
Vedtatt av dekan 30.09.21
Det teknisk-naturvitenskapelige fakultet

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER THESIS

Study programme / specialisation:
Data Science

The spring semester, 2022

Open / Confidential
Author: Febrianti Wibawa

…………………………………………
(signature author)

Course coordinator: Tom Ryen

Supervisor(s): Ferhat Özgur Catak

Thesis title: Privacy-Preserving Machine Learning for Health Institutes

Credits (ECTS): 30

Keywords: machine learning, federated
learning, homomorphic encryption

 Pages: ……59………

 + appendix: …4………

 Stavanger, June, 15 2022
 date/year

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Privacy-Preserving Machine Learning for
Health Institutes

Master’s Thesis in Computer Science
by

Febrianti Wibawa

Supervisor

Ferhat Özgur Catak

June 2022

Abstract

Medical data is, due to its nature, often susceptible to data privacy and security concerns.
The identity of a person can be derived from medical data. Federated learning, one
type of machine learning technique, is popularly used to improve the privacy and
security of medical data. In federated learning, the training data is distributed across
multiple machines, and the learning process of deep learning (DL) models is performed
collaboratively. However, the privacy of DL models is not protected. Privacy attacks on
the DL models aim to obtain sensitive information. Therefore, the DL models should be
protected from adversarial attacks, especially those which utilize medical data. One of the
solutions to solve this problem is homomorphic encryption-based model protection. This
paper proposes a privacy-preserving federated learning algorithm for medical data using
homomorphic encryption. The proposed algorithm uses a Secure Multiparty Computation
(SMPC) protocol to protect the deep learning model from adversaries. In this study, the
proposed algorithm using a real-world medical dataset is evaluated in terms of the model
performance.

Acknowledgement

I would thank my family and friends for all their support and understanding during my
master’s degree. It has been quite a journey, working on both my education and daily
full-time job. Perseverance, I guess is the word which can describe the journey.

I would also like to thank my supervisor Ferhat Özgur Catak for his advice and support.
He’s the person who introduced me to Homomorphic Encryption, which I have never
heard before but yet so ’magical’.

Contents

Abstract i

Acknowledgement ii

1 Introduction 1
1.1 Background and motivation . 1
1.2 Problem Definition . 2
1.3 Objectives . 2
1.4 Approach and Contributions . 3
1.5 Outline . 3

2 Background 5
2.1 Homomorphic encryption . 5
2.2 Types of Homomorphic encryption . 6

2.2.1 Somewhat Homomorphic Encryption (SHE) 7
2.2.1.1 Brakerski-Fan-Vercauteren (BFV) scheme 8

2.3 Federated Learning . 8
2.4 Image classification with Neural Network 10

2.4.1 Convolution . 11
2.4.2 Non Linearity . 11
2.4.3 Pooling . 11
2.4.4 Fully Connected Layers . 11

2.5 Serialization . 11
2.6 Related Works . 12

2.6.1 Federated Learning . 12
2.6.2 Homomorphic encryption . 12

3 Solution Approach 15
3.1 Proposed Model . 15

3.1.1 Key Pair Generation . 16
3.1.2 Client Initialization . 16
3.1.3 Model Training . 17
3.1.4 Weight Encryption . 20
3.1.5 Model Aggregation . 22
3.1.6 Weight Decryption . 25

iii

3.1.7 Evaluation Metrics Generation . 27

4 Experimental Evaluation 29
4.1 Experimental Setup and Data Set . 29

4.1.1 Dataset . 29
4.1.2 Preprocessing . 31
4.1.3 Experimental Setup . 31
4.1.4 Microsoft SEAL . 31
4.1.5 Pyhthon Libraries . 32
4.1.6 Model Infrastructure . 32
4.1.7 Hyperparameters Settings . 33

4.2 Evaluation Metrics . 33
4.2.1 Accuracy . 33
4.2.2 Precision and Recall . 34
4.2.3 F1 Score . 34
4.2.4 Hardware Specification . 34

4.3 Experimental Results . 34
4.3.1 Evaluation Metrics . 34

4.3.1.1 Experimentation of plain model 34
4.3.1.2 Experimentation results of plain model with federated

learning . 35
4.3.1.3 Experimentation results of encrypted model with feder-

ated learning . 35
4.3.1.3.1 Experimentation results of sec=128 and m=1024 35
4.3.1.3.2 Experimentation results of sec=192, m=1024 . . 36
4.3.1.3.3 Experimentation results of sec=128 and m=2048 36
4.3.1.3.4 Experimentation results of sec=192 and m=2048 36

4.3.2 Execution Time . 40

5 Environmental Accounts 43

6 Discussion 45

7 Conclusion and Future Directions 47
7.1 Conclusion . 47
7.2 Future Direction . 48

A Supplementary information 49
A.1 Link to Codes Repository . 49
A.2 Brakerski-Fan-Vercauteren(BFV) functions 49

List of Figures 52

List of Tables 55

Bibliography 57

Chapter 1

Introduction

1.1 Background and motivation

The recent pandemic COVID-19 hit countries around the world mercilessly and without
exception. Researchers from different parts of the world rushed against time to produce
vaccines while country leaders tried to find a good balance between the economy and
public health measures. Some countries enforced a zero COVID-19 policy, whilst others
enforced a herd immunity policy whereby a majority of the population should contract
the virus.

Health institutions around the world worked together to find solutions. Countries that
contracted the virus first, such as China, shared their information on virus features,
symptoms, and its effects on human organs, with other countries. This cooperation is
crucial as one country alone cannot resolve nor contain the global pandemic. For this
reason, information sharing should be done seamlessly across countries.

COVID-19 is contracted by breathing contaminated air and contacting with contaminated
surfaces, allowing the virus to spread exponentially. The diagnosis and treatments have
to be determined quickly in order to save lives. Time and resources are essential in
solving this global pandemic.

With current technological advancements, health institutions are able to develop and
train machine learning models using their local datasets. They build their own machine
learning model and train it using local samples. The models support the medical staff in
fighting against COVID-19, especially in diagnosing COVID-19.

One example of machine learning model usage is to detect COVID-19 contraction based
on X-ray images of individuals. The COVID-19 detection model is an image classification
model primarily developed on a neural network framework with X-ray images as input.

1

2 Chapter 1 Introduction

In order to have a machine learning model that can provide accurate predictions, datasets
used in model training should be varied. This condition can only be met in larger
health institutions. In this case, having locally trained machine learning models is not
good enough. The solution is ineffective in solving a global pandemic situation such as
COVID-19, where collaboration and information sharing are essential.

In order to solve a global problem, global cooperation is needed.

1.2 Problem Definition

Large and diverse samples are indeed required in any given machine learning model, and
the COVID-19 detection model is no exception to this rule. Lack of data diversity can
potentially result in model overfitting, but not all health institutions are able to obtain
such samples. Therefore collaboration among health institutions is necessary.

One way of collaboration can be in the form of data sharing. However, the medical
information of a patient is considered sensitive information since it contains private
information such as fingerprints, from which one can derive a person’s identity. Therefore
it is required to preserve its privacy. A known procedure to protect data privacy is by
applying encryption. Due to its nature, it is almost impossible to transfer the data across
the border without in some way violating data protection regulations such as General
Data Protection Regulation (GDPR) in the European Union (EU).

Another way to collaborate is by sharing the machine learning model itself. This way, the
model is trained collaboratively without requiring data transfer. But this approach has
its challenge. There are situations where the model’s privacy should also be protected,
such as when collaboration takes place in an untrusted public cloud domain. In this case,
the model should be protected from any attacks or unauthorized model alterations which
are likely to occur.

1.3 Objectives

This thesis aims to address the privacy-preserving machine learning problem for health
institutions using the COVID-19 case, specifically COVID-19 detection.

We implemented encryption to model weights in a collaborative machine learning setting
and observed the model performance in different hyperparameter settings.

Chapter 1 Introduction 3

1.4 Approach and Contributions

In this thesis, we implemented homomorphic encryption to protect the privacy of the
collaborative machine learning (commonly known as Federated Learning) framework.

Our contribution is to give proof of concept implementation of homomorphic encryption
application in federated learning framework using Pyfhel Python library.

We also presented and observed model performance in several hyperparameter settings
to conclude its relation with model performance and execution time.

1.5 Outline

• Chapter 2 - Background: This chapter explains the introduction and explanation of
each framework or concept implemented in this thesis and existing related works.

• Chapter 3 - Solution Approach: This chapter explains the proposed model and
implementation approach.

• Chapter 4 - Experimental Evaluation: This chapter explains the experimentation
setup and results.

• Chapter 5 - Environmental Accounts: This chapter describes an overview of the
environmental impact of the proposed solution.

• Chapter 6 - Discussion: This chapter further discusses and summarizes the experi-
mentation results.

