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Abstract

This paper undertakes the problem of simultaneous estimation of state and process
faults in linear parameter varying systems. For this purpose, a novel strategy that
exploits recent results on the design of observers for quadratic parameter varying sys-
tems is developed, and a complete design procedure is described. First, it is shown
that by treating the process faults as additional states to be estimated, the arising
augmented state-space model is indeed expressed as a quadratic parameter varying
system. Hence, the estimates provided by a quadratic parameter varying observer
based on the so-called linear output error injection principle would comprise both
the actual state and the process faults estimates. Robust design conditions that mini-
mize the effect of disturbances and measurement noise on some linear, and possibly
parameter-varying, combination of error variables are obtained using a Lyapunov-
based approach. Then, it is shown that the design problem can be reduced to a
finite set of linear matrix inequalities that can be solved using available computa-
tional tools. The final part of the paper exhibits an illustrative example, which clearly
exposes the potential applicability and performance of the developed approach.
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1 INTRODUCTION

Owing to an inevitably increasing demand for reliability and safety in industrial systems, fault detection, isolation and estimation
(FDIE)1,2 (also known as fault diagnosis3,4) have raised to be topics of a large interest for both the academy and the industry. This
interest is also proliferating due to the increasing research attention concerning fault tolerant control (FTC)5,6,7. Indeed, FDIE,
and in particular, fault estimation constitutes the main ingredient of the so-called integrated FTC8,9. The appealing property of
the integrated FTC is the fact that it avoids fault detection and isolation in favour of using fault estimation only.
Classical model-based fault diagnosis methods aim at generating a signal, called residual, which is different from zero when

a fault occurs10,11,12. By exploiting well-known geometric properties, it is possible to associate various residual behaviors with
a given set of faults, thus enabling fault isolation13,14,15. Although obtaining information about the presence (detection) and
location (isolation) of the occurring faults is sufficient for performing some kind of fault-tolerant control reconfiguration, on-
line fault estimation is a crucial component in active FTC schemes. Indeed, active FTC aims at attaining good compensation of
the faults, with minimal loss of performance. In the light of the above discussion, many works have focused on estimating the
faults by treating them as uncertain parameters or signals.
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The system fault estimation problem can be divided into three sub-problems pertaining an estimation of actuator, sensor and
process faults. The estimation of actuator faults has been addressed using different methods. Indeed, Zhang et al.16 proposed
a fast adaptive mechanism for estimating loss of actuator effectiveness. Lee et al.17 proposed a sliding mode scheme based
on a robust descriptor observer. Witczak et al.18 presented a linear matrix inequality (LMI)-based observer design strategy
capable of achieving simultaneous estimation of faults and states while decoupling the effect of an unknown input and reducing
an unappealing impact of an exogenous disturbance. Subsequently, Rotondo et al.19 formulated fault estimation problem as a
parameter estimation one. Their work enabled the use of the so-called set-membership approach that, apart from fault estimates,
provides the so-called uncertainty intervals shaping a feasible behavior of the fault, which is consistent with the measurements.
The notion of quadratic boundedness (QB) was used by Buciakowski et al.20 to derive a feasible set for the state and fault error,
respectively. As a result, the uncertainty intervals for both the state and the actuator fault can be estimated efficiently. The above
approach was extended towards a simultaneous estimation of actuator, sensor and states of the system by Pazera and Witczak
21, who showed that ∞-based fault estimation could be perceived as a particular case of the QB-based one.
Even though most of the available results are for additive fault signals, some works have considered multiplicative faults

(see, e.g.,22,23 and the references therein). Within a large set of solutions for sensor fault estimation, a particular attention is
focused on sliding mode24,25 and unknown input observer approaches26,27. Notably, there are also several works investigating a
simultaneous estimation of sensor and actuator faults (see, e.g.,28,29,30,21. and the references therein).
Logically, the number of solutions for process fault estimation should proliferate equally, but unfortunately this does not

happen. In this case, the fault is affecting some internal component of the system, which for linear systems can be simply
interpreted as unpermitted changes of the systemmatrices. This means that, even for linear systems, the problem of simultaneous
estimation of states and process faults boils down to a nonlinear estimation problem. This is due to the multiplication of the
process faults by the state variables. To tackle this issue, Shi and Patton31 considered the case of LTI systems affected by process
faults, and showed how an adaptive observer structure where the observer gain and the adaptive law were computed using LMIs
could be employed to achieve simultaneous state and process fault estimation. Later, Pazera and Witczak32 showed that the
nonlinear estimation problem could be reduced to a linear problem by introducing a suitable system reparameterization, so that
instead of estimating directly the fault signal, its product with the state variables was estimated. In spite of the appeal brought
by the relative simplicity, this method suffered from the fact that, instead of getting a single estimate for the elements of the
fault vector, a different estimate was obtained for each state variable. This drawback was mitigated by computing the final fault
estimate as the mean value of the computed estimates, although without any theoretical guarantee of getting an unbiased estimate
of the process faults. This approach was extended later by Pazera et al.33 to cope with the case of simultaneous sensor and process
faults, whereas Witczak et al.34 analyzed the structural properties of dynamical systems under process faults. Finally, the work
35 exploited the QB approach to obtain an uncertainty interval for the fault estimate which could be fed to the FTC module.
From the analysis of the literature, it seems that there are two main shortcomings in the available approaches. First, so far only

