u

University
of Stavanger

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study programme/specialization: Spring semester, 2022

MSc. Computational Engineering Open

Author:

Ali Tahir e
Ali Tahir

Programme coordinator:
@ystein Arild

Supervisor:
UiS - Prof. Dan Sui

Title of master’s thesis:
IMPACT OF DATA PRE-PROCESSING TECHNIQUES ON MACHINE LEARNING MODELS

Credits: 30

Keywords: Number of pages: 87
Machine Learning, Recurrent neural

network, K-Nearest Neighbors Algorithm, + supplemental material/other: 50

Artificial Neural Network.

Stavanger, 15th July 2022

Al1 Tahir

IMPACT OF DATA PRE-PROCESSING TECH-
NIQUES ON MACHINE LEARNING MOD-

ELS

Master Thesis Project for the degree of
MSc. in Computational Engineering

Stavanger, July 2022
University of Stavanger

Faculty of Science and Technology
Department of Energy Resources

Universitetet
LI i Stavanger

Abstract

The Volve dataset, which contains the time series values of different sensors that have been used
at the Volve drilling site contains many flaws which make it hard for machine learning models
to learn from the dataset and provide useful insights and future predictions. Three flaws have
been highlighted including missing data, different frequency rates, and too many attributes (high
dimensional data). To solve the issues, present in time series data, a data preprocessing pipeline
has been proposed which first removes the noise through the rolling mean. Then applies gap
analysis to remove the columns whose gaps can not be filled with data imputation methods.
After that gap has been filled by the KNN imputer which imputes the missing values in the
data. After that data resampling has been applied to make the sampling rate consistent as the
time series prediction model takes a constant sampling rate. For hyper-parameter tuning of the
resampling method AIC and BIC value has been created on a grid of hyper-parameters. After
resampling, top parameters were selected on basis of Pearson correlation, after which AIC and
BIC have been used to select the most relevant 3 parameters. These 3 parameters has then be
used to train three models that are: RNN + MLP, LSTM + MLP, and LSTM + RNN + MLP. On
basis of mean absolute error (MAE) best model has been selected which is RNN + MLP.

i

Acknowledgments

I, first of all, would like to start by being grateful to God Almighty, for giving me all the strength
required in the completion of my studies.

This thesis study for the completion owes lot of gratitude and appreciation to number of in-
dividuals for their selfless contribution, especially my supervisor Prof. Dan Sui for the guidance
and supervising this research by arranging weekly meetings, productive discussion and sharing
knowledge.

I would like to show my deepest gratitude to University of Stavanger for giving me platform
and all the professors who were part of this journey.

Finally, I would like to thank my family and peers for their complete support.

Ali Tahir

il

List of Abbreviations

ANN
BHA
CSV
DWOB
DTQ
ECD
HPHT
ID
IQR
KNN
LWD
LSTM
MAE
ML
MLP
MSE
MWD
NN
oD
RF
RNN
ROP
RPM
SPP
STQ
SWOB
WOB
WDP

Artificial Neural Network
Bottom Hole Assembly
Comma-Separated Value
Downhole Weight on Bit
Downhole Torque
Equivalen Circulating Density
High Pressure High Temperature
Inside Diameter
Interquartile Range

K Nearest Neighbors
Logging While Drilling
Long Short Term Memory
Mean Absolute Error
Machine Learning

Multi Layer Perceptron
Mechanical Specific Energy
Measuring While Drilling
Neural Network

Outside Diameter

Random Forest

Recurrent Neural Network
Rate of Penetration
Revolutions per minute
Standpipe Pressure

Surface Torque

Surface Weight on Bit
Weight on Bit

Wired Dirill Pipe

v

Table of Contents

Abstract ii
Acknowledgments iii
List of Abbreviations iv
List of Figures viii
List of Tables ix
1 Introduction 1
1.1 Data Pre-Processing and Machine Learning 1
1.2 Literature Review 3
1.2.1 Missing Data Imputation 3

1.2.2 VolveDataset, 5

1.3 Motivation and Problem Statement 6
1.4 Objective 7
1.5 Thesis Organization 7

2 Background 8
2.1 DataAnalysis 8
2.1.1 Datacleaning 8

2.1.2 Data Transformation 9

2.2 Datalmputation 9
2.3 DataResampling 10
2.4 Feature Selection. 10

vi

241 AIC&BIC
2.5 Time Series Models
2.5.1 Time Series Analysis
2.5.2 Artificial Neural Networks

2.5.3 Long Short Term Memory

2.5.4 Recurrent Neural Networks

2.5.5 Mean Absolute Error

3 Mathodology

3.1 Machine Learning Pipeline
3.1.1 Missing Data Imputation
3.1.2 DataResampling.

3.1.3 Feature Selection

4 Results and Discussion

4.1 Dataset
4.2 Simulation Environment

4.3 KNN-Imputation

4.4 Resampling Hyperparameter Tuning

4.5 Feature Selection.

4.6 Model Selection

5 Conclusion and Future Work

5.1 Conclusion

5.2 FutureWork

References

Appendices

Appendix A Parameter Combinations

Appendix B Python Code

TABLE OF CONTENTS

35

................ 35
................ 35

37

38

40

43

TABLE OF CONTENTS

B.1 Resampling Method Optimization

B.2 Parameter Selection

Vil

List of Figures

1.1

2.1
2.2
23
24

3.1

32
33
3.4

4.1
4.2
43
4.4

Data faults and depth v/s inclination graph 3
Operations of LSTM [1] o o . 14
Architecture of LSTM [1] 15
Gatesin LSTM e 16
Architecture of RNN [2] 17

Flowchart for feature selection (left) and Data Resampling hyper-parameter tun-

ing (right) via AICand BIC Lo 19
Model architecture of LSTM+MLP 24
Model architecture of RNN+MLP 25
Model architecture of LSTM + RNN+MLP 26
Graphs before (top) and after (bottom) KNN imputation 30
Heatmap of pearson correlation 31
AIC (top) and BIC (bottom) graphs for different parameter combinations 32
AIC (top) and BIC (bottom) graphs for different parameter combinations 34

viii

List of Tables

2.1

4.1
4.2
4.3

Possible combination of 4 variables for applying AIC and BIC 12
Results for resampling method selection and hyper-parameter tuning 29
Pearson Correlation of parameters with dependent variables 30
Mean Absolute Error after training different models. 33

X

Chapter 1

Introduction

1.1 Data Pre-Processing and Machine Learning

Cleaning of dataset is most of the basic step in pre-processing for a machine learning pipeline.

Pre-processing of data include [3]:

* Data cleaning

— Missing values

— Noisy Data
 Data integration

— Data consolidation
— Data propagation

— Data virtualization
* Data reduction i.e. dimensionality reduction, feature selection

¢ Data transformation i.e. feature extraction

Data reduction and Data Transformation are the steps of feature engineering but these two
techniques of pre-processing and feature engineering intersect with each other and are thus

considered as the same step.

2 CHAPTER 1. INTRODUCTION

The next step in the pipeline formulation is selecting an ML model that needs to be trained
on the pre-processed dataset. Selecting the perfect model is also necessary as there are different
models that serve the same purpose i.e., classification can be done through Random Forest,
Decision tree, and xgBoost algorithms but a specific model can be selected for a specific type
of application with a literature study.

In pipeline formation, another thing that needs to be considered is hyper-parameter tuning.
Hyper-parameter tuning is to tune parametric values such as learning rate, batch size, and the
number of clusters. For example, in the case of the random forest algorithm, a few important
parameters to be tuned are maximum depth, the minimum number of leaves, the number of
estimators, and minimum number of sample splits, etc. In the case of deep learning models,
hyper-parameters can be the number of iterations, learning rate, momentum, and optimizer.
There are ranges of values that can be set in hyper-parameters and optimal values can help
improve the model significantly.

The final step is evaluating the model, evaluation step tells us how our model performed
and applies remedies in case of poor performance. Evaluation methods can tell us where our
model is performing poorly i.e., the confusion matrix can tell us that for which class our model
is performing poorly (if that is the case).

In petroleum data pre-processing is a need rather than a choice. There are several reasons
for this statement. As it can be seen from Figure 1.1 there are several faults in the data. This is
the same well, inclination vs measured depth plot. Red is from the time-based log, blue is from

depth based log. There are many things wrong here:

* Even though identical variables have been plotted, a shift by 28m was given to the depth

for the wells to match.

* 1 — the area where depth-based plot is just missing data

2 — depth-based data exists, but at a low frequency

* 3 — time-based data is noisy (can see two distinct paths). Additionally, depth stops to

match

* 4 — discontinuity on time-based data

1.2. LITERATURE REVIEW 3

60

0

20

500 GO0 Mo B0 a0 1000 1100 1200
Dapah

Figure 1.1: Data faults and depth v/s inclination graph
e 5 — artifacts at the start of the well, both datasets.

* Time-based data has “stalactites” hanging from the well path that needs to be filtered out

(only thing easy to automate, short median filter)

For using this petroleum data in a time series prediction machine learning pipeline this data

needs to be cleaned and processed.

1.2 Literature Review

1.2.1 Missing Data Imputation

Zhu et al. [4] considered data pre-processing a crucial task before model training and gave a
review of different steps in data pre-processing. In this review, missing data imputation was

also covered. These are the methods stated in the review for missing value imputation:

¢ Mean substitution
¢ Hot-deck substitution

* Regression substitution

4 CHAPTER 1. INTRODUCTION
¢ Conditional distribution-based substitution
* Multiple imputation

Zhang et al. [5] give an analysis that existing methods for replacing missing data entries
use some deterministic or random imputation methods. Keeping this in mind they proposed
clustering-based random imputation (CRI), which makes clusters of values having missing data
and values that are complete. Then impute values on basis of the cluster which is near to missing
data point. Their method proved effective in missing values imputation tasks.

Somasundaram and Nedunchezhian [6] stated that in real-world datasets missing entries,
noise and inconsistencies are a common occurrence and there is a need to correct these prob-
lems. They applied three different methods of data imputations (Constant substitution, Mean
attribute value substitution, and Random attribute value substitution). They compared the per-
formance of each method using clustering methods. The data set used by them for evaluation
was Wisconsin diagnostic breast cancer (WDBC) dataset [?].

Huang et al. [7] predicted the cost of an unseen project on basis of existing projects. They
analyzed that feature selection affected their model performance significantly. To improve their
pre-processing stage of data they applied a three-stage technique based on data imputation,
data normalization, and feature selection. Their experiments showed a significant increase in
accuracy when Z-Score normalization, kNN imputation, and mutual information-based feature
weighting were used.

Xu et al. [8] observed that the existing method of value imputation shows poor performance
when the number of missing values increases. They proposed a missing value imputation algo-
rithm based on the evidence chain (MIAEC), that estimates missing data by first mining relevant
evidence of missing data and then combining them to build an evidence chain. To further speed
up the process map-reduce method was used, not only this the algorithm was made to run on
distributed systems. Their method showed elevated performance than existing methods based
on naive Bayes and mode imputation methods.

Nelwamondo and Marwala [9] gave a review of missing data imputation methods based on
computational intelligence techniques. They highlighted that in literature there is a gap in the

use of computational intelligence methods for missing data imputation. The researchers have

1.2. LITERATURE REVIEW 5

mostly used easy methods because computational intelligence methods are complex. They
highlighted three patterns of missing data that are, univariate pattern, monotone pattern, and
arbitrary pattern. Every missing data pattern requires a different technique for data imputation.

Rja [10] and Rubin [11] showed three types of missing data patterns that affect the choice of
the method. These data patterns are missing at random (missing data is unrelated to other miss-
ing variables but related to some observable variables), missing completely at random (missing
data is unrelated to both other missing and observable variables), and missing not at random
(missing data is related to other missing values).

Rimal [12] worked on proving that missing data size matters when applying the data impu-
tation method. In this research, the R programming language was used to carry out the simu-
lations. This research also highlights that it is not possible to find a method of data imputation
before analyzing the dataset first.

An extensive study was done by Liu and Hauswirth [13]. They studies 118 missing data im-
putation methods and highlighted 9 influential factors and 12 selection criteria. They proposed
a provenance meta-learning method to select the proper imputation method from the methods
they chose.

From this literature, it is quite clear that there are many missing data imputation methods

and the selection of a specific method depends highly on missing data patterns.

1.2.2 Volve Dataset

The Volve dataset is quite new and there have been only a few works present in the literature.
This study is based on a series of works done by Tunkiel et al. [14].

Tunkiel et al. [15] identified that the existing research that claims to have achieved an R2
value of as high as 0.996 for the rate of penetration prediction has no independent datasets that
can verify these claims. They worked on providing a benchmark dataset based on Equinor’s
public Volve dataset. They gathered data from seven wells with nearly 200,000 samples with
12 common attributes. This data can work as the benchmark to test existing studies and verify
their claims. Also, this data can work as a base for many new research studies.

Tunkiel et al. [16] highlighted the problem of the machine learning model becoming obso-

6 CHAPTER 1. INTRODUCTION

lete due to equipment changes on the drilling site. The change happens due to the fast-changing
pace of the drilling industry. To solve this problem, they proposed a training while drilling
approach. The model is deployed on already working well where data is continuously coming
from the sensors. They used recurrent neural networks (RNNs) to capture the dynamic and
ever-changing nature of the data. This type of model learns from new features while keeping in
mind the patterns learned from previous data.

Tunkiel et al. [17] noticed that the data-driven machine learning models are mostly black
boxes and there is no way to find why a model is behaving erratically. TO uncover this mystery
sensitivity analysis of data is necessary. Sensitivity analysis of data can help uncover these
erratic behaviors which might be caused by overfitting. They used the approach of the one-at-
a-time method to cover the hyperspace of potential inputs.

Tunkiel et al. [18] stated that the drilling data is generated continuously from various sensors
and this data is huge. But there are several reasons because of which the data gets lost and there
are many sensors i.e., gamma and inclination that lags by many meters. They found a solution to
this by proposing a novel approach that provides a prediction for lagging data. They combined a
trend-based prediction model with traditional artificial intelligence models to predict the lagging
data.

Tunkiel et al. [19] worked on exploring Equinor’s Volve dataset as the dataset is large
and needs pre-processing before performing analysis. The main objective of this study was to
overcome the basic obstacles of dealing with this data and to help the new studies happening in
the field of oil drilling.

Based on these studies, this study aims to make changes to existing pipelines and apply

hyper-parameter tuning to improve the already existing results.

1.3 Motivation and Problem Statement

On basis of the fact that petroleum data needs to be cleaned before processing, there is a need
for a pipeline that pre-processes the data before feeding it to the machine learning model. This
pipeline also needs to be tuned using hyper-parameter optimization to get the most efficient

results out of it. To evaluate the results of hyper-parameter optimization, Akaike Information

1.4. OBJECTIVE 7

Criterion (AIC) and Bayesian Information Criterion have been used. Not only pre-processing
but model selection is also required in pipeline optimization. For this purpose, multiple time

series prediction models have been considered and compared.

1.4 Objective

Objectives of this thesis include:

1. Building ML pipeline for time series analysis of petroleum data.
2. Designing pre-processing pipeline and optimizing it via AIC and BIC.

3. Machine learning model selection and optimization via AIC and BIC.

1.5 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 presents the mathematical background
of AIC and BIC. It will also give basic ideas behind the steps of pre-processing pipeline and
introduces the ML models for time-series prediction. All important definitions are given in
this section. Chapter 3 discusses the Recurrent Neural Network (RNN) and Long Short Term
Memory (LSTM). This section will also explain the flow diagram of the ML pipeline. Chapter
4 discusses the dataset and simulation environment, and results. It also discusses the outcomes

of the results. Chapter 5 concludes the thesis and states future recommendations.

Chapter 2

Background

2.1 Data Analysis

Data Pre-processing is to transform the raw data into a useful and efficient format. Steps that

involve data pre-processing are:

2.1.1 Data cleaning

Data has many irrelevant and missing parts, that need to be dealt with. This included missing

data handling and noise removal.

