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ABSTRACT 

The blades of offshore wind farms (OWTs) are susceptible to a wide variety of diverse sources of 

damage. Internal impacts are caused primarily by structure deterioration, so even though outer 

consequences are the consequence of harsh marine ecosystems. We examine condition-based 

maintenance (CBM) for a multiblade OWT system that is exposed to environmental shocks in this 

work. In recent years, there has been a significant rise in the number of wind turbines operating 

offshore that make use of CBMs. The gearbox, generator, and drive train all have their own 

vibration-based monitoring systems, which form most of their foundation. For the blades, drive 

train, tower, and foundation, a cost analysis of the various widely viable CBM systems as well as 

their individual prices has been done. The purpose of this article is to investigate the potential 

benefits that may result from using these supplementary systems in the maintenance strategy. 

Along with providing a theoretical foundation, this article reviews the previous research that has 

been conducted on CBM of OWT blades. Utilizing the data collected from condition monitoring, 

an artificial neural network is employed to provide predictions on the remaining life. For the 

purpose of assessing and forecasting the cost and efficacy of CBM, a simple tool that is based on 

artificial neural networks (ANN) has been developed. A CBM technique that is well-established 

and is based on data from condition monitoring is used to reduce cost of maintenance. This can be 

accomplished by reducing malfunctions, cutting down on service interruption, and reducing the 

number of unnecessary maintenance works. In MATLAB, an ANN is used to research both the 

failure replacement cost and the preventative maintenance cost. In addition to this, a technique for 

optimization is carried out to gain the optimal threshold values. There is a significant opportunity 

to save costs by improving how choices are made on maintenance to make the operations more 

cost-effective. In this research, a technique to optimizing CBM program for elements whose 

deterioration may be characterized according to the level of damage that it has sustained is 

presented. The strategy may be used for maintenance that is based on inspections as well as 

maintenance that is based on online condition monitoring systems. 
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CHAPTER 1 Introduction 

Wind power is among the most common forms of clean and renewable energy. Its market share in 

the energy sector has been steadily expanding over the last 20 years. By the year of 2030, the US 

Department of Energy hopes to have 20% of the utility market fulfilled by the energy from the 

winds. On the other side, wind energy only contributed around 3.5 % of the overall energy 

produced in the USA in 2012 (Tawfiq et al., 2019).  The European Wind Energy Association has 

said that the goal for the year 2030 is to produce between 26 and 34 percent of power from wind 

(Leung and Yang, 2012)v. It is anticipated that the Chinese wind industry would reach 150 

gigawatts (GW) of total output by the year 2015, which is well over the objectives set by the central 

administration of 100 GW by 2015 and 230 GW by 2020. (Costa et al., 2021). There is no shadow 

of a doubt that market for wind power all over the globe is consistently growing. Accessing and 

operating offshore wind farms is challenging, which resulted in higher operation and maintenance 

(O&M) charges and, as a consequence, higher energy prices. This is true despite the fast increase 

of offshore wind producing capacity (COE). As per to the Energy Information Administration 

(EIA) of the United States, the cost of electricity produced by wind turbines located offshore 

(OWT) is 2.55 times higher than the cost of electricity produced onshore (Doluweera et al., 2020). 

Wind turbines are very complex electromechanical devices that are designed to have a lifespan of 

between 20 and 30 years (Iqbal et al., 2020). The dependability of the turbine is a significant factor 

in estimating if a wind farm project will be profitable. Studies indicate that the expenses associated 

with maintaining and repairing wind turbines account for between 25 and 30 percent of the total 

expenditure (Foley et al., 2012). These things have created a significant incentive for increasing 

the dependability of wind turbines and streamlining their maintenance and operation in order to 

cut down on the cost of electricity. According to information compiled from a number of different 

databases that were gathered from the field, the wind turbine blades are one of the most necessary 

elements of OWTs (Junginger, Faaij and Turkenburg, 2004). In addition, the usable life span of an 

OWT blade is significantly shorter than that of the average lifespan of an inland wind turbine 

blade. This is because blades in seas locations are susceptible to significantly larger mechanical 

stresses and a broader variety of natural damage than blades in inland locations (Leung and Yang, 

2012). 
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Internal and exterior damages to the system that the turbine blades are part of are the two forms of 

damage that may be incurred by wind turbine blades (IEC, 2005). The majority of internal damages 

are caused by the degeneration or deterioration of the system, which is caused by hydrodynamic 

forces and mechanical stresses. The wearing, rust, abrasion, fatigue, and fracture development that 

are often associated with the degradation process advance throughout the course of time as the 

process continues. In addition to the internal issues, the rotor blades might be damaged on the 

outside (by shocks) by the marine environment. This would be in addition to the difficulties on the 

inside (Junginger, Faaij and Turkenburg, 2004). There are two types of harm that are caused by 

the environment (Wilkinson, Spianto and Knowles, 2006; Leung and Yang, 2012); the first kind 

of shock is a tiny shock k, such as when there is a sudden shift in the direction or speed of the 

wind. This type of shock produces an instantaneous drop in power generation but does not result 

in any breakdown of the system. Wind turbines may be rendered inoperable and forced to undergo 

system replacement if they are subjected to a calamitous shock such as a huge tidal wave, 

thunderstorm, or weather freeze (Foley et al., 2012). 

Because of its influence on cost, risk, and efficiency, maintenance competence is a critical concern 

for sectors that use physical properties. Preventative and corrective maintenance are the two types 

of maintenance plans. After a failure, corrective maintenance is performed. By maintaining or 

replacing components, preventative maintenance (PM) is utilized to reduce downtime (DT). This 

consists of doing regular inspection, where an upkeep service is planned ahead of time according 

to the current state of health of a unit or subsystem that is being monitored. It involves the adoption 

of a monitoring system, including vibration analysis for essential machine systems in windfarms, 

where servicing actions are driven by the component's actual state. This is necessary in order to 

accomplish this. Condition-based maintenance (CBM) enables a decrease in both DT and 

maintenance procedures in theory (Lu et al., 2018). The goal of condition monitoring is to 

safeguard that wind turbines continue to operate by continuously measuring and analyzing them, 

hence increasing turbine availability, and lowering costs. Traditional corrective and preventative 

maintenance methods have been replaced in contemporary industry by condition-based 

maintenance (CBM) practices as a direct result of improvements in sensor technology (Besnard 

and Bertling, 2010). 

The thesis proposes a cost-effective, efficient, and preventive approach to turbine blade 

maintenance centered on condition-based maintenance that does not result in complete breakdown 
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of the turbine blade. Blade maintenance may be determined by a number of condition-based 

maintenance techniques, including a visual examination, assessment with monitoring system, or 

an online framework that can monitor the status of the rotor blades in real - time basis. 

1.1 Problem Statement 

Utility wind turbines, like magnificent giants, are developing further away and offshore. While 

designers focus on building longer, heavier, and more efficient turbine blades, wind farm operators 

and investors face a unique challenge: maintaining older blades in good working order. 

Unexpected failure occurrences and limited inventory are significant problems for wind-power 

operators to overcome. Repair work to blades is naturally more difficult to arrange. Blade damage 

can occur in a variety of settings, including manufacturing, transit, and tower building and erection. 

Leading-edge erosion, weather, and other causes, on the other hand, are more prone to produce 

field maintenance issues. The absence of predictability and past data makes blade preventive 

maintenance difficult. Because these components have traditionally had huge volumes of DT per 

failure and can be easily monitored, the vast majority of CBM solutions are vibration-based and 

concentrate on the driveline of wind turbines, which includes the generators, transmission, and 

related gears. 

1.2 Motivation 

It is important to reduce the cost of maintenance for wind turbines, and a method is required that 

evaluates the depletion of wind turbines and predicts the life expectancy and maintenance 

requirement for the turbine. Artificial neural network has been used for predicting the maintenance 

of wind turbine, however a cost comparison based on optimization procedure is required for 

maintenance of wind turbines. The optimization method can minimize the cost of maintenance on 

a long term, based on optimal threshold values. 

1.3 Objectives 

• To study existing research on condition-based maintenance of wind turbine blades 

• Theoretical background on the use of CBM to repair blades  

• Develop a simple tool using Artificial neural Network (ANN) for analyzing and predicting 

CBM cost and effectiveness 
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• Failure replacement cost and preventive maintenance cost will be studied using ANN in 

MATLAB.  

