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ABSTRACT

The reason for creating this thesis was because of the new and revised version of NORSOK
N-003 standard. Therefore a comparison between the old and the revised version of NORSOK
N-003 standard has been performed. This thesis have been divided in to three main parts. The
first part describe how to estimate the 1072 annual probability crest height, ¢ o; and wave
height h; o1 (100-years wave) with the metocean contour lines method. Which resulted in:
hoo1. = 28.61 mand ¢, = 17.87 m by using hy = 14.9m and t,, = 15.8s

The second part revolves around regular waves. A comparison between the old and new
method of calculating the ULS design wave have been discussed. The old method uses a Stokes
wave profile defined by the 1072 annual probability wave height, h, o, with an unfavorable
period. Where the new method uses the 10™2 annual probability crest height, ¢, o; With a mean
wave period to define the ULS design wave. With the same defined wave profiles as the new
and old recommendation, one have also compared the Stokes wave with a first order approach.
By obtaining the kinematics from all approaches and compared them, one may see that a linear
approach has the ability to obtain very close kinematics as the Stokes wave. This depends on the
amplitude used and which approximation above mean surface level used. After words, the base
shear and overturning moment where calculated by Morison equation. Those results shows that
the new method using Stokes wave with cg o1 as the amplitude, results in a larger base share
and overturning moment for drag and non-dominated forces but a lower overturning moment
for a mass dominated case comparing to the old method using a wave height equal to, hg 1.
The conclusion for this part is that the new N-003 standard is more efficient with time and
describe the waves in a more accurate manner.

For the third and last part one have chosen to discuss irregular wave, where the old N-003
standard suggests a first order process to obtain the corresponding kinematics of a time
simulation. Where the revised N-003 standard in other hand require a second order process to
describe the surface process and a second order theory to obtain the kinematics of the time
history. Matlab has been used to create those simulations and calculated all the data for this
thesis. By comparing the two different processes, one found out that the:

- Formula used to create the first order irregular surface process follows a Rayleigh
distribution for crest heights and the second order surface process follows a Weibull
distribution for crest heights.

- Wheeler stretching for a first order process underestimates the kinematics, but a
constant value above mean surface level is a very good approximation to a second order
process using Standsbergs approached.

- First order process underestimates the crest heights but overestimates the kinematics,
which achieves almost the same result as second order process.
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column diameter 1m, 5m and 20m. Where 1GN =103 MN = 1076 kN = 109 N. X° for Stokes
wave instead of time for linear wave. Crest top is the x-position when 0°, mean surface level is
approximately 80° and through is Gt 180°............cccueeeveeeveeeieeieeeieeeeeeeieeeeeesreeeeeesreesreesseeeee e 67
Table 4.1. Load results for column diameter 1m, drag dominating forces. Where 1GN =103 MN
= 1076 kN = 10”9 N. X° for stokes data instead of time for linear data. Crest top is the x-position
when 0° mean surface level is approximately 80° and through is 180°. Max value obtained at
CresSt tOP With @ firSt OFAEr PrOCESS. .........uueeeeeeeeeeeeeee et ee ettt e et te e e et e e e e st aaessaraaeessanaaeens 95
Table 4.2. Load results for column diameter 1m, drag dominating forces. Where 1IMN = 1013 kN
= 1076 N. X° for stokes data instead of time for linear data. Crest top is the x-position when 0°,
mean surface level is approximately 80° and through is 180°. Max value obtained at crest top
With @ SECONA OFAEI PrOCESS. .....vvveeeiieeeeeiee et eette e st a e e sttt e e e e st a e e s sastee e s ssseaassssssaeeesasees 113
Table 4.3. Load results for column diameter 1m, drag dominating forces. Where 1IMN = 103 kN
= 1076 N. X° for stokes data instead of time for linear and second order data. Crest top is the x-
position when 0° mean surface level is approximately 80° and through is 180°. Max value
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1 Introduction

1.1 Background of the task

When designing a jacket or jack-ups it has been common to adopt a Stokes 5™ order wave
profile defined by the 0.01-annual probability wave height, hy o1, with an associated wave
period as the ULS design wave, [1]. This has now been changed in the ongoing revision of the
Norwegian standard for loads and load effects (action and action effects), N-003, [2]. Where it
states that the ULS design wave shall be defined by having a crest height equal to the 0.01-
annual probability crest height, Cy o4, instead of the wave height, h; o;. There has also been
some changes on the procedure with time domain for simulating loads and response
predictions. Where a second order random process are now needed for modelling the sea
surface elevation, and the corresponding kinematics shall also be calculated according to second
order theory, [2]. This is why, we will be conducting a master thesis, where a comparison of
loads and load effects on a simplified offshore structure will be conducted. By using different
approaches recommended from the old and new N-003 version. It is also very interesting to
know how hard a second order random process will be to construct, depending on time and
programs available. Will this be possible for students in the future?

1.2 The task itself

The following sub-tasks was proposed by Sverre Kristian Haver and has been performed with
slightly deviated execution in this thesis.

1. Estimate the 102 annual probability crest height, c0.01, and wave height, h0.01, and the
associated period using the metocean contour lines method summing the sea state
above is the worst sea state along the 102 — annual probability contour line. Guidance
regarding this is found in revised N-003. Estimate the associated period following
recommendation in N-003.
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2. Kinematics of regular waves:

* Stokes 5t kinematics:

Determine the horizontal particle speed versus depth under the wave crest based on the
old and new recommendation of Stokes 5™ order wave profile. Determine also the
horizontal fluid acceleration versus depth for the wave phase with maximum horizontal
acceleration for the two Stokes 5™ implementations.

* Linear wave approximation:

Determine the horizontal particle speed and horizontal particle acceleration using linear
wave theory and various approximations in order to estimate kinematics above the
mean free surface (direct extrapolation above free surface, constant value above
surface and Wheeler stretching.

3. Estimate the 102 — annual probability base shear of the pile structure using the various
kinematics models of 2) above. Select 3 diameters: drag dominated case, inertia
dominated case and a case with similar contributions from both terms.

4. Establish a simulation tool for Gaussian - and second order surface processes and second
order wave induced kinematics. Verify kinematics by comparing with Stokes 5% results
for some Stokes 5™ like events in the simulated process. It is recommended that the
Stansberg approach is applied for the kinematics. The length of the simulation must be
decided in view of the times it takes to execute the simulations.

5. Kinematics of irregular waves:
For the irregular wave investigation, one can focus on the drag dominated. This means
that we can assume that we can assume that the 0.01 — annual probability quasi-static
loads/load effects are rather well approximated by the values found for the wave event
with a crest height equal to co.01.

* Linear theory: Do a number (20) of 3-hour time domain simulations. Identify the wave
event with a crest height corresponding to an exceedance probability of 0.1 for this sea
state. If the Gaussian sea state were a correct assumption, this would be a good estimate
for the 102 annual probability crest height. Estimate the particle speed under the wave
crest the selected wave event. (If simulation length 3 hours takes too long time,
simulation length can be reduced or we can modify simulation approach by selecting
fewer components.)
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*Second order theory: Use too developed in 4) to simulate a number (20) of second
order surface processes. Duration of simulation is decided as the time it takes per
simulation is known. Identify the wave event with a crest height likely to be exceeded by
one out of ten 3-hour simulations. Determine kinematics of the event.

6. Estimate 10— annual probability loads/load effects from the kinematic profiles in 5).

7. Compare results and discuss findings.

1.3 Scope of the task

The aim of this thesis is to compare loads and load effects on a simplified offshore structure
using the procedures recommended in the 2007 N-003 version, [1] and the revised version, [2].

Regarding the structure a single pile with a fixed support at the sea bed has been adopted. By
changing the diameter of the pile, different dominating forces can be obtained, as drag or mass
terms. For regular waves a diameter of 1m, 5m and 20m has been controlled and for irregular
waves a restriction has been done to focus on the drag dominated forces. Which means only a
column diameter of 1m will be controlled.

The depth is taken to be 100m, which case intermediate water depth, which is used and
explained under regular waves. For irregular waves, the depth has been classified as deep water
to simplify the equations. More explanations for this simplification can be found under irregular
waves.

Furthermore, the aim of this thesis is met by restricting the structural analysis to a quasi-static
approach. Regarding Stokes 5™ order waves, an open code by Fenton is used and obtained
from, [3]. Regarding calculations of kinematics on regular 1. order waves and kinematics of
irregular processes a proper scripts in Matlab has been used. All loads calculated on the
structure has also been done in Matlab. Regarding load effects, the work has been limited to
base shear and overturning moment and calculated from Morrison equation.
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1.4 Thesis Outline

This thesis consist of 5 chapters, where chapter 1 is an introduction and chapter 2 is about
estimating the 10~2 annual probability crest height, C, o; and wave height hg o1, with an
associated period using the metocean counter line method. All the theory used in this thesis,
will be introduced along the way at the start of the subchapter. The main part of this thesis can
be found in chapter 3 and 4, which divide regular waves in chapter 3 and irregular waves in
chapter 4. Each of those two chapters consist of subchapters, where chapter 3 discusses linear
methods and 5% order Stokes waves for regular waves. Those methods, will be compared and
discussed at the end of chapter 3. For chapter 4, which addresses irregular waves a first and
second order approach will be performed in two different subchapters. Where a third
subchapter will compare the result of those two method and discussed at the end of the
chapter. Finally, chapter 5 will finish the thesis with a conclusion and suggestion for further
work.

2 Metocean contour method

In this report, we will be using the metocean contour line method too estimate the long-term
extremes. This can be done through short-term sea states. For doing this, we will need to find a
good set of metocean data. Then contour lines needs to be established for the metocean data.
In our report, we will only be looking at the 100-year extreme wave. Therefore, the only
interesting contour line is the 100-year contour line with an 0.01 constant annual exceedance
probability for any combinations of hg and t,, along the contour line. When this is found, it is
important to know that the peak of the contour line isn’t always the worst case. Therefore, the
next step would be to identify the worst condition along the 0.01 probability contour line. To
find the worst case, a comparison between the different combinations of h, and t,, along the
peak of the contour line is needed. The comparison can be done with equation 2.2, which is
explained under chapter 2.3 and is a Weibull distribution. This is the same formula used later to
find the 100 year extreme wave. To satisfy the new N-003 standard the 100-year extreme crest
height is also found, this is show in chapter 2.4 along with the estimate of the 100-year extreme
wave. Before this, an introduction to what metocean is and what kind of metocean data used
here will be explained.
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2.1 Metocean

Metocean is a contraction of words from meteorology and oceanography. Where meteorology
consist of gather data from wind, air temperature, atmospheric pressure, etc. Oceanography
includes waves, current, water level and other data, [4]. This means that metocean include most
of those data sets. The more data obtained, the better it is for the accuracy of predicting the
real environmental conditions affecting offshore operations in the future. In this report, we are
only using wave data consisting of the significant wave height and the spectral peak period. The
significant wave height and the spectral peak period is found by measuring the height and
period of waves from a location. Normally interval of 3 hours for each measurement. Then the
spectral peak period, t,, is the wave period with the highest energy (maximum spectrum
spectral density), [5]. The significant wave height, hy, is the mean value of the 1/3 of the largest
waves for the measured 3hr sea state, as shown in figure 2.1. Another method used more in the
present is 4 times the standard deviation of the surface process, [5]. Then we have the wave
spectrum which is usually estimated from parameters in terms of hg and t,,. In a year, there will
be recorded 2920 hg and t, from 2920, 3-hour periods. The reason for 3-hour period instead of
a larger period is the change in weather.

Statistical Wawve Distribution

Most Probable H

/.ue.nmﬁ;

Significant H (Hg)

Highest one-tenth
of waves (Hy;4g)

Increasing Number of Waves g

. 113 O WaNEE ———————

Increasing Wave Height -
EThe COMET Program

Figure 2.1. Statistical wave distribution of a wave spectrum with definitions.
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2.2 Wave Data

The data used is measured from the Northern North Sea between, 1973 and 2002. It include
some hindcast data that’s only been used to fill in gaps at the measured metocean data set. This
comes from DNMI Hindcast Archive, gridpoint 1415, between 1955 and 2001. All the metocean
data is obtained from [6].

In table 2.1, you can see all the wave date used for this report. The data here consist of hg and
t, from 34 years in all directions, and it is used for estimating the 100-year extreme wave of the

sea state.

Table 2.1. Joint frequency table of spectral peak period (s) (horizontal axis), and significant wave height (m).

duration of 3 hours for approximately 34 years. Obtained from [6].

a) All year — omni directional

With a sea state

H, SPECTRAL PEAK PERIOD SUM
0-3 3-4‘ 45 ‘ 56 ‘ 6-7 ‘ 7-8 ‘ 8.9 ‘9-10 ‘1&11‘11-12 12—13‘13—14‘14—1515—16‘16—1? 17—18‘18—]9 1’% <20
0121 179 529 859 0977 889 701 503 337 217 135 82 49 29 17 10 6 4 5 | 5550
12| 5 141 959 2762 4683 5644 5411 4430 3245 2193 1399 855 507 294 167 94 53 29 36 | 32909
23] 0 9 168 956 2604 4359 5230 4964 3980 2819 1822 1099 G629 346 185 97 50 25 25 |29368
34|10 0 9 127 634 1629 2633 3053 2777 2109 1398 835 461 239 118 56 26 12 9 [16126
4510 0 0 8 88 397 955 1460 1593 1349 941 566 303 148 67 29 12 5 3 | 7924
56| 0 0 0 0 7 66 268 594 838 836 639 397 210 97 41 16 6 2 1 | 4019
7|0 0 0 0 0 6 49 177 352 445 393 263 141 63 25 9 3 1 0 | 1928
|0 0 0 0 0 0 5 36 111 192 209 159 90 40 15 5 1 0 0 | 863
891 0 0 0 0 0 0 0 5 25 64 93 8 54 25 9 3 1 0 0| 363
.10 0 0 0 0 0 0 0 0 4 16 33 39 20 15 6 2 0 0 0] 145
1l 0 0 0 0 0 0 0o 0 ©0 3 9 15 14 8 3 1 0 0 0] 55
112l o 0 0 0 0 0 0o 0 0 0 2 5 6 4 2 1 0 0 0] 20
1213 0 0 0 0 0 0 o 0 0 ©0 ©0 1 2 2 1 0 0 0 0 7
1314 0 0 0 0 0 0 o 0 o0 ©0 ©0 0 1 1 0 0 0 0 0] 2
415 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
SUM| 25 [320] 1667 [ 4712 [ 8993 [12001]15255[15222013262010243]7075]4403[24951312] 657 322 ] 158 | 78 [ 81 [ 99280

Simulated observations of h, and t,, are plotted in figure 2.2. This is to get a better overview of

the data and to show the mean value and a 90% confidence interval of the data.
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Figure 2.2. Conditional characteristics for the Spectral peak period versus significant wave height with 90% confidence interval
and mean value are shown for 3 hour sea state. Obtained from [6].

The next step is to find the 100-year value of the hg and t,,. To do this we can use figure 2.3,
which is obtained from [6]. They have already introduced contour lines that describe the
different probability sea states. Contour line is a line consisting of points of equal probability of
exceedance. The 100-year contour line will describe all possible combinations of hg and t,,
corresponding to an annual exceedance probability of 1072, To create contour lines an estimate
of the n-probability of hs along with the conditional average of t,, is needed. Afterword a line
can be drawn through all the h and t,, obtained from the n-probability. This will make a
counter line with n-probability. See [6] and [2] for more guidelines on contour lines.
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Figure 2.3. 1, 10, 100 and 10000-year extreme contour lines in the hs — tp plane. Sea state duration 3 hours. Obtained from [6].

From figure 2.3, we can obtain all the necessary data used lather in our report and table 2.2
shows some exact numbers of different extreme values obtained from figure 2.3.

Table 2.2. Marginal omni directional extremes for the significant wave height, hs, and corresponding values for the spectral peak
period, tp. 3 hour sea states. Obtained from [6].

Return period (years) Extreme sea states
H,[m] | T, [s] | 90% range of T,
1 11.0 142 | 121 - 165
10 13.0 151 | 13.1 - 173
100 14.9 16.0 | 140 - 182
10000 18.2 175 | 155 - 197
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2.3 Worst metocean condition along the 100-year contour line

Before estimating the extreme wave or crest height with a 100-year response, we need to
identify the most unfavorable sea state for the 100-year contour line. This can be done by
looking in to different points along the 100-year contour line. Where those points should be
close to the peak of the 100-year contour line and at least five points. Where one point is at the
peak and at least two points at the left and right side of the peak, depending on the values. The
spectral peak period and the significant wave height will vary along the 100 year contour line
and is not depending on each other. By modeling the short term design sea state with those
points, we can plot the result and find the most extreme scenario.

First of all, we would need to introduce the formula that can describe the distributions of a
short term sea state for wave heights. Later on an estimate of the long term extremes can be
found by considering a few short term sea states. This formula is a Weibull distribution that has
been verified by a large number of measurements for different environmental conditions. The
formula is shown in equation 2.1 and obtained from [7].

_(Ef” Equation 2.1
Fuju,tp(hlhg, tp) =1 —e \on

Equation 2.1 dose not obtain the extreme values for a 3-hour period. For obtaining those, the

equation needs to be raised to the power oftﬂ according to [8]. Where N is the seconds in a 3-
2

hour period (10800s) and t, is the spectral estimate of zero-up-crossing period. The distribution
of the 3-hour maximum wave height is here given by:

N
_(L>BH & .
FHxhr|Hs;TP (hth’tP) =|1—e \@H Equation 2.2

Equation 2.2 will go towards Gumble distribution as N — co.
Where the various parameters from Forristall are:

oy = 0.683 x hy Equation 2.3

B = 2.13 Equation 2.4

The zero-up-crossing period, t; = t, * 0.77 according to [8].
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Table 2.3 shows the different h; with the corresponding t,, values around the peak of the 100-

year contour line. The peak value of this contour line is hy = 14.9m and t, = 16s, meaning that
two of my points from table 2.3 has to high hg. The reason for this is to be on the safe side and

obtain the worst case that can happen. Those two points has a hy = 14.9m and t,, = 16.4s or

15.8s, where hg should have been reduced a little to follow the contour line. All points are

obtained from figure 2.3.

