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Abstract. The performance of a model wind turbine is simulated with three different CFD 

methods: actuator disk, actuator line and a fully resolved rotor. The simulations are compared 

with each other and with measurements from a wind tunnel experiment. The actuator disk is the 

least accurate and most cost-efficient, and the fully resolved rotor is the most accurate and least 

cost-efficient. The actuator line method is believed to lie in between the two ends of the scale. 

The fully resolved rotor produces superior wake velocity results compared to the actuator 

models. On average it also produces better results for the force predictions, although the actuator 

line method had a slightly better match for the design tip speed. The open source CFD tool box, 

OpenFOAM, was used for the actuator disk and actuator line calculations, whereas the market 

leading commercial CFD code, ANSYS/FLUENT, was used for the fully resolved rotor 

approach.   

1.  Introduction 

In a cluster of wind turbines, wake effects will result in areas with lower wind velocity than the ambient 

undisturbed wind, and often higher turbulence levels. Wind farm wake effects will hence result in power 

losses and increased loading. As there are currently vast investments in offshore wind technology [1], 

wakes offshore are of particular interest. Due to the lower turbulence regimes that often are present in 

offshore wind sites, wakes are believed to be more persistent offshore than onshore [2]. Barthelmie et 

al. [3] showed that wind turbine wakes in large offshore wind farms resulted in average power losses of 

the order of 10 to 20% of total power output. 

Modelling wind turbine performance and wakes is an important but challenging task which can be 

done using several numerical methods. Sanderse et al. [4] classified the different methods in six groups, 

with the simplest method, the so-called kinematic method, based on an analytical approach that exploits 

the far wake to obtain expressions for the velocity deficit and the turbulence intensity. Second in the list 

is blade element momentum (BEM), followed by vortex methods and panel methods. The final two 

methods are generalized actuator (which includes the actuator disk, actuator line and actuator surface 

methods) and what Sanderse calls direct methods. The direct methods include all computational fluid 

dynamic (CFD) methods that use complete or full modelling of the rotor by the use of body-fitted grids. 

These two last groups of methods are newer than the first four and quite computationally demanding.  
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In this paper we perform simulations of a small-scale model wind turbine in a wind tunnel with CFD 

methods in line with Sanderse’s two last groups, i.e. generalized actuator methods and direct methods. 

More specifically, the model wind turbine is simulated using the actuator disk method (ADM), the 

actuator line method (ALM) and a fully resolved method (FRM). The PhD theses of Mikkelsen [5], 

Réthoré [6] and Troldborg [7] all provide valuable background information on the ADM and the ALM. 

The FRM has been studied by Zahle et al., [8] amongst others.  

Our three different modelling approaches can be organized in terms of accuracy and cost efficiency, 

with the ADM believed to be the least accurate and most cost-efficient, and the FRM believed to be the 

most accurate and least cost-efficient. The ALM can be categorized in between the two ends of the scale. 

The open source CFD tool box OpenFOAM [9] was used for the ADM and the ALM calculations, 

whereas the market leading commercial CFD code ANSYS/FLUENT [10] was used for the FRM 

simulations. For all three simulations, Reynolds-averaged Navier-Stokes (RANS) methods were used, 

but the ALM and FRM simulations are transient and hence unsteady RANS (URANS) was used.  

This paper focuses on wake velocity profiles and wind turbine torque and thrust. Results from the 

ADM, ALM and FRM are compared with each other, as well as with experimental results. The 

motivation for this is to gain knowledge on the different CFD methods available for wind turbine 

performance simulations and to provide recommendations for further usage.  

2.  Wind tunnel experiment and general simulation characteristics 

In October 2011, the authors participated in blind test predictions of a model wind turbine organized 

by Nowitech1 and Norcowe2in Bergen, Norway. Eight independent modelling groups submitted 11 sets 

of simulations, and the results from the blind test calculations are presented by Krogstad et al. [11]. In 

this current paper, the blind test contributions of Kalvig (ADM) and Manger (FRM) are further 

described and analyzed, and we have performed additional simulations and included the ALM in the 

comparison.  