• Minimizing the maintenance cost in long term, one optimization procedure is conducted to 

acquire the optimum threshold values. 
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CHAPTER 2 Literature Review 

Wind energy is getting popular among renewable sources of energy and has many applications. In 

recent years there is high trend in installation of wind turbine because of rise in environmental 

problems, high fuel prices and emerging technologies related to wind energy. Also, it is inevitable 

to develop renewable energy sources because of greenhouse gases emissions. Wind turbines works 

on the principal of converting wind energy to mechanical energy. Which are further used for many 

purposes one of which is production of electrical energy. Wind turbine can be installed individually 

or in groups which is also called wind farm. The electricity produce can be use individually or can 

be connected to national grid. However, there are some limitations to installations of wind turbines 

which are practical, technical, or economic issues. 

2.1 Onshore Wind Turbines 

The turbines that are built and located on land is called onshore wind turbines. The wind electricity 

generation increased in 2020 by 144 TWh (+11%) (Tian and Wang, 2022). Generating capacity 

reached an all-time high of 108 GW, more than doubling from the previous year, mainly due to a 

commissioning rush in China and the United States, which accounted for 79 percent of global wind 

installation. However, because majority of the projects were completed in Q4 of 2020, the entire 

influence of this construction boom on power production will be seen in 2021. On-site construction 

of the substructure for onshore wind turbines is required; however, the superstructure, rotors, as 

well as other elements are pre-manufactured at other locations and then delivered to the 

construction site (Costa et al., 2021). 

2.2 Offshore wind turbines 

The turbines that are built and located in sea or oceans is called offshore wind turbines. As the 

available wind speeds are more than onshore wind turbine so the capability to produce power is 

more than onshore turbines (Jiang, 2021). In 2020, offshore generating capacity increased by 29% 

to 25 TWh, with generation capacity of 6 GW, the same as in 2019. In all, 1 592 TWh of power 

was generated by wind turbines in 2020, a 12 percent increase over 2019. Offshore wind turbines 

needs specialized transport also the construction cost is quite high (Guo, Wang and Lian, 2022). 

New technologies has significantly reduces cost of offshore wind turbines and now in competition 

with other sources of power production in terms of cost in Europe (Wu et al., 2019). 
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2.3 Wind Turbine Components 

The mechanical energy is produces by wind kinetic energy which is converted by the wind turbine 

to produce electricity which uses wind power for this purpose. Its structure is made of mechanical, 

electrical, and civil components which is very complicated. Rotor blades, hub assemblies, nacelles, 

yaw mechanisms, generators, transmission systems, towers, and foundations are the primary 

components that make up a conventional wind energy system. The figure displays the many 

components that are typical in wind turbines. 

 

Figure 1 Typical overview of a wind turbine (Guo, Wang and Lian, 2022) 

2.3.1 Tower 

The tower's principal responsibility is to provide support for and maintain the turbine's position. It 

houses the rotor blades, weights, and yaw assembly of the nacelle, in addition to all of the electrical 

components. The tower should be able to successfully endure massive loads of wind and vibration 

that are applied to the foundation.  An important aspect of wind turbine construction is True 

vertical alignment and tilting up to 1 degree is allowed. 

2.3.2 Lattice towers  

To construct lattice towers welded steel profiles are used. The truss motion and bigger base 

dimensions aid in more effective load resistance. Furthermore, the open tower reduces wind loads 

on the structure. The little tower sections are inexpensive to produce and carry to the job site. 
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Because of the large number of pieces that must be assembled, lattice towers have a high on-site 

building cost. Lattice towers also have a significant maintenance cost because each joint has the 

potential to collapse, especially in colder locations where icing might occur (Leung and Yang, 

2012). 

 

Figure 2 Lattice tower (Big Stone Renewables Services) (Saidur et al., 2011) 

2.3.3 Concrete towers  

Concrete towers provide several advantages, including enhanced endurance, cheaper maintenance 

costs, and a modular design that may be used in practically any turbine application. Concrete 

towers can also be divided in virtually any direction to make transportation easier. Concrete 

towers, on the other hand, take longer to build on-site, depending on the assembly method. There 

is also a considerable risk of failure since cracks can easily spread during the curing process 

(Breton and Moe, 2009). 
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Figure 3 Concrete tower (Breton and Moe, 2009) 

2.3.4 Hybrid towers  

Hybrid towers are a mix of concrete and tubular or lattice and tubular construction. The base 

diameter of a conventional tubular tower would surpass transportation constraints at very high 

tower heights. Augmenting the bottom section of the tower with a stronger concrete or lattice base 

could lower average tower costs while increasing the turbine's annual power production. 
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Figure 4 Hybrid tower (Saidur et al., 2011) 

2.3.5 Foundation 

A wind turbine's foundation is built in such a way that it transfers loads to the ground in order to 

maintain the device's stability within the prescribed limitations for deviation and tilting. Different 

types of loading during operation of wind turbine including bending movement, wave, dead loads 

etc. are all carried by the foundation. The structure self-weight, which includes all the components 

of turbine are carried out by the foundation. Massive bending moments are due to extra loads on 

wind turbine (Guo, Wang and Lian, 2022). Figure depicts some commonly used sub structures in 

the wind energy sector. 
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Figure 5 Types of wind turbine foundation (Wu et al., 2019) 

2.3.6 Rotor Blades 

Rotor blades are sizable hybrid constructions. They are mostly comprised of composite materials 

and include bolted blade–hub linkages, lightning protection, and a broad variety of loadbearing 

components and parts among their many other in-built design elements. They are subjected to 

environmental stresses, severe loads, and fatigue throughout their lifetime in an offshore wind farm 

because of the location of the facility. The configuration of the rotor blades has a high influence 

on the performance of the wind turbine because it determines the amount of kinetic energy from 

the wind that is converted into mechanical energy (torque). Aerodynamic concepts were used in 

the design process, which resulted in the blades having a high lift-to-drag ratio. The number of 

blades is selected with consideration given to system dependability, component prices, and 

aerodynamic effectiveness (Ennis et al., 2019). 

Theoretically, if there is a huge number of blades with zero width operating at a higher tip speed 

ratio, there will be a high level of efficiency. However, wind turbine has fewer blades due to other 

factors like cost, design limitations, reliability etc. Most of turbine has only three rotors’ blades on 

its horizontal axis. In order to perform long term a turbine blade must have low mechanical and 

inertial strength. Typically, the blades will be made out of aluminum or fiberglass filled polyester, 

carbon composite reinforced plastics, wooden or epoxy laminates, or any combination of these 

materials (Hiendro et al., 2013). 
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Figure 6 Schematic diagram of the blade (Miller, Samborsky and Ennis, 2019) 

2.3.7 Nacelle 

The drive train as well as other tower-top components are located in the nacelle of a wind turbine. 

In reaction to wind fluctuations, it is positioned on a yaw bearing which allow it to rotate. The 

nacelle must be easily accessible for maintenance operations and repair. Normally, an access is 

provided by elevator and ladders within the tower. Normally, the nacelle is produced in a factory 

and then transported to the top of the tower by use of specialized equipment used for lifting. Most 

of the modern wind turbines have a real-time condition monitoring equipment built into the 

nacelle. The nacelle is usually two to three times the length of the rotor blades, though it can be 

taller to allow the blades to reach higher wind speeds. To change the system's features, the nacelle's 

controlling mechanism saves data on wind speed and direction, rotor speed, and generator 

capacity. As a result, the controller uses the yaw mechanism to allow the turbine to move in the 

direction of the wind (Bogaraj, Kanakaraj and Kumar, 2015). 

 

Figure 7 Main components of Nacelle (Besnard and Bertling, 2010) 
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2.3.8 Rotor Hubs 

The blades to the main shaft are connected by the rotor which is a component of a wind turbine 

which also holds the blades. It's very important for keeping the blades in position for maximum 

aerodynamic efficiency, and also for rotating to power the generator. Depending on the kind of 

generator and the rotor blade design, hubs come in a range of forms and combinations. 

2.4 Types of Wind Turbines 

Horizontal Axis Wind Turbines (often abbreviated as HAWTs) and Vertical Axis Wind turbines 

are the two primary categories of contemporary wind generators (VAWTs).Most of utility-scale 

wind farms incorporates Horizontal axis turbines. 

 

Figure 8 HAWTs vs VAWTs (Ahmed and Abdel Gawad, 2016) 

2.4.1 VAWTs  

Most of the parts of a vertical axis wind turbine are placed at the turbine's base, while the primary 

rotor shaft is angled transverse to the wind. Because the blades are positioned vertically, wind can 

come from any direction. However, the blades on the other side do not contribute to the output 

power created, when the wind blows on one side of the turbine, which diminishes the efficient of 

turbine. VAWTs have the benefit of not requiring the sophisticated wind detecting equipment that 

HAWTs have in order to change itself to the direction of the wind. Finally, VAWTs are designed 

to endure high wind speeds in stormy weather (Ahmed and Abdel Gawad, 2016). 