the case of time-invariant systems affected by process faults has been considered, and there are no results concerning possibly
parameter- or time-varying plants affected by this type of faults; and second, most of the available approaches are based on a
change of variables that transforms the product of state and process fault signals into a single variable, from whose estimate a
possibly biased fault estimate is recovered a posteriori. It is clear that the development of an approach which is capable of dealing
with systems that vary in time while estimating directly the process fault signal without introducing any repameterization would
constitute an advancement of the state-of-the-art in the field of process fault estimation.
As it was already mentioned, the main difficulty with estimating directly the process fault signal f (t) arises from the fact that,

even when the attention is restricted to linear systems, such a fault causes the appearance of a nonlinear term in the state equation,
which involves some kind of multiplication between the fault itself and the state variables contained in the vector x(t). However,
it should be noted that such nonlinearity can be treated as a special case of quadratic one. Recently, a set of useful developments
concerning quadratic parameter varying (QPV) systems were published36,37,38,39,40. Indeed, QPV systems can be perceived as
valuable extensions of the celebrated LPV systems41,42. Such an extension is attributed with nonlinear quadratic terms formed by
products between state variables. In particular, the work40 tackles the state estimation problem for QPV systems. The appealing
property of this approach is the fact that a desired convergence rate within a predefined polytopic error space is achieved.
The motivation of the present work arises from noticing the fact that the QPV observer proposed by Rotondo and Johansen40

can be adapted to tackle the simultaneous estimation of states and process faults. Indeed, by considering the process faults as
additional states to be estimated, the faulty system’s state equation can be converted into an augmented state equation with
products between augmented state variables. Unlike additive faults, this augmentation does not preserve the linearity, since it
introduces quadratic terms in the augmented state equation. If the non-faulty system is assumed to be described by an LPV
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representation (many nonlinear systems can be reshaped into an LPV structure by means of automated techniques43,44), then the
arising augmented state-space model is a QPV system. As a consequences, a QPV observer would return an augmented state
estimate which comprises both the state and the process faults estimates. The main goal of this paper is to assess the applicability
of QPV observers to the problem of simultaneous state and process fault estimation in LPV systems. It is shown that the direct
application of the QPV observer proposed by Rotondo and Johansen40 is impeded by the special structure of the matrices
appearing in the dynamics of the estimation error, so that some assumptions alike to persistency of excitation conditions must be
introduced so that the observer design becomes feasible. Thus, the overall design procedure is modified adequately by obtaining
LMI-based sufficient conditions for the design of a QPV observer that achieves the above-stated goal. It should be noted that the
design procedure presented in the work40 considered the ideal case in which the observed system is not affected by unknown
disturbances and noise. With the goal of improving the robustness of the observer against these undesired effects, we propose
a design procedure that attempts at minimizing their effect on some linear, possibly parameter-varying, combination of error
variables. The conceived procedure can be thought of as an extension of the ∞ and 2 optimal design45 to the QPV case.
Thus, the contributions of this paper can be summarized as follows.

• It is shown that the problem of simultaneous state and process fault observer-based estimation in LPV systems can be
reformulated as a state estimation problem in an augmented QPV system whose state vector comprises the state and fault
estimation errors.

• The observer design problem is adapted to work about a non-zero operating point, in order to ensure that the convergence
of the estimation error to zero is not impeded by some elements of the state vector approaching zero values.

• The presence of unknown disturbances and measurement noise are taken into account by including the minimization of
their effect on some combination of error variables in the design procedure.

The structure of the paper is as follows. Section 2 states the overall estimation problem and shows that the application of
a QPV observer to an LPV system affected by process fault leads to estimation error dynamics that are described by a QPV
system affected by the unknown augmented state which acts as if it were an exogenous input. Section 3 provides the robust
observer design conditions. In Section 4, the design conditions are shaped as a finite set of LMIs, which are tractable with the
widely available computational tools. The developed approach is exemplified using an illustrative example in Section 5. Section
6 provides concluding remarks about the approach proposed in this paper and suggests prospective research directions.
Notation: The notation is fairly standard. Given a vector v or a matrix A, vT and AT denote their transposes. If A is invertible,

A−1 denotes its inverse. He {A} stands as a shorthand for A + AT . The symbols > and < are used for scalars, whereas ≻ and ≺
are used for matrices, in which case they must be interpreted in the sense of definiteness. Co

{

v1, v2,⋯ , vn
}

denotes the convex
hull with vertices v1, v2, ..., vn.

2 PROBLEM FORMULATION

Let us consider an LPV system affected by possible process faults:

ẋ(t) = A (�(t)) x(t) + B (�(t)) u(t) + G (�(t))w(t) +
nf
∑

k=1
Af,k (�(t)) fk(t)x(t) (1)

y(t) = C (�(t)) x(t) +H (�(t))w(t) (2)

where x(t) ∈ ℝn stands for the state vector, u(t) ∈ ℝr is the (known) control input vector, w(t) ∈ ℝp is an (unknown) exoge-
nous input, which can represent disturbances and/or measurement noise, and y(t) ∈ ℝm denotes the measured output vector,
respectively. Furthermore, fi(t) ∈ ℝ, i = 1,… , nf , denotes (unknown) process faults, which act onto the system through the
fault distribution matrix functions Af,k (�(t)), k = 1,… , nf . Notice that all the matrix functions appearing in the system (1)-(2)
are scheduled by a time-varying parameter vector � ∈ Θ.
The problem addressed in this paper is defined as the simultaneous estimation of the system states and the process faults with