With those data and equation 2.2 a Matlab script has been used to calculate the different 3-
hour extreme value distribution of wave heights. This have then been plotted and zoomed inn
for a better overview of what the worst scenario is. See figure 2.4 for the different max wave

height and figure 2.5 for the zoomed in picture for overview.

Table 2.3. hs and tp along the peak of 100-year contour line. Where 14.9 hs and 16s tp is the peak value.

Data from peak of
100 year contour line
Hs (m) Tp (s)
14.9 16.0
14.9 16.4
14.9 15.8
14.0 14.0
14.0 17,67
14.78 15.5
3-hour max wave height
c

0.9

0.8

hs=14.9, Tp=16
hs=14.9, Tp=16.4
hs=14.9, Tp=15.8
hs=14, Tp=14
hs=14, Tp=17.67
hs=14.78, Tp=15.5
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Figure 2.4. Showing extreme wave height for an 3-hour period with six different conditions.
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Figure 2.5. Showing extreme wave height for a 3-hour period with six different conditions zoomed inn.

From figure 2.5 we can see that the purple line has the highest wave height value that means
that this is the worst scenario for the 100-year contour line. We can also state that from this
formula the hg is the main parameter to increase the extreme wave height distribution. This can
be seen from hy = 14m compared with hy = 14.9m, which makes much larger differences than
the change in t,, when h; = 14m.

Another observation from figure 2.5 is that the worst scenario for table 2.3 is with a hy =
14.9m and t,, = 15.8s. Meaning that a reduction in t,, for the same hg would result in a higher
extreme wave height distribution. The reason for this is that a lower t,, in a 3-hour sea state will
reduce the zero-up-crossing period and allow more waves to occur. This will increase the
probability to obtain the same wave heights as a higher t,,.

2.4 Extreme wave/crest height value

Now that the worst scenario for the extreme wave height distribution is estimated, we will be
using hs = 14.9 and Tp = 15.8s for the next step in finding the extreme crest and wave height
value. Using the same formula again with those values, the long-term extreme wave height
value can be estimated by the 0.90 percentile (cumulative probability), for an annual
exceedance probability of 0.01. According to [1] and [2]. The following formula below is used to
plot the extreme wave height distribution. This formula where explained under equation 2.1
and 2.2. All the calculations are preform in Matlab and for more details see the Matlab script.
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10800

_(L)Z'B 12.17
FHshrle,Tp (hlhg, tp) = (1 — e \1018 >

For the short-term crest height distribution, a 2-parameter Weibull distribution formula is used
and obtained from [7]. This distribution has been established by a large number of simulation of
a second order Stokes surface model. See the following formula below with description.

_( c )BF
Femgr, (clhg, ty,d) =1 —e \@r+hs Equation 2.5
And the extreme wave height distribution is:
N
()"
chhr|HSrT1 (Clhs’tl’ d) =|1—e \orhs Equation 2.6

Where c is the variable for crest height, t; is the mean wave period and parameter ag and Bg
are expressed by measure of steepness S; and Ursell number Ur obtained from [7].

hy
U= 5 i
ki *d3 Equation 2.7
g — 2T * hg
17 gat? Equation 2.8

ap = 0.3536 + 0.2892 * S; + 0.1060 * Ur Equation 2.9

o 2
Br =2 —2.1597 * 51 + 0.0968 * Ur Equation 2.10

k; can be found through solving or iterating and the formula is obtained at [9] and explained
under chapter 3.1.3.

21
[ w? = g xk; = tanh(k, * d) | where w? = o Equation 2.1
k is 0.023 for this case by iterating it in Matlab. The rest of the parameters and values for this
case can be seen in the formula below used for plot figure 2.6, which is from equation 2.6.

10800

_( c )1-88 12.17
chmrle'T1 (Clhs,tl, d) = (1 — e \0.37x14.9 >

We can now plot bout the short-term extreme crest and wave height distribution. This is to find
the long-term extreme crest/wave height value at a 0.90 percentile as mentioned earlier. See
figure 2.6.
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Figure 2.6. Short-term sea state for extreme wave/crest height values.

Figure 2.6 shows that the extreme crest and wave height values are:
h0'01 = 2861 m
C0_01 = 1787m

Where H, o1 is the extreme 100-year wave height and C, ¢ is the extreme 100 year crest height
with and annual probability of 1072,

[6] also estimated the 100-year extreme crest and wave height with and annual probability of
1072 but they used a different distribution formula. Results in [6], where a wave height of 29
meters. This is a little larger than ours predictions as expected since [6] uses a Forristall
distribution, which case higher values than a Weibull distribution. For the crest height, [6] got
17.6 meters from a long-term analyses and that is just below ours. Therefore, we can say that
this has been a good estimation for the extreme 100-year crest and wave height with and
annual probability of 1072, This is just an approximate method. For a final design, it has to be
confirm by the 0.90 percentile with long-term analysis as the 100-year extreme crest height
were.
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According to [1] under “6.2.2.4 Design wave”, the period for the extreme 100-year wave can be
found by the following formula:

V6.5 *x Higo < T < /11 % Hypy Equation 2.12

Where:

Tnin = 13.64 s
Tax = 17.74 s
Tmean = 15.69 s

Another method for estimating Tp;0qr is by 0.9 x t,, = 0.9 * 15.8 = 14.22s, which would have

resulted in a much lower period. The method used in this thesis is equation 2.12. Where
Tmean = 15.69 s.

3 Kinematics of regular waves

In this chapter, we will be looking inn to linear and nonlinear wave theory for regular waves. The
object here is to find the horizontal particle velocity and horizontal particle acceleration for the
100-year extreme wave. This will be done in several ways, by using the formulas from first
order, and 5™"order wave kinematics. For the first order (liner wave theory) various
approximations in order to estimate kinematics above the mean free surface will be used. This
can be done by having a constant value above surface, extrapolation of leaner speed above free
surface or using Wheeler stretching. For the 5™ order Stokes approach, a Stokes 5t order
program obtained from [3], will be used to estimate the kinematics.
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3.1 Linear wave theory

First, we need to introduce linear wave theory since this is the core theory of ocean surface
waves. This theory uses linearized boundary conditions that create regular waves with
sinusoidal shape. The reason we can neglect the nonlinear terms at the free surface is because
of the small wave height to wave length ratio H/L, this is less than 2% according to [10]. If the
wave travels to shore at shallow water or becomes too large a higher order theory would be
needed to describe the wave. The sinusoidal shaped waves have the same height for crests and
troughs unlike the higher order wave theories that describe the waves more like the real ocean
waves. The real ocean waves have higher crests than trough, it also consist of waves with
varying wave heights and periods. This is called irregular waves. More about irregular waves can
be found at chapter 4. Linear wave theory can be a good approximation to real waves and linear
regular waves are the key to describe irregular ocean with the help of Fourier analysis. This kind
of Fourier analysis consist of a sum with regular sinusoidal waves.

3.1.1 Surface Profile

The surface profile of a sinusoidal wave can be described as following:

§(x,t) = §o * sin(w * t —Kk *Xx) Equation 3.1

Obtained from [9]. Where &, is the amplitude also known as half the wave height or if the higher
crest height than trough height is considered then the amplitude will be the crest height. w is
the wave frequency found from w = 2?“, where T is the period, k is the wave number, x is the

position and t is the time.

From equation 3.1, we can plot the wave in time and space. This formula can also be used to
. . 2 I
derive the equation for k = Tn by evaluate the profile’s dependence on x when t = 0. Where the

wavelength L will be the distance between two wave tops or two wave troughs. See figure 3.1
for an illustration of this.

When evaluate the profile’s dependence on t when x = 0, the distance between two wave tops
or two wave troughs will be the time period T of the wave. From this, we can derive the

. 2T
equation for w = e
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Surface Profile where Amplitude a = 14 3m Perod T = 15.67 s
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Figure 3.1. lllustrating wave parameters for a surface profile.

To obtain the formula for velocity and acceleration we need to find the velocity potential first by
derivation two Laplace exertion. We will not fully show the derivation in this report only the
main steps and the entire boundaries used for the derivation of the equations.

3.1.2 Laplace Equation

First of all we need to find the two equation needed. Those can be found by describing the sea
with some physical conditions. The first one is that the water need to be incompressible or

V * V = 0. The next step is to obtain the velocity potential by saying that the sea follows a
certain physical condition that the fluid can be considered as irrational. This is because of the

effects of turbulence and viscosity are small. From this, we find that the velocities can be
9¢ 0¢ 09

described as (u, v,w) = (6x "oy’ 0z

) in terms of gradients according to [11] and [12].

Now to set up our Laplace equation, where —co < x < cwand—d < z < ¢

2 2
0%, 0% _

2
Vs = ox2  0z2 Equation 3.2
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From this we can obtain the following equation by derive it, [9].

d(x,z,t) = X(x) * Z(z) * T(t) '
= (A * sin(kx) + B * cos(kx)) * (C * e*? + D x e7*2) « T(t) Equation 3.3

Where the constants A, B, C and D are depending on our boundaries below.

The boundary’s that’s needed to complete this derive is the two following below:

To sustain the impermeability of the seabed, we need to have the velocity normal at the seabed
zero (Vgn = 0). This is called the bottom boundary condition, and if the seabed is taken as
horizontal, the following boundaries are obtained, [11] [12]:

Z_(l) =0 when z=—-d Equation 3.4
z

The next boundary needed is the dynamic free surface boundary condition. This states that the
atmospheric pressure p, is the same as the water pressure on the free surface. Where the
formula below is show with nonlinear terms, [11] [12].

1 [(0%¢p 0%¢p 0% d¢
g*g0+§*<ax2+ay2+622>+_+p02p0 when z = G(x,y,2)

at Equation 3.5

To simplify this formula and introduce the boundary condition at the surface z = 0 we get, [9]:

d¢
g*go+E+Po—Po — go——g*ﬁ when z=0 Equation 3.6

From those two boundary’s we can obtain the following formula for the velocity potential, [9]:

Go*g coshk(z+d)
*
w cosh kd

¢(x,z,t) = * cos(wt — kx)

Equation 3.7
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Where:

cos(wt — kx) is the term for regular linear wave

coshk(z+d)

—r5 isdepth dependent.

This means that for deep water when d > 1 we can write:

kd —kd k(z+d)
__e%+te _ kd coshk(z+d) e _ kz
cosh(kd) = — e — g~ o €

*

&y ek cos(wt — kx)

S
¢(x,z,t) = w Equation 3.8

And for shallow water:

h(kd) ekd +e7kd 141 . coshk(z + d)
= = = — _——
cos 2 2 cosh kd
¢(x,z,t) = g*g*cos(wt—kx)
PN Equation 3.9

According to [9] and see definition of shallow water under 3.1.4, Classification of water depth.

3.1.3 Dispersion Relation

Now that the velocity potential is obtained, another boundary condition can be used to
estimate the relation between wavelengths and wave period. This is called the dispersion
relation. The boundary condition used here is the combined free surface boundary equation
that combines the kinematic and dynamic free surface boundaries and eliminating G. The full
formula with nonlinear condition can be found below, [12]:

02 0 0 1 :
__¢_ *_¢_(§+E*V¢*V)IV¢|2 =0 when z= g(x’y’t) Equation 3.10

To linearize it and set condition for z = 0 we obtain, [9]:

2
aaT(f + g *a_¢ =0 when z=0 Equation 3.11
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2
0 . <§0 g coshk(z + d) « cos(et — kX)>

ot ) cosh kd 1m0 )
. P C,xg coshk(z+d) ot — 1) . Equation 3.12
k — %k * * —_ =
9 0z w cosh kd costw 1m0

By derive equation 3.12 a solution for L and w can be obtained. The end of this derive is found in
equation 3.13 and solution for L and w is in equation 3.14 and 3.15. According to [9].

2
@ r = tanh(kd) Equation 3.13
*

Where the wave frequency is:

w? = g * k * tanh(kd) Equation 3.14

And the wave length is:

L=

* T? * tanh(kd)
21

Equation 3.15
Those formulas can be simplified with the condition of deep or shallow water. This is because:

kd > 1, we get tanh(kd) ~1 and the formula for deep water will be, [9]:

g
2 _ Y o
w*=g*k and L= o T Equation 3.16

For shallow water kd « 1 and tanh(kd) ~kd this means that the equation will be, [9]:

2 _ 2 — 2
w*=gx*dxk® and L=+g*xdxT Equation 3.17
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3.1.4 Classification of water depth

For kinematics, the interval classification of water depth, deep, intermediate, and shallow can
be found in equation 3.18 according to [9].

Deep water: d > %

) 1 _d _1
Intermediate water: 5 <7<3 Equation 3.18

1

d
Shallow water: = <
L 20

The reason for those intervals is the changes in the depth dependent part of the velocity
potential.

3.1.5 Horizontal water particle velocities and accelerations

The last step in our linear theory will be to derive the velocity and acceleration formulas. They
can be found by taking the derivatives of the potential function. In our case, the horizontal
particle velocity and acceleration is needed for this thesis. Therefore, the potential function
needs to be derived with respect to x as shown in equation 3.19. This is to find the horizontal
particle velocity:

0 Co*g*k*coshk(z+d)

ulxz,t) = ox ) cosh kd

* sin(wt — kx) Equation 3.19

This formula can also simplify the depth dependent part of the equation, as shown above. Only
if it is deep or shallow water. We can also see that the horizontal velocity is on its max at the
wave crest. This is when sin(wt — kx) = 1 and its minimum when sin(wt — kx) = —1 which is
when the wave are at the through. It is also worth mention that the surface profile has the same
function as the horizontal velocity function.

The horizontal particle acceleration is found by derivative of the horizontal particle velocity
equation with respect to time, t, and obtaining:

ou coshk(z+ d)

ax,7,0) = 5= Soxgrk+ cosh kd

Frin * cos(wt — kx) Equation 3.20
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Equation 3.20 shows that the acceleration term is zero at the wave crest. This is when the
velocity is on its max when sin(wt - kx) = 1 and cos(wt - kx) = 0 for this equation. When the
surface profile equation is 0, the acceleration function has its maximum value. This is at the
mean water surface, where the water particles cross the still water level. Which is when
cos(wt—kx) =1

3.2 Linear wave approximations

Now that a theoretical introduction has been done, we can start to find the horizontal particle
velocity and acceleration for our extreme 100-year wave. The amplitude will be set to the crest
height to satisfy the new N-003 and half the wave height for the old N-003 standard. The
interesting part here is to see the deferens of those outcomes. First of all the water depth needs
to be categorized as shallow, intermediate or deep water, to choose the formula needed. After
words the wavelength can be estimated through the following formula, which were explained
above.

L=J .12, tanh(kd)

21 Equation 3.21

For this formula k can be estimated through formula 3.22, but Matlab is required to solve or
iterate to a solution for k.

w? = g * k * tanh(kd) Equation 3.22

With the help of Matlab, the solution for k is: k = 0.0174, and by using Ty,eqn = 15.69s as period
the following wave length is obtained:

9.81
L= o % 15.69 * tanh(0.0174 * 100) = 361 m
From here we can find out that 4_100_ 0.28
L~ 361

4_ 0.28) < l. Because of this
L 2

the simplifications mentioned in the linear wave theory, about the wave depth dependent part,
can not be used here.

This means that this is intermediate water depth since: % < (
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Using half the wave height as amplitude and T}, as the period, the surface profile can be
plotted. This gives us figure 3.2 with the use of the following formula when time t is Os and 1.5s:

£(x,0) = 14.3 *sin(0.4 * t — 0.0174 * x)

Surface Profile where Amplitude a = 14.3m Perod T = 1567 s
15 I I [ I

Time. t =0
Time. t =14

Wave height (m)

0 100 200 300 400 500
Wave length (m)

Figure 3.2. Showing surface profile for t = Os and t = 1.5s with respect to x.

From figure 3.2, one can see that the wave moves in a positive position with time. Since the
surface profile function is the same as the horizontal particle velocity function, we can say that
max velocity will be at its crest. This means that the horizontal particle velocity will have its

maximum at ZL in t = 0s and the maximum horizontal particle acceleration at Om. Since the

horizontal particle acceleration is maximum at the mean water surface as mentioned before.
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3.2.1 Horizontal water particle velocities with half the wave height as amplitude

Next step is to find the horizontal particle velocity for a wave with height = 28.61 meters. With
the use of three different periods since this is required of the old N-003 standard, [1]. The three
different periods are: Ty,in = 13.64 s, Typax = 17.74 s and Typeqn = 15.69 s. There are also
three different plots for each time period. The reason for this is because of the difficulties on
describing the maximum velocity above the mean surface level. The three different
approximation methods used here, are constant value above the surface level and up to the
crest, extrapolation of leaner speed above free surface or using Wheeler stretching. All the
calculations are done in Matlab, and plotted afterwards. For a better understanding for the
reader, all the steps with T},,.4 as period and half the wave heights as amplitude will be shown.

The first step is to locate the maximum position of the velocity and this is when
sin(wt — kx) = 1 (crest top). Since this case has intermediate water depth, the formula used
can’t be simplified and therefore, the following formula is:

Go*g*k coshk(z+d) 14.30 * 9.81 * 0.017 cosh 0.017 = (z + 100)
* = *
cosh kd 0.40 cosh(0.017 = 100)

u(z) =

The only value left to specify now is the variable z. For extrapolation of leaner speed above free
surface, we can use the formula as it is and use the z value in an interval of:

—d<z<G, — —100m <z < 14.30m

When constant value from surface level up to the crest is used, the same formula for

—-d<z<0 — —100m < z < 0m can be used, this is up to the surface level. To describe
the part from surface level up to the crest, z needs to be 0 (constant value). For the same
formula atinterval 0 <z <G, — 0m <z < 14.3m. In Matlab this was done by creating
two equations to describe one function with the chosen intervals and z values described here,
see Matlab script for more details.

Wheeler stretching is more difficult. This method uses the value at surface level obtained from
the equation when z=0 and stretches it up to the crest, making a lower velocity at the surface
level than the other approximation methods, [8]. According to [2] this method is not
recommended, when operating with extreme value analysis as done here. This is because it
underestimates the velocity at surface level.

The same method is also done with T,,,;;, and T,,,4, see figure 3.3 for the nine different plots.
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Horizontal particle velocity with Wave height and different T value at crest top for the Surface Profile
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Figure 3.3. Horizontal particle velocity with different time period and estimation methods above surface level. Where amplitude
is 14.3m and Tmin = 13.64s, Tmax = 17.74s and Tmean = 15.69s.

