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Preface 

This thesis has been written to partially fulfill the graduation requirements of the Philosophiae 
Doctor (PhD) degree at the Department of Energy Resources. Faculty of Science and 
Technology, University of Stavanger, Norway. I was engaged in writing this thesis from 
March to June 2021.  
This research was conducted under the main supervisor, Prof. Reidar B. Bratvold at the 
University of Stavanger and the co-supervisor, Dr. Hanea Remus, Lead Scientist at Equinor. It 
was funded by the DIGIRES from October 2018 to October 2021.The work was conducted 
mainly at the University of Stavanger. 
This work intends to illustrate and discuss the implementation of data-driven decision 
techniques to manage geological and petrophysical uncertainties for supporting decision 
making process in the context of reservoir management. 
I believe that this work will be of great interest to both managers and engineers in oil and gas 
companies and to researchers at academic and research institutes, who are engaged in 
improving the quality of oil and gas operation related decisions. 

Amine Tadjer 
Stavanger, May 2021. 
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Abstract 

Reservoir Management (RM) is defined as the utilization of available technology, financial 
assets, and human resources to maximize the economic recovery of a reservoir. This type of 
management involves a series of operations and decisions, from the initial stage of the 
discovery of a reservoir to the final stage of field abandonment. Thus, RM is a decision-
oriented activity, for which Decision Analysis (DA) will add value. Indeed, decisions are the 
only means we have to create value. DA is an approach intended to provide clarity of action 
on the decisions which we focus our attention. Due to the inherent uncertainty in the 
outcomes from our decisions, good decisions can have bad or good outcomes. A good 
decision is logically consistent with alternatives, information, and preferences available at the 
time the decision is made. The most challenging phenomenon we face in decision making is 
uncertainty. Uncertainty is inseparable from all significant decisions. Hence, clear thinking 
about uncertainty is a requirement for making good decisions. Although the oil and gas 
industry has long been aware of the importance of uncertainty understanding and 
management, data-driven decision approaches that include consistent uncertainty 
quantifications are not commonly or comprehensively used. 

This dissertation address three of the main challenges commonly encountered in reservoir 
management: production forecasting, uncertainty quantification for history matching 
problems and sequential decision making. We propose solutions to each problem that employ 
different algorithms of data-driven decision techniques and model-based forecast that allow a 
coherent integration of uncertainty and decisions.  

The first challenge is addressed through illustrating and discussing the implementation of 
probabilistic Machine Learning (ML) techniques in decline curve analysis. Unlike decline 
curve models, the ML approach can be regarded as “model-free” (non-parametric) because 
the pre-determination of decline curve models is not required. However, the main problem of 
pure ML techniques is lack of stability in long-term forecasts. To solve this, we have 
combined the decline curve model, a recognized technology in the reservoir engineering 
community, that provides stable long-term forecasts in an unconventional reservoir, with 
neural networks to automatically adjust decline curve model’s parameters. We illustrated the 

incorporation of Neural Ordinary Differential Equations (ODEs) with Bayesian Inference, 
The No-U-Turn MCMC sampler (NUTS) (Hoffman et al., 2014), which allows the prediction 
uncertainty of Decline Curve Analysis (DCA) to be quantified. Physics-based neural 
networks, which are a relatively new technique that makes it possible for physics constraints 
to be integrated into neural network architecture, are the foundation of this approach. 

The second challenge is addressed through illustrating and discussing the implementation of 
two techniques in uncertainty quantification and reservoir model calibration with much-
reduced simulation computation time; one relies on ML Dimensionality Reduction (DR) 
techniques and the other one on Bayesian Evidential Learning (BEL) framework. The ML-DR 
approach is based on a sequential combination of nonlinear dimensionality reduction 
techniques: t-Distributed Stochastic Neighbor Embedding (t-SNE), the Gaussian Process 
Latent Variable Model (GPLVM), and clustering K-means, along with the data assimilation 
method Ensemble Smoother with Multiple Data Assimilation (ES-MDA). Cluster analysis 
with t-SNE and GPLVM is used to reduce the number of unknown parameters and select a set 
of optimal reservoir models that have similar production performance to the observed data 
from the field. We then apply ES-MDA for data assimilation.  BEL is a general data scientific 
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framework used to quantify uncertainty within the decision-making context. BEL relies 
mainly on data, model, prediction, and decision applying Bayesian inference methodologies. 
BEL is usually divided into six main stages: (1) Formulation and definition of the decision 
problem; (2) prior model definition and specification; (3) Monte Carlo simulation and 
falsification of the prior uncertainty models; (4) Global sensitivity; (5) Uncertainty reduction 
using data; (6) Posterior falsification and decision making. In step 5, one may opt for classical 
inversion or direct forecasting (DF). DF utilizes a combination of statistical learning 
techniques and the Monte-Carlo sampling method to ensure direct relationships between the 
data and the prediction variables. It should be noted that this method requires no completed 
explicit model inversions (update the model parameters). This results in it being less 
computationally expensive when compared to the standard inversion methods. 

The third challenge is addressed the problem of making optimal decisions while considering 
the evolution of uncertainty (learning over time). To efficiently account for the impact of 
future information on optimal decisions, we have used an Approximate Dynamic 
Programming (ADP) approach, often described as simulation-regression method to address a 
significant number of decision-making problems related to RM. RM is regarded as sequential 
problem, as most petroleum engineers and geoscientists are used to consider the gathered 
information, support their future decision making, and maximize the value created by the 
reservoirs. However, the models for reservoir management decisions may be computationally 
prohibitive and intractable if the state-space which involves the number of decisions, the 
number of alternatives for each decision and the number of uncertainties are included. To 
solve this issue and provide better good RM decisions, DA is recommended due to its several 
advantages. Howard (1980) stated that “DA is a systematic procedure for transforming 

opaque decision problems into transparent decision problems through a series of transparent 
procedures.” In the context of reservoir management, DA is used as a consistent mean for 
evaluating different approaches and alternatives to determine the optimal scenario to 
maximize the profitability of investment of any project e.g., Net Present Value (NPV).  In 
addition, to utilize fewer computational resources, ADP, is a viable technique that can handle 
complex, large-scale problems and discover a near-optimal solution for intractable sequential 
decision making. Furthermore, we present and test the performance of several machine 
learning techniques to quantify geological uncertainty with the reservoir development plan 
and making sequential decision in the context of the Enhanced Oil Recovery (EOR) process 
and CO2 storage monitoring. 

This work presents several examples to demonstrate the value of applying ML and DA 
techniques in RM. The main contribution of the dissertation is the investigation of how ML 
methods can contribute to probabilistic forecasts, uncertainty quantification and sequential 
decision making in RM. To achieve this goal, we:  

1. Show how to integrate and apply Bayesian ML for unconventional oil production
forecasting to inform and support RM decision-making;

2. Illustrate and discuss how to use ML dimensionality reduction techniques to support
history matching and reservoir model calibration with significant reduction in
computing time;

3. Illustrate and discuss how to use the BEL framework to quantify uncertainty in the
context of CO2 storage monitoring;

4. Show how to apply simulation-regression method for EOR processes and CO2 storage
operations to maximize the value and reliability of the reservoir development plan.
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We believe that this work is relevant and material in demonstrating the benefits and value 
creation potential of implementing DA and ML methods to support RM decisions. Although 
the current implementations may be somewhat simplified, they can serve as a guidance for 
future research attacking the challenges involved in implementations in real-world settings. 



v 

Acknowledgments 

This thesis would not have been possible without the help and support from many people to 
whom I would like to express my sincere gratitude. 
First and foremost, I would like to express my deepest gratitude to my supervisor Professor 
Reidar B. Bratvold for his continuous support, guidance, and motivation throughout my 
research journey. His highly organized way of formulating research ideas has been a source of 
inspiration for me. His insights, supervision and guidance have nourished my maturity both 
intellectually and personally. Working under his supervision is such an honor.  

My sincerest thanks also go to Dr. Remus Hanea and Dr. Aojie Hong for their support, 
discussion, and considerable encouragement. They expanded my view on uncertainty 
quantification in reservoir management and helped me to mature my understanding of history 
matching and sequential decision-making framework. 

I gratefully acknowledge the financial support of financial support from the Research Council 
of Norway through the Petromaks-2 project DIGIRES (RCN no. 280473) and the industrial 
partners AkerBP, Wintershall DEA, ENI, Petrobras, Equinor, Lundin, and Neptune Energy. 

I am thankful to those in DIGRES and Data and Decision Analysis group for all the thought-
provoking discussions. The collaborations have been very constructive and fruitful for 
shaping my research ideas. It is also my pleasure to wholeheartedly pay a tribute to Daniel 
Busby. I am forever indebted for his support and advice and for entrusting me with valuable 
data analytics internship opportunities within TOTAL, from which I learned immensely. 

My life in Norway has been blessed with friends who have always been supportive and 
inspiring. I am deeply appreciative to have met them. 

Last but not least, I would like to thank my family, whom I owe my deepest gratitude to. They 
have provided me with their unequivocal love and support such that my mere expressions of 
thanks would not sufficiently express my appreciation. This thesis is dedicated to the memory 
of my grandfather, Said Tadjer, who was my first teacher and who had always inspired me to 
pursue higher studies. 

Finally, I would like to thank everybody essential to the successful realization of this 
dissertation. I also would like to apologize that I could not personally mention all the names. 

Amine Tadjer 



 

vi 
 

List of Papers 

Paper I: Machine Learning based Decline Curve Analysis for Short-Term Oil 
Production Forecast. 
Amine Tadjer, Aojie Hong and Reidar B. Bratvold. 
Published in Energy Exploration & Exploitation. 
https://doi.org/10.1177/01445987211011784 

Paper II: Bayesian Deep DCA: A New Approach for Well Oil Production Modeling and 
Forecasting. 
Amine Tadjer, Reidar B. Bratvold and Aojie Hong. 
Published in SPE Reservoir Evaluation & Engineering 2022. 
https://doi.org/10.2118/209616-PA 
 
Paper III: Managing Uncertainty in Geological CO2 Storage using Bayesian Evidential 
Learning. 
Amine Tadjer and Reidar B. Bratvold. 
Published in Energies 2021, 14, 1557. https://doi.org/10.3390/en14061557 
 
Paper IV: Efficient Dimensionality Reduction Methods in Reservoir History Matching. 
Amine Tadjer, Reidar B. Bratvold and Remus Hanea. 
Published in Energies 2021,14(11), 3137. https://doi.org/10.3390/en14113137 
 
Paper V: Application of Machine Learning to Assess the Value of Information in 
Polymer Flooding. 
Amine Tadjer, Aojie Hong, Reidar B. Bratvold and Remus Hanea. 
Published in Petroleum Research. https://doi.org/10.1016/j.ptlrs.2021.05.006. 
 
Paper VI: A Sequential Decision and Data Analytics Framework for Maximizing Value 
and Reliability of CO2 Storage Monitoring. 
Amine Tadjer, Aojie Hong and Reidar B. Bratvold. 
Published in Journal of Journal of Natural Gas Science and Engineering. 
https://doi.org/10.1016/j.jngse.2021.104298 
 
 
 
 
 

https://doi.org/10.1177/01445987211011784
https://doi.org/10.2118/209616-PA
https://doi.org/10.3390/en14061557
https://doi.org/10.3390/en14113137
https://doi.org/10.1016/j.ptlrs.2021.05.006
https://doi.org/10.1016/j.jngse.2021.104298


 

vii 
 

Contents 

 

Preface ...................................................................................................................................................... i 

Abstract ................................................................................................................................................... ii 

Acknowledgments ....................................................................................................................................v 

List of Papers .......................................................................................................................................... vi 

Contents ................................................................................................................................................. vii 

List of Figures ...................................................................................................................................... viii 

Abbreviation ......................................................................................................................................... viii 

1 Introduction ......................................................................................................................................1 

1.1 Motivation ............................................................................................................................................ 1 

1.2 Research Goals ..................................................................................................................................... 2 

2 Scientific Background ......................................................................................................................3 

2.1 Introduction to Machine Learning ........................................................................................................ 3 

2.2 Hydrocarbon Production forecasting. ................................................................................................... 4 

2.3 Uncertainty Quantification in Reservoir Management ......................................................................... 5 

2.4 Sequential Decision Making ................................................................................................................. 6 

2.4.1 Closed Loop Reservoir Management (CLRM) ...................................... 6 
2.4.2 Sequential Reservoir-Decision-Making (SRDM). ................................. 7 
2.4.3 Stochastics Dynamic Programming. ...................................................... 8 
2.4.4 Simulation-Regression ........................................................................... 9 
2.4.5 Value of Information Analysis (VOI) .................................................... 9 

3 Summary and implication of papers. ..............................................................................................11 

3.1 Paper I: Machine Learning Based Decline Curve Analysis for Short-Term Oil Production Forecast 11 

3.2 Paper II: Bayesian Deep DCA: A New Approach for Well Oil Production Modeling and Forecasting15 

3.3 Paper III: Managing Uncertainty in Geological CO2 Storage Using Bayesian Evidential Learning .. 21 

3.4 Paper IV: Efficient Dimensionality Reduction Methods in Reservoir History Matching .................. 25 

3.5 Paper V: Application of Machine Learning to Assess the Value of Information in Polymer Flooding30 

3.6 Paper VI: A Sequential Decision and Data Analytics Framework for Maximizing Value and 
Reliability of CO2 Storage Monitoring. .............................................................................................. 33 

4. Concluding remarks. .......................................................................................................................37 

5. Further Works .................................................................................................................................40 