(1) along with the measured (2). To settle this problem, let us define a fault vector f (t) ∈ ℝnf as follows:

f (t) =
[

f1(t) f2(t) ⋯ fnf (t)
]T

(3)
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Subsequently, f (t) can be used to extend the state vector to form x̄(t) ∈ ℝn+nf :

x̄(t) =
[

x(t)T f (t)T
]T (4)

Then, by imposing a standard assumption concerning the fault rate of change, i.e., ̇f (t) ≊ 0, the dynamics of x̄(t) can be described
by:

̇̄x(t) = Ā (�(t)) x̄(t) + N̄ (�(t), x̄(t)) x̄(t) + B̄ (�(t)) u(t) + Ḡ (�(t))w(t) (5)
y(t) = C̄ (�(t)) x̄(t) + H̄ (�(t))w(t) (6)

where:

Ā (�(t)) =
[

A (�(t)) 0
0 0

]

B̄ (�(t)) =
[

B (�(t))
0

]

C̄ (�(t)) =
[

C (�(t)) 0
]

Ḡ (�(t)) =
[

G (�(t))
0

]

H̄ (�(t)) =
[

H (�(t)) 0
]

N̄ (�(t), x̄(t)) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x̄(t)TN1 (�(t))
x̄(t)TN2 (�(t))

⋮
x̄(t)TNn (�(t))

0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

N1 (�(t)) =
[

0 N12
1 (�(t))

0 0

]

N2 (�(t)) =
[

0 N12
2 (�(t))

0 0

]

⋮

Nn (�(t)) =
[

0 N12
n (�(t))

0 0

]

with:

N12
i (�(t)) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

a(i,1)f,1 (�(t)) a
(i,1)
f,2 (�(t)) ⋯ a(i,1)f,nf

(�(t))
a(i,2)f,1 (�(t)) a

(i,2)
f,2 (�(t)) ⋯ a(i,2)f,nf

(�(t))
⋮ ⋮ ⋱ ⋮

a(i,n)f,1 (�(t)) a
(i,n)
f,2 (�(t)) ⋯ a(i,n)f,nf

(�(t))

⎤

⎥

⎥

⎥

⎥

⎥

⎦

where a(i,j)f,k signifies i, j-th element of Af,k (�(t)).
The augmented system (5)-(6) is a QPV system, so that the observer presented by Rotondo and Johansen40 can be used. This

observer is based on the classical linear output error injection principle, which causes that:
̇̄̂x(t) = Ā (�(t)) ̂̄x(t) + N̄

(

�(t), ̂̄x(t)
) ̂̄x(t) + B̄ (�(t)) u(t) + L (�(t))

[

y(t) − C̄ (�(t)) ̂̄x(t)
]

(7)

where ̂̄x(t) ∈ ℝn+nf denotes the estimate of x̄(t). Then, by forming e(t) = x̄(t) − ̂̄x(t), it follows that the dynamical system that
describes the evolution of e(t) is also a QPV system, affected by the unknown state x̄(t), which acts as if it were an exogenous
input together with the exogenous signal w(t):

ė(t) =
[

Ā (�(t)) − L (�(t)) C̄ (�(t)) − N̄ (�(t), e(t))
]

e(t) + Ñ (�(t), e(t)) x̄(t) +
[

Ḡ (�(t)) − L (�(t)) H̄ (�(t))
]

w(t) (8)

with:

Ñ (�(t), e(t)) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

e(t)THe{N1 (�(t))}
e(t)THe{N2 (�(t))}

⋮
e(t)THe{Nn (�(t))}

0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(9)

where the following identity has been exploited:

N̄ (�(t), x̄(t)) x̄(t) − N̄
(

�(t), ̂̄x(t)
) ̂̄x(t) = Ñ (�(t), e(t)) x̄(t) − N̄ (�(t), e(t)) e(t) (10)

Since the dynamics of the estimation error is available, the objective of the prospective section is to provide the observer design
procedure.
The problem addressed in this paper is the one of choosing the observer gain L (�(t)) that provides convergence of the esti-

mation error to zero with some guaranteed decay rate (i.e. the convergence of ̂̄x(t) to x̄(t)) when w(t) = 0, while at the same
time minimizing the effect of w(t) on a performance output signal z(t) defined as follows:

z(t) = Cz (�(t)) e(t) (11)
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This latter problem can be expressed as the minimization of an upper bound 
 > 0 on the 2 gain from w to z:

‖z‖22
‖w‖22

=
∫ ∞
0 z(t)T z(t)dt

∫ ∞
0 w(t)Tw(t)dt

< 
 (12)

which is related to ∞ optimization. Alternatively, we can minimize the value of � > 0 such that:

trace
(

Cz(�)XCz(�)T
)

< � ∀� ∈ Θ (13)

where X denotes a generalized controllability gramian46 for (8) which means that, by defining:

V (e(t)) = e(t)TX−1e(t) (14)

it satisfies the inequality:
V̇ (�(t), e(t), x̄(t)) < w(t)Tw(t) (15)

The term Cz(�)XCz(�)T can be thought of as a generalized output controllability gramian, so that through the minimization of
�, the amount of energy needed by the signal w(t) to steer the estimation error away from the origin of the error space would
be increased47. This latter problem is related to 2 optimization.

Remark 1. Notice that, in order to keep the mathematical formulation as general as possible, we allow the matrix Cz (�(t)) to
be parameter-dependent. In most cases of practical interest, this matrix is actually chosen as a constant matrix. For instance, if
the effect ofw on the state estimation error is to be minimized, then we would have Cz =

[

I 0
]

, whereas if its effect on the fault
estimation error is to be minimized, then Cz =

[

0 I
]

, where I and 0 denote identity/zero matrices of appropriate dimensions.

