.1.3. Power System
The power system basically provides all the necessary power to carry out the drilling
work. Normally this power is generated from local combustion generators.

2.1.1.4. Well Control and Monitoring System

Formations in the shallow section of a well are generally isolated by a casing which
must be cemented in place. The annular space through which the mud returns to the
surface is now the space between the inside of the casing and the outside of the drill
string. To this liner preventer valves or BOPs (Blow Out Preventers) are connected, a
series of valves and seals that can be used to shut off the annulus or the full head of the
well in order to control high bottom-hole pressures when they occur. If there is a
sudden pressure change in the well which pushes the formation fluid up to the surface,
BOP will be closed the seal the well from a blowout [4].

2.1.1.5. Hoisting System

The rig has a system that has the responsibility of running in the hole (RIH) or pulling
out of the hole (POOH) the drill string or casing, this system is called the hoisting
system. It consists of the derrick, tackle and block system, and deadline anchor system.
Tackles and blocks do the vertical movement of the pipe. The deadline anchor mainly
helps the replacement of the drilling line when it was subjected to wearings.

2.2. Downhole Components

The configuration and setting of the BHA is a very important thing when talking about
designing a drilling well program since the tools are going to be run can improve or
affect the drilling performance, give information about the well, or simply have a
successful operation. The importance of having downhole measurement tools is a
reliable source of information to make decisions on the well site.

Measure While Drilling (MWD) systems allow the driller to gather and transmit
information from the bottom of the hole back to the surface without interrupting
normal drilling operations. This information can include some of the parameters that
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are going to be analyzed through the development of the project, which are directional
deviation data, data related to the petrophysical properties of the formations, and
drilling data such WOB and torque. [5] The data is transmitted through the mud
column in the drill string, to the surface, this transmission system is called mud pulse
telemetry. All those tools are in constant improvement and can provide directional
information, drilling parameters, and geological data. The latter tools are generally
referred to as Logging While Drilling (LWD) and Wired Drill Pipe (WDP).

According to Lesso et al., “WDP allows data to flow at approximately 10,000 times
the rate of fast mud telemetry", this allowed much-needed improvements in real-time
data analysis to be implemented in areas as petrophysical properties, drill string
positioning, directional drilling control, drilling mechanics and drilling dynamics [6].

Some of the parameters or measurements that are going to be analyzed through the
project include weight on bit (WOB), standpipe pressure (SPP), rate of penetration
(ROP), average rotary speed or revolutions per minute (RPM), mudflow volume,
mudflow density, the diameter of the hole, average hook load, measure depth, hope
depth and gamma-ray (GR).

2.3.Drilling Performance

The operations involved in drilling a well can be illustrated by considering the sequence
of events involved in drilling the well shown in Figure 1.

H m]—: 30 in Casing Shoe

=

26in.Hole ——

#—— 20in Casing Shoe

Cement
17 1/2in. Hole —= 13 3/8 in Casing Shoe

]
=

X—

121/4in. Hole —

Figure 1. Typical hole and casing size [5].
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Drilling a well normally starts drilling a 36” hole using an 18 V2" bit and 36” hole
opener. The hole is drilled with seawater, with the drilled cuttings settling onto the
seabed because there is no riser or BOP installed at this stage. Then a 30” casing is run
and cemented in the hole.

The 26” hole will generally be drilled with seawater. In most cases, this hole section is
drilled without circulation back to the rig and in this case, the drilled cuttings are
deposited on the seabed. The 26” hole is drilled by first drilling a small diameter (12
1/4”) pilot hole, logging the open formations, removing the diverter assembly, and then
opening out to 26” diameter. The logging operation is performed to ensure there are
no open hydrocarbon-bearing sand in the pilot hole section. Having drilled the 26" hole
the diverter, riser, and hydraulic latch are recovered and laid down. The required
length of 18 5/8" casing string is made up. Then the casing is run and cemented in the
hole.

Before drilling the next section, BOP stack must be installed. The operation continues
drilling de 17 ¥2” hole taking mud returns to the surface. When the casing setting depth
is reached, the hole is circulated clean and the drilling assembly is recovered in
preparation for running, setting, and cementing the 13 3/8” casing.

Then the 12 ¥4” bit and BHA are made up and run to just above the cement inside of
the 13 3/8” casing where a casing pressure test must be done to check the integrity of
the casing shoe. The next section of the hole is drilled to the desired o required depth,
cleaned out, and the 9 5/8” casing is run and cemented.

If more sections are required, the procedure drilling an 8 ¥2” hole and run and cement

7” casing [5].

2.3.1. Rate Of Penetration (ROP)

One of the main parameters registered and used to show the drilling performance is
the rate of penetration, which is recorded as the well is being drilled and can be
measured according to the drilling depth in a certain period, for example, meters per
hour or feet per hour. This measurement is usually done by reading the chart on the
geolograph or using a digital encoder that is attached to a part of the rig that moves in
proportion to the movement of the drill string. Common attachment points are the drill
line, drawworks drum, or crown sheaves.

Generally, ROP increases in fast drilling formations such as sandstone which can be
called a positive drill break and, decreases in slow drilling formations such as shale also
called a reverse break. ROP decreases in shale due to diagenesis and overburden
stresses. Over pressured zones can give twice of ROP as expected which is indicative of
a kick. If the main objective is optimizing the cost of the project, having a high ROP is
normally an advantage [7].
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2.3.2. Applications of ROP Measurements

ROP logs or track, serve as historical records of drilling performance and can help
optimize drilling performance and formation evaluation [8]. Some of the applications
are listed below.

2.3.2.1. Bit Selection

Rate of penetration logs will help to choose the best bit type with an appropriate
mechanic and hydraulic parameters. Registered information from previous wells can
help to correlate formations, ROP, and bit used in order to have a good selection of the
bit for the new well to be drilled.

2.3.2.2. Mud Weight Adjustment

The drilling rate of shale is very sensitive to the pressure balance between the shale and
wellbore. Shales drilled underbalanced are characterized by fast drilling, high gas
readings, and large cuttings. Shales drilled overbalanced are characterized by slow
drilling, low gas readings and, small cuttings. Recognizing this relation can aid in the
selection of a mud weight to optimize drilling speed [8].

2.3.2.3. Correlation

The ROP log is the first source of data that can be used to correlate to nearby wells.
This is done by comparing ROP to gamma ray or SP curves. This correlation can help
determine structural and stratigraphic and stratigraphic position and is normally used
to predict when the well will reach a zone of interest.

2.3.2.4. Lithology
Shales generally drill slower than sandstones or carbonates, and as a result, ROP logs
tend to reflect indirectly the lithology of the formation [8].

2.3.2.5. Drilling Breaks

Another factor that is important to mention is called “the drilling breaks” which is
basically a noticeable increase in the ROP. When it is a decrease, is called a negative
drilling break.

The importance of the drilling break shape is that if ROP changes and there are no
changes in the drilling parameters as WOB or RPM, so it can be said that a new
formation is being drilled or there is a change in the lithology.

If there is a drilling break, there is a change in the porosity which can result in an
increase of the formation pressure and having an influx, that is why, according to the
ROP measure, it is recommendable to perform flow checks.
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2.3.3. Factors affecting ROP

In order to develop an ROP model, looking at the factors affecting the ROP is very
important. According to some research and experience, the relevant variables to take
into account are listed below.

2.3.3.1. Bit Type

The penetration rate is highest when using bits with long teeth and large cone offset
angle, but those bits are normally used and efficient in soft formations. The lowest cost
per foot drilled usually is obtained by using the longest teeth that are consistent with
bearing life at optimum bit operating conditions.

Fixed-cutter bits give a wedging-type rock destruction mechanism in which the bit
penetration per revolution depends on the number of blades and the bottom-cutting
angle. Diamond and PDC bits are designed for a given penetration per revolution by
the selection of the size and number of diamond or PDC cutters. Developments in PDC
bits have helped in achieving higher ROPs and longer bit life, but also involve a
compromise between open, light-set bits for speed and heavy-set bits for durability.
Hydraulic design improvements prevent bit balling, while mechanical-design
enhancements increase the ROP [8].

2.3.3.2. Formation Characteristics

Many characteristics of the formation affect directly the ROP, one of the most
important is the elastic limit and the ultimate strength of the formation. Mohr failure
criterion is often used to characterize the strength of a formation. [9]

Another characteristic that can be mentioned is the mineral composition of the rock
since it can have some effect on the penetration rate. Rocks that contain abrasive
minerals can cause rapid dulling of the bit teeth but rocks that contain gummy clays
can cause the bit to ball up and drill inefficiently.

Permeability of the formation, for example, allows the fluid to filtrate into the rock
ahead of the bit and equalize the pressure differential acting on the chips formed
beneath each tooth. The nature of fluids contained in pore spaces of the rock also
affects the mechanism since more filtrate volume will be required to equalize the
pressure in a rock containing a lighter fluid that a rock containing heavy fluid. [8]
Properties that affect ROP include mineralogy and hardness (if the rock is harder, the
ROP is low), porosity (if the porosity of the rock is higher, the ROP is high),
consolidation against cementation (if the rock is well consolidated, the ROP is low)
mineral inclusions such as pyrite and chert, etc.

Additionally, but not least important, as much depth is the hole, the lithology is more
compact, so the porosity decreases. This results in a decreased ROP and increased
difficulty in drilling.

2.3.3.3. Drilling Fluid Properties
The properties of the drilling fluid that affect the ROP are density, rheological

properties, filtration characteristics, solids content and, chemical composition.

9
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ROP tends to decrease with increasing fluid density, viscosity, and solids content, and
tends to increase with increasing filtration rate. The density, solids content, and
filtration characteristics of the mud control, the pressure differential across the zone
of crushed rock beneath the bit. The fluid viscosity controls the parasitic frictional
losses in the drill string and, thus, the hydraulic energy available at the bit jets for
cleaning. Increasing viscosity reduces ROP even when the bit is perfectly clean [8].
The chemical composition of the fluid also influences ROP by the hydration rate and
bit balling tendency of some clays that are affected by the contact with some chemical
components of the fluid.

An increase in drilling mud density causes an increase in the bottom hole pressure
beneath the bit, due to the hydrostatic pressure of the column, and then an increase in
the pressure differential between the borehole pressure and the formation fluid
pressure, so if the differential pressure is positive, is correct to affirm the well is being
drilled in overbalanced.

On the other hand, if the differential between the borehole pressure and the formation
fluid pressure is negative, the well is being drilled in underbalanced condition, which
is a very good way when talking about improve ROP.

2.3.3.4. Bit Operating Conditions
The operation conditions or drilling conditions also have a relevant effect on the
improvement of ROP.

¢ Revolutions per minute (RPM). If the RPM is increased, then the ROP will
increase. In soft formations ROP, is directly proportional to RPM and shows a
linear increase. However, in hard formations, the ROP increase is not linear and
will decrease with RPM increasing. The exception is, again, with the diamond
bits or PDC when, even in hard formations, the ROP will increase linearly with
the rotary speed.

A

>

N
Figure 2. Relationship between ROP and RPM /8].

As it is shown in Figure 2 where (R) is the ROP and (N) is the RPM, ROP
increases linearly when the value of RPM increases. In the (b) point, the

10
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foundering point is when the linearity is lost. This phenomenon is basically due
to less efficient bottom hole cleaning, and it is also dependent on drilling fluids
parameters.

Weight On Bit (WOB) The WOB also affects the ROP. The relationship is
linear since the WOB is duplicated, and the ROP will be duplicated too. The
WOB is a parameter that must be controlled to avoid the bit tooth wear. See
Figure 3.
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Figure 3. ROP vs RPM and ROP vs WOB /8].

On the other hand, in the plot of ROP vs WOB (See Figure 4) where tooth wear
is not assumed and ROP is represented by “R” and WOB by “W”, no significant
ROP is obtained until the threshold formation stress is exceeded (See point a).
ROP increases gradually and linearly with increasing values of WOB for low
values of WOB (segment from a to b). A linear curve is observed at higher WOB
(segment from b to c), where the segment has a much steeper slope which
represents an increased drilling efficiency. Point “b” is the transition point
where the rock failure mode changes from scraping or grinding to shearing.
Beyond point “c”, subsequent increases in WOB cause only slight improvements
in ROP (segment from c to d). Sometimes a decrease in ROP is observed at
extremely high values of WOB (segment from d to e).

The poor response of ROP at high WOB values is normally because of a less
efficient hole cleaning related to a higher rate of cuttings generation, or because
of complete penetration of a bit’s cutting elements into the formation being
drilled, without clearance for fluid bypass [8].

11
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Figure 4. Relationship between ROP and WOB /8]..

2.3.3.5. Formation Pressure

A high formation pressure results in a higher differential of pressure which leads to a
slower ROP but high values of formation pressure such a result of retention of
formation fluids can lead to high porosity and an increase in ROP.

It is good to mention that ROP is a valuable indicator of lithology and a valuable aid
for correct correlation.

2.3.3.6. Bit Hydraulics

Taking into account the relevance of cleaning the new drilling cuttings from the bottom
of the hole, to maintain an optimal ROP, the cleaning of the hole must be effective since
the cuttings can clog the bottom of the hole, in turn reducing the cutting surface of the
hole. the bit, which would affect the ROP.

An important factor during drilling operations is the equivalent circulating density or
ECD (An increase in mud density measured on the surface), due to frictional pressure
losses in the annular differential pressure will increase. As well as an increase in the
actual density of the drilling mud, these pressure losses will increase if the flow rate
increases or if the flow regime is turbulent [4].

2.3.3.7. Bit Tooth Wear

Most bits are designed with certain footage or life cycle so as soon as they are run in
the hole, the performance can be very good, but it will be decreasing because of tooth
wear.

The tooth length of milled tooth rolling cutter bits is reduced continually by abrasion
and chipping. The teeth are altered by hard facing to promote a self-sharpening type of
tooth wear. However, while this tends to keep the tooth pointed, it does not
compensate for the reduced tooth length. The teeth of tungsten carbide insert-type
rolling cutter bits and PDC bits fail by breaking rather than by abrasion. Often, the
entire tooth is lost when breakage occurs. Reductions in ROP due to bit wear usually

12
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are not as severe for insert bits as for milled tooth bits unless many teeth are broken
during the bit run [8].

The change in ROP is one of the main conditions to decide when the BHA needs to be
pulled out of the hole because the bit must be changed for a new one.

2.3.3.8. Personal Efficiency

Manpower skill and experience of the driller are the keys to the success or failure of
those operations and ROP is one of them. Overall, well costs as a result of any drilling
problem can be extremely high; therefore, continuous training for personnel directly
or indirectly involved is essential in order to achieve desired ROP [8].

2.4. ROP Models

The traditional models are empirical correlations developed based on regression
analysis, and the data-driven models are developed based on machine learning
techniques.

2.4.1. Traditional ROP Models

Traditional ROP models have been used for the prediction of ROP in drilling with some
success. According to Hegde et al. [10], these traditional models have disadvantages
such as the use of empirical coefficients, the requirement for auxiliary data such as bit
properties, mud properties, bit design, among others, low accuracy in ROP predictions,
and their conformity to one facies (since the empirical coefficients are highly
dependent on lithology). These models remain unchanged; however, the empirical
coefficients are continuously varied according to the calibration data.

It is important to investigate the equations of the physics-based models. This will lead
to the understanding of the input parameters, and their importance in drilling, also
reducing the overall cost of the drilling project by improving drilling operations.

2.4.1.1. Bingham’s Model (1964)

The first major study was performed in the 1950s, where empirical relationships from
WOB and RPM (R-W-N models) were developed [11]. The models are normally
designed to work either for roller-cone bits or fixed-cutter bits. See Equation 1.

a

w
ROP =K (—) x N
dp

Equation 1. Bingham’s Model

Where:

K = Constant of proportionality.
W = Weight on Bit [kibf].

d, = Bit diameter.

a = Bit weight exponent.

13
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N = Rotary speed of RPM.

For the previous equation, the results are highly dependent on the value of ag, but the
determination of such an exponent is not an easy task because it requires relatively
constant values of N and W for a certain lithology and a formation change could be
experienced before the test is completed [12].

2.4.1.2. Bourgoyne and Young’s Model (1974)

One of the ROP models which was widely accepted was presented by Bourgoyne [13].
This model estimates ROP as a function of eight parameters as it is shown in
Equation 2.

ROP = (f1) (f2) (f3) ... (fu)

Equation 2. Bourgoyne and Young’s Model

Where:

_ _2303%a; _
fi=e 1= K;

fy = 2:303% az%(10000-D)
fo = 2:303% azD%%(gp—9.0)

ﬁ} — eZ.303*a4*D*(gp—pc)

) - @)

5
(1),

o= (g0)

fr = e"oh

Jo = (1,?60)

as

ag

D = True vertical depth [ft].

K, = Constant of proportionality.

N = Rotary speed of RPM.

gp = Pore pressure gradient [Ilbm/gal].
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p. = Equivalent circulating density [psi].
F; = Hydraulic impact force beneath the bit [1bf].
a; = Chosen constants according to drilling conditions.

(Z/—b) = Threshold bit weight per inch of bit diameter at which the drill begins to
t
drill [1,000lbf/in].

The multiple constants assigned to “a” refers to a, is the formation strength parameter,
a, is the normal compaction trend exponent, a5 is the under compaction exponent, a,
is the pressure differential exponent, as is the bit weight exponent, a6 is the rotary
speed exponent, a7 is the tooth wear exponent, and a8 is the hydraulic exponent.
Coefficients a1 through a8 are determined with multiple regression techniques, using
several data points to determine the eight unknowns that best fit a specific set of field
data [14].

The Bourgoyne’s Model was designed for roller-cone bits, as was mentioned before,
but in recent years it has been applied for wells drilled with PDC bits [15].

2.4.1.3. Hareland’s Model (1994)
Hareland proposed a bit-specific model which is specific to the drag bit. The model is
defined by Equation 3.

A
ROP = 1414 N, * RPM * D—”
b

Equation 3. Hareland's Model

Where:

A, = Area of the rock compressed ahead of a cutter [in?].
N, = Number of cutters.

D, = Bit diameter.

RPM= Revolutions per minute.

A, is set based on the type of drag bit, in the case of a polycrystalline diamond cutter
bit can be formalized as Equation 4.

4 o (dc) -1(4 4WOB 2WO0B 4WOB 0'5( WOB )
= cosasin — ) cos - - —
v 2 cos (m)N,o,.d? cos(6n)N.o. cos (gn)NcgchZ cos (Om)N o,

Equation 4. Area of rock compressed ahead of a cutter.

Where:

d. = Cutter diameter [in].

o. = Unconfined compressive strength [psi].
a = Cutter side rake angle [degrees].
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0 = Cutter back rake angle [degrees].

2.4.1.4. Motahhari Model (2010)

Motahhari introduced a PDC bit specific model and incorporated it within a wear
function and the effect of rock strength of ROP. This model takes into account perfect
bit cleaning conditions and is defined by Equation 5 [16].

G * RPM," « WOB*®
ROP = W,

Db*S

Equation 5. Motahhari’s Model

Where:

S = Confined rock strength.
W; = Wear function.

RPM, = Rotary speed or RPM.
D, = Bit diameter.

WOB = Weight on Bit.

a = ROP model exponent.

vy = ROP model exponent.

The wear function is shown in Equation 6.

WOB)p 1
*
N¢ STk AP

174

Wy = kwf<

Equation 6. Wear function.

Where:

N, = Number of cutters on the bit face.

k, f = Wear function constant.

p = Wear function exponent.

7 = Wear function exponent.

A,,= It defines PDC cutter characteristics which are a function of wear, it is
important to note that wear of bit can only be measured after the arrangement
has been pulled out of the hole using IADC dull grading, so to find this factor it
needs to be estimated by a constant degradation factor as a function of depth.

The application of this model is highly dependent on the value of W, which is difficult
to implement as it has been shown to introduce various fitting parameters [17].

The confined rock strength used in the previous model requires laboratory testing at
different confining pressures which are seldom undertaken. Field based correlations
and rock failure envelopes can be used to determine the confined rock strength.
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Unconfined compressive rock strength (UCS) data in this dataset come from
calculations using field-based correlations on sonic log measurements [10].

2.4.2.Data Driven ROP Models

Data-driven modeling’s successful application in different industries has caused an
increasing interest in the subject from the Oil and Gas Industry and is regarded as the
future of the segment due to its potential for optimizing drilling operations [18].
When talking about data driven models, is important to mention that different ML
models can be applied according to what is going to be analyzed and for each well or
case, its data should be analyzed independently.

2.4.2.1. Ensemble Methods

According to Géron et al. [19] "a group of predictors is called a ensemble... and an
Ensemble Learning Algorithm is called an Ensemble method". Ensemble methods are
techniques that create multiple models and then combine them looking to get
improved results. They usually give more accurate solutions than the solutions given
by a single model.

Ensemble uses two types of methods, one of them is called bagging, that works creating
different training subset from sample training data with replacement and the final
output is based on majority voting, for example random forest. On the other hand, is
boosting method, that combines weak learners into strong learners by creating
sequential models such that the final model has the highest accuracy, for example Ada
Boost.

The type of base learners used will define the classification of the ensemble model. The
ensemble is called homogeneous when all learners belong to the same type, and it is
called heterogeneous when there are different types of learners. One example of
homogenous learners can be Random Forest, that is based on Decision Trees (DT) and
it is used to get a single result from the different possibilities provided by each tree. RF
is a well-known and powerful ML algorithm [6].

One of the unwritten ML "best practices", is that there is no reason for using complex

models when simple models can do the work. As mentioned, RF is regarded as one of
the most powerful ML algorithms and its implementation is not complex.
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Chapter 3.
Machine Learning Models

3.1. Machine Learning Models

Supervised learning is a method where a computer algorithm is trained on input data
that has been labeled for a particular output. The model is usually trained until it can
detect the underlying patterns and relationships between the input data and the output
labels, enabling it to yield accurate labeling when presented with never-before-seen
data [20]. Supervised learning is normally defined by Equation 7, where the goal is
to approximate the mapping function so well that when you have new input data you
can predict the output variables for that data.

Y = f(X)

Equation 7. Supervised Learning.

Where:
X = Input variables.
Y = Output variables.

Supervised learning cases can be further grouped into regression and classification
cases. Through this project, regression cases are going to be developed.

3.1.1. Random Forest Algorithm

Random Forest is a supervised ML algorithm that is normally used in classification and
regression problems, also it is one of the best techniques with high performance which
is widely used for its efficiency. It can handle binary, continuous, and categorical data.
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RF is based on bagging or bootstrap aggregation as an ensemble technique. Bagging
chooses a random sample from the data set. Hence each model is generated from the
samples provided by the original data with replacement known as row sampling. This
step of row sampling with replacement is called bootstrap. Since each model is trained
independently which generates results. The final output is based on majority voting
after combining the results of all models, this step which involves combining all the
results and generating output based on majority voting is known as aggregation.

3.1.2. Gradient Boosting Regressor.

GB builds an additive model in a forward stage-wise fashion, it allows for the
optimization of arbitrary differentiable loss functions. In each stage, a regression tree
is fit on the negative gradient of the given loss function [21]. Regression trees are most
teamed with boosting. See Figure 5.
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Figure 5. Schematical representation of gradient boosting regression
regarding algorithm iterations [22].

Iterations

Hyperparameter tuning is a way to set the parameters to improve the results of the
model and it consists of setting the value of parameters that the algorithm cannot learn
on its own. In order to find these parameters, this process is carried out where it is
commonly sought to make the algorithm use various combinations of values until it
finds the values that are best for the model [23].

Considering the above, there are several hyperparameters that we need to adjust, and
they are as follows [21].

e Number of Estimators. Show the total number of trees in the ensemble or
the number of boosting stages to perform. Gradient boosting is fairly robust to
over-fitting, so a large number usually results in better performance.