The length of the wind tunnel is 11.15 metres. The wind tunnel height increases slightly 

downstream. The height at the inlet is 1.80 metres and at the outlet 1.85 metres. This increasing tunnel 

height will limit the effect of the walls when the wake expands. 

 The turbine was located 3.66 m away from the inlet. The model wind turbine, with the National 

Renewable Energy Laboratory (NREL) s826 airfoil, had a rotor diameter of 0.89 m, and the centre of 

the rotor was located 0.82 m above the wind tunnel floor (see Figure 1). The rotor speed for the design 

tip speed ratio was 1282 rpm, giving a rotor tip Reynolds number of 103600. A grid at the tunnel inlet 

is used to create a turbulent field.  

Both thrust and torque, as well as wake velocity, were measured in the wind tunnel. The velocity was 

measured using a hot-wire anemometer with an x-probe. The sampling rate was 14 kHz in 60 seconds. 

More information about the experiment can be found in [12, 13].  

The ADM and FRM were performed as a part of the blind test in October 2011, but the ALM 

simulations were done later. In this study we have left the “blind-test principle”. In order to run the ALM 

code, several input parameters need to be determined and in this process one of the input parameters has 

been tuned to the known turbine power output.   

All three methods use the same boundary conditions. The given inlet condition for the blind test 

experiment was uniform inflow with a reference wind speed of 10.0 m/s and a turbulence intensity of 

0.3%. These were used as boundary conditions at the inlet. The inlet boundary condition for dissipation 

was calculated based on the information given about the hydraulic diameter of 2.19 m. No slip conditions 

were used for the walls. The outlet boundary condition was zero gradient. All three methods use a two-

equation turbulent closure. ADM and ALM use the standard k- model [14] and the FRM uses the SST 

k- model [15]. ADM is steady state, and ADL and FRM are transient simulations. Further simulation 

details are summarized below.  

                                                      
1 Norwegian Research Center for Offshore Wind Technology, http://www.sintef.no/projectweb/nowitech/ 
2 Norwegian Centre for Offshore Wind Energy, http://www.norcowe.no/ 
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Figure 1: The model wind turbine in the wind tunnel, NTNU. 

 

3.  Actuator disk simulations 

The actuator disk method (ADM) is based on momentum theory – the model turbine rotor is represented 

by a “disk” extracting momentum from the flow. Disk area (D), power coefficient (CP) and thrust 

coefficient (CT) are all input values to the model. Values for CP and CT were obtained from a 

performance test which Krogstad et al. [15] carried out in 2010. Here, CP and CT were measured for the 

model wind turbine. The simulations were performed for tip speed ratios () 3, 6 and 10, with 

OpenFOAM using a steady state solver for incompressible, turbulent flow. Turbulence was modelled 

utilizing the standard k-model [14].  

OpenFOAM is an open source computational toolbox containing various applications and utilities 

for finite volume simulations. A main advantage of OpenFOAM is that the program is open and free of 

charge, with a flexible structure, allowing the user to access and modify the code. Parallel runs on 

multiple processors can be performed without additional license costs. In OpenFOAM version 1.7.0, 

released in June 2010, the solver “simpleWindFoam” was distributed by the OpenFOAM Foundation 

[17]. This solver and setup formed the basis for the actuator disk simulations. The OpenFOAM tool 

“snappyHexMesh” was used to create the grid. The grid was refined in a region near the disk, see Figure 

2, but not near the walls. The turbine tower was not modelled. Grid dependency tests were performed, 

and the solution is believed to be grid independent for velocity calculations. The final grid size used was 

1.7 million cells, and the results presented are from 500 iterations; then the convergence criterion of 10-

4 was reached. 

4.  Actuator line simulations 

As for the ADM, the actuator line method (ALM) also relies on an actuator device extracting momentum 

from the flow. However, instead of having a disk with uniform distributed force, the rotor blades are 

now represented as span wise sections with airfoil characteristics. In the actuator line methodology of 

Sørensen and Shen [18], blade loading is implemented in these span wise sections and introduced in the 

Navier-Stokes equations as a body force. Churchfield [19] implemented the ALM of Sørensen and Shen 

in the toolbox OpenFOAM, and this is the basis for our ALM simulations. We have used the setup with 

the transient solver “pisoFoamTurbine”. This was originally intended for large eddy simulations (LES), 

but we have changed the setup to use unsteady RANS (URANS).  