3 OBSERVER DESIGN

Due to the quadratic terms in (8), it is not possible to assess convergence of e(t) to zero in the whole error and state spaces. At
the same time, due to the special structures of the matrices Ā (�(t)), C̄ (�(t)), Ni (�(t)), i = 1,… , n, observability of faults can
be obtained only thanks to the action of the quadratic term, which vanishes to zero when some elements of x(t) approach zero
values. For this reason, convergence of the estimation error e(t) to zero can be ensured only if the system is working about a non-
zero operating point, which leads to introducing the following polytopes and assumptions, that can be perceived as conditions
about the persistency of excitation:

x̄ = Co{x̄(1), x̄(2),… , x̄(p)} = {x̄ ∈ ℝn+nf ∶ aTk (x̄ − c) ≤ 1, k = 1,… , q} (16)
e = Co{x̄(1) − c, x̄(2) − c,… , x̄(p) − c} = {x̄ ∈ ℝn+nf ∶ aTk x̄ ≤ 1, k = 1,… , q} (17)

where x̄(i), i = 1,… , p, denote points ofℝn+nf (vertex representation),Co{⋅} denotes the convex hull operation, ak, k = 1,… , q,
are appropriate vectors (half-space representation) and c denotes a non-zero point such that c ∈ x̄, so that 0 ∈ e (for example,
c can be chosen as the geometric center of the polytope x̄).
Assumption 1: The time-varying �(t) is perceived as a known parameter vector, which can vary within Θ.
Assumption 2: The state x̄(t) belongs to:

 = {x̄ ∈ ℝn+nf ∶ (x̄ − c)TQ−1(x̄ − c) ≤ 1} (18)

with Q ≻ 0 and x̄ ⊂  .

Remark 2. Notice that Assumption 2 constrains the state to lie inside an ellipsoidal region centered in the operating
point of the system. Under the assumption of bounded disturbances, the satisfaction of this assumption can be ensured
by designing the controller using a quadratic boundedness specification, as proposed first by Brockman and Corless48.

3.1 ∞ optimal design
Under the above assumptions, the following theorem is proposed for designing an observer gain L (�(t))which provides conver-
gence of e(t) to zero with some guaranteed decay rate � for any initial augmented state x̄(0) ∈ x̄ with initial estimation error
e(0) ∈ e, while at the same time ensuring the fulfillment of (12).
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Theorem 1. Given 
 > 0, let P ≻ 0, 0 < � < 1, and the matrix function Γ(�) ∈ ℝn×m satisfy ∀i, j ∈ {1,… , p}, ∀k ∈ {1,… , q}
and ∀� ∈ Θ:

[

P x̄(i) − c
(

x̄(i) − c
)T 1

]

≻ 0 (19)

[

P �Pak
�aTkP 1

]

⪰ 0 (20)

[

Q �Qak
�aTkQ 1

]

⪰ 0 (21)

��P + He{�
[

P Ā(�) − Γ(�)C̄(�)
]

+ PΨ(⋅)} ≺ 0 (22)

[

He{�
[

P Ā(�) − Γ(�)C̄(�)
]

+ PΨ(⋅)} + �Cz(�)TCz(�)
√

�
[

P Ḡ(�) − Γ(�)H̄(�)
]

√

�
[

Ḡ(�)TP − H̄(�)TΓ(�)T
]

−
I

]

≺ 0 (23)

with:

Ψ(⋅) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

(� − 1)c + x̄(j)
)T He{N1(�)} −

(

x̄(i) − c
)T N1(�)

(

(� − 1)c + x̄(j)
)T He{N2(�)} −

(

x̄(i) − c
)T N2(�)

⋮
(

(� − 1)c + x̄(j)
)T He{Nn(�)} −

(

x̄(i) − c
)T Nn(�)

0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(24)

Then, the observer structure (7) with L (�(t)) = P −1Γ (�(t)) causes the estimation error e(t) to converge towards zero with a
guaranteed decay rate � for any x̄(0) ∈ x̄ and e(0) ∈ e while ensuring the constraint (12) on the 2 gain from w to z.

Proof: Let us start with formulating the following candidate Lyapunov function:

V (e(t)) = e(t)TPe(t) (25)

According to Boyd et al.49, Eq. (19) ensures that:

e ⊂  = {e ∈ ℝn+nf ∶ V (e) ≤ 1} (26)

Let us notice that due to Assumption 2 and (26), if the candidate Lyapunov function in (25) satisfies:

V̇ (�(t), e(t), x̄(t)) + �V (e(t)) < 0 (27)

for all � ∈ Θ, e ∈  and x̄ ∈  , then e(t) would converge to zero with guaranteed decay rate � for any x̄(0) ∈ x̄, e(0) ∈ e.
On the other hand, if the candidate Lyapunov function in (25) satisfies:

V̇ (�(t), e(t), x̄(t)) + z(t)T z(t) − 
w(t)Tw(t) < 0 (28)

for all � ∈ Θ, e ∈  and x̄ ∈  , then the condition (12) would hold.
By taking into account the dynamics of e(t) in (8), the following calculations can be performed:

V̇ (�(t), e(t), x̄(t)) + �V (e(t)) = �e(t)TPe(t) + He{e(t)TPÑ (�(t), e(t)) x̄(t)} (29)
+ He{e(t)TP