• Chapter 7 - Conclusion and Future Directions: This chapter explains the conclusion
drawn based on experimentation results and possible future works.

4 Chapter 1 Introduction

Chapter 2

Background

2.1 Homomorphic encryption

Nowadays, data encryption is a common practice not only used by governments and
enterprises but also by individuals to protect data privacy. Data encryption is typically
applied at rest when the data is stored and in transit when the data is transferred, and
both encryption methods require decryption in computations.

Coming from word homomorphism, which is "a transformation of one set into another that
preserves in the second set the relations between elements of the first." according Oxford
dictionary, homomorphic encryption is an encryption method that allows arithmetical
computations to be performed directly on the encrypted or ciphered text, without
requiring any decryption. The computations’ output is in encrypted form and is an
(almost) identical result when decrypted. Homomorphic encryption allows data processing
without disclosing the actual data. Homomorphism offers a function that maps between
plaintext and ciphertext spaces and preserves the operation between these two.

If Enc denotes encryption, Dec denotes decryption, and f() is a function applied on
actual values (plaintexts) a and b, using encrpytion key pk , then homomorphic encryption
property would be:

f(a, b) = Dec(Enc(pk, a), Enc(pk, b))

The additive and multiplicative operations in homomorphic encryption correspond to the
binary circuits made from AND and XOR gates of a circuit. This is due to the fact that
these two gates behave respectively as operations of binary multiplication and addition,
and in addition to that, any functions between sets of integers can be computed by using
binary representations of numbers and multiple circuits of the gates [1].

5

6 Chapter 2 Background

For example [2], operation AND can be represented as two bits multiplication:
AND(b1, b2) = b1ḃ2

and operation XOR as addition of two bits modulo 2:
XOR(b1, b2) = (b1 + b2) mod 2

2.2 Types of Homomorphic encryption

There are several types of homomorphic encryption [3, 4];

1. Partially homomorphic encryption (PHE) is homomorphic encryption that sup-
ports only one homomorphic operation, either addition or multiplication, with an
unlimited number of times.

2. Somewhat homomorphic encryption (SHE) schemes allow both addition and multi-
plication, for only a limited number of times or up to a certain level of complexity, a
certain number of multiplication and addition operations, before the result becomes
impossible to decrypt.

3. Leveled fully homomorphic encryption (LHE) supports the evaluation of arbitrary
circuits composed of multiple types of gates of bounded (pre-determined) depth.

4. Fully homomorphic encryption (FHE) supports both addition and multiplication
operations for unlimited times.

All existing homomorphic encryption schemes have common behavior: adding a small
noise component during encryption. This behavior causes the noise, or error, to grow
during homomorphic computation on the ciphertext to the point that it becomes so large
that decryption fails. There are several ways, introduced in previous works to minimize
the noise: bootstrapping approach and modulus switching. While bootstrapping is good
in performance, it’s not practical to implement due to its complexity. Modulus switching
is an alternative approach to reducing noise generated. The main idea of modulus
switching is to scale down the ciphertext by a modulus factor after each multiplication
so as to be within an acceptable noise budget.

We describe more about Somewhat Homomorphic Encryption (SHE) in the next sections
as we utilized SHE in our implementation.

Chapter 2 Background 7

2.2.1 Somewhat Homomorphic Encryption (SHE)

SHE is one type of homomorphic encryption which offers both addition and multiplication
operations on ciphertexts. However, it is limited to functions that are not too complicated,
functions with low-degree polynomials. That said, SHE is preferable nowadays since it is
much faster than FHE, and in most cases, SHE is sufficient to accommodate homomorphic
calculations.

The following explains briefly on the SHE functions, taken from existing article [2]. SHE
procedure starts with determining homomorphic parameters. Several parameters are
required such as λ,N = λ, P = λ2, and Q = λ5 .Generally SHE has several functions
which are :

• KeyGen: This function generates key p, which is a random P -bit odd integer with
security parameter λ as input.

• Encryption: Takes as input the key p and a message(ciphertext) which is encoded
as bit m ∈ 0, 1. To encrypt the bit m:

– Choose m′ as a random N -bit number, such that m′ = m mod 2

– Choose q to be a random Q-bit number

output of the function is ciphertext c = m′ + pq, with m′ is the noise that mask
the plaintext m.

• Decryption: Input of this function is ciphertext c and key p. The output of the
function is decrypted ciphertext mf = (c mod p) mod 2. Here, c mod p is in
the range (−p/2, p/2) with the condition that p divides c − (c mod p) with no
remainder.

• Evaluation: Input of this function is f and a set of ciphertexts Sc = {c1, ..., cn}.
Function f is represented as a circuit C made of XOR and AND gates, which are
then replaced by addition and multiplication gates over integers. The function f

is then transformed as a multivariate polynomial which corresponds to the gates.
The output is c = f ′(c1, ..., cn), or the computation of the ciphertexts through the
function.

The evaluation function shows homomorphic behaviour since there is a map (or function)
between the plaintext and ciphertext spaces that preserves the operations in these two
spaces.

Homormorphic circuit depth is limited in SHE since the noise grows after each operation
and eventually the absolute value of the noise will be large until decryption error occurs.

8 Chapter 2 Background

2.2.1.1 Brakerski-Fan-Vercauteren (BFV) scheme

Brakerski-Fan-Vercauteren (BFV) [5] scheme is a well-known homomorphic encryption
scheme. It encrypts polynomials instead of bits where the encrypted polynomials can be
evaluated homomorphically.

BFV differentiates plaintext space and ciphertext space as two polynomial rings with
the same polynomial modulus n, but different coefficient modulus (t, q), where t is the
coefficient modulus of plaintext and q is the coefficient modulus of ciphertext. The
polynomial ring notation can be seen as a set of polynomials with integer coefficients
modulo both t or q and (xn + 1).

As SHE scheme, BFV has similar functions used in encryption process such as key
generation, encryption, decryption, evaluation function. Details on BFV functions
relevant for this thesis can be found in Appendix A.

2.3 Federated Learning

Federated Learning (FL) is a machine learning technique that enables multiple parties
(clients) to build and train a common machine learning model without exchanging or
sharing data. By its definition, federated learning is a subset of Multi-Party Computation
(MPC) protocol.

Federated learning process is described as follows:

• Select clients which participate in learning process.

• Each client obtains current global model (weights).

• Each client trains and develops local version of global model.

• Local versions are aggregated and global model is updated.

• The updated global model is distributed back to participating clients.

Federated learning addresses data security and privacy issues since it doesn’t require
access to the dataset of each client, nor does it require the dataset to be distributed. The
local dataset itself doesn’t have to be identically distributed and can be heterogeneous.
This behaviour makes Federated Learning more popular in healthcare applications.
Federated learning enables health institutions to form and train a common model without
transferring sensitive patient data out.

There are several topologies in federated learning [6]:

Chapter 2 Background 9

1. Centralized: in this setting, a central server is used to collect, aggregate, and
distribute models from participating clients during learning process.

: Central server

: Clients

: Model aggregation

Legend:

Figure 2.1: Centralized federated learning

2. Decentralized: in this setting, participating clients are connected to one or more
peers. The clients coordinate among themselves to obtain a global common model
in parallel.

: Clients

: Model aggregation

Legend:

Figure 2.2: Decentralized federated learning

3. Hierarchical: federated networks consists of several sub-federations, which can be a
mix of Peer to Peer and Aggregation Server federations.

: Federated networks

Legend:

Figure 2.3: Hierarchical federated learning

4. Hybrid hierarchical: federated networks consists of a mix of hierarchical federated
network and directly connected clients.

10 Chapter 2 Background

: Federated networks

: Clients

Legend:

Figure 2.4: Hybrid Hierarchical federated learning

In federated learning models are aggregated by either central server or clients(training
nodes). There are several known model aggregation approaches [7]:

1. Federated Averaging (FedAvg) In FedAvg approach, global model is constructed by
averaging weights received from participating clients.

2. Federated Personalization (FedPer) In FedPer approach, local models are split into
base and personalized layers. Only base layers are sent to server for aggregation,
while personalized layers are not.

3. Federated Match Averaging (FedMA) In FedMA, common global model is con-
structed by matching and averaging hidden elements by layers.

2.4 Image classification with Neural Network

By the time this report is written, most COVID-19 detection machine learning models
are using X-ray imaging and defined in neural network, specifically Convolutional Neural
Network (CNN).

The main idea behind CNN is to reduce image features. The image pixels are read as an
array of pixels ranging from 0 to 255, representing color intensity. This array represents
the image features. The features are then reduced by retaining the most important
features, focusing on the small parts of the image or pixels which are most distinct.

Below are neural network layers forming CNN architecture:

Chapter 2 Background 11

2.4.1 Convolution

The model architecture starts with convolutional layer which is the most essential
component. This is where image pixels are reduced by keeping only important features
of the image. This is done through convolution operations which divide the image pixels
into small pieces (feature maps) and apply mathematical operation, in order to obtain
the critical or essential elements or pixels within each piece.