¢ Maximum depth. Refers to the number of leaves of each tree or the maximum
depth of the individual regression estimators. Tuning this parameter is
recommended to have a better performance since the best value depends on the
interaction of the input variables.
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e Learning Rate. Hyperparameter scales the contribution of each tree. There is
a trade-off between the learning rate and the number of estimators.

¢ Subsample. The fraction of samples to be used for fitting the individual base
learns. If it is smallest than 1.0 this results in Stochastic Gradient Boosting.
Choosing a subsample number less than one (1) leads to a reduction of variance
and an increase in bias.

¢ Random State. Controls the random seed given to each tree estimator at each
boosting iteration also it controls the random permutation of the features at
each split.

3.1.3. Random Forest Regressor

RF regressor is a meta estimator that fits several classifying decision trees on various
sub-samples of the dataset and uses averaging to improve the predictive accuracy and
control over-fitting [21]. See Figure 6 [24].
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Figure 6. Random Forest Regressor [24].

In the case of a random forest, hyperparameters include the number of decision trees
in the forest and the number of features considered by each tree when splitting a node.
Hyperparameter tuning relies more on experimental results than theory, and thus the
best method to determine the optimal settings is to try many different combinations to
evaluate the performance of each model. However, evaluating each model only on the
training set can lead to one of the most fundamental problems in machine learning:
overfitting [25].

If the model is optimized for the training data, it will score very well on the training set,
but it will not be able to generalize to new data such as in a test set. According to
Koehrsen et al. [25] “When a model performs highly on the training set but poorly on
the test set, this is known as overfitting, or essentially creating a model that knows
the training set very well but cannot be applied to new problems. It’s like a student
who has memorized the simple problems in the textbook but has no idea how to apply
concepts in the messy real world.”.
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When an overfitting model is found (See Figure 1) it can look perfect on the training
set, but it will be useless in a real application that is why a cross-validation should be
done looking to improve the hyperparameter results.

There are some hyperparameters that we need to adjust, and they are as follows.
e Number of Estimators. So, like the one mentioned in GB regressor, the
number of estimators refers to the number of trees in the forest.
¢ Random State. Controls both the randomness of the bootstrapping of the
sample used when building trees.
¢ Maximum Depth: It is the maximum depth of the tree or the longest path
between the root node and the leaf node.

3.1.4. Multi-Layer Perceptron Regressor

A perceptron is recognized as an algorithm, but it was initially intended as an image
recognition machine. It gets its name from performing the human-like function of
perception, seeing, and recognizing images.

The multilayer perceptron (MLP) has input and outputs layers, and one more hidden
layer with many neurons stacked together. It falls under the category of feedforward
algorithms because inputs are combined with the initial weights in a weighted sum and
subjected to the activation function, just like the perceptron.

Each layer is feeding the next one with the result of their computation, their internal
representation of the data. This goes all the way through the hidden layers to the output
layer [26].

Backpropagation is the learning mechanism that allows the MLP to iteratively adjust
the weights in the networks, with intending to minimize the cost function [27]. The
function that combines inputs and weights in a neuron, for instance, the weighted sum,
and the threshold function, for instance, ReLU, must be differentiable. See Figure 77
[26].

In each iteration, after the weighted sums are forwarded through all layers, the
gradient of the MSE is computed across all input and output pairs. Then, to propagate
it back, the weights of the first hidden layer are updated with the value of the gradient.
That is how the weights are propagated back to the starting point of the neural network.
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Figure 7. Multilayer Perceptron, highlighting the Feedforward and
Backpropagation steps [26].

There are several hyperparameters that needs to be adjusted, the first one to tune is
the number of neurons in each hidden layer.

Hidden Layer Sizes. Determining this parameter is possible to specify the
number of layers and the number of nodes that are required to have in the
Neural Network Classifier. Each element represents the number of nodes at the
ith position, where i is the index of the tuple. Thus, the length of the tuple
indicates the total number of hidden layers in the neural network [28].

Alpha: L2 penalty (regularization term) parameter [21].

Activation. Represents the activation function for the hidden layers. It can be
identity (linear bottleneck), logistic (logistic sigmoid function), tanh (hyperbolic
tan function) or relu (rectified linear unit function).

Learning Rate: schedule for weight updates. It can be constant, invscaling or
adaptive.

Solver: This parameter specifies the algorithm for weight optimization over the
nodes, it can be ‘Ibfgs’ which is an optimizer in the family of quasi-Newton
methods, ‘sgd’ which refers to stochastic gradient descent or, ‘adam’ which
refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik,
and Jimmy Ba.

According Scikit learn et al. [21] “The default solver ‘adam’ works pretty well
on relatively large datasets (with thousands of training samples or more) in
terms of both training time and validation score. For small datasets, howeuver,
‘Ibfgs’ can converge faster and perform better.”
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3.1.5. AdaBoost Regressor

An AdaBoost Regressor [29] is a meta-estimator that begins by fitting a regressor on
the original dataset and then fits additional copies of the regressor on the same dataset
but where the weights of instances are adjusted according to the error of the current
prediction. As such, subsequent regressors focus more on difficult cases. This
algorithm is sensitive to outliers and is thus useful to check for outliers in the data set.
See Figure 8 [30].
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Figure 8. AdaBoost Regressor [30].

Some of the hyperparameters need to be adjusted, they are [21]:

e Number of estimators: It is the maximum number of estimators at which
boosting is terminated. In the case of a perfect fit, the learning procedure is
stopped early.

¢ Learning Rate: There is a trade between the learning rate and the number of
estimators. Weight applied to each classifier at each boosting iteration, a higher
learning rate increases the contribution of each classifier.

¢ Random State: Control the random seed given at each base estimator at each
boosting iteration.

3.1.6. K-Neighbors Regressor

The k-Nearest Neighbors (kNN) algorithm is one of the simplest ML algorithms
because building the model just consists of storing the training dataset. To predict for
a new data point, the algorithm finds the closest data points in the training dataset, its
“nearest neighbors” [31].

K-Neighbors Regressor is a variant of KNN where the target is predicted by local
interpolation of the targets associated with the nearest neighbors in the training set

[21].
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Some of the hyperparameters need to be adjusted, they are [21]:

¢ Number of neighbors: It is the, as your name said, the number of neighbors
to use by default for kneighbors queries. Using only a single neighbor, each point
in the training set has an obvious influence on the predictions, and the predicted
value goes through all the data points. This leads to a very unsteady prediction.
Considering more neighbors leads to smoother predictions, but these do not fit
the training data as well. In Figure 9 , the blue points are the responses to the
training data, while the red line is the prediction made by some model for all
points on the line [31].

nearest_neighbor_regression
3 neighbor(s)

1 neighbor(s)

9 neighbor(s)
- o - T T o
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Figure 9. Behavior according to the number of neighbors /31].

e Weights: It is the weight function used in prediction. The possible values are
[21]:

o Uniform, uniform weights. When all points in each neighborhood are
weighted equally.

o Distance, weight points by the inverse of their distance. In this case,
closer neighbors of a query point will have a greater influence than
neighbors which are further away.

o Callable: a user-defined function that accepts an array of distances and
returns an array of the same shape containing the weights.

3.1.7. Linear Regression

Linear models are a class of models that make a prediction, as its name said, using a
linear function of the input features. One of the simplest and most classic linear
methods for regression is called Ordinary Least Squares (OLS).

Linear regression finds the parameters “w” and “b” that minimize the mean squared
error between predictions and the true regression targets on the training set. Linear
regression has no parameters, which is a benefit, but it also has no way to control model
complexity [31]. See Figure 10.
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Figure 10. Linear Regression in Machine
Learning /31].

3.1.8. Advantages and Disadvantages

Some of the general advantages and disadvantages when talking about regression
models are shown in Table 1.

Regression Model Advantages Disadvantages

e Works well irrespective e The assumption of
of the dataset size. Linear Regression.
e Gives information about
the relevance of features.

Linear Regression

e Interpretability. e Poor results on small
e Works well on both, datasets.
Decision Tree linear and non-linear e Overfitting can easily
Regression problems. occur.
e No need to apply feature
scaling.
e Powerful. ¢ No interpretability.
Random Forest Accurate. ¢ Overfitting can easily
R . e Good performance on occur.
egression
many problems e Number of trees has to
including non-linear. be chosen.

Table 1. Advantages and disadvantages of regression models
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3.2. Training and Testing Data Set

Machine learning algorithms work in two stages, they are called training data set and
test data set.

The training set is a portion of the actual dataset that is fed into the ML model to
discover and learn patterns, so it is the one in charge of training the model, it is typically
larger than testing data because the main objective is to feed the model with as much
data as possible in order to find and learn meaningful patterns. Once data from the
dataset are fed to an ML algorithm, it learns patterns from the data and makes
decisions.

According to Barkved et al. [32] “Algorithms enable machines to solve problems based
on past observations. Kind of like learning from example, just like humans. The only
difference is that machines require a lot more examples in order to be able to see
patterns and learn. As machine learning models are exposed to more relevant
training data, the more they improve over time”.

Once the ML model is built and fed with the training data, the model needs to be tested
with unseen data. This data is known as testing data, and it can be used to evaluate the
performance and progress of the algorithms’ training and adjust or optimize looking
for improving results.

The data set for testing has to be different from the training set because the model
already knows the training data, so testing data is helpful to see if the model is working
accurately or if it requires more training data to perform to the desired specifications.
To conclude, the main difference between the training and testing set is that one trains
a model and the other confirms it works correctly.

3.2.1. Splitting Data.

In Data science, it is common to split the data into 80% for training and 20% for
testing. According to Barkved et al. [32] “...In supervised learning, the outcomes are
removed from the actual dataset when creating the testing dataset. They are then fed
into the trained model. The outcomes predicted by the trained model are compared
with the actual outcomes. Depending on how the model performs on the testing
dataset, we can evaluate the performance of the model...”.

Train/test is a method to measure the accuracy of the ML model, where the data set is
split into two sets in order to train and test the model.

“As a reminder, the reason we split our data into training and test sets is that we are
interested in measuring how well our model generalizes to new, unseen data. We are
not interested in how well our model fits the training set, but rather, how well it can
make predictions for data that was not observed during training.” [31]
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Scikit-learn contains a function that shuffles the dataset and splits it. The function
extracts some percentage of the rows to be used as a training set and the remaining
data are declared as the test set.

3.2.2. Underfitting vs. Overfitting

To understand the root cause of poor model accuracy is important to know the model
fit. Through it, it is possible to determine whether a predictive model is underfitting or
overfitting the training data by looking at the prediction error in the training and
evaluation data [33].

The model is underfitting the training data when it performs poorly on the training
data, it happens because the model is not able to capture the relationship between the
input and the target values.

On the other hand, the model is overfitting the training data when the model performs
well on the training data but does not perform well on the evaluation data, it happens
because the model is memorizing the data it has seen and is not able to generalize to
unseen examples. See Figure 11.

Y Y Y
> >
Underfitting % Balanced 3 Overfitting

Figure 11. Model Fit: Underfitting vs. Overfitting /33].

3.3. Model Evaluation and Improvement

Evaluation models and selecting parameters is one of the most important tips to qualify
the accuracy of the model in supervised learning, that is why, after splitting, testing the
data and, building the model, it is important to evaluate it.

3.3.1. Cross-Validation

The technique of Cross-validation (CV) consists of further splitting the training set into
K numbers of subsets, called folds, then iteratively fitting the model K times, each time
training the data on K-1 of the folds and evaluating on the Kth fold (called the validation
data).

When talking about hyperparameter tuning, it has to be performed many iterations of
the entire K-fold CV process, each time using different model settings, Then to compare
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all of the models, select the best one, train it on the full training set and, then to evaluate
on the testing set, everything can be done using Scikit-Learn [21].

Using Scikit-Learn’s RandomizedSearchCv method, it is possible to define a grid of
hyperparameter ranges and randomly sample from the grid, performing K-Fold CV
with each combination value.

According to Guido and Muller [31], there are several benefits of using cross-
validations instead of a single split into a training and test set. One of them is that when
cross-validation is used, each example will be in the training set exactly once: each
example is in one of the folds, and each fold is the test set once. Therefore, the model
needs to generalize well to all the samples in the data set for all the cross-validation
scores to be high.

3.3.2. Grid Search

Grid search is a method for adjusting the parameters in supervised models for the best
generalization performance. Since finding the values of the important parameters of a
model is a necessary task, it must be done for almost all models and datasets.

There is a huge risk to overfit the parameters so splitting the data into training and test
data set in the first place has to be performed and after it, evaluate the model with an
independent data set to the one used to create the model.

3.3.3. Grid Search with Cross-validation

For a better estimate of the generalization performance, instead of using a single split
into a training and a validation set, using cross-validation to evaluate the performance
of each parameter combination, is recommended [31].

According to Guido and Muller et al. [31] “...the best parameter setting is selected. For
each parameter setting, accuracy values are computed, one for each split in the cross-
validation. Then the mean validation accuracy is computed for each parameter
setting. The parameters with the highest mean validation accuracy are chosen...”.

3.3.4.Metrics and Scoring

There are three (3) different APIs for evaluating the quality of a model’s prediction
[21]:
e The estimators’ score method: The estimators have a score method providing a
default evaluation criterion for the problem they are designed to solve.
e Scoring parameter: Model evaluation tools using cross-validation rely on an
internal scoring strategy.
e Metric functions: The sklearn.metrics module implements functions assessing
prediction error for specific purposes.
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3.3.5. Regression Metrics

Evaluating for regression can be done by analyzing over-predicting the target versus
under-predicting the target. In some cases, using R? in the scoring method of all
regressors is enough.

Below are some metrics for evaluating the performance of the regression model: [34]

3.3.5.1. Mean Absolute Error (MAE).

It measures the average magnitude of the errors in a set of forecasts, without
considering their direction. It is not very sensitive to outliers compared to MSE. It
measures accuracy for continuous variable data.

It gives a linear value, which averages the weighted individual differences equally. The
lower the value, the better is the model’s performance.

It is identified by Equation 8.

n
1
MAE = = E —9,
n 2 lyi—;l

Equation 8. Mean Absolute Error

Where:

n = Number of samples.

y; = Predicted value of i-th sample.
y; = The corresponding true value.

3.3.5.2. Mean Squared Error (MSE).

It is one of the most used in metrics, but least useful when a single bad prediction would
ruin the entire predicting abilities of the model. It can be like MAE but differs from it
in that it squares the difference before summing instead of just taking the absolute
value. See Equation 9. Mean Squared Error [35].

MSE is most useful when the dataset contains outliers or unexpected values.

1< .,
MSE = =3 (i = )

Equation 9. Mean Squared Error

Where:

n = Number of samples.

y; = Predicted value of i-th sample.
y; = The corresponding true value.
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Since the difference is squared, the MSE generally is greater than the MAE and for this
reason, MSE cannot be directly compared to the MAE, also the effect of the quadratic
term in the MSE equation is most apparent when there are outliers in the data set.
MSE is like a combination measurement of bias and variance of the prediction.

3.3.5.3. Root Mean Squared Error (RMSE).

In RMSE the errors are squared before they are averaged. This implies than RMSE
assigns a higher weight to large errors, so RMSE is much more useful when large errors
are present, and they affect the performance of the model. The common goal between
MSE and RMSE is to measure how large the residuals are distributed. Their values lie
in the range between zero and positive infinity and in this metric also, the lower is the
value the better is the performance of the model.

Max Error. The max error function computes the maximum residual error. It is a
metric that measure the worst case error between the predicted value and the true
value, see Equation 10.

Max Error = max(|y; — 9;1)

Equation 10. Max Error

Where:
y; = Predicted value of i-th sample.
y; = The corresponding true value.

This metric shows the extent of error that the model had when it was fitted.

3.3.5.4. Mean Absolute Percentage Error (MAPE).

Also known as mean absolute percentage deviation (MAPD). Here, each prediction is
scaled against the value it is supposed to estimate, MAPE is the percentage equivalent
of MAE, see Equation 11. Mean Absolute Percentage Error.

n
100 =9
VAPE — Z lyi — 9l
n max (€, |y;])

1

Equation 11. Mean Absolute Percentage Error

Where:

n = Number of samples.

y; = Predicted value of i-th sample.

y; = The corresponding true value.

€ = Arbitrary small yet strictly positive number to avoid undefined results when
y is zero.
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3.3.5.5. Median Absolute Error (MedAE).
It is robust to outliers. The loss is calculated by taking the median of all absolute
differences between the target and the predictions [21]. See Equation 12.

MedAE = median(ly; — Vil, o, |Yn — Pnl)

Equation 12. Median Absolute Error

Where:
y; = Predicted value of i-th sample.
y;= The corresponding true value.

3.3.5.6. Coefficient of determination (R?).

The value R2 tells us how much variance in the outcome variable can be explained by
the predictors.

It shows the proportion of variance that has been explained by the independent
variables in the model. It also indicates of how well fits the model and it is a measure
of how well-unseen samples are likely to be predicted by the model, through the
proportion of explained variance. [21]

The best possible score is 1.0.

The coefficient of determination is defined as (see Equation 13).

_ 210 —9)*
210 = ¥)?

Equation 13. Coefficient of determination.

R? =

Where:
y; = The predicted value of i-th sample.
y; = The corresponding true value.
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3.4. Selection of Parameters

Analyzing the traditional ROP models, it is noticeable that besides the Bingham ROP
model (Equation 1) just requires few inputs. Other ROP traditional models like
Burgoyne and Young (Equation 2Equation 2. Bourgoyne and Young’s Model) and
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Motahhari (Equation 5) are dependent of many inputs, and much of them are
difficult to find so they need to be estimated which can end up in lack of accuracy
predicting ROP.

When ROP is predicted using ML models, the information that can be used to feed up
the model can be as much as possible, taking into account the availability of data, and
how much ROP is affected by each of the parameters considered.
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Figure 12. Amount of inputs employed to feed ROP data-driven models [36].

Depending on the availability the sensors or measures taken, configuration of the
equipment or tools a large number of measurements can be stored. Barbosa shows in
Figure 12. Amount of inputs employed to feed ROP data-driven models [36], from
fifty three (53) different works analyzed, ten (10) reported the use of three (3) or four
(4) inputs, twelve (12) works used five (5) or six (6) inputs, also twelve (12) works used
seven (7) or weight (8) inputs Considering that five (5) works did not report the number
of input data for their models, it can be said that almost 70% of the studies worked with
less than nine inputs for their respective models [6].

This provides an interesting statistic to select the number of inputs, and to understand

why even though many possible inputs are available most researchers prefer to select
just a number of them.
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Chapter 4.
Methodology

4.1. Methodology in general

In order to develop this research project, it will be carried out the following
methodology in their respective order. Step by step of this chat is going to be mentioned
and explained along this chapter.

METHODOLOGY

|

Review, collect and select
input data of the wells to be

‘ Develop the ML model using

studied. random forest algorithm. L
l ‘ Implement the ML model to
verify its accuracy with
Collect the data. ‘ — other wells data.
I ‘ Identify t{xe inputs.

Select the data.
‘ ‘ Split the data into training data

Use the model with never-
before-seen data.

,

Compare the results.

set and testing data set.

Perform the hyperparameter
tuning.

Figure 13. Methodology.

All the methodology in general was summarized in four steps, that are going to be
describe below, which were:
e Select the training data set from the whole data set: Data set from Well 1 was
used to train the model, keeping a ratio of 80/20 (80 training/20 testing).
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e Develop the model with different ML models.

e Test the model on unseen single wells where the model was tested with never-
before-seen data from Well 2, 3, 4 and 5.

e Evaluate the model taking into account the results given by the metrics.

4.2.Volve Data Set

In 2018 Equinor and the partners of the society working for Volve field, have decided
to make public all the downhole and production data from the field [37]. All the data
is located in a repository at the Equinor’s web site and is completely available for
access for researching purposes.

4.2.1. Volve Field

Volve field is located in Block 15/9 in the southern part of the Norwegian North Sea,
and it is situated approximately 200 km west of Stavanger and 8 km from Sleipner Ost
Field. Oil was discovered in 1993, but the development was approved in 2005, and the
field and the oil is located in the middle Jurassic sandstone formations. Recoverable
reserves are estimated at 78.6 million barrels of oil and 1.5 billion cubic meters of gas.

The field started production in 2008 from the Maersk Inspirer jack-up rig. The oil
produced from the field was stored and shipped to export from the Navion Saga FSO,
the gas was piped to the Sleipner A platform. The plateau production of Volve was
around a daily production of 56,000 barrels of oil a day with a total recovery of 63
million barrels.

4.2.2. Wells Information

Six wells were taken to make the analysis and development of the current project. In
the Table 2 is possible to identify the wells and a nomenclature that is going to be
used along the project

Well Date Set Project nomenclature
USROP_A 0 N-NA_F-9_Ad Well 1
USROP_A 1 N-S_F-7d Well 2
USROP_A 2 N-SH_F-14d Well 3
USROP_A 3 N-SH-F-15d Well 4
USROP_A 4 N-SH_F-155d Well 5
USROP_A 5 N-SH-F-5d Well 6

Table 2. Complete wells data set
4.3.Data Analysis

In order to set up the ML model, some data was required. The data set used came from
drilling information of six (6) wells, showed in Table 2. This information is saved in a
comma-separated value (csv) format archive, so the handling, selection, and
processing data to execute the study was easier.
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The data was pre-processed and normalized in previous research works to improve the
accuracy of the model, so it can be used to feed the different ML algorithms.

As it was mentioned before, all the work that is going to be described is performed
using Jupyter Notebook as a main application and Python as a programming language.

4.3.1. Importing and Visualizing the Data

The first step into the analysis is importing and visualizing the data. The raw data
contains information from drilling operations organized according to the depth of the
well and some parameters that are shown in Table 3.

Number Variables Units Data Type
1 Measured Depth [m] float64
2 Weight on Bit [kkef] float64
3 Average Standpipe Pressure [kPa] float64
4 Average Surface Torque [KN.m] float64
5 Rate of Penetration [m/h] float64
6 Average Rotary Speed [rpm] float64
7 Mud Flow In [L/min] float64
8 Mud Density In [g/cm3] float64
9 Diameter [mm] float64
10 Average Hookload [kkef] float64
11 Hole Depth (TVD) [m] float64
12 USROP Gamma [gAPI] float64

Table 3. Features from data sets.

Using pandas, the main data frame was generated looking to visualize the data frame
with all data set is going to be analyzed along the project. For example, in the Table 4
is shown the complete data with all its features. The process that is going to be
described was done for each one of the wells in order to get the initial conditions of the
data set.

Average Average
Measured  Weight on 5.’:“'3“.99 Surface Pe F'lra‘l;a of Rotary  Mud Flow In De .M"I'd Diameter Hﬂ\'ilrag: Hole Depth ESROP
Depth m Bit kkgf nepipe Torque netration Speed Limimn ns'.l:" n mm ook oa (TVD} m amma
Pressure kPa kM. m/h glem3 kkgf gAP

m rpm
0 481.033 5.842270 8440822214 0244047 42 854024 84000 Z7TE4.321942 1.210000 31115 83780222 420. 780309 150.88
i 481.125 G241431 0400841325 0.244047 42315384 24000 ETE4321842 1210000 21115 93878303 490810830 150.88
2 481222 241431 0400.241325 0.244047 42.315334 24000 2784321942 1210000 231115 93870803  490.010830 150.28
3 481.328 G6.362437 0312.024465 0.216831 42.204504 24000 ETE4.321942 1210000 21115 94070583 491.081755 146.26
4 481.341 5.358437 8313.024465 0:215831 42 804504 84000 Z7B4.321942 1.210000 311.15 284078583 491.081756 146.25

1374 1205.7558  12.455540 10826. 728800 0.666082 40.614800 104680 1027.450082  1.108264 21580  EB.118380 1013.072038
13742 1205.789 12407112 10853.887070 0.507835 20.540034 104571 1027457438 1108264 21580  B8.2132E2  1013.005459
13743 1205.810 12407112 10853.887070 0.587330 30.540024 184.571 1827.407438  1.188264 21580 83.213283 1013.108432
13744 1205820 12407112 10853.887070 8507335 30.540034 184571 1827487438 1195264 21580 B83213283 1013.142702

13745 1205800 12407112 10853.887070 8.597335 30.540034 184571 1827487438  1.195264 21580 883213283 1013.142702

13746 rows x 12 columns

Table 4. Complete data set, Well 1 (13746 rows x 12 columns).
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After having the features that are going to be taken into account, it was performed a
check to verify if there are some missing values inside of the data set so in case of being
found, perform a correct handling of them. Also, as it can see in Figure 14 Figure 14.
Probability density distributions., there are probability density distribution plots of the
data of all wells to be studied. According to Fernandez et al, [38] “The drilling data is
not always distributed and intuitive to understand since it is usually skewed.
Nevertheless, data that follows certain distributions can be valuable, and identifying
its probability distribution is critical for further analysis.”
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Figure 14. Probability density distributions.