The method requires airfoil look-up tables, i.e. an airfoil file containing a list of lift and drag 

coefficients versus angle of attack. The freeware airfoil development system XFOIL [20] was used to 

generate the required airfoil data, and the S826 airfoil geometry was found in the article by Somers 
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[21]. The airfoil data used here was created by John Amund Lund at Meventus3, and a closer 

description of the XFOIL generated airfoil data can be found in [22]. The local blade Reynolds 

number, calculated on the basis of rotational speed and representative cord length, will vary along the 

blade, and in [22] a wide range of XFOIL calculations were made in order to account for Reynolds 

number sensitivity. These simulations were made by considering the blade as different airfoils, with 

the one closest to the rotor being simply a cylinder, and drag/lift coefficients for the four others being 

determined on the basis of different Reynolds numbers, in the range of 10000-150000. The 

simulations were performed for tip speed ratios () 3, 6 and 10. 

Unlike the ADM, ALM allows us to study wind turbine forces and information along the blade radius. 

Thus, thrust and torque are calculated for the model wind turbine. Several input parameters needed to 

be established in order to perform the ALM simulations and these are summarized in 4.1.  

The grid was generated with the OpenFOAM tool “blockMesh”. It is refined in a region around the 

rotor, but not near the walls. The method does not include the turbine tower and this is not modelled. 

Grid independency tests were performed, and the solution is believed to be grid independent for velocity 

calculations. The final grid size used was 2.4 million cells.  

While Fredriksen [23] worked with the ALM code during his master thesis, the code was changed 

from explicit scheme to implicit scheme, and we have used this modification to the original code as well 

in the result presented here. By including the calculation of the wind turbine forces within the PISO 

algorithm [24], a tighter coupling between the flow field and the turbine blades was ensured. This change 

also made the code more robust regarding the time step size.  

Martínez et al. [25] recommended that the time increments should be small enough so that the tip 

only passes through one local grid cell during each time step. For all simulations the time increment has 

been 2.5·10-4 seconds, and this ensures that the blade tip will not pass through more than one local grid 

cell for the different simulations that were used in the grid independency test (from 350 thousand to 4 

million cells) as well as the final simulations that are used later in this study. 

The simulation time was 5 seconds. Since the rotor speed is very high for this small model wind 

turbine, this simulation time is believed to be enough in order to establish a quasi-steady result.   

   

4.1.  Input parameters in the actuator line method 

ALM relies on various input values. Among others, the Gaussian width parameter and the number 

of the actuator line elements need to be chosen. It is also possible to use a correction term in order to 

allow the lift to approach zero more gradually at the tip and root of the blade. Martinez et al. [25] found 

that using Glauert tip- and root-loss correction terms decreased the predicted power. The result presented 

here is with the tip- and root-loss correction term (Table 1).  

An important input parameter in the OpenFOAM setup by Churchfield [19] is the Gaussian width 

parameter that controls how the forces are distributed along the lines representing the rotors. Some 

publications exist regarding how to establish a representative Gaussian width parameter. Troldborg [7] 

recommends that the parameter should be larger than twice the local grid cell length. In Martinez et al.’s 

[25] experience, this was also good guidance in order to avoid numerical instabilities in the solver. The 

latest work of Churchfield [26] states, however, that the Gaussian width parameter should also 

correspond to a representative blade cord length. The master thesis of Nodeland in 2013 [27] also 

reaches the same conclusion after extensive testing of the ALM. It is still difficult to establish a 

physically appropriate value of the Gaussian width parameter, and this is ongoing research.  

Based on the guidance [26], we have performed the following procedure to establish an appropriate 

Gaussian width parameter for the simulations presented here: grid independency tests were performed. 

Thereafter we ran three simulations with different Gaussian width parameters. A cubic spline 

interpolation was used to fit the Gaussian width parameter to the known power of 172 W. Then a 

Gaussian width parameter of 0.0214 was used as input to the new simulations presented here.  