6. References ......................................................................................................................................42 

 
 
 
 

 



 

viii 
 

List of Figures 

Figure 2.1— Machine learning timeline, adopted from Dramsch (2019). .........................................3 

Figure 2.2 — Different Categories of Machine Learning Techniques. ..............................................4 

Figure 2.3 — Key elements of CLRM, adopted from Jansen et al. (2009). .......................................7 

Figure 2.4 — Decision-tree representation of CLRM. ........................................................................7 

Figure 2.5 — Illustration of Decision tree of SRDM. ..........................................................................8 

Figure 2.6 — Basic structure of SDP problem. ....................................................................................8 

Figure 3.1— Oil production time series forecast- DeepAR. Left: Overview of forecast. Right: 
zoomed forecast. ...........................................................................................................13 

Figure 3.2 — Oil production time series forecast- Prophet. .............................................................14 

Figure 3.3 — Oil production time series forecast- DeepAR - 48 months horizon forecast. ...........15 

Figure 3.4 — Oil production time series forecast- Prophet - 48 months horizon forecast. ...........15 

Figure 3.5 — Comparison of the ML model predicted values and the historical data fitted values 
for DCA parameters. ...................................................................................................18 

Figure 3.6 — Comparison of the ML model predicted values and the historical data fitted values 
for EUR. ........................................................................................................................18 

Figure 3.7 — Comparison of the BN-ODE estimation compared to SEDM model and actual oil 
production. ...................................................................................................................19 

Figure 3.8 — Comparison of the BN-ODE estimation compared to Duong model and actual oil 
production. ...................................................................................................................19 

Figure 3.9 — Comparison of the BN-ODE estimation compared to PanCRM model and actual 
oil production. ..............................................................................................................20 

Figure 3.10 — Violin plot of the MAPE of the DCAs model and prediction data (best fit). .........20 

Figure 3.11 — Utsira formation. Location along the Norwegian Continental Shelf (left). Maps of 
geomodel depths in meters (below the seabed) (right), adopted from (Allen et al. 
(2018). ............................................................................................................................21 

Figure 3.12 — Prior measurement data variables.............................................................................22 

Figure 3.13 — Prior distribution of prediction data variables – 3000 years. ..................................22 

Figure 3.14 — Functional components correlation analysis. Red lines correspond to the observed 
(CO2 mass injected). ....................................................................................................23 

Figure 3.15 — Functional components correlation analysis. Red lines correspond to the observed 
(CO2 leak).....................................................................................................................23 

Figure 3.16 — Reconstruct posterior CO2 mass injected .................................................................24 

Figure 3.17 — Reconstruct posterior CO2 leak.................................................................................24 

Figure 3.18 — Flow chart for the history matching with dimensionality reduction framework. .25 

Figure 3.19 — Example Log of permeability (K) distribution for six of 103 different geological 
realizations of the Brugge field. ..................................................................................26 

Figure 3.20 — Silhouette plots with different cluster numbers (t-SNE 2D space). ........................27 

Figure 3.21 — Model selection using t-SNE and GPLVM. ..............................................................27 

Figure 3.22 — Oil production rate (STB/day) for three wells with ESMDA, ES-MDA-tSNE and 
ES-MDA-GPLVM. The vertical dashed line indicates the end of the history and 
beginning of the forecast period. The red line indicates the observed data points 
and the prediction from the reference model. The grey region corresponds to the 
predictions within the percentiles P10–P90 obtained with the ES-MDA. The light 
blue region corresponds to the predictions within the percentiles P10–P90 
obtained with ES-MDA-tSNE or ES-MDA-GPLVM. ..............................................28 



 

ix 
 

Figure 3.23 — Water cuts for three wells with ESMDA, ES-MDA-tSNE and ES-MDA-GPLVM. 
The vertical dashed line indicates the end of the history and beginning of the 
forecast period. The red line indicates the observed data points and the prediction 
from the reference model. The grey region corresponds to the predictions within 
the percentiles P10–P90 obtained with the ES-MDA. The light blue region 
corresponds to the predictions within the percentiles P10–P90 obtained with ES-
MDA-tSNE or ES-MDA-GPLVM. .............................................................................29 

Figure 3.24 — Violin plot of Mean CRPS of historical and prediction data (WOPR, Water cut 
and BHP). .....................................................................................................................30 

Figure 3.25 — (Left) Reservoir model displaying the position of the injectors (blue) and 
producers (red). (Right) Six randomly chosen realizations (From Jansen et al., 
2009). .............................................................................................................................31 

Figure 3.26 — The oil production and the water production profile for the realization of the 
alternative “inject polymer flooding at the end of the first year” and for the 

alternative “inject water flooding”. ............................................................................31 

Figure 3.27 — Oil price modelling. .....................................................................................................32 

Figure 3.28 — NFDs of the polymer injection corresponding to the decision-making with ML ..33 

Figure 3.29 — Carbon prices modelled using the OU mean-reverting process. .............................35 

Figure 3.30 — NFDs of the CO2 Optimal Stop Injection Time corresponding to the Decision-
making with ML. .........................................................................................................36 



 

x 
 

Abbreviation 

 
2D/3D Two dimensional/ Three Dimensional 
ADP Approximate Dynamic Programming  
ANN Artificial Neural Network 
AR Auto Regressive 
BEL Bayesian Evidential Learning 
CLRM Closed Loop Reservoir Management. 
CRPS Continuous Ranked Probability Score 
DA Decision Analysis 
DCA Decline Curve Analysis 
DF Direct Forecasting 
DGSA Distance-Based Generalized Sensitivity Analysis 
DM Decision Maker 
DP Dynamic Programming 
DR Dimensionality reduction 
DWI Decision With Information 
DWII Decision With Imperfect Information 
DWOI Decision Without Information 
DWPI Decision With Perfect Information 
ENPV Expected NPV 
EOR Enhanced Oil Recovery 
ES-MDA Ensemble Smoother with Multiple Data Assimilation 
EUR Estimated Ultimate Recovery 
EV Expected Value 
EVWI Expected Value With Information 
EVWII Expected Value With Imperfect Information 
EVWOI Expected Value Without Information 
EVWPI Expected Value With Perfect Information 
FOPR Field Oil Production rate 
GPLVM Gaussian Process Latent Variable Model 
GRU Gated Recurrent Unit 
HMC Hamiltonian Monte Carlo 
LSM Least-squares Monte Carlo 
LSTM Long Short-Term Memory 
MC Monte Carlo 
MCMC Markon-Chain Monte Carlo 
MCS Monte Carlo simulation  
MAPE Mean Absolute Percentage Error 
ML Machine Learning 
NFD Normalized Frequency distribution 
NPV Net Present Value 
NUTS No-U-Turn Sampler 



 

xi 
 

O&G Oil and Gas 
ODE Ordinary Differential Equation 
Pan CRM Pan’s Combined Capacitance Resistance Model 
PCA Principal component analysis 
PDF Probability Density Function 
PINN Physics Informed Neural Network 
PO Production Optimization 

R2 Coefficient of Determination 

RM Reservoir Management. 
RMSLE Root Mean Squared Logarithmic Error 
RNN Recurrent Neural Network 
SDP Stochastic Dynamic Programming  
SEDM Stretched Exponential decline model 
SHAP Shapley Additive Explanations 
SMD Sequential Model Decomposition 
SR Simulation-Regression 
SRDM Sequential Reservoir-Decision-Making  
TPOT Tree-Based Pipeline Optimization Tool 
t-SNE t-distributed stochastic neighbor embedding 
UQ Uncertainty Quantification 
UR Uncertainty Reduction 
USD US Dollar 
VOI Value of information 
VOPI Value of perfect information 

 
 
  
  
 
 
 
 
 
 
 



Introduction 

1 
 

1 Introduction 

1.1 Motivation 

 
Reservoir management (RM) consists of decision-oriented processes in which decision 
makers apply their current knowledge to find optimal production strategies that maximize the 
value of hydrocarbon production from a reservoir. Among the many decisions that are 
commonly encountered in RM, three example problems are selected and solved in this 
dissertation: oil production forecasting, uncertainty quantification for history matching 
problems, and sequential decision making. The solutions to these problems will exemplify 
ways in which decisions and uncertainties are systematically integrated to logically and 
intuitively approach optimal decisions. 
 
 
Production Forecasting: Accurate prediction of future reservoir performance and well 
production rates is important for decision support in a reservir development plan. In the 
absence of geological or petrophysical (physics-based) information, time-series analysis can 
be used to predict future performance from past data. Traditional decline curve analyses 
(DCAs), both deterministic and probabilistic, use physics (or empirical)-based models fitted 
to historical production data for production forecasting. Different decline curve models have 
been suggested and applied to unconventional wells, including the Arps model, stretched 
exponential model, Duong model, and PanCRM. However, although it may be relatively easy 
to set a given model’s parameters through production data fitting, it is difficult to decide 
which model to use, as multiple models may fit the historical production equally well yet 
result in different forecasts. Randomly selecting a decline curve model for probabilistic DCA 
can underestimate the uncertainty in a production forecast (Hong et al., 2019). Thus, several 
studies have utilized different machine learning (ML) algorithms to conduct robust oil 
production forecasting for both conventional and unconventional reservoirs. ML is regarded 
as “model-free” and does not require pre-determination of decline curve models. In addition, 
ML can forecast oil production based on a given history of oil rates. 
 
Uncertainty Quantification: Better knowledge of uncertainty reduces risk and leads to better 
decisions (e.g., Bratvold and Begg, 2010). Begg et al. (2014) presented a useful definition of 
uncertainty: Not knowing if a statement (or event) is true or false”. The standard methods for 
quantifying uncertainty rely on a consideration of many plausible geological realizations 
(ensemble models) and quantification of the statistical measures for the ensemble parameters. 
Several oil companies are testing methods for uncertainty prediction and model conditioning 
(model-based approaches). Ensemble methods provide consistent probability estimates that 
can serve as input for probabilistic decision making. However, generating a set of posteriors 
properly conditioned to all historical data that preserves geological realism is a very 
challenging process. The limitations have been well-detailed in (Oliver et al., 2011); one issue 
is that due to the limited size of the ensemble, spurious correlations may be generated leading 
to loss of geological realism and underestimation of uncertainties (ensemble collapse). 
 
Sequential Decision Making The oil and gas sector has long been aware of the significance 
of uncertainty quantification (Bratvold and Bickel 2009). However, decision analysis (DA), 
which utilizes consistent probabilistic methods to handle uncertainties for better decision 
making, is not commonplace in the industry because of technical and non-technical 
challenges. Thus, common assessment and decision models consider only a strategy made 
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upfront without considering the opportunities for later adjustment or changes within the 
strategy (Smith 1999).  This approach is called a naïve or a single decision approach. 
However, the naïve approach has significant drawbacks, often undervaluing investment 
opportunities leading to myopic decisions. In addition, a significant number of decision-
making problems related to RM are regarded as sequential problems, as most petroleum 
engineers and geoscientists consider the information gathered, support their future decision 
making, and maximize the value created by the reservoirs. However, the models for RM 
decisions may be computationally prohibitive and intractable if several sequential decisions 
and uncertainties are involved. 
 
 
This thesis aims to address these challenges, and the research objectives of this thesis are 
summarized as follows. 
1. How can we improve short- and long-term oil production forecasts and support 

decision-making processes in the field development plan? 
2. How can we circumvent the different challenges associated with model-based 

approaches without a loss of fidelity in the results? 
3. How can the curse of dimensionality arising in sequential RM decision making be 

overcome?  

 

1.2 Research Goals 

Value can only be created through high-quality decision making, which in turn relies on high-
quality uncertainty assessment. Our objective is to demonstrate the usefulness of novel and 
different data-driven decision methods in creating value by supporting decision making in 
complex and uncertain environments for reservoir management. To pursue this objective, we 
develop a framework that investigates the following problems: 

1. The implementation of probabilistic ML and physics-guided ML predictive models for 
robust production forecasting, with a focus on integrating and accounting for model 
uncertainty in probabilistic decline curve analysis for unconventional oil production 
forecasting (Paper I and II). 

2. The implementation of dimensionality reduction techniques and Bayesian evidential 
learning with a focus on how to speed up the process of reservoir calibration and 
uncertainty quantification in the history matching process while preserving the 
geological realism (Paper III and VI). 

3. The implementation of the simulation-regression method and value of information 
concept to provide fast analysis and decision information in the context of polymer 
flooding and CO2 storage monitoring (Paper V and IV).
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2 Scientific Background 

This chapter gives an overview of scientific background relevant for this thesis. 
 

2.1 Introduction to Machine Learning  

 
Machine learning has recently played a vital multidisciplinary role in various fields of science 
like pharmacology (Kadurin et al., 2017), medicine (Shen et al., 2017), chemistry (Schutt et 
al., 2017), and biology (Ching et al., 2018). In particular, one method that has been widely 
applied is the deep neural network. Machine learning (ML) is defined as an aspect of applied 
statistics that focuses on developing computational models based on pattern recognition and 
inference rather than explicit sets of rules. It is commonly considered as a subfield of artificial 
intelligence (AI), where Turing (1950) is seen as the first to introduce the concept of AI. The 
term “Machine Learning” was coined by Samuel (1959) whereas Mitchell et al. (1997) 
provided a widely-accepted definition: 
 

“A computer program is said to learn from experience E with respect to some class of 
tasks T and performance measure P if its performance at tasks in T, as measured by 
P, improves with experience E.” 