[

Ā (�(t)) − L (�(t)) C̄ (�(t)) − N̄ (�(t), e(t))
]

e(t)}

Since:
Ñ (�(t), e(t)) x̄(t) = Ñ (�(t), x̄(t)) e(t) (30)

one can rewrite (29) as a quadratic form in e(t), such that (27) becomes equivalent to the following condition:

�P + He{P
[

Ñ (�, x̄) + Ā (�) − L (�) C̄ (�) − N̄ (�, e)
]

} ≺ 0 (31)

where the product of unknown variables P and L̄(�) can be get rid of by using the change of variable Γ(�) = PL(�), thus
obtaining:

�P + He{P
[

Ā(�) − N̄(�, e) + Ñ (�, x̄)
]

− Γ(�)C̄ (�)} ≺ 0 (32)
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In order to ensure that (32) holds for any e ∈  , x̄ ∈  , let us introduce the following enlarged versions of (16)-(17):

̃x̄ = Co{c + �
(

x̄(1) − c
)

,… , c + �
(

x̄(p) − c
)

} (33)

= {x̄ ∈ ℝn+nf ∶ �aTk (x̄ − c) =
aTk
�
(x̄ − c) ≤ 1, k = 1,… , q}

̃e = Co{�(x̄(1) − c),… , �(x̄(p) − c)} = {x̄ ∈ ℝn+nf ∶ �aTk x̄ =
aTk
�
x̄ ≤ 1, k = 1,… , q} (34)

By exploiting the Schur complements, (20)-(21) are equivalent to:

�2aTkPak ≤ 1 (35)
�2aTkQak ≤ 1 (36)

and guarantee that  ⊆ ̃e and  ⊆ ̃x̄. Hence, one can rewrite (32) at the vertices of the polytopes ̃e and ̃x̄, obtaining (22).
Similarly, by taking into account the dynamics of e(t), the following can be obtained from (28):

He{e(t)TP
[

Ā (�(t)) − L (�(t)) C̄ (�(t)) − N̄ (�(t), e(t))
]

e(t)} + He{e(t)TPÑ (�(t), e(t)) x̄(t)} (37)
+ He

{

e(t)TP
[

Ḡ (�(t)) − L (�(t)) H̄ (�(t))
]

w(t)
}

+ e(t)TCz (�(t))
T Cz (�(t)) e(t) − 
w(t)Tw(t) < 0

which, following steps similar to the ones described above, can be shown to be equivalent to:
[

He{P
[

Ā(�) − N̄(�, e) + Ñ (�, x̄)
]

− Γ(�)C̄ (�)} + Cz(�)TCz(�) P Ḡ(�) − Γ(�)H̄(�)
Ḡ(�)TP − H̄(�)TΓ(�)T −
I

]

≺ 0 (38)

Then, (38) can be ensured to hold for any e ∈  , x̄ ∈  by rewriting it at the vertices of the polytopes ̃e and ̃x̄, thus obtaining
(23), which completes the proof.□
The ∞ optimal design problem can be recast as the problem of finding the minimum value of the scalar 
 > 0 which

preserves feasibility of the matrix inequalities in Theorem 1.

3.2 2 optimal design
The following theorem is proposed for designing an observer gainL (�(t))which provides convergence of e(t) to zero with some
guaranteed decay rate � for any initial augmented state x̄(0) ∈ x̄ with initial estimation error e(0) ∈ e, while at the same time
ensuring the fulfillment of (13)-(15).

Theorem 2. Let P ≻ 0, Z ≻ 0, 0 < � < 1, and the matrix function Γ(�) ∈ ℝn×m satisfy ∀i, j ∈ {1,… , p}, ∀k ∈ {1,… , q} and
∀� ∈ Θ the matrix inequalities (19)-(22) and:

trace(Z) < � (39)
[

−Z Cz(�)
Cz(�)T −P

]

≺ 0 (40)
[

He{�
[

P Ā(�) − Γ(�)C̄(�)
]

+ PΨ(⋅)}
√

�
[

P Ḡ(�) − Γ(�)H̄(�)
]

√

�
[

Ḡ(�)TP − H̄(�)TΓ(�)T
]

−I

]

≺ 0 (41)

with Ψ(⋅) defined as in (24). Then, the observer structure (7) with L (�(t)) = P −1Γ (�(t)) causes the estimation error e(t) to
converge towards zero with a guaranteed decay rate � for any x̄(0) ∈ x̄ and e(0) ∈ e while ensuring that (13)-(15) hold.

Proof:The first part of the proof follows the proof of Theorem 1 by explaining the inclusion of thematrix inequalities (19)-(22),
and it is thus omitted. According to50, (13) is equivalent to the existence of Z ≻ 0 such that:

Cz(�)XCz(�)T ≺ Z (42)

where Z satisfies (39). From direct comparison between (14) and (25), it is clear that X = P −1, so that (42) becomes:

Cz(�)P −1Cz(�)T ≺ Z (43)

and, through Schur complements, (40) is obtained. On the other hand, bymeans of Schur complements and the change of variable
Γ(�) = PL(�), the inequality (15) can be shown to be equivalent to:

[

He{P
[

Ā(�) − N̄(�, e) + Ñ (�, x̄)
]

− Γ(�)C̄ (�)} P Ḡ(�) − Γ(�)H̄(�)
Ḡ(�)TP − H̄(�)TΓ(�)T −I

]

≺ 0 (44)
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Then, (44) can be ensured to hold for any e ∈  , x̄ ∈  by rewriting it at the vertices of the polytopes P̃e and P̃x̄, thus obtaining
(41), which completes the proof.□
The2 optimal design problem can be recast as the problem of finding the minimum value of the scalar � > 0which preserves

feasibility of the matrix inequalities in Theorem 2.