On the other hand, another tool that is widely used for data visualization is the heat
map, by means of which it was possible to visualize the correlation of the parameters
with respect to the ROP for each of the wells. This is especially useful since it is
necessary to analyze many variables and choose the ones that are related to the ROP.
The heat map was performed in each one of the wells and according to the results a
summary table was performed.
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The Figure 15 presents the heat map, for the well that is used as an example, where
the diagonal set of squares going from top left to bottom right are in the darkest blue,
this represents the intersection between the same variables, and that is why its
relationship value is the highest one. Numerically, this will represent a Pearson
correlation coefficient of one, where the values can be from negative one (-1) to one
(+1), being one the value related to the highest correlation between same parameters
or variables. Negative values indicate that the variables tend to move in opposite
directions being a clear example of no direct correlation between both of them.

The intensity of the color will decay depending on the correlation level between
variables.

For the study case, the variables with darkest color found in the “Rate of Penetration”
row, are the ones which are going to be selected as main features (See red square in
Figure 15).
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Figure 15. Heatmap, raw data of variables for Well 1

After doing the heat maps for each well, the data was collected and summarized in the
Table 5 where all the variables are shown in the columns and the wells in the rows.
According to the relationship value given by the heatmap, it was assigned a number for
each parameter from 1 to 5, being “5” the one that has the highest value of correlation.
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The row denotated as “Count” contains the number of times that the parameter was
found as a parameter with high correlation to ROP, and the row “Sum” shows the total
sum of the values assigned according to the correlation, with the aim of being able to
weight and select the most relevant parameters according to the data of the wells that
are available.

For example, for the heat map shown in Figure 15 (Well 1), the variable with the
highest correlation is Average Standpipe Pressure, with a value of 0.42 in the heat map
and five (5) in the Table 5. ROP dependent variables according to heat maps into
about different wells. following the same criteria, six (6) variables were selected as the
dependent variables, those which had more ponderation and correlation to ROP for
each heat map, in the example case, they were Average Standpipe Pressure, Average
Rotary Speed, Weight on Bit, Average Surface Torque and Mud Density In and leaving
ROP as an independent variable. All heat maps for wells are shown in the Appendix
B.2.

After choosing the variables for each well, and give a value, as a final result it was found
that the selected six (6) variables to develop the ML model will be those which got the
highest values.

ROP DEPENDENT VARIABLES
WELL Well 1 (Well 6/Well 5| Well 4 | Well3 | Well 2 |[COUNT| SUM
Measured Depth - - - 5 - 3 2
Weight on Bit 3 - - 2 1 - 3
Average Standpipe Pressure 5 3 1 - 5 - 4
Average Surface Torque 2 2 - 3 - 5 4
Average Rotary Speed 4 4 2 1 - - 4
Mud Flow In - 5 5 - 3 - 3 13
Mud Density In 1 - - - 4 2 3 7
Diameter - - 4 - 2 - 2 6
Average Hookload - - - - - - 0 (0]
Hole Depth (TVD) - - - 4 - 4 2 8
USROP Gamma - - 3 - - 1 2 4

Table 5. ROP dependent variables according to heat maps into about different wells.

According to experience, some of the variables taken into account in the initial data are
relevant at the time of optimizing the ROP, such as Average Hook load, the results
obtained by the analyzed data show that the highest levels of correlation are found in
those that are shown in the Table 6. Since Measure Depth and Hole Depth refers to
depth of the well, Weight on Bit (WOB) is going to be included into the variables to
evaluate. It is important to mention than in Table 6, the variables are organized
according to the one which got a higher ponderation being 5 the one with maximum
value and one the variable that have less correlation.
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Average Standpipe Pressure
Mud Flow In

Average Surface Torque
Average Rotary Speed
Measure Depth (MD)

Weight on Bit (WOB)
Table 6. Selected variables to develop ML model

-

SRS

The heat maps and well statistics for all wells can be found in the Appendix B.

4.3.2.Data Selection

After select the variables that are going to be taken into account to feed the model
according to its correlation to ROP, it was performed a validation to verify the
continuity of the information and its behavior for each of the wells. The Figure 16,
shows the measure depth in the “x” axis vs the selected variables in the “y” axis for the
Well 1 (Other wells’ plots can be found in the Appendix B.)
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Figure 16. Measure depth vs. Selected variables (Well 1)
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In the plots, it can be seen that despite the fact that the Average Rotary Speed is
oscillating between 100 to 150 rpm, the ROP tends to have the same tendency since
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they are directly proportional parameters as it was mentioned in Chapter 2. At the end
of the well, between 1000 m to 1200 m there is a high value of Average Rotary Speed,
but the ROP average is the same that in the shallower section of the well, so we can
assume that they were drilling a hard formation probably with a tricone bit.

Taking a deep look into the WOB behavior vs the ROP, normally if the WOB is high,
the ROP tends to increase unless there is an inefficient hole cleaning related to a higher
rate of cuttings generation, or because of complete penetration of a bit’s cutting
elements into the formation being drilled, without clearance for fluid bypass [8], which
can be a reason to explain the behavior of the plots at 680 m depth, where the WOB
values are high, but the ROP kept constant or even with a small decrease of the rate
with respect to the previous behavior and in turn, at the same depth, there is a peak in
the average standpipe pressure which can explain an inefficient hole cleaning of the
wellbore.

In the previous analysis it can be seen a summary of how the parameters are related to
the ROP, and the way in which a good analysis of them in real time can lead to good
decision making on the way.

4.4.ROP modeling

As it was mentioned before, Chapter 2, a data driven model is going to be implemented,
using the data measured while drilling to predict ROP. The model building process
incorporates feature engineering to ensure that the model is built in a robust fashion.
Feature engineering is imperative to the success of the model since the input
parameters used to build the model completely determine its outcome.

The model will be built as a function of feature vectors (pre-selected variables) to
determine or predict the property “y”, being ROP for this study work. The RF algorithm
was used since the RF regression is a supervised learning algorithm that uses the
ensemble learning method for regression, it is a technique that combines predictions
from multiple machine learning algorithms to make a more accurate prediction than a
single model.

4.4.1. Machine Learning Implementation

To perform the Machine Learning procedures of the project, Python [39] was used as
the main tool, where different techniques were implemented using the selected
features (See Table 7). Also, Scikit Learn [21], which is a module that contains RF
algorithm, was used to implement the regressor models. The parameters or variables
used as inputs to feed the model and compare its performance are shown in Table 7.
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Number Variables Units Data Type
1 Average Standpipe Pressure [kPa] float64
Mud Flow In [L/min] float64
Average Surface Torque [kN.m] float64
Average Rotary Speed [rpm] float64
Measured Depth [m] float64
Weight on Bit [kkgf] float64

Table 7. Selected features (variables).

NGk~ W N

As a first step, the relevant libraries were imported (See Appendix A) and additionally
some model and tools from Scikit Learn. The Figure 177, show how the data was
imported from the .CSV file to build a data frame getting a better visualization and
dimension of the data that was used to feed up the model. The rows were organized,
leaving the ROP measure at the end to avoid it being include into the prediction data.

In [48]: df = pd.read_csv('USROP_A & N-MA_F-9 Ad.csv')
del df['Unnamed: @']

df = df[[ Average Standpipe Pressure kPa', "Mud Flow In L/min’, 'Average Surface Torque kN.m','Average Rotary Speed rpm', Mea

int(df)
df.iloc[:,8:6
df.iloc[:,11] #ROP
f = df.iloc[: , :12]

X
y
d

df

Average Average
Average . Mud . Average USROP Rate of
Standpipe Mud Flf’w !" STurface Féularzi' MS“:":E(I WEBlgth;'?r; HO‘?I.SEPW Density In Diameter Hockload Gamma  Penetration
Pressure kPa min okrﬁu; p:;n epth m it kkg ( ym glem3 mm kkgf gAPI mih

0 9440922214 2784321942 0.244047 £4.000 491.033 5842270  490.760309  1.210000 31115 93.780222 150.88 42864024
1 9499.941336 2784321942 0.244047 84.000 491.185 6.241431 490.910880  1.210000 31115 93.979803 150.88 42315384
2 9499941336 2784 321942 0.244047 84.000 491222 6241431 490910880  1.210000 31115 93.979803 150 88 42315384
3 9313.024466 2784321942 0.216931 84.000 491.338 6.368437  491.061756  1.210000 31115 94.079593 146.26 42.894504
4 9313024466 2784321942 0.216931 84.000 491341 6368437 491061756  1.210000 31115 94079593 146 26 42 894504

13741 10986.726800  1927.456082 9.666982 194.680 1205.755 12.455646 1013.078086  1.198264 21590  §8.119390 25.37 40.614600
13742 10953.687070  1927.467438 9.597835 194.571 1205.789  12.407112  1013.095459  1.198264 21590  88.213283 2537 39.549934
13743 10953.887070 1927.467438 9.597835 194.571 1205.810 12407112 1013.106432  1.198264 21590  88.213283 25.37 39.549934
13744 10953.687070  1927.467438 9.597835 194.571 1205.880 12407112 1013142703 1.198264 21590  88.213283 2537 39.549934
13745 10953.887070  1927.467438 9.597835 194.571 1205.999 12407112 1013.142703  1.198264 21590  88.213283 2637 39.549934

13746 rows x 12 columns

Figure 17. Initial data Well 1 (Screenshot from the main code)

After importing the data, it was filtered leaving only the selected features and having
a data frame with 13746 rows and 6 columns (See Figure 18).

out[12]:
purbzls Average Standpipe Pressure kPa Mud Flow In Limin  Average Surface Torque kN.m Average Rotary Speed rpm Measured Depth m  Weight on Bit kkgf
0 9440922214 2784.321942 0.244047 84.000 491.033 5.842270
1 9499941336 2784.321942 0.244047 84.000 491.185 6241431
2 9499.941336 2784.321942 0.244047 84.000 491222 5.241431
3 9313.024466 2784.321942 0.216931 84.000 491.338 6.368437
4 9313.024466 2784.321942 0.216931 84.000 491.341 6.368437
13741 10986 726800 1927.456082 9.666982 194 680 1205755 12455646
13742 10953 887070 1927.467438 9597835 194 571 1205789 12.407112
13743 10953.887070 1927.467438 9.597835 194571 1205.810 12.407112
13744 10953.887070 1927.467438 9.597835 194571 1205.880 12.407112
13745 10953 887070 1927 467438 9597835 194 571 1205999 12.407112
13748 rows x 6 columns

Figure 18. Selected variables and data frame (Screenshot from the main code).

41



Field-Scale Generality of the Machine Learning Models

4.4.2. Splitting Data

One of the most important things to start is splitting the data to train and test the
model, as it was mentioned in the theoretical background. Working with machine
learning models, the data should be divided into two or three parts to avoid overfitting
and model bias, it could be training set (which is normally the largest one), testing set
and in some cases the validation set.

For the data used to build the model, it was taking into account a ratio of splitting data
of 80-20 percent, where 80 percent was used to train the model and 20 percent to test
it.

Graphically, the split ratio could be represented in the Figure 19, where the red points
are the values taken as a training data and the black ones are the testing data points.

MD VS Rate of Penetration m'h

an

Rate of Pencrratio

s00 600 00 o 900 Loog 100 1200

Figure 19. Example testing and training data.

Once the percentages of information to be assigned to the training and testing data
were defined, a random sampling was considered to define the performance of the
model.

The Table 8 summarize the number of values and how the data was split into training
and data set. For the inputs, there is 109096 rows taken as a training data set times six
(6) columns which refers to the selected features. On the other hand, there is the 20%
of the total data which corresponds to the testing data set (2750 rows) times the six
columns mentioned before.

As the ROP is the output, and, in this case the data that will be taken into account to
compare how the accuracy of the model regarding to its prediction is, it has only one
column which is in turn the value of the penetration rate.
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Type Amount (rows) | Amount (Columns)
Train data set (input) 10996 6
Test data set (input) 2750 6

Table 8. Testing and training data set.

Random Sampling basically consists of randomly select 80% of the data and assign
them for the training set, and the 20% residual for the testing set. Random sampling is
a good way to select how to split the data, since the behavior of the ROP tends to be
“constant” according to the formations being drilled, type of bit or simply depth of the
well, so if the main objective is predicting the ROP involving many parameters or
environments, a random sampling is one of the best options to split the data.

On the other hand, one of the main disadvantages of this approach is that, it is hard to
determine if the model has learned to find correlations, allowing it to make predictions
or it has just memorized some points [6], for this reason, the accuracy of the model was
tested with never-before-seen data.

4.4.3. Grid Cross-validation

For each one of the regressors that are going to be used, the grid cross-validation was
performed because grid search with CV is a commonly used method to adjust the
parameters. The first step was specifying the parameters to search, then grid search CV
will perform all the necessary model fits.

Fitting the grid search CV object, not only searches for the best parameters, it also
automatically fits a new model on the whole training data set with the parameters that
yielded the best cross-validation performance.

Parameters that were found, are called as “best parameter” and the best cross
validation accuracy (the mean accuracy over the different splits for this parameter
setting) is called “best score”.

4.4.4. Gradient Boosting Regressor.

The first one of the regressors to be used was gradient boosting regressor (See code on
Appendix A.3).

The parameters evaluated were:
e Number of estimators: 50, 200, 500 or 1000
e Learning Rate: 0.010r 0.1
e Maximum depth of the three: 1, 2 or 4
e Subsample: 0.5, 0.75 or 1
¢ Random State: 1

Using the random sampling, the Figure 20, shows the results of the GB regressor

when randomly selected data, and it is possible to see the difference before and after
the hyperparameter tuning is set, starting with a coefficient of determination of 0.8999
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before and ending up in 0.9969, after setting the hyperparameter tuning, which means

that this model has a high prediction accuracy.

The search uses the suggested parameters mentioned above, but also includes other
hyperparameters of the model, the result of this search was implemented in the model.

Rate of Peostration (61 Rate of Peostration (e1h)

Figure 20. Gradient Boosting Regressor

As a result of the grid search CV, the best parameters were learning rate: 0.1, max
depth: 4, number of estimators: 1000, random state: 1, and subsample: 0.5. In the
Figure 21, it can be observed the difference between before and after and how the

model fits the points after adjusted the hyperparameters.
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Figure 21. Predicted vs. Original Testing Data Set GB.
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4.4.5. Random Forest Regressor

When the RF regressor was evaluated, the parameters evaluated were just two:

Number of estimators: 10, 30, 50 or 70
Maximum depth of the three: 10, 20 or 30

Peclect prediction

== Perfect prediction
Trsin D

Figure 22. Random Forest Regressor

The Figure 22, shows the result of the RF regressor when randomly selected data,
and it is possible to see the difference before and after the hyperparameter tuning is
set, starting with a coefficient of determination of 0.9973 before and ending up with a
coefficient of determination of 0.997 which means that this model has a high prediction

accuracy too.
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Figure 23. Predicted vs. Original Testing Data Set RF.
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Having a result of the best parameters, a max depth: 30, number of estimators: 50 and
a random state:0. In the Figure 23, it can be observed the difference between before
and after and how the model fits the points after adjusted the hyperparameters.

4.4.6. Multi-Layer Perceptron Regressor

Talking about the MLP regressor, the parameters evaluated were:
e Hidden Layer Sizes: (50,50,50), (50,50,100) or (100,1).
e Activation: Relu, tanh, or logistic
e Alpha: 0.0001 or 0.05
e Learning rate: constant or adaptive
e Solver: adam

The Figure 24, shows the result of the MLP regressor when randomly selected data,
the coefficient of determination obtained in this case is lower than the one from
previous regressors, starting with a coefficient of determination of 0.56165 before and
ending up with a coefficient of determination of 0.6032
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Figure 24. Multi-Layer Perceptron Regressor

Having a result of the best parameters, Hidden Layer Sizes: (50,50,50), activation:
Relu, alpha: 0.05, learning rate: adaptive and solver: adam.

In the Figure 25, it can be observed the difference between before and after and how
the model fits the points after adjusted the hyperparameters.
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Figure 25. Predicted vs. Original Testing Data Set MLP.
4.4.7. AdaBoost Regressor
AdaBoost Regressor was evaluated under the follow parameters:
e Number of estimators: 500, 1000 or 2000
e Learning rate: 0.001, 0.01 and 0.1
e Random State: 1
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Figure 26. AdaBoost Regressor

The Figure 26, shows the result of the AdaBoost regressor when randomly selected

data,

the coefficient of determination obtained in this case starts with a coefficient of

determination of 0.647 before and ending up with a coefficient of determination of
0.666.
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The result of the grid search CV gave a result of the best parameters, learning rate:
0.001, number of estimators: 2000 and a random state: 1.

In the Figure 27, it can be observed the difference between before and after and how
the model fits the points after adjusted the hyperparameters.
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Figure 27. Predicted vs. Original Testing Data Set AdaBoost

4.4.8. K-Neighbors Regressor

Same as the other regressors evaluated before, the K-Neighbors regressor was
evaluated under just the following parameters:

e Number of neighbors: 2, 3, 4, 5 or 6.

e Weights: uniform or distance.

Using the random sampling, the Figure 28, shows the results of the KN regressor
when randomly selected data, and it is possible to see the difference before and after
the hyperparameter tuning is set, starting with a coefficient of determination of 0.939
before and ending up in 0.997, after setting the hyperparameter tuning, which means
that this model has a high prediction accuracy.
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Figure 28. K-Neighbors Regressor.

The search uses the suggested parameters mentioned above, but also includes other
hyperparameters of the model, the result of this search was implemented in the model.
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Figure 29. Predicted vs. Original Testing Data Set K-Neighbor

After the best parameters were found being a number of neighbors: 4 and weight:
distance, the Figure 29 shows the difference between before and after and how the

model fits the points after adjusted the hyperparameters.
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4.4.9. Linear Regression

The linear regression was the last one being evaluated. In the Figure 30, it is possible
to observe how is the correlation between the testing data and the prediction
performed by the model.

0 500 1000 1500 2000 2500

Figure 30. Predicted vs. Original Testing Data Set Linear Regression

In this case there were not hyperparameter tuning done, and the coefficient of
determination has a value of 0.5774 which means that this regressor has a low
prediction accuracy. See Figure 31.

Figure 31. Linear Regression

4.5. Metrics

Some of the metrics mentioned in the Chapter 2, were evaluated for each one of the
regressions performed in order to have a better understanding of the results and
accuracy of the models to predict data. The results were summarized in the Table 9.
Taking a look into the coefficients of determination (R2) the one with highest accuracy
is the K-Neighbors regressor, having a coefficient of 0.996, since they memorized
points instead of created correlations and the one with the lowest one is MLP regressor
with a coefficient value of 0.603.
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Regressor Gradient Random MLP AdaBoost K- Linear
Boosting Forest Neighbors
Mean Absolute 0,42225 0,15859 5,253 5,077843 0,03804 5,60324
Error

Mean Absolute  0,014704 0,00669 0,23884  0,228753 0,001269 0,26654
Percentage Error

R2 0,99693 0,997 0,60321 0,666618  0.996897 0,57741
Mean Squared 0,43971 0,42938 56,8379 47,8187  0,4444921 60,5336
Error
Root Mean 0,66311 0,65527 7,53909 6,915106 0,666702 7,78033
Squared Error
Median Absolute  0,29761  0,01883  4,09340  3,711090 0,00000 4,340323
Error

Table 9. Regression metrics of the trained model
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Chapter 4.
Results and Discussion

5.1. Results

As testing the trained model with unseen data, to verify its accuracy, is one of the main
objectives of the project, 5 of the 6 wells data set were used as a test data set. In that
order of ideas Well 2, 3, 4, 5 and 6 were used to test the trained and adjusted model.
The distribution of probability of each one of the wells is shown in Appendix B and
along this chapter, the Well 2 is going to be used as an example to show the procedure
step by step. By the end, comparative results and metrics are shown to verify the results
and accuracy of the model.

5.1.1. Metrics Analysis

In the Figure 32, is possible to identify which one of the models have a better accuracy
according with the data used for training and testing it. In those cases, the three (3)
best options to evaluate the model with never-before-seen data, it will be Random
Forest, Gradient Boosting and K-Neighbors Regressor.

In the Table 1, a summary of advantages and disadvantages was summarized, where
it was said that the decision tree regression and random forest models work well being
so accurate but sometimes can result in overfitting. The Figure 32 confirms it, since
the highest values of the coefficient of determination bellow to these types of
regressions.
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Figure 32. Metrics Analysis

5.1.2. Testing the model with other wells data set

In order to evaluate the accuracy of the prediction given by the model, it is important
to test the defined model with never-before-seen data, 100% new data, in this case the
data is provided by other wells drilled nearby the well that was used to train the model.
After the model was trained with the data set from Well 1, and with a working ratio of
80% training data size vs 20% testing data size, the program was run for each one of
the models according to each well data set, using the 100% of the data for testing the
trained model, the results that are going to be shown below are just for one of the wells
analyzed, to see the other wells’ data plots, see Appendix B.4.

The well data set “USROP_A 1 N-S_F-7d” which is the Well 2, is going to be used as an
example to show the procedure to evaluate the model. First of all, the data was
imported keeping the same structure as the training data set. After importing the data,
just a small test was run in order to check the difference between running a
predetermined model, without hyperparameters defined, and running the model
tested with the previous data set.

The Figure 33 shows that comparison, having in the right side the one without the

trained model, and in the right side, the one which was evaluated with the defined
model.

53



Field-Scale Generality of the Machine Learning Models

®

Figure 33. AdaBoost regressor model prediction Well 2

After it, the predicted data was plotted to find the accuracy to the model. In the Figure
34, is possible to see the original values for ROP (field/operational data) in color green,
the prediction performed without the model implementation in black color, and in
purple, the predicted data provided by the model after performing the hyperparameter
tunning (HT).
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Figure 34. AdaBoost regressor predicted data set Well 2

For this case, the model gave a coefficient of determination of 0.8186. Perhaps the
lines are not so close, it is possible to determine that the trend is constant which can
result in a good but not perfect prediction.

After doing this procedure with each one of the wells, and each one of the regressions
evaluated, the predictions were plotted to define graphically its behavior and accuracy.
(See Figure 35, Figure 36, Figure 37, Figure 38 and Figure 39). In the plots is
possible to identify and compare the accuracy of the models, and how each one of the
evaluated regressions, fits or does not fit with the predicted ROP.