2.4.2 Non Linearity

The output of the convolution operation, is then passed to an activation function to
allow non-linearity. ReLu (Rectified Linear Unit) is most used activation function which
replaces negative values from a feature map with zero.

2.4.3 Pooling

The pooling layer is meant to reduce the dimension of input image and therefore reduce
complexity of computation and control overfitting.

2.4.4 Fully Connected Layers

Fully connected layers is the last part of CNN architecture where every neuron in one
layer is connected to a neuron in another (next) layer. Each neuron computes an output
value by applying a function to the input values, which is determined by vector of weights.
In model training, these weights are continuously adjusted.

Input Convolutional Layers Fully Connected Layers Output

.......

...

Figure 2.5: CNN Architecture

2.5 Serialization

Serialization is the process of converting an object into a stream of bytes to a format
that can be stored. Its primary purpose is to save the state of an object in order to be

12 Chapter 2 Background

able to recreate it when needed. In python, serialization can be done by using Pickle
library and its file extension is .pickle.

2.6 Related Works

2.6.1 Federated Learning

Data-driven ML models provide unprecedented opportunities for healthcare with the
use of sensitive health data. These models are trained locally to protect sensitive health
data. However, it is difficult to build robust models without diverse and large datasets
which themselves contain the full spectrum of health concerns. Prior proposed works
to overcome these problems include federated learning techniques. For instance, the
studies [6, 8, 9] reviewed the current applications and technical considerations of the
federated learning technique to preserve the sensitive biomedical data. The impact of
federated learning is examined by stakeholders such as patients, clinicians, healthcare
facilities, and manufacturers. In another study, the authors in [10] utilized federated
learning systems for brain tumor segmentation on the BraTS dataset, which consists
of magnetic resonance imaging brain scans. The results show that privacy protection
correlates to a decrease in performance. The same BraTS dataset is used in [11] to
compare three collaborative training techniques, i.e., federated learning, incremental
institutional learning (IIL), and cyclic institutional learning (CIIL). In IIL and CIIL,
institutions train a shared model successively, whereas CIIL adds a cycling loop through
organizations. The results indicate that federated learning achieves similar Dice scores
to models trained by sharing data. It outperforms the IIL and CIIL methods since these
methods suffer from catastrophic forgetting, where previous learned tasks are lost, as
well as complexity.

2.6.2 Homomorphic encryption

Medical data is also protected by encryption techniques such as homomorphic encryption.
In [12], authors propose an online secure multiparty computation by sharing patient
information to hospitals using homomorphic encryption. Bocu et al. [13] proposed a
homomorphic encryption model that is integrated into a personal health information
system utilizing heart rate data. The results indicate that the described technique
successfully addressed the requirements for secure data processing for the 500 patients
with expected storage and network challenges. Another study by Wang et al. [14]
proposed a data division scheme based on homomorphic encryption for wireless sensor
networks. The results show that there is a trade-off between resources and data security.

Chapter 2 Background 13

In [15], the applicability of homomorphic encryption is shown by measuring the vitals
of the patients with a lightweight encryption scheme. Sensor data such as respiration
and heart rate are encrypted using homomorphic encryption before transmitting to the
non-trusting third party, while encryption takes place only in the medical facility. The
study in [16] developed an IoT based architecture with homomorphic encryption to
combat data loss and spoofing attacks for chronic disease monitoring. Results suggest
that homomorphic encryption provides cost-effective and straightforward protection of
sensitive health information. Blockchain technologies are also utilized in cooperation with
homomorphic encryption to secure medical data. Authors in [17] proposed a practical
pandemic infection tracking using homomorphic encryption and blockchain technologies
in intelligent transportation systems using automatic healthcare monitoring. In another
study, Ali et al. [18] developed a search-able distributed medical database on a blockchain
using homomorphic encryption.

An increased need to secure sensitive information necessarily leads to the use of various
techniques together. In the scope of this thesis, a multiparty computation tool using
federated learning with homomorphic encryption is developed and analyzed.

14 Chapter 2 Background

Paper Differential
Privacy

Federated
learning

Crypto-
graphy

Secure
multi-
party

Xu, Jie and Glicksberg, Benjamin S and Su,
Chang and Walker, Peter and Bian, Jiang
and Wang, Fei [8]

X

Rieke et. al [6] X
Antunes, Rodolfo Stoffel and da Costa, Cris-
tiano André and Küderle, Arne and Yari,
Imrana Abdullahi and Eskofier, Björn [9]

X

Li, Wenqi and Milletarì, Fausto and Xu,
Daguang and Rieke, Nicola and Hancox,
Jonny and Zhu, Wentao and Baust, Maximil-
ian and Cheng, Yan and Ourselin, Sébastien
and Cardoso, M Jorge and others [10]

X

Sheller, Micah J and Reina, G Anthony and
Edwards, Brandon and Martin, Jason and
Bakas, Spyridon [11]

X

Kumar, A Vijaya and Sujith, Mogalapalli Sai
and Sai, Kosuri Tarun and Rajesh, Galla and
Yashwanth, Devulapalli Jagannadha Sriram
[12]

X

Bocu, Razvan and Costache, Cosmin [13] X
Wang, Xiaoni and Zhang, Zhenjiang [14] X
Kara, Mostefa and Laouid, Abdelkader
and Yagoub, Mohammed Amine and Eu-
ler, Reinhardt and Medileh, Saci and Ham-
moudeh, Mohammad and Eleyan, Amna and
Bounceur, Ahcène [15]

X

Talpur, Mir Sajjad Hussain and Bhuiyan, Md
Zakirul Alam and Wang, Guojun [16]

X

Tan, Haowen and Kim, Pankoo and Chung,
Ilyong [17]

X

Ali, Aitizaz and Pasha, Muhammad Fermi
and Ali, Jehad and Fang, Ong Huey and
Masud, Mehedi and Jurcut, Anca Delia and
Alzain, Mohammed A [18]

X

Table 2.1: Summary of related works

Chapter 3

Solution Approach

3.1 Proposed Model

Figure 3.1: Overall Model

In summary, the proposed model applies a centralized federated learning framework with
an encrypted aggregation process. Figure 3.1 above describes the overall proposed model
implemented in this thesis. Each client holds a public and shared key pair which is used
to encrypt and decrypt the model. Firstly, the global model is initialized and distributed
to all participating clients. Clients then train their copy of global model with their own
local dataset. To update the global model, the local model weights are encrypted using
homomorphic encryption and exported, as a serialized files, back to a central server. The
central server imports the serialized files received from participating clients, aggregates
the encrypted weights and updates the global model. The updated global model is then
re-distributed back to the clients in a serialized file which the client decrypts using the
private key.

15

16 Chapter 3 Solution Approach

This thesis proposed a model which utilizes Secure Multi-party Computation (SMPC)
protocol which distributes the machine learning process across multiple parties with a
centralized federated learning framework, a subset of Multi-party Computation (MPC),
without any data sharing or distribution.

3.1.1 Key Pair Generation

At the initial stage, parameters used to generate key pairs were determined. In this thesis,
parameters observed are security level and polynomial modulus. 2.2.1.1The security level
is security level equivalent in AES-bits, 128 or 192 (AES key size), while the polynomial
modulus determines both security and performance of the encryption process. The larger
security level increases security but also increases cost. The larger polynomial modulus
increases the noise ceiling without decreasing the security level [19].

In this thesis, all clients have the same security parameter values. Public and secret key
pairs are then generated by utilizing these parameters. As a result, all clients use the
same key pairs.

3.1.2 Client Initialization

The process started with machine learning model initialization in all participating clients
by initializing the image classification model instance in each client. At this point, all
clients obtained the initial model architecture. The model is untrained and consists of
layers upon layers defined in the CNN model.

Chapter 3 Solution Approach 17

3.1.3 Model Training

Sequence diagram 3.2 describes on detail implementation steps in training at clients:

Figure 3.2: Sequence Diagram: Training at Clients

18 Chapter 3 Solution Approach

The implementation starts with training and validation preparation. X-ray image files
used for training are placed in a specific file directory. The directory is declared and
defined in the implementation, and the X-ray image files are then read and stored in a
dataframe. This is performed by prep_dataframe (M1) function.

The main function of this process is train_clients(M2) which contains nested sub-
functions. Function get_train_data (M4) is the first function to run. This function splits
the dataframe imported evenly based on the number of participating clients. A dataframe
subset is allocated to a different client. The dataframe subsets are then transformed into
training and validation datasets. Data preprocessing is also performed in this function.

Below pseudocode1 describes the algorithm defined in prep_dataframe (M1) function.