From what we can see of figure 3.3, the extrapolation is giving us an extremely large particle
speed at the top of the wave, and wheeler stretching might be producing too low particle speed
at the water surface as mentioned before. It will be very interesting to see if the constant value
above the surface will be the closes approximation to a 5™ order approach. This will be
discussed later, when the loads and loads effects are obtained.

Another observation is that the wave with largest period has the most horizontal particle
velocity when it approaches the sea bottom. This is because of the phase velocity is
proportional to the wave period. This means that the long periodic waves have a waveform that
moves faster than a wave with short period when it approaches a certain depth. The reason for
an exponential decrement is because of the e*?, where z is negative. We can also state that
when e71000 = 0 and 72991 = 1, This means that a large k will have larger decrease in
horizontal particle velocity by depth than having a small k. The formula for k in deep water is:

K = (2m)?

T2xg
decries in velocity by depth. The last observation we can see is that the shortest period have the
largest velocity at the surface. This is because when having an amplitude as 14.3 and changing
time period the orbital path of the water molecules will still stay the same but the time they use
will increase or decrease. By lowering the time period the water molecules will move faster to
travel the same distance as before and that means the wave velocity will increase. See figure 3.4
for description on orbital pat of water molecules.

meaning that when we have a large T the k is smaller and we will have a smaller
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Figure 3.4. Description of wave profile and orbital path of water molecules.

3.2.2 Horizontal water particle acceleration with half the wave height as amplitude

For the acceleration, we know that the maximum value can be obtained at the mean surface
level. When the surface profile is 0 and cos(wt — kx) = 1 for horizontal particle acceleration. By
this the following formula is:

(1) =¢ K coshk(z+ d) 14.30 % 9.81 % 0.017 cosh 0.017 = (z + 100)
= s ogxkk——= =14.30%9.81 % 0. *
@z 0*8 cosh kd cosh(0.017 = 100)

Since the formula with cos(wt — kx) = 1 its only valid up to the mean surface level, because
the surface profile in this time is at mean water level. Meaning that Wheeler stretching,
extrapolation or constant value from mean surface level up to the crest is not needed for
maximum horizontal particle acceleration. For any other point in time, it would have been
needed to use approximation above mean water level. For example, t = 1.5s when x = 0 as figure
3.2 shows us, an approximation above mean water level would have been needed up to the
position in the surface profile, which is approximately 7.5m above mean water level. This is the
same case for the horizontal particle velocity profile when time is changed. There will be more
info about this when calculating loads for a drag and mass dominating case.

The results of horizontal particle acceleration for the three different periods is shown in figure
3.5.
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Horizontal particle acceleration with Wave height and different T value at water surface for the Surface Profile

Depth (m)
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Figure 3.5. Horizontal particle acceleration with different time period. Where amplitude is 14.3m and Tmin = 13.64s, Tmax=17.74s,
Tmean = 15.69s.

From figure 3.5, shows the same theoretical results as seen from figure 3.3. Explaining it more
related to the acceleration. We mention that because of k, we can have an influence on e*# that
reduces the horizontal particle velocity and acceleration with depth. When having a large k
meaning a low period and a faster reduction in horizontal particle velocity. Meaning that the
acceleration will be larger for a low period and lower for a higher period. It is also because of
the waveform we obtain a larger acceleration when approaching the sea bottom. Since the
horizontal particle velocity at the mean surface level is largest with low period, it would need to
have a large acceleration to achieve it, because it has the lowest velocity at the sea bottom.
That’s the reason for obtaining the largest acceleration with a short period at the surface.
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3.2.3 Horizontal water particle velocities with crest height as amplitude

Now by changing the amplitude to the crest height (G, = 17.81) obtained from chapter 2.4, we
can see the differences with a larger amplitude and more realistic to a real wave. The same
calculations methods are used as above for half the wave height. Except the only period
required to check is the T},,04, Period according to [2]. The reason for only Ty, eqn is sShown are
because of this value is sufficient for an approximation on the 100-year extreme crest height
value as mention in [2]. T,,;, would have been a to large estimate for the loads later on. Results
of this is plot and shown in figure 3.6. Note that the comparison plot between half the wave
height and crest height as amplitude can be found at chapter 3.4.

Horizontal particle velocity with Crest height and Tmean at crest top for the Surface Profile
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Figure 3.6. Horizontal particle velocity with crest height as amplitude (Go=17.81), and Tmean = 15.69s using different estimation
methods above the surface level.

We can clearly see from figure 3.6 that a larger amplitude will obtain a larger horizontal particle
velocity by comparing with figure 3.4. This is because of the formula of horizontal particle
velocity, where an increase in the amplitude the velocity in general will increase. The theoretical
solution for this is when an increase in wave height occurs, the distance the water molecules
need to travel for one period would increase. The particle velocity has to increase to travel the
increased distance on the same time since the time period is the same. This is why we have a
larger horizontal particle velocity with a higher amplitude and same period.
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3.2.4 Horizontal water particle acceleration with crest height as amplitude

The acceleration for crest height as amplitude is done in the same manner as for half the wave

height above except Ty,0qn is Only plotted and the amplitude is changed. Results of this plot can
be seen in figure 3.7.

Horizontal particle acceleration with Crest height and Tmean at water surface for the Surface Profile
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Figure 3.7. Horizontal particle acceleration with crest height as amplitude (Go=17.81), and Tmean = 15.69s.

From figure 3.7, we can see that the acceleration is larger with a larger amplitude by comparing
it with figure 3.5. The formula of acceleration shows that an increase in amplitude (G,) will
results in an automatically general increase all over the acceleration.
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3.3 Stokes 5™ order program

In this chapter, a Stoke 5" order program obtained from [3], is used to calculate the horizontal
particle velocity and acceleration, for the extreme 100 year crest and wave height with an
annual probability of 1072, Stokes 5t order program uses nonlinear term meaning it does not
neglect the open elliptical orbit the water particles moves in and other simplification on linear
terms. The open elliptical orbit causes a movement for approximately 2% of the phase velocity,
[9]. Stokes 5t order program take in to account that the crest height are larger than the trough
of a wave. This makes the wave much more realistic compared to real ocean waves. The
application for this program are shown in figure 3.8 and is obtained from [13]. Where the worst
case used in this thesis is:

=32 _03 and 1=32_903

H
d 100 d 100

. Williams
—— Eqgn (3.1)

— Stokes-Ursell number SU =1/2 Solitary wave

08 r

'\k_.'a\l__e he]ght/ 06+ Nelson H/d = 0.55

depth
H/d

04

Stokes theory Cnoidal theory

0.2

10
Wavelength /depth (\/d)

100

Figure 3.8. Shows the region where each equation fits and the blue X show where our wave would be.
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3.3.1 How to use the program

From [3], three different programs can be obtain. They are named Fourier, Stokes and Cnoidal.
For this thesis the only program used is the Stokes program, but for Stokes program to work the
Fourier program needs to be unpacked at the same folder as the Stokes program. The Fourier
program is the main program of those three. This program contains the input files needed to
change the data. All data input are to be dimensionless by dividing or multiplying with d, depth
and g, gravity. There are three different files that consist of data to be changed. The first one is
the Data.Dat, it contains the data set of current and wave properties as the height and time
period/wavelength. See table 3.1 for the possible input. As show in table 3.1, there are no
current conditions because the magnitude here is set to 0. Current is not taken into account in
this thesis.

Table 3.1. Data input for Data.Dat, showing a wave with wave height 28,61m and a Tmax = 17,74s
0.2861 H/d
Period  Measure of length: "Wavelength" or "Period"

5.5562 Value of that length: L/d or T(g/d)*1/2 respectively

1 Current criterion (1 or 2)

0.0 Current magnitude, (dimensionless) ubar/(gd)*1/2

5 Number of Fourier components or Order of Stokes/cnoidal theory
2 Number of height steps to reach H/d

FINISH

Next file is the Convergence.dat file, which contains the following shown in table 3.2.
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Table 3.2. Data of the program Convergence.dat
Control file to control convergence and output of results

40 Maximum number of iterations for each height step; 10 OK for ordinary
waves, 40 for highest

1l.e-5  Criterion for convergence, typically 1.e-4, or 1.e-5 for highest waves

The last data file contains the information of how much data should be computed for the plots.
The file name is Points.dat and shown in table 3.3.

Table 3.3. Data of the program Points.dat

Control output for graph plotting

100 Number of points on free surface
180 Number of velocity profiles over half a wavelength to print out
100 Number of vertical points in each profile

After putting in the correct input data for those three files the Stokes program can be placed in
a subfolder of the Fourier program. This allows us to use those data files with stokes program
and by starting the program, it will create three more files of result data. Where the first result
file is Solution.res. This contains all the properties of the wave, some constants used and other
max values. See Solution.res file for more info. The two other files are more interesting, since
those are the files used in this thesis. The name of those are Flowfield.res and Surface.res.
Surface.res contains data of the surface profile for the wave, and the Flowfield.res file compute
all the velocity and acceleration data for bout horizontal and vertical depending on the depth.
Flowfield.res file also compute all the data for each phase requested in Points.dat. In this thesis
Microsoft Visual Studio is used to open and edit all of those files. All of the result (.res) files can
also be opened in excel to later be imported to Matlab. To learn more about the programs see
[13] obtained from [3].

For the last file used in Stokes, program, we have Figures.plt. This file can be opened with
Gnuplot. The file contains all the plots for surface profile, horizontal/vertical particle velocity
and acceleration dependents of depth and time. See figure 3.9 and 3.10 for illustration of the
horizontal particle velocity and acceleration plots with some theoretical explanations.
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Figure 3.9. Stokes velocity plot depending on depth with varying phase angle between Crest and Trough. 100 points between
Crest and Trough. (Half a wavelength). Y-axes are Z/d where d is depth (100m) and Z is the varying depth position. X-axes is
velocity in V//sqrt(g*d), where g is gravity 9.81m/s”2.

From figure 3.9, we can clearly see that the velocity is at its max at crest as explained earlier.

The horizontal particle velocity has a linear decree down to the trough and 0 horizontal particle
velocity at the surface level.

Figure 3.10 displays the acceleration plot, which show us that the maximum acceleration point
is at the mean surface level as mentioned earlier.
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Figure 3.10. Stokes acceleration plot depending on depth with varying phase angle between Crest and Trough. 100 points

between Crest and Trough. (Half a wavelength). Y-axes are Z/d where d is depth (100m) and Z is the varying depth position. X-
axes is acceleration in A/sqrt(g*d), where g is gravity 9.81m/s"2.
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3.3.2 Result of the program

We are now going to find the surface profile, horizontal particle velocity and acceleration for
four different cases. Where three of them will have the wave height as hy ¢ = 28,61m with

different period as we did for the linear waves. The period used is Tppin, = 13.64s, Thean =
15.69s and T4, = 17.74s. The fourth case is with a crest height equal to ¢y ¢ = 17.87m.

To obtain a crest height, equal to ¢y o1 with the Stokes program an iteration needed to be
performed. This was done by choosing a wave height and controlling the crest height result until
the same crest height equal to ¢y ¢; = 17.87m where obtained. The wave height used for
obtaining this crest height was 30.14m. The input used are shown in table 3.1, 3.2 and 3.3,
except for the period and wave height as shown in table 3.4.

Table 3.4. Data used for obtaining surface profile, horizontal particle velocity and acceleration for different waves, with the use
of Stokes program.

Data input for Stokes program, Non dimensions.
Wave height with hg o1 Wave height with ¢ o1
Tmin Tmean Tmax Tmean
Wave height =
h c 0.2861 0.2861 0.2861 0.3014
001 . Coo1
d d
Period =
4.27 491 5.56 491
T * g
d

From those input, all the necessary wave data where obtained. See figure 3.12 to 3.14 for the
different plot results. The actually number are stored in the attached files in folder named “2-3.
Stokes data for regular waves”.
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Surface Profile with Stokes 5th order wave data
I I I I
! I I I Wave height = 28.61m. Period = 13.64s
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Wave height = 28.61m. Period = 17.74s 4
Wave height = 30.14m. Period = 15.69s
Surface level, Depth = 100m
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Figure 3.11. Surface profile for four different waves with the use of Stokes program.

Figure 3.11 shows the surface profile for our four different cases. The plot is as expected, since
the wavelength is depending on the period, we can see that the shortest wave is the one with
the smallest period and the crest height are also larger than the trough. There are also some
evidence in the plot that by shortening the period with the same height we will have a higher
peak (crest height) and a trough that is closer to mean surface level. This can be seen by looking
at the plots which uses hg 5, as the wave height and different wave periods.
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Horizontal particle velocity with Stokes 5th order wave data when velocity is max at crest
20
I T I I I I I T I I I

Wave height = 28.61m. Period = 13.64s
Wave height = 28.61m. Period = 15.69s
Wave height = 28.61m. Period = 17.74s
Wave height = 30.14m. Period = 15.69s

Depth (m)
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Figure 3.12. Horizontal particle velocity for four different waves with the use of Stokes program.

Results for the horizontal particle velocity at the crest can viewed in figure 3.12. The same
theoretical result as discussed under figure 3.3 applies also here. In this plot, there are two
waves with different wave height but same period. Which shows us that by increasing the
amplitude one will increase the velocity in a parallel manner as the one with lower amplitude.
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Horizontal particle Acceleration with Stokes 5th order wave data when acceleration is max at the middle of crest and trough

o—7T 7 r v 1 T 1 1 T T T T T T T T T T T T T 1

Wave height = 28.61m. Period = 13.64s

] R P it s B Wave height = 28 61m_Period = 15 69s | |
: : : : : : : : : ; 1 : : ; : : : Wave height = 28.61m. Period = 17.74s

30 —----4 AR Shb Rt R Fommo ARRR SRR bt i o tEERE Rably Rk BEt R Wave height = 30.14m. Period = 15.69s

-40

Depth (m)

-100
k 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3

Acceleration (mfsz}

Figure 3.13. Horizontal particle acceleration for four different waves with the use of Stokes program.

Figure 3.13 shows us the acceleration obtained for our four cases at mean surface level. This
position is at time and position 0 for surface profile. For comparison between Stokes and linear
kinematics see chapter 3.4, which is the following chapter.
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3.4 Comparison between linear wave and 5" order Stokes wave

A total of 16 different horizontal particle velocity profile has been obtained. That is why we will
shorten down our plots in this comparison. As mentioned in the introduction a comparison of
the old and new NORSOK N-003 standard would be performed. Where the old N-003, [1]
recommended h o, as the wave height, for the ULS design wave with the worst associated
period. For the new N-003, [2] it recommended to use ¢, ;1 as the crest height for the ULS
design wave with a mean period value. This means, we would have a higher crest height for the
new N-003 than the old N-003 and would result in a larger horizontal particle velocity. An
observation done earlier showed that the lowest period is the worst case for the velocity. That
is why we are using the lowest period associated with hy; to compare with a crest height

associated with a mean period value as recommended. See figure 3.14 for horizontal particle

velocity comparison between the old and new N-003 approach and a 5 order stokes wave.
Figure 3.15 shows horizontal particle acceleration for the same comparison.

Depth {m}

20

-100

Horizontal particle velocity comparison between linear aproximation and Stokes 5th order data

Linear aproximation, Extrapolation,
Linear aproximation, Wheeler stretching.
Linear aproximation, Constant value,
Linear aproximation, Extrapolation,
Linear aproximation, Wheeler stretching,
Linear aproximation, Constant value,
Stoke data,
Stoke data,

h=28.61m,
h=28.61m.
h=28.61m
h=35.48m.
h=35.48m
h=3548m,
h=28.61m,

a=14.30m, T=13.64s ||

a=14.30m, T=13.64s

. a=14.30m, T=13.64s

a=17.74m, T=15.69s

. a=17.74m, T=15.69s |_|

a=17_74m, T=15.69s
a=16.94m, T=13.64s
a=17_74m, T=15.69s
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Figure 3.14. Comparison of horizontal particle velocity at crest, between linear wave and fifth order stokes wave results.

"
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Figure 3.14 shows the differences between a linear and a non-linear approach. By look at the
linear term with half the wave height as amplitude and T,,;,, for period, we can see that the
linear term is a good approximation, for both extrapolation as upper value and constant value
above mean surface level as a more accurate or right below the approximation for Stokes 5t
order kinematics.

The reason we have a good approximation for this term, when linear approach estimates a
higher value than a non-linear term is because of the half the wave height is used as the
amplitude. This gives us a lower amplitude compared to a Stokes wave, but the linear term
calculate a higher kinematic value to make up for the low amplitude. By using the Stokes
program, the program calculates a higher crest height (amplitude) like in real ocean, but are
more accurate with the horizontal particle velocity profile for that amplitude. Meaning that we
achieves a good approximation for the linear term. However, Wheeler stretching does not have
a good approximation. This approximation give us a much lower value than expected and we
can clearly see why the new N-003, [2] do not recommend the use of Wheeler stretching for
extreme waves.

By looking at the comparison between the new recommendations from N-003, we can clearly
see that the linear term is giving a much higher value by using the ¢, ¢; as the amplitude and
Tmean @S period. This is because what we discussed above does not happen here. Meaning that
the linear term will give a much higher approximation, since it does not use a simplification for
the amplitude. However, the Wheeler stretching may be a good solution for this, but is a bit
lower than the horizontal particle velocity from a Stokes wave. Horizontal particle velocity with
constant value above surface level would be a better solution here, since this would be right
above the Stokes approximation value and on the safe side. For the extrapolation approach a to
large horizontal particle velocity is obtained compared to a Stokes wave, showing that this
approach overestimates the kinematics with the crest height as amplitude. More comparison
with other values would be needed, to verify that the same case happens each time a crest
height is used as the amplitude. This will not be done here, but may be suggested for further
study’s. Comparing the recommendations from the old and new N-003 standard in figure 3.14
would not give any confirmed answers. Since the horizontal particle velocity is too similar in
total for bout cases. Later on there will be more discussions for this subject, when the loads and
loads effects has been calculated by Morison equation.
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Horizontal particle Acceleration comparison between linear aproximation and Stokes 5th order data
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Figure 3.15.Comparison of horizontal particle acceleration at surface level, between linear wave and fifth order stokes wave
results.