Missing data

This situation arises when some of the data is missing. There are several reasons that can cause
the data to go missing i.e., faulty sensors. Missing data can be dealt with in 2 ways, either
remove the missing data entries or even columns or fill the missing data with entries. To fill
missing data there are several methods that include: filling entries with mean or most probable

value.

Noisy Data

The data that can’t be interpreted by the machine and is useless is called noisy data. A real-world

dataset is affected by several components and one of them is noise [20]. It is an unavoidable

8

2.2. DATA IMPUTATION 9

problem and affects the data performance of machine learning models. There are two main

causes of noise in data [21]:

* Implicit error (fault of measurement tools).

* Random error (human error by data collectors).

In petroleum datasets, the noise that is present in the data is implicit noise and it is caused
by the sensors. It can be handled in several ways that are:

Binning: This method works on data that is sorted. This method smoothes that data by
dividing the data into several segments and then replacing values in each segment by mean or
on basis of boundary values.

Regression: In this method data is made smooth by fitting it into a regression model. Both
linear (1 independent variable) and multiple (multiple independent variables) regression can be
used.

Clustering: In this method similar data points fall into the same cluster and outliers are

removed.

2.1.2 Data Transformation

This step transforms the data and converts it into a suitable form for machine learning models.
There are several data transformation methods that include:

Normalization: This method scales the data into a defined range i.e., between 0 and 1, or
between -1 and 1.

Attribute Selection: This method either selects the attributes from within given attributes

or constructs new attributes on basis of existing ones.

2.2 Data Imputation

Missing data occurs in many statistical analyses. Missing data occurs due to implicit errors
where the sensors are unable to provide any value for an entry. There is no concrete method

that can help in imputing the missing values and the user needs to select from some existing

10 CHAPTER 2. BACKGROUND

methods to achieve this task. These existing methods apply imputation with various methods
and these methods can sometimes be useful and sometimes that is not helping at all. Selecting
the appropriate methods requires struggle and time.

There are several imputation methods that can help in imputing missing values in the dataset.

There are two basic imputation methods:

* Single Imputation: In the single imputation method, each value is estimated separately.
This method is simple as each value is calculated separately. This method includes im-

puting missing values with mean or regression. This imputation method is biased

e Multiple Imputation: This method imputes values simultaneously and then calculates
errors to optimize the prediction. Sparse matrix completion methods like soft-impute is

an example of multiple-imputation. This method is unbiased.

2.3 Data Resampling

Data sampling is the process of selecting observations at the time of data collection. While data
resampling is to improve the already collected data. Resampling has many advantages in time
series machine learning analysis. The basic reason is that time series prediction models require
data to be evenly sampled. Thus calculating the sampling rate in time series data is a challenge

and requires tuning.

2.4 Feature Selection

Feature engineering helps in extracting features from data. It is a crucial task as it affects the
model accuracy directly. Plus there are many methods of feature engineering and selecting the
method according to input data is a difficult task. Feature engineering is also important because
it directly affects the accuracy of the ML model. If features extracted from the dataset read
the pattern correctly then the model will give good performance. If the features extracted do
not show any specific pattern then the performance will be poor. Feature selection also falls

under the domain of feature engineering. If the dataset is large it causes the model to take

2.4. FEATURE SELECTION 11

more time and resources and may be due to some poor features model still doesn’t show good
performance. The pain point is to select which variables to use and which to skip, there are
methods to determine that i.e. Z-score or R?, and these are used to apply elimination one
variable at a time. This variable selection method is tiresome and consumes a lot of time. In
feature engineering feature selection is an important task from a high dimensional space of
extracted features. The improvement can be done so the user doesn’t have to look at the value
and remove variables manually. Plus these techniques are applied when the model has been

trained successfully and this causes the use of extra resources and time.

2.41 AIC&BIC

AIC and BIC are methods of selecting models by scoring them on the basis of their log-
likelihood and complexity. AIC and BIC are used to compare statistical models on the basis
of the number of free parameters and their values. It takes into account how much a variable
contributes to solving a problem. For example, if we have a regression model which is being
tested on the basis of four variables A1, A2, A3, and A4, AIC and BIC fit the regression model

with different combinations of these variables and calculate the value using the formula:

AIC = —2(log-likelihood) + 2K (2.1)

Here, K is the number of parameters used to fit the model, and log-likelihood checks if the

model is a good fit or not.

BIC = —2(log-likelihood) + Klog(n) (2.2)

Here, n is the number of values in the dataset (sample size), and k is the number of parameters.
The number of combinations for variables can be calculated by 2% —1. Here N is the number
of total variables. Combination of these values are shown in table 2.1.
As the number of variables is 4 so number of combinations will be 2* — 1 = 15.
For each combination regression model is trained and AIC and BIC values are calculated

using (2.1) and (2.2) respectively. A combination with the minimum value of AIC or BIC is

12 CHAPTER 2. BACKGROUND

Table 2.1: Possible combination of 4 variables for applying AIC and BIC

Al A2

A3 A4

Al, A2 Al, A3
Al, A4 A2, A3
A2, A4 A3, A4
Al, A2, A3 | Al, A2, A4
A2,A3,A4 | Al, A3, A4

Al, A2, A3, A4

selected as the best model.

When comparing the two models BIC puts a higher penalty term than AIC.

2.5 Time Series Models

2.5.1 Time Series Analysis

A specific way of analyzing a sequence of data over time is called time series analysis. In
time-series data, data points are at a constant interval in time rather than at random points.
Time-series data analysis can be done to see a change in data over time and thus predict future
values. Data trends and seasonal changes are also part of the data to see the trends. The time
series dataset needs to be extensive in order to ensure the consistency and reliability of the
prediction.

Time series datasets are used to understand the trends and patterns over time. Visualization
of time series data shows seasonal trends and provides a deeper picture of data. For example,
the sale of a specific product increases at a specific time of the year i.e., groceries at the start of

each month. Some examples of time-series datasets are:

* Weather Data
* Stock prices data

* Brain Monitoring (EEG)

Time series models can not be generalized to all king of time-series datasets. However deep
learning has shown promising results in generalizing the models that can work with most of the

datasets. Some important deep learning time series analysis models are:

2.5. TIME SERIES MODELS 13

* Long Short Term Memory (LSTM)

* Recurrent Neural Networks (RNN)

2.5.2 Artificial Neural Networks

Artificial Neural Networks are the most basic type of deep learning model that can take tabular
data and then classify it. It consists of neurons that try to mimic the behavior of the human
brain. Each neuron is connected to other neurons to form a network. Each neuron has weights
and biases, whose values change during the optimization of the model. A simple ANN is shown
in 2?. It consists of fully connected layers where each neuron is connected to all the neurons
in the next layer. At first, each value from independent variables is given as input. Weights
and biases are selected at random at the start. On basis of initial values of weights and biases
predictions are made. Then error is calculated on basis of predicted values and actual values.
On basis of error, weights and biases are updated. This procedure repeats until convergence.

2

2.5.3 Long Short Term Memory

LSTM is the neural network that takes previous knowledge into account for future predictions.
LSTM takes advantage of both long-term memory (LTM) and short-term memory (STM) to

learn. It has two basic mechanisms:

* Forgetting Mechanism: Forgets all the information that is not relevant.

* Saving Mechanism: Saves the information that is relevant and can help in the future.
To carry out the above tasks LSTM takes advantage of gates. There are 4 kinds of gates:

* Forget Gate: LTM uses forget gate to forget unuseful information.

* Learn gate Event (current input) and STM are combined so that recently learned infor-

mation can be applied to the current input.

14 CHAPTER 2. BACKGROUND

Long Short Term ——
Memory (LSTM) P(dog) = 0.2

P(wolf) = 0.8

Long Term Memory: Long Term Memory:

Dog (LTM) Updated Dog (LTM)

Short Term Memory: Use Gate Short Term Memory:

Cat (STM) Update Cat (STM)

Figure 2.1: Operations of LSTM [1]

* Remember gate: LTM, STM and event are combined at the remembering gate to update

the LTM.

» Use gate: LTM, STM, and event are combined to predict the current output and thus it

updates STM.

Figure 2.1 shows the working of LTM and STM using the gates and how the values are
updated. Figure 2.2 shows the basic architecture of LSTM.
This architecture can be divided for deep understanding. Figure 2.3 shows the architecture

of each gate used in the LSTM model.

2.5.4 Recurrent Neural Networks

Artificial neural networks and convolution neural networks work best in the case of sequential
image datasets respectively but fail for temporal data (dependency over time). Some examples
of temporal datasets are speech datasets and stock price datasets etc.

A recurrent neural network (RNN) is similar to ANN with a small addition, which is it also
takes previous input into account along with current information. The basic architecture of

RNN is shown in Figure 2.4

2.5. TIME SERIES MODELS 15

LSTM

LTM;) ——— [x| ——> + T LT M,

tanh

(T icmh_ l

0|+ X ——— STM,

Figure 2.2: Architecture of LSTM [1]

2.5.5 Mean Absolute Error

Absolute error is the error in the measurements. Simply speaking it is the difference between

the measured values and true values.

or = |z; — x| (2.3)

An absolute sign is needed because sometimes the difference is negative.

Mean absolute error is the mean of all the absolute errors.

n

1
MAE =~ > fa — 2 (2.4)

i=1

16 CHAPTER 2. BACKGROUND

Combine N
5TM1-1 tanh : *m—b Nt . i|-_
Ignore
E; .
It
Learn Gate
LTMt_1 Fa—k LTMt_1 . ft
STM: 4
fe
E;
Forget Gate

LTM; 4y —»| Forget Gate 1

STM; 1 —» Learn Gate 4T

LTM; 1 —»| Forget Gate

Use Gate
E;

Figure 2.3: Gates in LSTM

2.5. TIME SERIES MODELS

Yt Va1 Y2
w‘l" w‘l" w‘.l" w‘j"
5{_1 T, St -, 5t+1 - 5t+2
—_— — — —>
Ws M ws '. ws - WS
le'. WJ(WJ(w}l
Xt Xi+1 Xi+2

Figure 2.4: Architecture of RNN [2]

Yis2

Xi+3

17

Chapter 3

Mathodology

3.1 Machine Learning Pipeline

Building a Machine Learning pipeline is the first step in solving a machine learning problem.
Figure 3.1 shows the overall pipeline of the model.

As seen from the Figure 3.1, the first steps are to remove unwanted columns i.e., the indexing
column. This also includes the column that has a high correlation with the other independent
columns for example ROP and inverse ROP as inversely highly correlated.

The second step is to analyze the data and run the gap analysis on basis of the number of

gaps and length of each gap [14]. There are total of 4 scenarios:

1. Few gaps + low overall percentage

¢ sensor obstruction

* temporary sensor failure.
2. Few gaps + high overall percentage

* equipment setup change
* permanent sensor failure

* data corruption

3. Multiple gaps + low overall percentage

18

3.1. MACHINE LEARNING PIPELINE 19

[’

Drop unwanted
columns

Drop unwanted
columns

v v

Identify longest Identify longest

continuous data continuous data
section section

Drop columns
missing data

Drop columns
missing data

¥

A 4
;! rain/Test ; ;! rain/Test ;
L split) L split ’
Training Testing Training Testing
data data data data

v h 4 h 4 h 4
Missing data Missing data Missing data Missing data
imputation imputation AIC and BIC output for imputation imputation
e Optimal
¢ J' selected hyper ¢ Hyper- J'
Data Data parameters .| Data parameters | pata
Resampling Resampling “|Resampling "|Resampling
¢ = ¢ o
List of pairs of 3 for List of g g
N attributes with attributed g " PC.»f\ ttt: generlale g
Pearson=0.98 z ree feature columns Z
[[
ata tme v ¥
List of pairs of 3 for v PCA fo generate
attributes with three feature
Train/ Pearson=0.93 Train/ columns
Validation
split
Train model Train model
| (one model will get _g 5 »| (one model will get _g =
frained at one time) = trained at one time), =3
== @ =® z
o go £ “ go £
2lz s 2lz s
S|& = S|& =
= b = = b =
=Z|= 2 =Z|= z
£ S £ S
Validation loss Validation loss
check check
Validation Validation
loss stable loss stable
h 4 h 4
Trained Trained
Model Model
Calculate Error Calculate Error
h 4 h 4
Apply AIC and Apply AIC and
BIC BIC
h 4 ¥
Best Pair with Best Pair with
minimum AIC and minimum AIC and
BIC value BIC value

Figure 3.1: Flowchart for feature selection (left) and Data Resampling hyper-parameter tuning (right) via AIC and
BIC

20 CHAPTER 3. MATHODOLOGY

* uneven polling frequency

* sequential sensor use (MWD)
4. Multiple gaps + high overall percentage

* sensors with low polling frequency

* data received occasionally

If the gap sizes are too large then it means that data is actually missing and filling that data
is of no use and it is best to remove those columns. To find the columns that need to be removed
as they can not be filled, a gap coefficient was used [14]. The gap coefficient is given by:

l

GG = GQ, TL

(3.1)

where GC is the gap coefficient, i is gap length, G(Q); is the number of gaps of length i, and
TL is the total length. The gap coefficient for each attribute is calculated and if GC surpasses
a threshold value then it means that those gaps can not be filled and the attributes need to be
removed.

After that data is split into training data and testing data. Testing data is the one that needs

to be used for final testing after the model has been trained.

3.1.1 Missing Data Imputation

The next step in data pre-processing is to impute the missing values. There are several missing
data imputation methods but the K-nearest neighbors (KNN) data imputation method has proven
to be generally effective. In the KNN data imputation method, k nearest neighbors are identified
on basis of Euclidean distance for a specific missing value, and the mean value of the neighbors
is selected to be imputed at that particular missing point. Euclidean distance is calculated by
Equation 3.2. For data imputation, KNN imputer with 3 nearest neighbors has been used with

Euclidean distance.

(3.2)

3.1. MACHINE LEARNING PIPELINE

3.1.2 Data Resampling

21

Data Resampling is an important step as i=time series analysis models require evenly sampled

data. Two types of resampling methods have been used and tuned. The methods are:

» Radius Neighbors Regressor

* KNN Regressor

For hyper-parameter optimization of data resampling methods following parameters were

considered:

1. Resampling Weights

* Uniform: All points in the neighbourhood are given equal weights.

* Distance: All points are given weights on basis of the distance from the point under

consideration. Closer points have more weight then points that are far.

2. Algorithm to compute NN

* Ball Tree Algorithm

* KD Tree Algorithm
3. Distance Metric

* 1: Manhattan Distance (Equation 3.3)
 2: Euclidean Distance (Equation 3.2)

* 3: Minkowski Distance (Equation 3.4)

d(p,q) =) la;: — pi
=1

n

Z(qi —p;)" where, v >0

=1

(3.3)

(3.4)

22 CHAPTER 3. MATHODOLOGY
3.1.3 Feature Selection

Feature selection is an important step of the pipeline as there are features that support the ma-
chine learning model and there are features that degrade the efficiency and accuracy of the
model. Feature selection is the process of selecting the relevant features or generating new
features for reducing the dimension of the data and fitting the model appropriately. There are

several feature selection methods, some of them are:

Principal Component Analysis (PCA)

The principal component analysis is a statistical procedure, that summarizes the high dimen-
sional data into lower dimensional data using the principal components of the data points.

PCA finds the lines, planes, and hyper-plane in k-dimensional space and approximates the
data on basis of least square approximation. This is done by making the variance of the coordi-
nates as large as possible on the line/plane.

The steps involvind the PCA are:

1. Suppose a matrix X with N rows and K columns. Plot each point on K-dimensional space

after scaling to unit variance.

2. Subtract variable averages from the data to get a mean-centering vector, that represents a

point in the data.
3. Origin is shifted to the mean-centering point.

4. First principal component (PC1) is found by fitting a line passing through the mean-
centering point and is the best fit on basis of the least square. Each point can be projected

onto this line to get a new value.

5. Second principal component (PC2) is found by passing a line perpendicular to the first

component. This represents the second-largest variation in the data.

PC1 and PC2, combined together represent the whole data. For hyper-parameter tuning of

the resampling step, PCA has been used to generate new features.