Chapter 3 Solution Approach 19

Algorithm 1: Training Dataset Preparation
Input: Training_dataset_path, num_client

1 training_file_path← [listdir(Training_dataset_path)] ; // Get all files in
path

2 label← [subfolder.name] ; // Get subfolder name as class label
3 Training_dataframe← [training_file_path, label]

Training_dataframe.sample() ; // Shuffle dataframe
4 foreach client do
5 index← 0 ; // initialize index as 0
6 subset← int(len(df_train.index)/num_client) ; // get number of

training records for each client
7 image_gen← ImageDataGenerator(rescale = 1./255, validation_split = 0.1)

// setup image generator
8 start_index← index ∗ subset ; // get start index
9 end_index← start + ratio ; // get end index

10 Training_dataframe[index]← Training_dataframe[start : end]
// slice dataframe for a client

11 Xtrain[index]←
image_gen.flow_from_dataframe(Training_dataframe[index], shuffle =′

True′, subset =′ training′)
// generate training dataset

12 Xvalidation[index]←
image_gen.flow_from_dataframe(Training_dataframe[index], shuffle =′

True′, subset =′ validation′)
// generate validation dataset

13 index← index + 1 // increase index
14 end
15 return Xtrain,Xvalidation

The basic idea of the algorithm is quite standard, just like an array slicing algorithm.
The process is done in iteration, from the first client to the nth client. subset is a variable
that is obtained by dividing the number of dataset records by the number of clients. The
first client gets the first subset of dataframe, starting from index zero to the next subset

elements. The start index of the next client is then set as subset multiplied by the index
of the current iteration. In this case, a dataframe subset will not be allocated twice by
doing so.

A dataframe subset contains a list of image files to be used in model training. Each image
file found in the subset is imported as an image pixel array and data preprocessing is
performed to the array. At this point, the training and validation datasets are generated
and ready for usage.

The implementation then continues with the training process. The model training starts
with initializing and replicating the global model to all clients. All clients obtained the
same model version. This is performed by function create_model (M3).

20 Chapter 3 Solution Approach

The training process uses the training dataset as input, while the training validation
process uses the validation dataset as input. Each client trains and obtains a local version
of the global model after the training (M5: model_fit). At the end of the training, only
the best weights, weights that produced the highest training accuracy, are stored and
exported to an external file(M6: save_weights). Model weights are exported merely to
track weight changes and reduce repeating training steps when troubleshooting.

3.1.4 Weight Encryption

Somewhat Homomorphic Encryption (SHE) was implemented to encrypt model weights
at clients. This is due to the fact that SHE allows simple addition and multiplication
operations on encrypted data, which were used in calculating average weights. Weights
are encrypted at clients by reading each weight element in CNN layers and applying the
encryption method using the public key.

Sequence diagram 3.3 below describes implementation of weight encryption at clients.

Chapter 3 Solution Approach 21

Figure 3.3: Sequence Diagram: Weight Encryption at Clients

22 Chapter 3 Solution Approach

The weight encryption process starts with obtaining the public key used for encryption
(M7:get_publickey). In the main method (M8:export_encrypted_clients_weights), the
external file which contains model weights is imported back into the model(M10:load_weights)
and then encrypted using the public key. The weights are then serialized and exported
as a serialized file (M11:export_weights). The serialization is required since encrypted
weights are objects with a specific type, ciphertext, and the object type must be retained
upon import.

The algorithm 2 below summarizes the process of training (3.1.3) and model weights
encryption at clients (3.1.4) discussed previously.

Algorithm 2: Model training in each client
Input: The dataset at client c: Dc = {(x, y)|x ∈ Rm, y ∈ R}mi=0, publickey : Keypub

1 Xtrain, Xtest, ytrain, ytest ← train_test_split(D) ;
2 h← global_model ;
3 h.fit(Xtrain, ytrain) ;
4 W ← ∅ ; // Create an empty matrix for the encrypted layer weights
5 foreach layer ∈ h do
6 JW K← encryptf raction(layer.weights, keypub) ; // Encrypt the layer

weights (layer.weights ∈ Rm) with public key
7 end
8 return JW K ; // The encrypted weight matrix

The pseudocode describes the process as follows, let variable h be the initial global CNN
model and variable Keypub be the generated public key for encryption. The training
dataset is split evenly based on the number of clients. It is then used as input in training
the global CNN model h, and a local version of global model was obtained. Weights of the
model then are encrypted using the public key by applying encryption (encryptf raction)
method to each model weight in each CNN layer. The (encryptf raction) method is used
to encrypt float (decimals) numbers, since data type of model weights is float.

The export and import encrypted weights to serialized files are performed to simulate
the model weights transfer between clients and server.

3.1.5 Model Aggregation

Centralized federated learning is implemented in this thesis. In this case, model weights
are transferred to a centralized server. The server aggregates the model weights and
then updates the global model before finally sending the updated global model back
to clients. The model aggregation in the central server is performed with Federated
Averaging (FedAvg) algorithm. With FedAvg, the global model is updated by computing
the average model weights received from clients.

Chapter 3 Solution Approach 23

Algorithm 3: Model aggregation at the server
Input: public key: Keypub, the number of clients: c, client model weights:

H = {JW Ki}ci=0JW Kaggr ← ∅
1 foreach h ∈ H do
2 foreach JrowK ∈ h do
3 JW Kaggr ← JW Kaggr ⊕ JrowK ; // Homomorphic addition
4 end
5 end
6 foreach JrowK ∈ JW Kaggr do
7 JrowK← JrowK⊗ c−1 ; // Homomorphic multiplication
8 end
9 return JW Kaggr ; // Return the aggregated weight matrix in the

encrypted domain

Algorithm 3 above describes the model weights aggregation function. The function
reads the imported weight elements iteratively by the number of clients and layers. It
then calculates the average of model weights by calculating the sum of weights and
multiplying by 1/(number of clients) instead of dividing by the number of clients. The
multiplication is performed in this implementation as multiplication, and not division,
because it is supported by homomorphic encryption. The addition and multiplication
are done homomorphically, and no decryption is required.

24 Chapter 3 Solution Approach

Figure 3.4: Sequence diagram: Weights Aggregation at Server

The sequence diagram 3.4 describes the implementation of weights aggregation at central
server.

The weight aggregation process starts with clients sending encrypted weights serialized
files to the central server. The central server aggregates the weights received from all
clients by calling the main method aggregate_encrypted_weights (M12). This function
aggregates model weights according to algorithm 3. There are sub-functions called in
this method. Sub-function import_encrypted_weights (M13) imports the encrypted
weights serialized files. The weights are then aggregated by the main function and
finally exported again as serialized file and sent back to clients by calling sub-function
export_weights(M14).

Chapter 3 Solution Approach 25

3.1.6 Weight Decryption

Similar to weight encryption, weight decryption at clients is done by applying the
decryption method on weights elements in each layer but using the secret key.

Upon receiving aggregated weights file from the server, each client imports and decrypts
the aggregated weights received from the server before finally applying the global model.
In this stage, all clients are aligned with the global model.

Algorithm 4 below describes the decryption process at clients.

Algorithm 4: Client decryption
Input: private key: Keypriv, encrypted aggregated weights: JW Kaggr

1 h← global_model ;
2 foreach layer ∈ h do
3 JrowK← JW Kaggr(layer) ; // Get the corresponding row for layer
4 layer ← decryptf raction(JrowK, keypriv) ; // Decrypt the row and update

the layer weights
5 end
6 h.save_model(global_model) ; // Save the aggregated model as

global_model at client

Decryption process is performed by applying decryption (decryptf raction) method to
each model weight, after the encrypted weights are imported from serialized file. The
(decryptf raction) method is used to encrypt float (decimals) numbers, since data type
of model weights are float.

Sequence diagram 3.5 below describes implementation done to decrypt weights at clients.

26 Chapter 3 Solution Approach

Figure 3.5: Import and Decryption at Clients

Chapter 3 Solution Approach 27

The main method decrypt_import_weights(M15), consists of several sub-functions. Sub-
function get_secretkey(M17) obtains the secret key. The aggregated weights are imported
by calling sub-function import_ecnrypted_weights(M18), which then decrypted by
method decrypt_weights(M16). At the end, Sub-function save_model (M20) imported
the decrypted weights to the local model.

In this thesis, aggregated model weights were decrypted for a client, at which prediction
took place and evaluation metrics were generated.

3.1.7 Evaluation Metrics Generation

Evaluation metrics is generated and executed after the model prediction is run for a
client.

28 Chapter 3 Solution Approach

Chapter 4

Experimental Evaluation

4.1 Experimental Setup and Data Set

4.1.1 Dataset

In this thesis, the COVID-19 Radiography dataset from previous works [20, 21] was
used as training, validation and test dataset. The image file size is 299 x 299 pixels
when then resized to 255 X 255 pixels.The dataset contains X-ray lung images with four
different classifications: COVID, Lung opacity, Normal, and Viral Pneumonia. However,
we solely utilized two of them, which are COVID and Normal X-ray images, focusing on
the COVID-19 detection machine learning process.