The acceleration plot shows the same result as mentioned under the horizontal particle velocity
plot, but here it displays the consequences for using the crest height as the amplitude in a linear
approach much better. Showing that this is a bad approximation to Stokes waves. Therefore, it
wouldn’t be recommended to use a linear approach with the use of crest height as amplitude,
only the use of half the wave height as amplitude is sufficient. Especially for an acceleration
case. For half a wave height, we can see that the linear term has a little higher value of the
Stokes wave, but still a good and safe approximation.
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3.5 Loads and load effects using linear wave theory and Stokes 5th order

The next step is to find the loads and load effects that has been limited to base shear and
overturning moment for our 16 different approaches. This is going to be done by three different
cases, where those cases are depending on different diameter of the column. Morison equation
will be used for this and by having the three different cases, we would be able to find results of
a mass, drag or a mass/drag dominating structure. First of all an introduction to Morison
equation has to be done and what condition it can be used in.

3.5.1 Morison equation

Morison equation is an equation used to summarize the loads caused by waves on a vertical
structure in water. From the equation, base shear and overturning moment can be acquired in
an accurate way for the whole structure. It is not a good method to describe the load history on
depth dependents in an accurate way, [14]. This is because of a coefficient that varies with
depth, but the coefficient usually is a constant for the whole structure, which is divided in two
groups. One above surface and one below. More about this coefficient (C; and C,,) is found in
chapter 3.5.2.

Some other limitations are as following, according to [14], [15]:

e Morison equation do not give a good representation on the forces as a function of time
when extended to orbital flow. For an example with a horizontal cylinder under waves.

e |t does not take in to account the lifting force due to vortex shedding

e |tis only valid for relatively small motions of the cylinder, meaning that for Morison
equation to be valid it has to be % < 0.2 where D is the diameter of the cylinder and a is
the amplitude of motion for the cylinder. Later on, we will only assume that the column
is stiff enough to satisfy this condition.

e This equation is only valid for waves that do not breaks. This is because the equation do
not take in to account the forces from slamming waves that hit the structure extended
above surface. This means that% < % = 0.14 has to be satisfied or else the wave can

break.

e The last limitation discussed here is that the diameter of the cylinder has to be much
smaller than the wavelength to satisfy this equation. The reason for this is that the flow
acceleration needs to be approximately uniform to the cylinder. If not, then the
reflection of the waves from the cylinder has to be taken in to account.
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Now that this is known, an introduction to the formula for base shear can be introduced. The
name of this formula is Morison equation and obtained from, [14]. The formula can be seen in
equation 3.23.

f(Z' t) = fM(Z' t) + fd(zﬁ t)

nD? 1
= 2 xpxCy * A +<—*p*CD*D*V*|V|

) Equation 3.23
2

2
Where fy(z,t) = (% * px Cy * A) is the mass term, and D is diameter of cylinder, A is the

acceleration found earlier. p is the water density and C,, is the mass coefficient determined from
experiments.

For the drag term, f;(z,t) = G xp*Cp*Dx*V * |V|), V is the velocity found earlier and Cy is
the drag coefficient determined from experiments.

Finding the max force one can sum up all the forces using an integral. This is done with the
formula shown below. Where £ is the position of the wave profile in that time when x = 0. For an
example if one are, calculating the loads when the velocity is max, the position would be at the
crest and ¢ would be the crest height. At time zero and x =0 the amplitude ¢ would have been 0
acording to figure 3.2.

Surface 3 3
F(t) = ] f(z,t)dz = J fu(z,dz + J £.(z,0)dz
—d —d

-d Equation 3.24

This formula can be simplified when having a mass or drag dominating force. To see if one have
a dominating force one can use the following equations:

Mass term dominates when: 0,5 < % <10
Drag term is dominating when: % <01

Meaning that: 0,1 < % < 0,5 would result in no dominating forces and no simplifications can be
performed.
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Those simplifications are:

When mass term dominate. Max value can be found at the mean surface level of wave, where the
horizontal particle acceleration is max and horizontal particle velocity is 0 meaning that
fa(z,t) = 0. Therefore, one can obtain the following formula for base shear:

0 0 TI.'DZ
F(t) = f fu(z,t)dz = f ( 2 * % Cpy * A) dz Equation 3.25
-d —d

For a drag dominating case, which is max when the horizontal particle velocity is max. This is at
the crest top where the horizontal particle acceleration is 0 and f3;(z,t) = 0. From this, one can
obtain the following simplification:

$o o /1
F(t) = _de(Z: t)dz = L (E *pxCpxD*Vx |V|> dz Equation 3.26

A more theoretical way to look in to a drag or mass dominating case is to understand the eddy
currents occurred when water passes the column. When large eddy currents occur, there will be
a change in force where an acting force parallel and perpendicular to the current direction
occurs. This a drag dominating case. Figure 3.16 shows what eddy current is. The circle in middle
shows the column and the others are waves passing the column.

[w=]
]

Figure 3.16. Creation of eddy current. Where A has none, B has an increment and C has large eddy currents.

Eddy currents are created when one have rapid flow or small cylinder compared with the wave
height. This create a drag dominating case. The roughness of the cylinder may also case more or
less eddy currents. If one have a smooth surface on the column it would be harder for eddy
currents to occur. The mass dominating case will have the opposite as a drag dominating case.
Where flow passes the cylinder slow and the flow term changes before a large number of eddy
current would generated, or D is large and few eddy currents would generated.
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One can also find the overturning moment by the adding to the Morison equation. The Morison
equation finds the forces for each step down to the sea bottom. Therefore one can add multiply
the forces for each step with the distance down to the sea bottom to acquire the overturning
moment. This is done by adding (z + d) to the Morison equation, see equation 3.27, [14].

Surface=¢
M= f (z+d)*f(z,t)dz Equation 3.27
—-d

Bear in mind that ¢ is the position height from the mean surface level up to the wave position
in that time, which changes for each time step. In Matlab, this has been solved by first
running a wave profile to determine this position and then used it in the Morison equation.
This method is only needed when there are no dominating forces.

3.5.2 Drag and mass coefficient

According to [2] and [8] one can determine those coefficients with the use of the Keulegan-
Carpenter number. This formula is shown in equation 3.28:

N _T+Vy
KC ="

Equation 3.28

Where T is the period and Vj is the largest water particle speed under the crest.

With Keulegan-Carpenter number (KC > 60 for Cp and KC > 20 for Cy;), one can use the
following values for tubular structures according to, [2]:

Cp =0.65 and Cy; = 1.6 for smooth members
Cp =1.05 and Cy;= 1.2 for rough members

For a lower, KC<60. One would need to multiply the drag coefficient Cp with a wake
amplification factor (KC). According to [8] one can find Cpwith a low KC from:

Cp = Cps(D) * ¥ (K¢) Equation 3.29

Where Cps = 0.65 for smooth and Cps = 1.05 for rough cylinder.

And KC< 12:
W(K.) = C, + 0.10 * (K — 12) when 2 <Kg<12
Y(K;) =Cr— 1.0 when 075 <K, <2 Equation 3.30

Y(K;)=Cp—1.0—-2.0%(K;—0.75) when  K;<0.75
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Where:

12
C, = 1.50 — 0.024 * (C_ - 10) Equation 3.31

DS

For higher value of KC the W (K,-) can be obtained from figure 3.17.
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Figure 3.17. Wake amplification factor as function of Kc-number with dotted line as Cps = 1.05 (rough surface), and solid line as

Cps = 0.65 (smooth surface)

To find the mass coefficient C,, for this case one would need to use the following figure 3.18:

22 T S B B T T T T
I e e S
s S
‘IIE } H i ' ] E
14 4o
e A
D_B | i i : 1 i

o & 10 16 20 26 30 35 40 45 50 55 B0
Ke

Figure 3.18. Mass coefficient Cm as function of Kc, where dotted line is rough and solid line is smooth for tubular members.
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To obtain the roughness of the cylinder one can use the formula obtained from [8] where:

Smooth for: % < 107*

Rough for: % > 1072

k is the surface roughness.

3.5.3 Determine mass and drag coefficient used.

First of all we need to determine the mass and drag coefficients and the assumptions use here is
that the column has a smooth surface from two meters above mean surface level an upwards.
Meaning that below this point the column is rough. Next will be to simplify the work with only
one mass/drag coefficient for each column diameter. One could do this more accurate but this
is not the point for this theses. This is why simplifications has been used and we also have 48
different load cases. By using 1 meter as the diameter, one will obtain a drag dominating force
as shown below.

516 =0.03<0,1 — Dragdominating-

D = 1 meter. From this, one can obtain a KC of:

17.74 % 5.6
Nye = ———— =120

Where T,, 4, and max horizontal particle velocity from wheeler stretching and constant value
above surface level has been used as V. For the lowest value T,,;,, has been used and max
horizontal particle velocity for wheeler stretching and constant value above surface level as Vj:

13.64 % 6.75
Nye =——F =92
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By having a a drag dominated case, we will only need to find C, because the mass term will be 0
at the crest top, where max drag forces is obtained. This is because the horizontal particle
velocity controls the drag term and horizontal particle velocity is max at the crest. Witha > 60
for Cp one can obtain a:

Cp =0.65 for smooth members
Cp =1.05 for rough members

Doing the same for a D = 20m, we will have that:

20
05< (m = 0.7) <10 — Massdominating

And:

17.74 % 5.6 13.64 * 6.75
Nie =——5—— =6, Nye =——7—— =46

The average for those two are 5.3 and to be on the safe side we have chosen a KC on 5.5. One
will not need to find Cj, for this case since mass is a dominating force. To obtain Cy; one can use
figure 3.18 and see that:

Cy = 1.9 for smooth members
Cy = 1.9 for rough members

The last diameter used is 5 meter. This is going to have a non-dominating force. For this case
bout C, and Cp, needs to be obtained.

0,1< % =0.19<0,5 — non— dominating

And:

17.74 % 5.6 13.64 * 6.75
Ny = ————=199, Nye =————— =184

The average KCis 19.2, from this one can obtain the C;; from figure 3.18 and to be on the safe
side the following has been obtained:

Cy = 1.6 for smooth members
Cy = 1.25 for rough members
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For Cp, one need to use figure 3.17 to obtain the Wake amplification factor ¥ (K). The Wake

amplification factor W (K,) is 1.25 for smooth and rough members. The result are as following:

Cp,,, = 1.05 *1.25 = 1.31

Cp,,,, = 0.65* 1.25 = 0.81

For a better view of the coefficient chosen, see table 3.5.

Table 3.5. Mass and Drag coefficients used for different diameters.

Diameter and dominating force

Coefficient D=1m, drag D=5m, drag/mass D=20m, mass
Cd-rough 1.05 1.31
Cd-smooth 0.65 0.81
Cm-rough - 1.25 1.9
Cm-smooth 1.6 1.9
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3.5.4 Load Results from Morison equation.

The following formula has been used to calculate the forces:

§ (mD? ¢
F(t):f (4 *p*CM*A>dZ+f (E*p*CD*D*V*|V|)dZ

-d —d Equation 3.32

3 2
M(t)=f (ni * px Cy *A)*(z+d)dz

—-d

$ 1 .
+f (E*p*CD*D*V* |V|)* (z+ d)dz Equation 3.33
—-d

Where V is the horizontal particle velocity and A is the horizontal particle acceleration found
earlier in chapter 3.2 and 3.3. There are a total of 12 different linear horizontal particle
velocity/acceleration profiles and 4 non-linear horizontal particle velocity/acceleration profiles
from Stokes program. This gives a total of 48 load cases by having 3 different diameters,

(Im, 5m and 20m). € is varying since this is the height which is integrated up to. This is decided
with the help of surface profile: { = a * sin(wt — kx). Where position x = 0 and t is varying.

Example, t = % represents a position at the crest top and t = 0 is at the mean surface level. We

have also taken in to account that the C-coefficient is different from 2 meters above mean
surface level and upwards compared with below 2 meters above mean surface level. This is not
shown in this equation, but has been done in the Matlab files used, Appendix A shows all the
Matlab files created for this thesis. Another constant used in those equations are p =

1025 kg/m3, this is the water density for seawater. Results can be seen in table 3.6 to 3.8.
Where d = 1m for drag dominating forces and max loads are found at the crest top. For d = 20m,
which causes mass dominating forces where maximum loads can be found at the mean surface
level of the wave. d = 5m is a non-dominated case, which has to be iterated for each scenario to
acquirer the worst case for base shear.
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Table 3.6. Load results for column diameter 1m, drag dominating forces. Where 1GN =103 MN = 106 kN = 109 N. X° for
Stokes waves instead of time for linear waves. Crest top is the x-position when 0° mean surface level is approximately 80° and
through is at 180°. Max value obtained at the crest top.

Forces on simplified offshore structures according to different wave models
where: D=1m (Drag dominating force)
Case name: | Period, Wave Amplitude, | Height over | Wave | Force, | Moment,
T.(s) height, a.(m) surface, phase | F.(MN) | M.(MNm)
h.(m) &.(m) (sor?)

Extrapolation, | 13.64 28.61 14.30 14.30 3.41s | 0.917 79.40
Tmin/h0.01

Constanta.s, | 13.64 28.61 14.30 14.30 3.41s | 0.833 70.10
Tmin/h0.01

Wheeler, 13.64 28.61 14.30 14.30 3.41s | 0.590 48.75
Tmin/h0.01

Stokes, 13.64 28.61 16.94 16.94 0° 0.934 81.67
Tmin/h0.01

Extrapolation, | 15.69 28.61 14.30 14.30 3.92s | 0.898 71.16
Tmean/h0.01

Constanta.s, | 15.69 28.61 14.30 14.30 3.92s | 0.848 65.71
Tmean/h0.01

Wheeler, 15.69 28.61 14.30 14.30 3.92s | 0.671 50.49
Tmean/h0.01

Stokes, 15.69 28.61 16.70 16.70 0° 0.944 76.14
Tmean/h0.01

Extrapolation, | 15.69 35.74 17.87 17.87 3.92s 1.52 124.74
Tmean/CO.Ol

Constant a.s, 15.69 35.74 17.87 17.87 3.92s 1.39 110.57
Tmean/CO.Ol

Wheeler, 15.69 35.74 17.87 17.87 3.92s 1.05 81.16
Tmean/C0.01

Stokes, 15.69 30.14 17.74 17.74 0° 1.07 86.89
Tmean/CO.Ol

Extrapolation, | 17.74 28.61 14.30 14.30 4.43s | 0.916 67.42
Tmax/h0.01

Constanta.s, | 17.74 28.61 14.30 14.30 4.43s | 0.884 63.83
Tmax/h0.01

Wheeler, 17.74 28.61 14.30 14.30 4.43s | 0.748 52.42
Tmax/h0.01

Stokes, 17.74 28.61 16.94 16.94 0° 0.993 75.14
Tmax/hO.Ol
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Table 3.7. Load results for column diameter 5m, non-dominating forces. Where 1GN =103 MN = 1076 kN = 109 N. X° for Stokes
waves instead of time for linear waves. Crest top is the x-position when 0°, mean surface level is approximately 80° and through
is at 180°. The data has been iterated to find max value with time, t or position, X°.

Forces on simplified offshore structures according to different wave models
where: D=5m (Non-dominating force)
Case name: | Period, Wave Amplitude, | Height over | Wave Force, | Moment,
T.(s) height, a.(m) surface, phase | F.(MN) | M.(GNm)
h.(m) &.(m) (sor?)
Extrapolation, | 13.64 28.61 14.30 13.39 2.63s 6.62 0.552
Tmin/h0.01
Constanta.s, | 13.64 28.61 14.30 13.15 2.53s 6.15 0.499
Tmin/h0.01
Wheeler, 13.64 28.61 14.30 12.21 2.22s 4.81 0.374
Tmin/h0.01
Stokes, 13.64 28.61 16.94 15.71 16° 6.74 0.571
Tmin/h0.01
Extrapolation, | 15.69 28.61 14.30 13.44 3.05s 6.38 0.491
Tmean/h0.01
Constanta.s, | 15.69 28.61 14.30 13.32 2.99s 6.10 0.459
Tmean/h0.01
Wheeler, 15.69 28.61 14.30 12.81 2.77s 5.09 0.370
Tmean/h0.01
Stokes, 15.69 28.61 16.70 15.57 16° 6.72 0.529
Tmean/h0.01
Extrapolation, | 15.69 35.74 17.87 17.25 3.26s 10.29 0.829
Tmean/CO.Ol
Constanta.s, | 15.69 35.74 17.87 17.09 3.18s 9.55 0.745
Tmean/CO.Ol
Wheeler, 15.69 35.74 17.87 16.59 2.97s 7.55 0.568
Tmean/C0.01
Stokes, 15.69 30.14 17.74 16.65 15° 7.51 0.598
Tmean/CO.Ol
Extrapolation, | 17.74 28.61 14.30 13.58 3.53s 6.37 0.460
Tmax/h0.01
Constanta.s, | 17.74 28.61 14.30 13.51 3.49s 6.18 0.438
Tmax/h0.01
Wheeler, 17.74 28.61 14.30 13.22 3.33s 5.39 0.371
Tmax/h0.01
Stokes, 17.74 28.61 16.94 15.71 15° 6.94 0.517
Tmax/hO.Ol
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Table 3.8. Load results for column diameter 20m, mass dominating forces. Where 1GN =103 MN = 1076 kN = 1079 N. X° for
Stokes wave instead of time for linear wave. Crest top is the x-position when 0°, mean surface level is approximately 80° and

through is at 180°. Max value obtained at mean surface level of wave.

Forces on simplified offshore structures according to different wave models
where: D=20m (Mass dominating force)

Case name: Period, Wave Amplitude, | Height over | Wave Force, | Moment,
T.(s) height, a.(m) surface, phase | F.(MN) | M.(GNm)
h.(m) &.(m) (sor?®)
Extrapolation, 13.64 28.61 14.30 0 0 83.83 5.34
Tmin/h0.01
Constant a.s, 13.64 28.61 14.30 0 0 83.84 5.34
Tmin/h0.01
Wheeler, 13.64 28.61 14.30 0 0 83.84 5.34
Tmin/h0.01
Stokes, 13.64 28.61 16.94 0 79° 81.49 5.10
Tmin/h0.01
Extrapolation, 15.69 28.61 14.30 0 0 80.71 4.82
Tmean/h0.01
Constant a.s, 15.69 28.61 14.30 0 0 80.71 4.82
Tmean/h0.01
Wheeler, 15.69 28.61 14.30 0 0 80.71 4.82
Tmean/h0.01
Stokes, 15.69 28.61 16.70 0 80° 79.12 4.69
Tmean/h0.01
Extrapolation, 15.69 35.74 17.87 0 0 100.85 6.02
Tmean/C0.01
Constant a.s, 15.69 35.74 17.87 0 0 100.85 6.02
Tmean/C0.01
Wheeler, 15.69 35.74 17.87 0 0 100.85 6.02
Tmean/CO.Ol
Stokes, 15.69 30.14 17.74 0 79° 83.26 4.95
Tmean/co.01
Extrapolation, 17.74 28.61 14.30 0 0 76.61 4.37
Tmax/h0.01
Constant a.s, 17.74 28.61 14.30 0 0 76.61 4.37
Tmax/h0.01
Wheeler, 17.74 28.61 14.30 0 0 76.61 4.37
Tmax/h0.01
Stokes, 17.74 28.61 16.94 0 80° 75.56 4.32
Tmax/h0.01
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The reason for obtaining the same results for all linear estimation of a mass dominating forces is
because of the method used for approximate up to the mean surface level is the same for all
linear cases. Those results can be seen in table 3.8.