3.1. MACHINE LEARNING PIPELINE 23
Pearson Correlation

Pearson correlation is the method that finds correlation between independent variables and de-
pendent variables of the data by assigning the value between -1 and 1. Where, -1 means total
negative correlation, O means no correlation and 1 means total positive correlation. Pearson

correlation can be found by:

 Sm-aw=9 .
N CED DTk)

Pearson correlation can help in removing the independent variables that have a high corre-

lation between them and can also help in identifying the columns that have a high correlation
with the dependent variable.

AIC and BIC can be combined with Pearson correlation to find the best features. Top fea-
tures with high correlation can be used to further reduce the number of training features by
using AIC and BIC. After applying Pearson correlation, features are combined in pairs of 3,
and then after running the model on a single combination, AIC and BIC value is calculated.
Feature pairs with a minimum value of AIC and BIC are the best pair and can be used to get the

best results. For the selection of best variables, Pearson with AIC and BIC has been used.

Time Series Prediction

Different models has been combined for generating the models that has been used for time
series prediction. Time series prediction model has been combined with mylti-layer perceptron
(MLP) model. Where, MLP is the fully connected feed forward, artificial neural network. The

combinations are as follow:

1. LSTM + MLP (Figure 3.2)

2. RNN + MLP (Figure 3.3)

3. LSTM + RNN + MLP (Figure 3.4)

24

CHAPTER 3. MATHODOLOGY

P N

< 2 o - < 2 o -
= = = = = = = =
w w w w w w w w
z| **% |5 = = z| **% |5 = =
L= L= L= L= L= L= L= L=
= Il = Il
[k [k [k [k [k [k [k [k
= = = = = = = =
4] 4] 4] 4] 4] 4] 4] 4]
O O O O O O O O
LSTM] Dense
| Dropout
Dense Dense
Dropout | | Dropout
Concatenate
Dense
Dense
Target at cee Target at| |Target at| Target at
b Aie1 A4z Az

Figure 3.2: Model architecture of LSTM + MLP

3.1. MACHINE LEARNING PIPELINE

P

< o o - < o o -
w2 w2 w2 w2 w2 w2 w2 w2
w . e® w w w w . e® w w w
- - - - - - - -
= = = = = = = =
e sl e |& e sl e |&
[1H] [1H] [1H] [1H] [1H] [1H] [1H] [1H]
w w w w w w w w
= = = = = = = =
k] k] k] k] k] k] k] k]
& & & & & & & &
RMNN Dense
| Dropout
Dense Dense
| Dropout | | Dropout

Concatenate

i

Dense
Dense
Target at .o e Target at| (Target at| Target at
® Hie1 Hi+z Hez

Figure 3.3: Model architecture of RNN + MLP

25

CHAPTER 3. MATHODOLOGY

26

9
o

LR STRETHETY asuag
_ e jablel TV_ asuag
_ Ely e jabiel TV_ asuag
.
[]
.
Uy e jablel TV_ asuag
_ e jebie) TV_ asuag
_ 2l e jpblel TV_ asuag
_ Ely e jabiel TV_ asuag
.
[]
.
Uy e jablel TV_ asuag
_ e jebie) TV_ asuag
_ 2l e jpblel TV_ asuag
_ Ely e jabiel TV_ asuag
.
[]
.
Uy e jablel TV_ asuag

| R e A I e B B

Dense

s
L

|

Dropout

h A

A

RMNMN

h A

h 4

A

LSTM™

h A

|

h 4

Dense

Dense

Dense

Dropout

Dropout

Dropout

Concatenate

Dense

Y

Dense

Y

A+

Y

sz

Y

A1

Y

Figure 3.4: Model architecture of LSTM + RNN + MLP

Chapter 4

Results and Discussion

4.1 Dataset

The Volve dataset Equinor ! was published in 2018. The fossils here are sandstone of the middle
Jurassic age in the Hugin Formation. The depth of the Volve field is 2700m and 3100m where
the seabed ends at 80m. The field was completely shut down by 2018 and the dataset was
released to enhance the research in the oil and gas industry. During the whole operation, 56000
barrels per day were extracted from the oil field on average. The data that has been released has

40000 files of various kinds. The dataset has 75% and 80% data gaps or empty cells

4.2 Simulation Environment

All the simulations took place on Google Colab Jupyter notebooks with 12.75GB RAM and
Tesla P100 16GB and Tesla P4 GPUs.
AT first KNN imputer was applied to the three nearest neighbors. This step does not need
validation as it is a necessary step. Although it can be compared with other imputation models.
After that, the hyper-parameter tuning of the resampling step was done where two methods,
KNN regressor, and Radius Neighbour regressor were compared on basis of their parameter
values. For this stage, the feature selection step was not used and simply PCA was implemented.

After applying PCA, the model used for the time series prediction was LSTM. AIC and BIC

"https://data.equinor.com/dataset/Volve

27

28 CHAPTER 4. RESULTS AND DISCUSSION

have been calculated after fitting the model for each combination of the resampling method and
its hyper-parameters.

During the feature selection first, the Pearson correlation was applied. From Pearson corre-
lation, parameters with more than 98% correlation with the output parameter were selected and
all possible combinations of 3 parameters were made from them. These combinations of the
parameters were used to train the model one by one. AIC and BIC values were calculated after
each run and a combination with the minimum value of AIC and BIC was selected as the best.
During feature selection resampling method was used which was best in the previous stage, and
the model used was LSTM + MLP.

The last step is model selection, in this step different models were tested for the best resam-
pling method and best parameters, In the end, the best model was selected on basis of mean

absolute error.

4.3 KNN-Imputation

In KNN imputation the nearest neighbors are selected as 3. Each row is imputer separately
on basis of the distance from the 3 nearest neighbors. Figure 4.1 shows the plots of some
parameters before and after the KNN imputation.

As it can be seen from the Figure 4.1, the graphs are quite predictable when seen, and after

imputation, the graphs are as expected.

4.4 Resampling Hyperparameter Tuning

As described in the previous section, two methods were compared for the resampling, and for
each method, hyper-parameters has been tuned. Table 4.1 shows all the possible combinations
that have been tested and their respective AIC, BIC, and mean absolute error value. As it can
be seen from the table the minimum value has been obtained for radius neighbor regressor with
uniform distance using ball tree algorithm and with Minkowski distance. For this combination,

all the output evaluation matrices have minimum values.

4.4. RESAMPLING HYPERPARAMETER TUNING 29
Table 4.1: Results for resampling method selection and hyper-parameter tuning
;e;fl‘::)‘glmg Weight | Algorithm | P4 AIC BIC MAE
Manhatten | 1393477.80 | 3716214.07 | 9.17
ball_tree Euclidean | 1392074.95 | 2267638.43 | 7.57
uniform Minkowski | 1392066.43 | 2267629.91 | 6.42
Manhatten | 1392075.74 | 2267639.22 | 7.68
kd_tree Euclidean | 1392076.66 | 2267640.14 | 7.82
cadius Minkowski | 1392076.05 | 2267639.53 | 7.73
Manhatten | 1392077.07 | 2267640.54 | 7.88
ball_tree Euclidean 1392077.79 | 2267641.27 | 7.99
distance Minkowski | 1392079.65 | 2267643.13 | 8.28
Manhatten | 1392079.22 | 2267642.70 | 8.22
kd_tree Euclidean | 1392078.76 | 2267642.24 | 8.14
Minkowski | 1392077.07 | 2267640.55 | 7.88
Manhatten | 1392068.59 | 2267632.07 | 6.69
ball_tree Euclidean | 1392080.39 | 2267643.87 | 8.40
uniform Minkowski | 1392073.25 | 2267636.73 | 7.32
Manhatten | 1392077.83 | 2267641.31 | 8.00
kd_tree Euclidean | 1392076.82 | 2267640.30 | 7.84
Knn Minkowski | 1392077.79 | 2267641.27 | 7.99
Manhatten | 1392077.77 | 2267641.25 | 7.99
ball_tree Euclidean 1392077.91 | 2267641.38 | 8.01
distance Minkowski | 1392075.77 | 2267639.25 | 7.68
Manhatten | 1392078.59 | 2267642.07 | 8.11
kd_tree Euclidean | 1392078.09 | 2267641.57 | 8.03
Minkowski | 1392079.04 | 2267642.52 | 8.19

30 CHAPTER 4. RESULTS AND DISCUSSION

Corrected Total Hookload kkgf Corrected Hookload kkgf
105
170
100
160 "
B
150
90
140 .
130 80
120 / - 75
10 ; . ; . : 70 . ; . ; :
2000 4000 6000 8OO0 10000 2000 4000 6000 8000 10000
Corrected Total Hookload kkgf Corrected Hookload kkgf
105
170
100
160
%
150
90
140 &
130 80
120
110 +— ; . ; . . ; . ; .
0 2000 4000 6000 8000 0 2000 4000 6000 8000

Figure 4.1: Graphs before (top) and after (bottom) KNN imputation

4.5 Feature Selection

AIC and BIC have been used for feature selection too. Here at first, the Pearson correlation

matrix was found which is shown in Figure 4.2.

After Pearson correlation, parameters were extracted having a correlation value greater than

98% with the dependent variable as shown in Table 4.2.

From these parameters, all possible combinations of the three parameters have been made.

Table 4.2: Pearson Correlation of parameters with dependent variables

Parameter Pearson Correlation
Measured Depth m 0.9813667349941119
Hole depth (MD) m 0.9813684472500676
Hole Depth (TVD) m 0.9826332567926808
Corrected Total Hookload kkgf | 0.9827814199492585
Extrapolated Hole TVD m 0.9828458285022305
Bit Drill Time h 0.9854056047108368
RGX_RT unitless 0.9909452831190304
RHX_RT unitless 0.998696718883108

4.5. FEATURE SELECTION

MIN CONF unitless

Corrected Surface Weight on Bit kkgf
MWD Raw Gamma Ray 1/s

Bit Drill Time h

Pump Time h

Average Hookload kkagf

MWD Gamma Ray (APl BH corrected) gAPI 28
Total Bit Revolutions unitless -2

Hole Depth (TVD) m

BHFG unitless

MWL DNI Temperature degC -z
SHE3TM RT min

SIAC kPa

O5TM 5

Pump Time h ="

Average Hookload kkgf -

Bit Drill Time h_:
MWD Gamma Ray (APl BH corrected) gaAPI -

Measured Depth m -
MIN CONF unitless -
Corracted Surface Weight on Bit kkgf ="

MWD Raw Gamma Ray 1/5 —ai
Total Bit Revolutions unitless -
Hole Depth (TVD) m

Figure 4.2: Heatmap of pearson correlation

RHX ET unitless -

Rig Mode unitless _

Average Standpipe Pressure kPa - o

172t ROP m/h -

BHFG unitless -

MWD DNI Temperature degC

S1AC kPa -*
OSTM s _i

SHKITM_RT min ="

31

-100

- 075
0.50
0.25
000
-0.25
—0.50

-0.75

32 CHAPTER 4. RESULTS AND DISCUSSION

AIC

1393560.00
1393540.00
1393520.00
1393500.00
1393480.00
1393460.00
1393440.00
1393420.00
1393400.00
1393380.00

12 3 45 6 7 8 9 101112 13 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Parameter Combination Number

BIC
3716300.00
3716280.00
3716260.00
3716240.00
3716220.00
3716200.00
3716180.00
3716160.00
3716140.00
3716120.00

1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Parameter Combination Number

Figure 4.3: AIC (top) and BIC (bottom) graphs for different parameter combinations

All possible combinations can be seen in Appendix A. These parameters have been then used
to train the model and AIC and BIC values have also been calculated for each combination.
Figure 4.3 shows the graph of AIC and BIC values for each combination. From the graphs it is
clear that the minimum AIC and BIC value has been achieved at combination number 46 which

has the following parameters:

 Corrected Total Hookload kkgf

 Extrapolated Hole TVD m

e Bit Drill Time h

AIC and BIC value for this combination is 1393443.28 and 3716179.55 respectively.

4.6. MODEL SELECTION 33

Table 4.3: Mean Absolute Error after training different models.

Model MAE
LSTM + MLP 8.8
RNN + MLP 8.71
LSTM + RNN + MLP | 8.82

4.6 Model Selection

All the parameters have been tuned and fixed, models were selected from among the models
that have been highlighted in the previous chapter. For each model mean absolute error (MAE)
value has been noted and the model has a minimum MAE value that has been selected as the
best. The results have been shown in Table 4.3.

For each model, the respective prediction curve can be seen in Figure 4.4. As it can be seen
from the figure, RNN is showing the best results, the variance in the prediction line is less as

compared to other models.

34

CHAPTER 4. RESULTS AND DISCUSSION

test

30.3 { —— LSTM input F(
LSTM output, true 7
30.2 9 —— L5TM output, predicted
3001 + ‘{1
30.0 1
f
29.9 -
29.8 1 -
29.7 1
T T T T T T
o 10 20 30 40 50
test
= BNM input
30.6 - RNM output, true
) —— RNM output, predicted
30.4 1
30.2 1
30.0 -
29.8 -
T 1 T T 1 T
o 10 20 30 40 S0
test
30.2 -
3000 1 /_
29.8 1 4
255 1 — RNN_LSTM input
RNM_LSTM output, true
— RNMN_L5TM output, predicted
T 1 T T 1 T
o 10 20 30 40 S0

Figure 4.4: AIC (top) and BIC (bottom) graphs for different parameter combinations

Chapter 5

Conclusion and Future Work

5.1 Conclusion

This research aims to build and improve an ML pipeline via hyper-parameter optimization. At
first, an already existing pipeline has been studied and work has been done to improve it. This
thesis aimed at improving missing data imputation, resampling, feature selection, and in the
end model selection. Missing data imputation has been done by KNN imputer which imputed
the missing values on basis of nearest neighbors. After that, the resampling method has been
selected after tuning their hyper-parameters. For feature selection firstly Pearson correlation has
been used to narrow down the top relevant features, after that all possible combinations of these
features have been created as a group of three. AIC and BIC values have been used to select
the most optimal set of parameters. After feature selection, three models were considered and
compared on basis of mean absolute error (MAE). RNN + MLP surpasses all the other models

on basis of MAE.

5.2 Future Work

In the future, these results can be further improved and tested by joining all the parameter
selections as one. As in this research, parameter optimization for each step has been done

separately.

35

References

(1]
(2]
(3]
(4]

(5]

(6]

(7]

(8]

(9]

(10]
(11]
[12]

[13]

(14]

[15]

(16]

[17]

Gourav Singh. Understanding architecture of 1stm, 2021.
Gourav Singh. Recurrent neural networks for sequence learning, 2020.
Sana Mushtaq. Data preprocessing in detail, 2019.

Jinlin Zhu, Zhigiang Ge, Zhihuan Song, and Furong Gao. Review and big data perspectives on robust data
mining approaches for industrial process modeling with outliers and missing data. Annual Reviews in Control,
46:107-133, 2018.

Chengqi Zhang, Yongsong Qin, Xiaofeng Zhu, Jilian Zhang, and Shichao Zhang. Clustering-based missing
value imputation for data preprocessing. In 2006 4th IEEE International Conference on Industrial Informat-
ics, pages 1081-1086. IEEE, 2006.

RS Somasundaram and R Nedunchezhian. Evaluation of three simple imputation methods for enhancing
preprocessing of data with missing values. International Journal of Computer Applications, 21(10):14-19,
2011.

Jianglin Huang, Yan-Fu Li, Jacky Wai Keung, Yuen Tak Yu, and WK Chan. An empirical analysis of
three-stage data-preprocessing for analogy-based software effort estimation on the isbsg data. In 2017 IEEE
International Conference on Software Quality, Reliability and Security (ORS), pages 442-449. IEEE, 2017.

Xiaolong Xu, Weizhi Chong, Shancang Li, Abdullahi Arabo, and Jianyu Xiao. Miaec: Missing data imputa-
tion based on the evidence chain. IEEE Access, 6:12983-12992, 2018.