Below figures show samples of the dataset.

Figure 4.1: COVID-19 positive X-ray images

29

30 Chapter 4 Experimental Evaluation

Figure 4.2: Normal X-ray images

The X-ray lung images were placed into a folder directory which was divided into the
training dataset folder and test dataset folder. Below figure 4.3 shows dataset folder
structure.

Training dataset

Normal

Test dataset

Covid

Normal

Covid

Figure 4.3: Dataset folder structure

Such folder structure was required since we used the standard image preprocessing
method in Keras ImageDataGenerator,flow_from_dataframe). We obtained the first
1000 records from the original dataset for each classification, with 80% of the sample
used for the training dataset (800 records) and the remaining 20% as the test dataset
(200 records). The training dataset was further split with 10% of the dataset as the
training-validation dataset.

Chapter 4 Experimental Evaluation 31

Table 4.1 shows the dataset segregation.

Dataset Rows Label

Training, Validation 800 Negative
800 Positive

Test 200 Negative
200 Positive

Table 4.1: Dataset description

4.1.2 Preprocessing

Data preprocessing performed in this implementation consisted of data augmentation and
rescaling. Data augmentation was applied to the training dataset to provide additional
data variety during training. We applied rescaling to both the training and test dataset
by multiplying each pixel value of each X-ray image in the dataset by 1/255, to transform
the pixel value range from [0,255] to [0,1]. The purpose of rescaling was to treat all
images equally. Scaling every image to the same range [0,1] makes the image contribute
evenly to total loss during model training. High pixel range images will have larger votes
on determining the weights without scaling.

4.1.3 Experimental Setup

In this thesis, we experimented with various numbers of clients (2, 3, 5, and 7 clients). We
run the federated learning process in iteration based on the number of clients and observed
the running time and evaluation metrics to analyze model prediction performance in the
encrypted federated learning framework.

4.1.4 Microsoft SEAL

Microsoft Simple Encrypted Arithmetic Library (SEAL) is a homomorphic encryption
library developed by Microsoft, which was released in 2015. SEAL library implements
both Brakerski/Fan-Vercauteren (BFV) [22, 23] and Cheon-Kim-Kim-Song (CKKS)
[24] homomorphic encryption schemes and provides standard SHE functions starting
from encoding, key generation, encryption, decryption, additive, multiplicative, and
relinearization functions. SEAL was developed in C++ and can be deployed on Windows,
Linux, macOS, and Android [2].

32 Chapter 4 Experimental Evaluation

4.1.5 Pyhthon Libraries

The implementation was developed with Python 3.8.8 and its libraries, specifically Keras,
TensorFlow, NumPy, Pyfhel version 2.3.1, time, and sklearn libraries.

We used Keras and TensorFlow libraries for machine learning processes such as in
preprocessing, training, importing and exporting the model. Keras and Tensorflow are
open-source libraries run in Python. Keras provides image data preprocessing functions
such are ImageDataGenerator and flow_from_dataframe , which was called during the
data preprocessing step.

We used Numpy library to perform array operations on model weights and Pickle library
to export and import weights as serialized files. We used sklearn, metrics module, to
generate evaluation metrics on the prediction result. We used time library to measure the
execution time. Most importantly, we used Pyfhel to perform homomorphic encryption.
Pyfhel [25] is a Python wrapper for SEAL, which provides the same functionalities as
SEAL in Pyhton and requires simpler programming.

4.1.6 Model Infrastructure

Using Keras, we defined CNN infrastructure as shown in below Table 4.2:

Layer (type) Output Shape No. of Parameters
conv2d (Conv2D) (None, 254, 254, 32) 896
max_pooling2d (MaxPooling2D) (None, 127, 127, 32) 0
conv2d_1 (Conv2D) (None, 125, 125, 32) 9248
max_pooling2d_1 (MaxPooling 2D) (None, 62, 62, 32) 0
conv2d_2 (Conv2D) (None, 60, 60, 32) 9248
max_pooling2d_2 (MaxPooling 2D) (None, 30, 30, 32) 0
conv2d_3 (Conv2D) (None, 28, 28, 64) 18496
max_pooling2d_3 (MaxPooling 2D) (None, 14, 14, 64) 0
conv2d_4 (Conv2D) (None, 12, 12, 64) 36928
max_pooling2d_4 (MaxPooling 2D) (None, 6, 6, 64) 0
conv2d_5 (Conv2D) (None, 4, 4, 128) 73856
max_pooling2d_5 (MaxPooling 2D) (None, 2, 2, 128) 0
flatten (Flatten) (None, 512) 0
dense (Dense) (None, 128) 65664
dense_1 (Dense) (None, 64) 8256
dense_2 (Dense) (None, 2) 130
Total params: 222,722
Trainable params: 222,722
Non-trainable params: 0

Table 4.2: CNN image classification model summary in Keras

Chapter 4 Experimental Evaluation 33

4.1.7 Hyperparameters Settings

In the initialization step of Pyfhel object, we generated a homomorphic encryption
context by calling the context generation method, contextGen, using several parameters
as input. These parameters are required for all homomorphic operations(encryption,
decryption, scheme, decoding, mathematical operations).

The first parameter defines which scheme to use in homomorphic encryption. In this case,
the BFV(SHE) scheme was selected. We then experimented with two other parameters,
security level(sec) and polynomial modulus(m) parameters, and observed the impact of
tuning these parameters 1.

At the time of writing, there are two possible values in Pyfhel 2.3.1 library for security
level(sec) parameter, which are 128 and 192. Combination of sec and polynomial
modulus (m) parameters determine length of coefficient modulus, which is modulus in
the ciphertext space (q), as described in below Table 4.3 [19].

Bit-length of default q

m 128-bit security 192-bit security
1024 27 19
2048 54 37
4096 109 75
8192 218 152
16384 438 300
32768 881 600

Table 4.3: Default pairs (n, q) for 128-bit and 192-bit security levels.

Due to hardware limitations, we could only experiment with m values of 1024 and 2048.

4.2 Evaluation Metrics

Accuracy, Precision, Recall, and F1 score (evaluation metrics) were used to evaluate the
model’s performance in COVID-19 prediction. We utilized the evaluation metrics to
observe the relation between the number of clients participating in encrypted federated
learning and its global model prediction performance.

4.2.1 Accuracy

Accuracy measures the percentage of correct predictions by the total number of samples.
Accuracy = Numberofcorrectpredictions

Numberofsamples

1In BFV paper [5], SEAL document [19] and Pyfhel version 3.1.4, polynomial modulus is referred as n

34 Chapter 4 Experimental Evaluation

4.2.2 Precision and Recall

Precision indicates the proportion of positive identification that was actually correct or
belonged to the target class.

Precision = T rueP ositive
T rueP ositive+F alseP ositive

Recall indicates the proportion of actual positive identification was identified correctly.
Recall = T rueP ositive

T rueP ositive+F alseNegative

4.2.3 F1 Score

F1 Score combines precision and recalls into a single number using the following formula.
F1 = 2 ∗ (Recall∗P recision)

Recall+P recision

4.2.4 Hardware Specification

We performed the implementation on a laptop with specifications: 11th Gen Intel(R)
Core i5-1145G7 @2.60GHz 2.61GHz and 16 GB RAM.

4.3 Experimental Results

4.3.1 Evaluation Metrics

The following are the model prediction performance results, measured with evaluation
metrics.

4.3.1.1 Experimentation of plain model

We first experimented COVID-19 detection model with neither encryption nor federated
learning implemented. We observed only one client for this case, which would be a typical
standalone machine learning performed by a client.

Precision Recall F1 Score Accuracy
0.868924 0.840000 0.836801 0.840000

Table 4.4: Prediction result without Federated Learning

Table 4.4 above shows the evaluation metrics of prediction result of plain model.

Chapter 4 Experimental Evaluation 35

4.3.1.2 Experimentation results of plain model with federated learning

We then applied a federated learning framework in iteration with 2,3,5, and 7 number
of clients, without applying homomorphic encryption. We observed model prediction
performance based on evaluation matrices as showed in the below Table 4.5.

Number of clients 2 3 5 7
Precision 0.872128 0.865112 0.859288 0.850277

Recall 0.845000 0.837500 0.835000 0.827500
F1 Score 0.842123 0.834369 0.832164 0.824649
Accuracy 0.845000 0.837500 0.835000 0.827500

Table 4.5: Performance measurements: Federated learning without homomorphic
encryption

4.3.1.3 Experimentation results of encrypted model with federated learning

We continued our experimentation by implementing homomorphic encryption in a
federated learning framework.

Experimentation was performed in iteration with 2,3,5, and 7 number of clients and also
by adjusting hyperparameters in Pyfhel’s context generation method according to section
4.1.7. Hyperparameters values are tuned as below:

• Security level (sec) between values 128 and 192.