2.4.2 HAWTs  

Unlike VAWTs, the primary rotor shaft of a HAWT is perpendicular to the ground at the top of 

the tower. The HAWTs have automated system with different sensors for different purpose also 
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its life cycle is very high. Wind sensors are installed on the turbine which allow them to change its 

position according to wind hence have high efficiency. The nacelle, or upper motor housing, moves 

not just to position the blades into the wind (yaw), but also to enhance power generation and 

efficiency. By orienting the tower into the wind, the control systems may reduce unnecessary 

crosswind fatigue loads on the blades and help the wind turbine last longer (Griffith et al., 2016). 

2.5 Maintenance Approaches 

It has become a challenge in current dynamic operational settings to effectively manage reliability 

of a system. In this context, condition-based maintenance (CBM), as compared to more typical 

methods which are based on time-based maintenance (TBM), is a prominent solution for 

scheduling maintenance activities. Some of the most common approaches used for maintenance is 

Preventive maintenance (PM) or Corrective maintenance (CM). Corrective maintenance is done 

after failure while preventive maintenance is done prior to failure of a component or system. when 

the result of failure have no impact on losses in revenue or health and safety impact then corrective 

maintenance is used. Major equipment failures in turbines can be disastrous, resulting in severe 

operational, health, safety, and environmental repercussions. The effects of failures on the 

electrical network and revenue production, therefore, determine the viability of a CM approach. 

Two types of preventive maintenance techniques are there: condition-based and statistical 

preventive maintenance. Scheduled Maintenance (SM) is a PM activity that occurs on a 

predetermined schedule, such as once a year, and is based on failure data. Status Based 

Maintenance is a PM activity that is planned based on sensor data or component condition. 

Time-Based Maintenance (TBM), which is a technique of PM, also known as entails doing routine 

maintenance tasks at regular intervals. This method is frequently used to comply with OEM 

warranty requirements and to keep crucial components with known failure data under control. 

However, there are drawbacks to choosing the appropriate amount of time interval for doing 

maintenance activities. 

As previously noted, O&M management of OWT has become increasingly important as the 

volume of wind energy capacity deployed in electric power networks has grown. Experts have 

created a number of maintenance solutions aimed at lowering costs. Although it is critical to know 

a wind turbine's dependability to develop an effective maintenance strategy, OWT failure statistics 

are not readily available because of commercial limitations. Spinato published results of 
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subassembly-level reliability analysis based on publicly available information from Germany and 

Denmark in his work (Zhou and Yin, 2019). 

2.5.1 Condition-Based maintenance (CBM) 

CBM is sometimes discussed as a maintenance strategy and is a subtype of preventive 

maintenance. Its main purpose is to provide or recommend different maintenance approaches 

based on the operation of CM. As a result, the accuracy of the monitoring process determines the 

effectiveness of CBM choices. CBM attempts to manage equipment failure modes, according to 

(Tian et al., 2011). As a result, when CBM is implemented, all possible failure modes that might 

result in financial losses should be evaluated. CBM is based on the concept that most breakdowns 

do not happen at the same time and that they may be detected early in the deteriorating process. 

The key problem is determining when maintenance should be conducted and what action should 

be taken at that time. A system's reliability gives useful information for planning maintenance 

operations at a lesser cost. To this goal, a predictive model must be built that generates a warning 

early enough to execute the necessary maintenance before the failure occurs. Predictive 

maintenance is the common name for this method. Predictive maintenance, according to (Zonta et 

al., 2022) is a component of a wider notion of CBM that arose from the gradual implementation 

of novel resources to assist the maintenance function, such as skills, technologies, procedures, and 

processes. 

Condition-Based Maintenance (CBM) reduces needless maintenance actions and schedules 

preventative maintenance to save maintenance costs. Condition monitoring, in particular, is the 

primary source of data during routine inspections, which is utilized to determine the optimal time 

for effective maintenance (Tian et al., 2011). The CBM is employed in a variety of sectors, 

including aerospace, mining, petroleum (Wu, Tian and Chen, 2013a), and power generation (Tian 

et al., 2010). 

2.5.2 Optimization Approaches of CBM 

(Goyal et al., 2017) came up with an optimization for the CBM that was based on the proportional 

hazards concept for the wind industry (PHM). PHM is the model that is used and referenced the 

most often in other sectors. It blends a baseline hazard function with a covariates component that 

brings into mind the condition data. Both of these components take into consideration the 

information. PHM helps enhance the failure prediction by using the values that are supplied for 
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the covariates and the relevant parameter. The latter provides an indication of the degree to which 

each covariate contributes to the hazard function. The goal function for minimizing the expected 

average cost may be used to establish the threshold hazard rate, which can then be used 

accordingly. As a consequence of this, if the anticipated risk is higher than the optimal value, it is 

worth replacing the component in question. (Lucente, 2008) brought attention to the fact that the 

PHM may have applications in the construction of wind turbine components. As per her, there are 

restrictions since there is a shortage of data and determining which confounding factors are 

significant continues to be a challenging task. In this area's body of research literature, PHM as 

well as other CBM methodologies have received little attention. In contrast, a number of research 

have come to the conclusion that CBM is unquestionably advantageous in contrast to other forms 

of maintenance in terms of enhancing O&M management. (Saeed, 2008) analyzed the life cycle 

costs of a wind farm with 26 wind turbines of 600 kilowatts each, using a CBM maintenance 

schedule and a 6-monthly scheduled maintenance schedule. All of the pertinent cost data was 

easily available. They arrived to the judgment that CBM is the most effective strategy in all and 

all circumstances. 

Because of its influence on costs, hazards, and performance, optimization of maintenance is a 

critical problem for sectors that use physical assets. (Fischer, 2012) suggested a method for 

selecting an appropriate maintenance plan based on Reliability Centered Maintenance and Asset 

Life-Cycle Analysis. (Zhou and Yin, 2019) explored quantitative maintenance optimization and 

offered a methodology for determining the appropriate inspection interval for wind turbine drive 

trains. It was suggested that an optimization model for the schedule be used in order to benefit of 

wind speeds and opportunities for corrective repairs to carry out preventive maintenance at a 

reasonable cost. (Sainz and Sebastián, 2013) looked at the options for transporting vessels and the 

advantages of using an internal crane for OWT systems. (Tong, Qian and Liu, 2022) explored 

quantitative maintenance optimization and offered a methodology for determining the appropriate 

inspection interval for wind turbine drive trains. 

2.5.3 Condition-based maintenance implementation  

The selection of parts to be monitored, definition of monitoring methodologies and technologies, 

implementation of the needed technical means, and development of acceptable data analysis 

procedures are all common requirements for CBM deployment. As a result, the financial 
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commitment may be substantial. The procurement of measurement instruments, hardware, and 

software, as well as the provision of specialist expertise and training, are the most significant costs. 

As a result, the organizational, financial, and technological aspects of CBM deployment should all 

be considered. According to (Brink, Madsen and Lutz, 2015), the viability of CBM investments 

should take into account the importance of the equipment, its technical qualities, and the 

surrounding environment's complication. Technical reasoning that illustrates the potential of CM 

systems and CBM policies to fulfil the company's strategic objectives is required, according to 

(Al-Najjar, Algabroun and Jonsson, 2018). CBM helps to enhance the performance of the 

maintenance function when it is well planned. However, (Goyal et al., 2017) and (Lu et al., 2018) 

underline that the advantages of CBM adoption are greater when CM is done at the system level 

in an integrated way. 

2.5.4 Maintenance of Offshore Wind Farms 

Wind turbines are complex electromechanical devices that are designed to have a life cycle of 

somewhere between 20 and 30 years (Goudarzi and Zhu, 2013). Studies indicate that the 

expenditures associated with wind turbine repair and maintenance account for anywhere between 

25 and 30 percent of the overall cost (Fischer, 2012). In reality, numerous studies have focused on 

wind power system maintenance and dependability. For example, several of them have studied 

and defined the failure frequency (Yurdusev, Ata and Çetin, 2006). Others have offered 

maintenance solutions to increase dependability (Andrawus et al., 2006), while others have 

attempted to optimize maintenance by lowering the total cost (Zhang, Dwight and El-Akruti, 

2015). (Tian, Ding and Ding, 2011) recently employed CBM and Constant-Interval maintenance 

to optimize wind farm maintenance during lead time (2010). The authors established two failure 

probability at the turbine level in particular. They also took into account the fact that the farm only 

has one type of turbine and a consistent lead time. The authors demonstrated significant results 

when compared to previous studies, as the CBM lowered total maintenance costs by 44.42 percent 

more than CI maintenance. 