F Nelwamondo and Tshilidzi Marwala. Key issues on computational intelligence techniques for missing data
imputation-a review. In Proc. of world multi conf. on systemics, cybernetics and informatics, volume 4, pages
35-40, 2008.

Little Rja and Donald B Rubin. Statistical analysis with missing data. New York, 1987.
Donald B Rubin. Multiple imputation for survey nonresponse, 1987.

Yagyanath Rimal. Multivariate imputation for missing data handling a case study on small and large data
sets. International Journal of Human Computing Studies, 2(1):5-11, 2020.

Qian Liu and Manfred Hauswirth. A provenance meta learning framework for missing data handling meth-
ods selection. In 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication
Conference (UEMCON), pages 0349-0358. IEEE, 2020.

Andrzej T. Tunkiel, Dan Sui, and Tomasz Wiktorski. Impact of data pre-processing techniques on recurrent
neural network performance in context of real-time drilling logs in an automated prediction framework.
Journal of Petroleum Science and Engineering, 208:109760, 2022.

Andrzej T. Tunkiel, Dan Sui, and Tomasz Wiktorski. Reference dataset for rate of penetration benchmarking.
Journal of Petroleum Science and Engineering, 196:108069, 2021.

Andrzej T. Tunkiel, Dan Sui, and Tomasz Wiktorski. Training-while-drilling approach to inclination predic-
tion in directional drilling utilizing recurrent neural networks. Journal of Petroleum Science and Engineering,
196:108128, 2021.

Andrzej T. Tunkiel, Dan Sui, and Tomasz Wiktorski. Data-driven sensitivity analysis of complex machine
learning models: A case study of directional drilling. Journal of Petroleum Science and Engineering,
195:107630, 2020.

36

REFERENCES 37

[18] Andrzej T Tunkiel, Tomasz Wiktorski, and Dan Sui. Continuous drilling sensor data reconstruction and
prediction via recurrent neural networks. In International Conference on Offshore Mechanics and Arctic
Engineering, volume 84317, page VOO1TO1A002. American Society of Mechanical Engineers, 2020.

[19] Andrzej T Tunkiel, Tomasz Wiktorski, and Dan Sui. Drilling dataset exploration, processing and interpre-
tation using volve field data. In International Conference on Offshore Mechanics and Arctic Engineering,
volume 84430, page VO11T11A076. American Society of Mechanical Engineers, 2020.

[20] Richard Y Wang, Veda C Storey, and Christopher P Firth. A framework for analysis of data quality research.
IEEE transactions on knowledge and data engineering, 7(4):623-640, 1995.

[21] Xingquan Zhu and Xindong Wu. Class noise vs. attribute noise: A quantitative study. Artificial intelligence
review, 22(3):177-210, 2004.

Appendices

38

Appendix A

Parameter Combinations

Sr. No. Pl1 P2 P3

0 Hole Depth (TVD) m

1 Corrected Total Hookload kkgf

2 Hole depth Extrapolated Hole TVD m

3 (MD) m Bit Drill Time h

4 RGX_RT unitless

5 RHX_RT unitless

6 Corrected Total Hookload kkgf

7 Extrapolated Hole TVD m
Hole Depth

8 Bit Drill Time h
(TVD) m

9 RGX_RT unitless

Measured
10 RHX_RT unitless
Depth m

11 Extrapolated Hole TVD m

12 Corrected Total Bit Drill Time h

13 Hookload kkgf RGX _RT unitless

14 RHX_RT unitless

15 Bit Drill Time h
Extrapolated

16 RGX_RT unitless
Hole TVD m

17 RHX_RT unitless

40

18 Bit Drill RGX_RT unitless

19 Time h RHX _RT unitless
RGX_RT

20 RHX _RT unitless
unitless

21 Corrected Total Hookload kkgf

22 Extrapolated Hole TVD m
Hole Depth

23 Bit Drill Time h
(TVD) m

24 RGX_RT unitless

25 RHX _RT unitless

26 Extrapolated Hole TVD m

27 Corrected Total Bit Drill Time h

Hole depth
28 Hookload kkgf RGX_RT unitless
(MD) m

29 RHX_RT unitless

30 Bit Drill Time h
Extrapolated

31 RGX_RT unitless
Hole TVD m

32 RHX_RT unitless

33 Bit Drill RGX _RT unitless

34 Time h RHX _RT unitless
RGX_RT

35 RHX_RT unitless
unitless

36 Extrapolated Hole TVD m

37 Corrected Total Bit Drill Time h

38 Hookload kkgf RGX _RT unitless

39 RHX _RT unitless

40 Hole Depth Bit Drill Time h
Extrapolated

41 (TVD) m RGX_RT unitless
Hole TVD m

42 RHX_RT unitless

43 Bit Drill RGX_RT unitless

44 Time h RHX _RT unitless

41

42

APPENDIX A. PARAMETER COMBINATIONS

RGX_RT
45 RHX_RT unitless
unitless
46 Bit Drill Time h
Extrapolated
47 RGX_RT unitless
Hole TVD m
48 Corrected Total RHX RT unitless
49 Hookload kkgf Bit Drill RGX _RT unitless
50 Time h RHX_RT unitless
RGX_RT
51 RHX_RT unitless
unitless
52 Bit Drill RGX_RT unitless
Extrapolated
53 Time h RHX_RT unitless
Hole TVD m
54 RGX_RT unitless RHX RT unitless

55

Bit Drill Time h RGX_RT unitless

RHX_RT unitless

Appendix B

Python Code

B.1 Resampling Method Optimization

import fbprophet

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt
import sys

import random

from sklearn.preprocessing import MinMaxScaler

from numpy.random import seed
import tensorflow as tf

from tensorflow.keras.utils import plot_model

from pca_mod import shift_pca
from pca_mod import shift_notpca

from sklearn.preprocessing import StandardScaler

from statistics_module import stats
import itertools

#%matplotlib qt

df = pd.read_csv(’f9ad.csv’).iloc[:, 2:]
drops = []

cols = df.columns
for i in range(len(df.T)):
if str(np.dtype(df.iloc[:, i]))=="object’:
drops.append(cols[i])
print (drops)

43

34

36

37

44

APPENDIX B. PYTHON CODE
df = df.drop(columns = drops)
index = ’Measured Depth m’
target = °'MWD Continuous Inclination dega’
smartfill = 0.9
s, m, per = stats (df)

Listing B.1: Importing data

#9%
Gap statistics for target
#
This chart will show the percentage of dataset occupied by gaps
of a certain
size. Gaps are normal in drilling logs and nothing to be afraid
of
x_label = per[target][gap_sizes]
x = np.arange (0, len(x_label) ., 1)
y = per[target][percentage_cells_occupied]
plt.figure(figsize=(15, 8))
plt.xticks(x, x_label, rotation=90)
plt.bar(x,y)
plt.title (f Gap distribution in:\n {target}’)
plt.xlabel (Gap length’)
plt.ylabel (’Percentage of dataset occupied’)
x_labels = x.tolist ()
x_labels[0] = *data’
plt.xticks(x, x_labels)
plt.grid ()
plt.show ()
#9%
Outlier detection
outlier_cutoff = 0.005 #arbitrarily selected
calculation that penalizes long, rare, continuous gaps
out_coef = per[target][’ gap_sizes’] / (per[target][gap_counts’]
* len (df))
x = np.arange (0,len(per[target][’ gap_sizes’']),1)
x_label = per[target][’ gap_sizes]
x = np.arange (0, len(x_label) , 1)

8))

rotation=90)

plt.figure(figsize=(15,
plt. xticks (x, x_label,

B.1. RESAMPLING METHOD OPTIMIZATION 45

39 plt.bar(x,out_coef)

40 plt.ylim(0,0.01)

41 plt.plot(x,[outlier_cutoff]«len(x), color="red’, label="cutoff’)

P plt.legend ()

43 x_labels = x.tolist ()

m x_labels[0] = ’data’

45 plt.xticks(x, x_labels)

46 plt.title (f’Gap occupancy = gap size / (relative gap quantity) \n
in:{ target}’)

47 plt.xlabel (Gap length’)

4 plt.ylabel (’Gap occupancy’)

49 plt.grid ()

50 plt.show ()

51

5 #9%

53 ## Automatic proposal of useful area, part 1

54

55 # find the smallest outlier gap

56 # outlier coefficients — True when above outlier cutoff

57 cutoff_map = (out_coef >= outlier_cutoff)

58

59 # Using map created above, what is the smallest outlier?

60 lower_cutoff = np.min(np.asarray (per[target][gap_sizes])[

cutoff_map])

61

62 # This is done to quickly mark gaps bigger than cutoff with zero
and

63 # other with NaN. This makes a good chart.

64 from functools import partial

65

66 def _cutoff(x, lower_cutoff=0):

67 if x >= lower_cutoff:

68 return 0

6 else:

70 return np.nan

71

7 _cutoff_par = partial (_cutoff, lower_cutoff=lower_cutoff)

73 mapped_outliers = list (map(_cutoff_par, m[target]))

74 plt.figure (figsize=(15, 8))

75 plt.scatter (df[index], df[target], s=1, c="black’, label="data’)

76 plt.plot(df[index], mapped_outliers, c="red’, label="Unusuable
range ’)

77 # # has to be
plot to avoid index

78 # #

discontinuities

79

80 plt.grid ()
81 plt.legend ()
82 plt.title (*Useful range analysis’)

83 plt.xlabel (f’{index})

46 APPENDIX B. PYTHON CODE

84 plt.ylabel (f {target}’)

85 plt.show ()

86 #9%

87

88 ## Automatic proposal of useful area, part 2

89

90 # Simply finds the biggest area with acceptable gaps

91

9 # TODO — check if the algorithm will detect a stride at the end
of the dataset

93 # because I have a feeling it won’t!

94

95 strides = []

96

07 s_start = -1

08 s_stop = -1

99

100 for i in range(len(df)):

101 if mapped_outliers[i] != 0 and s_start == —1:

102 S_start = 1

103 elif mapped_outliers[i] == 0 and s_start != -1:

104 S_stop = i

105 strides .append ([s_start , s_stop, s_stop — s_start])
106

107 s_start = —1

108 S_stop = -1

109
110 strides np.asarray (strides)
1" strides = strides|[strides [:,2].argsort()][::—=1] # sort by length

[2]

12 # and reverse

13 print (f’°’ Proposed range to use is row {strides[0,0]} to row {
strides [0,1]}

114 for total of {strides[0,0]} rows

115)

116 print (f’ All found strides are: [start, stop, length]’)

17 print(strides)

118

19 s_start = strides[0,0]

120 s_stop = strides [0,1]

121 #WU%

122

123 ## cut the dataframe for the selected stride, redo the stats

124 # From now on dfs is used (dataframe stride)

125 margin_percent = 1 # since the edges can be a bit unpredictable ,
margin 1is

126 # removed

127

128 s_start = s_start + int((s_stop — s_start) %= 0.0l*margin_percent)

129 s_stop = s_stop — int((s_stop — s_start) % 0.0lxmargin_percent)

130 dfs = df.iloc[s_start:s_stop] # dfs = DataFrameStride

149

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

. RESAMPLING METHOD OPTIMIZATION 47

s, m, per = stats (dfs)
#9%%
Removing columns that contain big gaps
from functools import partial
def _cutoff_inv(x, lower_cutoff=0):

if x >= lower_cutoff:

return 1
else:

return 0

_cutoff_par

partial (_cutoff_inv, lower_cutoff=lower_cutoff)

killed_cols

[]

for column in list (dfs):
mapped_outliers = list (map(_cutoff_par, m[column]))
offender_count = np.sum(mapped_outliers)
if offender_count > O:
dfs = dfs.drop(columns = [column])
killed_cols.append ([column, 100xoffender_count/len (dfs)])

killed_cols = pd.DataFrame (killed_cols , columns=[’Name’,’ Percent
offending '])

print (’Removed following columns due to outlier gap (showing
under 15% only):’)

print (killed_cols.sort_values (by="Percent offending’)[killed_cols
[Percent offending’] < 15])

#9%

Checking if first derivative of index is stable.
index_dr = np.diff(dfs[index])

index_mean = np.mean(index_dr)

index_std = np.std(index_dr)

index_maxgap = np.max(index_dr)

deviation = np.abs(index_dr — index_mean)/index_std

print (f ’Maximum distance from mean is {np.max(deviation):.1f}
standard deviations)

print (f’If this value is above 6, there may be too high sampling
frequency variation’)

#9%

Counting zeros in the first derivative to see if it should be

177

178

179

180

181

182

184

185

186

188

189

190

191

192

193

194

195

196

197

198

199

200

201

203

204

205

206

48

APPENDIX B. PYTHON CODE

ffilled
or linearly interpolated

NOTE: Actual filling will not happen here, but AFTER the data
split

fill_method = {}
for attribute in list (dfs):

dropna_diff = np.diff (dfs[attribute].dropna())
zeros_p = np.count_nonzero(dropna_diff == 0) / len(
dropna_diff)

if zeros_p >= smartfill: # Threshold to check?
fill_method [attribute] = ~ffill’

else:
fill_method[attribute] = ’linterp’

#9%%
#9%%

Gap filling - but only forward filling. Linear interpolation
is done later

Resampling helps with uneven distribution of data
Timeseries models wants data points to be evenly spaced in time
domain
for attribute in list (dfs):
if fill_method[attribute] == " ffill *:
dfs[attribute] = dfs[attribute]. ffill (). bfill ()#.rolling
(5, center=True).mean (). ffill (). bfill ()

Listing B.2: Gap Analysis

split = 0.6 #portion of data available
future = 0.15 #section after available, for testing

from fancyimpute import KNN, NuclearNormMinimization, SoftImpute,
BiScaler
from fancyimpute import Iterativelmputer

cols = dfs.columns
masked = np.nonzero(pd.isnull (dfs.values))

xx = masked[O0]
yy = masked[1]

B.1. RESAMPLING METHOD OPTIMIZATION 49

miss

ing_mask = np.concatenate ((xx[:, None],yy[:, None]), axis=1)

M_data = np.nan_to_num (dfs)

masked = np.nonzero(M_data)

xXx = masked[O0]

yy = masked[1]

observed_mask = np.concatenate ((xx[:, None],yy[:, None]), axis=1)
X_filled_knn = KNN(k=3).fit_transform (dfs)

dfsl = pd.DataFrame (X _filled_knn)

dfs1.columns = cols

dfs1 .head ()

X = dfsl.drop(target, axis=1)

y

from
from

)

LSTM,

dfsl[target].to_frame ()

Listing B.3: KNN Imputation

tensorflow . keras import Model, Input
tensorflow . keras.layers import (Dense, Dropout, GRU, Flatten

GaussianNoise , concatenate ,

Bidirectional ,

TimeDistributed)

from
from
from
from

tensorflow . keras . layers import ConvlD

tensorflow . keras . layers import MaxPoollD
tensorflow . keras . callbacks import EarlyStopping
tensorflow . keras . callbacks import ModelCheckpoint

import tensorflow as tf

from

tensorflow . keras . models import load_model

import math

import tensorflow as tf

print ("Num GPUs Available: ", len(tf.config.list_physical_devices
(°GPU")))
Listing B.4: Importing Neural Networks Libraries
def models(visiblel , visible2 , model_name="RNN"):
if model_name == ’'RNN’:
x1 = TimeDistributed (Dense (hDense4)) (visiblel)
x1 = GRU(units=hGRU, kernel_initializer = ’glorot_uniform’,

recurrent_initializer="orthogonal ’,

APPENDIX B. PYTHON CODE

bias_initializer="zeros", kernel_regularizer="12",

recurrent_regularizer=None,

bias_regularizer=None, activity_regularizer=None,

kernel _constraint=None,

recurrent_constraint=None, bias_constraint=None,

return_sequences:True 9

return_state=False, stateful=False)(x1)

x1 = Dense(imagination) (x1)
x1 = Flatten () (x1)
x1 = Dropout(hDropl) (x1)

x2 = TimeDistributed (Dense(hDense5))(visible2)

dense2 = Dense(hDensel, activation="linear")(x2)

drop?2 Dropout (hDrop2) (dense2)

flat2 Flatten () (drop2)

dense2 = Dense(imagination, activation=’linear’)(flat2)

drop2 = Dropout(hDrop3) (flat2)
model = concatenate ([x1, drop2])
if model name == ’LSTM’:
x1 = TimeDistributed (Dense(hDense4))(visiblel)
x1 = LSTM(units=hGRU, kernel_initializer = ’glorot_uniform’,
recurrent_initializer="orthogonal ’,
bias_initializer="zeros", kernel_regularizer="12",

recurrent_regularizer=None,

bias_regularizer=None, activity_regularizer=None,

kernel _constraint=None,

recurrent_constraint=None, bias_constraint=None,

return_sequences=True,

return_state=False, stateful=False)(x1)

x1 = Dense(imagination) (x1)
x1 = Flatten () (x1)
x1 = Dropout(hDropl) (x1)

x2 = TimeDistributed (Dense(hDense5))(visible2)

dense2 = Dense(hDensel, activation="linear")(x2)

drop?2 Dropout (hDrop2) (dense2)

flat2 Flatten () (drop2)

dense2 = Dense(imagination, activation=’linear’)(flat2)
drop?2 Dropout (hDrop3) (flat2)

model = concatenate ([x1, drop2])

if model name=="RNN LSTM’ :