54



Field-Scale Generality of the Machine Learning Models
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Figure 35. ROP predictions Well 2

Due to the depth of the Well 2, in the Figure 35 is possible to see the difference
between the accuracy of each one of the predictions given by the different models, for
example the AdaBoost regressor, represented in green color, is keeping the trend of the
original prediction (color black), but the values are not as accurate as the gradient
boosting regressor prediction (pink color) that is even hidden by the perfect accuracy.
It is important to mention that one of the most relevant things when talking about
machine learning, is having as much data as possible to improve the accuracy and
applicability of the model.
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Figure 36. ROP predictions Well 3
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Figure 37. ROP predictions Well 4
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Figure 38. ROP predictions Well 5
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Figure 39. ROP predictions Well 6
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Since the plots can be not very clear because of the amount of analyzed data, plots were
generated considering only the selected models, ones which have a higher coefficient
of determination. For those cases, in the following plots is shown the ROP predicted by
GB regressor, K Neighbors and RF regressor.
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Figure 40. Plot predicted ROP selected models, Well 2
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Figure 41. Plot predicted ROP selected models, Well 3

70

1 e IR VT

TSl 20000 30000 40000 50000

— original
—— GBPred
—— KN Pred
—— RF Pred

Figure 42. Plot predicted ROP selected models, Well 4
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Figure 43. Plot predicted ROP selected models, Well 5
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Figure 44. Plot predicted ROP selected models, Well 6

The Figure 40, Figure 41, Figure 42, Figure 43 and Figure 44, show the ROP
predicted in each one of the wells by using GB regressor, K Neighbors and RF regressor.
Despite the accuracy of the model is very good, there are some points (red circle) where
there is some noise or simple the prediction is not very accurate, but it is always close
to the main prediction which means that these models can be used in different type of
wells.

The main question after visualizing the plots is which one should be selected as the
best model prediction ROP? Having a look back to the Table 9 and the comparison
made in the Figure 32, GB regressor, K Neighbors and RF regressor are the ones
which have the highest coefficient of determination since they memorized points
instead of created correlations. As described by Gulli et al. [40] "traditional multilayer
perceptron neural networks make the assumption that all inputs are independent of
each other. This assumption breaks down in the case of sequence data".

An important factor to take into account, is that since the model can have a very good
accuracy, many external factors that were not consider during the study can affect the
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behavior of the prediction if it is implemented in another well. A model can be more
and more accurate if each single time it is adjusted until get 100% of reliability.

To conclude the final results and show why it was said that the GB regressor, K
Neighbors and RF regressor are the ones which have the highest coefficient of
determination or accuracy to the model tested on non-before-seen data, the metrics of
each well were compilated in Table 10, Table 11, Table 12, Table 13 and Table 14.
If the reader takes a seen on the values, for example the coefficient of determination
has the highest values for GB, K Neighbor and RF regressor in all tested data set of the
six wells.

On the other hand, or another metric that can give good information regarding to the
accuracy of the model is the MSE (Mean Squared Error), where the lowest values are
the ones regarding to the GB, K Neighbor and RF regressor in all tested data set of the
six wells.

WELL 2
AdaBoost GB K Neighbor | Linear Regression MLP RF
MAE 5,7483 0,01547 0 9,6954 10,1278 | 0,02052
MAPE 0,1345 0,000299 0 0,2638 0,3091 0,00495
R2 0,8186 0,9999 1 0,346 0,25136 | 0,9997
MSE 46,5892 0,001583 0 168,221 192,281 | 0,07462
RMSE 6,8256 0,03978 0 12,97 13,866 0,27317
MedAE | 5,5276 0,00644 0 7,19423 7,53235 | 2,84E-14
Table 10. Metrics, testing model Well 2
WELL 3
AdaBoost GB K Neighbor | Linear Regression MLP RF
MAE 5,9347 0,3791 0 7,8425 10,254 0,0044
MAPE 0,5192 0,0194 0 0,5178 0,4594 0,0002
R2 0,729 0,9985 1 0,4979 0,1285 0,999
MSE 47,826 0,2706 0 88,607 153,809 0,005
RMSE 6,9156 0,5202 0 9,1413 12,402 0,0711
MedAE | 6,0685 0,2848 0 7,2189 9,5187 | 1,42E-14
Table 11. Metrics, testing model Well 3
WELL 4
AdaBoost GB K Neighbor Linear Regression MLP RF
MAE 4,8515 2,4895 0 5,0329 7,5903 | 0,0266
MAPE 0,3547 0,1758 0 0,3439 0,4122 | 0,00137
R2 0,5992 0,8339 1 0,4311 0,0703 | 0,9994
MSE 37,1435 | 15,3975 0 52,7275 86,172 | 0,0533
RMSE 6,0945 3,9239 0 7,2614 9,2829 | 0,2309
MedAE 3,6999 1,4958 0 4,3275 7,6099 | 2,40E-04

Table 12. Metrics, testing model Well 4
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WELL 5
AdaBoost GB K Neighbor Linear Regression MLP RF
MAE 6,3748 2,0163 0 4,2685 5,4668 | 0,0607
MAPE 0,6615 0,1874 0 0,3769 0,4199 | 0,00419
R2 0,3156 0,8603 1 0,5428 0,4299 | 0,99854
MSE 53,869 11,0027 0 35,9957 44,884 | 0,11493
RMSE 7,3396 3,31704 0 5,9997 6,6995 | 0,33901
MedAE 6,2857 1,0936 0 3,06172 4,3677 | 1,28E-03
Table 13. Metrics, testing model Well 5
WELL 6
AdaBoost GB K Neighbor Linear Regression MLP RF
MAE 7,9429| 2,8285 0 8,3846| 12,4141| 0,00854
MAPE 0,71926| 0,16786 0 0,5647| 0,8095| 0,000294
R2 0,6587 | 0,9359 1 0,50808 | 0,0787 0,9999
MSE 86,486 | 16,2282 0 124,643 | 233,442 0,0194
RMSE 9,2998 4,0284 0 11,1644 15,279 0,1393
MedAE 7,9693 | 2,01076 0 6,6847 11,7 1,42E-14

Table 14. Metrics, testing model Well 6
5.2. Discussions

Despite the amount of data that has been available for many years, people in the oil
industry do not know what to do with it, it has been stored and, in some cases, purged
without knowing all the benefits that can be obtained from it. It can be said that much
of the value and economic benefit that can be obtained from the correct management
and implementation of this information can be too high.

A good use of data and its analysis will always be a good tool to strengthen planning
and make predictions that help and contribute to decision making, especially in real
time. A good start for this is to carry out a diagnostic analysis where the reason for
having high or low rate of penetration values is explained and where the descriptive
statistics take a value that is too strong, and where analytics shows that it is possible to
stop assuming to begin with to read the data thanks to a much faster processing, and
in the same way make decisions that will contribute to the predictions when the same
conditions are present, or inputs in cases of modeling and machine learning.

There is no commercial tool or application that exactly predicts the ROP that is going
to be obtained according to the different parameters, for which predictive analysis is a
very good tool. After performing the predictive analysis, it is suggested to move on to
the prescriptive analysis where it is sought to get to, How to make it happen? How to
optimize it? and What parameters do I need so that the ROP is the maximum? In the
study carried out throughout this project, base information has been taken which has
been a key piece to develop the models, but despite this there are more factors or
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parameters which, through experience, have shown that they can affect or vary the
ROP noticeably. These factors were mentioned in Chapter 1.

If the objective is to optimize the ROP prediction to the maximum, one of the key
factors to take into account without a doubt is the lithological properties of the column
to be drilled, added to a correct selection and design of the bit. It is clear that, in most
cases, especially when it comes to drilling exploratory wells, where the geological
column is unknown, which leads to obtaining values different from those expected, the
performance of the drill bit may not be as expected, or the footage may be less than
planned. Normally a drill bit is chosen expecting a certain performance according to
how its behavior has been in other wells and other formations, but there is no tool that
exactly predicts the ROP that it will have according to the various parameters, for this,
predictive analyzes are a very good tool.

At this point, another question is part of the scoop for future studies or projects, it is
which parameters should be considered at the time of well planning and which should
be taken into account during the operation if the objective is to feed a built model with
the information obtained in real time considering as a relevant factor, the
incorporation of rapid data acquisition tools such as wired drill pipe.

After running the models and analyzing the information shown in the graphs, it can be
concluded that the database is biased and it is taken into account that it is a model for
which it predicts better taking into account the parameters chosen according to their
relationship with the ROP and how these affect it, therefore when the model was
implemented in the new wells, and using the same type of parameters as input, the
prediction had an optimal behavior, but when talking about real cases, where the
decision making must be as fast as possible, you must follow and read the information
given by the well.

Analytically predicting the ROP can contribute positively when it comes to drilling a
well as fast as possible, but empirically, the ideal is to have as input to the predictions
factors that can be controlled in real time, or with which the operation can be
optimized. In the case of this study, the factors used as inputs were, for the most part,
data measured throughout the operation that can hardly be programmed or controlled
and that in turn depend on external factors, such as the average surface torque that
depends on type of level of vibrations, geometry of the hole, hook load, elasticity, and
hardness of the formation with respect to the cutting properties of the bits, among
others. The selected variables according to the correlation and impact on the ROP, can
be read during operations and keys to understand what is happening in the well, but
considering an ideal case in which the objective is to automate the drilling of a well, the
operational properties should be adjusted considering the values of the variables as
input.

Since an important factor is the knowledge of expertise of people involved in drilling
operations looking forward to improving and to enhance the quality of the inputs and
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the outputs of the model, some opinions regarding to why modelling ROP is a
challenging topic were taken considering the different point of view of professionals
with experience in drilling jobs. Some of them are mentioned below.

“The analytically calculated ROP is made based on assumptions that are far from

reality, in most of the cases. On the other hand, in places where geological uncertainty

weighs heavily at the time of defining the prognosis of the lithological column, the
real results definitely differ from the theoretical ones”.

W. Carreno,

Company Man (Onshore drilling operations)

Colombia.

“In well drilling planning, offset wells are analyzed as a starting point for the

expected ROP, in development wells where the area is known, it is expected to develop

an ROP close to the plan, however differences in this value may occur by BHA design,
BHA hanging or differences in lithology.”

P. Perez,

Drilling Engineer, development wells (Onshore drilling planning)

Colombia.

“ROP can hardly be predicted with a high level of reliability. In my experience as a
tool pusher, driller, and rig manager, one of my biggest goals is to drill the hole as
fast as possible, while keeping in mind optimal penetration rates. I must not say that
it is a matter of luck, since I consider that the operational parameters should be
adjusted according to what the data shows us, and that is why among colleagues the
phrase "The well speaks to you" is very well known. Data is a key factor in making
decisions, but the expertise of the people in charge of analyzing it and knowing what
to do with it is key”.
G. Bonilla,
Rig Manager (Onshore drilling operations)
Colombia.

“When planning a well, the engineering team assumes ideal conditions while
considering margins of error, as a rule of thumb. Regardless of the expected
performance of both the drill bit and the downhole tools, external factors such as
geological structures and faults result in changes in plans, operating conditions, and
penetration rates far from those expected. Surprisingly, in some cases we have
benefited when we encounter soft formations, but we have also incurred additional
time for small layers of hard formations that must be drilled with bits designed for
soft formations. As a directional engineer I must reach the desired depth, but the path
does not always behave as per planned”.
C. Vorkinn,
Directional Driller (Offshore drilling operations)
Norway.
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Chapter 6.
Conclusions and Future Work

6.1 Conclusion

Another important point to consider is finding a way to optimize the parameters to the
maximum so that they can be managed and controlled during drilling obtaining
optimal ROP. In the same way take into account the specific mechanical energy and its
impact on the efficiency of drilling.

Along the planning, execution and development of the project, many questions and
point of views were considered to find a good approach to improve the performance
given by the machine learning models and how the accuracy of the model can be
affected by choosing some parameters. According to the objectives set, the conclusions
of the work are:

e A complete data set from six wells was used to select the variables to develop the
machine learning model.

e The most relevant parameters for the machine learning predictive model were
chosen considering the correlation and their dependency to ROP, they were:
Average standpipe pressure, mud flow in, average surface torque, average rotary
speed, measured depth and weight on bit.

e The data set from one of the wells was used to train and test the models and to
establish the accuracy of the model.

e Hyperparameter tunning was performed to improve the accuracy of the model as
much as possible adjusting the metrics and coefficients of determination.

¢ The algorithm was tested with five different data sets, using the same parameters
chosen for training and testing the model, observing that the regressions with the
best performance were Random Forest, Gradient Boosting and K Neighbor
Regressor with a coefficient of determination around 90%.
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e The performance of the model and any model in general can be improved by
considering learned lessons or field experience from petroleum engineering
knowledge to enhance the quality of the inputs and the outputs of the model.

6.2 Future Work

It is known that a large number of investigations related to machine learning and data
analysis always have something to improvise, either in terms of information,
considerations or the use of new technologies capable of providing excellent quality
data. Due to the scope of this project, several points remain open for future research,
for example:

e Feeding up the model with as much information as possible, not only from the
same field or cluster, but also with data from non-adjacent wells.

e As it was mentioned in the conclusions, use the information related to the
stratigraphic column, field properties, geology, properties of the bit, among
others can lead up into a very good performance of machine learning models
and why not an optimal automatization of the drilling operations.

e Split the data obtained along the well, in order to predict the next sections to be
drilled, considering that it can be applied just when the geological data used to
train the model match with the new well to be drilled.
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Appendix A
Python Code

A.1 Installed Packages
Package Version Package Version
absl-py 1.0.0 numpydoc 1.1.0
alabaster 0.7.12 oauthlib 3.2.0
anaconda-client 1.7.2 olefile 0.46
anaconda-navigator 2.1.4 openpyxl 3.0.7
anaconda-project 0.9.1 opt-einsum 3.3.0
anyio 2.2.0 packaging 20.9
appdirs 1.4.4 pandas 1.2.4
argh 0.26.2 pandocfilters 1.4.3
argon2-cffi 20.1.0 paramiko 2.7.2
asnicrypto 1.4.0 parso 0.7.0
astroid 2.5 partd 1.2.0
astropy 4.2.1 path 15.1.2
astunparse 1.6.3 pathlib2 2.3.5
async-generator 1.10 pathspec 0.7.0
atomicwrites 1.4.0 pathtools 0.1.2
attrs 20.3.0 patsy 0.5.1
autopep8 1.5.6 pep8 1.7.1
Babel 2.9.0 pexpect 4.8.0
backcall 0.2.0 pickleshare 0.7.5
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backports.functools-Ilru-
cache
backports.shutil-get-
terminal-size
backports.tempfile
backports.weakref
berypt
beautifulsoup4
bitarray

bkcharts

black

bleach

bokeh

boto

Bottleneck

Brotli

brotlipy

cachetools

certifi

cffi

chardet

click

cloudpickle

clyent

colorama

comtypes

conda

conda-build
conda-content-trust
conda-package-handling
conda-repo-cli
conda-token
conda-verify
contextlib2

cryptography

cycler

Cython

cytoolz

dash
dash-core-components
dash-html-components
dash-renderer

1.6.4
1.0.0

1.0
1.0.post1
3.2.0
4.9.3
1.9.2
0.2
19.10b0
3.3.0
2.3.2
2.49.0
1.3.2
1.0.9
0.7.0
5.0.0
2021.10.8
1.14.5
4.0.0
7.1.2
1.6.0
1.2.2
0.4.4
1.1.9
4.12.0

3.21.4

o+unknown

iL7.2)
1.0.4
0.3.0

3.4.2

0.6.0.post1

3-4.7
0.10.0
0.29.23
0.11.0
0.21.1
0.23.0
0.11.0
0.13.0

Pillow
pip

pkginfo
plotly
plotly-express

pluggy

ply
prometheus-client
prompt-toolkit
protobuf
psutil
ptyprocess

by

pyasni
pyasni-modules
pycodestyle
pycosat
pycparser
pycurl
pydocstyle
pydot
pydotplus
pyerfa
pyflakes
Pygments
pygtrie
PyJWT

pylint
pyls-black
pyls-spyder
PyNaCl
pyodbc

pyOpenSSL
pyparsing

pyreadline

pyrsistent

PySocks

pytest
python-jsonrpc-server
python-language-
server

8.2.0
21.0.1

1.7.0
5.3.1
0.4.0
0.13.1
3.11
0.10.1
3.0.17
3.20.1
5.8.0
0.7.0
1.10.0
0.4.8
0.2.8
2.6.0
0.6.3
2.20
7.43.0.6
6.0.0
1.4.2
2.0.2
1.7.3
2.2.0
2.8.1
2.4.2
2.1.0
2.7.4
0.4.6
0.3.2
1.4.0
4.0.0-
unsupported
20.0.1
2.4.7
2.1
0.17.3
1.7.1
6.2.3
0.4.0
0.36.2
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dash-table

dask

decorator
defusedxml
diff-match-patch
distributed
docutils
entrypoints
et-xmlfile
fastcache
filelock

flake8

Flask
Flask-Compress

flatbuffers
fsspec
future

gast

gevent

gitdb

glob2
gmpy2
google-auth
google-auth-oauthlib
google-pasta

graphviz
greenlet
grpcio

hspy

idna
imagecodecs
imageio
imagesize
importlib-metadata
iniconfig
intervaltree
ipykernel

ipython
ipython-genutils
ipywidgets

isort

5.0.0
2021.4.0
5.0.6
0.7.1
20200713
2021.4.0
0.17

0.3

1.0.1

1.1.0
3.0.12
3.9.0

1.1.2
1.10.1

2.0

0.9.0
0.18.2
0.5.3
21.1.2
4.0.7

0.7
2.1.2

2.6.6
0.4.6
0.2.0

0.20
1.0.0
1.44.0
2.10.0
2.10
2021.3.31
2.9.0
1.2.0
4.11.3
1.1.1

3.1.0
5.34

7.22.0
0.2.0

7.6.3
5.8.0

python-dateutil
PyWavelets
pywin3g2
pywin32-ctypes
pywinpty
PyYAML

pyzmq
QDarkStyle
QtAwesome
gtconsole

QtPy

regex

requests
requests-oauthlib
require-python-3
rope

rsa

Rtree
ruamel-yaml-conda
scikit-image
scikit-learn

scipy

seaborn
Send2Trash
setuptools

simplegeneric
singledispatch

Sip

Six

smmap

sniffio
snowballstemmer
sortedcollections
sortedcontainers
soupsieve

Sphinx

sphinxcontrib-
applehelp
sphinxcontrib-devhelp
sphinxcontrib-htmlhelp
sphinxcontrib-jsmath
sphinxcontrib-qthelp

2.8.1
1.1.1

227
0.2.0
0.5.7
5.4.1
20.0.0
2.8.1
1.0.2
5.0.3
1.9.0
2021.4.4
2.25.1
1.3.1

1

0.18.0
4.8
0.9.7
0.15.100
0.18.1
1.0.2
1.6.2
0.11.1
1.5.0
52.0.0.post
20210125
0.8.1
0.0.0
4.19.13
1.15.0
4.0.0
1.2.0
2.1.0
2.1.0
2.3.0
2.2.1
4.0.1
1.0.2

1.0.2
1.0.3
1.0.1
1.0.3
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itsdangerous
jdcal

Jjedi

Jinjaz2

joblib

jsons
jsonschema
Jjupyter
Jjupyter-client
Jjupyter-console
Jjupyter-core
Jjupyter-packaging
Jjupyter-server

jupyterlab
Jjupyterlab-pygments
Jjupyterlab-server

Jjupyterlab-widgets
keras
Keras-Preprocessing
keyring

kiwisolver

lazy-object-proxy
libarchive-c
libclang
llumlite

locket

beml
Markdown
MarkupSafe
matplotlib
mccabe
menuinst
mistune
mkl-fft
mkl-random
mbkl-service
mock
more-itertools
mpmath

1.1.0

1.4.1

0.17.2
2.11.3
1.1.0
0.9.5
3.2.0
1.0.0
6.1.12
6.4.0
4.7.1
0.7.12
1.4.1

3.0.14
0.1.2

2.4.0

1.0.0
2.8.0
1.1.2
22.3.0
1.3.1

1.6.0
2.9
14.0.1
0.36.0
0.2.1
4.6.3
3.3.6
1.1.1
3-34
0.6.1
1.4.16
0.8.4
1.3.0
1.2.1
2.3.0
4.0.3
8.7.0
1.2.1

sphinxcontrib-
serializinghtml
sphinxcontrib-
websupport
spyder
spyder-kernels
SQLAIlchemy
statsmodels
sympy

tables

tabulate

tblib

tenacity
tensorboard
tensorboard-data-
server
tensorboard-plugin-wit
tensorflow
tensorflow-io-gcs-
filesystem
termcolor
terminado
testpath
textdistance
tf-estimator-nightly

threadpoolctl
three-merge
tifffile

toml

toolz

tornado

tgdm

traitlets
typed-ast
typing
typing-extensions
ujson
unicodecsv
urllib3
watchdog
wcwidth
webcolors
webencodings

1.1.4

1.2.4

4.2.5
1.10.2
1.4.7
0.12.2
1.8
3.6.1
0.8.9
1.7.0
8.0.1
2.8.0
0.6.1

1.8.1
2.8.0
0.25.0

1.1.0
0.9.4
0.4.4
4.2.1
2.8.0.dev202
1122109
2.1.0
0.1.1
2021.4.8
0.10.2
0.11.1
6.1
4.59.0
5.0.5
1.4.2
3.7-4.3
3-7-4-3
4.0.2
0.14.1
1.26.4
1.0.2
0.2.5
1.11.1
0.5.1

v
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msgpack 1.0.2 Werkzeug 1.0.1
multipledispatch 0.6.0 wheel 0.36.2
mypy-extensions 0.4.3 widgetsnbextension 3.5.1
navigator-updater 0.2.1 win-inet-pton 1.1.0
nbclassic 0.2.6 win-unicode-console 0.5
nbclient 0.5.3 wincertstore 0.2
nbconvert 6.0.7 wrapt 1.12.1
nbformat 5.1.3 xlrd 2.0.1
nest-asyncio 1.5.1 XlsxWriter 1.3.8
networkx 2.5 xlwings 0.23.0
nltk 3.6.1 xlwt 1.3.0
nose 1.3.7 xmltodict 0.12.0
notebook 6.3.0 yapf 0.31.0
numba 0.53.1 zict 2.0.0
numexpr 2.7.3 Zipp 3.4.1
numpy 1.20.1 zope.event 4.5.0
numpy-financial 1.0.0 zope.interface 5.3.0




Field-Scale Generality of the Machine Learning Models

A.2 General Well Statistics Python Code

Importing libraries
In[]: isport pandas as pd
from sklearn import datasets
isport seaborm as sns
sns.set()
isport matplotlib.pyplot as plt
from glob import glob
isport warnings
isport numpy as np
isport statsmodels.api as sm
from sklearn.linear_model import LinearRegression

warnings.filterwarnings(“ignore®)
well_list « glob(r'USROP_A @ N-NA_F-9_Ad.csv', recursivesFalse)

df = pd.read_csv( USROP_A & N-NA_F-9_Ad.csv')
df « pd.read_csv(well _list[o])

df .drop( ‘Unnamed: @',axis«1, inplace<True)
df .dropna(axis«@, hows'any', inplace«True)

ChEALNUNERvuvanawnw

Loading the raw data
In [ J: 1 df.head()
In[]: 1 df

In [ J: 1 # Descriptive statistics ane very useful for initial exploration of the waricbles

2
3 df.describe(includes'all')

Dealing with missing values

In[]): 1 # dota.isnull() # shows o df with the inforsotion whether o dota point 15 null
2 # Since True « the dota point is sissing, afile Folse « the dote point {s not missing, we con sum them
3 2 This will give us the total nuster of wissing volues feature-wise
4
s

df.dsnull().sum()

In[ ]J: 1 # correlation motrix
2 sns.pairplot(df)

In[]: plt.figure(figsizes(12,12))

corr « df.coer()

sns.heatmap(corr, xticklabelsscorr.colusns, yticklabelsecorr.colusns,cmaps"Y1GnBu",annotsTrue)

N

w

In [ ]: 1 plt.figure(figsizes(12,12))