According to studies, the cost of operations and maintenance accounts for 14 percent to 30 percent 

of the entire cost of an offshore wind farm (Wilkinson, Spianto and Knowles, 2006). Regulations, 

condition monitoring systems available on the market, and their related expenses control O&M 



17 

 

activities (Shafiee, Finkelstein and Bérenguer, 2015). According to estimates, proper maintenance 

may save 40-70 percent on direct O&M costs and increase turbine availability by 7%. 

2.5.5 Wind Turbine Blades Condition-Based Maintenance Optimization  

Francois Besnard came up with a strategy for maximizing the effectiveness of component 

maintenance that included categorizing degradation according to the level of damage. A simulation 

strategy was provided as a means of analyzing expected life cycle maintenance expenses. This 

technique was applied to maintenance techniques that relied on inspections, and also maintenance 

methods that were based on online condition monitoring. The method allows us to optimize 

maintenance decisions for each maintenance strategy while comparing them in a single framework. 

The model was validated by the use of an example that included optimizing and comparing three 

different techniques to maintaining wind turbine blades: visual inspection, inspection with 

condition monitoring, and online CBM (Wu, Tian and Chen, 2013b). 

(Nilsson Westberg and Bertling Tjernberg, 2007) evaluated the risk-based operation and 

maintenance of floating wind components. They took into consideration the lifetime expenses 

involved with all life cycle activities. Wind turbine operators routinely implement preventive 

maintenance (PM) practices, such as periodic inspections, risk-based maintenance, age 

replacement, and condition-based maintenance, in order to reduce the likelihood of random 

failures and reduce potential losses in wind farms. Examples of PM practices include periodic 

inspections and age replacement. On the other hand, a cursory look through the available research 

shows that there have only been a handful of papers published on the topic of enhancing the 

maintenance procedures for rotor blades. An Artificial Neural Network-based approach for defect 

prediction and automatically creating warning and alarm for wind turbine main bearings using on 

recorded SCADA data was proposed by (Pazouki, Bahrami and Choi, 2014). This methodology 

was proposed by Garcia et al (ANN). After the ANN model of the typical behavior of the turbine 

main bearing was built, the difference between the actual values of the parameter and the simulated 

results of the parameter was computed. In addition, a method was developed by (Wu, Tian and 

Chen, 2013b) in order to provide advance indication and alerts based on the deviation, as well as 

to prevent false warnings and alarms from being generated. As a consequence of this, operators of 

wind farms will have more time to organize repairs, which will result in less unscheduled 

downtime and cheaper operation and maintenance costs. In their study on the optimization of 
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quantitative maintenance for wind turbines, (Andrawus et al., 2006) employed Monte Carlo 

simulation in conjunction with the Delay-Time Maintenance Model (DTMM). Wind turbine 

performance management system employing condition monitoring systems was investigated by 

(Zonta et al., 2022). The authors focused on life cycle cost (LCC) analysis and methods for 

improving maintenance strategy for a single onshore wind turbine as well as an offshore wind 

farm. They conclude that CMS is useful in the process of wind power system maintenance. (Gray 

and Watson, 2009) proposed a technique for the CBM of wind turbines that was based on the 

physics of failure. A novel technique for the continuous, on-line computation of damage 

accumulation is presented here. This method makes use of the standard turbine performance 

information and the methodology of the Physics of Failure. Evaluation of the wind turbine system 

is performed in order to ascertain the primary reasons behind key failure modes, and theoretical 

damage frameworks are developed in order to evaluate the relationship between the operating 

environment of the turbine, the loads that are applied, and the rate at which damage accumulates. 

After that, a precise real-time estimation of the probability of certain failure types and component 

failures is possible. This method has the potential to considerably improve the entire wind turbine 

maintenance approach, and it can be implemented at a very cheap cost. (Byon and Ding, 2010) 

developed models and tools for finding solutions in order to figure out which maintenance 

practices are the most effective. They take into consideration a multi-state degradation model for 

wind turbines, which is necessary since these machines are prone to a variety of failure 

mechanisms.(Besnard and Bertling, 2010) proposed a mathematical method for optimizing the 

inspection interval and condition monitoring methods for a wind turbine blade the degradation of 

which is graded according to the degree of the damage. 

2.5.6 ANN applications Wind Turbines 

Wind turbines are pre-fitted with a plethora of sensors that measure things like humidity, 

temperature, and vibration, amongst other things. In order to ascertain the current state of the 

system, data acquisition systems take readings of all of its variables. The processing of data 

necessitates the use of reliable algorithms that make it possible to extract as much useful 

information as possible from the data that is readily accessible. The capacity of machine learning 

algorithms to analyze massive amounts of data has led to their widespread use; artificial neural 

networks (ANNs) are one of the most popular approaches now in use. ANNs are intricate structures 

that are modeled after biological neuronal networks (Shah et al., 2021)v. When it comes to solving 
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issues that cannot be specified analytically, such frameworks provide a useful answer. Neurons, 

which are basic processing units, make up an artificial neural network (ANN), and weighted 

connections link these neurons to one another. The multilayer perceptron represents a structure 

that is representative of the norm. Following the acquisition of a dataset, the ANN initiates a 

training procedure in order to calibrate the weights of the many interconnections among neurons. 

In the event when the output cannot be predicted, the training will be referred to be unsupervised 

training rather than supervised training (Finamore et al., 2016). ANNs are used in a variety of 

industries because of the multiple benefits they provide. Some examples of these fields include 

medical, pharmacology, robotics, spatial analysis, and others. ANNs may be used to produce 

functions that describe a specific occurrence when the data doesn't really enable such 

characteristics to be built by hand. This is possible because ANNs are capable of learning from 

their own data. The following are the primary benefits (Malik and Savita, 2016)v: - 

o Adaptive learning as they are able to learn how to complete tasks by going through a 

training procedure. 

o Through a process of training, artificial neural networks (ANNs) are capable of self-

organization, in which they may develop their own framework to reflect the information. 

o Tolerance to failure since the ANN may continue to function even when its structure is 

broken and distorted, or partial results can be obtained even when the inputs are noisy. 

o They may be executed in simultaneously, and they carry out their tasks very quickly. As a 

consequence of this, they have been particularly developed to carry out procedures that 

take place online. 

o Integration into the system is made simple by the availability of customized chips that make 

the process of incorporating ANNs into the system much simpler. 

ANNs are helpful for finding solutions to a broad variety of issues falling into seven distinct 

categories (Gray and Watson, 2009). 

o Through supervised learning, ANNs have the ability to recognize patterns within a dataset. 

o Unsupervised learning is used to determine whether or not there are similarities or 

differences in the data. The network will place data that are comparable under the same 

category (or cluster). 
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o ANNs have the potential to be used in situations when a theoretical model would be 

ineffective. They are able to provide an approximation of the data input to a function that 

has a given amount of information. 

o ANN may be taught to produce a forecast of the future conduct by using time series as the 

training data. 

o It is possible to locate a solution that either maximizes or decreases the value of a function 

while adhering to a variety of restrictions. 

o Developing an association pattern is one way to use an associative network, which may 

then be used to recreate data that has been damaged. 

o It is feasible to discover the inputs that will lead a system to behave in a certain way that is 

desired. 

 

Figure 9 Applications of ANN in Wind Turbines (Murugaperumal and Ajay D Vimal Raj, 2019) 

The amount of wind that is blowing through an area is a key operating parameter for wind turbines. 

Long-term wind speed forecasting is most accurately accomplished via the use of physical 

techniques. The short-term prediction of speed may be accomplished effectively using statistical 

approaches and models developed using artificial intelligence. An NN-based technique for the 

creation of prediction intervals was created by (Quan et al., 2020) in order to evaluate the possible 

uncertainties associated with predictions. With the use of an MLP, (Sainz and Sebastián, 2013) 

were also able to quantify the uncertainty that are connected with projections. The vast majority 

of the research papers and methodologies for predicting wind speed are focused on extremely 

short-term or short-term prediction. Predictions with a time horizon of only a few seconds or less 
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are helpful for applications that involve controlling turbines. As a result, the computational cost of 

the models that are going to be employed in online applications is a significant consideration. In 

comparison to an MLP, the findings obtained by (Zonta et al., 2022) using wavelet-based networks 

and particle swarm optimization were much more precise; nevertheless, the computing costs were 

significantly higher. (Lu et al., 2018) proposed combining Markov chain models with multi-layer 

perceptrons. This strategy decreases both the mistakes and uncertainties that were expected while 

only requiring a minimal amount of computing power. Because of this, the paradigm is suitable 

for implementation in web-based applications.  