• Polynomial modulus (m) between values 1024 and 2048.

Table 4.6, Table 4.7, Table 4.8, and Table 4.9 below are the evaluation metrics generated
based on different hyperparameters settings.

Number of clients 2 3 5 7
Precision 0.853925 0.250000 0.250000 0.250000

Recall 0.830000 0.500000 0.500000 0.500000
F1 Score 0.827078 0.333333 0.333333 0.333333
Accuracy 0.830000 0.500000 0.500000 0.500000

Table 4.6: Performance measurements: Federated learning with encryption sec=128,
m=1024

4.3.1.3.1 Experimentation results of sec=128 and m=1024

36 Chapter 4 Experimental Evaluation

Number of clients 2 3 5 7
Precision 0.250000 0.250000 0.250000 0.250000

Recall 0.500000 0.500000 0.500000 0.500000
F1 Score 0.333333 0.333333 0.333333 0.333333
Accuracy 0.500000 0.500000 0.500000 0.500000

Table 4.7: Performance measurements: Federated learning with encryption sec=192,
m=1024

4.3.1.3.2 Experimentation results of sec=192, m=1024

Number of clients 2 3 5 7
Precision 0.867337 0.857293 0.853925 0.869584

Recall 0.837500 0.840000 0.830000 0.852500
F1 Score 0.834132 0.838040 0.827078 0.850776
Accuracy 0.837500 0.840000 0.830000 0.852500

Table 4.8: Performance measurements: Federated learning with encryption sec=128,
m=2048

4.3.1.3.3 Experimentation results of sec=128 and m=2048

Number of clients 2 3 5 7
Precision 0.866735 0.868924 0.855624 0.86800

Recall 0.840000 0.840000 0.832500 0.84500
F1 Score 0.837030 0.836801 0.829732 0.84254
Accuracy 0.840000 0.840000 0.832500 0.84500

Table 4.9: Performance measurements: Federated learning with encryption
sec=192,m=2048

4.3.1.3.4 Experimentation results of sec=192 and m=2048 The results are also
shown in histograms to provide visual comparison of evaluation metrics which were
obtained with different hyperparameter adjustments.

Chapter 4 Experimental Evaluation 37

2 3 5 7
Number of clients

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sc
or

e

No encryption
HE, s=128,m=2048
HE, s=128,m=1024
HE, s=192,m=2048
HE, s=192,m=1024

Figure 4.4: Precision Scores

Figure 4.4 shows that good Precision scores were recorded when m=2048, while bad
scores were recorded when m=1024, with the exception of federated learning with two
participating clients where the Precision score doesn’t suffer from a smaller m(1024)
value. The histogram also shows that there’s no significant difference on the Precision
scores between sec=128 and sec=192 for the same m value.

38 Chapter 4 Experimental Evaluation

2 3 5 7
Number of clients

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Sc

or
e

No encryption
HE, s=128,m=2048
HE, s=128,m=1024
HE, s=192,m=2048
HE, s=192,m=1024

Figure 4.5: Recall Scores

Figure 4.5 shows that good Recall scores were recorded when m=2048, while bad
scores were recorded when m=1024, with the exception of federated learning with two
participating clients where the Recall score doesn’t suffer from a smaller m(1024) value.
The histogram also shows that there’s no significant difference on the Recall scores
between sec=128 and sec=192 for the same m value.

Chapter 4 Experimental Evaluation 39

2 3 5 7
Number of clients

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sc
or

e
No encryption
HE, s=128,m=2048
HE, s=128,m=1024
HE, s=192,m=2048
HE, s=192,m=1024

Figure 4.6: F1 Scores

Figure 4.6 shows that good F1 Scores were recorded when m=2048, while bad scores were
recorded when m=1024, with the exception of federated learning with two participating
clients where the F1 Score doesn’t suffer from a smaller m(1024) value. The histogram
also shows that there’s no significant difference on the F1 scores between sec=128 and
sec=192 for the same m value.

40 Chapter 4 Experimental Evaluation

2 3 5 7
Number of clients

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Sc

or
e

No encryption
HE, s=128,m=2048
HE, s=128,m=1024
HE, s=192,m=2048
HE, s=192,m=1024

Figure 4.7: Accuracy Scores

Figure 4.7 shows that good Accuracy scores were recorded when m=2048, while bad
scores were recorded when m=1024 , with the exception of federated learning with two
participating clients where the Accuracy score doesn’t suffer from a smaller m(1024)
value. The histogram also shows that there’s no significant difference on the Accuracy
scores between sec=128 and sec=192 for the same m value.

4.3.2 Execution Time

Apart from measuring the model prediction performance using evaluation metrics, we
also measured the total running time of each experimentation. The total running time
consists of time running in:

• Training the COVID-19 prediction model at clients

• Encrypt weights and export encrypted weights as pickle files for all clients

• Import pickle files

• Aggregate weights

• Export aggregated model weights as a pickle file

Chapter 4 Experimental Evaluation 41

• Import aggregated model weights for one client

• Update model and run prediction for one client

• Generate model evaluation metrics

Table 4.10 and Table 4.11 below show processing time in seconds, with various number
of clients based on parameter m equals to 1024 and m equals to 2048 respectively.

Number of clients Without Encryption Encryption(sec=128) Encryption (sec=192)
2 594.165448 3155.804616 4177.638341
3 647.963712 4826.452512 5010.716965
5 720.175786 4958.373842 5167.173689
7 948.704833 5557.469271 6077.708571

Table 4.10: Execution time in seconds with m=1024

Number of clients Without Encryption Encryption(sec=128) Encryption (sec=192)
2 594.165448 4333.672333 4765.874634
3 647.963712 5124.841524 7504.239611
5 720.175786 6777.249099 10518.012003
7 948.704833 9223.281346 13277.904182

Table 4.11: Execution time in seconds with m=2048

The execution time is also shown as histogram in below Figure 4.8.

2 3 5 7
Number of clients

2000

4000

6000

8000

10000

12000

14000

Sc
or

e

No encryption
HE, s=128,m=2048
HE, s=128,m=1024
HE, s=192,m=2048
HE, s=192,m=1024

Figure 4.8: Execution time in seconds

From Figure 4.8, we see that there’s significant difference in execution time between
model with hyperparameter sec=128 and sec=192, where it took much longer execution

42 Chapter 4 Experimental Evaluation

time when hyperparameter sec=192. We also see that hyperparameter m=2048 also
caused longer execution time.

Lastly, we also observed that the size of encrypted weights pickle file is around 7GB
for polynomial modulus (m) = 2048, 3.5 GB for m=1024. While the pickle file size for
unencrypted weights is 871 KB.

Chapter 5

Environmental Accounts

From the experimentation results, implementation of homomorphic encryption together
with federated learning increases execution time and harddisk space, which in the end
also increases power consumption.

Power consumption may be justifiable due to the increasing usage of renewable energy
in generating power. The trade-off between environmental impact and the proposed
solution is perhaps not unreasonable, considering the solution offers privacy-preserved
federated learning, which is essential to federated learning process across borders.

43

44 Chapter 5 Environmental Accounts

Chapter 6

Discussion

Figure 4.8 provides new insights into the relationships between the different numbers of
clients and execution time. There is a significant difference in execution time between
plain (unencrypted) and encrypted data processes. These exponential differences are
due to the complexity of homomorphic encryption in processing model weights. The
execution time also noticeably increases with increasing parameter (m) value from 1024
to 2048.

For the prediction result, the performances of both encrypted and unencrypted models
are very similar as indicated in Table 4.5, Table 4.8, and Table 4.9, when polynomial
modulus (m) was set to 2048. On the contrary, poor model prediction performance is
recorded when polynomial modulus (m) was set to 1024, as show in Table 4.6 and Table
4.7.

Adjusting the security level parameter (sec) from 128 to 192 did not make much difference
in model prediction performance, though it did increase execution time. By maintaining
the same value in the security level parameter (sec), the model provided a better
prediction result when the polynomial modulus (m) parameter was set to 2048. Reducing
the parameter value to 1024 helped to reduce the execution time but did not maintain
or improve the model prediction performance.

Similar model prediction performances were achieved in each model by increasing the
number of clients. For some cases, results with plain data performed slightly better than
the applied encryption results. For instance, the accuracy results of five clients indicated
that plain versions achieved better results for each evaluation metric namely, Accuracy,
F1, Precision, and Recall.

45

46 Chapter 6 Discussion

Chapter 7

Conclusion and Future Directions

7.1 Conclusion

Privacy-preserving has become an essential practice of healthcare institutions as both the
European Union and the United States mandate it. Federated learning and homomorphic
encryption will play a critical role in maintaining data security and model training. The
proposed model benefits from both techniques as it achieves competitive performance
although there can be a significant trade-off in respect of the execution time when varying
the number of clients. In some cases where privacy-preserving is very crucial, such as in
healthcare as in this instance, this trade-off can be acceptable.