Correlated variables (ROP)
In [ J: 1 f, (ax1, ax2, ax3) = plt.subplots(l, 3, shareysFalse, figsize «(18,5)) #sharey > share 'ROP' as y
2
3 axl.scatter(df['Average Standpipe Fressure kPa'),of['Rate of Penetration m/h'])
4 axi.set_title('Average Standpipe Pressure and ROP')
S ax2.scatter(df['Average Rotary Speed rpm'],df['Rate of Penetration a/h'])
6 ax2.set_title('Average Rotary Speed and ROP')
7 ax3.scatter(df['weight on Bit kigf'],df['Rate of Penetration w/h'])
2 ax3.set_title('Weight on Bit and ROP')
9
In [ ]J: 1 ¢, (ax3, ax2) = plt.subplots(l, 2, shareysFalse, figsize «(18,5)) #sharey -> share 'ROP' as y
2
3 axl.scatter(df['Meight on Bit kigf'),df('Rate of Penctration m/h'], colors'green”, markers".", 5«5 )
4 axl.set_title('wo8 VS Rate of Penetration m/h')
S ax2.scatter(df['Average Rotary Speed rpm’],df['Rate of Penetration m/h'], colors"red", markers".®, se5 )
6 ax2.set_title('Average Rotary Speed VS Rate of Penetration m/h')
7
8
In[]): f, (ax1, ax2, ax3, ax4, axS, ax6) « plt.subp s 1 ysFalse, figsize =(29,15)) #sharey -> share ‘depth’ as y

axi.plot(df( Measured Depth m'],df[ Average Standpipe Pressure kPa'], colors'green’, linewidthel, markersizes12)
axl.set_title('Measured Depth m')
axl.set_ylabel('Average Standpipe Pressure’)

ax2.plot(df[ Measured Depth m'],df["'Mud Flow In L/min’], colors'lime’, linewidthsl, markersizes12)
ax2.set_ylabel('Mud Fiow In')

ax3.plot(df[ Measured Depth m'],df["Average Surface Torque iN.m'), colors’'gold’, linewidthel, markersize«12)
ax3.set_ylabel('Average Surface Torgue')

axd.plot(df[ Measured Depth m'],df["Average Rotary Speed rpm'], colors'darkorange’, linewldthsl, markersizes12)
axd.set_ylabel('Average Rotary Speed')

axS.plot(df[ Measured Depth m'],df[ "Rate of Penetration m/h’), colors'red’, linewidthsl, markersize«12)
axS.set_ylabel('Rate of Penetration’)

ax6.plot(df([ Measured Depth m'],df[ "Meight on Bit kkgf'], colors'darkred’, linewidth«l, markersizes«12)
ax6.set_ylabel('Meight on Bit')

EBRUA LR N EBvnvanswne

I

plt.savefig(‘plot.png’, dpi«380, bbox_inchess'tight')

&
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In[ ):

In[]:

In[]:

In[]:

In [ ]:

In(]:

Continuity of Data

RN RRUNE B vanmwne

AhRUNEBvevanswne GRllNEBSvevanawnes GhAUNESvevanauwunes NSGLRERNESvevoawnawnwe

GhRlNESvuvanawna

plt.plot(df( Hole Depth (TVD) m'],df[ 'Rate of Penetration m/h'], colors'blue’, linewidth«d.S, sarkersizes12)

# x-axis label

plt.xlabel( Hole Depth (TVD) m")

” y label

plt.ylabel('Rate of Penotration w/h')

# plot title

plt.title('TVD = VS Rate of Penetration m/h')
# showing legend

#ox. Legend()

plt.rcParams(“figure.figsize"] « (8,2)
plt.xlim(450, 1069)
plt.ylin(e, 108)

# function to show the plot

2ox.savefig(‘plot.png’, dpi=38@, bbox_inches«'tight’)
plt.savefig('plot.png’, dpi«36@, bbox_inches«'tight')
plt.show()

plt.plot(df( Measured Depth m'),df[ Rate of Penetration m/h'], colors'blue’, linewidthsd.5, markersizes<12)

# x-axis label

plt.xlabel( ‘Measured Depth m')

# frequency label

plt.ylabel('Rate of Penetration w/h')

# plot title

plt.title('Measured Depth m VS Rate of Penetration m/h')
# showing Legend

#ax. Legend()

plt.rcParams[“figure.figsize”] « (8,2)

# function to show the plot

#ox.savefig( 'plot.png', dpi=300, bbox_inches'tight')
plt.savefig('plot.png’, dpi=3e0, bbox_inchess'tight')
plt.show()

plt.plot(df( Hole Depth (TVD) m'),df[ 'Average Rotary Speed rps'], colors'red', linewidth«d.S, sarker 2)

# x-axis label

plt.xlabel( Hole Depth (TVD) m')

# frequency Label

plt.ylabel('Average Rotary Speed rpm’)

# plot title

plt.title('TVD = VS Average Rotary Speed rpm’)
# showing Legend

#plt.Legend()

plt.rcParams( " figure.figsize”] « (8,2)

& function to show the plot
plt.savefig(‘'plot.png’, dpi«380, bbox_inchess'tight')
plt.show()

plt.plot(df( 'Measured Depth m'),df[ "Average Rotary Speed rpm'), colors'red', linewidthsd.5, markersizes12)

# x-axtis label

plt.xlabel( 'Measured Dapth m')

# freguency label

plt.ylabel( Average Rotary Speed rpa’)

2 plot title

plt.title('Measured Depth m VS Average Rotary Speed rpm’)

plt.rcParams(“figure.figsize"] « (8,2)

# function to show the plot

plt.savefig('plot.png’, dpie«3€0, bbox_inchess tight')
plt.shom()

plt.plot(df( Hole Depth (TVD) m'),df['Weight on Bit kigf'], colors'purple’, linewidths0.5, markersizes12)

# x-axis latel

plt.xlabel('Hole Depth (TVD) m")

# frequency label

plt.ylabel('Meight on Bit kxgf')

7 plot title

plt.title('TVD m VS Weight on Bit kkgf')
# showing Legend

#plt.Legend()

plt.rcParams(“figure.figsize"] « (8,2)

# function to show the plot

plt.savefig('plot.png’, dpi«3ee, bbox_inchess'tight')
plt.show()

plt.plot(df( 'Measured Depth m'],df[ 'Weight on Bit kkgf'), colors'purple’, linewi 5, marke 2)

£ x-axis Label

plt.xlabel( 'Measured Depth m')

# frequency label

plt.ylabel("Meight on Bit kxgf')

# plot title

plt.title('Measured Depth m VS Weight on Bit kkgf')
& showing Legend

#plt.Legend()

plt.rcParams(“figure.figsize™] « (8,2)

# function to show the plot

plt.savefig('plot.png’, dpi<300, bbox_inchess'tight')
plt.show()
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In[]: plt.plot(df( Hole Depth (TVD) m'],df['Average Standpipe Pressure kPa'), colore'green’, linewidthed.5, markersizes12)
# x-axts label

plt.xlabel('Hole Depth (TVD) m')

# frequency label

plt.ylabel( Average Standpipe Pressure kPa')

# plot title

plt.title('TVD = VS Average Standpipe Fressure')

& showing Legend

#plt.Legend()

plt.rcParams(“figure.figsize"] « (8,2)

# function to show the plot

plt.savefig(‘'plot.png’, dpi«3ee, bbox_inchess tight')
plt.shom()

GeblEBvewanawne

In[]: plt.plot(df( 'Measured Depth m'),df[ "Average Standpipe Pressure kPa'], colors'green’, linewidthed.s, markersizes=12)
# x-axis Label

plt.xlabel( 'Measured Depth m')

2 frequency label

plt.ylabel('Average Standpipe Pressure kPa')

# plot title

plt.title('Measured Depth m VS Average Standpipe Pressure’)

& showing Legend

#plt.Legend()

plt.rcParams( " figure. H;sm"] « (8,2)

# function to show the pl

plt.savefig('plot.png’, q-n-;eo, bbox_inchess tight')
plt.shom()

GREblEBvevuanawne

Probability Distribution

In [ J: 1 plt.figure(figsizes(15,15))

2 for 1 in range(len(df.columns)):

3 plt.subplot(3,4,1+1)

4 plt.title(df.columns.values[1i])

s sns.distplot(df[df.columns.values[i]]))
& plt.show()

In[]): 1
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A.3 Training and Testing the model

¢ Gradient Boosting Regressor

In[ ]:

In[ ]:

In[ ]:

In [ I3

In[ 1

In [ ]:

Import the relevant libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import warnings

from numpy.random import seed
import tensorflow as tf

import math

import pickle

from tensorflow import keras
from scipy.stats import pearsonr

DVLONAV B WN R

-
o

warnings.filterwarnings('ignore')
seed(@)
14 tf.random.set_seed(8)

-
™

SKlearn model libraries

1 from sklearn.model_selection import train_test_split
2 from sklearn.tree import export_graphviz

3 import pydot

4

5 from sklearn.neural_network import MLPRegressor

6

7 from sklearn.neighbors import KNeighborsRegressor

8

9 from sklearn.ensemble import AdaBoostRegressor
1@ from sklearn.ensemble import RandomForestRegressor
11 from sklearn.ensemble import GradientBoostingRegressor

13 from sklearn.linear_model import LinearRegression

15 from sklearn.model_selection import GridSearchCV

16 from sklearn.model_selection import KFold

17 from sklearn.model_selection import cross_val_score

18 from sklearn.model_selection import RepeatedStratifiedKFold
20 from sklearn.metrics import mean_absolute_percentage_error
21 from sklearn.metrics import median_absolute_error

22 from sklearn.metrics import mean_absolute_error

23 from sklearn.metrics import mean_squared_error

24 from sklearn.metrics import r2_score

26 from tensorflow import keras

28 import seaborn as sns
29 import io
Importing Data

1 df = pd.read_csv('USROP_A © N-NA_F-9_Ad.csv')
2 del df['Unnamed: @']

df = df[['Average Standpipe Pressure kPa', 'Mud Flow In L/min','Average Surface Torque kN.m','Average Rotary Speed rpm', 'Measured Depth

3
4
5
6 #print(df)
7
8
9

X = df.iloc[:,0:6]
y = df.iloc[:,11] #ROP
df = df.iloc[: , :12]
10
1 df
7 >
1 X

Training the model

1 train_x, test_x, train_y, test_y = train_test_split(X, y, test_size=0.2, random_state=42) #test:20% train:80%
2 plt.rcParams['font.sans-serif'] = ['Times New Roman']

3

4 print(train_x.shape, test_x.shape, train_y.shape, test_y.shape)

Gradient Boosting Regressor

#gbr = GradientBoostingRegressor(n_estimators=1000, Learning_rate=0.1, max_depth=4, random_state=1, subsample=0.5)

1
2
3 # with default parameters
4 gbr = GradientBoostingRegressor()
5 gbr.fit(train_x, train_y)

6 #gbr.fit(X,y)

7

8

9

#Predicting data set
ypred = gbr.predict(X)

11 #Regression Metrics
12 errors = np.abs(ypred - y) # Print out the mean absolute error (mae)
13 MAPE=mean_absolute_percentage_error(y, ypred)

14 accuracy = 100 - np.mean(MAPE)

15 R2 = r2_score(y, ypred)

16 MSE=mean_squared_error(y, ypred)

17 RMSE=math.sqrt(MSE)

18 MedAE=median_absolute_error(y, ypred)

19
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21 #Predicting training data set
22 train_predictions = gbr.predict(train_x)
23 plt.scatter(train_y, train_predictions, s=50, c="black", label="Train Data", alpha=1)

25 #Predicting testing data set
26 test_predictions = gbr.predict(test_x)
27 plt.scatter(test_y, test_predictions, s=50, c="green"”, label="Test Data", alpha=1)

28

29 plt.plot([-1, np.max([y, ypred])], [-1, np.max([y, ypred])], c="red”, linewidth=3,
30 linestyle="--", label="Perfect prediction”)

31 text = "R2 = " + str(np.round(R2,3))

32

33 plt.annotate(text, (1,0),fontsize=15)

34 plt.xlabel("Rate of Penetration (m/h)",fontsize=15)

35 plt.ylabel("ML obtained Rate of Penetration (m/h)",fontsize=15)
36 plt.xticks(fontsize=15)

37 plt.yticks(fontsize=15)

38 plt.legend(loc = 'best', fontsize=15)

40 plt.show()
41 plt.rcParams[“figure.figsize"] = (20,20)

45 #Regression Metrics

46 print('Mean Absolute Error:', round(np.mean(errors), 10), 'units')
47 print('MAPE:',MAPE, 'Accuracy:',round(accuracy, 2), '%.')

48 print('R2=',R2)

49 print('MSE:',MSE)

50 print('RMSE:',RMSE)

51 print('Median Absolute Error:',MedAE)

52
In [ ]: 1 dfl=pd.DataFrame()
2
3 dfi['ROP'] = df['Rate of Penetration m/h']
4 dfi['Perfect Prediction'] = ypred
5 pd.set_option("display.max_rows", None, "display.max_columns”, None)
6
7 dfl
In[]: x_ax = range(len(test_y))

plt.scatter(x_ax, test_y, s=5, color="blue", label="original"
plt.plot(x_ax, test_predictions, lw=0.5, color="red", label="predicted")

plt.legend()
plt.rcParams["figure.figsize"] = (20,5)
plt.show()
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Hyperparameter Tuning

In [ ]: 1 gbr=GradientBoostingRegressor()

2 search_grid={'n_estimators':[50,200,500,1000], 'learning_rate':[0.01,.1], ‘max_depth':[1,2,4],
3 "subsample’:[.5,.75,1], 'random_state':[1]}
4 search=GridSearchCV(estimator=gbr,param_grid=search_grid, scoring="neg_mean_squared_error',n_jobs=1)
5 result= search.fit(train_x,train_y)
6
7 print("Best parameters Gradient Boosting Regressor:",result.best_params_)
8 print(“"Best score GBR:",result.best_score_)
In [ Js 1 #Defined hyperparameter tuning
2 gbr = GradientBoostingRegressor(n_estimators=1008, learning_rate=0.1, max_depth=4, random_state=1, subsample=0.5)
3 gbr.fit(train_x, train_y)
4 #gbr.fit(X,y)
5
6 #Predicting data set
7 ypredHT = gbr.predict(X)
8
9 #Regression Metrics

10 errors = np.abs(ypredHT - y) # Print out the mean absolute error (mae)
11 MAPE=mean_absolute_percentage_error(y, ypredHT)

12 accuracy = 180 - np.mean(MAPE)

13 R2 = r2_score(y, ypredHT)

14 MSE=mean_squared_error(y, ypredHT)

15 RMSE=math.sqrt(MSE)

16 MedAE=median_absolute_error(y, ypredHT)

19 #Predicting training data set
20 train_predictions = gbr.predict(train_x)
21 plt.scatter(train_y, train_predictions, s=50, c="black", label="Train Data", alpha=1)

23 #Predicting testing data set
24 test_predictions = gbr.predict(test_x)
25 plt.scatter(test_y, test_predictions, s=50, c="green", label="Test Data”, alpha=1)

27 plt.plot([-1, np.max([y, ypredHT])], [-1, np.max([y, ypredHT])], c="red", linewidth=3,
28 linestyle="--", label="Perfect prediction")
29 text = "R2 = " + str(np.round(R2,3))

31 plt.annotate(text, (1,0),fontsize=15)

32 plt.xlabel("Rate of Penetration (m/h)",fontsize=15)

33 plt.ylabel("ML obtained Rate of Penetration (m/h)",fontsize=15)
34 plt.xticks(fontsize=15)

35 plt.yticks(fontsize=15)

36 plt.legend(loc = 'best’, fontsize=15)

38 plt.show()
39 plt.rcParams["figure.figsize"] = (20,20)

41 #Regression Metrics

42 print('Mean Absolute Error:', round(np.mean(errors), 10), 'units')
43 print('MAPE:',MAPE, 'Accuracy:',round(accuracy, 2), '%.')

44 print('R2=',R2)

45 print('MSE:",MSE)

46 print('RMSE:',RMSE)

47 print('Median Absolute Error:',MedAE)
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In [ ]: 1 x_ax = range(len(test_y))
2 plt.scatter(x_ax, test_y, s=5, color="blue", label="original™)
3 plt.plot(x_ax, test_predictions, 1w=0.5, color="red", label="predicted")
4
5 plt.legend()
6 plt.rcParams["figure.figsize"] = (20,5)
7 plt.show()
In [ ]: 1 dfi=pd.DataFrame()
2
3 dfi['ROP'] = df['Rate of Penetration m/h']
4 dfl['Perfect Prediction'] = ypred
5 dfl['Perfect Prediction HT'] = ypredHT
6 pd.set_option("display.max_rows", None, "display.max_columns", None)
7
8 dfl

¢ K Neighbors Regressor

In [ Js 1 # with default parameters
2 KN = KNeighborsRegressor()
3 KN.fit(train_x, train_y)
4 #gbr.fit(X,y)
5
6 #Predicting data set
7 ypred = KN.predict(X)
8
9 #Regression Metrics
10 errors = np.abs(ypred - y) # Print out the mean absolute error (mae)
11 MAPE=mean_absolute_percentage_error(y, ypred)
12 accuracy = 180 - np.mean(MAPE)
13 R2 = r2_score(y, ypred)
14 MSE=mean_squared_error(y, ypred)
15 RMSE=math.sqrt(MSE)
16 MedAE=median_absolute_error(y, ypred)
17
18 #Predicting training data set
19 train_predictions = KN.predict(train_x)
20 plt.scatter(train_y, train_predictions, s=50, c="black", label="Train Data", alpha=1)
21
22 #Predicting testing data set
23 test_predictions = KN.predict(test_x)
24 plt.scatter(test_y, test predictions, s=50, c="green", label="Test Data", alpha=1)
25
26 plt.plot([-1, np.max([y, ypred])], [-1, np.max([y, ypred])], c="red", linewidth=3,
27 linestyle="--", label="Perfect prediction")
28 text = "R2 = " + str(np.round(R2,3))
29
30 plt.annotate(text, (1,0),fontsize=15)
31 plt.xlabel("Rate of Penetration (m/h)",fontsize=15)
32 plt.ylabel("ML obtained Rate of Penetration (m/h)",fontsize=15)
33 plt.xticks(fontsize=15)
34 plt.yticks(fontsize=15)
35 plt.legend(loc = 'best', fontsize=15)
36
37 plt.show()
38 plt.rcParams["figure.figsize"] = (20,20)
39
40 #Regression Metrics
41
42 print('Mean Absolute Error:', round(np.mean(errors), 10), 'units')
43 print('MAPE:',MAPE, 'Accuracy:',round(accuracy, 2), '%.')
44 print('R2=',R2)
45 print('MSE:',MSE)
46 print('RMSE:',RMSE)
47 print('Median Absolute Error:',MedAE)
48
In[ ]: 1 dfl=pd.DataFrame()
2
3 df1['ROP'] = df['Rate of Penetration m/h']
4 dfl['Perfect Prediction'] = ypred
S pd.set_option("display.max_rows"”, None, "display.max_columns", None)
6
7 df1
In [ ]: 1 x_ax = range(len(test_y))
2 plt.scatter(x_ax, test_y, s=5, color="blue", label="original")
3 plt.plot(x_ax, test_predictions, lw=0.5, color="red", label="predicted")
4
5 plt.legend()
6 plt.rcParams["figure.figsize"] = (20,5)
7 plt.show()
Hyperparameter Tuning
In £ 13 1 KN = KNeighborsRegressor()
2 seed = 13
3 kfold = KFold(n_splits=10, shuffle=True, random_state=seed)
4
5 param_list2 = [{'n_neighbors': [2,3,4,5,6], 'weights': ['uniform®,'distance’]}]
6 # Search for best hyperparameters
7 grid = GridSearchCV(estimator=KN, param_grid=param_list2, cv=kfold, scoring='r2')
8 grid.fit(train_x,train_y)
9

10 print(grid.best_score_)
11 print(grid.best_estimator_)
12 print(grid.best_params_)
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I [ 1 #Defined hyperparameter tuning
2 KN = KNeighborsRegressor(n_neighbors=4, weights='distance')
3 KN.fit(train_x, train_y)
4 #gbr.fit(X,y)
5
6 #Predicting data set
7 ypredHT = KN.predict(X)
8
9 #Regression Metrics
10 errors = np.abs(ypredHT - y) # Print out the mean absolute error (mae)
11 MAPE=mean_absolute_percentage_error(y, ypredHT)
12 accuracy = 108 - np.mean(MAPE)
13 R2 = r2_score(y, ypredHT)
14 MSE=mean_squared_error(y, ypredHT)
15 RMSE=math.sqrt(MSE)
16 MedAE=median_absolute_error(y, ypredHT)
17
18 #Predicting training data set
19 train_predictions = KN.predict(train_x)
20 plt.scatter(train_y, train_predictions, s=50, c="black", label="Train Data", alpha=1)
21
22 #Predicting testing data set
23 test_predictions = KN.predict(test_x)
24 plt.scatter(test_y, test_predictions, s=5@, c="green"”, label="Test Data", alpha=1)
25
26 plt.plot([-1, np.max([y, ypred])], [-1, np.max([y, ypred])], c="red", linewidth=3,
27 linestyle="--", label="Perfect prediction")
28 text = "R2 = " + str(np.round(R2,3))
29
30 plt.annotate(text, (1,0),fontsize=15)
31 plt.xlabel("Rate of Penetration (m/h)",fontsize=15)
32 plt.ylabel("ML obtained Rate of Penetration (m/h)",fontsize=15)
33 plt.xticks(fontsize=15)
34 plt.yticks(fontsize=15)
35 plt.legend(loc = 'best', fontsize=15)
36
37 plt.show()
38 plt.rcParams["figure.figsize"] = (20,20)
39
40 #Regression Metrics
41 print('Mean Absolute Error:', round(np.mean(errors), 10), ‘'units')
42 print('MAPE:',MAPE, 'Accuracy:',round(accuracy, 2), '%.')
43 print('R2=',R2)
44 print('MSE:',MSE)
45 print('RMSE:',RMSE)
46 print('Median Absolute Error:',MedAE)
47
In[]: 1 x_ax = range(len(test_y))
2 plt.scatter(x_ax, test_y, s=5, color="blue", label="original")
3 plt.plot(x_ax, test_predictions, lw=0.5, color="red", label="predicted")
4
5 plt.legend()
6 plt.rcParams["figure.figsize"] = (20,5)
7
8 plt.show()
In [ ]: dfl=pd.DataFrame()

df1['ROP'] = df['Rate of Penetration m/h’]
dfl[ ‘Perfect Prediction'] = ypred

dfl[ 'Perfect Prediction HT'] = ypredHT
pd.set_option("display.max_rows", None, "display.max_columns", None)
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¢ Linear Regression

In [ 1t # with default parameters
R = LinearRegression()
LR.fit(train_x, train_y)

#gbr. fit(X,y)

#Predicting data set
ypred = LR.predict(X)

#Regression Metrics

10 errors = np.abs(ypred - y) # Print out the mean absolute error (mae)
11 MAPE=mean_absolute_percentage_error(y, ypred)

12 accuracy = 100 - np.mean(MAPE)

13 R2 = r2_score(y, ypred)

14 MSE=mean_squared_error(y, ypred)

15 RMSE=math.sqrt(MSE)

16 MedAE=median_absolute_error(y, ypred)

18 #Predicting training data set
19 train_predictions = LR.predict(train_x)
20 plt.scatter(train_y, train_predictions, s=50, c="black", label="Train Data", alpha=1)

22 #Predicting testing data set
23 test_predictions = LR.predict(test_x)
24 plt.scatter(test_y, test_predictions, s=50, c="green"”, label="Test Data”, alpha=1)

25

26 plt.plot([-1, np.max([y, ypred])]l, 1, np.max([y, ypred])], c="red", linewidth=3,
27 linestyle="--", label="Perfect prediction")

28 text = "R2 = " + str(np.round(R2,3))

29

30 plt.annotate(text, (1,0),fontsize=15)

31 plt.xlabel("Rate of Penetration (m/h)",fontsize=15)

32 plt.ylabel("ML obtained Rate of Penetration (m/h)",fontsize=15)
33 plt.xticks(fontsize=15)

34 plt.yticks(fontsize=15)

35 plt.legend(loc = 'best', fontsize=15)

37 plt.show()
38 plt.rcParams["figure.figsize"] = (20,20)
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39

40 #Regression Metrics

41

42 print('Mean Absolute Error:', round(np.mean(errors), 10), 'units')
43 print('MAPE:',MAPE, 'Accuracy:',round(accuracy, 2), '%.')