By comparing the result up against each other, one can clearly see that an increased D produces
a larger force than with a smaller column diameter, D. The reason for this is because of the
increased column surface, which the wave can slam in to. One would therefore obtain more
forces from the waves with a larger D. One can also see that the linear wave kinematics makes a
lower base shear and overturning moment compared to the Stokes kinematics with wave height
28.61m, except for mass dominating case. The reason for this is the larger amplitude generated
with Stokes program meaning that we integrate higher up for Stokes result than with a lower
amplitude. Horizontal particle velocity and acceleration is highest at the top and that’s why we
get much higher forces with higher amplitude. By comparing the mass dominating case, which
has no value above mean surface level we obtain a higher result for linear kinematics. This is
because the height of the amplitude doesn’t have much of an impact on the result and a linear
process usually overestimates the kinematics. Out from the result | would only recommend
using extrapolation when half the wave height is used for the amplitude in a linear approach to
estimate the wave kinematics. One would also need a safety factor on 1.1 for drag or non-
dominating case to be on the safe side. If we assume that the Stokes kinematics are close to a
real ocean waves.

With the use of crest height as amplitude, we get a different result for the comparison. We
obtain a much larger force with the use of linear kinematics than Stokes kinematics since the
same amplitude for both cases has been used. This means that a linear approach gives a higher
estimate when the same data are used. A good approximation for this case would be wheeler
stretching.

One important thing to mention is that all data obtained is where the forces is at its maximum
and the moment in this position in time or position. For mass and non-dominating case one can
obtain a larger overturning moment if the calculations where calculated for a higher position at
the wave, but then again the base shear would have been lower. This is because of an increased
distance from the wave position to the surface bottom. The overturning moment is still not
maximum at the crest top for those two cases because the base shear of a mass dominated case
is zero at crest top.

As mentioned before, the old N-003 standard state that one should use the wave height, hg o1
with an unfavorable value of the period. The horizontal particle velocity and acceleration has an
unfavorable value of the period when it is low as we discussed earlier. Now that the mass and
drag coefficient is taken in to account for rough and smooth surface one may obtain other
unfavorable value of the periods when calculating the forces. This is because the coefficients
corrects the values at the different depth heights.
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From the base shear and overturning moment data obtained above, one can see that a mass
dominating case with a minimum period would be the worst scenario. For linear drag
dominating case it is the minimum period as the worst case, but the maximum period has
almost as high base shear than the lowest period, where the mean period is the lowest. This is
because of the drag coefficient. For Stokes data, the maximum period is the worst case for both
drag and non-dominating forces, but there are still not much deferens between them. For a
mass term, we obtain a the maximum forces for a small period.

Now to the final comparison between the old and new N-003 standard. This shows that a larger
base shear force has been obtained with the use of a mean period and a crest height equal to,
Co.01 as the amplitude. Instead of an unfavorable period associated with half the wave height
equal to hg o1 by linear approach or a generated crest height from Stokes program using hg ¢, as

wave height.

This can also be seen in table 3.9, which only shows the worst cases for both N-003 approaches
by using Stokes 5t order waves. A very important observation from table 3.9 can be seen in the
mass dominating case, where the overturning moment are largest for the Stokes wave with

ho o1 as the wave height and T,,,;,, as period. It is still a very small difference, and for all other

cases the new N-003 approaches has the largest overturning moment value.

Table 3.9. Comparison between old and new N-003 standard, by comparing load results for column diameter 1m, 5m and 20m.
Where 1GN =103 MN = 1076 kN = 1019 N. X° for Stokes wave instead of time for linear wave. Crest top is the x-position when
0° mean surface level is approximately 80° and through is at 180°.

Forces on simplified offshore structures according to different wave models.
Comparison between old and new N-003 standard.

Case name: Period, Wave Amplitude, | Height over | Wave Force, | Moment,
T.(s) height, a.(m) surface, phase, | F.(MN) | M.(GNm)
h.(m) §.(m) °
Stokes. D=1m | 15.69 30.14 17.74 17.74 0° 1.07 0.00869
Tmean/CO.Ol
Stokes. D=1m | 17.74 28.61 16.94 16.94 0° 0.993 0.00751
Tmax/h0.01
Stokes. D=5m | 15.69 30.14 17.74 16.65 15° 7.51 0.598
Tmean/CO.Ol
Stokes. D=56m | 17.74 28.61 16.94 15.71 15° 6.94 0.517
Tmax/h0.01
Stokes. 15.69 30.14 17.74 0 79° 83.26 4.95
D=20m
Tmean/C0.01
Stokes. 13.64 28.61 16.94 0 79° 81.49 5.10
D=20m
Tmin/h0.01
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From table 3.9 one can see that the difference between the loads with the use of the old and
new N-003 recommendation are not big. With the new N-003 recommendations, we obtain a
more realistic value and shape of real ocean waves, because the crest is higher and a more
frequent period are used. It is also easier to perform a control with the new recommendations
since only one mean period needs to be controlled.

3.6 Summary for regular Waves

We have now looked in to the new and old recommendations for designing the ULS design
wave. What have been learned from this is that a linear approach has two different methods
giving different results. Those are depending on the amplitude, and if one chose to have a crest
height or half the wave height as amplitude, one would need to know which approximation
method would give the best approximation to a real wave. Normally a linear approximation is
not used for solving this problem, but for further work, it would be interesting to confirm if
extrapolation really is the best approximation with half the wave height as amplitude, and
wheeler stretching when crest height is used as amplitude. This could be done by comparing
result with different waves.

When we observed the horizontal particle velocity and acceleration results of the waves, one
could clearly see that the minimum period would be the worst case for the kinematics. This was
not the case for the load results when mass and drag coefficients where introduced. This is why
it is important not to neglect the higher periods since the maximum period could also be
causing greater forces than the minimum period. Those results also shows that there might be a
worse load case between minimum and mean period or mean and max period. Further work is
needed to confirm this.

In this report, one have assumed that the results from Stokes data program has been the most
accurate method for the kinematics. This assumption is good because it is a fifth order
approximation and obtained from a reliable source. From those results, we have found the
worst case for the ULS design wave defined by the 102 — annual probability wave height, hoox.
By using Morison equation for three different column diameters. Those results have been
compared to the results of an ULS design wave defined by a crest height equal to the 1072 —
annual probability crest height, ¢y o1 and an associated mean wave period. By comparing those
results, one have seen that the new recommendations from N-003 standard gives a little higher
value than using the old N-003 recommendations, except for the overturning moment in a mass
dominated case. As mentioned before, by using a crest height as amplitude one would generate
a more realistic wave. The new method is also much easier to perform since only one period is
required to calculate. My conclusion is therefore that the new N-003 recommendation on this
subject are better than the old N-003 recommendations.
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4 Kinematics of irregular waves

As mentioned earlier, the only waves in the real ocean that looks like regular waves are swells
generated from a distant storm. Looking at the sea on a windy day, the waves would be more
like Irregular waves with different height and period for each wave generated. That is why we
will introduce irregular waves in this thesis, which is random waves. With the use of linear
random wave theory, one can model a sea state with the length of our choosing. This theory is
basically the same as for regular waves except it uses a random or probabilistic setting. Before
one can model this sea state, it is important to select a wave spectrum that fit the area to
model. In this thesis a JONSWAP spectrum has been chosen, which is commonly used in the
North Sea, according to [16]. Our wave spectrum defines the sea state, and give us the
properties needed about the waves. To generate an irregular sea state, one can summarize all
the waves obtained from the wave spectrum with a random phase. An example of this is shown
in figure 4.1, where one combine the smaller waves obtained from the wave spectrum to
generate an irregular sea state.
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PRODUCES THIS

Wy, H.4

Figure 4.1. Creation of an irregular sea state by combining four reqular waves, figure obtained from [16].

After generating a 3-hour sea state the kinematics under the largest wave will be obtained and
then compare those results up against waves created from Stokes program. At the end, only the
loads for a drag dominating case will be found and therefore only need to find the horizontal
particle velocity for the kinematics in this chapter of irregular waves. To complete this task a
random linear and second order process will be created.
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4.1 Linear approximation for irregular waves

To simulate an irregular sea state, we have chosen to use deep-water formulas. The reason for
this simplification is to decrees the work time for Matlab. There are only small differences
between deep and intermediate water depth for this case. The formula of surface process is:

0
§®) = Z S0 * cos(;t = ) Equation 4.1
i=1
This formula is obtained from [17], and creates a Fourier series of the time history of the sea. To
do this one need to assume that the time history is analogue. Where t is time, w; is the
frequency in radians per seconds and ¢ is a random phase between 0 and 2mt to generate a
random sea state. The amplitude &, ; may also be a random process, but with a large number of
frequency components (n >1000) there will be small deference’s between the random process
and a non-random process according to [17]. Large numbers of frequency components can be
obtained through small steepness of the wave spectrum. That is why a random amplitude in this
thesis will not be used. The largest period that this formula can identified is the length of the
time history, T which is 3 hour and the shortest period is 2* At. Where At is the steepness of
time. The reason it can’t identify a lower period than 2* At, is because of the need for three
values within the wave period of the component to identify a sinusoidal component. This is
called the cut-off frequency, which is:

1 Wy

fn = At 21 Equation 4.2

The time steepness At will be 0.5s in this theses, meaning that we will have an upper limit of:

The last part one need to define is the frequency resolution to avoid the Fourier series to repeat
itself before 3 hours. If 1/T is used for the steepness, where T is the seconds of a 3hr period the
Fourier series will repeat itself for each 3-hour period. Therefore, the frequency resolution
needs to be:

Aw 1

Af = 2 < 10800 Equation 4.3

For a 3-hour period.
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4.1.1 Wave spectrum

The wave spectrum is a very important parameter to define the amplitude in a sea state and
below we have chosen to use the JONSWAP spectrum. This spectral model is very good to
define a pure wind sea state. If there was a swell system as well, which may have generated a
double peaked spectrum, another spectrum may be optimized for this solution. An example of
this is the Torsethaugen model, which is also parameterize in terms of significant wave height,
hs and spectral peak period, t,,. For comparison of those two spectrums, see [17]. The formula
for the JONSWAP spectrum and its parameters is found below and obtained from [17].

_5 4 f-fo 2
sza(f) = 03125 A2 * t,, * (}4) exp (—1.25 " <}4) ) (1-0287Iny) * yexp(_o's(fp_w) )
14 P

Equation 4.4

1

Where f,, = —is the peak frequency, f is the wave frequency in Hz and the spectral width

tp
parameter (o) can be found in equation 4.5.

0=007, if f<f,

6=0.09, if f>F, Equation 4.5
The peak enhancement factor is:
6
21 * hg\7
y =42.2 % °E t,% Equation 4.6

Where g = 9.81 m/s? and is the acceleration of gravity.

According to [17], one can change the spectral density formula from frequency in Hz to radians
by the following formulas:

sEE(w)dw = sEE(f)df = sEE(w) = sEE (f = ﬂ)_ -~ 2cm/  Equation4.7

This means that the spectral density formula with frequency in radians is:
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f -5 f —4 exp(—O.S(f_fp)z>
03125 * h2 * £, = (—) exp <—1.25 " <—) ) (1-0.287Iny) «y Too

fo fo
szz(w) =
21
Equation 4.8
We also have that the total variance of a sea state is the following:
N N o
2 2 —e —
Og Z Oz Z SEE(w;) * Aw j; sEE(w)dw Equation 4.9
i=1 i=1
Where the spectral density = variance density:
— 052,1'
SEE(wy) = 1~ Equation 4.10

As known from earlier, the significant wave height can be written as, h; = 4/ 052. This can be
used to control the Matlab script later on.

Now that we have introduced all the parameters and defined our interval, one can plot the
results of our wave spectrum. This is done by the following formula and can be seen in figure
4.2.

21 * 14.9 g
y=azix (9.81 X 15.82) =257
-5 —4
szz(f) = 0.3125 * 14.92 x 15.8 * % exp| —1.25 = % *
15.8 15.8

1 2
exp(—o.5(@> >
(1-0.2871n2.57) * 2.57 158"

Where frequency, f is the variable and spectral width parameter (o) is:

1
=007, if f<—=0.06
d if =158

_ 1
0 =009, if f>===006
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Wave spectrum with Hs = 14 9m, Tp =15 8s
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Figure 4.2. Wave spectrum created from a JONSWAP spectrum.

Since we have a theoretical wave spectrum, the line is very smooth and not irregular. A real
wave spectrum obtained from the ocean would have been very noisy, see figure 4.3 for

illustration purposes of a raw spectrum gathered from Wijaya.

spectral estimate: wave200312151240 txt in Hz

I I
1 ] '
I ] '
I ] '
! ] '
1 ] '
1 ] '
1 1 1]
I ] '
g g S Sy
i ] '
1 ] '
1 1 '
1 1 1]
I 1 '
! ] H
! ] '
| ] |
1 1 L}
R —mmmmmaa -, -
! ] H
! ] '
| 1 \
1 i L}
! ]
1 ] '
1 ] '
— - --=----- Fe=ooeoa= P -
v ] '
' '
' H
I ] '
1 ] '
1 ] '
1 1 i
I ] '
SRR [, PP, o
| ] v
1 1 L}
I 1 '
! ] H
1 ] '
1 ] '
1 i L}
e [ O
! ] I
1 ] '
] ] \
I ] '
' '
' '
! ] ' I
1 ] ' ' I
1 ] ' 1 1
1 1 [} L} 1
I 1 ' ' )
1 1 1 L L
= = = o =] =
= =1 o =] =1 o=
(=} [re) -t [z} o~ -

Aysuap |eljoads

frequency (Hz)

Figure 4.3. Raw spectrum. (From Wijaya (2009)) obtained from [17].
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4.1.2 Simulation of a 3-hours surface process.

From formula 4.1, one can simulate the surface process, but first the amplitude needs to be
determined. After defining the wave spectrum above the wave amplitude can be defined as:

€04 = /2 * SEE(w;) * Aw Equation 4.11

By introducing this amplitude to the surface process, one can obtain the following equation:

&) = Z V2 * SEE(w;) * Aw * cos(w;t — @;) Equation 4.12
i=1

Where:

Awsp, = 21 * T3y, = 2 * 11000 > 21 x 10800 Equation 4.13

The generated process will not repeat itself within a 3-hour period by using, Awsp,-. @; is a
random number between 0 — 2m for each i, where each i generate a new frequency of w and
then summarize all the small components in to one sea state. A 3-hour surface process
generated from Matlab can be seen in figure 4.4. Where figure 4.5 show the location of the
maximum wave amplitude in a 1000s span.

To verify the Matlab script used, we changed the frequency resolution to Aw = 2m * 3600s
and observed that the time series repeated itself every 3600s. This can be seen in figure 4.6. A
second method to control the process is to control the significant wave height. With an input of
hg = 14.9m, we obtained hy = 14.89m with an f interval of 0 — 0.5 and with and interval of

0 — 0.8 we obtained h; = 14.90m. with the use of the following formula described earlier.
Where:

Aw = 21 * 11000 for this case.

N

_ / 2 _ T2 (.
hs = 4 |og =4 ZS'-"-'(“’J *Aw Equation 4.14

i=1
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3hr time serie of suface elevation. Created with linear waves from a JONSWAP spectrum.
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Figure 4.4. 3hr surface process created with a JONSWAP spectrum, where hs = 14.9m and tp

Part of a 3hr time serie of surface elevation, where the maximum wave occurred.
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Figure 4.5. 3hr surface process with global maxima, which is a 1000s window showing the 3
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For this 3-hour surface process, we obtained an amplitude of 15.46m in time position 9550s,
where the period of this wave was 14.5s. In the whole 3-hour time series a total of 906 peaks
where obtained, using zero up crossings to identify the largest crest height for each zero up

crossings. All those data changes each time the program runs, since the phase changes for each

frequency when ¢; changes.

1hr repeating time serie of surface elevation. Created with linear waves from a JONSWAP spectrum.
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Figure 4.6. 1-hour repeating surface process created with a JONSWAP spectrum, where hs = 14.9m and tp = 15.8s.
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4.1.3 3-hour extreme values for a generated surface process.

When we have a reasonably narrow wave spectrum one can assume that the Rayleigh
distribution is a sufficient model for global maxima in a stationary, Gaussian process, [17]. We
will now test this by plotting the Rayleigh distribution up against global maxima gathered from
our surface process. Where:

The Rayleigh distribution formula is, [17]:

F =1 ! : 2
5§ =1—exp|-— 2" (a_:) Equation 4.15
o5 = % Equation 4.16

The global maxima crest height obtained from our surface process will be sorted from the
lowest value to the highest. Crest height data will be plotted up against the cumulative
probability chance. Finding the cumulative probability chance for each crest height can be done
with the following formula.

Nei

FE) = N+1 Equation 4.17

Where N is the total numbers of crest heights (906 in this case), and n.; is the number position
of the crest height used. Where the lowest crest height of global peaks are n.; = 1 and the
second lowest n.; = 2 meaning that the largest crest height will have, n.; = 906. The results
of those two plots can be seen in figure 4.7.
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3-hour crest height destribution for a sea state with hs = 14.9m and tp = 15.8s.
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Figure 4.7. Global maxima versus Rayleigh distribution.