60

69

B.1. RESAMPLING METHOD OPTIMIZATION

x1
x1

TimeDistributed (Dense (hDense4)) (visiblel)

recurrent_initializer="orthogonal ’,

GRU(units=hGRU, kernel_initializer = ’glorot_uniform’

51

’

bias_initializer="zeros", kernel_regularizer="12",

recurrent_regularizer=None,

bias_regularizer=None, activity_regularizer=None,

kernel constraint=None,

recurrent_constraint=None, bias_constraint=None,

return_sequences=True ,
return_state=False, stateful=False)(x1)

x1 = Dense(imagination) (x1)

x1 = Flatten () (x1)

x1 = Dropout(hDropl) (x1)

x3 = TimeDistributed (Dense (hDense4))(visiblel)

x3 = LSTM(units=hGRU, kernel_initializer = ’glorot_uniform’

recurrent_initializer="orthogonal ’,

bias_initializer="zeros", kernel_regularizer="12",

recurrent_regularizer=None,

bias_regularizer=None, activity_regularizer=None,

kernel constraint=None,

recurrent_constraint=None, bias_constraint=None,

return_sequences=True ,
return_state=False, stateful=False) (x3)

x3 = Dense(imagination) (x3)
x3 = Flatten () (x3)
x3 = Dropout (hDropl) (x3)

x2 = TimeDistributed (Dense (hDense5)) (visible2)

dense2 = Dense(hDensel, activation="linear")(x2)

drop2 = Dropout(hDrop2) (dense?2)

flat2 = Flatten () (drop2)

dense2 = Dense(imagination , activation="linear’) (flat2)
drop2 = Dropout(hDrop3) (flat2)

model = concatenate ([x1, x3, drop2])

return model

Listing B.5: Defining Machine Learning Models

hstep_extension = 5

resample="yes’

resample_coef = 1
#resample_weights="distance’

step_length = index_mean * hstep_extension

)

46

48

49

52

if resample != ’'no’:

grid = [[’radius’, ’knn’], [’ uniform’,

>, “kd_tree’], [1, 2, 3]]
elif resample == ’'no’:

grid = [[1], [1], [1], [I1]]

AIC_vals = []
BIC_vals = []
parameters = []
mae = []
log_res = []

for a in range(len(grid[0])):
resample=grid [0][a]
for b in range(len(grid[1])):
resample_weights=grid[1][b]
for ¢ in range(len(grid[2])):
algorithm_test = grid[2][c]

for d in range(len(grid[3])):

metric=grid [3][d]

if split != 1:

APPENDIX B. PYTHON CODE

distance’], [’ball_tree

splitpoint = int(len(dfs)*split)
futurepoint = int(len(dfs)*(split+future))

X _train = X[:splitpoint]
y_train = y[:splitpoint]

X_test = X[splitpoint: futurepoint]

y_test = y[splitpoint:futurepoint]
else:

X _train = X

y_train =y

X_test =X

y_test =y
i_train_min = np.min(X_train[index])
i_train_max = np.max(X_train[index])
i_test_min = np.min(X_test[index])
i_test_max = np.max(X_test[index])
index_train = np.arange (i_train_min , i_train_max,

step_length).reshape(-1,1)

index_test = np.arange (i_test_min , i_test_max ,

step_length).reshape(-1,1)

parameters .append(np.asarray ([resample , resample_weights ,

algorithm_test , metric]))

print ([resample, resample_weights, algorithm_test, metric

D

81

84

86

87

88

89

B.1. RESAMPLING METHOD OPTIMIZATION 53

> .

if resample != ’no
if resample == ’radius’:
from sklearn.neighbors import
RadiusNeighborsRegressor
reg = RadiusNeighborsRegressor(radius=
index_maxgap=xresample_coef, weights=resample_weights, algorithm=
algorithm_test , p=metric)
elif resample == “knn’:
from sklearn.neighbors import KNeighborsRegressor
reg = KNeighborsRegressor(weights=
resample_weights , n_neighbors=resample_coef, algorithm=
algorithm_test , p=metric)
else:
sys.exit("Error, incorrect resampling algorithms
choice")

reg.fit(X_train[index].to_numpy().reshape(-1,1),
y_train[target].to_numpy())

y_train = pd.DataFrame ()

y_train[target] = reg.predict(index_train)

reg. fit (X_test[index].to_numpy () .reshape(-1,1),
y_test[target].to_numpy())

y_test = pd.DataFrame ()

y_test[target] = reg.predict(index_test)

X_train_resampled = pd.DataFrame ()
for attribute in list (X_train):
reg.fit (X _train[index].to_numpy().reshape(-1,1),
X _train[attribute].to_numpy ())
X_train_resampled[attribute] = reg.predict(
index_train)

X_train = X_train_resampled

X_test_resampled = pd.DataFrame ()
for attribute in list(X_train):
reg. fit (X_test[index].to_numpy () .reshape(-1,1),
X _test[attribute].to_numpy())
X_test_resampled[attribute] = reg.predict(
index_test)

X_test = X_test_resampled

elif resample == 'no’:
train_q = int((i_train_max - i_train_min)/step_length
)
test_q = int((i_test_max — i_test_min)/step_length)
#sample_train = np.sort(random.sample(range (len (

X _train)), train_q))

90

91

93

107

108

109

110

111

112

113

114

115

116

118

119

120

54

APPENDIX B. PYTHON CODE

#sample_test = np.sort(random.sample(range (len(X_test

), test_q))

sample_train np.linspace (0, len(X_train)—-1, train_q

, dtype=int)

dtype=int

here !

system

bfill to

training

[X_train.

sample_test = np.linspace (0, len(X_test)—-1, test_q,

)
X _train = X_train.iloc[sample_train ,:]
y_train = y_train.iloc[sample_train ,:]
X_test = X_test.iloc[sample_test ,:]
y_test = y_test.iloc[sample_test ,:]
else:

sys.exit("Error, incorrect resampling choice")
Inclination to delta inclination convertion needed

convert_to_diff = []

asel_choice = ’pca’

hPcaScaler="mm’ ,

#list of parameters that are to be in local coordinate

for attr in convert_to_diff:
if attr == target:
y_train[attr] = y_train[attr].diff ().bfill () #
kill initial NaN
y_test[attr] = y_test[attr].diff().bfill ()
else:
X_train[attr] = X_train[attr |]. diff (). bfill ()
X_test[attr] = X_test[attr].diff().bfill ()
#9%

Scaling the data. Note that range is decide on the
dataset only!

Both conditions have same outcome, why?

if asel_choice == ’pca’ and hPcaScaler == ’ss’:
scaler_X = MinMaxScaler() # StandardScaler ()
scaler_y = MinMaxScaler ()

else:
scaler_X = MinMaxScaler ()
scaler_y = MinMaxScaler ()
pca_allattr = X_train.columns
X_train[X_train.columns] = scaler_X.fit_transform (X_train
columns])

y_train[y_train.columns] scaler_y . fit_transform (y_train

B.1. RESAMPLING METHOD OPTIMIZATION 55

[y_train.columns])

134 ## Test portion is tranformed based on the existing
scaler

135 X_test[X_test.columns] = scaler_X.transform (X_test[X_test
.columns])

136 y_test[y_test.columns]
.columns])

scaler_y .transform (y_test[y_test

138 #9%

139

140 ## Dataframe for use in correlation analysis , where
X_train and y_train 1is

141 ## together

142 df_train = X_train

143 df_train = df_train.merge(y_train, how=’outer’,

left_index=True, right_index=True)

144

145 PCA_H = -1

146 hAttrCount = 3

147

148 asel_choice = ’pca’

149 #asel_choice_1 = "AIC’

150

151 if asel_choice == "AIC’:

152

153

154 dfs_corr = df_train.corr(method="pearson’)

155 corr_values = dfs_corr[target].to_numpy ()

156 corr_index = dfs_corr[target].index.to_numpy ()

157

158 corr_m = np.column_stack ((corr_values, corr_index))

159

160 for i in range(len(corr_m)):

161 if np.isnan(corr_m/[i,0]):

162 corr_m[1i,0] = O

163 else:

164 corr_m|[i,0] = np.abs(corr_m[i,0])

165

166 corr_m = corr_m[corr_m/[:,0].argsort ()]

167 sns . heatmap (dfs_corr, linewidth=0.5)

168 plt.show ()

169

170 corr_n = corr_m[corr_m/[:, 0]>0.98][:-1, :]

171 keep_columns = corr_m[-1-len(corr_n):—-1,1]

172

173 #X _train = X_train[[keep_columns[1], keep_columns[3],
keep_columns [4]]]

174 #X_test = X_test[[keep_columns[1], keep_columns[3],

keep_columns [4]]]

175

56 APPENDIX B. PYTHON CODE

176 data = itertools.combinations (keep_columns, 3)

177 keep_columns_list = list (data)

178

179 elif asel_choice == ’pearson’:

180

181 keep_columns_list = []

182 dfs_corr = df_train.corr (method="pearson)

183 corr_values = dfs_corr[target].to_numpy ()

184 corr_index = dfs_corr[target].index .to_numpy ()

185

186 corr_m = np.column_stack ((corr_values , corr_index))

187

188 for i in range(len(corr_m)):

189 if np.isnan(corr_ml[i,0]):

190 corr_m[i,0] = 0

191 else:

192 corr_m[i,0] = np.abs(corr_m[i,0])

193

194 corr_m = corr_m[corr_m/[:,0].argsort ()]

195

196 keep_columns = corr_m[-1-hAttrCount:—1,1]

197

198 keep_columns_list.append (keep_columns)

199

200 #X _train = X_train[keep_columns]

201 #X_test = X_test[keep_columns]

202

203 sns . heatmap (dfs_corr, linewidth=0.5)

204 plt.show ()

205

206

207

208 elif asel_choice == ’pca’:

209 # PCA is not implemented here but the asel_choice was
set to ’pca’. How was the code working then

210 # Was there no dimensionality reduction?

211 from sklearn.decomposition import PCA

212 keep_columns = [] #empty for future code

compatibility

214 PCA_n = hAttrCount

215 # applied after sensitivity analysis

216

217 ## ppscore based

218

219 elif asel_choice == ’ppscore’:

220 import ppscore as pps

21 dfs_corr = pps.predictors (df_train, target, output=’
list’)

3 keep_columns_list = []

B.1. RESAMPLING METHOD OPTIMIZATION 57

224 corr_values = []

25 corr_index = []

226 for i in dfs_corr:

27 corr_values .append(i[ppscore’])

28 corr_index .append(i[’x’])

29

230

231 corr_m = np.column_stack ((corr_values , corr_index))

234 corr_m = corr_m[corr_m/[:,0].argsort ()]

236 keep_columns = corr_m[-1-hAttrCount:—-1,1]

237 keep_columns_list.append(keep_columns)

238 #X_train = X_train[keep_columns]

239 #X _test = X_test[keep_columns]

240 sns . heatmap (dfs_corr, linewidth=0.5)

241 plt.show ()

242

243 else:

244 sys.exit("Error, incorrect attribute selection choice
")

245

246 if PCA_n 1= —1:

247

248 keep_columns_list = [1]

249 scaler_pca = MinMaxScaler() # new scaler here because
PCA can push

250 # variables out of (-1,1)
bounds

251

252 pca = PCA(n_components = PCA_n)

254 X_train_new = pca.fit_transform (X_train)

255 X _train_new = scaler_pca.fit_transform (X_train_new)

256

257 X_test_new = pca.transform (X_test)

258 X_test_new = scaler_pca.transform (X_test_new)

59

260 print (keep_columns)

261

262

263 #Model Fitting

64

265 #AIC_vals = []

266 #BIC_vals = []

267 #parameters = []

268 mod = 'LSTM’

269 for k in range(len(keep_columns_list)):

270 if PCA_I] 1= —1:

271 keep_columns = []

284

285

286

287

288

289

290

295
296
297
298

299

300

58

APPENDIX B. PYTHON CODE

else :

keep_columns = keep_columns_list[k]

try:
X_train_new = X_train[keep_columns]
X_test_new = X_test[keep_columns]
parameters . append (keep_columns)

except:
X_train_new = X_train[list (keep_columns)]
X_test_new = X _test[list (keep_columns)]

parameters .append (np.asarray (list (keep_columns)))

#9%

Data shaping

from now on, arrays are being morphed into shapes
valid for RNN+MLP

imagination_meters = 25

hMemoryMeters = 25

Iecs_list = []

##

if clean == True:

step_length = 1

memory = int(hMemoryMeters/step_length)

print (memory)

imagination = int(imagination_meters/step_length)

X_attr = list (X_train_new)

try:
X_train_new = X_train_new .to_numpy ()
X_test_new = X_test_new.to_numpy ()
y_train_new = y_train.to_numpy ()
y_test_new = y_test.to_numpy ()
except:
y_train_new = y_train.to_numpy ()
y_test_new = y_test.to_numpy ()
if split != 1:
X_test_new = np.concatenate ([X_train_new[—memory
+1:,:], X_test_new], axis=0)
y_test_new = np.concatenate ([y_train_new [—memory
+1:], y_test_new], axis=0)
#9%
If memopry size is 10 then stacks will be as follow:

#Value 1 to value 10
#Value 2 to value 11
#
#
#

344

B.1. RESAMPLING METHOD OPTIMIZATION

#Value N to value N+10

def prepare(data, start, stop, cut_margin = 0, lcs=
False):
memory = stop-—start
stack = []
for i in range(memory) :
stack .append(np.roll (data, —i))

stack = np.flip (np.rot90(stack), axis=0)[start:—
memory+1l—-cut_margin]

if Ics == True:
zero = stack|[:,0]

for j in range(len(zero)):
stack[j] = stack[j] - zero[]]
return stack

target_lcs_correction = 1

if target in lcs_list:
X_train_RNN = prepare (np.squeeze(y_train_new), O,
memory, cut_margin = imagination, lcs=True)
X_test_ RNN = prepare(np.squeeze(y_test_new), O,
memory, cut_margin = imagination, lcs=True)

y_train_RNN = prepare (np.squeeze (y_train_new),
memory, memory+imagination , lcs=True)

59

y_test_ RNN = prepare(np.squeeze(y_test_new), memory

, memory+imagination , lcs=True)

offset_train = X_train_RNNJ[:,—-1]
offset_test = X_test RNN[:,—1]

for k in range(len(offset_train)):

y_train_RNN[k] = y_train_RNN[k] + offset_train]|

k]

for k in range(len(offset_test)):

y_test_ RNN[k] = y_test RNN[k] + offset_test[k]

target_lcs_correction = 1/np.max(y_train_RNN)

y_train_RNN = y_train_RNN x target_lcs_correction
X train_ RNN
y_test_ RNN = y_test_ RNN % target_lcs_correction
X_test RNN = X _test RNN * target_lcs_correction

else:
X_train_RNN = prepare (np.squeeze(y_train_new), O,

X_train_RNN % target_lcs_correction

60

APPENDIX B. PYTHON CODE

memory, cut_margin = imagination)
X_test_RNN = prepare(np.squeeze(y_test_new), O,
memory, cut_margin = imagination)

y_train_RNN = prepare (np.squeeze(y_train_new),
memory, memory+imagination)

y_test_ RNN = prepare(np.squeeze(y_test_new), memory
, memory+imagination)