Mitchell et al. (1997) 

 
This implies that a ML model is defined by a combination of tasks. A task such as, 
classification, regression, or clustering is improved by conditioning of the model on a training 
data set.  The model’s performance is calculated in terms of a loss, also known as metric, 
which numerically estimates how a machine learning model performs on the given data. This 
would be measured, in regression, as the data’s misfit from the expected values. The ML 
model usually improves when it is exposed to more data sets. A good model can eventually be 
applied to new data, which was not included in the training set. 
 

 

Figure 2.1— Machine learning timeline, adopted from Dramsch (2019). 

 
 
 
As seen in Figure 2.1, a lot has changed between 1950 and 2020. Following the development 
of different specialized hardware, ML and AI became an area of great interest in the 1980s. 
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While neural networks were introduced in 1950. Given the enormous availability of 
computational resources these days, major companies (Google, Facebook, Microsoft, and 
Amazon) have made high-quality ML software easily accessible (Tensorflow, Pytorch, 
CNTKb, Mxnet). In addition, to independent developments xgboost (Chen & Guestrin, 2016) 
and scikit-learn (Pedregosa et al., 2011). 
 
ML algorithms can be classified into 4 major categories, as displayed in Figure 2.2. In 
supervised learning tasks, such as prediction and classification, the goal is to learn a general 
model based on known (labeled) examples of the target pattern. Unsupervised learning differs 
from supervised learning, mostly it does not require manually labeled data. Instead, it learns 
structure in the data, such as sparse or low-dimensional feature representations. Other classes 
of ML tasks include semi-supervised learning, in which both labeled and unlabeled data are 
available to the learning algorithm, and reinforcement learning, in which uses trial and error 
to constantly train itself. 
 
 

 

Figure 2.2 — Different Categories of Machine Learning Techniques. 
 

2.2 Hydrocarbon Production forecasting. 

 
Hydrocarbon production forecasting includes the estimation of the ultimate recoveries and the 
lifetimes of wells, which are material factors for decision-making in the oil and gas industry 
because they can significantly impact economic evaluation and field development planning. 
Although mathematically richer forecasting models (e.g., grid-based reservoir simulation 
models) have been developed over the past few decades, decline curve analysis (DCA) is still 
widely used because of its speed and simplicity; mathematical formulations of DCA models 
are simple with only a few parameters, and only production data are required to calibrate 
these parameters. The Arps model (Arps 1945) has been used for DCA for more than 60 years 
and has been proven to perform well for conventional reservoirs. However, because of the 
complexity of flow behavior in unconventional reservoirs, where several flow regimes are 
involved (Adekoya, 2009; Nelson, 2009; Joshi, 2012), the Arps model may not be ideal, and 
many other alternative DCA models have been proposed (e.g., the stretched exponential 
decline model (SEDM) (Valko and Lee, 2010), Duong model (Duong 2011), and combined 
capacitance-resistance model proposed by Pan (Pan 2016)). However, there are still 
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conceptual challenges associated with applying DCA methods (Arps, Duong, SEDM, 
PanCRM, etc.), as the results obtained lead to a deterministic forecast, and it is obvious that a 
single model should not be trusted 100%. In addition, the reserve estimation for Securities and 
Exchange Commission (SEC) is declared based on the P90 probability (Busby 2020), and 
there is no standard rule on how to perform proper uncertainty quantification.  
Lately, several researchers have discussed the application of machine learning (ML) for oil 
production forecasting (Shelley et al. 2012; Lafollette et al. 2012; Newgord et al. 2015; 
Schuetter et al. 2015; Lolon et al. 2016; Mohaghegh et al. 2017; Tian et al. 2017; Lee et al. 
2019; Han et al. 2020; Liao et al. 2020; Mehana et al. 2021). Nevertheless, although several 
ML and deep learning models have been proposed to better address multiple seasonal patterns 
in oil production data (Luo et al. 2019; Liao et al. 2020), the main problem of ML techniques 
concerns their lack of stability in long-term forecasts and occurrences of nonphysical results; 
as a result, reservoir engineers often do not trust the technology (Busby 2020). 
 
 

2.3 Uncertainty Quantification in Reservoir Management  

 
The standard methods for quantifying uncertainty consider an ensemble of models and 
statistical measures of the uncertain parameters. Performing high-resolution simulations on all 
members of a large ensemble can quickly become computationally intractable. This problem 
can be solved either by reducing the ensemble size or by speeding up the simulation for each 
geomodel realization. For this purpose, assisted history matching (AHM) built on ensemble-
based analyses such as the ensemble smoother (ES) and ensemble Kalman filter (EnKF) are 
useful in estimating models that preserve geological realism and have predictive capabilities. 
However, these methods tend to be computationally demanding, as they require a large 
ensemble size for stable convergence. The limitations have been well detailed in Olivier et al. 
(2011), one of which is that using a limited ensemble size results in sampling errors and 
spurious correlations. Such spurious correlations might lead to unphysical updates of the 
model’s uncertain parameters and contribute to the underestimation of the ensemble variance. 
Lately, several researchers have discussed the application of machine learning dimensionality 
reduction techniques for data assimilation. For instance, Vo and Durlofsky (2014) used 
principal component analysis (PCA) to reparametrize high dimension data into low 
dimensional space, then regenerated new realizations based on principal parameters from 
PCA for data assimilation, while others have used singular value decomposition (Rezaie et al., 
2012) and Kernel PCA (KPCA) (Sarma et al., 2008). Muzammil. H et al. (2019) applied PCA 
to account for the model-error component during model calibration. Kang et al. (2017) and 
Kang et al. (2019) also introduced PCA to select suitable models for EnKF. Tolstukhin et al. 
2019 demonstrated how data analytics can improve efficiency of ensemble history matching 
by analyzing the statistics that link the static model ensemble and the dynamic model 
ensemble update. Dimensionality reduction techniques such as PCA and SVD, however, are 
linear approaches that may not accurately represent the relationship between high dimensional 
parameters and latent variables in reduced space, which likely lead to poor performance of 
model assimilation and prediction.  Recently, several approaches have demonstrated that it is 
possible to provide the outcomes of subsurface models without model updating and solving 
the inverse problem. In this context, (Scheidt et al., 2015) and (Satija et al., 2015) introduced 
a new framework for making decisions under uncertainty called Bayesian evidential learning 
(BEL). BEL is a general data scientific framework used to design uncertainty quantification 
within the decision-making context. Based on the description provided in (Scheidt et al., 
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2018), it can be said that BEL relies mainly on data, models, predictions, and decisions under 
the scientific methodologies and philosophy of Bayesianism. The data are used as evidence to 
infer model or/and prediction hypotheses via “learning” from the prior distributions, whereas 
decision-making is ultimately informed by the model and prediction hypotheses. BEL is 
usually divided into six main stages (Yin et. al., 2020): (1) Formulation and definition of the 
decision problem; (2) prior model definition and specification; (3) Monte Carlo simulation 
and falsification of the prior uncertainty models; (4) Global sensitivity; (5) Uncertainty 
reduction using data;(6) Posterior falsification and decision making. In step 5, one may opt for 
classical inversion or direct forecasting (DF). The main steps involved in DF are as follows 
(Satija and Caers, 2017): 
 

1. Monte Carlo: N samples are generated from the prior for both the global and spatial 
model variables. 

2. Forward functions: data and prediction variables are evaluated using the reservoir 
simulators model. 

3. Orthogonality: PCA is conducted on data and prediction variables. 
4. Linearization: canonical correlation analysis (CCA) is conducted to maximize linear 

correlation between data and the prediction variables  
5. Bayes-linear-Gaussian: conditional mean and covariance of transformed prediction 

variables are calculated. 
6. Sampling: samples are drawn from the posterior distribution of transformed prediction 

variables  
7. Reconstruction: inversion is performed for all bijective operations. 

 

2.4 Sequential Decision Making 

 
In reservoir management, two different approaches are used to include the impact of 
information: closed-loop reservoir management (CLRM) and sequential reservoir decision 
making (SRDM). These approaches serve as a priori analyses, and each technique is 
implemented before the collection of additional information. Thus, whenever additional data 
are gathered, both CLRM and SRDM can be readily applied to make use of these data. 
However, for a complicated decision-making problem with many uncertain outcomes, 
alternatives, and decision points, these approaches suffer from the “curse of dimensionality.” 

To resolve these issues and provide solutions that are less computationally demanding, we 
instead make use of a viable alternative called approximate dynamic programming (ADP), 
which is often described as a simulation-regression method, a powerful solution technique 
that can handle complex, large-scale problems and determine a near-optimal solution for 
intractable sequential decision making.  

2.4.1 Closed Loop Reservoir Management (CLRM) 

A common practice within the industry to develop and manage an oil field is to apply the 
closed-loop reservoir management (CLRM) workflow, as displayed in Fig 2.3. This method 
introduced the mechanism of model-based optimization in tandem with the assimilation of 
data to maximize value creation from a reservoir over the lifetime of production (Jansen et 
al., 2009). 
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Figure 2.3 — Key elements of CLRM, adopted from Jansen et al. (2009). 

Figure 2.3 illustrates the mechanism of CLRM, which comprises two fundamental steps. 
The first step consists of history matching (inverse problem) in which data is assimilated, 
and the second step involves robust optimization, where control parameters are adjusted 
based on the history-matched model (updated model) to optimize production. In addition, 
this approach gets its name “closed-loop” because it tends to follow a loop strategy: each 
time new data is collected, the reservoir or production model is updated, and reservoir 
performance optimization is carried out. Repeating the process keeps the reservoir model up 
to date. 

(Hong et al., 2018) discussed the general framework of the CLRM approach and argued that 
CLRM belongs to the myopic or naïve decision policy class as future uncertainties and 
decisions are not integrated in the process; only uncertainties and decisions associated with 
currently available data are considered. 

The myopic formulation is clearly represented by using a schematic decision tree, as 
illustrated in Figure 2.4, where 𝐷𝑘 refers to decisions made at 𝑡𝑘 and 𝑈𝑘 denotes the 
uncertainties associated with the ongoing available data until 𝑡𝑘. 𝑈𝑘 is usually represented 
by a production model with many geological realizations. The production strategy 
𝐷𝑘, 𝐷𝑘+1, … , 𝐷𝑒𝑛𝑑 is determined by considering only the immediately relevant 𝑈𝑘.  

 

Figure 2.4 — Decision-tree representation of CLRM. 
Although the CLRM approach considerably simplifies the structure of reservoir 
management decisions with reduced computational time, it does not reflect the full structure 
of a reservoir management decision problem, as it only considers the effect of the 
information obtained before a decision is made and not later information, and thus may lead 
to a suboptimal production strategy. 

2.4.2 Sequential Reservoir-Decision-Making (SRDM). 

Unlike CLRM, SRDM represents the full learning and decision structure of reservoir 
management. It is a look-ahead policy because it solves a sequential decision-making 
problem based on both previous and future information. To illustrate the framework of 
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SRDM, the decision trees are displayed in Figure 2.5. As can be observed, it explicitly 
considers all possible information or data to yield an optimal policy.  

 

 

Figure 2.5 — Illustration of Decision tree of SRDM. 
 

SRDM explicitly considers both the uncertainties associated with currently available data and 
information (𝑈𝑘) and those with future data and information (𝑈𝑘+1, … , 𝑈𝑒𝑛𝑑). Therefore, the 
current decision (𝐷𝑘) depends on both the uncertainties that a decision maker has made at 
time 𝑡𝑘 and the uncertainties that the decision maker will make at times 𝑡𝑘+1, … , 𝑡𝑒𝑛𝑑. In 
addition, the responses corresponding to the decision nodes at different points of time are 
also integrated (𝐷𝑘+1, … , 𝐷𝑒𝑛𝑑). The optimal decision policy corresponding to SRDM can 
also be solved by rolling back the decision tree. However, SRDM can be computationally 
intensive or prohibitive. 

2.4.3 Stochastics Dynamic Programming. 

Dynamic programming (DP) is an optimization algorithm that is used to support multistage, 
interrelated decisions. DP approaches commonly break decisions into smaller problems, 
which are called decision stages. These subproblems are then solved and stored to avoid 
recalculating the solutions when exact subproblems occur. Multiple possible outcomes, called 
states, exist at each decision stage. 
In stochastic dynamic programming (SDP) problems, the state at the next decision stage 
cannot be completely determined by the state and decision policy at the current stage, and a 
probability distribution is used instead. The optimal solution for an overall problem can be 
determined by recursively solving the subproblems. The basic structure of the SDP problem is 
illustrated in Figure 2.6. 
 
 

 

Figure 2.6 — Basic structure of SDP problem. 
. 
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2.4.4 Simulation-Regression 

Simulation-regression (SR) methods are often described as approximate dynamic 
programming or least square Monte Carlo (LSM) (Longstaff, 2001) algorithms that 
approximate the conditional future value of an alternative by regression. They do not suffer 
from the “curse of dimensionality” induced by uncertainties. The computational time for the 

SR increases linearly with the computational time of the chosen production model and the 
number of decision points, and exponentially with the number of alternatives. Therefore, SR 
is effective for solving an SRDM problem with a computationally attractive production model 
and a limited number of alternatives. The SR method involves a Monte Carlo simulation 
(MCS) for forward modeling and regression for (approximately) calculating the conditional 
expected value given data and information at any point in time. 
MCS. Many possible realizations of state variables (𝑥𝑏) such as porosity and permeability, 
are generated based on the Monte Carlo simulation model. Forward modeling is performed 
to generate the corresponding samples (𝑦𝑏 = 𝑓(𝑥𝑏)), and net present value (NPV) 𝑁𝑃𝑉𝑎

𝑏 =
𝑁𝑃𝑉(xb, 𝑎)  for each decision alternative 𝑎. 