From figure 4.7, one can see that the Rayleigh distribution fits the global maxima very well,
except for the smallest crest heights. For the smallest crest heights, we can see some deviating
away from the Rayleigh distribution. The reason for this may be because of the zero up crossing,
which may cause some extra global peaks with low crest height.

For obtaining the extreme crest height value with the Rayleigh distribution, one can exalt the
formula with n;. Where n; is the mean numbers of global maxima for the surface process. This
formula can also be used to estimate the crest height corresponding to an exceedance
probability of 0.1 for this sea state, [17]. We can also verify this distribution with the same
meted used in figure 4.7, but instead of using the global maxima for one sea state, we simulate
80 different sea states and uses the maximum crest height for the whole sea state. Then we sort
the crest height from low to high and use formula 4.18 to plot against the data.

Rayleigh distribution exalted in n;.

2 ne
E (&)= [E@]" = [1 — exp (— % ] (05) )] Equation 4.18

Later on, this formula will be changed to fit a Gumbel scale to perform bootstrapping. The result
can be found in equation 4.19 and is called “exact distribution with Rayleigh”.

—In(— in(F(®)) = —In <—nt « In (1 — exp <—% N <5)2>)> Equation 4.19

Oz
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According to [17], if n; becomes large in the Rayleigh distribution it will approaches the
asymptotic extreme value distribution, which is called the Gumbel distribution. This formula can
be found in equation 4.20.

f — Oz 2 ln(nt)

E (&) = exp| —exp| — o Equation 4.20

V2 ln:(nt)

This formula can also be fitted to a Gumbel scale and will be used later under bootstrapping.
The result of this is found in equation 4.21 and the formula is called “Gumbel approximate”:

—0.4/2In(ny)

§
—In(— In(F(9))) = o Equation 4.21

T2y

Now that the formula has been introduced one can plot the Rayleigh distribution exalted in n;
and the Gumbel distribution it goes towards up against the maximum crest height values from
80 different simulations. See figure 4.8 for the results.

3-hour maximum crest height destribution for sea states with hs = 14.9m and tp = 15 8s.
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Figure 4.8. Extreme crest height values from 80 different 3-hour simulations compared with a Rayleigh distribution and Gumbel
distribution.
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From figure 4.8, one can see that the Gumbel distribution is the best-fit, meaning that an
increased n; in the Rayleigh distribution would create a better fit here. It still doesn’t deviate
much. Therefore, the extreme crest height data follows a Rayleigh distribution. To identify the
wave event with a crest height corresponding to an exceedance probability of 0.1 for this sea
state, one can obtain the values when the cumulative probability is 0.9. This means that the
Coo01 = 15.84 m for the Rayleigh distribution and ¢j 9; = 16.00 m for the Gumbel distribution.
This is smaller than ¢y o, = 17.87 m, which we predicted in regular waves, but larger than half
the wave height of hy ,; = 28.61 m which also where predicted in regular waves. The reason
we get a much lower ¢ 1 with Rayleigh distribution is that the Rayleigh distribution follows the
distribution from a first order process. In the regular waves, we used a Weibull distribution to
predict the maximum crest height distribution of a second order process, which will result in a
much larger value since higher order waves have larger crest than trough. Later on, this will be
confirmed by comparing first and second order surface process.

4.1.4 Bootstrapping

Bootstrapping can be used to illustrate the uncertainty of the data, when fitting a probabilistic
model to a limited number of observations by using method of moments. In this report, we are
using a generated maximum crest height set with 80 crest heights obtained from 80 different
simulations. They are stored in an excel file and used in Matlab to plot the following figures
below. Before one can plot the crest height data, one would need a probabilistic model to
compare those with. A good probabilistic model for estimating the 102 — annual probability
crest height is the Gumbel distribution fitted using method of moments. All the figures below
will be on a Gumbel scale to insure that the data collected follows a straight line. If it follows a
straight line, the data follows a Weibull distribution. Formula 4.22 insures that the probability
data plotted against crest height data is set on a Gumbel scale.

Fp(§) = —In(=n(F(9))) Equation 4.22

Where F(§) is the same as above.

The Gumbel distribution, fitted using method of moments is shown in equation 4.23, and is
obtained from, [18].

Fy (&) = exp (— exp (— J ; a)) Equation 4.23
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By transforming the formula to a Gumbel scale one can obtain the following formula:

—In(—In(F(8))) =E;7a , Fitted Gumbel Equation 4.24

The method of moments parameters obtained from, [18] are as following:

B =0.7797 s Equation 4.25

@ = $pverage — 0.57722 % B Equation 4.26

Where s is the standard deviations from the crest heights and §4perqge is the mean value of all

crest heights.

The Gumbel distribution fitted to the original sample using method of moments and also
compared with two other distributions are shown in figure 4.9.

Distribution for annual maximum crest height
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Figure 4.9. Maximum crest height data compared to different distribution function on a Gumbel scale.
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From figure 4.9 one can see that the crest height data follows a straight line and fits the
distribution function very well. The best fit of those three distributions are the fitted Gumbel
distribution and can therefore assume that this is the true distribution. Figure 4.9 also shows
that the 10% — annual probability crest height is between 15.8m and 16.3m depending on the
distribution.

From here on, we need to generate more samples of size 80 since this sample are only one way
that the nature could generate a distribution of crest height, [19]. To generate more samples,
one can use Monte Carlo simulation from the Gumbel distribution used earlier to fit the data.
From [19] one can obtaining the formula 4.27.

{=a—fx In(— ln(Frand)) Equation 4.27

Which is the Gumbel distribution (Equation 4.23), fitted using method of moments equation
where it is solved for crest height instead of probability. Now F, 4,4 is a random number from 0-
1 and by generating 80 different values we obtain one data sample. Doing the same procedure
40 times will generate 40 different samples that can be plotted up against the true Gumbel line
and the first set of data collected earlier to verified them. If the first data is inside the
distribution of the 40 samples, we will have a good fit and valid data. This method are called the
parametric bootstrapping according to [19]. From figure 4.10 one can see the results of our
parametric bootstrapping with 40 samples.

Bootstrap. Results of 40 samples of size B0 versus true model
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Figure 4.10. Parametric bootstrapping with 80 values for each samples generated from a surface process with hs = 14.9m and tp
=15.8s.
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Figure 4.10 shows that our data are not out side of our generated samples, this means that the
data is valid. The data may still be a rare sample that might have been a high value or low.

This is why it’s not wise to have few values inside a sample because more data insures more
accuracy. That’s why 80 values inside the first sample was chosen. For the 102 — annual
probability crest height, we have a large range and it shows that the value are between 15,2m
to17,4m.

4.1.5 Linear kinematics

The focus in irregular waves are drag dominated forces as mentioned earlier. To calculate the
loads and loads effect from a drag dominated case one would only need to obtain the horizontal
particle velocity profile. Because of this, we are shortening the work to only calculate the
horizontal particle velocity. There has been some changes for the horizontal particle velocity
formula used earlier and those changes are as following: The reason for our first change in the
horizontal particle velocity formula is because of the surface process. As mentioned earlier that
the surface process and the horizontal particle velocity has the same phase. This means that by
using “cosine” for our surface process, one would need to use “cosine” for our horizontal
particle velocity profile as well to insure that they have the same phase. The formula obtain is
shown in equation 4.28.

* cos(kx — wt + @)

Equation 4.28

N
Vi) Go*xg*k coshk(z+d)
= *
z 21 ) cosh kd
n=

Because of time consuming when operating in Matlab, we have chosen to operate in deep
water although this is intermediate water depth as shown in chapter 3.2. The consequences of
this is very small, but might have an impact on the results. Since we are going to compare our
results for theoretical purposes and not for dimensioning a construction those assumptions is
accepted. Then the following formula is obtained:

N
*o*x K
Vi(z) = Z %Tg * cos(kx — ot + @) * e**? Equation 4.29
n=1
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Where @ is a random number between 0 and 2 to insure random phase and w? = g * k,
meaning that we can simplify to:

N
Vi(z) = Z Go * w * cos(kx — wt + ) * ek*?

n=1

Equation 4.30

To find the horizontal particle velocity profile for the 3-hour surface process in Matlab, one
would need to simulate the surface process first and identify the largest crest height of the
sequence. When the largest crest height is identified, we chose to find the horizontal particle
velocity profile for a 200 second window. Where the largest crest height is in the middle of the
window. For more information of how this was done, see Appendix A for details about Matlab
files created. An example of the results are shown below. Where figure 4.11 shows a 200-
second window of the maximum wave obtained from a 3-hour simulated surface process.

200 second window showing maximum crest height, simulated from a 3hr surface process.

Surface elevation (m)

550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740
Time (s)

Figure 4.11. 200-second window of a 3-hour linear surface process. Where hs = 14,9m and tp = 15.8s.
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Figure4.11 show that the maximum crest height obtained from the 3-hour simulated surface
process is 17.23m high with a period of 14s. From the horizontal particle velocity formula, one
can obtain all the horizontal particle velocity profiles for each 0.5s in the 200s window. This is
stored in a matrix in Matlab and one can therefore plot all the values for an example of depth
30m and at mean water level with time as variable. Result of this is shown in figure 4.12-13.

200 second window of Horizontal particle velocity changing with time at mean water level (z = Om)

8 r r ! 1 ! I r ! 1 ! ! I r ! ! I r r

Welocity (m/s)

s e e s s s B i e et s et s s

550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740
Time (s)

Figure 4.12. 200 second window of horizontal particle velocity changing with time at mean water level (z=0m).

200 second window of Horizontal particle velocity changing with time at depth 30m (z = -30m})

Melocity (m/s)

550 560 570 580 590 600 610 620 630 640 650 660 670 630 690 700 710 720 730 740
Time (s)

Figure 4.13. 200 second window of horizontal particle velocity changing with time at depth 30m (z = -30m).
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Figure 4.12 is only an approximation of the horizontal particle velocity at the mean water level.
In real life, there would not be any horizontal particle velocity between the waves, where no
water is present. In this estimation, we have extrapolated up to mean water level for illustrative
purposes. However, figure 4.13 shows a good estimate of the horizontal particle velocity in a
depth of -30m.

By comparing those two figures to the surface process, one can see a very good similarity in
shape since they have the same phase angle. Next figure below show us the horizontal particle
velocity depending on depth.

Horizontal particle velocity for the 200 second window with time step 0.5s

Depth (m)

Velocity (m/s)

Figure 4.14. 400 horizontal particle velocity profiles created from a 200-second surface process with time step 0.5s.

Figure 4.14 is only used to compare with figure 4.15 to show the horizontal particle velocity
profile for the 200s window. Since figure 4.15 shows the horizontal particle velocity under the
largest crest, one can compare those results to figure 4.14. This will confirm that the largest
horizontal particle velocity is obtained under the largest crest in the time series.
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Horizontal particle velocity for maximum crest height of a 3hr surface profile

_________________________________________________

Constant value above surface
— Wheeler stretching

40

Depth (m})

-100
1

Velocity (m/s)

Figure 4.15. Horizontal particle velocity profiles for the largest crest height in the time series. Where crest height = 17,23m and
period = 14s.

There are two plots in figure 4.15, where the blue plot represents horizontal particle velocity
with extrapolation to mean surface level and constant value above the mean surface level . The
red line is Wheeler stretching. By comparing the blue line to the maximum horizontal particle
velocity profile in figure 4.14, one can see that those two lines are the same and confirm the
statement above.
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4.1.6 Verification of linear horizontal particle velocity program

To confirm that the program creates an accurate approximation, one would need to do some
calculations outside of Matlab. Those results will be compared with Matlabs results for
verification. Excel will be used as the second program to calculate some of the horizontal
particle velocity with the same formula as shown above. If the results are the same, one can say
that the program runs in a correct manner.

First of all, one would need to confirm that the surface process generates the same values in
bout approaches. If the surface process generates the same values, it would mean that bout
programs calculate a correct answer. It will also confirm that we have a correct estimate for the
generated wave spectrum. To create the same sea state for bout programs the random phase
value needs to be saved, and used in bout programs. This has been done and we have used the
same phase angle values as the sea state from figure 4.11. To simplify the work in excel, the
only wave generated for the surface process is the wave with the largest crest height for the
whole 3-hour sea state. Results from Matlab can be seen in figure 4.16 and figure 4.17 shows
the results from Excel.

Surface process for largest wave in a 3hr simulation. Simulated by Matlab.

Surface elevation (m)

Time (s)

Figure 4.16. Largest wave of a 3-hour linear surface process obtained from the same sea state as figure 4.11. Where hs = 14,9m
and tp = 15.8s. Simulated from Matlab.
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Surface process for largest wave in a 3hr simulation
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Figure 4.17. Largest wave of a 3-hour linear surface process obtained from the same sea state as figure 4.11. Where hs = 14,9m
and tp = 15.8s. Calculated from Excel.

From figure 4.16 and 4.17, one can see that Matlab and Excel creates the same values with two
different approaches. This means that our process in Matlab generates correct values for the
surface process. In Excel | have calculated every number and summarized them with help of
Excels commands. To see the calculations done in Matlab, see Matlab file

“Verification_of Matlab_program_linear_Matlab_file” for Excel file, see “Verification of Matlab
program Excel file”. The same two files are also used to verify the horizontal particle velocity
profile. Here we have chosen to generate the horizontal particle velocity profile under the crest
at time 642s and at time 641s. The reason | have chosen to investigate at time 641s is since
Matlabs generated horizontal particle velocity profile in this time curves in the opposite side as
it approaches the mean water level. This can be seen in figure 4.18, which is generated from the
Matlab file. Results from the Excel file can be seen in figure 4.19, which is the same result as the
Matlab file generates. This means that the curve near the surface is not a wrong approximation.
Instead, it is a result from summing up all the waves with different frequency and phases.
Where the high frequency waves do a much more impact at the surface and lesser the deeper it
gets. Even if the high frequency waves in general provides low impact in the horizontal particle
velocity. Results of this might be the cause for the curve. Our program have now been
confirmed to provide a correct answerer. For more details about the Excel or Matlab
calculations, see the referred files above.
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Horizontal particle velocity for two points in time. Simulated in Matlab

Depth (m)

-100
0

_____________________________________________________

3 4 5 6 T 8
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Figure 4.18. Horizontal particle velocity profiles at time 642s (under crest top) and time 641s. Where crest height = 17,23m and
period =14s. Simulated from Matlab.

Horizontal particle velocity profile for two points in time
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Figure 4.19. Horizontal particle velocity profiles at time 642s (under crest top) and time 641s. Where crest height = 17,23m and

period =14s. Calculated from Excel.
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4.1.7 Results for horizontal particle velocity compared to Stokes waves

Now that the program used to estimate the horizontal particle velocity has been verified, one
can start comparing the results to a Stoke wave. In order to re do the simulations shown in
figure 4.20 the different random phase ¢ values has been stored in an excel file named
“Different phases for linear surface process”. There are three different 3-hour simulations below
showing the horizontal particle velocity profile for each case, where the next chapter calculates
loads and loads effects for each case. The first case is the same case as shown above. Where the
surface process is shown in figure 4.11 and for the horizontal particle velocity profile, see figure
4.20.

Horizontal particle velocity for maximum crest height of a 3hr surface profile
20
I I

Constant value above surface
H H H H H H H ' * H H H H — Wheeler stretching
20 . . H N H . . o S S S S Stokes data _

Depth (m)
A
S

15 2 25 3 35 4 45 5 55 6 6.5 T 75 8 8.5 9 95 10
Velocity (m/s)

Figure 4.20. Comparison between different methods to obtain the horizontal particle velocity profiles for the largest crest height
in a time series. Where maximum crest height = 17,23m and period = 14s.

Figure 4.20 shows the three different plots for the same crest height and period. Where
Wheeler stretching might be giving to low value as discussed before. If one assume that a
Stokes wave are the most accurate method, since this is a higher order approximation. By look
at the third plot, which uses constant value above mean surface level, one can see that it has a
much better fit than the Wheeler stretching for a linear approach. It might also be a good
estimate for the loads and loads effect that’s shown later on.

The second case shows the kinematics of a much lower maximum crest height. See figure 4.21
for surface process and figure 4.22 for the horizontal particle velocity profiles for this case. The
third case has a maximum crest height similar to the crest height corresponding to an
exceedance probability of 0.1 for the sea states. Where Surface process are shown in figure 4.23
and the horizontal particle velocity profiles can be seen in figure 4.24 for case three.

91



200 second window showing maximum crest height, simulated from a 3hr surface process.

Surface elevation (m)

6290 6300 6310 6320 6330 6340 6350 6360 6370 6380 6390 6400 6410 6420 6430 6440
Time (s)

6450 6460 6470 6480

Figure 4.21. 200-second window of a 3-hour linear surface process. Where hs = 14,9m and tp = 15.8s. Maximum crest height

obtained is 14,21m with a period of 12s and wave height = 24.00m.

Horizontal particle velocity for maximum crest height of a 3hr surface profile

— Wheeler stretching

Constant value above surface

Stokes data

Depth (m})

0 0.5 1 15 2 25 3 35 4 45 5 55 6 6.5 7
Velocity (m/s)

Figure 4.22. Comparison between different methods to obtain the horizontal particle velocity profiles for the largest crest height

in a time series. Where maximum crest height = 14,21m and period = 12s with a wave height = 24.00m.
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200 second window showing maximum crest height, simulated from a 3hr surface process.

Surface elevation (m)

QU oo o
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Time (s)

Figure 4.23. 200-second window of a 3-hour linear surface process. Where hs = 14,9m and tp = 15.8s. Maximum crest height
obtained is 16,11m with a period of 12s and wave height = 26.03m.

Horizontal particle velocity for maximum crest height of a 3hr surface profile

— Constant value above surface
“| = Wheeler stretching
Stokes data

Depth (m)

0 0.5 1 15 2 25 3 35 4 45 5 5.5 6 6.5 7 75 8 8.5 9 9.5 10
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Figure 4.24. Comparison between different methods to obtain the horizontal particle velocity profiles for the largest crest height
in a time series. Where maximum crest height = 16,11m and period = 12s with a wave height = 26.03m.
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By comparing the three cases to the Stokes data, one can clearly see that the linear surface
process may generate similar kinematics as a Stokes waves. This can especial be seen in case
two and three, where a very good approximation to the horizontal particle velocity compared to
the Stokes data gathered from the Stokes 5% order program is obtained.