                                                      
3 Meventus is a Norwegian and Denmark based wind energy company, www.meventus.com 
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The ALM also requires an input parameter that states the number of actuator line elements, into 

which one blade should be divided. [25] recommended that for each grid cell across the blade, there 

should be at least 1.5 actuator line elements. In the following we have chosen the actuator line elements 

to be 46, which is twice the number of grid cells across one blade, in line with the suggestion in [27]. 

 

 

 
Figure 2: Wind tunnel domain, 11.15 m, 2.71 m and 1.851 m. Left: Actuator disk domain, the actuator disk is located 3.66 m 

downstream of the inlet and visualized as a 0.04 m thick disk. Right: Actuator line domain, body force is visualized on a slice. 

 

5.  Fully resolved rotor method 

The fully resolved rotor (FRM) calculations were performed using ANSYS/FLUENT. In these 

calculations, the exact layout of the wind turbine is modelled geometrically and simulated using a sliding 

mesh technique. The method requires a fine resolution near the blade to obtain accurate predictions, 

which again means many computational cells. The mesh used here has approximately 5.3 million cells. 

In addition, the calculations must be performed using a transient solver, since the actual motion of the 

rotor is modelled directly during the simulations. Therefore, substantial computer resources are required 

to perform these calculations.  

Figure 3 shows parts of the mesh used in the simulations, focusing around the turbine rotor. The 

blades of the turbine are meshed using squares and a mapped face mesh, ensuring the best possible mesh 

quality in this region. The left part of the figure shows the boundary layer, which is resolved down to 

y+~5 for best possible accuracy. 

Accurate results are highly dependent on the capability of predicting separation and re-attachment 

on the blade correctly – a few percent off here can give large deviations from measurements. The k- 

model, as used for the ADM and the ALM, is known to have poor properties with respect to correct 

prediction of recirculation, separation and re-attachment. The SST k- model by Menter [28] has, 

however, proved to predict flow around airfoils quite accurately. The model is a blend between the 

standard k- model near the wall and a transformed k- model in the free stream. The SST k- model 

is thus selected as turbulence model for the FRM calculations. 

 Typical time steps for the FRM model were around 10-3 seconds, somewhat depending on the tip 

speed ratios. The simulations were run until a quasi-steady state solution was achieved, typically some 

2-3 seconds, before obtaining averaged quantities that are reported here.   

To save computational time, the transient simulations are started from a solution computed with a 

moving reference frame (MRF) model. In this approach, the motion sources from the rotating parts are 

accounted for, but the mesh itself is static. This allows steady state simulations, and an average velocity 

field can be found and used as a starting point for the more accurate transient calculations. 

Compared with the actuator disk and the actuator line modelling approaches, the fully resolved rotor 

simulations do not require any input constants; drag and lift are calculated directly by the code, as well 

as the velocity patterns in the wake. 
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Figure 3: Details of the mesh around the turbine and its blade. The left part of the figure shows the boundary layer created around the 

blade profile. 

6.  Results 

The wake velocity profiles’ results from the different methods are presented first and compared with 

measurements and then compared with each other. Only the results from the design tip speed are used 

in the presentation of the wake velocity. Thereafter wind turbine forces are compared between ALM 

and the FRM for three different tip speeds.  

6.1.  Actuator disk wake velocity profiles 

The ADM simulations of the velocity profiles exhibit the characteristic “top hat” shapes; see Figure 4. 

Since the rotor is represented as a disk with uniform momentum extraction, the variation in the wake 

velocity from tip to rotor is not captured. The velocity levels in the far wake4 (X/D=5) are best captured. 

The asymmetry in the measurement is believed to be a result of the interaction between the rotor blades 

and the tower. The tower would normally produce a lower velocity in the shadow with corresponding 

velocity increase in its vicinity. The turbine blades, however, set up a rotation so that the tower shadow 

is skewed with a larger velocity increase on one side of the tower. In the ADM simulations the tower is 

not modelled, and this asymmetry is thus not captured. Close to the tip of the rotor, the wind speeds up 

and exceeds the reference velocity. This speed-up is less than the measurements. These results indicate 

that the ADM can to some extent predict the far wakes by the use of a steady state simulation, and this 

can be a very attractive and computationally effective approach for wake studies in wind farms. 