 
Backward Regression.  Starting recursively from the last decision point in time, in order to 
estimate the expected NPV (ENPV) with alternative 𝑎 conditional on the modeled sampling 
data, 𝐸𝑁𝑃𝑉 (𝑥;  𝑎)|𝑦, we regress 𝑁𝑃𝑉(xb, 𝑎) on the modeled sampled data. This procedure is 
repeated for each alternative. The optimal decision is then determined by choosing the 
alternative that achieves the highest value of the conditional ENPV, given the known 
information. 
Various methods (linear or non-linear) can be used for regression to calculate the conditional 
ENPV. The choice of regression method depends mainly on the dimensionality and type of 
data. 
 

2.4.5 Value of Information Analysis (VOI) 

VOI in any information-gathering activity depends on two fundamental uncertainties: (1) the 
uncertainties we hope to learn about but cannot directly observe; these constitute “events of 

interest,” and (2) the test results referred to as observable distinctions (Bratvold et al., 2009). 
In reservoir management, the data gathered until time 𝑡 when a decision is made is the 
observable distinction, and predictions after time 𝑡 comprise the events of interest. We denote 
the observable distinction as 𝑥.  Since 𝑥 has a very large number of dimensions, it is difficult 
to represent the distribution of 𝑥 in an analytical form, and we usually approximate it with the 
help of Monte Carlo sampling. 
In terms of a risk-neutral decision-maker, VOI is defined as follows: 
 

𝐕𝐎𝐈 = [
𝐄𝐱𝐩𝐞𝐜𝐭𝐞𝐝 𝐯𝐚𝐥𝐮𝐞 𝐰𝐢𝐭𝐡

𝐚𝐝𝐝𝐢𝐭𝐢𝐨𝐧𝐚𝐥 𝐢𝐧𝐟𝐨𝐫𝐦𝐚𝐭𝐢𝐨𝐧
] – [

𝐄𝐱𝐩𝐞𝐜𝐭𝐞𝐝 𝐯𝐚𝐥𝐮𝐞 𝐰𝐢𝐭𝐡𝐨𝐮𝐭
𝐚𝐝𝐝𝐢𝐭𝐢𝐨𝐧𝐚𝐥 𝐢𝐧𝐟𝐨𝐫𝐦𝐚𝐭𝐢𝐨𝐧

] 

 
In mathematical form, 

VOI = 𝒎𝒂𝒙{𝟎, ∆} 
∆ = 𝐄 𝐕𝐖𝐈 − 𝐄𝐕𝐖𝐎 
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where EVWI is the expected value with additional information, and EVWO is the expected 
value without additional information. The lower limit of VOI is always 0, since if ∆ is 
negative when EVWOI > EVWI, the decision-maker can always choose not to gather 
information. 
 
In a decision-making context, the decision without information (DWOI) is an alternative that 
optimizes the expected value (EV) over the prior value, and EVWOI is the optimal EV over 
the prior. 
 

𝐄𝐕𝐖𝐎𝐈 = 𝒎𝒂𝒙𝒂∈𝑨 [∫𝒗(𝒙, 𝒂)𝒑(𝒙)𝒅𝒙
𝒙

] ≈ 𝒎𝒂𝒙𝒂∈𝑨 [
𝟏

𝒃
∑ 𝒗(𝒙𝒃, 𝒂)

𝑩

𝒃=𝟏

] . . . . . . . . . . . . . (𝟐. 𝟏) 

 
Here 𝑎 is the decision alternative from the 𝑎 set of 𝐴, 𝑥 represents the distinctions of interests, 
𝑣(𝑥, 𝑏) is the value function that assigns a value to each alternative outcome pair for a given x 
and realization 𝑏, and 𝑝(𝑥) is the prior probability distribution of x. Similarly, if we have 
perfect information regarding the value of 𝑥 that the distinction of interests would take, we 
will choose the optimal action for that value of 𝑥. The decision with imperfect information 
(DWII) is an alternative that optimizes the expected value over the posterior value: 
 

 

𝑬𝑽𝑾𝑰 = ∫ 𝒎𝒂𝒙𝒂∈𝑨 [𝑬[𝒗(𝒙, 𝒂)|𝒚]𝒑(𝒚)𝒅𝒚] ≈
𝟏

𝒃
∑ 𝒎𝒂𝒙𝒂∈𝑨𝑬[𝒗(𝒙𝒃, 𝒂)|𝒚𝒃

𝑩

𝒃=𝟏

] … . (𝟐. 𝟐) 

 
 
Where p(y) is the marginal probability distribution over y. 
 
Additionally, the decision with perfect information (DWPI) can also be determined in this 
decision-making context. For instance, in reservoir engineering, perfect information reveals 
the true reservoir properties and impacts of the recovery mechanism. Taking the EOR 
initiation problem as an example, the EV with perfect information (EVWPI) is the maximum 
NPV for every path based on prior realizations or distributions. Averaging these NPVs over 
the paths would result in EVWPI. In this way, every path would involve an optimal decision 
with perfect information. The difference between EVWPI and EVWOI is the value of perfect 
information (VOPI). 
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3 Summary and implication of papers. 

 
This chapter presents a summary of the six papers of this thesis that have been published in a 
peer-reviewed journal paper. 
 

3.1 Paper I: Machine Learning Based Decline Curve Analysis 
for Short-Term Oil Production Forecast 

This study introduces a data-driven approach for performing short-term predictions of 
unconventional oil production. Two state-of-the-art models, DeepAR and Prophet time series 
analysis, were tested on petroleum production data, as these two models outperform other 
forecasting methods for many problems (David et al., 2019, Sean and Benjamin, 2007).  Deep 
AR is a generative autoregressive model. It consists of a recurrent neural network (RNN) 
using long short-term memory (LSTM) or gated recurrent unit (GRU) (Kyunghyun et al., 
2014) cells, which takes the previous time points and covariates as input. Unlike other 
forecasting methods, DeepAR jointly learns from every time series. Prophet forecasting is a 
Bayesian nonlinear univariate generative model for time-series forecasting, which was 
developed by the Facebook Research team (Sean and Benjamin 2007) for the purpose of 
creating high-quality multistep-ahead forecasting. This model addresses the following 
difficulties common to many types of time series forecasting and modeling: seasonal effects 
caused by human behavior: weekly, monthly, and yearly cycles, dips and peaks on public 
holidays, changes in trends due to new products and market events, and outliers. Compared 
with the traditional approach using decline curve models, the machine learning approach can 
be regarded as “model-free” (non-parametric) because the pre-determination of decline curve 
models is not required. This work aims to develop and apply neural networks and time series 
techniques to oil well data without having substantial knowledge regarding the extraction 
process or physical relationship between the geological and dynamic parameters. The 
proposed method was applied to a selected Midland field well from the USA. We selected 22 
Midland wells with relatively smooth data, which indicated fewer significant operational 
changes. The selected Midland wells, which were located in a naturally fractured reservoirs, 
were completed and measured monthly. However, there are some missing measurements (i.e., 
no recorded values) for a few months for each selected well. We ignored these missing values. 
Some measurements have recorded zero values, and we suspect that they indicate a temporary 
shut-down for operations (e.g., a workover). The zero values may interfere with the training 
process, so we removed them from the data, and then the datasets were rescaled with 
standardization. Standardization is included in deep learning to improve the convergence of 
neural networks. 
 
Figure 3.1 demonstrates the forecast results for some selected wells using DeepAR; the 
means of forecasts (dashed steel blue curve) are compared to blind-test data (dashed red 
curve) and the Pan CRM model (black line curve). In general, the production forecast seems 
to be reasonable, as the DeepAR model can forecast both the upward and downward trends 
well and outperform the Pan CRM model, and it is observed that the prediction intervals 
mostly contain the correct values, except for well-ID11, which may be explained by the 
inability to predict when production changes occur. We quantify the accuracy of the 
probabilistic forecast using the mean continuous ranked probability score (CRPS), which is a 
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quadratic measure of the difference between the forecast cumulative distribution function 
(CDF) and the empirical CDF of the observation (Hersbach, 2000). Higher values of mean 
CRPS indicate less accurate results. The mathematical formulation of the mean CRPS is 
presented in Paper I.   

Figure 3.2 shows forecasts from the trained Prophet models. The means of forecasts (the 
dashed Steel blue curve) follow the blind-test data (dashed red curve in Figure 3.2) generally 
well. The P5-P95 prediction intervals (grey band in Figure 3.2) covers most of the blind-test 
data. However, for Well-ID8, the forecast significantly deviates from blind-test data and fails 
to capture both trends and the peaks and troughs reasonably; more specifically, the forecast 
underestimates the oil production rates. 
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Figure 3.1— Oil production time series forecast- DeepAR. Left: Overview of forecast. 
Right: zoomed forecast. 

Compared to Prophet, the DeepAR models represent distinct trends in the mean CRPS score, 
as listed in Table 3.1. This is possibly due to the DeepAR layer’s capacity to "memorize" 

long-term patterns. In contrast, Prophet’s predictions rely primarily on the pattern of most 

previous historical data. In addition, the lowest CRPS errors occurred for DeepAR. 
Simultaneously, the difference in values is minimal, even though this statement is only valid 
for the 5-th and 95-th percentiles. This is demonstrated by the better coverage earned by the 
longer periods that compensate for the 50-th percentile’s low accuracy. 
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Well ID 3 5 8 9 11 14 15 16 17 18 20 
Mean CRPS 69 29.15 74 93.5 80.9 15.25 7.89 19.17 9.91 12.01 15.18 
Well ID 21 22 72 142 156 157 171 181 206 249 524 
Mean CRPS 23.18 22.14 8.35 27.29 3.47 10.50 21.67 21.37 19.69 27.80 29.91 

 

Table 3.1 -Mean CRPS of probabilistic forecast from DeepAR model. 
 

Well ID 3 5 8 9 11 14 15 16 17 18 20 
Mean CRPS 63.40 29.15 174 153.5 180.9 22.83 14.45 32.06 9.41 16.45 25.73 
Well ID 21 22 72 142 156 157 171 181 206 249 524 
Mean CRPS 38.21 33.06 14.55 34.27 13.42 14.20 24.65 27.24 18.39 28.63 36.21 

Table 3.2 – Mean CRPS of probabilistic forecast from Prophet model for each well. 
 

 

 

Figure 3.2 — Oil production time series forecast- Prophet. 
 
Limitation. In the previous example, we presented DeepAR and Prophet’s results for a 

forecast horizon of 24 months (2 years). We evaluated the performance of the two methods 
for a forecast horizon of 48 months, as displayed in both Figure 3.3 and 3.4, and it can be 
clearly seen that the two methods exhibited quite similar performance when the length of 
wells was more than 300. For the most part, they captured the trends of oil production rate in 
blind tests, and the predictions yielded by each of the models appear to be quite similar. The 
models were good at predicting trends and flat lines, but sometimes undershot/overshot the 
peaks and troughs, as seen, for example, for Well-ID8. However, both Prophet and DeepAR 
did not match production data, including uncertainty quantification, with a small historical 
data length. Based on the previous results, we can highlight that the two methods enrich the 
family of time series analysis models by extracting the weighted differencing/trend feature 
and contribute to better performance in short-term oil production forecasts; they can thus be 
an alternative for oil production forecasting in practical applications. 
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. 

Figure 3.3 — Oil production time series forecast- DeepAR - 48 months horizon forecast. 

 

Figure 3.4 — Oil production time series forecast- Prophet - 48 months horizon forecast. 
 
 

3.2 Paper II: Bayesian Deep DCA: A New Approach for Well Oil 
Production Modeling and Forecasting 

This paper presents a simple and intuitive method for improving the long-term forecasting of 
unconventional oil production. A novel framework is proposed to automatize the decline 
curve analysis (DCA) calculation robustly and to predict oil production using the state-of-the-
art Bayesian neural ordinary differential equation (BN-ODE), which is a powerful method 
that can be used to model physical simulations, even when the ODEs that govern the system 
are not explicitly defined. The novelties of the proposed approach are: (1) it combines an 
automatic ML method for supervised learning and a BN-ODE framework for time-series 
modeling, (2) it uses the decline curve analysis (DCA) model (Duong, SEMD and PanCRM) 
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to inform the BN-ODE framework of “physics” and regulate the BN-ODE forecasts, and (3) 
several completion parameters (such as locations, lengths, and slick water volume) of 
individual wells are analyzed and included as inputs for model building, in addition to 
measured oil production rate data. Specifically, the automatic ML method is first used to 
model the relationship between the well completion parameters and the DCA parameters, and 
the BN-ODE framework was then used to model the relationship between the DCA 
parameters and the time-series oil production rates. 
 
This study used data from oil wells in the Bakken shale formation. The Bakken shale-play 
basins are located in western North Dakota and eastern Montana, including parts of Manitoba 
and Saskatchewan in the Williston Basin (Pollastroet al., 2012). Approximately 396 
horizontal wells were selected for this study. The response and predictor variables are listed in 
Table 3.3. In addition to estimating the SEDM parameters (τ and n ), Duong parameters ( 
𝑚 𝑎𝑛𝑑 𝛼 ), and PanCRM parameters (𝛥𝑃, 𝛽, 𝐽 𝑎𝑛𝑑 𝐶𝑃) for existing wells, we used the Auto 
ML algorithm, the tree-based pipeline optimization tool (TPOT) 1(Olson and Moor, 2016), to 
develop a model capable of estimating the EUR and DCA parameters with given values of 
predictor variables (i.e., completion inputs), based on data from existing training wells (298 
wells). Here, the forecast for the testing wells (98 wells) was performed using Auto-ML. The 
impact on the EUR and DCA parameters were investigated based on the given inputs.  
 