X_train_MLP = []
X_test MLP = []

if PCA.n == -1:
X_lcs_correction = [1]*len(X_train_new [0])

for i in range(len (X_train_new [0])):
if keep_columns[i] in Ics_list:
X_train_MLP . append (prepare (X_train_new [:,1i
] ,memory , memory+imagination , lcs=True))
X_les_correction[i] = 1/np.max(X_train_MLP [
i])
X_train_ MLP[i] = X_train_MLP[1]=*
X _lcs_correction[1]
else:
X_train_MLP . append (prepare (X_train_new [:,1i
] ,memory , memory+imagination))

X_train_MLP = np.asarray (X_train_MLP)

X_train_MLP = np.concatenate (X_train_MLP[:,:, np.
newaxis|, axis = 1)

X train_ MLP

np.rot90 (X_train_MLP, axes=(1,2), k
=3)

for i in range(len(X_test_new[0])):
if keep_columns[i] in Ics_list:
X_test_ MLP.append (prepare (X_test_new |[:,i],
memory , memory+imagination , lcs=True))
X_test MLP[i] = X_test_ MLP[i]=*
X _lcs_correction[1]
else:
X_test_MLP.append (prepare (X_test_new |[:,i],
memory , memory+imagination))

X_test. MLP = np.asarray (X_test_ MLP)

X_test MLP = np.concatenate (X_test MLP[:,:, np.
newaxis |, axis = 1)

X_test MLP = np.rot90 (X_test MLP, axes=(1,2), k=3)

101

402

103

404

405

106

407

408

B.1. RESAMPLING METHOD OPTIMIZATION 61

else:
for i in range(len (X_train_new [0])):
X_train_MLP . append (prepare (X_train_new [:,i],

memory , memory+imagination))

newaxis |,

=3)

X_train_MLP = np.asarray (X_train_MLP)

X_train_MLP = np.concatenate (X_train_MLP[:,:, np.
axis = 1)

X _train_MLP

np.rot90 (X_train_MLP, axes=(1,2), k

for i in range(len(X_test_new[0])):
X_test_ MLP.append (prepare (X_test_new |[:,i],

memory , memory+imagination))

newaxis],

earlier

X_test. MLP = np.asarray (X_test_ MLP)

X_test_ MLP = np.concatenate (X_test_ MLP[:,:, np.
axis = 1)

X_test_ MLP = np.rot90 (X_test MLP, axes=(1,2), k=3)

#9%%
X_train_RNN_m = X_train_RNN[:,: ,np.newaxis]
X _train_m = [X_train_RNN_m, X_train_MLP]

X_test RNN_m = X_test_ RNN[:,:,np.newaxis]|
X_test_m = [X_test RNN_m, X_test_ MLP]
#9%

Local coordinate system

Just a cumsum on parameter converted to delta

#9%

ML model definition

hDensed4 = 1
hGRU = 386
hDropl = 0
hDense5 = 128
hDrop2 = 0
hDrop3 = 0
hDensel = 1
hDense2 = 32

hDense3 128

446

447

448

449

450

456

458

459

460

461

462

463

464

465

466

467

468

469

476

479

480

481

482

483

484

485

486

487

488

62

APPENDIX B. PYTHON CODE

hDense4 = 1

hDense5 = 128

hSprefix=""

verbose=0
sensitivity_analysis = False
plot_samples = True

#physical_devices = tf.config.list_physical_devices (’
GPU)

#tf.config.experimental.set_memory_growth (
physical_devices [0], True)

tf . keras.backend.clear_session ()

visiblel

Input(shape=(memory,1))

visible2 Input(shape=((imagination) ,len(X_train_new

[01)))

combined = models(visiblel , visible2 , mod)

Dense (hDense3, activation="relu")(combined)
Dense(imagination , activation="linear")(z)

model = Model(inputs=[visiblel , visible2], outputs=z)

es = EarlyStopping (monitor="val_loss’, mode='min’,
verbose=0, patience=50)

mc = ModelCheckpoint(f’{hS5prefix }best_model.h5",
monitor="val_loss’,
mode="min’, save_best_only=
True, verbose=0)

model . compile (optimizer="adam’ ,loss="mean_squared_error
)

#plot_model (model, to_file="model_plot.png’,
show_shapes=True, show_layer_names=True)

Training

rowcount = len (y_train_RNN)
val_border = int(rowcount*0.85)
X_train_m_a = []

X_train_m_b = []

B.1. RESAMPLING METHOD OPTIMIZATION 63

490 X_train_m_a.append (X _train_m [0][: val_border])
91 X_train_m_a.append (X _train_m [1][: val_border])

193 X_train_m_b .append (X_train_m [O][val_border :])

494 X_train_m_b .append (X_train_m [1][val_border:])

195

496

497

498 y_train_RNN_a = y_train_RNN[: val_border]

499 y_train_RNN_b = y_train_RNN[val_border :]

500

501

502 history = model. fit (X_train_m_a,y_train_RNN_a,
validation_data=(X_train_m_b ,y_train_RNN_b),

503 epochs=2000, verbose=
verbose , batch_size=32,

504 callbacks=[es, mc])

505

506 model = load_model (f’{hSprefix }best_model.h5")

507

509 result_test = model.evaluate (X_test_m, y_test_ RNN,

verbose =0)

s11 if target in convert_to_diff:

512 truth = np.cumsum(y_test. RNN/target_lcs_correction/
scaler_y .scale_, axis=1)

513 pred = model. predict (X_test_m)

514 pred = np.cumsum(pred/target_lcs_correction/
scaler_y .scale_, axis=1)

515

516 else:

517 truth = y_test_ RNN/target_lcs_correction/scaler_y.
scale

518 pred = model. predict (X_test_m)

519 pred = pred/target_lcs_correction/scaler_y.scale_

520

521 if split == 1 or sensitivity_analysis == True: #

sensitivity enable!

523 y_test_ RNN y_train_RNN
524 X _test MLP = X_train_MLP
5 X test RNN m = X train RNN m

senstable = {}
528 plt.style.use ([*science’, no—latex ’])
529 singular_sensitivity = []
530 if PCA_H 1= —1:
531 for i in range(pca.n_features_):

532 X_test_ MLP_plus = shift_pca (X_test MLP,

64

548
549

550

X_test_MLP_plus]

APPENDIX B. PYTHON CODE

scaler_pca,
pca,
channel=1,
shift=shift)

X _test_m_plus = [X_test_ RNN_m,

results_plus = scaler_y.inverse_transform (

model . predict (X_test_m_plus))

X_test_ MLP_minus]

X_test_ MLP_minus = shift_pca (X_test_ MLP,
scaler_pca,
pca,
channel=i,
shift=—shift)

X_test_m_minus = [X_test RNN_m,

results_minus = scaler_y.inverse_transform (

model . predict (X_test_m_minus))

axis=1)

)

")

axis=1)

color="black)

]

color="black)

if target in convert_to_diff:

results_plus = np.cumsum(results_plus ,
results_minus = np.cumsum(results_minus
sens = (results_plus — results_minus)/2

ave = np.average (sens, axis=0)

percS = np.percentile (sens,5, axis=0)

perc25 = np.percentile (sens ,25,axis=0)
perc50 = np.percentile (sens ,50, axis=0)
perc75 = np.percentile (sens ,75,axis=0)
perc95 = np.percentile (sens,95,axis=0)

plt.figure (figsize=(4,3))
#plt.plot(ave, linewidth=2, color="darkblue

plt.plot(percS, linewidth=1, linestyle=":",
plt.plot(perc25, linewidth=1, color="black’
plt.plot(perc50, linewidth=2, color="black’

plt.plot(perc75, linewidth=1, color="black’

"

plt.plot(perc95, linewidth=1, linestyle=":

plt.title (pca_allattr[i])
plt. grid ()

574

586

588

589

590

594

595

596

597

599

600

601

602

603

604

605

606

607

608

609

610

B.1. RESAMPLING METHOD OPTIMIZATION 65

plt.tight_layout ()

plt.plot ([],[],linewidth=1, linestyle=":",
color="black ’,
label="$572{th}$; $95~{th}$
percentile *)

plt.plot ([],[],linewidth=1, color="black’,
label="%$252{th}$; $75~{th}$
percentile)

plt.plot ([],[],linewidth=2, color="black’,
label="$50"{th}$ percentile’)

plt.legend ()

plt.ylabel (f’ Sensitivity Index\n[{
pca_allattr[i1]}]’)

plt.xlabel (*Output\nPrediction distance [m]
)

myticks = np.linspace (0,len(perc5) ,6)

mylabels = np.linspace (0,imagination_meters
,6) .astype(int)

plt.xticks (myticks, mylabels)

plt.title (f Average sensitivity = {np.
average(sens)}’)

senstable[pca_allattr[i]] = np.average(sens

)

plt.savefig(f’{pca_allattr[i].replace
("/" ")) pdf)

plt.show ()

singular_sensitivity .append(np.average ((
results_plus — results_minus)/2))

print(singular_sensitivity)
print(pca_allattr)
else:
for i in range(len(keep_columns)):
X_test_MLP_plus = shift_notpca (X_test_ MLP,
channel=1,
shift=shift)
X_test_m_plus = [X_test RNN_m,
X_test_MLP_plus]
results_plus = scaler_y.inverse_transform (
model . predict (X_test_m_plus))

X_test_ MLP_minus = shift_notpca (X_test MLP,
channel=i,
shift=—shift)

616

617

618

619

646

647

648

66

X_test_ MLP_minus]

APPENDIX B. PYTHON CODE

X_test_m_minus = [X_test RNN_m,

results_minus = scaler_y.inverse_transform (

model . predict (X_test_m_minus))

axis=1)

, axis=1)

")

color="black)

, color="black’)

color="black’,

percentile)

percentile)

if target in convert_to_diff:

results_plus = np.cumsum(results_plus ,

results_minus = np.cumsum(results_minus
sens = (results_plus — results_minus)/2
ave = np.average(sens, axis=0)
perc5 = np.percentile (sens,5, axis=0)
perc25 = np.percentile (sens,25,axis=0)
perc50 = np.percentile (sens ,50,axis=0)
perc75 = np.percentile (sens ,75,axis=0)
perc95 = np.percentile (sens ,95,axis=0)

plt.figure(figsize=(4,3))
#plt.plot(ave, linewidth=2, color="darkblue

plt.plot(perc5, linewidth=1, linestyle=":",

plt.plot(perc25, linewidth=1, color="black’

plt.plot(perc50, linewidth=2, color="black’

plt.plot(perc75, linewidth=1, color="black’

plt.plot(perc95, linewidth=1, linestyle=":"

plt.title (pca_allattr[i])

plt.grid ()

plt.tight_layout ()

plt.plot ([],[],linewidth=1, linestyle=":",
label="857{th}$; $95~{th}$

plt.plot ([],[],linewidth=1, color="black’,
label="$252{th}$; $75~{th}$

plt.plot ([],[],linewidth=2, color="black’,
label="$50"{th}$ percentile’)

B.1. RESAMPLING METHOD OPTIMIZATION 67

649

650 plt.legend ()

651 plt.ylabel (f’ Sensitivity Index\n[({
pca_allattr[1]}]7)

652 plt.xlabel (’Output\nPrediction distance [m]
)

653

654 myticks = np.linspace (0,len(perc5) ,6)

655 mylabels = np.linspace (0,imagination_meters
,6) .astype (int)

656 plt.xticks (myticks , mylabels)

657 plt.title (f Average sensitivity = {np.
average(sens)}’)

658 senstable [pca_allattr[i]] = np.average(sens
)

659 plt.savefig(f’{pca_allattr[i].replace
("""t yopdf?)

660 plt.show ()

661 singular_sensitivity .append(np.average ((
results_plus — results_minus)/2))

662 print(singular_sensitivity)

663 print (keep_columns)

664

665

666

667

668 ## Sensitivity for RNN input channel

669

670 X_test_m_plus = [X_test RNN_m + 0.1, X_test_ MLP]

671 results_plus = scaler_y.inverse_transform (model.

predict (X_test_m_plus))

673 X_test_m_minus = [X_test RNN_m - 0.1, X_test MLP]
674 results_minus = scaler_y.inverse_transform (model.
predict (X_test_m_minus))

676 # if target in convert_to_diff:

677 # results_plus = np.cumsum(results_plus , axis
=1)

678 # results_minus = np.cumsum(results_minus , axis
=1)

679

680

681 sens = (results_plus — results_minus)/2

682

683

684 ave = np.average(sens, axis=0)

685 perc5 = np.percentile (sens,5, axis=0)

686 perc25 = np.percentile (sens,25,axis=0)

687 perc50 np.percentile (sens ,50, axis =0)
688 perc75 = np.percentile (sens,75,axis=0)

689

690

691

692

693

694

695

696

697

698

699

710

715

716

717

718

68

black ’)

"black)

black’,

int)

APPENDIX B. PYTHON CODE

perc95 = np.percentile (sens,95,axis=0)

plt.figure(figsize=(4,3))
#plt.plot(ave, linewidth=2, color="darkblue)

"

plt.plot(percS, linewidth=1, linestyle=":", color="

plt.plot(perc25, linewidth=1, color="black’)
plt.plot(perc50, linewidth=2, color="black)
plt.plot(perc75, linewidth=1, color="black)

"

plt.plot(perc95, linewidth=1, linestyle=":", color=

plt.title ("RNN Input sensitivity , full channel")

plt. grid ()
plt.tight_layout ()

plt.plot ([],[],linewidth=1, linestyle=":", color="’

label="$5~{th}$; $95~{th}$ percentile’)

plt.plot ([],[],linewidth=1, color="black’,
label="$252{th}$; $752{th}$ percentile’)

plt.plot ([],[],linewidth=2, color="black’,
label="$50"{th}$ percentile’)

plt.legend ()

plt.ylabel (f’ Sensitivity Index\n[{target}]’)
plt.xlabel (’Output\nPrediction distance [m]’)
myticks = np.linspace (0,len(percS5) ,6)

mylabels = np.linspace (0,hMemoryMeters ,6) . astype (

plt.xticks (myticks, mylabels)
plt.title (f Average sensitivity = {np.average(sens)
senstable ["RNN"] = np.average (sens)

plt.savefig(f’1.pdf’)
plt.show ()

singular_sens_input = []

for i in range(len (X_test_ RNN_m[O0])):
print(".", end="")
X_test_ RNN_m_plus = X_test_ RNN_m. copy ()

localrange = np.abs(np.max(X_test_ RNN_m_plus[:,

i]) — np.min(X_test_ RNN_m_plus[:,i]))

740

746

748

749

B.1. RESAMPLING METHOD OPTIMIZATION 69

X_test_ RNN_m_plus[:,i] = X_test RNN_m_plus|[:,1i]
+ 0.1xlocalrange

X_test_m_plus = [X_test RNN_m_plus, X_test_MLP]

results_plus = scaler_y.inverse_transform (model
.predict(X_test_m_plus))

X_test_ RNN_m_minus = X_test RNN_m. copy ()

X _test_ RNN_m_minus[:,1] = X_test RNN_m_minus]|[:,
i] — O.1xlocalrange

X _test_m_minus = [X_test RNN_m_minus,
X_test_ MLP]

results_minus = scaler_y.inverse_transform (
model . predict (X_test_m_minus))

sens = (results_plus — results_minus)/2

singular_sens_input.append(np.percentile (sens
,50, axis=0))

plt.figure(figsize=(4,3))
vspread = np.max(np.abs(singular_sens_input))
sns . heatmap (np.rot90(singular_sens_input), vmin = —
vspread , vmax = vspread,
cmap="vlag",

cbar_kws={’label’: ’Sensitivity Index’
)
lenl = len(np.rot90(singular_sens_input))
len2 = len(np.rot90(singular_sens_input)[0])
plt. xticks (np.linspace (0,len2 ,6) ,
np.linspace (—hMemoryMeters ,0,6) . astype (
int))

plt.yticks (np.linspace (0,lenl ,6),
np.linspace (0,imagination_meters ,6) .