The evaluation metrics, i.e., Accuracy, F1, Precision, and Recall score, reach over 80%
using both encrypted and plain data for each federated learning case which means that
homomorphic encryption, SHE, does not deteriorate model prediction performance.

The slightly lower performance of encrypted model is due to the fact that somewhat
homomorphic encryption does not convert the ciphertext precisely back to its original
plaintext value but rather an approximate value with very small noise.

There is a trade-off between execution time, hard disk space, power consumption, and
preserving privacy. Although homomorphic implementation increases execution time,
hard disk space requirement, and possibly communication traffic and power consumption,
the model privacy is preserved. This protection enables flexibility in central server hosting
in a public cloud (untrusted) environment so that collaborative learning can be done
seamlessly across borders.

Any privacy attacks will cause immense damage to the security and privacy of patient
information. It will hinder the advancement in healthcare using data-driven models.

47

48 Chapter 7 Conclusion and Future Directions

Therefore, it is indispensable to take crucial steps to strengthen the safety of the
information and the way data is processed. This study demonstrated that federated
learning with homomorphic encryption could be successfully applied to enhance data-
driven models by eliminating and minimizing the share of sensitive data. This thesis
could be helpful for scientists and researchers working on sensitive healthcare data in
multi-party computation settings.

7.2 Future Direction

This thesis proves the concept of a privacy-preserving of federated learning, where we
utilized one public key in homomorphic encryption for all clients. In this case, there’s
room for improvement where multikey homomorphic encryption is considered. Multikey
homomorphic encryption allows computation on encrypted data with multiple unrelated
keys. It is beneficial since, in real-life scenarios, clients do not necessarily trust each other
to share the same encryption key. Thus it improves the security of the proposed model.

Appendix A

Supplementary information

A.1 Link to Codes Repository

https://github.com/FebriantiW/Homomorphic-Encryption-and-Federated-Learning-based-
Privacy-Preserving-CNN-Training-

A.2 Brakerski-Fan-Vercauteren(BFV) functions

In the early stage, plaintexts are encoded as polynomials. The encoding works by
converting the plaintexts to binary m = an − 1...a2a1a0 then composing polynomials
M = an − 1x + ... + a2x2 + a1x + a0. The unused bits are then removed to simplify the
polynomials.

The plaintext and ciphertext space are denoted by P = Rt = Zt[x]/(xn + 1) and
C = Rq ×Rq where Rq = Zq[x]/(xn + 1), n ∈ Z is the ring dimension, t ∈ Z plaintext
coefficient modulus with 1 < t < q, and q ∈ Z is ciphertext coefficient. n is commonly
set as power of 2 integer. The polynomial ring notation can be seen as set of polynomials
with integer coefficients modulo both t or q and (xn + 1).

Below are BFV functions that are relevant for this thesis, taken from [26]:

• Parameter Generator Apart from mentioned parameter (t, q, n), BFV uses several
random distributions as follows:

1. R2 : key distribution to sample polynomials with integer coefficients −1, 0, 1.

49

50 Appendix A Supplementary information

2. X : a discrete Gaussian distribution with parameters µ, σ over R bounded
by some integer β which are set as (0, 8√

2π
≈ 3.2, ⌊6 · σ⌉ = 19), used for error

sampling.

3. Rq : is a uniform random distribution over Rq

• Key generation This function takes encryption parameters which are generated by
Parameter generator function, as input and returns a set of keys, secret key (Sk),
public key (Pk), and evaluation key (Ek). Sk and Pk is used for encryption and
decryption, while Ek is used for homomorphic operation on ciphertexts.

– Secret key (Sk) is generated as a random polynomial from R2 parameter
mentioned earlier in (1)

– Public key (Pk) : is a pair of polynomials (PK1 = −(a ·SK+e) mod q, PK2 =
a) where a is a random polynomial in Rq and e is a random error polynomial
sampled from X .

• Encryption The encryption function takes public key Pk and plaintext P in
plaintext space P as input and return ciphertext C. Encryption works by selecting
three small random polynomials u from R2 and e1, e2 from X . These random
polynomials then used to encrypt the plain text to be ciphertext C = (C1, C2) in
ciphertext space C as follows:

C1 = (Pk1 · u + e1 + ∆M) mod q (A.1)

C2 = (Pk2 · u + e2) mod q

The parameter ∆ is defined as ∆ = ⌊ q
t ⌋, which is used to scale the message.

• Decryption The decryption function takes Pk and ciphertext C as input and return
plaintext M.

M =
[⌊

t(C1 + C2 · Sk) mod q

q

⌉]
mod t (A.2)

• Homomorphic evaluation

– Additive
The procedure to perform additive operation is quite straight forward.

EvalAdd(C(1), C(2)) = ([C(1)
1 + C(2)

1] mod q, [C(1)
2 + C(2)

2] mod q) (A.3)

Substituting the previous ciphertext expression, the additive can be expressed

Appendix A Supplementary information 51

as:

C(1) = ([Pk1 · u(1) + e
(1)
1 + ∆M(1)]q, [Pk2 · u(1) + e

(1)
2] mod q) (A.4)

C(2) = ([Pk1 · u(2) + e
(2)
1 + ∆M(2)]q, [Pk2 · u(2) + e

(2)
2] mod q)

C(3) = (C(3)
1 , C(3)

2) (A.5)

= ([Pk1 · (u(1) + u(2)) + (e(1)
1 + e

(2)
1) + ∆(M(1) + M(2))] mod q,

[Pk2 · (u(1) + u(2)) + (e(1)
2 + e

(2)
2)] mod q)

= ([Pk1 · u(3) + e
(3)
1 + ∆(M(1) + M(2))] mod q, [Pk2 · u(3) + e

(3)
2] mod q)

(A.6)

– Multiplicative
Let the ciphertext is expressed in (Sk).

C(1)(Sk) = ∆M(1) + v1 + q · r1 (A.7)

C(2)(Sk) = ∆M(2) + v2 + q · r2

Multiplying the ciphertexts would be:

(C(1) · C(2))(SK) =(∆M(1) + v1 + q · r1) · (∆M(2) + v2 + q · r2) (A.8)

= ∆2M(1) ·M(2) + ∆(M(1) · v2 + M(2) · v1)+

q(v1 · r2 + v2 · r1) + q ·∆(M(1) · r2 + M(2) · r1)+

v1 · v2 + q2 · r1 · ·r2

(A.9)

In order to get an encryption of [m1, m2]t and avoid large noise , above
expression A.8 must be divided by q/t, or equivalently multiply by t/q. v1 · v2

can also be substituted with [v1v̇2]δ + ∆ṙv and above expression can be
rewritten as:

t

q
(C(1) · C(2))(SK) =∆[M(1) ·M(2)]t + (M(1) · v2 + M(2) · v1)+

t(v1 · r2 + v2 · r1) + rv + (q − [q]t) · (rM + M(1) · r2 + M(2) · r1)+

q · t · r1 · r2 + t

q
[v1 · v2]∆−

[q]t
q

(∆M(1) ·M(2) + M(1) · v2 + M(2) · v1 + rv)

(A.10)

52 Appendix A Supplementary information

The final expression after reducing equation A.10 modulo q is:

t

q
(C(1) · C(2))(SK) =∆[M(1) ·M(2)] mod t + (M(1) · v2 + M(2) · v1)+

t(v1 · r2 + v2 · r1) + rv−

[q]t(rM + M(1) · r2 + M(2) · r1) + re

(A.11)

In short, tensor product of ciphertexts, scaled by t/q as follows:

EvalMult(C(1), C(2)) =
([⌊

t(C(1)
1 · C

(2)
1)

q

⌉]
mod q,

[⌊
t(C(1)

1 · C
(2)
2 + C(1)

2 · C
(2)
1)

q

⌉]
mod q,

[⌊
t(C(1)

2 · C
(2)
2)

q

⌉]
mod q

)
(A.12)

It is shown then that ciphertext elements increases from 2 to 3 ring elements
in multiplicative operation.