4.1.8 Drag dominating forces for simulated maximum crest height compared to Stokes
waves

Now that the horizontal particle velocity profiles has been obtained, one can use the Morison
equation to estimate the base shear and overturning moment for a drag dominated case. A
column diameter of D = 1m will be used further on. The Morison equation has been introduced
previously in chapter 3.5.1, but is shown in equation 4.31 for base shear and 4.32 for
overturning moment again. Those formulas can only be used to calculate drag dominated cases.

3 $ 1
PO = | foadz=| (3+0+CorDeveivi)az Equation 4.31
¢
M = f_d(z +d) * fp(z,t) dz Equation 4.32

Where V is the horizontal particle velocity profile for each of the three cases above. The results
is shown in table 4.1.
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Table 4.1. Load results for column diameter 1m, drag dominating forces. Where 1GN =103 MN = 1076 kN = 10°9 N. X° for
stokes data instead of time for linear data. Crest top is the x-position when 0% mean surface level is approximately 80° and
through is 180° Max value obtained at crest top with a first order process.

Forces on simplified offshore structures according to different wave models

where: D=1m (Drag dominating force)

Case name | Period, Wave Amplitude, | Height over | Wave | Force, | Moment,
T.(s) height, a.(m) surface, phase | F.(MN) | M.(MNm)
h.(m) &.(m) (sor?)
Constant 14 31.12 17.23 17.23 642s 1.13 99.28
above
surface
Wheeler 14 31.12 17.23 17.23 642s 0.709 61.23
Stretching
Stokes data 14 29.13 17.23 17.23 0° 0.976 84.37
Constant 12 24.00 14.21 14.21 6383,5s | 0.771 69.43
above
surface
Wheeler 12 24.00 14.21 14.21 6383,5s | 0.457 40.29
Stretching
Stokes data 12 24.06 14.21 14.21 0° 0.635 57.82
Constant 12 26.03 16.11 16.11 6719s 1.02 92.47
above
surface
Wheeler 12 26.03 16.11 16.11 6719s 0.574 51.09
Stretching
Stokes data 12 26.80 16.11 16.11 0° 0.838 77.63

Our results show that the constant value above surface approach obtains the most base shear
and overturning moment. Where Wheeler stretching obtains very low values compared to the
other two cases. This confirm the concern of the new N-003 standard, [2] in recommendation to
not use Wheeler stretching since it might give values below the safe zone when designing. The
constant value above surface approach might be giving to high value and cause oversizing in the
design process. It would therefore be very interesting to create a second order process and
compare the results of loads and loads effects from a linear and second order approach.
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4.2 Second order approximation for irregular waves

To improve the accuracy of our simulated surface process and the kinematics of the maximum
event, one would need to generate a second order process. The new N-003 standard, [2] also
state that the surface process and the corresponding kinematics for a time domain simulation,
shall be modelled as a second order random process with second order theory, when calculating
load and loads effects. Those are the mean reason to generate a second order process also to
compare the result with Stokes waves and a first order process. Generating a second order
process needs a much higher capacity from Matlab and the computer used. Because of this, we
are going to simulate 20-minutes time series instead of a 3-hour sea states for this thesis. To run
a second order surface process of 3-hour, a good computer is required and patient since it
might take 1 to 12-hours running time. Depending on the computer and Matlab settings.

4.2.1 Simulation of a 20-minutes second order surface process

A second order surface process can be obtained with a second order correction plus the first
order equation. This can be seen from equation 4.33. Where the following formulas where
obtained from [8], [20] and [21]. [20] is a short presentation of [21].

=n® ©)
n=ntim Equation 4.33

Where 1V is the formula for first order surface process used earlier and 11(? is the second
order correction to achieve a second order surface process, 1.

N
nW = Z a, * cos(¢,) Equation 4.34

n=1

N
1
N = Y 2w ah ey oS(2 )
N-1

N
+ Z %* Ay * Am * ((ky + k) * cos(@n + Pm)

n=1m=n+1
_(km - kn) * COS((].')m - ¢n))

Equation 4.35
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The second order correction uses a double summation. This is why it requires a high computer
capacity and time to simulate a 3-hour sea state. When a double summation is used one obtain
N times the number of a first order simulation. Where N is the number of frequency
components.

The same wave spectrum generated under chapter 4.1.1 is used here as well, except for a
shorter interval of the wave spectrum meaning that:

Sto,i =dan
fo,(i+1) =am

Which has been explained under chapter 4.1.2. The following formulas, that were not explained
is as following:

Pn =kn*x —wpxt+ @y Equation 4.36

Equation 4.36 determine the phase of the wave. Equation 4.36 has been obtained from [20].

wh =g *ky Equation 4.37

k,, is the wave number described by the frequency in Hz.

G
no g Equation 4.38

. . . 1 . 2 .
The differenceson , and ,, isthatthe ,, startswithan f = pm and ,, starts with = pp if

the steepness of the frequency, f are % This means that k,,, > k,,.

For a 20-minutes sea state, one need to have T > 1200s to insure it doesn’t repeat itself. In the
following 20-minutes simulation, T = (1200 + 50) has been used where Aw = 2m * 1250.

Because of the extra second order correction, one obtain a much larger use of the wave
spectrum, meaning that the summed up amplitude will be to large if full spectrum are used. This
will affect the kinematics and create to high values. To fix this one would need to reduce the use
of high frequencies waves. A cut-off frequency has therefore been proposed by Stansberg, C.T.
This cut-off frequency has been confirmed to show reasonable values, when comparing
calculated wave profiles to measured waves. It is also recommended to use this cut-off
frequency from DNV, [8]. Which is obtained from [21] and shown in equation 4.39.

14 Equation 4.39

wCutS =
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To use frequency in Hz as the spectrum frequency cut-off one can use: f¢y,;; = 1.14 % 2w =

0.18 Hz. This is the cut-off frequency used for the 20-minute’s simulations in this thesis.

From those formulas, we obtain the following results. Shown in figure 4.25-27.

20min time serie of surface process. showing all corection to achieve a second order process. Created from a JONSWAP spectrum.
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Figure 4.25. 20-minutes second order surface process, created from a JONSWAP spectrum. With hs = 14.9m and tp = 15.8s.

20min time serie of surface process, showing all peaks. Created with second order waves from a JONSWAP spectrum.
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Figure 4.26. 20-minutes second order surface process showing global peaks. Created from a JONSWAP spectrum.
With hs = 14.9m and tp = 15.8s.
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100 second window of a 20min second order suface process. Showing all corection to achieve a second order process and the maximum wave of the time series.
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Figure 4.27. 100 seconds window, showing maximum crest height of a 20-minutes second order surface process and corrections
to achieve a second order process. Created from a JONSWAP spectrum with hs = 14.9m and tp = 15.8s.

From this sea state, one can obtain a maximum crest height of 14,92m with a period of 13s. The
difference between the linear and second order surface process can be seen in figure 4.25 and
4.27. Figure 4.27 show the values from a linear process, all the second order corrections and
finely the second order surface process, which is the sum of them. Where second order
correction 1 uses one summation, second order correction 2 is the positive double summation
and second order correction 3 is the negative summation from equation 4.35. From this figure,
one can see that the linear process produces shorter crest height and higher trough than a
second order process. It is the second order correction that correct those heights to a more
realistic wave.

Now that a surface process is established, we can obtain all the peak values that has been
pointed out by figure 4.26. Since the simulation is only a 20 minutes series, a maximum crest
height distribution cannot be obtained. To do this one would need to simulate 30+ 3-hour
simulations and obtain the maximum crest height value for each of those simulations as we did
with the first order approach. With the second order approach, it would take too long time and
we would therefore suggest that this would be recommended on further work later on. What
one can do is to confirm, if the data follows a second order distribution. By comparing the peak
data to a 2-parameter Weibull distribution formula set on a Weibull scale. One can observe if
the data follows the linearized short term Weibull distribution and goes in a straight line. If it
does, one would have confirmed that the second order surface process follows the 2-parameter
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Weibull distribution, which has been confirmed by Forristall to follow a second order
simulations. This will be an indication that our program has the right output.

The short term 2-parameter Weibull distribution formula have already been introduced in
chapter 2.4, when the 1072 annual probability crest height, C, o;, was predicted. This means
that our expected 102 annual probability crest height, C, o1, in this second order surface
process is 17,87 m. The 2-parameter Weibull distribution formula used is:

(am)
Femgr, (clhs, Ty, d) = 1 —e \*ehs Equation 4.40

The result for putting this formula to a Weibull scale can be seen in equation 4.41.

ln(— ln(l - F(y))) = B * In(c) — B * In(ag * hy) Equation 4.41
For obtaining the Fitted Weibull line, equation 4.40 has been used and is shown below:
1.88 *In(c) — 1.88 * In(0.37 * 14.9) = Cum. Prob

To fit the different crest height data one can used the following formula.

ln(— ln(l — F(y)))

Cn
N+1’

Where F(y) = Empirical distribution. And the X-axes is Ln(crest height).

The result can be seen in figure 4.28, which is the same 20-minutes simulation as figure 4.25.
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Crest height distribution of 2 20 min time series using Weibull plot
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Figure 4.28. Global maxima versus a 2-parameter Weibull distribution (1)

Another result from a random simulation can be observed in figure 4.29 to compare with figure
4.28.

Crest height distribution of a 20 min time series using Weibull plot
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Figure 4.29. Global maxima versus a 2-parameter Weibull distribution (2).
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Figure 4.28 and 4.29 show that the main peak data follows the Weibull distribution. The lower
part of the peaks below Ln(0), which is at a crest height < 1m can be neglected since a known
error of Matlab is known. As mentioned before, this error is caused because of to close zero up
crossings. A good example of this error can be seen in figure 4.30, where all the circles are
peaks, but the read ones shouldn’t have been there. This is the reason for neglecting peaks
below 1m. Apart from this, one can clearly see that the crest heights follows a Weibull
distribution, meaning that our program is verified to follows a second order distribution.

Surface elevation (m)

290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 376 380 385 390 395
Time (s)

Figure 4.30. lllustrating peaks of a surface process, where green peaks are real peaks and red peaks are not valid.

4.2.2 Second order kinematics

Horizontal particle velocity is the only interesting kinematics for a drag dominated case, as
discussed in the linear part for irregular waves. Therefore, a second order correction formula
has been obtained from [20], [21]. This formula is only valid at depth below mean water level
(z < 0). Since the formula will drastically overestimate the velocity above mean water level. A
linear Taylor expansion above mean water level is therefore introduced later on. We have also
mentioned that a cut-off frequency are needed especially for the kinematics. This was
introduced in chapter 4.2.1.

The velocity potential obtained from [20], can be seen in equation 4.42 and 4.43. Where cl)(1) is
first order and (1)(2) is the second order correction for velocity potential.
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N
a, * W
cl)(l) = Z nk L sin(¢,,) * efn*? Equation 4.42
n=1 n
N-1 N
2) — _ i — (km—kn)*z
¢ z z Uy * Ay * Oy * SIN(Pn — ) * € Equation 4.43
n=1m=n+1

The second order velocity potential correction doesn’t include all the subsection for the surface
process. This is because the two first subsection of the surface process becomes zero in the
velocity potential when summed up according to [22].

The horizontal particle velocity is found through the derivative of velocity potential in x
direction and can be seen in equation 4.44 and 4.45. Where the formula for a second order
horizontal particle velocity is shown in equation 4.46, which is only for z < 0.

N
W z @, * Wy, * Cos(hy) * ekn* Equation 4.44
n=1
N-1 N

,(CZ) = — z z Ap * Ay * Wy * (K — ky) * cos( @y, — ¢Py) * e(km=kn)*z  Equation 4.45

n=1m=n+1

1
(1)X|Z<=0= ;(c)+¢§c2) , for z<=0

Equation 4.46

All the parameters and variables has been explained in chapter 4.2.1 and the result for using
those formulas in Matlab is as following:
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100 second window of a 20min second order surface process. Showing maximum crest height.
I I I T T T I I I T

Surface elevation (m)

445 450 4585 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540
Time (5)

Figure 4.31. 100-second window of a 20-minuts second order surface process. Where hs = 14,9m and tp = 15.8s. Maximum crest
height obtained is 16,38m with a period of 14s and a wave height = 26.67m.

Horizontal particle velocity for the largest wave, changing with time at mean water level (z = 0m)

Welocity (m/fs)

-6,
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
Time (s)

Figure 4.32. Horizontal particle velocity changing with time at mean surface level (z = 0m). For the largest wave in a 20-minuts
surface process.
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Horizontal particle velocity for the largest wave in a 20min time series. Time steps = (.5s

Depth (m)
&n
=

-100

Velocity (m/s)

Figure 4.33. Horizontal particle velocity profiles for the largest wave in the 20-minutes surface process, where time step = 0.5s.

Haorizontal particle velocity under the crest top, for the largest wave in a 20min time series. Where correction to achieve second order are shown.

First order
Second order correction
Sum of all (Second order) [

Velocity (m/s)

Figure 4.34. Horizontal particle velocity profile for the largest crest height in the time series, where crest height = 16,38m and
period = 14s. Showing first order and second order correction to achieve a second order profile.
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Figure 4.31-34 is the result of the same simulation for a 20-minutes surface process. In figure
4.32, one can see how the horizontal particle velocity for the largest wave changes with time at
mean surface level, bear in mind that this is just an approximation. All the horizontal particle
velocity profiles for the largest wave can also be seen in figure 4.33, where the horizontal
particle velocity profile under the crest top for this wave is shown in figure 4.34. This is the
largest horizontal particle velocity obtained for the time series, but the kinematics only goes up
to mean surface level (z = 0). Finding the horizontal particle velocity above mean surface level
can be done with different approaches. In this thesis, we have chosen to use Stansbergs
approach. His method is a linear Taylor expansion above mean surface level. This formula can
be seen in equation 4.47 and is obtained from [20]. Figure 4.34 also shows that the second
order correction has a negative value meaning that it reduces the first order equation when
obtaining the second order horizontal particle velocity profile.

— 4@ () 1)
by |z =¢y  + by +zxdy, lz=0, for z>0 Equation 4.47

Where q);lz) is the derivative of horizontal particle velocity in z direction. Shown in equation 4.48

N
@ =) o xky x cos(y) + ek Fquation 4.48

n=1
The result of this is can be observed in figure 4.35. From this figure, one can approximate that

the maximum horizontal particle velocity at the crest top is 8.9 m/s.

Horizontal particle velocity under the crest top, for the largest wave in a 20min time series.

2 . . . ‘ ! ! 1 ! ! 1 ! ! 1

Depth {m)

0.5 1 15 2 25 3 35 4 45 5 55 6 6.5 7 75 8 8.5 9
Velocity (m/s)

Figure 4.35. Horizontal particle velocity profile for the largest crest height in the time series, where crest height = 16,38m and
period = 14s. With linear Taylor expansion above mean water level (z >0 ).
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4.2.3 Results for Second order horizontal particle velocity compared to Stokes waves

The next step will be to compare the horizontal particle velocity profile of the Matlab file to the
Stokes data obtained from Stokes program. In the Stokes program, we have iterated the wave
height to obtain the same crest height as the simulated maximum crest height obtained. The
same period has also been used in Stokes program and the result of this is shown in figure 4.36.

Horizontal particle velocity under the crest top, for the largest wave in a 20min time series.

Depth ()

0 05 1 15 2 25 3 35 4 45 5 55 6 65 T 75 8 85 9
Velocity (m/s)

Figure 4.36. Horizontal particle velocity profile for the largest crest height in the time series, where crest height = 16,38m and
period = 14s. Compared to a Stokes wave.

From figure 4.36, one can see that the Stokes wave and the simulated wave produces almost
the same horizontal particle velocity above mean surface level, which is the most important
area. At a deeper depth, there are a deferens where Stokes wave have a larger value than the
simulated waves. This may give a small reduction for the second order process when calculating
the forces but not that critical. To confirm the results two more simulations have been
preformed. One with a lower crest height and one closer to the C; o, crest height and mean
period. Result for those can be seen in figure 4.37 to 4.40.
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100 second window of a 20min second order surface process. Showing maximum crest height.

Surface elevation (m)

Figure 4.37. 100-second window of a 20-minutes second order surface process. Where hs = 14,9m and tp = 15.8s. Maximum crest
height obtained is 14,05m with a period of 15s. Where the wave height is 22.65m.

Horizontal particle velocity under the crest top, for the largest wave in a 20min time series.

Depth (m)

35 4 45 5 55
Welocity (m/s)

Figure 4.38. Horizontal particle velocity profile for the largest crest height in figure 4.37 time series, where crest height = 14,05m
and period = 15s. Compared to a Stokes wave.
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100 second window of a 20min second order surface process. Showing maximum crest height.

Surface elevation ()

i
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105
Time (s)

Figure 4.39. 100-second window of a 20.minutes second order surface process. Where hs = 14,9m and tp = 15.8s. Maximum crest
height obtained is 17,52m with a period of 13,5s. Where the wave height is 27.19m.

Horizontal particle velocity under the crest top, for the largest wave in a 20min time series.

Depth (m)

Velocity (m/s)

Figure 4.40. Horizontal particle velocity profile for the largest crest height in figure 4.39 time series, where crest height = 17,52m
and period = 13,5s. Compared to a Stokes wave.
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Figure 4.38 and 4.40 confirm that the Stokes wave produces almost the same horizontal particle
velocity above mean surface level, and a higher value below mean surface level compared to
the simulated maximum wave. To understand the deferens more, one would need to calculate
the forces for all the horizontal particle velocity profiles.

4.2.4 Verification of second order horizontal particle velocity program

There will not be any comparison between Excel and Matlab files for a second order process.
This is too time consuming and have therefore chosen to neglect this part. Another option is to
obtain the results from another article, but one would also need to obtain the phase angles
used and this may not be possible to find. Instead, we have chosen to obtain the results from
this article, [21], which has compared their second order process to a Stokes 5™ order wave. By
assuming that our Stokes 5™ order program generate the same wave data as their Stokes 5t
order wave, one can compare the results from both articles to see if the second order process
and Stokes 5™ order wave interact in the same manner. The imported figures from, [21] can be
seen in figure 4.41-44.

Figure 4.41. Example 1, comparison between second order process and Stokes 5th order process. Obtained from, [21].
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Figure 4.42. Example 2, comparison between second order process and Stokes 5th order process. Obtained from, [21].

Figure 4.43. Example 3, comparison between second order process and Stokes 5th order process. Obtained from, [21].
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Figure 4.44. Example 4, comparison between second order process and Stokes 5th order process. Obtained from, [21].