4 DESIGN CONSIDERATIONS

The main difficulty with the direct application of Theorems 1-2 is that they require the assessment of an infinite number of
conditions due to the dependency of (22)-(23) and (40)-(41) on �. In order to reduce the number to finite, let us consider a
polytopic assumption on the dependency of matrix functions Ā(�), C̄(�), Ḡ(�), H̄(�),N1(�),… , Nn(�), Γ(�), Cz (�) on �, i.e.:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Ā (�(t))
C̄ (�(t))
Ḡ (�(t))
H̄ (�(t))
N1 (�(t))

⋮
Nn (�(t))
Γ (�(t))
Cz (�(t))

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=
N
∑

l=1
�l (�(t))

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Āl
C̄l
Ḡl
H̄l
N1,l
⋮
Nn,l
Γl
Cz,l

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(45)

with some finiteN and:
N
∑

l=1
�l (�(t)) = 1, �l (�(t)) ≥ 0, ∀l = 1,… , N, ∀� ∈ Θ (46)

Since the term Γ(�)C̄(�) in (22), under the assumption (45), corresponds to a double polytopic sum, Polya’s theorem on
definite quadratic forms is applied in the following. As discussed comprehensively by Sala and Ariño51, the application of
Polya’s theorem provides a set of sufficient conditions to assess the definiteness of double sums, which are progressively less
conservative while a complexity parameter s ∈ ℕ increases. Moreover, such conditions are asymptotically exact, i.e., there exists
a finite s ensuring that they become necessary and sufficient.
Given s ∈ ℕ, let us define the following sets:

ℙs =
{

p⃗ =
[

p1, p2,… , ps
]

∈ ℕs|1 ≤ pk ≤ s ∀k = 1,… , s
}

(47)

ℙ+s =
{

p⃗ ∈ ℙs|pk ≤ pk+1, k = 1,… , s − 1
}

(48)
and let us denote as(p⃗) ⊂ ℙs the set of permutations, with possible repeated elements, of the multi-index p⃗. Then, the following
corollaries hold.

Corollary 1. Given 
 > 0 and s ∈ ℕ, let P ≻ 0, 0 < � < 1, and the matrices Γ1,… ,ΓN ∈ ℝn×m satisfy ∀i, j ∈ {1,… , p},
∀k ∈ {1,… , q} and ∀p⃗ ∈ ℙ+s :

��P +
∑

r⃗∈(p⃗)

He{�
[

P Ār1 − Γr1C̄r2
]

+ PΨij,r1} ≺ 0 (49)

∑

r⃗∈(p⃗)

⎡

⎢

⎢

⎢

⎣

He{�
[

P Ār1 − Γr1C̄r2
]

+ PΨij,r1}
√

�
[

P Ḡr1 − Γr1H̄r2

] √

�CT
z,r1

√

�
[

ḠT
r1
P − H̄T

r2
ΓTr1

]

−
I 0
√

�Cz,r1 0 −I

⎤

⎥

⎥

⎥

⎦

≺ 0 (50)
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and the matrix inequalities (19)-(21), with:

Ψij,r1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

(� − 1)c + x̄(j)
)T He{N1,r1} −

(

x̄(i) − c
)T N1,r1

(

(� − 1)c + x̄(j)
)T He{N2,r1} −

(

x̄(i) − c
)T N2,r1

⋮
(

(� − 1)c + x̄(j)
)T He{Nn,r1} −

(

x̄(i) − c
)T Nn,r1

0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(51)

Then, the observer shaped by (7) along with:

L (�(t)) =
N
∑

l=1
�l (�(t))Ll, Ll = P −1Γl (52)

causes that the estimation error e(t) converges to zero with guaranteed decay rate � for any x̄(0) ∈ x̄ and e(0) ∈ e, while
ensuring the constraint (12).

Proof: This corollary is a consequence of the fact that (49)-(50) are obtained from (22)-(23) through Schur complements and
by applying Polya’s theorem on definite quadratic forms, as proposed, e.g., by Sala and Ariño51.□

Corollary 2. Given 
 > 0 and s ∈ ℕ, let P ≻ 0, Z ≻ 0, 0 < � < 1, and the matrices Γ1,… ,ΓN ∈ ℝn×m satisfy ∀i, j ∈
{1,… , p}, ∀k ∈ {1,… , q} and ∀p⃗ ∈ ℙ+s the matrix inequalities (19)-(21), (39), (49) and:

∑

r⃗∈(p⃗)

[

−Z Cz,r1
CT
z,r1

−P

]

≺ 0 (53)

∑

r⃗∈(p⃗)

[

He{�
[

P Ār1 − Γr1C̄r2
]

+ PΨij,r1}
√

�
[

P Ḡr1 − Γr1H̄r2

]

√

�
[

ḠT
r1
P − H̄T

r2
ΓTr1

]

−I

]

≺ 0 (54)

withΨij,r1 defined as in (51). Then, the observer shaped by (7) withL (�(t)) computed using (52) causes the estimation error e(t)
to converge towards zero with a guaranteed decay rate � for any x̄(0) ∈ x̄ and e(0) ∈ e while ensuring that (13)-(15) hold.