An hybrid model based on chaotic phase space rebuilding and NWP-General regression NN was 

suggested by (Wu, Tian and Chen, 2013b). The use of this strategy lessens the effect that erroneous 

weather information has. The models that were discussed before came to the conclusion that the 

combination of ANNs produces superior outcomes than single ANN techniques for the extremely 

short-term prediction of wind speed. In the context of short-term prediction, (Shah et al., 2021) 

used three distinct ANNs i.e., a linear element network, an RBFNN, and a BPNN) for predictions 

made 1 hour in advance. According to the findings of this research, there has not been a single 

ANN that excels in all situations and delivers the best possible outcomes. The BPNN that was 

created by Palomares et al. (Palomares-Salas et al., 2014) may also be used for predictions that are 

made 1 hour in advance. This strategy not only enhanced the findings of the tenacity model but 

also indicated that data acquired from conventional agricultural observations might be beneficial 

in accurately forecasting wind speed. An artificial neural network (ANN) feed-forward technique 

was presented by  for a coastal area with a highly complicated topography. They showed that this 

model is correct by using the capacity of the ANNs to take into account the erratic properties of 

the wind that are caused by the geography. (Carta and Velázquez, 2011) devised a system based 

on MLP for estimating the wind speed at various sites inside a wind farm. They demonstrated that 

this model, when applied to an actual wind farm, generates minimal values for the mean absolute 

error. The findings of all of these research show that the majority of the models based on ANN are 

more accurate than techniques that do not use artificial intelligence. The kind of data and the 

criteria for the estimate both play a role in determining which model is the most appropriate for a 

given scenario. ANNs are also used to construct algorithms for medium-term wind speed 

predictions. This is another application for their use. When the time horizon is expanded, it tends 

to result in less accurate predictions. Wavelet decomposition and artificial neural networks (ANN) 
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are both components of the hybrid model that (Xing et al., 2019) shown can accurately predict 

wind speeds. In comparison to other empirical mode decomposition approaches, the predicting 

performance of our method was much better.  

In order to do a multi-resolution study for the purpose of forecasting wind speed time series, 

(Doucoure, Agbossou and Cardenas, 2016) use an adaptive wavelet artificial neural network 

(ANN). (Ak, Vitelli and Zio, 2015) trained an MLP using a multi-objective genetic algorithm, and 

as a result, they were able to acquire a valid assessment of the prediction intervals. Adaptive linear 

element, BPNN, and RBFNN were examined via the lens of (Li and Shi, 2010) comparison. They 

came to the conclusion that the accuracy of the estimate was affected by a variety of parameters, 

including those relating to the inputs of the model and the training rates. Because of how inaccurate 

the long-term wind speed estimates are, there is not a lot of published research on the topic. (Malik 

and Savita, 2016), for instance, provided a BPNN that was trained using data from a total of 22 

cities. The goal of this work is to achieve the highest possible level of precision by minimizing the 

total number of hidden neurons. A strategy for the medium-to-long term prediction based on a 

multi-layer perceptron (MLP) and the spatiotemporal development of weather was given by 

(Finamore et al., 2016). The model produced several intriguing findings, namely that it was able 

to mitigate the impact of climatic outliers. The findings of this model give an accurate prediction 

that might be helpful in assisting with the activities that are associated with maintenance. (Tong, 

Qian and Liu, 2022) have created a long-term prediction model that uses a feedforward BPNN to 

forecast the trend of the next year. This model was used to predict the trend of the upcoming year.  
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CHAPTER 3 Methodology 

3.1 ANN life percentage prediction mode 

3.1.1 OWTs ANN prognostic approaches 

According to the findings of a number of studies, the adaptability, nonlinearity, and arbitrary 

function approximation qualities of ANN make it an exceptionally astute prognostic tool, 

especially when it comes to the prediction of health conditions (Huang et al., 2007). In order to 

simulate the connection between the age of OWT blades, the data from condition monitoring, and 

the percentage of component life remaining, an ANN is used. The temperature and vibration data 

from the OWT were selected to be used as measures in the construction of the ANN model. A 

feedforward neural network model has a structure with four layers: one input layer, one output 

layer, and 2 hidden stages. The input layer is the visible layer. The input layer is comprised of six 

neurons, each of which correlates to component age and condition monitoring measures acquired 

at the current and prior inspection points. The neuron in the output layer acts as a representation 

for the percentage of the component's life that can be predicted based on its current state at the 

time of inspection. The logsig function is used as the transfer function in the hidden layer, whereas 

the purelin function is used in the layer that outputs information. The inputs of the six neurons that 

make up the input layer are taken into consideration by the ANN prediction model, which then 

makes a prediction on the component's learnt current life percent. 

3.2 Proposed Framework 

For the purpose of determining the anticipated probability of failure of OWT blades, which is a 

decision variable, an ANN prognostic approach for predicting the life percent of a component in 

the recommended CBM method is utilized. The ANN model, which is reliant on condition 

monitoring, provides the anticipated component life %. This percentage may be found in the table 

below. Uncertainties about the predicted failure time continue to exist regardless of the result. 

These uncertainties, also referred as ANN life percentage prediction errors, are gained during the 

training, and testing of the ANN, and they are utilized to create the expected failure-time 

distribution. 
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Figure 10 Proposed Framework Using ANN 

3.2.1 CBM optimization for Turbines based on ANN life percentage prediction. 

CBM optimization is being used to strike a balance between the resources needed for maintenance 

and the needs based on the data collected from condition monitoring. The purpose of this procedure 

is to determine the optimal moment to perform preventative maintenance or component 

replacement in order to cut down on the expenditures that are anticipated to accrue over the long 

run. By using an ANN health prediction model, one is able to derive the anticipated failure-time 

distributions for every inspection point, and the condition failure probability 𝑃𝑟𝑖
∗ represents the 

component deterioration. We define the suggested opportunistic CBM approach by utilizing a 

threshold with two-level failure probability, and the ideal thresholds, designated by "𝑃𝑟1
∗" and 

"𝑃𝑟2
∗" may be found by carrying out the CBM optimization. The opportunistic CBM approach for 

OWTs, which is based on ANN life percentage prediction, is thus carried out in the following 

manner: 
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(1) Inspections are performed on turbine components that are currently undergoing condition 

monitoring at consistent intervals. To determine the conditional failure probability of OWT 

components, the predicted failure-time distribution for every element is estimated at every 

inspection time by using ANN life % prediction model. This is done before the conditional failure 

probability is computed. 

(2) When the conditional failure probability 𝑃𝑟𝑖
∗ of the turbine component hits the first-level 

threshold value, 𝑃𝑟1
∗, a PM is carried out on this component. 

(3) In the event that a component of the turbine fails, a failure replacement will be carried out on 

that component. 

(4) When a failed replacement or PM is done on any OWT component, the OM is performed on 

any additional components whose 𝑃𝑟1
∗ values concurrently exceed the threshold value of the 

second level concurrently. 

3.3 CBM optimization model 

By rearranging the two choice variables Pr1* and Pr2* in the CBM approach that has been 

suggested for OWTs, it is possible to derive a variety of maintenance methods, as well as the 

projected costs associated with each strategy. The optimal thresholds of the failure probability 

demonstrate when upon which turbine element the failure substitution, PM, or OM will be 

conducted, and they have the potential to reduce a predicted long-term increase in the cost of 

maintenance. The following is an expression that may be used to describe the optimization method 

for the CBM approach described above: 

min Cr (𝑃𝑟1
∗, 𝑃𝑟2

∗)  s.t. 0 ≤ 𝑃𝑟2
∗  ≤𝑃𝑟1

∗ ≤ 1 

where the first-level failure probability threshold Pr1* and the second-level failure probability 

threshold Pr2* are the first and second-level failure probability thresholds that are used as the 

decision variables for this approach, respectively. 

Through the use of simulation optimization in MATLAB, the total estimated maintenance costs 

for turbines are determined in this investigation. By simulating several scenarios, one may 

determine the ideal failure probability threshold value, which, in turn, can be used to calculate the 

predicted minimum cost of maintenance. Fig. 9 is an illustration of the process that is involved in 
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the simulation optimization approach, and the in-depth explanations of this method are addressed 

in the upcoming sections: 

Step one: Define the maximum number of iterations  

Indicate the iteration number that should be used for the simulation using the notation NT. For 

instance, if there were 100 inspection points, it would mean that the inspection point began at 0 

and went all the way up to 100. The inspection interval is now set at 10 days, which enables us to 

get reliable results while maintaining a level of computing efficiency that is acceptable. In our 

particular instance, we decided to make the value in MATLAB equal to four iterations. 