astype (int))
plt.xlabel ('RNN memory location [m]
plt.ylabel (’Prediction distance [m]
plt.title (f’ Average sensitivity = ({

il
’

~—

np.average (sens)
1)
plt.savefig(’2.pdf")

plt.show ()

plt.figure (figsize=(4,3))

plt.plot(np.mean(singular_sens_input, axis=0), c=’
black ’)

plt. xticks (np.linspace (0,lenl ,6),

773

774

776

777

779

780

786

787

788

789

790

792

793

794

795

796

801

802

803

804

805

806

807

808

809

810

811

812

813

70

APPENDIX B. PYTHON CODE

np.linspace (0,imagination_meters ,6) .
astype (int))
plt.xlabel (’ Prediction distance [m]’)
plt.ylabel (’Sensitivity Index’)

plt.grid ()

plt.title (f’Average sensitivity = {np.average(sens)
b

plt.savefig(’3.pdf’)

plt.show ()

plt.figure(figsize=(4,3))

plt.plot(np.mean(singular_sens_input, axis=1), c=’
black)

plt.ylabel (’ Sensitivity Index’)

plt.xlabel ('RNN memory location [m]’)

plt. xticks (np.linspace (0,len2 ,6),

np.linspace (-~hMemoryMeters ,0,6) . astype (

int))

plt.grid ()

plt.title (f’ Average sensitivity = {np.average(sens)
b

plt.savefig(4.pdf’)

plt.show ()

Plots
if plot_samples==True:
pred = scaler_y.inverse_transform (model. predict(

X _train_m, verbose=0))

if target in convert_to_diff:

xtr = np.cumsum(scaler_y .inverse_transform (
X_train_RNN), axis=1)
off = np.rot90 (np. tile (xtr[:,-1], (len(pred[0])
1)), 3)
pred = np.cumsum(pred, axis=1) + off
ytr = np.cumsum(scaler_y .inverse_transform (
y_train_RNN), axis=1) + off
else:
xtr = scaler_y.inverse_transform (X_train_RNN)
ytr = scaler_y.inverse_transform (y_train_RNN)
#for i in range(10):
s = np.random.randint (0, len(y_train_RNN))

x = np.arange (0,len (X_train_RNN[O0]) ,1)

B.1. RESAMPLING METHOD OPTIMIZATION 71

815 # plt.title (’ Train)

816 # plt.plot(x, xtr[s], label="RNN input ’)

817

818

819 # x = np.arange (len (X_train_RNN[O0]), len(
X_train_RNN[0]) + len(y_train_RNN[O0]) ,1)

820 # plt.plot(x,ytr[s], label="RNN output, true ’)

821

822

823

824 # plt.plot(x,pred[s], label="RNN output,
predicted)

825 # plt.legend ()

826

827

828 # plt.show ()

829

830 pred = scaler_y.inverse_transform (model. predict (
X_test_m))

831

832 if target in convert_to_diff:

833

834 xts = np.cumsum(scaler_y.inverse_transform (
X_test_ RNN), axis=1)

835 off = np.rot90 (np. tile (xts[:,-1], (len(pred[0])
1)), 3)

836

837 pred = np.cumsum(pred, axis=1) + off

838 yts = np.cumsum(scaler_y.inverse_transform (
y_test_ RNN), axis=1) + off

839 else:

840 xts = scaler_y.inverse_transform (X_test_RNN)

841 yts = scaler_y.inverse_transform (y_test_ RNN)

842

843

844 #for i in range(5):

845 s = np.random.randint (0, len(y_test_ RNN))

846

847 x = np.arange (0,len (X_test_ RNN[O0]) ,1)

848

849 plt.plot(x, xts[s], label="RNN input’)

850

851 x = np.arange (len(X_test_ RNN[0]), len (X_test RNN
[0]) + len(y_test RNN[O]),1)

852 plt.plot(x,yts[s], label="RNN output, true’)

853

854

855 plt.title (" test’)

856 plt.plot(x,pred[s], label="RNN output, predicted’)

857 plt.legend ()

858 plt.show ()

72 APPENDIX B. PYTHON CODE

859

860

861 if np.isnan(result_test):

862 result_test = 0

863 #print(—np.loglO(result_test))

864

865 if PCA_Il 1= —1:

866 keep_columns = pca_allattr

867

868 print (f ' MAE: {np.average(np.abs(truth—-pred))}’)

869

$70 if split == 1 or sensitivity_analysis == True:

871 print (truth , pred, keep_columns, —np.loglO(
result_test), senstable)

872

873 else :

§74 print (truth , pred, keep_columns, —-np.loglO(
result_test))

875

876 difference = truth —pred

877

878 HHHHH

879 # AIC and BIC

880 ssd = np.sum(difference *xx 2)

881 AIC_wi = 2#model.count_params ()+len(difference)smath.
log(ssd/len(difference))

882 BIC_wi = np.log(len(difference))+model.count_params ()+
len(difference)*math.log(ssd/len(difference))

883 print (AIC_wi)

884 print (BIC_wi)

885 AIC_vals.append (AIC_wi)

886 BIC_vals.append (BIC_wi)

887 mae . append (np.average (np.abs(truth —pred)))

888 log_res.append(—np.loglO(result_test))

889

890 from google.colab import files

891 df_res = pd.concat((pd.DataFrame(parameters), pd.DataFrame (
AIC_vals), pd.DataFrame (BIC_vals), pd.DataFrame(mae), pd.DataFrame
(log_res)), axis = 1)

892 #if PCA_n ==-—1:

893 # df_res.columns = ["P1’, "P2°, °"P3’, *AIC’, ’BIC’]

894 #else :

895 # df_res.columns = [’AIC’, ’BIC’]

896 if resample!="no":

897 df_res.columns = [’P1’, "P2°, "P3’, P4’ , *AIC’, 'BIC’, 'MAE’,
"Log Res’]

808 else:

899 df_res.columns = ["AIC’, 'BIC’]

900 df_res.to_csv(’ IC_results.csv’)

901 files .download (’IC_results.csv’)

B.2. PARAMETER SELECTION 73

902

Listing B.6: Resampling Optimization Loop

B.2 Parameter Selection

AIC_vals []
BIC_vals [1
parameters = []
mod = 'LSTM’

6 for k in range(len(keep_columns_list)):

if PCA_n != -1:

8 keep_columns = []

9 else:

10 keep_columns = keep_columns_list[k]

1 try :

12 X train_new

13 X _test_new

X _train[keep_columns]
X_test[keep_columns]

14 parameters .append (keep_columns)

15 except:

16 X_train_new = X_train[list (keep_columns)]

17 X_test_new = X_test[list (keep_columns)]

18 parameters .append(np. asarray (list (keep_columns)))
19 #9%

21 ## Data shaping

from now on, arrays are being morphed into shapes valid for
RNN+MLP
24 imagination_meters = 25
hMemoryMeters = 25
26 les_list = []

29 ## if clean == True:
) step_length = 1
31 memory = int(hMemoryMeters/step_length)
print (memory)
33 imagination = int(imagination_meters/step_length)

X_attr = list(X_train_new)

37 try :

38 X_train_new = X_train_new .to_numpy ()
39 X_test_new = X_test_new.to_numpy ()

40 y_train_new = y_train.to_numpy ()

41 y_test_new = y_test.to_numpy ()

0 except:

58

59

60

61

78

84

85

86

74

APPENDIX B. PYTHON CODE

y_train_new = y_train.to_numpy ()
y_test_new = y_test.to_numpy ()

if split != 1:
X_test_new = np.concatenate ([X_train_new[-memory+1:,:],
X_test_new], axis=0)
y_test_new = np.concatenate ([y_train_new[—-memory+1:],
y_test_new], axis=0)

If memopry size is 10 then stacks will be as follow:
#Value 1 to value 10
#Value 2 to value 11
#
#
#
#Value N to value N+10

def prepare(data, start, stop, cut_margin = 0, lcs=False):
memory = stop-—start
stack = []

for i in range(memory) :
stack . append(np.roll (data, —i))

stack = np.flip(np.rot90(stack), axis=0)[start:—memory+1-
cut_margin]

if lcs == True:
zero = stack[:,0]

for j in range(len(zero)):
stack[j] = stack[j] — zero[]]
return stack

target_lcs_correction = 1

if target in Ics_list:

X_train_RNN = prepare(np.squeeze(y_train_new), 0, memory,
cut_margin = imagination, lcs=True)

X_test_ RNN = prepare(np.squeeze(y_test_new), 0, memory,
cut_margin = imagination, lcs=True)

y_train_RNN = prepare(np.squeeze (y_train_new), memory,

memory+imagination , lcs=True)

y_test_ RNN = prepare(np.squeeze(y_test_new), memory, memory

+imagination, lcs=True)

offset_train = X_train_ RNN/[:, -1]
offset_test = X_test RNN[:,—1]

for k in range(len(offset_train)):

100

101

102

103

104

105

106

107

108

109

B.2. PARAMETER SELECTION 75

y_train_RNN[k] = y_train_RNN[k] + offset_train [k]

for k in range(len(offset_test)):
y_test_ RNN[k] = y_test RNN[k] + offset_test[k]

target_lcs_correction = 1/np.max(y_train_RNN)

y_train_RNN y_train_RNN =« target_lcs_correction
X train_ RNN X_train_RNN = target_lcs_correction
y_test_ RNN = y_test_ RNN = target_lcs_correction
X_test RNN = X_test RNN # target_lcs_correction

else:

X_train_RNN = prepare (np.squeeze(y_train_new), 0, memory,
cut_margin = imagination)

X_test_ RNN = prepare(np.squeeze(y_test_new), 0, memory,
cut_margin = imagination)

y_train_RNN = prepare (np.squeeze(y_train_new), memory,
memory+imagination)

y_test_ RNN = prepare (np.squeeze(y_test_new), memory, memory

+imagination)

X_train_ MLP = []
X_test. MLP = []

#9%
if PCA.n == -1:
X_lcs_correction = [1]xlen(X_train_new [0])

for i in range(len(X_train_new[0])):
if keep_columns[i] in Ics_list:
X_train_MLP . append (prepare (X_train_new [:,i],memory,
memory+imagination , lcs=True))
X _les_correction[i] = 1/np.max(X_train_MLP[1i])
X _train_ MLP[i] = X_train_MLP[i]*X_lcs_correction[1i]
else :
X_train_MLP . append (prepare (X_train_new [:,i],memory,
memory+imagination))

X_train_MLP = np.asarray (X_train_MLP)

X_train_MLP = np.concatenate (X_train_MLP[:,:, np.newaxis],
axis = 1)

X_train_MLP = np.rot90 (X_train_MLP, axes=(1,2), k=3)

for i in range(len(X_test_new[0])):
if keep_columns[i] in Ics_list:
X_test_ MLP.append (prepare (X_test_new [:,1],memory,

148

149

150

154

156

158

160

76

APPENDIX B. PYTHON CODE

memory+imagination , lcs=True))
X_test MLP[i] = X_test MLP[1]* X _lcs_correction[1]
else:
X_test_ MLP.append(prepare (X_test_new [:,1i],memory,
memory+imagination))

X_test MLP = np.asarray (X_test. MLP)
X_test_ MLP = np.concatenate (X_test_ MLP[:,:, np.newaxis],
axis = 1)
X_test_ MLP = np.rot90 (X_test MLP, axes=(1,2), k=3)
else :

for i in range(len(X_train_new[0])):
X_train_MLP . append (prepare (X_train_new [:,i],memory,
memory+imagination))

X_train_MLP = np.asarray (X_train_MLP)

X_train_MLP = np.concatenate (X_train_MLP[:,:, np.newaxis],
axis = 1)

X train_ MLP

np.rot90 (X_train_MLP, axes=(1,2), k=3)

for i in range(len(X_test_new [0])):
X_test_ MLP . append (prepare (X_test_new [:,i],memory, memory
+imagination))

X_test. MLP = np.asarray (X_test_MLP)
X_test MLP = np.concatenate (X_test_ MLP[:,:, np.newaxis],
axis = 1)
X_test MLP = np.rot90 (X_test MLP, axes=(1,2), k=3)
#9%

X_train_RNN_m = X_train_RNN[: ,: ,np.newaxis |
X_train_m = [X_train_RNN_m, X_train_MLP]

X_test RNN_m = X_test RNN[:,: ,np.newaxis]
X _ test.m = [X_test RNN_m, X_test MLP]

#67/ ()

#9%

Local coordinate system

Just a cumsum on parameter converted to delta earlier

ML model definition

hDense4 = 1

178

179

180

181

186

187

188

189

190

191

196

197

198

199

200

201

202

204

205

206

207

208

209

210

B.2. PARAMETER SELECTION
hGRU = 386
hDropl = 0
hDense5 = 128
hDrop2 = 0
hDrop3 = 0
hDensel = 1

hDense2 = 32
hDense3 = 128

hDense4 = 1

hDense5 = 128

hSprefix=""

verbose=0
sensitivity_analysis = False
plot_samples = True

#physical_devices = tf.config.list_physical_devices (GPU”)
#tf .config.experimental .set_memory_growth(physical_devices [0],
True)

tf . keras.backend.clear_session ()

visiblel = Input(shape=(memory,1))
visible2 = Input(shape=((imagination) ,len(X_train_new[0])))
combined = models(visiblel , visible2 , mod)

Dense (hDense3, activation="relu")(combined)
Dense (imagination , activation="linear")(z)

model = Model(inputs=[visiblel , visible2], outputs=z)

es = EarlyStopping (monitor="val_loss’, mode="min’, verbose=0,
patience =50)

mc = ModelCheckpoint(f’{hS5prefix }best_model.h5’, monitor="
val loss’,
mode="min’, save_best_only=True,
verbose =0)

model.compile(optimizer="adam’ ,loss="mean_squared_error’)
#plot_model (model, to_file="model_plot.png’, show_shapes=True,
show_layer_names=True)

Training

77

240

241

244

246

249

250

78

APPENDIX B. PYTHON CODE

rowcount = len (y_train_RNN)
val_border = int(rowcount=*0.85)
X_train_m_a = []

X_train_m_b = []

X_train_m_a.append(X_train_m [0][: val_border])
X_train_m_a.append(X_train_m [1][: val_border])

X_train_m_b.append (X_train_m [O][val_border:])
X_train_m_b.append (X _train_m|[1][val_border:])

y_train_RNN_a
y_train_RNN_b

y_train_RNN [: val_border]
y_train_RNN[val_border :]

history = model. fit (X_train_m_a,y_train_RNN_a, validation_data=(

X_train_m_b ,y_train_RNN_b) ,

epochs=2000, verbose=verbose,

batch_size =32,

callbacks=[es, mc])

model = load_model (f’{hS5prefix }best_model.h5")

result_test = model.evaluate (X_test_m, y_test RNN, verbose=0)

if target in convert_to_diff:
truth = np.cumsum(y_test RNN/target_lcs_correction/scaler_y
.scale_ , axis=1)
pred = model. predict (X_test_m)
pred = np.cumsum(pred/target_lcs_correction/scaler_y.scale_
, axis=1)

else:
truth = y_test_ RNN/target_lcs_correction/scaler_y.scale_
pred = model. predict (X_test_m)
pred = pred/target_lcs_correction/scaler_y.scale_
if split == 1 or sensitivity_analysis == True: # sensitivity
enable !
y_test_RNN = y_train_RNN
X test MLP = X train MLP

X test RNN_m = X_train RNN_m

senstable = {}
plt.style .use ([*science’,’no—latex’])
singular_sensitivity = []

B.2.