Proof: This corollary is a consequence of the fact that (53)-(54) are obtained from (40)-(41) by applying Polya’s theorem on
definite quadratic forms, as proposed, e.g., by Sala and Ariño51.□
Notice that, owing to the product �P and the presence of

√

�, (20), (49)-(50) and (54) represent nonlinear matrix inequalities.
However, it is possible to grid � in the interval [0, 1], and apply iteratively one among Corollary 1 and Corollary 2 for each
fixed �. In this way, (20), (49)-(50) and (54) simply become LMIs. Thus, together with (19), (21) and (53) their solutions can be
obtained using, e.g., YALMIP52/SeDuMi53.

5 ILLUSTRATIVE EXAMPLE

This section concerns a numerical verification of the proposed approach. Let us start with considering a QPV system shaped by
(1)–(2), with:

A(�(t)) =
⎡

⎢

⎢

⎣

−4 − �1(t) 10 2 + 2�2(t)
−1 −1 − �2(t) 1.5 + 2�1(t)
1 1 −4 − 3�1(t)

⎤

⎥

⎥

⎦

, B(�(t)) =
⎡

⎢

⎢

⎣

−1.2 − �1(t) 0 0.7
0 0.5 0
0 0 2

⎤

⎥

⎥

⎦

, C =
⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

Af,1 =
⎡

⎢

⎢

⎣

1 0 0
0 0 0
0 0 0

⎤

⎥

⎥

⎦

, Af,2 =
⎡

⎢

⎢

⎣

0 0 0
0 1 0
0 0 0

⎤

⎥

⎥

⎦

, Af,3 =
⎡

⎢

⎢

⎣

0 0 0
0 0 0
0 0 1

⎤

⎥

⎥

⎦

, G =
⎡

⎢

⎢

⎣

0.25 0 0
0 0.15 0
0 0 0.25

⎤

⎥

⎥

⎦

, H =
⎡

⎢

⎢

⎣

0.025 0 0
0 0.015 0
0 0 0.025

⎤

⎥

⎥

⎦

with �1, �2 ∈ [0, 1] and N12
1 = Af,1, N12

2 = Af,2, N12
3 = Af,3. Following Assumption 2, the augmented state variable x̄(t)

belongs to the ellipsoid defined by (18), with:

Q = diag (0.2, 0.2, 0.2, 0.1, 0.1, 0.1) , c = [10, 10, 10, 0, 0, 0]T
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which puts constraints on the trajectories for the state variable x(t) and the possible fault magnitudes for which the approach
proposed in this paper provides theoretical guarantees of convergence of the estimated variable to the real ones.
Let us start by assuming that w(t) = 0, which gives a simplified form (1)–(2) as follows:

ẋ(t) = A (�(t)) x(t) + B (�(t)) u(t) +
nf
∑

k=1
Af,k (�(t)) fk(t)x(t) (55)

y(t) = C (�(t)) x(t) (56)

Using the design procedure described in Section 3, the following observer matrices are obtained with � = 0.2, � = 0.1, 
 = 0.2:

L1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

71.0525 −30.1291 −11.5840
103.3840 −24.6506 −19.2940
−120.2296 22.5926 42.0515
110.9573 −96.8190 −33.2168
−27.9764 74.9819 21.2993
−97.3858 53.6423 44.2481

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, L2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

64.3704 −25.0137 −9.8594
86.1731 −10.3352 −14.5522
−85.2083 −8.2030 33.3839
106.8744 −93.9764 −34.1212
−34.3997 81.1466 24.2239
−78.4953 37.2649 40.1757

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

L3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

75.4617 −35.8183 −13.0476
115.4117 −37.3239 −22.2768
−141.1897 44.7093 46.2986
113.7898 −99.8003 −33.4420
−23.1945 69.9437 18.6991
−108.5528 65.4271 47.7827

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, L4 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

75.4617 −35.8183 −13.0476
115.4117 −37.3239 −22.2768
−141.1897 44.7093 46.2986
113.7898 −99.8003 −33.4420
−23.1945 69.9437 18.6991
−108.5528 65.4271 47.7827

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

In order to exemplify the behavior of the proposed state/fault QPV estimator, let us consider simulations for which the system
and observer initial conditions are given by:

x(0) = [10, 10, 10]T , x̄(0) = [11, 10.5, 12, 0, 0, 0]T .

while the trajectories for the varying parameters are given by:

�1(t) = 0.5 + 0.5 sin(2�t∕5), �2(t) = 0.5 + 0.5 cos(2�t∕3).

The input signal u(t) is calculated as:

Up = 0.065,
u1(t) = u

eq
1 (�(t)) + Up(5 cos(t) + 5 cos(4t − 12�∕9) + 5 cos(7t − 42�∕9)),

u2(t) = u
eq
2 (�(t)) + Up(cos(2t − 2�∕9) + cos(5t − 20�∕9) + cos(8t − 56pi∕9)),

u3(t) = u
eq
3 (�(t)) + Up(cos(3t − 6�∕9) + cos(6t − 30�∕9) + cos(9t − 72pi∕9)).

where ueq1 (�(t)), u
eq
2 (�(t)) and u

eq
3 (�(t)) are the parameter-dependent input values which drive the state trajectory to an equilibrium

point corresponding to c, while the remaining terms (depending on Up) denote additive perturbations.
For the sake of comparative study, the following fault scenarios (FS) are introduced:

FS1 →

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

f1(t) =
{

−0.1 100 ≤ t ≤ 140,
0 otherwise.

f2(t) =
{

0.2 120 ≤ t ≤ 160,
0 otherwise.

f3(t) =
{

−0.05 130 ≤ t ≤ 175,
0 otherwise.