 

Decline Model Machine Learning 
Algorithms 

Predictor Variables Response Variables  

SEDM 

Duong Model 

PanCRM Model 

AutoML. Initial flow rate(qi), 
initial water rate (wi), 
total proppant amount, 

Latitude and 
Longitude, Bottom 
Hole Latitude and 

Bottom Hole 
Longitude, Lateral 
length, Slick water 
volume, gal Gas oil 

ratio. 

𝜏, 𝑛,  

𝑚, 𝛼, 

  𝛥𝑃, 𝛽, 𝐽, 𝐶𝑃,   

𝐸𝑈𝑅 

 
Table 3.3 – Predictors, responses, and Machine learning algorithm 

 
To verify the trained ML model, we compared the ML model predicted values (n, τ, and 
EUR) with the historical data fitted values for both the training and testing datasets. The 
comparison is visualized in Figure 3.5 and Figure 3.6. To quantify the accuracy of the ML 
model, we calculated the root mean squared log error (RMSLE) and R2 score. The RMSLE 
and R2 scores of the tested model were (0.22, 63%) and (0.07, 87%) for 𝑚, and  
α, respectively.  For 𝜏, and  n, the RMSLE and R2 scores of the tested model are (0.17, 71%) 
and (0.07, 74%), respectively. For 𝛥𝑃, 𝛽, 𝐽 𝑎𝑛𝑑 𝐶𝑃, the RMSLE and R2 scores were (0.31, 
78%), (0.78, 52%), (0.37, 62%) and (0.21, 65%) respectively. For EUR, the Auto-ML method 
provides the highest prediction accuracy in terms of the R2 score and RMSLE, which 

 
1 The tree-based pipeline optimization tool (TPOT) optimizes various machine-learning pipeline techniques 
using stochastic search algorithms, such as genetic programming. 
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indicates that this method is an effective and useful tool for estimating the EUR in shale 
reservoirs. The Auto-ML method also provides good prediction accuracy for the DCA 
parameters. 
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Figure 3.5 — Comparison of the ML model predicted values and the historical data 
fitted values for DCA parameters. 

 
 

 

Figure 3.6 — Comparison of the ML model predicted values and the historical data 
fitted values for EUR. 

Based on the predicted DCA parameters for SEDM (𝑛 and τ), Duong (𝑚, 𝛼), and PanCRM 
(𝛥𝑃, 𝛽, 𝐽, 𝐶𝑃) for each well, a probabilistic forecast of the well’s oil production rates can be 

generated using the BN-ODE framework. We collected 500 posterior samples and used the 
tanh activation function as the neural ODE architecture, with one layer containing 40 neurons 
as it provides the optimal loss performance, with a considerably better timing performance. 
Figure 3.7, Figure 3.8 and Figure 3.9 illustrate the probabilistic forecasts vs. the actual 
production rates of some wells for testing (i.e., the data of these wells are not included in the 
data for training the ML model). There are 298 wells for training and 98 wells for testing, but 
here, we show only six wells for illustration purposes. In each plot, the dark curve is the 
measured data of the oil production rate (which we aim to forecast) from a well for testing, 
the red dashed line is the fit of the DCA model (to the oil production rate data), and the blue 
curve is the best-fit forecast sample (to the DCA model). The gray region indicates 90% of the 
prediction interval (PI) of the Monte Carlo samples of the probabilistic forecast resulting from 
the BN-ODE framework. The trend of the probabilistic forecast (represented by the gray 
bands) follows the trend of the fitted DCA model (the red dashed line), which indicates that 
introducing the DCA parameters successfully “informs” the BN-ODE framework of the DCA 
modeled decline behavior and “regulates” the BN-ODE framework’s forecasts. For most of 

the wells for testing, the uncertainty intervals (i.e., the grey regions) cover the oil production 
rate data. Probabilistic forecasts are poor at the beginning of production because of larger 
fluctuations in early period data. This occurs as a result of more frequent changes in operating 
conditions due to well tests and other operational tests.  The testing shows that the BN-ODE 
framework can provide a good probabilistic forecast for a well, capturing the trend of oil 
production rate decline and assessing the uncertainty in the forecast, in contrast to a 
deterministic forecast from the traditional DCA.  However, because of the regulation by the 
SEDM, Duong, and PanCRM, a BN-ODE forecast is smooth and cannot capture sharp 
changes in oil production rates associated with significant changes in operating conditions.  
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Figure 3.7 — Comparison of the BN-ODE estimation compared to SEDM model and 
actual oil production. 
 

 
 
Figure 3.8 — Comparison of the BN-ODE estimation compared to Duong model and 
actual oil production. 
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Figure 3.9 — Comparison of the BN-ODE estimation compared to PanCRM model and 
actual oil production. 

For a quantitative comparison, we applied the mean absolute percentage error (MAPE) (de 
Myttenaere et al., 2016) metric to further evaluate the methods used for all testing well data 
from the modeled DCA model over the prediction data (best fit obtained from BN-ODE), as 
displayed in Figure 3.10. Applying PanCRM-guided BN-ODE provides interesting results, 
with a MAPE range of around 4–30%, compared to SEDM; the results seem to be comparable 
to those of Duong. 
 

 
Figure 3.10 — Violin plot of the MAPE of the DCAs model and prediction data (best fit). 
Limitation. It is important to emphasize that the prediction accuracy and learning 
performance of our framework rely mainly on the presence of specific well stimulation, 
location and completion data. The quality of the data has a big impact and influence, and the 
presence of data anomalies would consequently affect the veracity of the results. Ideally and 
in practice, geologic parameters should be included. Thus, it will be useful to include other 
more-detailed data sets, including pressure, permeability, porosity, fracturing proppant, fluid 
types, and total organic carbon content, to improve the prediction accuracy of the ML model. 
In addition, more practical cases should be considered and tested for wells with long shut-in 
times and different flow regimes. Efforts can be made to further improve the performance of 
forecasting over long time horizons and quantify the uncertainty, using other sampling 
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methods such as stochastic Langevin gradient descent (Welling & Teh 2011b) and variational 
inference (Hoffman et al. 2013), which could serve as an estimator of the posterior.  
 

3.3 Paper III: Managing Uncertainty in Geological CO2 Storage 
Using Bayesian Evidential Learning 

 
Carbon capture and storage (CCS) represents a unique potential strategy that can minimize 
CO2 emissions in the atmosphere, and it creates a pathway toward a neutral carbon balance. 
So far, geological reservoirs, such as depleted oil, gas fields, or deep saline aquifers, are 
considered appropriate for the storage of CO2 emissions at a depth of several thousand meters 
(Harp et al., 2017; Jin et al., 2017; Nilsen et al., 2015a). To contribute to the decision-making 
process and ensure that CCS is successful and safe, an adequate monitoring program must be 
implemented to prevent storage reservoir leakage and contamination of drinking water in 
groundwater aquifers. However, geological CO2 sequestration (GCS) sites are usually 
associated with substantial uncertainty in terms of geological properties, such as permeability 
and porosity fields, making it difficult to predict the behavior of the injected gases, CO2 
plume migration, and CO2/brine leakage rates through wellbores. Data assimilation in 
reservoir models (history matching) can help mitigate uncertainty and improve predictive 
capacity. This study presents a unique scientific contribution to CO2 storage monitoring. In 
this example, we apply a direct forecasting (DF) framework to potentially reduce the 
uncertainty associated with forecasting potential leakages during the implementation of 
CO2 storage processes. The paper also introduces a new DF implementation using an 
ensemble smoother and shows that the new implementation can make the computation more 
robust than the standard method. Here, we use a case study problem based on the Utsira sand 
reservoir, which is a saline aquifer located on the Norwegian continental shelf (NCS), as 
displayed in Figure 3.11. 
 
 

 

Figure 3.11 — Utsira formation. Location along the Norwegian Continental Shelf (left). 
Maps of geomodel depths in meters (below the seabed) (right), adopted from (Allen et al. 

(2018). 
We assumed that the Utsira reservoir had one injection well at a depth of 1012 m. Then, an 
injection rate of 10 Mt per year was considered for a period of 40 years, followed by a 3000-
year migration (post-injection) period. All flow simulations were performed using the open-
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source software MRST-CO2 lab developed by SINTEF. CO2 lab computational tools in 
MRST were specifically designed for studying the long-term and large-scale storage of CO2. 
A set of 𝑁=200 prior reservoir models was generated using a normal Gaussian distribution. 
There are uncertainties in terms of porosity, permeability, caprock elevation, temperature, and 
pressure. In all cases, a “reference” model was considered. 
 
The CO2 saturation data were collected in the near-wellbore region during the 40-year 
injection period and referred to by vector 𝑑. We aimed to assess the quantity of CO2 mass 
stored and the corresponding CO2 leakage at the end of the tracking period (3000 years). The 
forecast (quantity of CO2 mass injected and CO2 leakage) is represented by ℎ.  The prior 
distribution of CO2 saturation for the injection well as well as the forecasts (quantity of CO2 
mass injected, stored, and CO2 leakage) are shown in Figure 3.12 and Figure 3.13. From 
both figures, we notice that the uncertainties are large, which implies a significant risk for 
decision making in field development. 
 
  

 

Figure 3.12 — Prior measurement data variables. 

 

Figure 3.13 — Prior distribution of prediction data variables – 3000 years. 

Dimension reduction and linearization. To establish a relationship between the data and 
forecast variables, it is necessary to ensure low dimensionality in both variables. For this 
purpose, we performed PCA on the data variables 𝑑 and ℎ by selecting the principal 
components (PCs) that preserve 90 % variance. Accordingly, three dimensions were retained 
for both the data and forecast variables (CO2 mass and CO2 leak). Thereafter, CCA is 
conducted on the reduced data and prediction sets to maximize the linearity between the 
reduced data and forecast. As shown in Figure 3.14 and 3.15, the relationship between the 
components in the functional domain is not linear, and the application of CCA subsequently 
increases the correlation between the components in the latent space, except in the third 
dimension, as displayed in Figure 3.15, for which a unique linear relationship is not 
established. 
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(a) PCA Correlation Analysis. 

 

 
(b) PCA Correlation Analysis in Canonical Space. 

Figure 3.14 — Functional components correlation analysis. Red lines correspond to the 
observed (CO2 mass injected). 

 

 
(a) PCA Correlation Analysis. 

 

 
(b) PCA Correlation Analysis in Canonical Space. 

Figure 3.15 — Functional components correlation analysis. Red lines correspond to the 
observed (CO2 leak). 

 

Reconstruct the posterior model After the linear correlation with low dimensions has been 
established, we estimate the posterior distribution of the forecast components. First, we use 
the linear Gaussian regression equation described in one of the previous sections, for which 
ℎ𝑐 must first be transformed using a normal score to obtain ℎ𝑔𝑎𝑢𝑠𝑠

𝑐 . The Gaussian regression 
produces a multivariate normal posterior 𝑓 (ℎ𝑔𝑎𝑢𝑠𝑠

𝑐  |𝑑𝑜𝑏𝑠) that can be easily sampled to 
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produce forecast components that are conditioned to 𝑑𝑜𝑏𝑠
𝑐 . Second, we apply the modified ES-

MDA explained previously to generate the posterior distribution of the forecast variables ℎ𝑐. 
These observations are perturbed by adding random Gaussian noise with zero mean and 
standard deviation corresponding to 10% of the data predicted by the reference model. 

 
Once the posterior distribution of the prediction in the reduced dimension space is established, 
it can be easily sampled and transformed back into the original space, where the posterior 
distribution of the prediction is displayed in Figure 3.16 and 3.17. As a result, we notice that 
the DF with Gaussian regression techniques predicts a larger uncertainty range for both CO2 
mass and leakage after 3000 years compared to DF with ES-MDA, for which the results are 
reasonable, and the data match is excellent; the uncertainty bands are reduced for both CO2 
mass and leakage at the end of 3000 years. The results indicate that the proposed DF-ESMDA 
is more robust than the original DF. Both methods are fast in terms of computation, but they 
require running reservoir simulations of the prior ensemble, which clearly consumes 
considerable computational time. 
 

 
                                    (a) DF.                                               (b) DF-ESMDA. 

Figure 3.16 — Reconstruct posterior CO2 mass injected 

. 

 

                               (a) DF.                                               (b) DF-ESMDA. 

Figure 3.17 — Reconstruct posterior CO2 leak. 

 

Limitation. We presented a novel method for history matching, where one relies on direct 
forecasting methodology (establishing a statistical relationship between dynamic data). 
However, some criteria must be addressed to ensure the high-quality formulation of this 
methods, as the key successful its application is based on the initiation of the prior model, 
which should retain geological realism; an unrealistically large uncertainty range may impact 
the data-prediction relationship and minimize accuracy. In addition, the dimensionality of the 
variables is reduced by linear PCA. Linear PCA is simple and fast, but not optimal for non-
Gaussian variables. For non-Gaussian variables, model variables can be reparametrized to 
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follow a multivariate normal distribution or nonlinear PCA, and other machine learning 
dimensionality techniques can be used. In addition, the proposed method can be integrated 
with other inversion methods to increase the matching quality with fewer iterations. 
 