44 print('R2=',R2)

45 print('MSE:',MSE)

46 print('RMSE:',RMSE)

47 print('Median Absolute Error:',MedAE)

48
In[ ]: 1 dfl=pd.DataFrame()
2
3 dfi['ROP'] = df['Rate of Penetration m/h']
4 dfi['Perfect Prediction'] = ypred
5 pd.set_option("display.max_rows", None, "display.max_columns"”, None)
6
7 df1
In [ ]: x_ax = range(len(test_y))

plt.scatter(x_ax, test_y, s=5, color="blue", label="original")
plt.plot(x_ax, test_predictions, 1lw=0.5, color="red", label="predicted")

plt.legend()
plt.rcParams["figure.figsize"] = (20,5)
plt.show()
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e Multi-Layer Perceptron Regressor

In[ ]: # with default parameters
MLP = MLPRegressor()
MLP.fit(train_x, train_y)

#gbr.fit(X,y)

#Predicting data set
ypred = MLP.predict(X)

#Regression Metrics

10 errors = np.abs(ypred - y) # Print out the mean absolute error (mae)
11 MAPE=mean_absolute_percentage_error(y, ypred)

12 accuracy = 100 - np.mean(MAPE)

13 R2 = r2_score(y, ypred)

14 MSE=mean_squared_error(y, ypred)

15 RMSE=math.sqrt(MSE)

16 MedAE=median_absolute_error(y, ypred)

18 #Predicting training data set
19 train_predictions = MLP.predict(train_x)
20 plt.scatter(train_y, train_predictions, s=508, c="black", label="Train Data", alpha=1)

22 #Predicting testing data set
23 test_predictions = MLP.predict(test_x)
24 plt.scatter(test_y, test_predictions, s=5@, c="green"”, label="Test Data", alpha=1)

26 plt.plot([-1, np.max([y, ypred])], [-1, np.max([y, ypred])], c="red”, linewidth=3,
27 linestyle="--", label="Perfect prediction")
28 text = "R2 = " + str(np.round(R2,3))

30 plt.annotate(text, (1,0),fontsize=15)

31 plt.xlabel("Rate of Penetration (m/h)",fontsize=15)

32 plt.ylabel("ML obtained Rate of Penetration (m/h)",fontsize=15)
33 plt.xticks(fontsize=15)

34 plt.yticks(fontsize=15)

35 plt.legend(loc = 'best', fontsize=15)

37 plt.show()
38 plt.rcParams["figure.figsize"] = (20,20)

40 #Regression Metrics

42 print('Mean Absolute Error:', round(np.mean(errors), 10), 'units')
43 print('MAPE:',MAPE, 'Accuracy:',round(accuracy, 2), '%.')

44 print('R2=",R2)

45 print('MSE:',MSE)

46 print('RMSE:',RMSE)

47 print('Median Absolute Error:',MedAE)

In[]: dfl=pd.DataFrame()

df1['ROP'] = df['Rate of Penetration m/h']

df1['Perfect Prediction'] = ypred

pd.set_option("display.max_rows”, None, "display.max_columns"”, None)
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dfl

x_ax = range(len(test_y))
plt.scatter(x_ax, test_y, s=5, color="blue", label="original™)
plt.plot(x_ax, test_predictions, lw=8.5, color="red", label="predicted")

In[]:

plt.legend()
plt.rcParams["figure.figsize"] = (20,5)
plt.show()
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Hyperparameter Tuning

In [ ]: param_grid = {'hidden_layer_sizes': [(50,50,50), (50,100,50), (10@,1)], 'activation': ['relu’,'tanh’, 'logistic']
‘alpha': [6.0001, 6.05], 'learning_rate': ['constant’,'adaptive'],'solver': ['adam']}
MLP = MLPRegressor()

grid_searchMLP= GridSearchCV(MLP,param_grid,cv=5, scoring='neg_mean_squared_error', verbose=0, n_jobs=-1)

grid_result = grid_searchMLP.fit(train_x,train_y)
best_params = grid_result.best_params_

VNGOV A WN R

print("Best parameters MLP Regressor:",best_params)
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In | J< 1 #Defined hyperparameter tuning
2 MLP = MLPRegressor(hidden_layer_sizes=(50, 50, 50), activation='relu’,
3 solver='adam’, learning_rate='adaptive', alpha=(8.05))
4 MLP.fit(train_x, train_y)
5 #gbr.fit(X,y)
6
7 #Predicting data set
8 ypredHT = MLP.predict(X)
9
10 #Regression Metrics
11 errors = np.abs(ypredHT - y) # Print out the mean absolute error (mae)
12 MAPE=mean_absolute_percentage_error(y, ypredHT)
13 accuracy = 100 - np.mean(MAPE)
14 R2 = r2_score(y, ypredHT)
15 MSE=mean_squared_error(y, ypredHT)
16 RMSE=math.sqrt(MSE)
17 MedAE=median_absolute_error(y, ypredHT)
18
19 #Predicting training data set
20 train_predictions = MLP.predict(train_x)
21 plt.scatter(train_y, train_predictions, s=50, c="black", label="Train Data", alpha=1)
22
23 #Predicting testing data set
24 test_predictions = MLP.predict(test_x)
25 plt.scatter(test_y, test_predictions, s=50, c="green", label="Test Data", alpha=1)
26
27 plt.plot([-1, np.max([y, ypred])], [-1, np.max([y, ypred])], c="red", linewidth=3,
28 linestyle="--", label="Perfect prediction")
29 text = "R2 = " + str(np.round(R2,3))
30
31 plt.annotate(text, (1,0),fontsize=15)
32 plt.xlabel("Rate of Penetration (m/h)",fontsize=15)
33 plt.ylabel("ML obtained Rate of Penetration (m/h)",fontsize=15)
34 plt.xticks(fontsize=15)
35 plt.yticks(fontsize=15)
36 plt.legend(loc = 'best', fontsize=15)
37
38 plt.show()
39 plt.rcParams["figure.figsize"] = (20,20)
40
41 #Regression Metrics
42 print('Mean Absolute Error:', round(np.mean(errors), 10), 'units')
43 print('MAPE:',MAPE, 'Accuracy:',round(accuracy, 2), '%.')
44 print('R ,R2)
45 print('MSE:',MSE)
46 print('RMSE:',RMSE)
47 print('Median Absolute Error:',MedAE)
a8
In [ 3¢ 1 x_ax = range(len(test_y))
2 plt.scatter(x_ax, test_y, s=5, color="blue", label="original")
3 plt.plot(x_ax, test_predictions, lw=08.5, color="red", label="predicted")
4
5 plt.legend()
6 plt.rcParams[“figure.figsize"] = (20,5)
7 plt.show()
Inf 1 dfl=pd.DataFrame()

df1['ROP'] = df['Rate of Penetration m/h']

dfl[ 'Perfect Prediction'] = ypred

dfl[ 'Perfect Prediction HT'] = ypredHT
pd.set_option("display.max_rows", None, "display.max_columns", None)
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¢ Random Forest Regressor

In[ ]: # with default parameters
F = RandomForestRegressor(random_state = ©)
RF.fit(train_x, train_y)

#gbr.fit(X,y)

#Predicting data set
ypred = RF.predict(X)

#Regression Metrics

180 errors = np.abs(ypred - y) # Print out the mean absolute error (mae)
11 MAPE=mean_absolute_percentage_error(y, ypred)

12 accuracy = 180 - np.mean(MAPE)

13 R2 = r2_score(y, ypred)

14 MSE=mean_squared_error(y, ypred)

15 RMSE=math.sqrt(MSE)

16 MedAE=median_absolute_error(y, ypred)

18 #Predicting training data set
19 train_predictions = RF.predict(train_x)
20 plt.scatter(train_y, train_predictions, s=508, c="black", label="Train Data", alpha=1)

22 #Predicting testing data set
23 test_predictions = RF.predict(test_x)
24 plt.scatter(test_y, test_predictions, s=5@, c="green"”, label="Test Data", alpha=1)

25

26 plt.plot([-1, np.max([y, ypred])], [-1, np.max([y, ypred])], c="red"”, linewidth=3,
27 linestyle="--", label="Perfect prediction")

28 text = "R2 = " + str(np.round(R2,3))

29

30 plt.annotate(text, (1,0),fontsize=15)

31 plt.xlabel("Rate of Penetration (m/h)",fontsize=15)

32 plt.ylabel("ML obtained Rate of Penetration (m/h)",fontsize=15)
33 plt.xticks(fontsize=15)

34 plt.yticks(fontsize=15)

35 plt.legend(loc = 'best', fontsize=15)

37 plt.show()
38 plt.rcParams["figure.figsize"] = (20,20)

Xiv
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40 #Regression Metrics

42 print('Mean Absolute Error:', round(np.mean(errors), 10), 'units')
43 print('MAPE:',MAPE, 'Accuracy:’,round(accuracy, 2), '%.')

44 print('R R2)

45 print('MSE:',MSE)

46 print('RMSE:',RMSE)

47 print('Median Absolute Error:',MedAE)

18
In [ ]: 1 dfl=pd.DataFrame()
2
3 dfi['ROP'] = df['Rate of Penetration m/h']
4 dfi['Perfect Prediction'] = ypred
5 pd.set_option("display.max_rows", None, "display.max_columns", None)
6
7 df1
In[ ]z 1 x_ax = range(len(test_y))
2 plt.scatter(x_ax, test_y, s=5, color="blue", label="original")
3 plt.plot(x_ax, test_predictions, 1w=0.5, color="red", label="predicted")
4
5 plt.legend()
6 plt.rcParams[“figure.figsize"] = (20,5)
7 plt.show()
Hyperparameter Tuning
In [ ]: 1 param_listl = {"n_estimators": [10,30,50,70], "max_depth": [10,20,30]}
2 RF = RandomForestRegressor(random_state = 8)
3 grid_searchl = GridSearchCV(RF, param_grid=param_listl , cv=10, scoring='r2' , n_jobs=4).fit(train_x,train_y)
4
5 print("Best parameters RandomForest:", grid_searchl.best_estimator_)
6 print(“"Best score RFR:", grid_searchl.best_score_)
In L)% 1 #Defined hyperparameter tuning
2 RF = RandomForestRegressor(n_estimators = 50, random_state = @, max_depth=30)
3 RF.fit(train_x, train_y)
4 #gbr.fit(X,y)
5
6 #Predicting data set
7 ypredHT = RF.predict(X)
8
9 #Regression Metrics
10 errors = np.abs(ypredHT - y) # Print out the mean absolute error (mae)
11 MAPE=mean_absolute_percentage_error(y, ypredHT)
12 accuracy = 108 - np.mean(MAPE)
13 R2 = r2_score(y, ypredHT)
14 MSE=mean_squared_error(y, ypredHT)
15 RMSE=math.sqrt(MSE)
16 MedAE=median_absolute_error(y, ypredHT)
17
18 #Predicting training data set
19 train_predictions = RF.predict(train_x)
20 plt.scatter(train_y, train_predictions, s=50, c="black", label="Train Data", alpha=1)
21
22 #Predicting testing data set
23 test_predictions = RF.predict(test_x)
24 plt.scatter(test_y, test_predictions, s=50, c="green", label="Test Data", alpha=1)
25
26 plt.plot([-1, np.max([y, ypred])], [-1, np.max([y, ypred])], c="red", linewidth=3,
27 linestyle="--", label="Perfect prediction")
28 text = "R2 = " + str(np.round(R2,3))
29
30 plt.annotate(text, (1,0),fontsize=15)
31 plt.xlabel("Rate of Penetration (m/h)",fontsize=15)
32 plt.ylabel("ML obtained Rate of Penetration (m/h)",fontsize=15)
33 plt.xticks(fontsize=15)
34 plt.yticks(fontsize=15)
35 plt.legend(loc = 'best', fontsize=15)
36
37 plt.show()
38 plt.rcParams["figure.figsize"] = (20,20)
39
40 #Regression Metrics
41 print('Mean Absolute Error:', round(np.mean(errors), 10), ‘'units')
42 print('MAPE:',MAPE, 'Accuracy:',round(accuracy, 2), '%.')
43 print('R2=",R2)
44 print('MSE:',MSE)
45 print('RMSE:',RMSE)
46 print('Median Absolute Error:',MedAE)
47
In[]: 1 x_ax = range(len(test_y))
2 plt.scatter(x_ax, test_y, s=5, color="blue", label="original")
3 plt.plot(x_ax, test_predictions, 1w=0.5, color="red", label="predicted")
4
5 plt.legend()
6 plt.rcParams["figure.figsize"] = (20,5)
7 plt.show()
In [ ]¢ dfl=pd.DataFrame()

df1['ROP'] = df['Rate of Penetration m/h']

dfl[ 'Perfect Prediction’'] = ypred

dfl[ ‘Perfect Prediction HT'] = ypredHT
pd.set_option(“"display.max_rows", None, “"display.max_columns", None)
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A.4 Implementation of the model

¢ AdaBoost Regressor

Import the relevant libraries

In[ ]: 1 dimport pandas as pd

2 dimport numpy as np

3 import matplotlib.pyplot as plt
4 import warnings

5 from numpy.random import seed

6 import tensorflow as tf

7 import math

8 import pickle

9 from tensorflow import keras

11 warnings.filterwarnings('ignore')
12 seed(®)
13 tf.random.set_seed(8)

SKlearn model libraries

In E 1% 1 from sklearn.model_selection import train_test_split
2 from sklearn.tree import export_graphviz

3 import pydot

4

5 from sklearn.neural_network import MLPRegressor

6

7 from sklearn.neighbors import KNeighborsRegressor

8

9 from sklearn.ensemble import AdaBoostRegressor

10 from sklearn.ensemble import RandomForestRegressor
11 from sklearn.ensemble import GradientBoostingRegressor

13 from sklearn.linear_model import LinearRegression

15 from sklearn.model_selection import GridSearchCV

16 from sklearn.model_selection import KFold

17 from sklearn.model_selection import cross_val_score

18 from sklearn.model_selection import RepeatedStratifiedKFold

20 from sklearn.metrics import mean_absolute_percentage_error
21 from sklearn.metrics import median_absolute_error

22 from sklearn.metrics import mean_absolute_error

23 from sklearn.metrics import mean_squared_error

24 from sklearn.metrics import r2_score

26 from tensorflow import keras

28 import seaborn as sns
29 import io

Importing Data

In[]: df = pd.read_csv('USROP_A 2 N-SH_F-14d.csv')

del df['Unnamed: 8']
df = df[['Average Standpipe Pressure kPa', 'Mud Flow In L/min','Average Surface Torque kN.m','Average Rotary Speed rpm','Measured Depth

#print(df)

X = df.iloc[:,0:6]

y = df.iloc[:,11] #ROP
df = df.iloc[: , :12]

11 df

« »

In[ ]: 1 X

AdaBoost Regressor

Im[ 3¢ # with default parameters
AB = AdaBoostRegressor()
#AB.fit(train_x, train_y)

AB.fit(X,y)

#Predicting data set
ypred = AB.predict(X)

9 #Regression Metrics

10 errors = np.abs(ypred - y) # Print out the mean absolute error (mae)
11 MAPE=mean_absolute_percentage_error(y, ypred)

12 accuracy = 108 - np.mean(MAPE)

13 R2 = r2_score(y, ypred)

14 MSE=mean_squared_error(y, ypred)

15 RMSE=math.sqrt(MSE)

16 MedAE=median_absolute_error(y, ypred)

17

18 plt.scatter(y, ypred, s=50, c="black", label="Predicted data", alpha=1)

19

20 plt.plot([-1, np.max([y, ypred])], [-1, np.max([y, ypred])], c="red", linewidth=3,
21 linestyle="--", label="Perfect prediction")

22

23 plt.xlabel("Rate of Penetration (m/h)",fontsize=15)
24 plt.ylabel("ML obtained Rate of Penetration (m/h)",fontsize=15)
25 plt.xticks(fontsize=15)

26 plt.yticks(fontsize=15)

27 plt.legend(loc = 'best', fontsize=15)

29 plt.show()
30 bplt.rcParamsl"fisure.fiesize"1 = (28.20)
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32 #Regression Metrics

33 print('Mean Absolute Error:', round(np.mean(errors), 18), 'units')
34 print('MAPE:',MAPE, 'Accuracy:',round(accuracy, 2), '%.')

35 print('R2=',R2)

36 print('MSE:',MSE)

37 print('RMSE:',RMSE)

38 print('Median Absolute Error:',MedAE)

In [ ]: 1 dfl=pd.DataFrame()
2
3 df1['ROP'] = df['Rate of Penetration m/h']
4 dfl['Perfect Prediction'] = ypred
5 pd.set_option(“"display.max_rows", None, “display.max_columns", None)
6
7 df1
In [ ]: 1 x_ax = range(len(y))
2 #plt.scatter(x_ax, y, s=5, color="blLue", label="original")
3 plt.plot(x_ax, y, lw=0.8, color="lime", label="original")
4 plt.plot(x_ax, ypred, lw=0.8, color="black”, label="predicted")
5
6 plt.legend()
7 plt.rcParams["figure.figsize"] = (20,5)
8 plt.show()
AdaBoost Regressor
;O 1 1 #Defined hyperparameter tuning
2 rf = AdaBoostRegressor(learning_rate=0.081, n_estimators=2000, random_state=1)
3 #AB.fit(train_x, train_y)
4 AB.fit(X,y)
5
6 #Predicting data set
7 ypredHT = AB.predict(X)
8
9 #Regression Metrics
10 errors = np.abs(ypredHT - y) # Print out the mean absolute error (mae)
11 MAPE=mean_absolute_percentage_error(y, ypredHT)
12 accuracy = 108 - np.mean(MAPE)
13 R2 = r2_score(y, ypredHT)
14 MSE=mean_squared_error(y, ypredHT)
15 RMSE=math.sqrt(MSE)
16 MedAE=median_absolute_error(y, ypredHT)
17
18 plt.scatter(y, ypred, s=50, c="black", label="Predicted data", alpha=1)
19
20 plt.plot([-1, np.max([y, ypred])], [-1, np.max([y, ypred])], c="red", linewidth=3,
21 linestyle="--", label="Perfect prediction")
22
23 plt.xlabel("“Rate of Penetration (m/h)",fontsize=15)
24 plt.ylabel("ML obtained Rate of Penetration (m/h)",fontsize=15)
25 plt.xticks(fontsize=15)
26 plt.yticks(fontsize=15)
27 plt.legend(loc = 'best', fontsize=15)
28
29 plt.show()
30 plt.rcParams["figure.figsize"] = (20,20)
31
32 #Regression Metrics
33 print(‘Mean Absolute Error:', round(np.mean(errors), 10), 'units')
34 print('MAPE:',MAPE, 'Accuracy:’',round(accuracy, 2), '%.'
35 print('R2=',R2)
36 print('MSE:',MSE)
37 print('RMSE:',RMSE)
38 print('Median Absolute Error:',MedAE)
39
In [ ]: 1 x_ax = range(len(y))
2 #plt.scatter(x_ax, y, s=5, color="blue", label="original")
3 plt.plot(x_ax, y, lw=0.8, color="lime", label="original")
4 plt.plot(x_ax, ypred, lw=0.8, color="black", label="predicted")
5 plt.plot(x_ax, ypredHT, 1lw=0.8, color="darkviolet", label="predicted HT")
6
7
8 plt.legend()
9 plt.rcParams["figure.figsize”] = (20,5)
10 plt.show()
In[ ]: 1 dfl_14d=pd.DataFrame()
2
3 dfi_14d['ROP'] = df[ 'Rate of Penetration m/h']
4 df1_14d['Perfect Prediction’] = ypred
5 dfl_14d[ 'Perfect Prediction HT'] = ypredHT
6 pd.set_option("“display.max_rows", None, “display.max_columns", None)
¥
8 dfl_14d
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¢ Gradient Boosting Regressor

In[ ]: 1 #gbr = GradientBoostingRegressor(n_estimators=1000, learning_rate=0.1, max_depth=4, random_state=1, subsample=0.5)
2

3 # with default parameters

4 gbr = GradientBoostingRegressor()

5 #gbr.fit(train_x, train_y)

6 gbr.fit(X,y)

&

8

9

#Predicting data set
ypred = gbr.predict(X)
10 plt.scatter(y, ypred, s=50, c="black", label="Predicted data", alpha=1)

12 plt.plot([-1, np.max([y, ypred])], [-1, np.max([y, ypred])], c="red", linewidth=3,
13 linestyle="--", label="Perfect prediction")

15 plt.xlabel("Rate of Penetration (m/h)",fontsize=15)

16 plt.ylabel(“"ML obtained Rate of Penetration (m/h)",fontsize=15)
17 plt.xticks(fontsize=15)

18 plt.yticks(fontsize=15)

19 plt.legend(loc = 'best', fontsize=15)

21 plt.show()
22 plt.rcParams["figure.figsize"] = (20,20)

24 #Regression Metrics

26 errors = np.abs(ypred - y) # Print out the mean absolute error (mae)
27 print('Mean Absolute Error:', round(np.mean(errors), 18), 'units')

29 MAPE=mean_absolute_percentage_error(y, ypred)
30 accuracy = 180 - np.mean(MAPE)
31 print('MAPE:',MAPE, 'Accuracy:’,round(accuracy, 2), '%.')

33 R2 = r2_score(y, ypred)
34 print('R2="',R2)

36 MSE=mean_squared_error(y, ypred)
37 print('MSE:',MSE)

39 RMSE=math.sqrt(MSE)
40 print('RMSE:',RMSE)

42 MedAE=median_absolute_error(y, ypred)
43 print('Median Absolute Error:',MedAE)

b i 3 dfl=pd.DataFrame()

df1['ROP'] = df['Rate of Penetration m/h']

df1[ 'Perfect Prediction'] = ypred

pd.set_option("display.max_rows", None, "display.max_columns”, None)

NoOwsWwN R

dfl
it O x_ax = range(len(y))

#plt.scatter(x_ax, y, s=5, color="blue", Label="original")
plt.plot(x_ax, y, lw=0.8, color="lime", label="original")
plt.plot(x_ax, ypred, lw=0.8, color="black”, label="predicted")

plt.legend()
plt.rcParams[“figure.figsize"] = (20,5)
plt.show()
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Defined Model

In [ 3¢ #Defined hyperparameter tuning

gbr = GradientBoostingRegressor(n_estimators=1000, learning_rate=0.1, max_depth=4, random_state=1, subsample=8.5)
#gbr.fit(train_x, train_y)

gbr.fit(X,y)

#Predicting data set
ypredHT = gbr.predict(X)
plt.scatter(y, ypredHT, s=50, c="black", label="Predicted data", alpha=1)

10 plt.plot([-1, np.max([y, ypredHT])], [-1, np.max([y, ypredHT])], c="red", linewidth=3,
11 linestyle="--", label="Perfect prediction")

13 plt.xlabel("Rate of Penetration (m/h)",fontsize=15)
14 plt.ylabel("ML obtained Rate of Penetration (m/h)",fontsize=15)
15 plt.xticks(fontsize=15)

16 plt.yticks(fontsize=15)

17 plt.legend(loc = 'best', fontsize=15)

19 plt.show()
20 plt.rcParams["figure.figsize"] = (20,20)

22 #Regression Metrics

23 errors = np.abs(ypredHT - y) # Print out the mean absolute error (mae)
24 MAPE=mean_absolute_percentage_error(y, ypredHT)

25 accuracy = 100 - np.mean(MAPE)

26 R2 = r2_score(y, ypredHT)

27 MSE=mean_squared_error(y, ypredHT)

28 RMSE=math.sqrt(MSE)

29 MedAE=median_absolute_error(y, ypredHT)

30

31 #Regression Metrics

32 print('Mean Absolute Error:', round(np.mean(errors), 10), 'units')
33 print('MAPE:',MAPE, 'Accuracy:',round(accuracy, 2), '%.')