 

 

 

                                                      
4 The wake region is divided into near and far wake, with the near wake being the region just behind the rotor to approximately one rotor 

diameter downwind and the far wake being the area after the near wake [21]. 
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Figure 4: Horizontal wake velocity profiles simulated with ADM (design tip speed) and compared with measurements (Exp.) for different 

positions downwind, x/D=1, x/D=3 and x/D=5, where D is the diameter of the rotor. 

6.2.  Actuator line wake velocity profiles 

The ALM calculations capture the relative variation of the velocity levels in the wake, but as seen in 

Figure 5, the velocity at the hub is seriously over estimated. The nacelle is not modelled, and too much 

wind passes by the centre of the nacelle. The tip velocity wake is best captured for the near wake, i.e. at 

X/D=1. Also the wake in the region outside the rotor is best captured for the near wake.  

The Gaussian width parameter used here corresponds to 1.0899 of the local grid cell of 0.0196 m. 

This is in contrast to [7] and [25], which recommended that the lower limit for the Gaussian width 

parameter should be no smaller than twice the local grid cell length. They experienced numerically 

unstable solutions for too small Gaussian width parameters. We did not experience numerical instability, 

even though our Gaussian width parameter values were less than this limit. The fact that we have 

changed the code from explicit scheme to implicit scheme can imply that the codes are not comparable.  

Also, while the previous work was based on LES, we used URANS and this could also be part of the 

reason for this inconsistency in the Gaussian width parameter settings.  
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Figure 5: Horizontal wake velocity profiles simulated with ALM (design tip speed) and compared with measurements (Exp.) for different 

positions downwind, x/D=1, x/D=3 and x/D=5, where D is the diameter of the rotor. 

6.3.  Fully resolved rotor wake velocity profiles 

The FRM simulation captures well the variation in the wake. The agreement with experiments is good 

for all positions, but best for the near wake, as seen in Figure 6. Part of the reason for the increasing 

deviation with increasing distance is believed to be too short calculation time and thereby insufficient 

averaging. As stated earlier, the FRM calculations are time-consuming, and the lack of available 

computer resources limited the simulation time. Note the asymmetry, present both in the experiments 

and in the simulations. This feature, also quite well captured in the predictions, is caused by the 

interaction between the turbine tower and the rotor blades, commented on earlier. Velocity contours 

behind the wind turbine are visualised in Figure 7. 
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Figure 6: Left: Horizontal wake velocity profiles simulated using FRM (design tip speed) and compared with measurements (Exp.) for 

different positions downwind, x/D=1, x/D=3 and x/D=5, where D is the diameter of the rotor. 
 

 
Figure 7: In the fully resolved rotor method, the whole wind turbine with the tower was modelled. Here predicted velocity pattern behind the 

wind turbine is displayed for position x/D=1, x/D=3 and x/D=5. Blue indicates areas with low wind, whereas the red areas indicate higher 

wind. 

 

6.4.  Simulations compared with each other 

In Figure 8 simulations’ results from near wake (X/D=1) and far wake (X/D=5) are compared with 

each other and with experiment values. The FRM stands out as the most accurate model and produces 

wake velocity values that are close to the experiment values, especially for the near wake. The ADM 

results for the far wake fit better to the experimental values than those for the near wake. The ALM 

results, on the other hand, show larger deviation for the far wake than for the near wake.  
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Figure 8: ADM, ALM and FRM compared with each other and with measurements for one and five rotor diameter downwind for tip speed 
ratio 6. 

 

6.5.  Wind turbine forces’ calculations from ALM and FRM 

This version of ADM does not give information about wind turbine forces, and only results from ALM 

and FRM can be compared against the experimental data. Table 1 lists the experimental values of CP 

and CT, and the measured values are compared with the estimated values from the two different 

simulation approaches.  