Neural Network training 

The neural network (NN) training is starting with the choosing of input and target choices which 

the human operator can handle through the simple listdlg function. The program is then using these 

choices along with some options chosen at the start to train the NN with the inbuilt MATLAB 

functions. The trained program is continuing this process until a limit is reached or a high enough 

degree of fitting has been achieved and is then saving the NN as a separate function that can be 

used by the program later for this input data or another run of the program with different data. 
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(a) (b) 

Figure 11 (a) Neural Network Model for rotor (b) Neural Network Model for Gear box 
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(a) (b) 

Figure 12 a) Neural Network Model for Generator b) Neural Network Model for pitch 

There are four iterations in neural network of each component, levenberg-marquardt is the training 

model. The performance and gradient for each component is given. The thought is to train the NN 

with a whole year of historical data and then use this NN to test days and weeks continuously with 

a fast already finished and trained NN. The selections in the start of the training is saved in a 

separate file so that the program automatically can choose the correct variables when used on 

another data file. This is important as the trained program only works with the same inputs and 

targets. 

Step two: generate the “actual failure time” 
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The Weibull distribution is an excellent method for examining and making predictions on the 

actual lifespan of a component, and the lifetime may be expressed in the following format (Brink, 

Madsen and Lutz, 2015): 

𝑓(𝑡) =
𝛽

𝛼
(

𝑡

𝛼
)𝛽−1 exp[−(

𝑡

𝛼
)𝛽] 

When a failed replacement or preventative maintenance procedure is done on any turbine 

component, a new life cycle starts. The random failure time, denoted by 𝐹𝑇𝑖 is subject to a Weibull 

distribution, with and serving as the parameters (see Figure 8, Label 1), and it is possible for this 

value to be created whenever a new lifetime begins for component i. The actual lifespan of the 

turbine element is represented by the value that is stored in the 𝐹𝑇𝑖 variable. 

Step three: generate predictive failure-time distribution for a component 

Establish the anticipated failure-time distribution for element I relying on the ANN pre-diction 

error of life % by utilizing condition monitoring data at inspection point k (k = 0,..., NT). This 

should be done at inspection point k (k = 0,..., NT). The normal distributions are as follows for the 

anticipated lifespan of turbine component I at inspection point k, represented by 𝑃𝑇𝑘𝑖 

PTki ∼N( 𝜇, 𝜎2) (k = 0, ..., NT; i = 1, ..., N), 

where  𝜇 = FTi , 𝜎  = 𝜎𝑝   × 𝐹𝑇𝑖, with a standard deviation of prediction error 𝜎𝑝  by an ANN. 

Step four: calculate conditional failure probability 

It is possible to compute as follows the lifespan conditional failure probability 𝑃𝑟𝑘𝑖 for component 

i at inspection point k (Tian, Ding and Ding, 2011): 

𝑃𝑟𝑘𝑖 =
∫

1

𝜎√2𝜋
𝑒−(𝑡𝑖−𝜇)2 2𝜎2⁄ 𝑑𝑡

𝑡𝑖+𝑙

𝑡𝑖

∫
1

𝜎√2𝜋
𝑒−(𝑡𝑖−𝜇)2 2𝜎2⁄ 𝑑𝑡

∞

𝑡𝑖

                           (𝑘 = 0, … … 𝑁𝑇; 𝑖 = 1, … … 𝑁), 

where L and 𝑡𝑖  denote constant inspection interval and time of component i, respectively;  𝜇  and  

𝜎𝑝  are the predicted failure timesbased on the predicted life percentage by ANN and the standard 

deviation of prediction error; and 𝜎  = 𝜎𝑝   × 𝐹𝑇𝑖.If the conditional failure probability of a turbine 

component  𝑃𝑟𝑘𝑖reaches the first-level threshold Pr1∗, then a PM at inspection point k for this 

component is performed. If no PM is performed during the lifetime of component i, then a failure 
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replacement should be arranged at the inspection point past𝐹𝑇𝑖  . The OM for other components 

should be simultaneously conducted if their 𝑃𝑟𝑘𝑖 values reach the second-level threshold Pr2∗when 

a failure replacement or PM is performed on any turbine component 

Table 1 Turbine Failure Model 

Component Distribution α(day) Β 

Rotor  

Weibull 

3000 3 

Gear Box  2400 3 

Generator 3300 2 

Pitch 1858 3 

To calculate the total cost of maintenance for the turbines in the following manner, two variables 

that each indicate the status of component I in the turbines are brought into play: 

∆𝑃𝐾𝑖= {
1 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒𝑙𝑦 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑡𝑖𝑚𝑒 𝑘 

0 𝑁𝑜 𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑜𝑛 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑡𝑖𝑚𝑒 𝑘 
} 

∆𝑓𝑘𝑖 = {
1 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑡𝑖𝑚𝑒 𝑘 

0 𝑁𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑛 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑡𝑖𝑚𝑒 𝑘 
}  

If   ∆𝑃𝐾𝑖= 0 & ∆𝑓𝑘𝑖= 0, then the regular operation of component i continues. 

Step five: start a new life cycle 

In the event that a preventative maintenance or failure replacement is carried out on component I 

a new life cycle has to be initiated. Proceed to Step 2 and begin counting from 0. (set the cumulated 

inspection time ti, if necessary). The iteration of the simulation will proceed as usual until it reaches 

its maximum value. 

Step six: calculate total expected maintenance cost 

After the last inspection point has been performed, the following formula may be used to determine 

the anticipated cost of maintenance for turbines (Guangqian et al., 2018): 

𝐶𝐸 =
∑ 𝐶𝑇𝑁𝑡

𝐾=0

𝑁𝑇 ∗ 𝐿
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where CT is the cumulative maintenance cost at inspection point k, NT is the total inspection point 

for the simulation optimization process, and L is the inspection interval. These values are specified 

in the equation. 

𝐶𝑇 = 𝐶𝐹𝑖 ∗ ∑ ∆𝑓𝐾𝑖 + 𝐶𝑃𝑖 ∗ ∑ ∆𝑃𝐾𝑖 + ∆𝑘𝑖 ∗ 𝐶𝑜

𝑁

𝑖=1

𝑁

𝑖=1

 

where ∆𝑘𝑖= 0, when ∑ ∆𝑃𝐾𝑖
𝑁
𝑖=1  = 0 & ∑ ∆𝑃𝐾𝑖

𝑁
𝑖=1 = 0; otherwise∆𝑘𝑖 = 1. N is the number of turbine 

components under condition monitoring, 𝐶𝐹𝑖 is the failure replacement cost, 𝐶𝑃𝑖 is the PM cost, 

and 𝐶𝑜 is the fixed cost of sending a maintenance team to wind farms. 

Table 2 Cost parameter of critical component OWT 

 Cost of failure 

replacement Cfi 

Cost of preventive 

maintenance Cpi 

Cfi+Cpi=C0 

Rotor 215000 

 

10500 225500 

Gearbox 260000 10000 270000 

Generatar 90000 11000 101000 

Pitch 44000 9400 53400 

   Sum = 649900 

Step seven: determine the optimized CBM method for Turbines 

In this opportunistic CBM technique for OWTs, the decision variables are the two-level failure 

probability threshold values. With the failure probability threshold values of Pr1* and Pr2*, the 

CBM approach has been optimized to the point where it is possible to achieve the least estimated 

cost of maintenance. 
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CHAPTER 4 Results and Discussion 

4.1 Maintenance optimization using the proposed CBM method 

In order to demonstrate the effectiveness of our CBM approach for wind turbines, we collected 

failure statistics and the costs of maintenance from published studies. The cost aspects of the 

turbine are outlined in Table 1, which includes the costs of replacing components in the case of 

failure and the costs of performing preventive maintenance on wind turbines. The facts pertaining 

to the expenditures were used in the process of calculating the costs of maintenance. The failure-

time distributions may be predicted using the ANN pre-diction approach by using the failure 

incidences and condition monitoring parameters of the WT sections with an inspection interval of 

10 days. 