34 print('R2=',R2)

35 print('MSE:',MSE)

36 print('RMSE:',RMSE)

37 print('Median Absolute Error:',MedAE)

38

v
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In [ Js 1 x_ax = range(len(y))
2 #plt.scatter(x_ax, y, blue”, Llabel="original")
3 plt.plot(x_ax, y, lw= ime", label="original")
4 plt.plot(x_ax, ypred, lw=0.8, color="black", label="predicted")
5 plt.plot(x_ax, ypredHT, lw=8.8, color="darkviolet", label="predicted HT")
6
7
8 plt.legend()
9 plt.rcParams["figure.figsize"] = (20,5)
10 plt.show()
In[]: 1 df2_14d=pd.DataFrame()
2
3 df2_14d['ROP'] = df['Rate of Penetration m/h']
4 df2_14d['Perfect Prediction'] = ypred
5 df2_14d['Perfect Prediction HT'] = ypredHT
6 pd.set_option("display.max_rows", None, "display.max_columns", None)
7
8 df2_14d

e K Neighbors Regressor

In [ ] # with default parameters
KN = KNeighborsRegressor()
#KN.fit(train_x, train_y)

1
2
3
4 KN.fit(X,y)
5
6
2
8

#Predicting data set
ypred = KN.predict(X)

9 #Regression Metrics

10 errors = np.abs(ypred - y) # Print out the mean absolute error (mae)
11 MAPE=mean_absolute_percentage_error(y, ypred)

12 accuracy = 100 - np.mean(MAPE)

13 R2 = r2_score(y, ypred)

14 MSE=mean_squared_error(y, ypred)

15 RMSE=math.sqrt(MSE)

16 MedAE=median_absolute_error(y, ypred)

18 plt.scatter(y, ypred, s=50, c="black", label="Predicted data", alpha=1)

20 plt.plot([-1, np.max([y, ypred])], [-1, np.max([y, ypred])], c="red", linewidth=3,
21 linestyle="--", label="Perfect prediction")

23 plt.xlabel("Rate of Penetration (m/h)",fontsize=15)

24 plt.ylabel("ML obtained Rate of Penetration (m/h)",fontsize=15)
25 plt.xticks(fontsize=15)

26 plt.yticks(fontsize=15)

27 plt.legend(loc = 'best’, fontsize=15)

29 plt.show()
30 plt.rcParams["figure.figsize"] = (20,20)

32 #Regression Metrics

33 print('Mean Absolute Error:', round(np.mean(errors), 10), 'units')
34 print('MAPE:',MAPE, 'Accuracy:',round(accuracy, 2), '%.')

35 print('R2=",R2)

36 print('MSE:",MSE)

37 print('RMSE:',RMSE)

38 print('Median Absolute Error:',MedAE)

In 1 13 1 dfl=pd.DataFrame()

2

3 df1['ROP'] = df['Rate of Penetration m/h']

4 dfil['Perfect Prediction'] = ypred

5 pd.set_option("display.max_rows", None, "display.max_columns", None)
6
7

dfl

In [ ]: x_ax = range(len(y))
#plt.scatter(x_ax, y, s=5, color="blue", label="original")
plt.plot(x_ax, y, lw=6.8, color="lime", label="original")

plt.plot(x_ax, ypred, 1lw=0.8, color="black", label="predicted")

plt.legend()
plt.rcParams[“figure.figsize"] = (20,5)
plt.show()
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Defined Model

In[ I3 #Defined hyperparameter tuning
KN = KNeighborsRegressor(n_neighbors=4, weights="'distance')
#KN. fit(train_x, train_y)

i
2
3
4 KN.fit(X,y)
5
6
7

#Predicting data set
ypredHT = KN.predict(X)

XX
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9 #Regression Metrics

180 errors = np.abs(ypredHT - y) # Print out the mean absolute error (mae)
11 MAPE=mean_absolute_percentage_error(y, ypredHT)

12 accuracy = 108 - np.mean(MAPE)

13 R2 = r2_score(y, ypredHT)

14 MSE=mean_squared_error(y, ypredHT)

15 RMSE=math.sqrt(MSE)

16 MedAE=median_absolute_error(y, ypredHT)

17

18 plt.scatter(y, ypredHT, s=50, c="black", label="Predicted data", alpha=1)

19

20 plt.plot([-1, np.max([y, ypredHT])], [-1, np.max([y, ypredHT])], c="red", linewidth=3,
21 linestyle="--", label="Perfect prediction")

22

23 plt.xlabel("Rate of Penetration (m/h)",fontsize=15)
24 plt.ylabel("ML obtained Rate of Penetration (m/h)",fontsize=15)
25 plt.xticks(fontsize=15)

26 plt.yticks(fontsize=15)

27 plt.legend(loc = 'best', fontsize=15)

29 plt.show()
30 plt.rcParams["figure.figsize"] = (20,20)

32 #Regression Metrics

33 print('Mean Absolute Error:', round(np.mean(errors), 10), 'units’'
34 print('MAPE:',MAPE, 'Accuracy:',round(accuracy, 2), '%.')

35 print('R2=',R2)

36 print('MSE:',MSE)

37 print('RMSE:',RMSE)

38 print('Median Absolute Error:',MedAE)

39
In [ ]: 1 x_ax = range(len(y))
2 #plt.scatter(x_ax, y, blue”, label="original")
3 plt.plot(x_ax, y, lw= ime", label="original")
4 plt.plot(x_ax, ypred, lw=0.8, color="black", label="predicted")
5 plt.plot(x_ax, ypredHT, lw=8.8, color="darkviolet", label="predicted HT")
6
7
8 plt.legend()
9 plt.rcParams["figure.figsize"] = (20,5)
10 plt.show()
In [ ]: 1 df3_14d=pd.DataFrame()
2
3 df3_14d['ROP'] = df[ 'Rate of Penetration m/h']
4 df3_14d[ 'Perfect Prediction'] = ypred
5 df3_14d['Perfect Prediction HT'] = ypredHT
6 pd.set_option("display.max_rows", None, "display.max_columns", None)
7
8 df3_14d

e Linear Regression

In | 3= # with default parameters
LR = LinearRegression()
#LR.fit(train_x, train_y)

LR.Fit(X,y)

#Predicting data set
ypred = LR.predict(X)

9 #Regression Metrics

10 errors = np.abs(ypred - y) # Print out the mean absolute error (mae)
11 MAPE=mean_absolute_percentage_error(y, ypred)

12 accuracy = 108 - np.mean(MAPE)

13 R2 = r2_score(y, ypred)

14 MsE=mean_squared_error(y, ypred)

15 RMSE=math.sqrt(MSE)

16 MedAE=median_absolute_error(y, ypred)

18 plt.scatter(y, ypred, s=50, c="black", label="Predicted data", alpha=1)

20 plt.plot([-1, np.max([y, ypred])], [-1, np.max([y, ypred])], c="red", linewidth=3,
21 linestyle="--", label="Perfect prediction")

23 plt.xlabel("Rate of Penetration (m/h)",fontsize=15)

24 plt.ylabel("ML obtained Rate of Penetration (m/h)",fontsize=15)
25 plt.xticks(fontsize=15)

26 plt.yticks(fontsize=15)

27 plt.legend(loc = 'best', fontsize=15)

29 plt.show()
30 plt.rcParams["figure.figsize"] = (20,20)

32 #Regression Metrics

33 print('Mean Absolute Error:', round(np.mean(errors), 10), 'units')
34 print('MAPE:',MAPE, 'Accuracy:',round(accuracy, 2), '%.')

35 print('R2=",R2)

36 print('MSE:',MSE)

37 print('RMSE:',RMSE)

38 print('Median Absolute Error:',MedAE)

In[]: dfS5_14d=pd.DataFrame()
df5_14d['ROP'] = df[ 'Rate of Penetration m/h']

df5_14d[ 'Perfect Prediction'] = ypred
pd.set_option(“display.max_rows", None, "display.max_columns"”, None)
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df5_14d
In[ ) x_ax = range(len(y))

#plt.scatter(x_ax, y, s=5, color="blue", label="original")
plt.plot(x_ax, y, lw=8.8, color="lime", label="original")
plt.plot(x_ax, ypred, lw=0.8, color="black", label="predicted")

plt.legend()
plt.rcParams["figure.figsize"] = (20,5)
plt.show()
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¢ Multi-Layer Perceptron Regressor

In [ ]: # with default parameters
MLP = MLPRegressor()
#MLP.fit(train_x, train_y)

1
2
3
4 MLP.Fit(X,y)
5
6
7
8

#Predicting data set
ypred = MLP.predict(X)

9 #Regression Metrics

10 errors = np.abs(ypred - y) # Print out the mean absolute error (mae)
11 MAPE=mean_absolute_percentage_error(y, ypred)

12 accuracy = 100 - np.mean(MAPE)

13 R2 = r2_score(y, ypred)

14 MSE=mean_squared_error(y, ypred)

15 RMSE=math.sqrt(MSE)

16 MedAE=median_absolute_error(y, ypred)

18 plt.scatter(y, ypred, s=50, c="black", label="Predicted data", alpha=1)

20 plt.plot([-1, np.max([y, ypred])], [-1, np.max([y, ypred])], c="red", linewidth=3,
21 linestyle="--", label="Perfect prediction")

23 plt.xlabel("Rate of Penetration (m/h)",fontsize=15)

24 plt.ylabel("ML obtained Rate of Penetration (m/h)",fontsize=15)
25 plt.xticks(fontsize=15)

26 plt.yticks(fontsize=15)

27 plt.legend(loc = 'best', fontsize=15)

29 plt.show()
30 plt.rcParams["figure.figsize"] = (20,20)

32 #Regression Metrics

33 print('Mean Absolute Error:', round(np.mean(errors), 10), 'units')
34 print('MAPE:',MAPE, 'Accuracy:',round(accuracy, 2), '%.')

35 print('R2=",R2)

36 print('MSE:’,MSE)

37 print('RMSE:',RMSE)

38 print('Median Absolute Error:',MedAE)

oy E )% dfl=pd.DataFrame()

df1['ROP'] = df['Rate of Penetration m/h']

dfi[ 'Perfect Prediction'] = ypred

pd.set_option("display.max_rows", None, "display.max_columns”, None)
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dfl
In [ 15 x_ax = range(len(y))

#plt.scatter(x_ax, y, s=5, color="blue", label="original")
plt.plot(x_ax, y, lw=0.8, color="lime", label="original")
plt.plot(x_ax, ypred, 1lw=0.8, color="black", label="predicted")

plt.legend()
plt.rcParams["figure.figsize"] = (20,5)
plt.show()
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#Defined hyperparameter tuning

MLP = MLPRegressor(hidden_layer_sizes=(50, 50, 58), activation='relu’',
solver='adam', learning_rate='adaptive', alpha=(0.05))

#MLP.fit(train_x, train_y)

MLP. Fit(X,y)

In [ Je

#Predicting data set
ypredHT = MLP.predict(X)
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10 #Regression Metrics
11 errors = np.abs(ypredHT - y) # Print out the mean absolute error (mae)
12 MAPE=mean_absolute_percentage_error(y, ypredHT)

13 accuracy = 100 - np.mean(MAPE)

14 R2 = r2_score(y, ypredHT)

15 MSE=mean_squared_error(y, ypredHT)

16 RMSE=math.sqrt(MSE)

17 MedAE=median_absolute_error(y, ypredHT)

18

19 plt.scatter(y, ypred, s=50, c="black", label="Predicted data", alpha=1)

20

21 plt.plot([-1, np.max([y, ypred])], [-1, np.max([y, ypred])], c="red", linewidth=3,
22 linestyle="--", label="Perfect prediction")

23

24 plt.xlabel("Rate of Penetration (m/h)",fontsize=15)

25 plt.ylabel("ML obtained Rate of Penetration (m/h)",fontsize=15)
26 plt.xticks(fontsize=15)

27 plt.yticks(fontsize=15)

28 plt.legend(loc = 'best', fontsize=15)

29

30 plt.show()

31 plt.rcParams["figure.figsize"] = (20,20)

32

33 #Regression Metrics

34 print('Mean Absolute Error:', round(np.mean(errors), 10), 'units')
35 print('MAPE:',MAPE, 'Accuracy:’,round(accuracy, 2), '%.')

36 print('R2=",R2)

37 print('MSE:',MSE)

38 print('RMSE:',RMSE)

39 print('Median Absolute Error:',MedAE)

40

xx1



Field-Scale Generality of the Machine Learning Models

In [ ]: 1 x_ax = range(len(y))
2 #plt.scatter(x_ax, y, s=5, color="blue", Label="original")
3 plt.plot(x_ax, y, 1w=8.8, color="lime", label="original")
4 plt.plot(x_ax, ypred, 1w=0.8, color="black", label="predicted")
5 plt.plot(x_ax, ypredHT, 1lw=0.8, color="darkviolet", label="predicted HT")
6
7
8 plt.legend()
9 plt.rcParams["figure.figsize"] = (20,5)
10 plt.show()
In [ ] df4_14d=pd.DataFrame()

df4_14d['ROP'] = df['Rate of Penetration m/h']
df4_14d[ 'Perfect Prediction’] = ypred

df4_14d[ 'Perfect Prediction HT'] = ypredHT
pd.set_option("display.max_rows", None, "display.max_columns", None)
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dfa_1ad

¢ Random Forest Regressor

In[ ]: # with default parameters
RF = RandomForestRegressor(random_state = 0)
#RF.fit(train_x, train_y)

RF.fit(X,y)

#Predicting data set
ypred = RF.predict(X)

#Regression Metrics

10 errors = np.abs(ypred - y) # Print out the mean absolute error (mae)
11 MAPE=mean_absolute_percentage_error(y, ypred)

12 accuracy = 100 - np.mean(MAPE)

13 R2 = r2_score(y, ypred)

14 MSE=mean_squared_error(y, ypred)

15 RMSE=math.sqrt(MSE)

16 MedAE=median_absolute_error(y, ypred)

18 plt.scatter(y, ypred, s=50, c="black", label="Predicted data", alpha=1)

20 plt.plot([-1, np.max([y, ypred])], [-1, np.max([y, ypred])], c="red", linewidth=3,
21 linestyle="--", label="Perfect prediction")

23 plt.xlabel("Rate of Penetration (m/h)",fontsize=15)
24 plt.ylabel("ML obtained Rate of Penetration (m/h)",fontsize=15)
25 plt.xticks(fontsize=15)

26 plt.yticks(fontsize=15)

27 plt.legend(loc = 'best', fontsize=15)

29 plt.show()
30 plt.rcParams["figure.figsize"] = (20,20)

32 #Regression Metrics

33 print('Mean Absolute Error:', round(np.mean(errors), 10), 'units')
34 print('MAPE:',MAPE, 'Accuracy:’,round(accuracy, 2), '%.')

35 print('R2=",R2)

36 print('MSE:',MSE)

37 print('RMSE:',RMSE)

38 print('Median Absolute Error:',MedAE)

In[ ]: dfl=pd.DataFrame()

df1['ROP'] = df['Rate of Penetration m/h']

df1[ 'Perfect Prediction'] = ypred

pd.set_option(“"display.max_rows", None, “display.max_columns", None)
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In [ ]: x_ax = range(len(y))
#plt.scatter(x_ax, y, s=5, color="blue”, label="original")
plt.plot(x_ax, y, lw=8.8, color="lime", label="original")
plt.plot(x_ax, ypred, 1lw=0.8, color="black”, label="predicted")

plt.legend()
plt.rcParams["figure.figsize"] = (20,5)
plt.show()

WNOUV A WN R

In [ ]: #Defined hyperparameter tuning
RF = RandomForestRegressor(n_estimators = 50, random_state = ©, max_depth=30)
#RF.fit(train_x, train_y)

RF.fit(X,y)

#Predicting data set
ypredHT = RF.predict(X)

#Regression Metrics

10 errors = np.abs(ypredHT - y) # Print out the mean absolute error (mae)
11 MAPE=mean_absolute_percentage_error(y, ypredHT)

12 accuracy = 180 - np.mean(MAPE)

13 R2 = r2_score(y, ypredHT)

14 MSE=mean_squared_error(y, ypredHT)

15 RMSE=math.sqrt(MSE)

16 MedAE=median_absolute_error(y, ypredHT)

18 plt.scatter(y, ypred, s=50, c="black", label="Predicted data", alpha=1)

20 plt.plot([-1, np.max([y, ypred])], [-1, np.max([y, ypred])], c="red", linewidth=3,
21 linestyle="--", label="Perfect prediction")
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23 plt.xlabel("Rate of Penetration (m/h)",fontsize=15)

24 plt.ylabel("ML obtained Rate of Penetration (m/h)",fontsize=15)
25 plt.xticks(fontsize=15)

26 plt.yticks(fontsize=15)

27 plt.legend(loc = 'best', fontsize=15)

28

29 plt.show()

30 plt.rcParams["figure.figsize"] = (20,20)

31

32 #Regression Metrics

33 print('Mean Absolute Error:', round(np.mean(errors), 10), 'units')
34 print('MAPE:',MAPE, 'Accuracy:’,round(accuracy, 2), '%.')

35 print('R2=",R2)

36 print('MSE:',MSE)

37 print('RMSE:',RMSE)

38 print('Median Absolute Error:',MedAE)

39
In[] 1 x_ax = range(len(y))
2 #plt.scatter(x_ax, y, s=5, color="blue", label="original")
3 plt.plot(x_ax, y, lw=0.8, color="lime", label="original")
4 plt.plot(x_ax, ypred, lw=0.8, color="black", label="predicted")
5 plt.plot(x_ax, ypredHT, 1w=0.8, color="darkviolet", label="predicted HT")
6
7
8 plt.legend()
9 plt.rcParams[“figure.figsize"] = (20,5)
10 plt.show()
In [ ]: 1 df6_lad=pd.DataFrame()
2
3 df6_14d['ROP'] = df[ 'Rate of Penetration m/h']
4 df6_14d['Perfect Prediction’] = ypred
5 df6_14d['Perfect Prediction HT'] = ypredHT
6 pd.set_option("display.max_rows", None, "display.max_columns", None)
7
8 df6_14d

¢ AdaBoost Regressor

In[ ]: # with default parameters
B = AdaBoostRegressor()
AB.fit(train_x, train_y)

1
2
3
4 #gbr.Fit(X,y)
5
6
7
8

#Predicting data set
ypred = AB.predict(X)

9 #Regression Metrics

10 errors = np.abs(ypred - y) # Print out the mean absolute error (mae)
11 MAPE=mean_absolute_percentage_error(y, ypred)

12 accuracy = 100 - np.mean(MAPE)

13 R2 = r2_score(y, ypred)

14 MSE=mean_squared_error(y, ypred)

15 RMSE=math.sqrt(MSE)

16 MedAE=median_absolute_error(y, ypred)

18 #Predicting training data set
19 train_predictions = AB.predict(train_x)
20 plt.scatter(train_y, train_predictions, s=50, c=

black", label="Train Data", alpha=1)

22 #Predicting testing data set
23 test_predictions = AB.predict(test_x)
24 plt.scatter(test_y, test_predictions, s=50, c="green", label="Test Data", alpha=1)

26 plt.plot([-1, np.max([y, ypred])], [-1, np.max([y, ypred])], c="red", linewidth=3,
27 linestyle="--", label="Perfect prediction")
28 text = "R2 = " + str(np.round(R2,3))

30 plt.annotate(text, (1,0),fontsize=15)

31 plt.xlabel("Rate of Penetration (m/h)",fontsize=15)

32 plt.ylabel("ML obtained Rate of Penetration (m/h)",fontsize=15)
33 plt.xticks(fontsiz
34 plt.yticks(fontsize=15)

35 plt.legend(loc = 'best', fontsize=15)

37 plt.show()
38 plt.rcParams["figure.figsize"] = (20,20)

40 #Regression Metrics

42 print('Mean Absolute Error:', round(np.mean(errors), 10), 'units')
43 print('MAPE:',MAPE, 'Accuracy:’,round(accuracy, 2), '%.')

44 print('R2=",R2)

45 print('MSE:’,MSE)

46 print('RMSE:',RMSE)

47 print('Median Absolute Error:',MedAE)

In [ ]: dfl=pd.DataFrame()

df1['ROP'] = df['Rate of Penetration m/h']

df1[ 'Perfect Prediction'] = ypred

pd.set_option("display.max_rows", None, "display.max_columns”, None)
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dfl
In[ ]: x_ax = range(len(test_y))

plt.scatter(x_ax, test_y, s=5, color="blue", label="original")
plt.plot(x_ax, test_predictions, 1lw=0.5, color="red", label="predicted")

plt.legend()
plt.rcParams[“figure.figsize"] = (20,5)
plt.show()
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Hyperparameter Tuning
In [ )3 1 search_grid={'n_estimators':[500,1000,2000], 'learning_rate':[.001,0.01,.1], 'random_state':[1]}
2 AB = AdaBoostRegressor()
3 search=GridSearchCV(estimator=AB,param_grid=search_grid,scoring="neg_mean_squared_error',n_jobs=1,cv=3)
4 search.fit(train_x,train_y)
5
6 print("Best parameters AdaBoost:", search.best_params_)
7 print("Best score ABR:", search.best_score_)
In[ ]: 1 #Defined hyperparameter tuning
2 rf = AdaBoostRegressor(learning_rate=0.801, n_estimators=2000, random_state=1)
3 AB.fit(train_x, train_y)
4 #gbr.fit(X,y)
5
6 #Predicting data set
7 ypredHT = AB.predict(X)
8
9 #Regression Metrics
10 errors = np.abs(ypredHT - y) # Print out the mean absolute error (mae)
11 MAPE=mean_absolute_percentage_error(y, ypredHT)
12 accuracy = 108 - np.mean(MAPE)
13 R2 = r2_score(y, ypredHT)
14 MsE=mean_squared_error(y, ypredHT)
15 RMSE=math.sqrt(MSE)
16 MedAE=median_absolute_error(y, ypredHT)
17
18 #Predicting training data set
19 train_predictions = AB.predict(train_x)
20 plt.scatter(train_y, train_predictions, s=50, c="black", label="Train Data", alpha=1)
21
22 #Predicting testing data set
23 test_predictions = AB.predict(test_x)
24 plt.scatter(test_y, test_predictions, s=50, c="green", label="Test Data", alpha=1)
25
26 plt.plot([-1, np.max([y, ypred])], [-1, np.max([y, ypred])], c="red", linewidth=3,
27 linestyle="--", label="Perfect prediction")
28 text = "R2 = " + str(np.round(R2,3))
29
30 plt.annotate(text, (1,0),fontsize=15)
31 plt.xlabel("Rate of Penetration (m/h)",fontsize=15)
32 plt.ylabel("ML obtained Rate of Penetration (m/h)",fontsize=15)
33 plt.xticks(fontsize=15)
34 plt.yticks(fontsize=15)
35 plt.legend(loc = 'best', fontsize=15)
36
37 plt.show()
38 plt.rcParams["figure.figsize"] = (20,20)
39
40 #Regression Metrics
41 print('Mean Absolute Error:', round(np.mean(errors), 10), ‘units')
42 print('MAPE:',MAPE, 'Accuracy:',round(accuracy, 2), '%."')
43 print('R2=",R2)
44 print('MSE:',MSE)
45 print('RMSE:',RMSE)
46 print('Median Absolute Error:',MedAE)
47
In [ )¢ 1 x_ax = range(len(test_y))
2 plt.scatter(x_ax, test_y, s=5, color="blue", label="original")
3 plt.plot(x_ax, test_predictions, lw=0.5, color="red", label="predicted")
4
5 plt.legend()
6 plt.rcParams["figure.figsize"] = (20,5)
4
8 plt.show()
Ing[]: dfl=pd.DataFrame()

dfl['ROP'] = df['Rate of Penetration m/h"]

dfl[ 'Perfect Prediction'] = ypred

dfl[ 'Perfect Prediction HT'] = ypredHT
pd.set_option("display.max_rows", None, "display.max_columns", None)
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A.5 Predictions