As expected the design tip speed is easiest to model, and the simulated power and thrust compare 

best with the experiment values for the design speed. The FRM predicts values close to the experimental 

values, slightly overestimating CP by 2% and underestimating CT by 8 %. The simulation performed 

with ALM gives practically the same values for CP as in the experiment and approximately 7% 

underestimation on the thrust.  

For tip speed ratios 10 and 3, both the FRM and ALM results are far off. The largest deviations from 

the experiment values for FRM are for tip speed 3 and for ALM are for tip speed 10.  

 

Tip speed ratios  Experiment FRM Deviation ALM Deviation 

3 CP 0.12 0.23 91.6 % 0.17 43.3 % 

CT 0.40 0.46 15.0 % 0.34 - 15.3 % 

6 CP 0.45 0.46 2.2 % 0.45 0.8 % 

CT 0.92 0.85 - 7.6 % 0.86 -  6.7 % 

10 CP 0.20 0.16 - 20.0 % 0.04 - 80.1 % 

CT 1.17 1.03 - 12.0 % 0.88 - 24.4 % 
 

Table 1: Power coefficient (Cp) and thrust coefficient (CT) from FRM and ALM simulations for different tip speed ratios () are compared 

with experimental values. 

7.  Discussion and conclusions 

Wake velocity profiles, torque and thrust are fairly well predicted using a fully resolved rotor approach 

for the design tip speed ratio 6. For the wake simulations there are, however, larger discrepancies in the 

results from the ADM and the ALM approaches. Both the FRM and the ALM predicted power and thrust 

are very close to the measured values for the design tip speed; for the other tip speed ratios, the deviations 

were somewhat larger. 

The ADM performs best on far wakes, where the magnitudes of the wake velocity deficit are in line 

with measurements. It would be interesting to study the performance of this model for positions further 

downwind, as the results are promising for far-wake predictions. The actuator disk method does not 

capture any variation over the rotor blade since the method used is a simple uniform actuator disk model.  
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The ALM, on the other hand, captures the variation pattern, but it is far off in magnitude for both 

near and far wake for the hub area. For a realistic turbine, the nacelle is believed to be of relatively less 

importance then for this down-scaled version of an operational wind turbine.  

Réthoré et al. [6] report that the standard k- model is known to under-predict the wake effects and 

suggest LES instead. This could be an explanation, but in order to investigate this, we need to perform 

the same simulations with LES and compare the results. In this study we have focused on wake velocity 

and turbine forces, but turbulence characteristics in the wake are of course also of great interest. In order 

to compare turbulence levels between these three different methods, more work and investigations have 

to be carried out.  Churchfield et al. simulated wake losses for Lillgrund wind farm [26], and the 

simulated time-averaged power production of the wind farm agrees well with Lillgrund field 

observations. There is reason to believe that the large discrepancies in the wake prediction for this small-

scale model wind turbine are greater than would be the case for a full-scale wind turbine.  Both the high 

rotational speed of the small-scale turbine and the relative large size of the nacelle (that the ALM does 

not model) complicate the calculations compared to a large scale wind turbine. Detailed field 

measurement in the wind turbine wake is sparse, and further study of the ALM must be performed in 

order to conclude on this matter. 

     The ALM is dependent on correct input values and setup. The method is also found to be quite 

sensitive for the composition of the airfoil data. The Gaussian width parameter has, in particular, a great 

influence on both the wake velocity predictions and the calculation of the wind turbine forces. Currently 

there is no uniform way of establishing appropriate Gaussian width parameters without model tuning. 

Nevertheless, the ALM results are promising for wind turbine force investigations, especially for the 

design tip speed.  

In this study the FRM produces superior wake velocity results compared to the ADM and ALM and 

on average it also produces better results for the force predictions, although the ALM had a slightly 

better match for the design tip speed. 

The good results, close to the measured values for both wake velocity profiles and forces’ 

calculations with the FRM simulation, suggest that this setup can be further utilized in model tuning and 

in an examination of both the ADM and the ALM approaches. Measurements from both real wind farms 

and wind tunnels are sparse and often costly, whereas the FRM setup, on the other hand, can easily be 

modified and hopefully serve as a way to benchmark the other models. 
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