FS2 →

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

f1(t) =
{

−0.005(t − 50) 50 ≤ t ≤ 70,
0 otherwise.

f2(t) =
{

0.0025(t − 60) 60 ≤ t ≤ 80,
0 otherwise.

f3(t) =
{

−0.001(t − 70) 70 ≤ t ≤ 100,
0 otherwise.

Let us begin the simulation study with the fault–free case, i.e., fk(t) = 0, which will be denoted hereafter as FS0. Figures 1 and
2 portray the state and fault estimate, respectively. By observing the original values and their estimates, it is evident that both the
state and the process faults are estimated correctly. Indeed, the process fault estimate converges to zero after some short settling
time caused by the discrepancy between real and assumed initial conditions. Now let us proceed to the faulty case, i.e., fk ≠ 0.
Figures 3–5 show the faults and their estimates for FS1 and FS2, along with the state variables and their estimates for FS2. The
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achieved estimation results confirm clearly the theoretical results provided for the developed approach. This appealing property
makes the proposed approach a solid candidate for the prospective application in an integrated process FTC scheme.
Subsequently, Figure 6 plots the value of the function (x̄(t) − c)TQ−1 (x̄(t) − c) which describes whether x̄(t) ∈  or not,

depending on whether the value of this function is less than or bigger than 1, respectively. It is shown that the trajectories of x̄(t)
remain inside the ellipsoid  in all the three scenarios FS0, FS1 and FS2, thus theoretical convergence guarantees are provided.
It is worth remarking that the proposed approach would work in practice for a much wider set of trajectories, not necessarily
contained inside  . For instance, Figure 7 shows state and fault estimation results for a simulation of FS2 for which the value
of Up was increased up to 1 and the fault magnitude was increased of an order of magnitude when compared with the previous
results. These results show that, although the augmented state trajectory is not contained in  (see Figure 7(c) for the values of
the function (x̄(t) − c)TQ−1 (x̄(t) − c), which now become much bigger than 1), the proposed approach is still able to provide
good state and fault estimates, albeit with the loss of theoretical guarantees of convergence.
For the sake of completeness, let us consider the full representation of (1)–(2) (i.e. w(t) ≠ 0). Using the design procedure

described in Section 3 along with 2 constraints (39)–(41), the following observer matrices are obtained:

L1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

427.2646 −259.7506 −16.3848
−129.0876 549.1894 −14.4332
2.4575 2.3203 40.20427
862.9942 −526.4240 −35.0245
−247.4478 1091.7887 −30.6016
0.1198 0.1033 31.6956

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, L2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

427.2820 −259.5539 −46.5346
−129.2089 547.9813 −0.7498
4.1287 2.3621 40.2119
863.0264 −526.0396 −96.9897
−247.6797 1091.3691 −4.1523
0.2363 0.1062 31.6956

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

L3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

425.7364 −260.0593 −1.1649
−128.5972 549.3101 −51.8865
2.4981 4.1526 37.2134
861.9118 −527.0171 −5.1480
−246.5044 1092.02101 −106.6068
0.1226 0.2310 31.6960

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, L4 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

425.7576 −259.8632 −31.3115
−128.7288 548.1022 −38.2032
4.1696 4.1944 37.2211
861.9515 −526.6341 −67.1056
−246.7571 1091.6018 −80.1577
0.2391 0.2340 31.6959

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

with � = 0.2, � = 0.1, 
 = 0.2 and � = 2.0024 where the following value has been used for the matrix Cz:

Cz =
[

0 0 0 0 0 1
]

so that the effect of the disturbance on the estimation error for the fault f3(t) is minimized. For the purpose of further comparison,
two simulation cases are used:

SC1 - In this case, the fault estimation was obtain for FS2 and for observer gain matrices without 2 norm minimization;

SC2 - In this case, the fault estimation was obtain for FS2 and for observer gain matrices with 2 norm minimization.

By selecting w(t) as a uniformly distributed random vector, where each element takes values in the interval [−2.5, 2.5], Figure
8 shows the fault estimation results as well as the values of ||ef,3|| for FS2 and SC1, SC2. The results show that the2 optimal
observer is able to reject the disturbance better than the non-optimal observer.
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FIGURE 1 (a) x1(t) and its estimate x̂1(t), (b) x2(t) and its estimate x̂2(t), (c) x3(t) and its estimate x̂3(t) (FS0, t ∈ [0, 1.5])
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6 CONCLUSIONS

The main objective of this paper was to undertake the problem of simultaneous estimation of process faults and states in lin-
ear parameter varying systems. Contrarily to the approaches available in the literature, the estimation problem was tackled by
reformulating the original problem of the simultaneous process fault and state estimation for linear parameter varying systems
into an equivalent state estimation problem for quadratic parameter varying systems. This allows avoiding the chain of restric-
tive assumptions imposed by the methods presented in the literature, which lead to a suboptimal solution of the problem. In the
proposed approach, after transforming the original problem into a quadratic parameter varying equivalent, it is assumed that
the state trajectory is bounded by a known ellipsoid along with supplementary linear constraints, which make the estimation
problem tractable. Under these assumptions, it is proven that the estimation error of the proposed observer converges asymp-
totically to zero. This appealing behaviour is confirmed by the simulation study, which have shown that the proposed approach
can handle simultaneous process faults.
Future research will aim at increasing the robustness of the proposed approach against structured uncertainties by seeking an

interval formulation that can exploit adequately known bounds on the uncertainty affecting the system.Moreover, the integration
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of the proposed process fault estimation within an active FTC system that can tolerate possible delays and some degree of
inaccuracy in the fault estimation will be investigated.
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