Table 3 failure history with best result of rotor 

S.NO. TIME VIBRATION VELOCITY TEMPERATURE 

1 1617 8.241 71.3 

2 2049 9.582 72.7 

3 1922 8.296 72.9 

4 1148 8.491 69.3 

5 1489 9.419 64.2 

BEST 

DATA 

RESULT 

2049 9.582 72.9 

Table 4 failure history with best result for gearbox 

S.NO. TIME VIBRATION VELOCITY TEMPERATURE 

1 1340 15.711 77.4 

2 1598 17.561 78.5 

3 1051 14.626 76.8 
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4 931 11.741 75.5 

5 1267 13.892 76.7 

BEST 

DATA 

RESULT 

1598 17.561 78.5 

Table 5 failure history with best result for generator 

S.NO. TIME VIBRATION VELOCITY TEMPERATURE 

1 1417 6.356 81.3 

2 1782 6.964 83.2 

3 1008 6.081 77.2 

4 1351 6.273 80.2 

5 1426 6.472 81.8 

BEST 

DATA 

RESULT 

1782 6.964 83.2 

Table 6 failure history with best result for pitch 

S.NO. TIME VIBRATION VELOCITY TEMPERATURE 

1 1009 8.802 64.5 

2 1268 9.314 66.6 

3 911 8.271 62.7 

4 969 8.419 65.9 

5 752 7.692 60.5 

BEST 

DATA 

1268 9.314 66.6 
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RESULT 

The above result for best training performance is plotted in ANN as below figures: 

  

(a) (b) 

 
(c) 

 
(d) 

Figure 13 (a) Best Training Performance for Rotor, (b) Best Training Performance for Gearbox (c) Best Training 

Performance for Generator (d) Best Training Performance for Pitch 
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The above tables describe the result from ANN for the variables taken into considerations the 

vibration velocity and temperature. And the best result means the component will need less 

maintenance for that variables input. 

  

(a) (b) 

 

 

(c) (d) 
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Figure 14 (a) Neural Network training result for Rotor (b) Neural Network training result for Gear box (c) Neural 

Network training result for Generator (d) Neural Network training result for Pitch 

Our simulation optimization approach may be used to calculate the minimum predicted 

maintenance cost. The maintenance cost is shown against the interval days under consideration. 

 

Figure 15 Maintenance cost Vs Interval days 

The estimated upkeep expenses are sensitive to the failure probability threshold settings, which 

may be adjusted at two different levels. The diagram illustrates an appropriate failure probability 

threshold that corresponds to a lowest estimated cost. Establishing the most effective opportunistic 

model may be accomplished via the use of simulation optimization with the goal of achieving the 

lowest expected level of maintenance expense. The optimally predicted cost of maintenance for 

wind turbines is 256.12 Euros (€) per day and time. 

4.2 Comparison of the proposed method with the time-based maintenance 

method 

The time-based maintenance technique is extensively used in the wind energy industry [4]. 

Components will be subjected to preventative maintenance at regular intervals, and in the event 

that a component fails, an urgent failure replacement will be carried out. For instance, Goldwind 

Science and Technology Co., Ltd. has a maintenance strategy that is focused on time and features 

regular intervals (half a year). In this section, we will contrast the time-based maintenance 
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methodology with the way that we have provided. The time-based maintenance technique's 

objective is to determine the optimal value for the constant maintenance interval, or Lci, so as to 

cut down on the total expected maintenance cost. Lci is an abbreviation for "constant maintenance 

interval." The approach of constant-interval maintenance, which is explained in Ref. [14], may be 

used to calculate the full expected cost of doing maintenance on the system. 

𝐶(𝐿𝐶𝑖) =
∑ [𝐶𝐹𝑖

𝑐𝑖 + 𝐶𝑃𝑖
𝑐𝑖𝐻𝑖(𝐿𝑐𝑖)]𝑁

𝑖=1

𝐿𝑐𝑖
 

Table 7 Cost parameters for the time-based maintenance method. 

Component Cost of Failure replacement 

𝐶𝐹𝑖
𝑐𝑖 

Cost of preventive 

maintenance 𝐶𝑃𝑖
𝑐𝑖 

Rotor 215000 10500 

Gearbox 260000 10000 

Generator 90000 11000 

Pitch 44000 9400 

𝐶𝐹𝑖
𝑐𝑖and 𝐶𝑃𝑖

𝑐𝑖are the total cost of component I for a failed replacement and PM, respectively. 𝐻𝑖(𝐿𝑐𝑖) 

is a recurrent function that expresses the expected number of PM iterations for component i in the 

interval (0, Lci) and may be computed. We use the same failure models and cost data for the 

components using the time-based maintenance technique for accurate comparison, as shown in 

Tables 3 and 4. Because the fixed cost C0 is imposed for every failure replacement, as shown in 

Table 5, the failure replacement cost 𝐶𝐹𝑖
𝑐𝑖 in Eq. (5.1) = C0 plus the failure replacement cost in Table 

4. All of the turbine components contribute to the total PM cost, which includes the fixed cost 

shown in Table 4. As a result, the component i PM cost should be computed as follows: 

𝐶𝑃𝑖
𝑐𝑖 = 𝐶𝑝𝑖 + 𝐶0 𝑁⁄  

Table 3 also shows the cost of PM estimated using Eq. (5.2). By reducing Eq., you may get the 

estimated maintenance cost L ci (5.1). Figure 11 shows the cost as a function of the L ci values for 

the maintenance period. If the cost is low, the best maintenance interval is chosen. The ideal 

maintenance interval will be 161 days, which is roughly the same as Goldwind Sci. and Tech. Co., 

Ltd.'s maintenance cycle (half a year), and the minimum cost will be 374.01 € /day. 
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Table 8 Maintenance times for each component with CBM strategy. 

Component CBM 

 CM PM OM 

Rotor 0 1 2 

Gearbox 0 0 4 

Generator 0 4 2 

Pitch 0 5 2 

Fig. 12 shows the CBM planning outcomes for a wind turbine provided the opportunities based on 

ANN. Table 6 shows the maintenance schedule and cost reductions for each component using the 

opportunistic CBM technique. Meanwhile, Table 7 shows the CBM strategy's maintenance times 

for each component. 

The results show that the CM for any part throughout these 1000 days is poor, and this result is the 

same as the maintenance status of Goldwind Science and Technology Co., Ltd. This is due to the 

fact that the cost of corrective repair is rather high; this difficulty need to be avoided throughout 

the maintenance process. The CBM strategy, which is based on data collected through condition 

monitoring, might be used to reduce the amount of time that a system is down and the number of 

unexpected failures that occur. In addition, the pitch is the component that needs the greatest 

upkeep since it has a higher rate of failure in comparison to the other components. When the pitch's 

PM reaches its first-level threshold Pr1*, it usually offers other components with opportunities for 

maintenance.  

As a consequence of completing all of the gearbox's maintenance duties by using the opportunities 

offered by the PM of the other parts, the economic reliance of the gearbox has been improved. 

When the CBM is finished, the maintenance manual states that on the 393rd day, all four parts of 

a wind turbine system should be serviced concurrently. This results in the biggest cost reduction, 

which is 26207 €. The total cost reductions over 1000 days are 117892 € when the opportunistic 

CBM method is followed, and the average daily maintenance expenditures for the wind turbine 

reduce from 374.01 € to 256.12 € as a result. The consequence of this is that the opportunistic 

CBM strategy saves more money than the time-based maintenance method does, with a savings 
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percentage of 46.03 percent of expenses. The analysis indicates that the opportunistic CBM 

method has the potential to be successful and become entrenched in the market for wind energy. 

Component failure rates for wind turbines are greater than for other types of turbines. On the basis 

of the presented CBM approach, we will now describe a contrastive study comparing turbine 

spreads. a comparison of the maintenance costs of WTs. The cost of WT maintenance falls from 

279.92 € per day to 202.71 € per day when the CBM approach is used, suggesting that 38.09 

percent of the cost is saved. In terms of the turbines, maintenance costs drop from 374.01 €/day to 

256.12 €/day, showing that 46.03 percent of the cost is saved. As a result, the CBM approach is 

critical from an economic standpoint, particularly for turbines. 

4.3 Discussion 

The expense of ongoing maintenance is the primary barrier to the development of offshore wind 

turbines. An additional inventory expenses as well as certain mass transit infrastructure have 

always been required to supply servicing sites for offshore wind turbines. In relation, the ease of 

access of offshore wind turbines is grossly inadequate due to the obvious unpredictability of the 

weather. The operations and maintenance expenses of a wind turbines can make a significant 

contribution i.e., approximately 30 percent of the leveled price of power of an offshore wind farm. 