By comparing figure 4.41-44 with our data in figure 4.36, 4.38 and 4.40, one can see that the
horizontal particle velocity profile for the second order process interacts with Stokes waves in
the same manner for all figures. Where a higher horizontal particle velocity is obtained from a
Stokes wave below mean surface level compared to a second order wave. Meaning that the
second order process has a higher horizontal particle velocity above mean surface level
compared to a Stokes wave. This is of course in different magnitudes for each wave. The
position of the change in the largest horizontal particle velocity between the second order
process and Stokes wave, also changes around mean surface level for each wave. This implies
that our second order process runs in an acceptable manner. For more comparison figures, one
can see, [21].
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4.2.5 Drag dominating forces for second order simulated maximum crest height,

compared to Stokes waves.

As mentioned before, one can use Morison equation to estimate the base shear and

overturning moment for a drag dominated case. Where a column diameter as D = 1m has been
used. Morison equation was introduced in chapter 3.5.1 and mentioned again in chapter 4.1.8.
See those chapters for more information about the formula used to calculate the loads and

loads effects shown in table 4.2.

Table 4.2. Load results for column diameter 1m, drag dominating forces. Where 1MN = 1073 kN = 1076 N. X° for stokes data
instead of time for linear data. Crest top is the x-position when 0% mean surface level is approximately 80° and through is 180°.
Max value obtained at crest top with a second order process.

Forces on simplified offshore structures according to different wave models
where: D=1m (Drag dominating force). Second order irregular waves.

Case name | Period, Wave Amplitude, | Height over | Wave | Force, | Moment,
T.(s) height, a.(m) surface, phase | F.(MN) | M.(MNm)
h.(m) &.(m) (sor®
Stansberg 15 22.65 14.05 14.05 64.5s | 0.498 43.55
Stokes data 15 24.55 14.05 14.05 0° 0.650 52.42
Stansberg 14 26.67 16.38 16.38 491s 0.751 68.90
Stokes data 14 27.89 16.38 16.38 0° 0.881 75.63
Stansberg 13.5 27.19 17.52 17.52 59s 0.859 80.43
Stokes data 13.5 29.41 17.52 17.52 0° 1.01 89.07
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Our results from table 4.2, show that the differences on the Stokes wave and Standsbergs
second order approach is small, but Standsbergs approach obtain smaller values than a 5" order
Stokes waves. From table 4.2, one can see that the irregular surface process produces smaller
wave heights than the Stokes regular waves when they have the same crest height. This might
of course change for different phase angles, but it is real for those three cases. To confirm this,
more simulations have to be performed. This will not be done in this thesis, instead we are
going to compare the first and second order simulation and see the differences obtained with
the same phase angle. Bear in mind that the second order process has a cut-off frequency.
Meaning that the wave spectrum from 0 to 0.18 Hz has only been used in the second order
process. The second order correction is used to obtain the same magnitude of the full wave
spectrum as the first order process uses. In the first order process, we will use the wave
spectrum from 0 to 0.8 meaning that, one would only have the same phase angle from 0 to 0.18
and from 0.18 to 0.8 it would be random for each simulation. This may case some differences in
the result, but the largest values comes from the wave spectrum area 0 to 0.18 and therefore it
would be a good approximation to understand the differences of first and second order process.
This has been performed in chapter 4.3.
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4.3 Comparison between a 20-minutes simulated first and second order process.

The same sea state as figure 4.39 has been used to simulate the comparison below. Where the
first order process may have different values for each simulation because of the high frequency
waves. The differences are not large and therefore it is still a good comparison. First of all, a
comparison of the surface process and the distribution of peak values can be found in figure
4,45 and 4.46.

Comparing first and second order surface process of a 20min long time series_
| e T Foreeerres P T oo P e S g Foremreres e

: First order
[ PSR N S S R S S S R S S Second order

Surface elevation (rm)

0 70 140 210 280 350 420 490 560 630 700 770 840 910 980 1050 1120 1180
Time (s)

Figure 4.45. 20-minutes first and second order surface process, created from a JONSWAP spectrum. Where hs = 14.9m and tp =
15.8s.

By comparing the surface process in figure 4.45, one can clearly see that a second order process
produces higher crest heights, but lower trough than a first order surface process. This is as
expected since a higher order process take this in to account as discussed in regular waves. By
knowing this, one can expect higher global peaks from the second order process than the first
order process with same cumulative probabilities. This can be seen in figure 4.46, which confirm
that the first order follows a Rayleigh distribution and produces lower crest height than a
second order process, which follows a Weibull distribution. For a better view of the surface
process, a 200-second window is shown in figure 4.47. In this figure, a straighter line can be
seen for the second order process where the first order process has more noise.
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Crest height distribution of a 20 min time series, comparing Weibull and Rayleigh distribution for first and second order peak data

! i T T T ! & .
1 ; | T e T e e s
: ——— Waibull
+  2ord peak data from 20min sea state |—
Rayleigh
1ord peak data from 20min sea state

Cumulative probability

i i i i i i i i
4 6 8 10 12 14 16 18 20
Crest heigt

Figure 4.46. Global maxima from a first and second order surface process versus a Weibull and Rayleigh distribution.

200 second window of a 20min first and second order surface process. Where maximum wave hight occurs of the time series.

Surface elevation (m)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 180 200
Time (s)

Figure 4.47. 200-second window of a 20-minutes first and second order surface process. Where hs = 14,9m and tp = 15.8s.
Maximum crest height obtained 17,52m with a period of 13,5s.
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The last part is to compare the horizontal particle velocity, which can be found in figure 4.48. In
regular waves, we found out that a linear approach overestimate the kinematics by using the
same crest height as to the higher order wave. In that situation a best fit was the Wheeler
stretching. Here in irregular waves the first order crest height is almost 2 meters smaller than
the second order crest height, and Stokes wave that have been tuned up to the same crest
height as the second order wave. Result of this is a good fit for a first and second order
approach to the Stokes wave. Where wheeler stretching might be giving to low values
compared to the rest.

Horizontal particle velocity under the crest top, for the largest wave in a 20min time series.
I I I I I I I I I I

2ord, Stansberg
Sord, Stokes data
1ord, Constant value above surface | |

1ord, Wheeler stretching

Depth (m)

05 1 15 2 25 3 35 4 45 5 55 6 6.5 7 75 3 85 9 9.5 10
Velocity (m/s)

Figure 4.48. Horizontal particle velocity profile for the largest crest height in figure 4.47 time series, where crest height = 17,52m
and period = 13,5 for second and fifth order. First order has a crest height = 15.74m and period = 13s.

To confirm that this isn’t a rare case, a second comparison have been created. Where, we are
looking at the same simulation history as figure 4.31. Compared it with the same method as
above. Result of this is shown in figure 4.49 and 4.50.
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200 second window of a 20min first and second order surface process. Where maximum wave hight occurs of the time series.

Surface elevation (m)

500
Time (s)

Figure 4.49. 200-second window of a 20-minutes first and second order surface process. Where hs = 14,9m and tp = 15.8s.
Maximum crest height obtained is 14,05m with a period of 15s.

Horizontal particle velocity under the crest top, for the largest wave in a 20min time series.

2ord, Stansberg

Sord, Stokes data

1ord, Constant value above surface
1ord, Wheeler stretching

Depth (m)
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Velocity (m/s)

Figure 4.50. Horizontal particle velocity profile for the largest crest height in figure 4.49 time series, where crest height = 14,05m
and period = 15s for second and fifth order. First order has a crest height = 14.64m and period = 13s.
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Figure 4.49 shows the same results as obtained in figure 4.47. Where a second order process
has higher crest and lower trough with a smoother line than a first order surface process.
Horizontal particle velocity in this case can be observed in figure 4.50 and has a very similar
result as figure 4.48. Where the linear and second order are a good comparison to a Stokes 5t
order wave except for Wheeler stretching.

For a better comparison the base shear and overturning moment has been obtained for those
two cases for each horizontal particle velocity model. Those forces is drag dominating forces
since the column diameter is 1m. For calculating the loads and loads effects, Morison equation
has been used. Results of this can be seen in table 4.3.

Table 4.3. Load results for column diameter 1m, drag dominating forces. Where 1IMN = 1073 kN = 1076 N. X° for stokes data
instead of time for linear and second order data. Crest top is the x-position when 0°, mean surface level is approximately 80° and
through is 180° Max value obtained at crest top.

Forces on simplified offshore structures according to different wave models
where: D=1m (Drag dominating force). Comparison of irregular waves.
Case name | Period, Wave Amplitude, | Height over | Wave | Force, | Moment,
T.(s) height, a.(m) surface, phase | F.(MN) | M.(MNm)
h.(m) &.(m) (sor?)
Stansberg 13.5 27.19 17.52 17.52 59s 0.859 80.43
Stokes data 13.5 29.41 17.52 17.52 0° 1.01 89.07
Wheeler 13 27.03 15.74 15.74 58.5s | 0.654 48.96
Stretching
Constant 13 27.03 15.74 15.74 58.5s | 0.918 81.34
above
surface
Stansberg 14 26.67 16.38 16.38 491s | 0.751 68.90
Stokes data 14 27.89 16.38 16.38 0° 0.881 75.63
Wheeler 13 26.33 14.64 14.64 491s | 0.505 43.51
Stretching
Constant 13 26.33 14.64 14.64 491s | 0.792 69.62
above
surface
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Table 4.3 shows that a Stokes wave still generates the most base shear and overturning
moments. Where Wheeler stretching is way off. For the second order Stansberg approach and
the linear constant value above mean surface level a very interesting result is shown. Bout those
approaches gives very similar results for the same phase angle value, but still the high
frequency waves might change this for rare cases. This just confirm that the linear process
produces lower crest heights but overestimates the kinematics and end up very close to a
second order approach this way. But of course in some cases this might deviate from the second
order results. Another observation can be seen in the wave heights and periods, where the
period and wave height is smaller for a linear approach than a second order approach. This
might repeat itself but to confirm this more comparison would be needed. As discussed in
regular waves, a wave with lower period creates larger velocity at surface and therefore higher
forces. This may also be the reason for a linear process obtain almost the same values as a
second order process.
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4.4 Summary for irregular Waves

In irregular waves, one have chosen to use a JONSWAP spectrum, because it is similar to the
North Sea. By this spectrum, a first and second order process has been generated in Matlab.
Those processes can simulate a 3-hour or a 20-minutes sea state for the first order process and
a 20-minuts sea state for the second order process.

The first order process has been verified by Excel to run in a correct manner. Even with out the
random amplitude, which where neglected in this thesis. First order process still generates a
random sea state with the random phase value. The reason for neglecting a random amplitude
where because of the large set of components. By obtaining the peak values (crest heights)
from the first order surface process created in Matlab, we confirmed that the distribution of the
peaks follows a Rayleigh distribution, which is a distribution for first order approach. After
words, the extreme crest height distribution where obtained and confirmed to follow a Rayleigh
distribution as well. With those data, bootstrapping where preformed to find the interval of the
crest height corresponding to an 1072 annual probability. The interval for the, ¢ o1, crest height
is between 15,2m to 17,4m. Next step taken for the first order process where to compare the
loads and loads effects results with Stokes waves. By doing this, one found out that a constant
value above surface approach obtains the most base shear and overturning moment. Where
Wheeler stretching obtains very low values compared to the Stokes and linear constant value
above surface approach.

The second order process has not been verified by Excel but has been compared to another
article and shown good comparison for this. One have also compared the crest height data
(peak data) from a 20-minutes simulation to a Weibull distribution, which is a distribution for
second order waves. This has confirmed that our second order process follows the Weibull
distribution. To obtain the kinematics above mean surface level Standsbergs method was used.
The loads and load effects obtained from this approach compared to a Stokes wave can be seen
in table 4.2. The differences on the Stokes wave and Standsbergs second order approach is
small, but Standsbergs approach obtain a little smaller base shear and overturning moment
than a 5% order Stokes waves.

An extreme crest height distribution where not obtained for the second order process, because
a 3-hour sea state was not created. Instead a comparison between a first and second order
process where done with a 20-minutes simulations by using the same wave spectrum from 0 to
0.18 Hz . This comparison shows that a Stokes wave still generates the most base shear and
overturning moments. Where Wheeler stretching is way off. For the second order Stansbergs
approach and the linear constant value above mean surface level a very similar results can be
obtained by using the same phase angle for wave spectrum 0 to 0.18 Hz. The second order
process also generates higher crest heights and lower trough than a first order process.
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5 Conclusion and suggestion for further work

Throughout this thesis, a comparison between the old and new NORSOK N-003 standard has
been performed. Where this thesis have been divided in to two main parts. The first part
revolves around regular waves, where a comparison between the old and new methods of
calculating the ULS design wave have been discussed. The old method uses a Stokes wave
profile defined by the 102 annual probability wave height, hg 1, Wwhere the new method uses
the 1072 annual probability crest height, ¢, o, to define the ULS design wave. With the same
defined wave profile as the new and old recommendation, one have also compared the Stokes
wave with a first order approach.

The main conclusions for part one are as following:

e Having half the wave height as the amplitude for a linear approach, one would need to
use extrapolation above mean surface level to obtain the most accurate kinematics
compared to a Stokes wave. If the crest height were used as the amplitude instead, one
would have to use wheeler stretching to obtain an accurate kinematics value.

e Finding the unfavorable period associated with a wave height equal to, h, ¢; cannot be
obtained before the loads effects are calculated for all periods used. It is therefore a
time consuming method with possibility’s to choose wrong period.

e The new method using Stokes wave with ¢, ¢; as the amplitude results in a little larger
base share and overturning moments for all cases except for a mass dominated case,
which obtains a little larger overturning moment by using hg y;as the wave height and
Tynin as period.

e The final conclusion for regular waves is therefore that the new N-003 standard is more
efficient with time and describe the waves in a more accurate manner.

For the second part of this thesis, one have disgusted irregular wave, where the old N-003
standard suggests a first order process to find the corresponding kinematics of a time
simulation. Where the new N-003 standard in other hand require a second order process to
describe the surface process and a second order theory to obtain the kinematics of the time
history. By comparing those two methods, one have reaching the following main conclusions for
part two:

e The formula used to create the first order irregular surface process follows a Rayleigh
distribution for crest heights and the second order surface process follows a Weibull
distribution for crest heights.

e Asecond order surface process describes the wave history more like a real ocean by
increasing the crest height and lower the trough height.
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e Wheeler stretching for a first order process underestimates the kinematics, but a
constant value above mean surface level is a very good approximation to a second order
process using Standsbergs approached.

e First order process underestimates the crest heights but overestimates the kinematics,
which achieves almost the same result as second order process.

e The second order process is more reliable than a first order process, because it simulates
a sea state closer to a real ocean, but it is more time consuming.

e Second order process with Standsbergs approach is manageable to do for command
people and does not require advanced programs to run, but a certain knowledge in
programming is required to achieve a 3-hour second order simulation.

Final conclusion for irregular waves is therefore that the new N-003 standard has the most
reliable approach to estimate the sea state, but a first order approach may actually be
sufficient enough and more time efficient. More comparison between a first and second
order process would be required to understand this fully.

We would therefore suggest the following for further work:

- Optimize the program used to simulate the irregular second order process to run a 3-
hour simulation.

- Find the extreme crest height distribution and confirm if it follows a Weibull distribution.
After words one can obtain the crest height with an annual probability of 1072,

- Comparison between a first and second order process, which can simulate in 3-hour. To
obtain the differences between the two approaches.

- Compare the first and second order process to real measured wave data to confirm the
kinematics are generated in a correct manner.

- By having more comparison of a first and second order process, one can confirm the
need of a second order process or disprove it.

- For regular waves, one can suggest to investigate if extrapolation really is the best
approximation with half the wave height as amplitude, and Wheeler stretching when
crest height is used as amplitude.
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Appendix A. Attached Matlab and Excel files

All Matlab and Excel files created for this thesis, has been stored in different folders and named
for their purposes. Below is a collection of files where “¢” stands for folder and “-” for files. To
see the deferens of a Matlab file or Excel file a code can be seen at the end of the file name. For
Excel files, the end name is “.xIsx”. A Matlab file has two different end names, where Matlab
scripts has “.m” and saved Matlab data (workspace data) has “.mat”.

e 1. Metocean contour method
Extreme_WaveHeight_and_CrestHeight.m
Worst_Hs_Tp_along_the_contour_line.m

e 2. Horizontal particle velocity and acceleration for regular waves
- Acceleration_data_Stokes.mat
- All_Stokes_data_Sp_Vel Acc.mat
- Comparison_between_linear_and_Stokes.m
- Linear_surface_Profile.m
- Linear_wave_Intermediate_Crest_height.m
- Linear_wave_Intermediate_Wave_height.m
- Stokes_5th_wave_data_plots.m
- Surface_Profile_data_Stokes.mat
- Velocity_data_Stokes.mat

e 2-3. Stokes data for regular waves
Containing many Stokes data files for different cases, which has been transformed to
.mat files under 2. and 3.. For those phase data used in this thesis.

e 3. Loads and load effects for regular waves
- Acceleration for stokes 5th order1.xlsx
- All_load_data_where_D _1m.m
- All_load_data_where_D 5m.m
- All_load_data_where_D 20m.m
- Velocity and Acceleration for stokes 5th order1.xlsx
- Velocity for stokes 5th order1.xIsx
- Wave_Loads_Stokes D _1m.m
- Wave_Loads_Stokes D 5m.m
- Wave_Loads_Stokes D 20m.m
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4. Kinematics, loads and load effects for linear irregular waves

Different phases for linear surface process.xlsx

Highest amplitude of a 3 hr sea state.xlsx
Linear_Bootstraping_and_more.m
Linear_Kinametics.m

Linear_wave_spectrum.m

Velocity for stokes 5th.xlsx

Verification of Matlab program Excel file.xlsx
Verification_of Matlab_program_linear_Matlab_file.m

5. Kinematics, loads and load effects for second order irregular waves

100 genereted second order simulations.xIsx
Comparison data between second and first order.xlsx
Comparison_of surface _process.m

Different phases for second order surface process.xlsx
Secund_order_kinametics.m
Secund_order_wave_spectrum.m

Velocity for stokes 5th second order.xlsx

Stokes 5™ order program used can be found in:

Stoke 5th order Program

Fourier Program.zip
Stokes Program.zip
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