Import the relevant libraries

In[ ]: 1 import pandas as pd
2 dimport numpy as np
3 dimport matplotlib.pyplot as plt
4 import warnings
5 from numpy.random import seed
6 import tensorflow as tf
7 import math
8 import pickle
9 from tensorflow import keras
10
11 warnings.filterwarnings('ignore')
12 seed(®)
13 tf.random.set_seed(8)
SKlearn model libraries
In [ )z 1 from sklearn.model_selection import train_test_split
2 from sklearn.tree import export_graphviz
3 import pydot
4
5 from sklearn.neural_network import MLPRegressor
6
7 from sklearn.neighbors import KNeighborsRegressor
8
9 from sklearn.ensemble import AdaBoostRegressor
10 from sklearn.ensemble import RandomForestRegressor
11 from sklearn.ensemble import GradientBoostingRegressor
12
13 from sklearn.linear_model import LinearRegression
14
15 from sklearn.model_selection import GridSearchCV
16 from sklearn.model_selection import KFold
17 from sklearn.model_selection import cross_val_score
18 from sklearn.model_selection import RepeatedStratifiedKFold
19
20 from sklearn.metrics import mean_absolute_percentage_error
21 from sklearn.metrics import median_absolute_error
22 from sklearn.metrics import mean_absolute_error
23 from sklearn.metrics import mean_squared_error
24 from sklearn.metrics import r2_score
25
26 from tensorflow import keras
27
28 import seaborn as sns
29 import io
Predictions USROP_A 1 N-S_F-7d well
In [ s 1 from test_AB_7d import dfl_7d
2 from test_GB_7d import df2_7d
3 from test_KN_7d import df3_7d
4 from test_LR_7d import df4_7d
5 from test_MLP_7d import df5_7d
6 from test_RF_7d import df6_7d
In [ ]: 1 df=pd.DataFrame()
2
3 df['ROP'] = df1_7d['ROP']
4 df['ABA Pred'] = dfl_7d['Perfect Prediction HT']
5 df['GB Pred'] = df2_7d['Perfect Prediction HT']
6 df['KN Pred'] = df3_7d['Perfect Prediction HT']
7 df['LR Pred'] = df4_7d['Perfect Prediction']
8 df['MLP Pred'] = df5_7d['Perfect Prediction HT']
9 df['RF Pred'] = df6_7d['Perfect Prediction HT']
10
Plot predicted ROP USROP_A 1 N-S_F-7d well
In [ ]: x_ax = range(len(df[ 'ROP']))
plt.plot(x_ax, df['ROP'], 1w=0.8, color="black", label="original")
#plt.plot(x_ax, df['ABA Pred'], Lw=0.8, colo green”, label="ABA Pred")

arkviolet", label="GB Pred")
ue", label="KN Pred")

ed", Llabel="LR Pred")
darkorange”, Llabel="MLP Pred")
green", label="RF Pred")

plt.plot(x_ax, df['KN Pred'], 1lw=8.8, colo
#plt.plot(x_ax, df['LR Pred'], lw=0.8, color:
#plt.plot(x_ax, df['MLP Pred'], Lw=6.8, colo
plt.plot(x_ax, df['RF Pred'], 1w=0.8, color=

1
2
3
4
5 plt.plot(x_ax, df['GB Pred'], lw=0.8, colol
6
7
8
9

12 plt.legend()

13 plt.xlim([@, 6560])

14 plt.rcParams[“figure.figsize"] = (20,10)
15 plt.show()

Predictions USROP_A 2 N-SH_F-14d well
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In [ ]¢ 1 from test_AB_14d import dfl_14d
2 from test_GB_l14d import df2_14d
3 from test_KN_14d import df3_14d
4 from test_MLP_14d import df4_14d
5 from test_LR_14d import df5_14d
6 from test_RF_14d import df6_14d
In [ 1% 1 df=pd.DataFrame()
2
3 df['ROP'] = dfl_14d['ROP']
4 df['ABA Pred'] = dfl_14d['Perfect Prediction HT']
5 df['GB Pred'] = df2_14d['Perfect Prediction HT']
6 df['KN Pred'] = df3_14d['Perfect Prediction HT']
7 df['MLP Pred'] = df4_14d['Perfect Prediction HT']
8 df['LR Pred’'] = df5_14d['Perfect Prediction’]
9 df['RF Pred'] = df6_14d['Perfect Prediction HT']
10
Plot predicted ROP USROP_A 2 N-SH_F-14d well
In [ ]J: 1 x_ax = range(len(df['ROP']))
2
3 plt.plot(x_ax, df['ROP'], lw=0.8, color="black", label="original")
4 #plt.plot(x_ax, df['ABA Pred'], Lw=0.8, color="green", lLabel="ABA Pred")
5 plt.plot(x_ax, df['GB Pred'], lw=0.8, colol arkviolet”, label="GB Pred")
6 plt.plot(x_ax, df['KN Pred'], 1w=8.8, color="blue", label="KN Pred")
7 #plt.plot(x_ax, df['LR Pred'], Lw=0.8, color="red", Label="LR Pred")
8 #plt.plot(x_ax, df['MLP Pred'], w=8.8, color="darkorange", Label="WLP Pred")
9 plt.plot(x_ax, df['RF Pred'], lw=0.8, color="green", label="RF Pred")
10
1
12 plt.legend()
13 plt.xlim([e, 47000])
14 plt.ylim([-5, 7@])
15 plt.rcParams["figure.figsize"] = (20,10)
16 plt.show()
Predictions USROP_A 3 N-SH-F-15d well
In [ )¢ 1 from test_AB_15d import df1_15d
2 from test_GB_15d import df2_15d
3 from test_KN_15d import df3_15d
4 from test_LR_15d import df4_15d
5 from test_MLP_15d import df5_15d
6 from test_RF_15d import df6_15d
In [ ]: 1 df=pd.DataFrame()
2
3 df['ROP'] = df1_15d[ 'ROP']
4 df['ABA Pred'] = dfl_15d['Perfect Prediction HT']
5 df['GB Pred'] = df2_15d['Perfect Prediction HT']
6 df['KN Pred’] df3_15d[ 'Perfect Prediction HT']
7 df['LR Pred'] = df4_15d['Perfect Prediction']
8 df['MLP Pred'] = df5_15d['Perfect Prediction HT']
9 df['RF Pred'] = df6_15d['Perfect Prediction HT']
Plot predicted ROP USROP_A 3 N-SH-F-15d well
In[ ]: 1 x_ax = range(len(df['ROP']))
2
3 plt.plot(x_ax, df['ROP'], 1lw=0.8, color="black", label="original")
4 #plt.plot(x_ax, df['ABA Pred'], Lw=8.8, color="green", label="ABA Pred")
5 plt.plot(x_ax, df['GB Pred'], 1w=8.8, color="darkviolet”, label="GB Pred")
6 plt.plot(x_ax, df['KN Pred'], 1w=0.8, color="blue", label="KN Pred")
7 #plt.plot(x_ax, df{'LR Pred'], lw=0.8, color: ed”, Llabel %)
8 #plt.plot(x_ax, df['MLP Pred'], (w=0.8, colo darkorange”, Llabel="MLP Pred")
9 plt.plot(x_ax, df['RF Pred'], 1w=8.8, color="green", label="RF Pred")
10
1
12 plt.legend()
13 plt.xlim([e, 54000])
14 plt.ylim([-5, 70])
15 plt.rcParams["figure.figsize"] = (20,10)
16 plt.show()
Predictions USROP_A 4 N-SH_F-15Sd well
In [ 3= from test_AB_15Sd import df1_15S5d

1

2 from test_GB_15Sd import df2_15Sd
3 from test_KN_15Sd import df3_15Sd
4 from test_LR_15Sd import df4_15Sd
5 from test_MLP_15Sd import df5_15Sd
6 from test_RF_15Sd import df6_15Sd
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In [ ]: 1 df=pd.DataFrame()
2
3 df['ROP'] = df1_15Sd['ROP']
4 df['ABA Pred'] = dfl_15Sd['Perfect Prediction HT']
5 df['GB Pred'] = df2_155d['Perfect Prediction HT']
6 df['KN Pred'] = df3_155d['Perfect Prediction HT']
7 df['LR Pred'] df4_15Sd['Perfect Prediction']
8 df['MLP Pred'] = df5_15Sd['Perfect Prediction HT']
9 df['RF Pred'] = df6_155d['Perfect Prediction HT']
Plot predicted USROP_A 4 N-SH_F-15Sd well
In [ ]: 1 x_ax = range(len(df['ROP']))
2
3 plt.plot(x_ax, df['ROP'], 1lw=0.8, color="black", label="original")
4 #plt.plot(x_ax, df[‘'ABA Pred'], lw=0.8, colo green”, Llabel="ABA Pred")
5 plt.plot(x_ax, df['GB Pred'], 1w=0.8, colo arkviolet”, label="GB Pred")
6 plt.plot(x_ax, df['KN Pred'], 1w=0.8, color="blue", label="KN Pred")
7 #plt.plot(x_ax, df['LR Pred'], lw=6.8, color="red", label="LR Pred")
8 #plt.plot(x_ax, df['MLP Pred'], Lw=0.8, color="darkorange”, label="MLP Pred")
9 plt.plot(x_ax, df['RF Pred'], 1lw=08.8, color="green", label="RF Pred")
10
11 plt.legend()
12 plt.xlim([@, 52000])
13 plt.rcParams["figure.figsize"] = (20,10)
14 plt.show()
Predictions USROP_A 5 N-SH-F-5d well
In[ 1 1 from test_AB_5d import dfl_Sd
2 from test_GB_5d import df2_Sd
3 from test_KN_5d import df3_5d
4 from test_LR_Sd import df4_5d
5 from test_MLP_5d import df5_5d
6 from test_RF_Sd import df6_Sd
In [ ]: 1 df=pd.DataFrame()
2
3 df['ROP'] = df1_5d['ROP']
4 df['ABA Pred'] = dfl_5d['Perfect Prediction HT']
5 df['GB Pred'] = df2_5d['Perfect Prediction HT']
6 df['KN Pred'] = df3_5d['Perfect Prediction HT']
7 df['LR Pred'] = df4_5d['Perfect Prediction']
8 df['MLP Pred'] = df5_5d['Perfect Prediction HT']
9 df['RF Pred'] = df6_5d['Perfect Prediction HT']
Plot predicted USROP_A 5 N-SH-F-5d well
In [ ]: 1 x_ax = range(len(df['ROP']))
2.
3 plt.plot(x_ax, df['ROP'], 1w=0.8, color="black", label="original")
4 #plt.plot(x_ax, df['ABA Pred'], Lw=0.8, colo green”, label="ABA Pred")
5 plt.plot(x_ax, df['GB Pred'], 1lw=0.8, colol arkviolet", label="GB Pred")
6 plt.plot(x_ax, df['KN Pred'], 1w=0.8, color="blue", label="KN Pred")
7 #plt.plot(x_ax, df['LR Pred'], Lw=0.8, color="red", Label="LR Pred")
8 #plt.plot(x_ax, df['MLP Pred'], Lw=0.8, color="darkorange"
9 plt.plot(x_ax, df['RF Pred'], 1w=8.8, color="green", label="RF Pred")
10
11 plt.legend()
12 plt.xlim([@, 18860])
13 plt.rcParams["figure.figsize"] = (20,10)
14 plt.show()
In[ J: 1
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Appendix B
Well Statistics
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B.1 General Statistics

1. Well 1, USROP_A o N-NA_F-9_Ad3

. . Average Average Average )
Measured Weight on Bit N Rate of Mud Flow In  Mud Density . Average Hole Depth USROP
Standpipe Surface B Rotary Speed i Diameter mm
Depth m kkgf Penetration m/h L/min Ing/cm3 Hookload kkgf (TVD) m Gamma gAPI
Pressure kPa  Torque kN,m rpm

count 13746 13 746 13746 13 746 13 746 13 746 13 746 13 746 13 746 13 746 13 746 13 746
mean 844,155 9,289 11 562,065 5,937 39,101 143,320 2 714,106 1,207 269,962 92,707 781,324 103,791
std 216,075 4,450 2 779,706 3,282 11,969 41,557 777,596 0,010 47,190 4,393 157,351 64,629
min 491,033 0,005 3592,720 0,014 0,549 - 1506,518 1,190 215,900 84,727 490,760 11,270
25% 653,009 5,711 10 266,862 2,510 31,797 104,000 1 895,507 1,198 215,900 87,970 644,362 26,310
50 % 808,030 9,472 11 498,973 7,389 40,717 143,190 3 226,269 1,200 311,150 94,030 776,790 144,720
75% 1043,332 11,861 14 132,901 8,677 47,512 193,000 3447,223 1,210 311,150 96,815 929,222 158,570
max 1 205,999 20,102 15 664,406 10,616 88,441 204,170 3734,574 1,230 311,150 104,304 1013,143 204,761

Table B. 1. Well Statistics, USROP_A o N-NA_F-9_Ad

2. Well 2, USROP_A 1 N-S_F-7d

i i Average Average Rate of Average ]
Measured Weight on Bit i . Mud Flow In Mud Density . Average Hole Depth USROP
Standpipe Surface Penetration Rotary Speed i Diameter mm
Depth m kkgf L/min Ing/cm3 Hookload kkgf (TVD) m Gamma gAPI
Pressure kPa Torque kN,m m/h rpm
count 6389 6389 6389 6389 6389 6389 6389 6389 6389 6389 6389 6389
mean 472,31 4,65 12311,97 3,83 55,27 176,79 3915,37 1,03 444,50 98,78 472,27 83,04
std 98,16 1,59 2293,93 1,17 16,03 39,59 477,31 0,00 0,00 2,32 98,11 18,70
min 301,23 0,01 8949,00 0,31 8,77 103,00 3433,90 1,03 444,50 91,99 301,22 2,42
25% 385,12 3,59 9997,00 3,45 44,79 143,00 3434,86 1,03 444,50 97,06 385,11 79,75
50 % 474,00 4,60 11723,00 3,94 57,34 192,00 3732,15 1,03 444,50 98,58 474,02 86,99
75 % 563,21 5,74 14636,00 4,51 63,95 212,00 4426,36 1,03 444,50 100,37 563,18 94,24
max 633,54 10,02 17754,00 7,22 98,11 212,00 4431,42 1,03 444,50 104,33 633,32 120,83

Table B. 2. Well Statistics, USROP_A 1 N-S_F-7d
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3. Well 3, USROP_A 2 N-SH_ F-14d

. . Average Average Rate of Average 3
Measured Weight on Bit N . Mud Flow In Mud Density . Average Hole Depth USROP
Standpipe Surface Penetration Rotary Speed . Diameter mm
Depth m kkgf L/min Ing/cm3 Hookload kkgf (TVD) m Gamma gAPI
Pressure kPa Torque kN,m m/h rpm
count 47645 47645 47645 47645 47645 47645 47645 47645 47645 47645 47645 47645
mean 2279,192 5,667 17083,348 11,147 24,571 137,107 3179,510 1,295 340,994 132,833 2199,297 65,181
std 733,447 2,638 3294,108 2,665 13,285 35,336 1038,328 0,070 107,498 13,508 638,556 36,397
min 987,948 0,469 4509,000 1,610 0,330 0,000 432,050 1,020 215,900 87,216 987,460 0,000
25% 1617,223 4,171 15233,000 9,380 12,460 119,790 1984,990 1,270 215,900 128,953 1616,733 37,223
50 % 2277,889 5,364 17405,000 11,240 23,320 159,190 3523,390 1,310 444,500 138,284 2276,386 60,543
75 % 2931,021 6,547 18242,999 12,760 34,860 160,320 4155,930 1,350 444,500 140,435 2827,336 94,433
max 3466,033 15,092 24907,001 26,550 56,310 181,550 4538,450 1,380 444,500 152,927 2993,804 260,899

Table B. 3. Well Statistics, USROP_A 2 N-SH_F-14d

4. Well 4, USROP_A 3 N-SH-F-15d

i . Average Average Rate of Average ]
Measured Weight on Bit N i Mud Flow In Mud Density i Average Hole Depth USROP
Standpipe Surface Penetration Rotary Speed . Diameter mm
Depth m kkgf L/min Ing/cm3 Hookload kkgf (TVD) m Gamma gAPI
Pressure kPa Torque kN,m m/h rpm
count 53041 53041 53041 53041 53041 53041 53041 53041 53041 53041 53041 53041
mean 2640,153 6,183 17777,027 19,147 21,577 130,629 2933,601 11,453 303,343 129,058 2333,879 74,797
std 883,692 4,657 4138,872 7,894 9,628 19,348 1090,260 0,443 111,101 4,541 633,089 58,569
min 1306,525 0,005 4363,623 1,098 0,786 0,000 1083,309 10,682 215,900 114,795 1283,159 0,000
25% 1668,576 1,891 14705,635 11,443 15,597 129,500 2077,184 11,183 215,900 126,136 1618,122 27,690
50 % 2845,860 5,080 15767,427 19,213 19,687 139,736 2121,383 11,266 215,900 128,303 2619,993 51,765
75 % 3302,752 9,430 22788,690 26,708 29,688 139,736 4408,794 11,934 444,500 130,839 2860,925 135,690
max 4065,346 19,858 24993,309 36,489 99,206 140,351 4453,121 12,017 444,500 149,743 3189,315 256,164

Table B. 4. Well Statistics, USROP_A 3 N-SH-F-15
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Field-Scale Generality of the Machine Learning Models

5. Well 5, USROP_A 4 N-SH_ F-15Sd

Average Average Rate of Average

Measured Weight on Bit i i Mud Flow In Mud Density . Average Hole Depth USROP
Standpipe Surface Penetration Rotary Speed . Diameter mm
Depth m kkgf L/min Ing/cm3 Hookload kkgf (TVD) m Gamma gAPI
Pressure kPa Torque kN,m m/h rpm
count 51708 51708 51708 51708 51708 51708 51708 51708 51708 51708 51708 51708
mean 2928,763 5,782 19160,422 14,434 17,326 174,271 2572,733 1,369 247,425 134,654 2484,778 57,162
std 815,094 4,231 3485,707 2,685 8,874 59,162 1037,703 0,066 44,822 6,947 519,979 49,610
min 1400,550 0,002 1432,662 0,008 0,399 0,000 185,421 1,300 215,900 84,048 1367,019 0,000
25% 2183,961 3,080 15718,164 12,121 10,022 120,000 1705,919 1,320 215,900 129,147 2055,263 15,640
50 % 3056,812 4,345 20246,145 14,630 17,090 179,236 2016,073 1,320 215,900 135,112 2652,020 42,161
75% 3664,481 7,440 21835,421 16,822 24,954 217,770 3987,856 1,450 311,150 140,435 2900,238 90,350
max 4090,001 31,411 24998,459 24,228 96,660 290,560 4173,644 1,480 311,150 152,213 3171,809 255,462

Table B. 5. Well Statistics, USROP_A 4 N-SH_ F-15Sd

6. Well 6, USROP_A 5 N-SH-F-5d

Average Average Rate of Average

Measured Weight on Bit i i Mud Flow In Mud Density i Average Hole Depth USROP
Standpipe Surface Penetration Rotary Speed . Diameter mm
Depth m kkgf L/min Ing/cm3 Hookload kkgf (TVD) m Gamma gAPI
Pressure kPa Torque kN,m m/h rpm
count 18548 18548 18548 18548 18548 18548 18548 18548 18548 18548 18548 18548
mean 3333,935 6,700 20923,118 23,852 26,481 177,861 2040,051 1,409 2.159e+02 137,693 2930,595 42,091
std 296,633 3,190 2483,364 3,951 15,918 75,932 187,352 0,066 6.443e-11 5,600 223,785 41,121
min 2828,239 0,010 9782,000 5,570 1,360 24,160 1056,920 1,280 2.159e+02 114,055 2530,262 0,000
25% 3007,302 4,456 20841,000 21,780 12,620 129,940 2066,940 1,350 2.159e+02 132,767 2679,852 12,320
50 % 3363,657 6,312 21162,000 23,930 24,100 179,860 2089,570 1,450 2.159e+02 136,938 2974,288 29,490
75% 3592,875 8,657 22205,000 27,130 40,670 262,530 2090,060 1,450 2.159e+02 143,117 3129,706 54,600
max 3792,200 14,847 24997,000 30,880 79,140 311,230 2774,260 1,470 2.159e+02 148,379 3248,390 260,060

Table B. 6. Well Statistics, USROP_A 5 N-SH-F-5d
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Field-Scale Generality of the Machine Learning Models

B.2 Heat Maps.

1. Well1, USROP_A o N-NA_F-9_Ad
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Figure B. 1. Heat Map USROP_A 0 N-NA_F-9_Ad
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Field-Scale Generality of the Machine Learning Models

2. Well 2, USROP_A 1 N-S_F-7d
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Figure B. 2. Heat Map USROP_A 1 N-S_F-7d
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Field-Scale Generality of the Machine Learning Models

3. Well 3, USROP_A 2 N-SH_ F-14d
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Figure B. 3. Heat Map USROP_A 2 N-SH_F-14d
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Field-Scale Generality of the Machine Learning Models

4. Well 4, USROP_A 3 N-SH-F-15d
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Figure B. 4. Heat Map USROP_A 3 N-SH-F-15d



Field-Scale Generality of the Machine Learning Models

5. Well 5, USROP_A 4 N-SH_F-15Sd
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Figure B. 5. Heat Map USROP_A 4 N-SH_F-15Sd
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Field-Scale Generality of the Machine Learning Models

6. Well 6, USROP_A 5 N-SH-F-5d
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Figure B. 6. Heat Map USROP_A 5 N-SH-F-5d
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Field-Scale Generality of the Machine Learning Models

B.3 Probability Distribution

1. Well 1, USROP_A o N-NA_F-9_Ad
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Figure B. 7. Probability Distribution Well 1
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Field-Scale Generality of the Machine Learning Models

2. Well 2, USROP_A 1 N-S_F-7d
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Figure B. 8. Probability Distribution Well 2
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Field-Scale Generality of the Machine Learning Models

3. Well 3, USROP_A 2 N-SH_ F-14d
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Figure B. 9. Probability Distribution Well 3
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Field-Scale Generality of the Machine Learning Models

4. Well 4, USROP_A 3 N-SH-F-15d
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Figure B. 10. Probability Distribution Well 4
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Field-Scale Generality of the Machine Learning Models

5. Well 5, USROP_A 4 N-SH_ F-15Sd
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Figure B. 11. Probability Distribution Well 5
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Field-Scale Generality of the Machine Learning Models

6. Well 6, USROP_A 5 N-SH-F-5d
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Figure B. 12. Probability Distribution Well 6
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Field-Scale Generality of the Machine Learning Models

B.4 Plot Measure Depth (MD) vs Selected Variables.

1. Well 1, USROP_A o0 N-NA_F-9_Ad
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Figure B. 13. Measure depth vs. Selected variables Well 1
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Field-Scale Generality of the Machine Learning Models

M

Well 2, USROP_A 1 N-S_F-7d
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Figure B. 14. Measure depth vs. Selected variables Well 2
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Field-Scale Generality of the Machine Learning Models

3. Well 3, USROP_A 2 N-SH_ F-14d
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Figure B. 15. Measure depth vs. Selected variables Well 3
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Figure B. 16. Measure depth vs. Selected variables Well 4
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5. Well 5, USROP_A 4 N-SH_F-15Sd
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Figure B. 17. Measure depth vs. Selected variables Well 5
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6. Well 6, USROP_A 5 N-SH-F-5d
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Figure B. 18. Measure depth vs. Selected variables Well 6
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C.1 Implementation of the Model.
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Figure C. 55 Multi-Layer Perceptron Regressor data set prediction_Well 6
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Figure C. 59 Gradient Boosting Regressor data set prediction_Well 6
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