 
 
 

3.4 Paper IV: Efficient Dimensionality Reduction Methods in 
Reservoir History Matching 

This paper presents an approach for uncertainty quantification and reservoir model calibration 
with a significantly reduced computation time. This approach is based on a sequential 
combination of nonlinear dimensionality reduction techniques: t-distributed stochastic 
neighbor embedding (t-SNE), the Gaussian process latent variable model (GPLVM), and 
clustering K-means, and the data assimilation method ensemble smoother with multiple data 
assimilation (ES-MDA). Cluster analysis with t-SNE and GPLVM is used to reduce the 
number of unknown parameters and select a set of optimal reservoir models that have similar 
production performance to the reference model. The ES-MDA was then applied for data 
assimilation. The procedure used in this study involved several stages. The first stage included 
generating ensemble reservoir models, in which the dataset used in our study was provided by 
TNO. Next, we checked whether the observed prior data could predict the posterior 
distribution corresponding to the prior range. Otherwise, the prior model was considered 
incorrect. In the third stage, we reduced the ensemble dimension and constructed a 2D space 
using t-SNE and GPLVM. The fourth stage used clustering K-means to extract a set of 
reservoir models with the least production error compared to the reference model. After 
extracting and selecting the reservoir models, we began the HM process using ES-MDA, and 
compared the performance of the history-matching analysis of the proposed workflow with 
the standard ES-MDA without using dimensionality reduction techniques. The main steps of 
this approach are shown in Figure 3.18. In this example, we have focused only on steps 2,3 
and 4. The other steps are illustrated and discussed in section III. 

 

Figure 3.18 — Flow chart for the history matching with dimensionality reduction 
framework. 

We tested the performance of the proposed methodology in a Brugge-field case study (Peters 
et al. 2010). The Brugge field is a complex oilfield constructed using the TNO. The model 
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consisted of nine layers, and each layer had 139×48 grid blocks. The total number of grid 
blocks was 60,048, with 44,550 active cells. There were 20 producers and 10 injectors in the 
reservoir model.  We used 104 initial ensembles provided by TNO and assumed 104 as a 
reference model. In the AHM analysis, oil production rates (OPR), water cuts (WCT), and 
bottom hole pressure (BHP) were considered, and the model variable to be updated included 
permeability (PERMX, PERMY, PERMZ), porosity, and NTG at all active cells. Figure 3.19 
shows the log permeability in the first layer for six random realizations. 

 

 

Figure 3.19 — Example Log of permeability (K) distribution for six of 103 different 
geological realizations of the Brugge field. 

. 

 
Data assimilation was conducted using ES-MDA with localization for N = 5, in addition to 
ES-MDA-tSNE and ES-MDA-GPLVM. We performed the HM on assimilation observation 
data for the first four years and the rest (six years) for forecasting. 
 
We applied t-SNE and GPLVM to reservoir models and reduced the dimension into 2D space 
and conducted a sensitivity analysis of cluster numbers using the silhouette method for both 
GPLVM and t-SNE 2D space. As displayed in Figure 3.20, the dashed line indicates the 
mean of the silhouette values, and we compare the values for the range from two to seven 
clusters. As the silhouette plot with two clusters is associated with the largest value, we 
grouped the models into two clusters. 
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Figure 3.20 — Silhouette plots with different cluster numbers (t-SNE 2D space). 

Figure 3.21 shows a scatter plot of the 103 models on the 2D plane, with the dots indicating 
individual models.  When selecting the cluster with the least production error and comparing 
the forecast accuracy of different forecasting methods using several datasets, there are many 
performance measures from which to select. In this study, we evaluated our forecasting results 
using a probabilistic metric called the mean continuous ranked probability score (CRPS). We 
compared the field oil production errors between each cluster and reference model and 
selected the cluster with the least production error for the data assimilation process, as 
displayed in Table 3.4. Only 46 models were selected using t-SNE and 44 models using 
GPLVM.  
 

 

Figure 3.21 — Model selection using t-SNE and GPLVM. 
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Methods t-SNE GPLVM 
 CRPS Realization CRPS Realization 
Cluster 1 96.77 46 89.78 44 
Cluster 2 130.67 57 128.66 59 

Table 3.4- Measurement error between reference model and each cluster 
 

 
The total simulation times for each method are stated in Table 3.5. We can see that ES-MDA 
uses approximately 220 min for the entire process, while ES-MDA-tSNE and ES-MDA-
GPLVM use around 120 min and 101.5 min, respectively. By employing reduction 
techniques, more than 45% of the total simulation time was saved. 
 

Method CPU time (minutes) Time reduction  
ES-MDA 220 0 
ES-MDA-tSNE 120 45.54% 
ES-MDA-
GPLVM 

101.5 53.86% 

Table 3.5- CPU time for the entire process.  
 
Figure 3.22 and Figure 3.23 depict the HM profiles for both oil and water cuts of the two 
methods (ES-MDA-tSNE and ES-MDA-GPLVM) for producers BR-P5, BR-P6, and BR-P19, 
with respect to the standard ES-MDA and reference model. The vertical dashed line indicates 
the last assimilation process. The predictions from the two methods appear to be consistent 
with the production forecast unlike the standard ESMDA, although only 45.54% and 53.86% 
of the simulation time is required for ES-MDA-tSNE and ES-MDA-GPLVM, respectively. 
However, the ESMDA-tSNE predicts the WOPR data for BR-P6 better than the ES-MDA-
GPLVM, which is likely related to the fact that WWCT data BR-P6 are better with the 
ESMDA-tSNE. The matching and forecast ranges with ES-MDA-GPLVM deviate from the 
reference, especially for BR-P6. 

 

Figure 3.22 — Oil production rate (STB/day) for three wells with ESMDA, ES-MDA-
tSNE and ES-MDA-GPLVM. The vertical dashed line indicates the end of the history 
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and beginning of the forecast period. The red line indicates the observed data points and 
the prediction from the reference model. The grey region corresponds to the predictions 
within the percentiles P10–P90 obtained with the ES-MDA. The light blue region 
corresponds to the predictions within the percentiles P10–P90 obtained with ES-MDA-
tSNE or ES-MDA-GPLVM. 

 

Figure 3.23 — Water cuts for three wells with ESMDA, ES-MDA-tSNE and ES-MDA-
GPLVM. The vertical dashed line indicates the end of the history and beginning of the 
forecast period. The red line indicates the observed data points and the prediction from 
the reference model. The grey region corresponds to the predictions within the 
percentiles P10–P90 obtained with the ES-MDA. The light blue region corresponds to 
the predictions within the percentiles P10–P90 obtained with ES-MDA-tSNE or ES-
MDA-GPLVM. 

For a quantitative comparison, we applied the mean CRPS metric to further evaluate the 
methods used for all simulated well data from the history-matched ensembles over the 
historical and prediction periods, as displayed in Figure 3.24. The ES-MDA-tSNE and ES-
MDA-GPLVM provided interesting results, with the lowest CRPS average compared to the 
prior, and although we used few ensemble models and saved around 45-53% of the simulation 
time, the results appear to be comparable to the standard ES-MDA. 
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Figure 3.24 — Violin plot of Mean CRPS of historical and prediction data (WOPR, 
Water cut and BHP). 

Limitation. In this work, we presented a method for history matching based on the ML 
dimensionality reduction technique along with ES-MDA. However, some criteria must be 
addressed to ensure the high-quality formulation of this method, as the key successful 
application of these two methods is based on the initiation of the prior model, which should 
retain geological realism; an unrealistically large uncertainty range may impact the data-
prediction relationship and minimize accuracy. Here, we only used K-means clustering. 
However, K-means is associated with inconsistency due to varying results for different runs 
of an algorithm; moreover, it may produce clusters with uniform sizes even when the input 
data have different sizes, in addition to being very sensitive to scale and dimensionality of 
data. Therefore, other clustering techniques must be tested. In our example, the ES-MDA can 
be applied to estimate the posterior uncertainty. However, sampling efficiency can also be 
enhanced by integrating other inverse modelling techniques, such as the iterative ensemble 
smoother regularized Levenberg–Marquardt (IES-RLM) and the subspace ensemble random 
maximum likelihood (SEnRML).  
 

3.5 Paper V: Application of Machine Learning to Assess the 
Value of Information in Polymer Flooding 

 
This paper presents a framework in which we perform a VOI analysis in the context of 
initiating polymer flooding in a reservoir development plan. We want to determine the 
optimal time to switch from water flooding to polymer injection based on the information 
from production profiles and oil prices, and the switch happens only once. The analysis is 
done on a constructed case study involving a heterogeneous reservoir model, Further, we use 
various machine learning regression approaches (detailed in Paper V) to directly estimate the 
conditional expected value given the data without approximating the posterior probabilities of 
reservoir properties. The simulation-regression approach utilized here accounts for the effect 
of the information of both production profiles and oil prices obtained before a decision is 
made and the effect of the information that might be obtained to support future decisions. We 
consider a modified version of the standard Egg reservoir model, which is a 3D channel 
model (Jansen et al. 2009) that contains eight injection wells and four production wells. The 
model consists of 100 realizations of channelized reservoirs with 60×60×7 grid cells, of which 
only 18,553 cells are active, thus resulting in an Egg shape, as illustrated in Figure 3.25. 
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Figure 3.25 — (Left) Reservoir model displaying the position of the injectors (blue) and 
producers (red). (Right) Six randomly chosen realizations (From Jansen et al., 2009). 

The oil and water production levels of 100 ensembles were modeled using the Eclipse 
reservoir simulation model and inform the switching decision. The measurement errors were 
considered to be normally distributed with a mean of zero and standard deviation of 10% of 
the modeled rates and added to the modeled rates. 
 
Figure 3.26 shows the oil and water production for all realizations for both decision 
alternatives (i.e., injecting the polymer during the ninth year or maintaining the water-
flooding recovery process for the whole life of the production cycle). 
 

 

Figure 3.26 — The oil production and the water production profile for the realization of 
the alternative “inject polymer flooding at the end of the first year” and for the 

alternative “inject water flooding”. 
The value function is defined as the NPV for each decision alternative corresponding to each 
realization. NPV is a function of revenue from oil production and the costs of water 
production, water injection, and polymer injection. NPV was calculated using the following 
equation: 

𝑣(𝑥𝑏 , 𝑎) = 𝑁𝑃𝑉(𝑥𝑏 , 𝑎)

= ∑
[𝑞0

𝑘(𝑥𝑏 , 𝑎)𝑃0 − 𝑞𝑤𝑝
𝑘 (𝑥𝑏 , 𝑎)𝑃𝑤𝑝 − 𝑞𝑤𝑖

𝑘 (𝑥𝑏 , 𝑎)𝑃𝑤𝑖 − 𝑞𝑐𝑖
𝑘 (𝑥𝑏 , 𝑎)𝑃𝑐𝑖]∆𝑡

(1 + 𝑟)𝑡𝑘/𝜏

𝑛𝑇

𝑘=1

 

where 𝑘 is the index of the time step, 𝑛𝑇 is the total number of time steps, 𝑥𝑏 is the realization 
of the reservoir, 𝑞0

𝑘 is the field oil production rate at time 𝑘, 𝑞𝑤𝑝
𝑘  is the field water production 

rate at time 𝑘, 𝑞𝑤𝑖
𝑘  is the field water injection at time 𝑘, 𝑎𝑛𝑑 𝑞𝑐𝑖

𝑘  is the total polymer injection 
rate at time 𝑡𝑘, with 𝑃0,𝑃𝑤𝑝, 𝑃𝑤𝑖, and 𝑃𝑐𝑖 . 
The values of the used economic parameters are also listed in Table 3.6. 
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Parameter Value Unit 
𝑷𝟎 220 $/m3 

𝑷𝒘𝒑 47.5 $/m3 
𝑷𝒘𝒊 12.5 $/m3 
𝑷𝒄𝒊 12 $/kg 
𝒓 8% - 
𝝉 365 Days 

∆𝒕 30 Days 
Table 3.6 – Values of economic parameters. 

 
We consider a maximum life cycle of 10 years. We analyze the optimal time to switch from 
water flooding to polymer injection for each year of production using simulation-regression 
approach, with the switch occurring only once. This indicates that there would be nine 
possible switch times. We consider two cases, where for the first case, the oil price is set to a 
fixed value, and in the second case, the oil price is treated as an uncertain parameter and 
considered in the regression analysis to determine the optimal switch time.  
 
The Ornstein–Uhlenbeck (OU) stochastic process (also known as a mean-reverting model) is 
used to model and quantify the uncertainty in oil prices. The least-squares polynomial 
regression method is used to calibrate the input parameters for modeling the oil price, 
resulting in a mean reversion. Ornstein–Uhlenbeck and the calibration procedure are detailed 
in Papers V and VI. For illustration, we used the annual oil price data from the NYMEX 
futures prices of 1985–2019 (considering only historical yearly spot prices), as shown in 
Figure 3.27a. The data are available on the U.S. Energy Information Administration website 
(2019). Figure 3.27b presents a probabilistic model of oil price. 
 

 
(a) Historical data of annual oil price 

 

Figure 3.27 — Oil price modelling. 

For both approaches (with and without uncertainty in oil price), the decision without 
information (DWOI) involves injecting the polymer by the end of nine years. The expected 
values and VOI estimates are presented in Table 3.7. The EVWOI, EWPI, and EVII for Case 
2 were higher than those in Case 1; however, the VOI was lower. This means that the oil price 
has a significant impact on the decision. The VOI analysis informs us that we should not 
proceed with any information-gathering activity if the cost of the activity is more than $1.52 
million. 
 