PARAMETER SELECTION 79

if PCA_n

for

I= —-1:

i in range(pca.n_features_):

X_test_MLP_plus = shift_pca (X_test MLP,
scaler_pca ,
pca,
channel=i ,
shift=shift)

X_test_m_plus = [X_test RNN_m, X_test_ MLP_plus]
results_plus = scaler_y.inverse_transform (model.

predict (X_test_m_plus))

X_test. MLP_minus = shift_pca (X_test_ MLP,
scaler_pca,
pca,
channel=1,
shift=—shift)
X_test_m_minus = [X_test RNN_m, X_test MLP_minus]
results_minus = scaler_y.inverse_transform (model.

predict (X_test_m_minus))

1)

black)

"black)

if target in convert_to_diff:

results_plus = np.cumsum(results_plus , axis=1)
results_minus = np.cumsum(results_minus , axis
sens = (results_plus — results_minus)/2

ave = np.average (sens, axis=0)
perc5S = np.percentile (sens,5, axis=0)

perc25 = np.percentile (sens ,25,axis=0)
perc50 = np.percentile (sens ,50,axis=0)
perc75 = np.percentile (sens ,75,axis=0)
perc95 = np.percentile (sens,95,axis=0)

plt.figure (figsize=(4,3))
#plt.plot(ave, linewidth=2, color="darkblue *)

"

plt.plot(perc5, linewidth=1, linestyle=":", color="

plt.plot(perc25, linewidth=1, color="black’)
plt.plot(perc50, linewidth=2, color="black)
plt.plot(perc75, linewidth=1, color="black’)

"

plt.plot(perc95, linewidth=1, linestyle=":", color=
plt.title (pca_allattr[i])

plt.grid ()
plt.tight_layout ()

plt.plot ([],[].,linewidth=1, linestyle=":", color="’

80

326

346

348

349

350

APPENDIX B. PYTHON CODE

black’,
label="$5{th}$; $95~{th}$ percentile’)
plt.plot ([],[],linewidth=1, color="black’,
label="$25"{th}$; $75~{th}$ percentile’)
plt.plot ([],[],linewidth=2, color="black’,
label="$50"{th}$ percentile’)
plt.legend ()
plt.ylabel (f’ Sensitivity Index\n[{pca_allattr[i]}]
)

plt.xlabel (’Output\nPrediction distance [m]’)

myticks = np.linspace (0,len(perc5) ,6)

mylabels = np.linspace(0,imagination_meters ,6) .
astype (int)

plt. xticks (myticks , mylabels)

]

plt.title (f’ Average sensitivity = {np.average(sens)
1)

senstable[pca_allattr[i]] = np.average(sens)

plt.savefig(f’{pca_allattr[i].replace("/","") }.pdf’
)

plt.show ()

singular_sensitivity .append(np.average ((
results_plus — results_minus)/2))

print(singular_sensitivity)
print(pca_allattr)

else :
for i in range(len(keep_columns)):

X_test_ MLP_plus = shift_notpca (X_test_ MLP,
channel=1,
shift=shift)

X_test_m_plus = [X_test RNN_m, X_test_ MLP_plus]

results_plus = scaler_y.inverse_transform (model.

predict (X_test_m_plus))

X_test_ MLP_minus = shift_notpca (X_test_ MLP,
channel=i,
shift=—shift)

X _test_m_minus = [X_test RNN_m, X_test MLP_minus]

results_minus = scaler_y.inverse_transform (model.

predict (X_test_m_minus))

if target in convert_to_diff:
results_plus = np.cumsum(results_plus , axis=1)
results_minus = np.cumsum(results_minus , axis

383

384

385

386

395

396

398

B.2. PARAMETER SELECTION 81

black)

“black ")

black’,

astype (int)

1)

sens = (results_plus — results_minus)/2
ave = np.average(sens, axis=0)

perc5 = np.percentile (sens,5, axis=0)
perc25 = np.percentile (sens,25,axis=0)
perc50 = np.percentile (sens ,50,axis=0)
perc75 = np.percentile (sens ,75,axis=0)
perc95 = np.percentile (sens ,95,axis=0)

plt.figure (figsize=(4,3))
#plt.plot(ave, linewidth=2, color="darkblue)

"

plt.plot(perc5, linewidth=1, linestyle=":", color="

plt.plot(perc25, linewidth=1, color="black”)
plt.plot(perc50, linewidth=2, color="black’)
plt.plot(perc75, linewidth=1, color="black’)
plt.plot(perc95, linewidth=1, linestyle=":", color=
plt.title (pca_allattr[i])

plt.grid ()

plt.tight_layout ()

plt.plot ([],[],linewidth=1, linestyle=":", color="

label="8$57{th}$; $95~{th}$ percentile’)

plt.plot ([],[],linewidth=1, color="black’,
label="8$252{th}$; $75~{th}$ percentile’)

plt.plot ([],[],linewidth=2, color="black’,
label="$50"{th}$ percentile’)

plt.legend ()
plt.ylabel (f’ Sensitivity Index\n[{pca_allattr[i]}]’

plt.xlabel (" Output\nPrediction distance [m]’)

myticks = np.linspace (0,len(perc5) ,6)
mylabels = np.linspace (0,imagination_meters ,6) .

plt. xticks (myticks, mylabels)
plt.title (f’Average sensitivity = {np.average(sens)

senstable[pca_allattr[i]] = np.average(sens)
plt.savefig(f’{pca_allattr[i].replace("/","") }.pdf’

plt.show ()
singular_sensitivity .append(np.average ((

82 APPENDIX B. PYTHON CODE

results_plus — results_minus)/2))

399 print(singular_sensitivity)

400 print (keep_columns)

401

402

403

404

405 ## Sensitivity for RNN input channel

406

407 X_test_m_plus = [X_test RNN_m + 0.1, X_test_ MLP]

408 results_plus = scaler_y.inverse_transform (model. predict (
X_test_m_plus))

409

410 X_test_m_minus = [X_test RNN_m - 0.1, X_ test MLP]

a1 results_minus = scaler_y.inverse_transform (model. predict (
X_test_m_minus))

412

413 # if target in convert_to_diff:

414 # results_plus = np.cumsum(results_plus , axis=1)

415 # results_minus = np.cumsum(results_minus , axis=1)

416

417

418 sens = (results_plus — results_minus)/2

419

420

oy ave = np.average (sens, axis=0)

42 percS = np.percentile (sens,5,axis=0)

423 perc25 = np.percentile (sens ,25,axis=0)

424 perc50 = np.percentile (sens ,50,axis=0)

425 perc75 = np.percentile (sens,75,axis=0)

426 perc95 = np.percentile (sens,95,axis=0)

427

428 plt.figure (figsize=(4,3))

429 #plt.plot(ave, linewidth=2, color="darkblue)

430 plt.plot(perc5, linewidth=1, linestyle=":", color="black’)

431 plt.plot(perc25, linewidth=1, color="black’)

432 plt.plot(perc50, linewidth=2, color="black’)

433 plt.plot(perc75, linewidth=1, color="black’)

434 plt.plot(perc95, linewidth=1, linestyle=":", color="black’)

435 plt.title ("RNN Input sensitivity , full channel")

436 plt.grid ()

437 plt.tight_layout ()

438

439

440 plt.plot ([],[],linewidth=1, linestyle=":", color="black’,

441 label="$57{th}$; $95~{th}$ percentile’)

442

a3 plt.plot ([],[],linewidth=1, color="black’,

444 label="8$25"{th}$; $757{th}$ percentile’)

445

446 plt.plot ([],[],linewidth=2, color="black’,

B.2. PARAMETER SELECTION 83

147 label="$50"{th}$ percentile’)

149 plt.legend ()

450 plt.ylabel (f’ Sensitivity Index\n[{target}]’)

i51 plt.xlabel (’Output\nPrediction distance [m]’)

452

153 myticks = np.linspace (0,len(perc5) ,6)

454 mylabels = np.linspace (0,hMemoryMeters ,6) . astype (int)
455 plt. xticks (myticks, mylabels)

456

457 plt.title (f Average sensitivity = {np.average(sens)}’)
458

459 senstable ["RNN"] = np.average(sens)

160 plt.savefig(f’ 1.pdf’)

461 plt.show ()

162

46.

164 singular_sens_input = []

465 for i in range(len (X_test_ RNN_m[0])):

466 print(".", end="")

467 X_test_ RNN_m_plus = X_test_ RNN_m. copy ()

468

469 localrange = np.abs(np.max(X_test_ RNN_m_plus[:,i]) — np

.min(X_test RNN_m_plus[:,i]))

471 X_test RNN_m_plus[:,i] = X_test RNN_m_plus[:,i] + 0.1
localrange

a7 X_test_m_plus = [X_test RNN_m_plus, X_test MLP]

73 results_plus = scaler_y.inverse_transform (model. predict
(X_test_m_plus))

474

475 X_test_ RNN_m_minus = X_test RNN_m.copy ()

476 X_test_ RNN_m_minus[:,i] = X_test RNN_m_minus|[:,i] -
0.1%1localrange

477 X_test_m_minus = [X_test_ RNN_m_minus, X_test_ MLP]

178 results_minus = scaler_y.inverse_transform (model.
predict (X_test_m_minus))

179

480 sens = (results_plus — results_minus)/2

181

482 singular_sens_input.append(np. percentile (sens ,50, axis
=0))

483

484 plt.figure(figsize=(4,3))

a5 vspread = np.max(np.abs(singular_sens_input))

486 sns . heatmap (np.rot90(singular_sens_input), vmin = —vspread,
vmax = vspread,

487 cmap="vlag",

188 cbar_kws={’label’: ’Sensitivity Index’})

491

492

493

494

495

496

498

499

500

501

84

APPENDIX B. PYTHON CODE

lenl = len(np.rot90(singular_sens_input))
len2 = len(np.rot90(singular_sens_input)[0])
plt.xticks (np.linspace (0,len2 ,6),

np.linspace (—hMemoryMeters ,0,6) . astype (int))
plt.yticks(np.linspace (0,lenl ,6),

np.linspace (0,imagination_meters ,6) .astype (int))
plt.xlabel ('RNN memory location [m]’)
plt.ylabel (’ Prediction distance [m]’)
plt.title (f’ Average sensitivity = {np.average(sens)}’)
plt.savefig(’2.pdf’)
plt.show ()
plt.figure (figsize=(4,3))
plt.plot(np.mean(singular_sens_input, axis=0), c=’black’)
plt.xticks (np.linspace (0,lenl ,6),

np.linspace (0,imagination_meters ,6) .astype (int))
plt.xlabel (’ Prediction distance [m]’)
plt.ylabel(’ Sensitivity Index’)
plt.grid ()
plt.title (f’ Average sensitivity = {np.average(sens)}’)
plt.savefig(’3.pdf’)
plt.show ()
plt.figure (figsize=(4,3))
plt.plot(np.mean(singular_sens_input, axis=1), c='black’)
plt.ylabel (’Sensitivity Index’)
plt.xlabel ('RNN memory location [m]’)
plt.xticks (np.linspace (0,len2 ,6),

np.linspace (—hMemoryMeters ,0,6) . astype (int))
plt.grid ()
plt.title (f’ Average sensitivity = {np.average(sens)}’)
plt.savefig(’4.pdf’)
plt.show ()

Plots

if plot_samples==True:
pred = scaler_y.inverse_transform (model. predict (X_train_m,
verbose=0))

if

, axis=1)

3)

target in convert_to_diff:

Xtr np.cumsum(scaler_y .inverse_transform (X_train_RNN)

off

np.rot90 (np. tile (xtr[:,-1], (len(pred[0]) ,1)),

544

546

547

548

549

550

557

559

560

561

563

564

565

566

567

569

570

571

574

576

577

578

580

581

582

584

B.2. PARAMETER SELECTION 85

’

pred = np.cumsum(pred, axis=1) + off
ytr = np.cumsum(scaler_y.inverse_transform (y_train_RNN)
axis=1) + off
else:
xtr = scaler_y.inverse_transform (X_train_RNN)
ytr = scaler_y.inverse_transform (y_train_RNN)
#for in range (10):

1
s = np.random.randint (0, len(y_train_RNN))
x = np.arange (0, len (X_train_RNNJ[O0]) ,1)
plt.title (’ Train)

plt.plot(x, xtr[s], label="RNN input’)

x = np.arange (len (X_train_RNN[O0]), len(X_train_RNN[O0])

+ len (y_train_RNN[O0]) ,1)

plt.plot(x,ytr[s], label="RNN output, true ’)

plt.plot(x,pred[s], label="RNN output, predicted)
plt.legend ()

plt.show ()
pred = scaler_y.inverse_transform (model. predict (X _test_m))

if target in convert_to_diff:

xts = np.cumsum(scaler_y.inverse_transform (X_test RNN) ,
axis=1)

off = np.rot90 (np. tile (xts[:,-1], (len(pred[0]),1)),
3)

pred = np.cumsum(pred, axis=1) + off

yts = np.cumsum(scaler_y.inverse_transform (y_test_RNN),
axis=1) + off

else:
xts = scaler_y.inverse_transform (X_test_ RNN)
yts = scaler_y.inverse_transform (y_test_RNN)

#for 1 in range(5):
s = np.random.randint (0, len(y_test_ RNN))

x = np.arange (0,len(X_test RNN[O0]) ,1)

588

589

590

591

592

609

610

611

612

613

614

615

617

618

619

620

APPENDIX B. PYTHON CODE

plt.plot(x, xts[s], label="RNN input’)

x = np.arange (len (X_test_ RNN[0]), len(X_test RNN[O0]) + len(

y_test_ RNN[O0]) ,1)

plt.plot(x,yts[s], label="RNN output, true’)

plt.title ("test’)

plt.plot(x,pred[s], label="RNN output, predicted’)
plt.legend ()

plt.show ()

if np.isnan(result_test):
result_test = 0
#print(—np.loglO(result_test))

if PCAn != -1:
keep_columns = pca_allattr

print (f 'MAE: {np.average (np.abs(truth—-pred))}’)

if split == 1 or sensitivity_analysis == True:
print (truth , pred, keep_columns, —-np.loglO(result_test),

senstable)

else :
print (truth , pred, keep_columns, —-np.loglO(result_test))

difference = truth —pred

#HtH#H#H#
AIC and BIC
ssd = np.sum(difference =% 2)

AIC_wi = 2+model.count_params ()+len(difference)smath.log(ssd/

len (difference))

BIC_wi = np.log(len(difference))+model.count_params ()+len (

difference)s*math.log(ssd/len(difference))

print (AIC_wi)
print (BIC_wi)
AIC_vals.append (AIC_wi)
BIC_vals . append (BIC_wi)

from google.colab import files

df_res = pd.concat((pd.DataFrame(parameters), pd.DataFrame (
AIC_vals), pd.DataFrame(BIC_vals)), axis = 1)

df_res.columns = [’P1’, P2, "P3°, "AIC’, ’BIC’]
df_res.to_csv(’ IC_results.csv’)

files .download (’IC_results.csv’)

B.2. PARAMETER SELECTION

Listing B.7: Parameter Selection Loop

87

	Abstract
	Acknowledgments
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Data Pre-Processing and Machine Learning
	Literature Review
	Missing Data Imputation
	Volve Dataset

	Motivation and Problem Statement
	Objective
	Thesis Organization

	Background
	Data Analysis
	Data cleaning
	Data Transformation

	Data Imputation
	Data Resampling
	Feature Selection
	AIC & BIC

	Time Series Models
	Time Series Analysis
	Artificial Neural Networks
	Long Short Term Memory
	Recurrent Neural Networks
	Mean Absolute Error

	Mathodology
	Machine Learning Pipeline
	Missing Data Imputation
	Data Resampling
	Feature Selection

	Results and Discussion
	Dataset
	Simulation Environment
	KNN-Imputation
	Resampling Hyperparameter Tuning
	Feature Selection
	Model Selection

	Conclusion and Future Work
	Conclusion
	Future Work

	References
	Appendices
	Appendix Parameter Combinations
	Appendix Python Code
	Resampling Method Optimization
	Parameter Selection