List of Figures

2.1 Centralized federated learning . 9
2.2 Decentralized federated learning . 9
2.3 Hierarchical federated learning . 9
2.4 Hybrid Hierarchical federated learning . 10
2.5 CNN Architecture . 11

3.1 Overall Model . 15
3.2 Sequence Diagram: Training at Clients . 17
3.3 Sequence Diagram: Weight Encryption at Clients 21
3.4 Sequence diagram: Weights Aggregation at Server 24
3.5 Import and Decryption at Clients . 26

4.1 COVID-19 positive X-ray images . 29
4.2 Normal X-ray images . 30
4.3 Dataset folder structure . 30
4.4 Precision Scores . 37
4.5 Recall Scores . 38
4.6 F1 Scores . 39
4.7 Accuracy Scores . 40
4.8 Execution time in seconds . 41

53

54 LIST OF FIGURES

List of Tables

2.1 Summary of related works . 14

4.1 Dataset description . 31
4.2 CNN image classification model summary in Keras 32
4.3 Default pairs (n, q) for 128-bit and 192-bit security levels. 33
4.4 Prediction result without Federated Learning 34
4.5 Performance measurements: Federated learning without homomorphic

encryption . 35
4.6 Performance measurements: Federated learning with encryption sec=128,

m=1024 . 35
4.7 Performance measurements: Federated learning with encryption sec=192,

m=1024 . 36
4.8 Performance measurements: Federated learning with encryption sec=128,

m=2048 . 36
4.9 Performance measurements: Federated learning with encryption sec=192,m=2048 36
4.10 Execution time in seconds with m=1024 41
4.11 Execution time in seconds with m=2048 41

55

56 LIST OF TABLES

Bibliography

[1] Oskar Goldhahn. A look into homomorphic cryptography and the bv
homomorphic encryption scheme. Master’s thesis, NTNU, 2020. URL
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2980245/

no.ntnu%3Ainspera%3A56982622%3A22574430.pdf?sequence=1.

[2] A. Carey. On the explanation and implementation of three open-source fully
homomorphic encryption libraries. Master’s thesis, University of Arkansas, 2020.
URL https://scholarworks.uark.edu/csceuht/77.

[3] Monique Ogburn, Claude Turner, and Pushkar Dahal. Homomorphic encryption.
Procedia Computer Science, 20:502–509, 12 2013. doi: 10.1016/j.procs.2013.09.310.

[4] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen, Angela
Jäschke, Christian A. Reuter, and Martin Strand. A guide to fully homomorphic
encryption. Cryptology ePrint Archive, Paper 2015/1192, 2015. URL https:

//eprint.iacr.org/2015/1192. https://eprint.iacr.org/2015/1192.

[5] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. IACR Cryptol. ePrint Arch., 2012:144, 2012.

[6] Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth, Shadi
Albarqouni, Spyridon Bakas, Mathieu N Galtier, Bennett A Landman, Klaus Maier-
Hein, et al. The future of digital health with federated learning. NPJ digital medicine,
3(1):1–7, 2020.

[7] Sannara Ek, François Portet, Philippe Lalanda, and German Vega. Evaluation of
federated learning aggregation algorithms application to human activity recognition.
UbiComp/ISWC, 20:638–643, 2020. ISSN 10.1145/3410530.3414321. URL https:

//hal.archives-ouvertes.fr/hal-02941944/document.

[8] Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian, and Fei Wang.
Federated learning for healthcare informatics. Journal of Healthcare Informatics
Research, 5(1):1–19, 2021.

57

https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2980245/no.ntnu%3Ainspera%3A56982622%3A22574430.pdf?sequence=1
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2980245/no.ntnu%3Ainspera%3A56982622%3A22574430.pdf?sequence=1
https://scholarworks.uark.edu/csceuht/77
https://eprint.iacr.org/2015/1192
https://eprint.iacr.org/2015/1192
https://eprint.iacr.org/2015/1192
https://hal.archives-ouvertes.fr/hal-02941944/document
https://hal.archives-ouvertes.fr/hal-02941944/document

Bibliography BIBLIOGRAPHY

[9] Rodolfo Stoffel Antunes, Cristiano André da Costa, Arne Küderle, Imrana Abdullahi
Yari, and Björn Eskofier. Federated learning for healthcare: Systematic review and
architecture proposal. ACM Transactions on Intelligent Systems and Technology
(TIST), 2022.

[10] Wenqi Li, Fausto Milletarì, Daguang Xu, Nicola Rieke, Jonny Hancox, Wentao
Zhu, Maximilian Baust, Yan Cheng, Sébastien Ourselin, M Jorge Cardoso, et al.
Privacy-preserving federated brain tumour segmentation. In International workshop
on machine learning in medical imaging, pages 133–141. Springer, 2019.

[11] Micah J Sheller, G Anthony Reina, Brandon Edwards, Jason Martin, and Spyridon
Bakas. Multi-institutional deep learning modeling without sharing patient data: A
feasibility study on brain tumor segmentation. In International MICCAI Brainlesion
Workshop, pages 92–104. Springer, 2018.

[12] A Vijaya Kumar, Mogalapalli Sai Sujith, Kosuri Tarun Sai, Galla Rajesh, and
Devulapalli Jagannadha Sriram Yashwanth. Secure multiparty computation enabled
e-healthcare system with homomorphic encryption. In IOP Conference Series:
Materials Science and Engineering, volume 981, page 022079. IOP Publishing, 2020.

[13] Razvan Bocu and Cosmin Costache. A homomorphic encryption-based system for
securely managing personal health metrics data. IBM Journal of Research and
Development, 62(1):1–1, 2018.

[14] Xiaoni Wang and Zhenjiang Zhang. Data division scheme based on homomorphic
encryption in wsns for health care. Journal of medical systems, 39(12):1–7, 2015.

[15] Mostefa Kara, Abdelkader Laouid, Mohammed Amine Yagoub, Reinhardt Euler,
Saci Medileh, Mohammad Hammoudeh, Amna Eleyan, and Ahcène Bounceur. A
fully homomorphic encryption based on magic number fragmentation and el-gamal
encryption: Smart healthcare use case. Expert Systems, page e12767, 2021.

[16] Mir Sajjad Hussain Talpur, Md Zakirul Alam Bhuiyan, and Guojun Wang. Shared–
node iot network architecture with ubiquitous homomorphic encryption for healthcare
monitoring. International Journal of Embedded Systems, 7(1):43–54, 2015.

[17] Haowen Tan, Pankoo Kim, and Ilyong Chung. Practical homomorphic authentication
in cloud-assisted vanets with blockchain-based healthcare monitoring for pandemic
control. Electronics, 9(10):1683, 2020.

[18] Aitizaz Ali, Muhammad Fermi Pasha, Jehad Ali, Ong Huey Fang, Mehedi Masud,
Anca Delia Jurcut, and Mohammed A Alzain. Deep learning based homomorphic
secure search-able encryption for keyword search in blockchain healthcare system:
A novel approach to cryptography. Sensors, 22(2):528, 2022.

Bibliography 59

[19] Kim Laine. Simple encrypted arithmetic library 2.3.1. https://www.microsoft.

com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf.

[20] Muhammad E. H. Chowdhury, Tawsifur Rahman, Amith Khandakar, Rashid Mazhar,
Muhammad Abdul Kadir, Zaid Bin Mahbub, Khandakar Reajul Islam, Muham-
mad Salman Khan, Atif Iqbal, Nasser Al Emadi, Mamun Bin Ibne Reaz, and
Mohammad Tariqul Islam. Can ai help in screening viral and covid-19 pneumonia?
IEEE Access, 8:132665–132676, 2020. doi: 10.1109/ACCESS.2020.3010287.

[21] Tawsifur Rahman, Amith Khandakar, Yazan Qiblawey, Anas Tahir, Serkan Kiranyaz,
Saad Bin Abul Kashem, Mohammad Tariqul Islam, Somaya Al Maadeed, Susu M.
Zughaier, Muhammad Salman Khan, and Muhammad E.H. Chowdhury. Exploring
the effect of image enhancement techniques on covid-19 detection using chest x-
ray images. Computers in Biology and Medicine, 132:104319, 2021. ISSN 0010-
4825. doi: https://doi.org/10.1016/j.compbiomed.2021.104319. URL https://www.

sciencedirect.com/science/article/pii/S001048252100113X.

[22] Zvika Brakerski. Fully homomorphic encryption without modulus switching from
classical gapsvp. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, pages 868–886, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg. ISBN 978-3-642-32009-5.

[23] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. Cryptology ePrint Archive, Report 2012/144, 2012. https://ia.cr/

2012/144.

[24] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic
encryption for arithmetic of approximate numbers. In Tsuyoshi Takagi and Thomas
Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017, pages 409–437, Cham,
2017. Springer International Publishing. ISBN 978-3-319-70694-8.

[25] Alberto Ibarrondo and Alexander Viand. Pyfhel: Python for homomorphic encryp-
tion libraries. In ACM, editor, WAHC 2021, 9th Workshop on Encrypted Computing
& Applied Homomorphic Cryptography, Associated with the ACM CCS 2021
conference, 15 November 2021, Seoul, South Korea, Seoul, 2021.

[26] BFVinferati. Introduction to the bfv encryption scheme.
https://inferati.com/blog/fhe-schemes-bfv.

https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://www.sciencedirect.com/science/article/pii/S001048252100113X
https://www.sciencedirect.com/science/article/pii/S001048252100113X
https://ia.cr/2012/144
https://ia.cr/2012/144