 
 

(b) Oil prices modelled using 
the mean- reverting process 
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Approach EVWOI EVWPI EVWII VOPI VOI 
Case 1 $133.91 

million 
$136.7 
million 

$135.92 
million 

$2.79 
million 

$2.01 
million 

Case 2 $134.53 
million 

$137.98 
million 

$136.04 
million 

$3.46 
million 

$1.52 
million 

Table 3.7- Expected values and VOI estimates. 
 
The normalized frequency distributions (NFDs) of the waterflooding injection lifetime are 
illustrated in Figure 3.28.  For Case 1, 51 % of the realizations initiated the EOR phase at 9 
years, with 33 % of the realizations indicating switching at 8 years, and 16 % at 7 years of 
water-flooding recovery. For Case 2, the frequency distribution recommends switching from 
water flooding to polymer injection in years 8 and 9 (i.e., there is a 53 % chance that the 
polymer recovery mechanism should be started in the year 9). There is only a 32 % chance 
that it will be optimal to switch at 8 years and 5 % after both 6 and 7 years of water-flooding 
recovery. The specific switch time depends mainly on the measured production uncertainty of 
geological realizations and oil prices. 
 

 
               (a) – Fixed oil price                                      (b) – Uncertainty in oil price 

Figure 3.28 — NFDs of the polymer injection corresponding to the decision-making with 
ML 

. 

 

3.6 Paper VI: A Sequential Decision and Data Analytics 
Framework for Maximizing Value and Reliability of CO2 
Storage Monitoring. 

This paper presents a consistent decision based VOI analysis to assess the value of seismic 
monitoring of CO2 storage, in which CO2 is injected into a reservoir and seismic surveys are 
conducted to decide between continuing or stopping the injection, based on information from 
the survey results. The actual VOI calculation in our case is computed using the simulation-
regression methodology. The simulation-regression methodology used here illustrates both 
the impact of the seismic survey data obtained before a decision is taken and the effect of the 
data information that can be obtained to support future decisions. The analysis is performed 
on a constructed case study involving the Utsira storage site. Furthermore, we use a machine 
learning regression approach to estimate the VOI and determine the optimal time to stop the 
CO2 injections into the reservoir. 
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With regard to the problem setting of this example, we assume that the Utsira reservoir has 
one injection well at 1012 m depth, then a total period of 60 years of injection time is 
proposed, followed by a 3000-year migration (post-injection) period. All flow simulations 
were performed by using the open-source software MRST-CO2lab developed by SINTEF. 
We consider two options:  continuing or stopping the injection. We then analyze the optimal 
time to stop the injection based on seismic surveys.  This analysis provides useful insights 
into the reservoir development plan and learning over time affects decisions.  A total of N= 
100 prior geological realizations were generated using a normal Gaussian distribution to 
sample permeability, porosity, temperature, pressure, and caprock elevation  
 
In addition, we let 𝑡 ∈ {14,26,32,40,50,55} denote the time in years at which the decision of 
whether to stop the CO2 injection operation entirely has to be made. We assume that the 
injection cannot be resumed once it has stopped. This indicates that the number of decision 
alternatives in this case is 1200  (alternative𝑠 × time points × realizations) (see Table 3.8). 
 
Injection period 60 years 
Alternative Continue or stop the injection at times 

{14,26,32,40,50,55} 
Uncertainty / States Permeability, porosity, temperature, 

pressure and caprock elevator. (100 
realizations)  

Value derived from the decision situation Net present value 
Information data AVO attributes 

Table 3.8 - Decision Problem Setting 
 
To compute the VOI using simulation regression, the net present value (NPV) for each 
decision alternative corresponding to each realization has to be evaluated. As our objective is 
to maximize the NPV and minimize the CO2 leakage, the simplest objective function would 
simply measure the amount of CO2 injected 𝑀𝑖𝑛𝑗 and penalize the amount of CO2 𝑀𝑙𝑒𝑎𝑘 that 
has left the aquifer through the open boundaries or by leakage through the caprock, associated 
with project costs and penalty fines if leakage occurs. The net present value function will then 
conceptually be of the form of the amount of money saved by storing CO2 minus both the 
project costs and the penalty fine. For illustration purposes, $34 /t CO2 would be used as the 
market price in the form of carbon credits to avoid CO2 emissions, and $1.2/t CO2 would be 
utilized as a leakage-related penalty. The cost of the CO2 captured is in the range of $11/t CO2 

–$32/t CO2 (Puerta-Ortega et al., 2013), and this value was fixed at approximately $25/t CO2 
for our study (Sintef, 2019). $3.5/t CO2 was set to cover the costs of construction, operation, 
and maintenance (Bock et al., 2003). The cost estimate for storage in the onshore USA saline 
formation is $2.8/t CO2 (IPCC, 2005), and the monitoring cost is in the range of $0.2/t CO2. 
The net cost would then be $25/t CO2+ $3.5/t CO2+$2.8/t CO2 +$0.2/t CO2 = $31.5/t CO2; 
hence, the NPV can be expressed as follows: 
 

𝑵𝑷𝑽 =  𝑹𝒆𝒗𝒆𝒏𝒖 –  𝑪𝒐𝒔𝒕 −  𝑷𝒆𝒏𝒂𝒍𝒊𝒕𝒚 
Where, 

𝑅𝑒𝑣𝑒𝑛𝑢 =  $34 /𝑡 𝐶𝑂2 × (𝑀𝑖𝑛𝑗 − 𝑀𝑙𝑒𝑎𝑘) 
𝐶𝑜𝑠𝑡 =  $31.5  /𝑡 𝐶𝑂2 × 𝑀𝑖𝑛𝑗 

𝑃𝑒𝑛𝑎𝑙𝑖𝑡𝑦 =  $1.2  /𝑡 𝐶𝑂2 × 𝑀𝑙𝑒𝑎𝑘 
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To compute the VOI, we assumed three scenarios: (1) a fixed value of carbon price, (2) 
sensitivity analysis of amplitude versus offset (AVO) attributes, R0 (intercept), and G 
(curvature) are normally distributed using the likelihood model described in (Eidsvik et al., 
2015). More details regarding Scenario (2) are cited in Paper VI. In scenario (3), the carbon 
price is treated as an uncertain parameter for each realization and alternative. We used the OU 
process to model the carbon price, as illustrated in Figure 3.29. 

| 

Figure 3.29 — Carbon prices modelled using the OU mean-reverting process. 

The resulting VOIs for the three scenarios are listed in Table 4.4. The values of scenarios (1) 
and (2) are close. However, scenario (3) resulted in a high VOI value. This indicates that 
including the effect of future learning and decision making on carbon prices could improve 
the expected value. In addition, this analysis indicates that seismic data should not be gathered 
if the cost is greater than $432.5 million. 
 

Scenario (1)  (2)  (3)  
VOI  
[Million USD]                                              

242.85 231.48 432.50 

Table 3.9 – VOI estimates for the example with CO2 storage monitoring. 
 
For all three scenarios, the DWOI involves stopping CO2 injection by the end of 26 years. The 
normal frequency distributions (NFDs) of the total lifetime corresponding to decisions with 
machine learning are illustrated in Figure 3.30. Based on these results, CO2 injection should 
be stopped after 14–40 years. The specific stopping time depends mainly on the uncertainty of 
the geological parameters (permeability, porosity, caprock elevation, pressure, and 
temperature), in addition to three different scenarios: fixed carbon price, perturbed measured 
seismic data, and uncertainty in carbon price. 
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                                   Scenario (a)                                              Scenario (b) 

 

Scenario (c) 

Figure 3.30 — NFDs of the CO2 Optimal Stop Injection Time corresponding to the 
Decision-making with ML. 

Limitation. We demonstrate the usefulness of utilizing the concepts of decision analysis and 
value information to support value creation in the field development plan with limited 
computational resources. However, the impact of changing economics (cost of the CO2 
captured, water injection and production, etc.), and the sensitivity of the decision model and 
objective values to variations in reservoir parameters have not been analyzed in this study. In 
addition, one of the limitations of the value of information analysis is that estimation quality 
depends on the model and specification of parameter uncertainty. It might be beneficial to 
increase the number of realizations or reduce the number of alternatives in innovative ways.  
 
 
 
 
 
 



Concluding remarks 

37 
 

4. Concluding remarks. 

 
In this dissertation, we explore, illustrate, and discuss implementation examples of decision 
and data science in managing uncertainty in three areas in reservoir management, production 
forecast, uncertainty quantification and reservoir calibration (history matching), and 
sequential decision making. 
 
Production Forecast.  First, we propose a method that applies machine learning that can 
replace or accelerate manual decline curve analysis for short-term oil and gas well 
forecasting. Probabilistic prophet time series analysis and more accurate deep learning 
models, DeepAR, were considered to solve this problem. These two have been selected as 
they outperform state-of-the-art forecasting methods in many areas.  For time series 
forecasting, the prophet is a Bayesian nonlinear generative model proposed by Facebook. 
Prophet is also a structural time series analysis method that specifically models the impact of 
patterns, seasonality, and events. In contrast, DeepAR is an auto-regressive model based on 
cells with gated recurrent units or long short-term memory recurrent neural networks. It learns 
the parameters for each forecast horizon from a given probability allocation. Then, by 
sampling several times, one can sample from probability distributions to forecast each horizon 
or compute confidence intervals.  The results concluded that the deep learning approach and 
prophet analysis yielded satisfactory results in short-term forecasts, but they may fail to 
identify long-term trends in production unless the predictions are constantly adjusted.  
However, both approaches rely on the volume and granularity of data to develop the 
capability for predicting production over a long-time horizon. To solve this problem, we 
presented a new workflow to quantify uncertainty associated with DCAs modelling. The 
results show that the incorporation of decline curve model parameters in the Bayesian Neural 
ODE model can effectively regulate the forecasts and that the resulting probabilistic forecasts 
can reasonably cover the measured oil production rates. In this work, we integrated some 
locations properties and well-completion parameters in the Bakken Field, and then applied a 
data-driven technique to provide relevant information about well production performance. 
Machine learning is used to link the location and completion variables to decline model 
parameters. Subsequently, the Bayesian Neural ODE framework, No-U-Turn MCMC sampler 
(NUTS), is integrated with these decline analysis curve estimated parameters to rapidly 
forecast probabilistic decline curves without using expensive reservoir simulators. This 
methodology has been found to predict the rate decline. By leveraging data collected from 
existing wells, the ultimate recovery of a new well can also be predicted using this method. 
This work provides a practical application of combining Bayesian neural ODE with machine 
learning, which has the capacity to replace manual DCA in the long-term prediction of oil and 
gas wells. This approach might be particularly suitable for green fields with an extremely 
large number of wells.  
 
 
Uncertainty quantification and reservoir calibration. To quantify geological uncertainty in 
history matching, we presented a history matching framework with dimensionality reduction 
while preserving realistic geology and matching the production data, which was achieved by 
explicitly integrating t-distributed stochastic neighbor embedding (t-SNE) or  the Gaussian 
process latent variable model (GPLVM), and clustering K-means with ensemble smoother 
with multiple data assimilation (ES-MDA) to reduce the simulation time and quantify the 
uncertainty in reservoir models. The proposed procedure yielded reliable results by selecting a 



Concluding remarks 

38 
 

set of good prior ensemble reservoir models, with production performance similar to that of 
the reference model, before applying the data assimilation process. Accordingly, we 
compared the new implementation with the standard ES-MDA in a field reservoir problem 
with a long production history and a large number of wells. Based on the obtained results for 
these test problems, the proposed ES-MDA with dimensionality reduction is concluded to be 
computationally faster than the original one, and it is very simple to implement and integrate 
with different types of data and models.  In addition, several approaches have demonstrated 
that it is possible to provide the outcomes of subsurface models without the need for model 
updating and solving the inverse problem. In this context, we applied direct forecasting (DF) 
to quantify uncertainty in CO2 storage and migration in deep saline aquifers. We present a 
new DF implementation coupled with an ES-MDA. The proposed DF-ES-MDA was 
compared with the original DF. Both of the original methods mitigate the uncertainty 
reduction to a linear problem by reducing the high dimensionality of the original data using 
principal component analysis and canonical correlation analysis, and we established a 
statistical relationship between the data and forecast for direct forecasting. This estimated 
relationship combined with Bayesian Gaussian regression is thus used to generate a statistical 
forecast of the quantities of interest—in our study, CO2 injected mass and leakage. The new 
implementation preserves the main advantage of the original DF—its ability to provide an 
ensemble of CO2 injected mass and leakage forecasts without iterative data inversion or 
history matching problems that can be computationally expensive and difficult. The two 
methods are advantageous, even though the time required to execute the reservoir simulations 
for the prior models tends to be time-consuming. We compared the DF-ES-MDA with the 
original DF of a real field case and concluded that the accuracy of the DF-ES-MDA was 
consistently enhanced, and a higher degree of uncertainty reduction could be achieved. 
 
 
Sequential decision making. Closed-loop reservoir management (CLRM) is a state-of-the-art 
approach for managing geological uncertainty in reservoir management. It closes the loop of 
history matching and production optimization by continuously updating a production model 
and performing life-cycle optimization whenever new data become available. However, it is 
based on a myopic decision policy, in that it does not account for future uncertainty 
revelations and their impacts on future decisions. Thus, the CLRM solution was suboptimal. 
Because reservoir management is a sequential decision-making problem, it should consider 
whether geological uncertainty is informed by current data or future information.  These 
sequential decision problems are often solved and modeled as approximate dynamic 
programming, often described as simulation-regression, which is a powerful solution 
technique that can handle complex large-scale problems and discover a near-optimal solution 
for intractable sequential decision making. We demonstrated and described the usefulness of 
utilizing the concepts of simulation-regression and value information to support the recovery 
phase in the field of oil development with limited computational resources. We applied linear 
and nonlinear machine learning regressions to compute the VOI, which yielded comparable 
results and globally optimal solutions. In relation to the context, we presented a value of 
information framework that can be used to compute the value of information in a CO2 storage 
development plan. Specifically, we applied the framework to evaluate the VOI of time-lapse 
seismic data in the detection of potential CO2 leakage. A case has been developed where, 
based on information from seismic surveys and carbon credit prices, a decision-maker must 
decide on the best time to continue or stop the CO2 injection.  The reliability of a seismic 
survey and carbon prices are likely to increase with time and the amount of CO2 injected into 
the reservoir.  