In addition, harsh maritime operating circumstances including typhoons, sea ice, salt deposits, and 

dampness will result in a greater failure rate than onshore operating conditions, which will in turn 

result in high cost of maintenance. Because of its influence on costs, risks, and performance, 

maintenance efficiency is a problem that must be addressed by businesses in sectors that make use 

of physical assets. As a result of innovations and improvements in sensing technology, the 

maintenance methods used in contemporary industry have transitioned from the antiquated 

preventive and corrective one into the condition-based maintenance (CBM). In today's sector, there 

are a great deal of potential applications. The concept behind condition monitoring-based 

maintenance is that a maintenance service is planned in accordance with the current state of a 

component or subsystem that is being monitored for its health. It is necessary to incorporate a 

condition monitoring system, such as vibration measurements for critical machine elements in 

wind turbines. The goal of condition monitoring is to assure the continued functioning of wind 

turbines by means of continuous measurement and analysis, hence improving the availability of 
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turbines and lowering associated costs. Particularly with regard to offshore wind farms, in-depth 

planning of maintenance that is dependent on the condition of the turbines is an essential necessity. 

The influence of differing component lead times on the failure probability at the turbine level is 

discussed in this section. The farm has a variety of turbines, each of which belongs to a distinct 

kind. Each turbine has four major components: the rotor, pitch, gearbox, and generator. 

We apply the equations presented in the approach to calculate the failure probability for 

components, then we use the equation to compute the failure probability at the turbine level using 

MATLAB code with iteration 4, and finally we take the average value for results. The failure 

probability for the above components are calculated.  

According to earlier findings, the lead time of components has an impact on the failure likelihood 

at the turbine level. The failure probability is lowered since we have components with shorter lead 

times than in the constant lead time situation. To put it another way, the short lead time decreases 

the likelihood of failure and the danger of downtime. On the other hand, if the component lead 

time is longer than the constant lead time scenario, the failure probability rises. According to the 

findings, the total maintenance cost and time in CBM policy are impacted in a linear and direct 

proportionate relationship by the total number of turbines in the farm. The entire maintenance cost 

is impacted by the number of turbines in CBM policy. Furthermore, increasing the number of 

turbines with increasing the variety of turbine types affects the maintenance time. The overall 

maintenance cost is affected by the variable lead time, whereas the total maintenance time remains 

constant. The failure thresholds are also influenced by component lead times, as the failure 

probability of turbines varies with lead time. 

Evaluating the transmission and turbine sub-systems seems to give the significant possible gains 

for O&M expenses. These systems have considerable DTs that are connected with serious failures, 

high repair costs, and failure rates that are not negligible. Drive train vibration CM offers the 

benefit of monitoring these sub-systems in addition to the main shaft at a cost that is comparatively 

modest. It is possible to monitor all of these subsystems using AE, but doing so will incur a higher 

cost. However, it is arguable that these systems will have a higher detection rate than their 

vibration-based equivalents. Oil sensors have the ability to identify a broad variety of problems, 

including those that are beyond the capability of an AE or vibration CM. The combination of these 

three technologies provides a greater likelihood of identifying flaws before they cause shutdown. 
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Additionally, the decrease in replacement parts and LP seems to justify the expenses associated 

with the investment. Due to the fact that the model is presently unable of specifying the many 

failure circumstances in which one sensor type is superior to another, it is possible that the ROI 

for both systems is greater than what was first reported. The failure characteristics of rotor blades 

and hub systems are similarly comparable, which enables monitoring to decrease operation and 

maintenance costs. 

Failure rates and the suppliers of components prices are also significant factors that contribute to 

the model's overall results. Even though offshore wind has witnessed notable increases in failure 

rates or expert judgement, O&M models that have been built for offshore wind employ onshore 

figures such as Williams et al. It is intended that when more information on the operations of 

offshore wind farms becomes accessible, a more coherent database of high-quality operational 

information will become available, which might then be utilized for O&M models such as these. 

An SHM system seems to only modestly raise expenses due to its excellent dependability (annual 

failure rates of 0.01 for significant failures) and the minimum intervention associated with tower 

damage. Both of these factors contribute to the low likelihood of catastrophic failure. However, 

the strategy that was applied does not take into account the decrease in the risk of failure of the 

tower and offshore structures, nor does it rely upon a complete structural integrity management 

approach to calculate the cost savings that would result from fewer inspections. 
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CHAPTER 5 Conclusion 

In this piece of study, we provided a CBM technique for lowering the costs associated with 

maintaining wind turbines. In addition to this, consideration is given to the economic 

interdependence that exists between the different components. The ANN prediction model is 

intended to estimate the component failure-time distribution by making use of the data gathered 

from condition monitoring. A conditional failure probability value is applied to turbines in order 

to reflect their level of deterioration. This value may be determined with the use of component 

failure-time distributions. Our opportunistic CBM technique is characterized by a failure 

probability threshold that consists of two levels. An optimization via simulation is carried out in 

order to identify the opportunistic CBM approach. This optimization is used to analyze the cost 

and establish the ideal threshold settings. When it comes to determining when and which parts of 

the wind turbine will be maintained, the best CBM choices are made, which ultimately results in 

the lowest anticipated wind turbine maintenance cost. According to the variables that have been 

provided, the studied four components of the MATLAB ANN neural network that have the best 

performance condition have been explained. An analysis of the costs involved reveals how 

effective the approach that was recommended is as well as how significant the CBM strategy is 

for wind turbines. 

5.1 Future work 

The developed model may provide the most cost-effective wind farm maintenance. Real farms, on 

the other hand, might be more difficult, with additional circumstances throughout maintenance 

time. As a result, by taking these factors into account, these approaches can be improved. The 

following research might be done to expand on the current study: 

• Taking into account the likelihood of failure at various seasons. The weather has an impact 

on wind turbine performance; for example, during the winter, the turbines may freeze. 

• Imposing restrictions on the maintenance team's movements in the farms. Because the 

maintenance personnel sometimes work in locations other than the farm, their availability 

is limited. 
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• Counting the quantity of spare parts for each component. The amount of failure 

components and demand effect the inventory policy for the systems, therefore we may use 

the failure probability to estimate the inventory for each kind. 

• Taking into consideration and improving additional variables. 

Real-world wind turbine data is critical for reliability assessments and maintenance planning. 

Sharing data and a standard report is an excellent way to improve maintenance and maximize 

research outcomes. 
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CHAPTER 6 Project Timeline 
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APPENDICES 

A.1 MATLAB  Code 

P = [1617 2049 1922 1148 1489; 8.241 9.582 8.296 8.491 9.419; 71.3 72.7 72.9 

69.3 64.2]; 
T = [2049; 8.241; 64.2]; 
a= [0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0]; 

  
[pn1,PS] = mapminmax(P'); 
[tn1,TS] = mapminmax(T'); 
[an1,AS]=  mapminmax(a'); 
n = 25; 
netnew1=newfit(pn1,tn1,n); 
[netnew1,tr1]=train (netnew1,pn1,tn1); 
y2=sim(netnew1,an1); 

 

P = [1340 1598 1051 931 1267; 15.711  17.561 14.626 11.741 13.892; 77.4 78.5 

76.8 75.5 76.7]; 
T = [1598; 17.561; 78.5]; 
a= [0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0]; 

  
[pn1,PS] = mapminmax(P'); 
[tn1,TS] = mapminmax(T'); 
[an1,AS]=  mapminmax(a'); 
n = 25; 
netnew1=newfit(pn1,tn1,n); 
[netnew1,tr1]=train (netnew1,pn1,tn1); 
y2=sim(netnew1,an1); 

 

P = [1417 1782 1008 1351 1426; 6.356 6.964 6.081 6.273 6.472; 81.3 83.2 77.2 

80.2 81.8]; 
T = [1782; 6.964; 83.2]; 
a= [0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0]; 

  
[pn1,PS] = mapminmax(P'); 
[tn1,TS] = mapminmax(T'); 
[an1,AS]=  mapminmax(a'); 
n = 25; 
netnew1=newfit(pn1,tn1,n); 
[netnew1,tr1]=train (netnew1,pn1,tn1); 
y2=sim(netnew1,an1); 

 
P = [1009 1268 911 969 752; 8.802 9.314 8.271 8.419 7.692; 64.5 66.6 62.7 65.9 

60.5]; 
T = [1268; 9.314; 66.6]; 
a= [0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0]; 

  
[pn1,PS] = mapminmax(P'); 
[tn1,TS] = mapminmax(T'); 
[an1,AS]=  mapminmax(a'); 
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n = 25; 
netnew1=newfit(pn1,tn1,n); 
[netnew1,tr1]=train (netnew1,pn1,tn1); 
y2=sim(netnew1,an1); 
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