Concluding remarks 

39 
 

In conclusion, the VOI framework can generally be applied to any type of spatial data and in 
the context of decisions other than reservoir development. The framework can be evaluated as 
an interplay between three key factors: the decision-making situation consisting of 
alternatives and prospect values, the uncertain variables of interest that affect the prospect 
values, and the data that informs about these variables of interest. Moreover, the machine 
learning regression method can be used to approximate the value functions that appear in 
dynamic programming and can be considered a robust approach, as it includes and quantifies 
uncertainties in dynamic and state variables, including uncertainty in economic parameters, 
which are important to make good and insightful decisions 
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5. Further Works   

 
This thesis has demonstrated the usefulness of novel and different methods for creating value 
by supporting decision making in complex and uncertain environments for reservoir 
management. There are many opportunities to extend our work and address some limitations. 
Some relevant areas for further research include the following: 
 

1- The long-term oil forecasting performance of the model can be further improved 
through numerous steps involving the use of other sampling techniques, such as 
variational inference and stochastic Langevin gradient descent, which could also help 
to quantify the uncertainty and estimate the posterior. This may be applied to 
spatiotemporal tasks or the use of an encoder-decoder from sequence to sequence, 
where the contextual data (static and dynamic) are integrated into the model 
architecture. Additionally, it integrates physical constraints during the training of a 
deep neural network. An advantage of such an approach is that physics can be 
introduced into ml approaches and could replace or speed up manual decline curve 
analysis to perform long-term forecasting of oil and gas wells. 
 

2- The performance of history matching with dimensionality reduction techniques is 
highly dependent on the ability and quality of the prior ensemble to provide unbiased 
estimates of prior uncertainty. In practice, we should revise the prior ensemble before 
using it for data assimilation; ideally, the prior ensemble should provide an unbiased 
estimate of the prior uncertainty. We recommend that further studies apply history 
matching with dimensionality reduction techniques to more complex geological 
models such as bimodal channelized systems; it will also be interesting to introduce 
into the framework more non-linear dimensionality reduction techniques, such as the 
deep autoencoder, stacked autoencoder, and generative adversarial network. 
Additionally, combining the data-space inversion method with an ensemble smoother 
may also more accurately predict oil production with computationally faster 
simulations. 

 

3- In the Direct forecasting framework for CO2 storage, the dimension-reduction method 
should be selected based on the nature of the variable itself. Accordingly, we observed 
that principal component analysis was practical in our study for a smoothly diversified 
time-series dataset (CO2 saturation around the near wellbore region), and PCA was 
chosen because it is simple and bijective. Notably, multiple dimension reduction 
techniques, such as auto-encoder and Gaussian process latent variable models, can be 
included in the BEL framework. Additionally, the choice of regression technique is 
guided by the type, dimension, and relationship of the measurements, data, and 
forecast variables (linear or nonlinear). Owing to the high-dimensionality problems, 
parametric regression is usually chosen instead of nonparametric techniques, except 
that a large number of prior samples are available. This work can be improved and 
extended in several ways. It is important to note that for this study, we have only 
considered quantities such as CO2 saturation through wellbores and their 
respective CO2 mass and leakage. This approach can be applied to examine the 
effectiveness of monitoring and monitoring duration to lower uncertainty in risk 
metrics, such as top-layer CO2 saturation, plume mobility, and seismic time-lapse data. 
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Accordingly, it will also be useful to apply direct forecasting procedures to more 
complex geological models, such as bimodal channelized systems, which can be 
challenging for traditional (model-based) history matching methods, kernel density 
estimation, and extensions of canonical correlation analysis can be included in the 
Bayesian evidential learning framework to tackle more complex nonlinear inverse 
problems. Finally, using data space inversion (DSI), as described by (Sun and 
Durlofsky, 2021) CO2 leakage detection under uncertainty should also be considered. 
 

4- The value of the information framework can generally be applied to any type of spatial 
data, and in the context of decisions other than reservoir development. The associated 
computational efficiency allows the value of information computation in complex 
decision situations.  However, the value of information is still quite uncertain, and to 
consistently provide good estimates of the value of information in complex sequential 
decision cases, it might be beneficial to increase the number of realizations or reduce 
the number of alternatives in innovative ways. Therefore, a new procedure and 
methodology based on clustering techniques, in combination with proxy models, must 
be developed to reduce computational costs and efficiently solve real-world sequential 
decision-making problems. 
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Abstract

Traditional decline curve analyses (DCAs), both deterministic and probabilistic, use specific

models to fit production data for production forecasting. Various decline curve models have

been applied for unconventional wells, including the Arps model, stretched exponential model,

Duong model, and combined capacitance-resistance model. However, it is not straightforward to

determine which model should be used, as multiple models may fit a dataset equally well but

provide different forecasts, and hastily selecting a model for probabilistic DCA can underestimate

the uncertainty in a production forecast. Data science, machine learning, and artificial intelligence

are revolutionizing the oil and gas industry by utilizing computing power more effectively and

efficiently. We propose a data-driven approach in this paper to performing short term predictions

for unconventional oil production. Two states of the art level models have tested: DeepAR and

used Prophet time series analysis on petroleum production data. Compared with the traditional

approach using decline curve models, the machine learning approach can be regarded as” model-

free” (non-parametric) because the pre-determination of decline curve models is not required.

The main goal of this work is to develop and apply neural networks and time series techniques to

oil well data without having substantial knowledge regarding the extraction process or physical

relationship between the geological and dynamic parameters. For evaluation and verification

purpose, The proposed method is applied to a selected well of Midland fields from the USA.

By comparing our results, we can infer that both DeepAR and Prophet analysis are useful for

gaining a better understanding of the behavior of oil wells, and can mitigate over/underestimates

resulting from using a single decline curve model for forecasting. In addition, the proposed

approach performs well in spreading model uncertainty to uncertainty in production forecasting;

that is, we end up with a forecast which outperforms the standard DCA methods.
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Introduction

Hydrocarbon production forecasting includes estimation of the ultimate recoveries and the
lifetimes of wells, which are material factors for decision-making in the oil and gas industry
because they can impact significantly economic evaluation and field development planning.
Although mathematically richer forecasting models (e.g., grid-based reservoir simulation
models) have been developed over the past decades, decline curve analysis (DCA) is still
widely used because of its simplicity: The mathematical formulations of DCA models are
simple with only a few parameters, and only production data are required to calibrate the
parameters. The Arps model (Arps, 1945) has been used for DCA for more than 60 years
and has been proved to perform well for conventional reservoirs. However, because of the
complexity of flow behaviors in unconventional reservoirs as several flow regimes are
involved (Adekoya, 2009; Joshi, 2012; Nelson, 2009) the Arps model may not be ideal,
and many other models have been proposed (e.g., the Stretched Exponential decline
model (Valk�o and Lee, 2010), the Duong model (Duong, 2011) and the combined
capacitance-resistance model proposed by Pan (Pan, 2016). The Pan model is subsequently
referred as Pan CRM in this paper. Some researchers (e.g. Gonzalez et al., 2012) have
attempted to identify a single “best” model among several DCA models. However, Hong
et al. (2019) have argued that selecting a single “best” model eliminates other potentially
good models and exhibits overconfidence (i.e., trust the single model 100%), which can
cause significant over/underestimates. Thus, their proposed approach incorporates multiple
models by using Monte Carlo simulation to assess the probability of each model and con-
sequently provides a probabilistic forecast of production. Some limitations of Hong et al.’s
approach are: (1) a collection of DCA models still needs to be predefined, and (2) the
assessed probability of each model is only a measure of the model’s relative goodness to
other models. If, for example, all the candidate models overestimate production, using Hong
et al.’s approach will still result in an overestimated forecast. Thus, an approach that does
not require the predefinition of DCA models is deemed preferable; i.e., using a nonpara-
metric model. Machine learning (ML) is still a relatively new technique in the oil and gas
industry. Several researchers have discussed the applications of ML for DCA. For instance,
(Gupta et al., 2014) used neural networks (NNs)—a ML technique—for DCA. They first
trained the NNs using historical data to capture the decline in production in shale forma-
tions, and the trained model was then used for prediction. This study also used the autor-
egressive integrated moving average (ARIMA) (George et al., 2015), a time series analysis to
analyze the historical data and identify the trends and relationships of historical and pre-
dicted data. Although they applied these two methods for a sample size of around 30 wells,
but they did not quantify uncertainties in the forecasted results. (Ma and Liu, 2018) pre-
dicted the oil production using the novel multivariate nonlinear model based on traditional
Arps decline model and a kernel method. (Aditya et al., 2017) developed a novel predictive
modeling methodology that linked well completion and location features to DCA model
parameters. The objective of the methodology was to generate predicted decline curves at
potential new well locations. (Han et al., 2020) used Random Forest (RF) to develop a
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predictive model that can be used to predict productivity during the early phase of produc-
tion (within 6months). The required datasets were obtained from 150 wells, targeting shale
gas, stationed at Eagle Ford shale formations. Reservoir properties, well stimulation and
completion were considered as key input parameters whilst the cumulative production of gas
during a span of 3 years was identified as the target variable. Although (Aditya et al., 2017;
Han et al., 2020) results were promising, the applicability of their methodology depends
heavily on the presence of specific geological, well stimulation and completion data, and the
quality and accuracy of the data have a big impact and influence, any anomaly in data
consequently make their results less promising. In the context of deep learning, (Luo et al.,
2019) built non-linear models using RF and Deep Neural Network (DNN) algorithms to
forecast the cumulative production of oil during a span of 6months. The whole dataset was
obtained from around 3600 wells positioned at Eagle Ford formations. Key parameters
associated with geological parameters such as structural depth, thickness of the formation,
total organic carbon (TOC), number of calcite layers and average thickness of the layer
(thickness of the formation divided by the total count of the layers) were identified as the
input variables that impacted the productivity of wells in Eagle Ford. In the context of Deep
Recurrent Neural Networks, (Lee et al., 2019) used the Long short-term memory (LSTM)
algorithm to develop a model for forecasting future shale-gas production. The gas produc-
tion and shut-in period of the past were taken into account to deduce the input features. The
training dataset was collected from 300 wells located in Alberta, Canada, at the Duverney
formation. For 15 wells stationed in the same field, the model was tested. The trained model
demonstrated the ability to predict production rates over a longer period (55months). They
found out that the method can be used even faster to forecast future production rates and
analyze the impact of added attributes such as the shut-in period. It was highlighted that the
approach would provide a more reliable and accurate forecast of the production of shale gas
and that this method can be used in both traditional and unconventional scenarios. In terms
of reliability and utilization, further tuning and improvement of the feature selection process
will produce a system with improved predictive capabilities. Stimulation parameters attrib-
ute derived from geological knowledge, and refracturing were proposed to be included as
possible features that have a critical impact on shale gas production and improve the
methode the methodgeological knowledge, and hat the ahose circumstances, the high-
intensity drilling associated with unconventional hydrocarbon resources and the underper-
formance of DCA make this technique more successful. (Zhan et al., 2019) checked the
LSTMmethoduded as possible features that have a critiduction of oil over two years or even
further by using very little previous data acquired during the initial production phases.
From over 300 wells stationed in unconventional onshore formations, the required dataset
was obtained. Over the first few production years, it is possible to recover around 70% of
the total EUR from shale wells, after which a rapid decline is observed. The steepness of the
decline makes it hard to survey the trend that causes over-estimation. In such a dynamic
situation, they highlighted this methodology’s value for forecasting production and assess-
ing the reservoir. They found that the average difference between the accumulated produc-
tion estimated and observed stayed within 0.2%, while the variance did not exceed 5%.
(Sagheer and Kotb, 2019) tested deep LSTM (DLSTM) network predictive efficacy in which
more LSTM layers were stacked to address shallow structure limitations when operating
with data from long interval time series. They figured that the proposed approach per-
formed much better than other models used in the analysis, like those based on ARIMA,
deep gated recurrent unit (GRU), and deep RNN. Based on their applicability, the models
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were tested and validated in two real-field case studies, such as India’s Cambay Basin oil
field and China’s Huabei oil field. An ensemble empirical mode decomposition (EEMD)
based LSTM was suggested by (Liu et al., 2020) to increase the oil production forecasting
speed and accuracy. Two real-field events, the JD and SJ oilfields based in China, were
tested to determine and verify the efficacy of the model. The EEMD-LSTM model was
contrasted with models EEMD-Suport Vector Machine (SVM) and EEMD-Neural
netowrk. The EEMD-LSTM model has been found to work much better as compared to
the other models by producing the forecast perfectly and with great quality. Although
several machine learning and deep learning models have been proposed to learn better on
how to handle multiple seasonal patterns in oil production data. However, to the best of our
knowledge, no studies have yet applied such probabilistic model for production forecasting.
The novelty of this work is to improve upon the existing techniques used by petroleum
engineers to analyze and appraise oil wells. Evaluating oil well potential is a lengthy inves-
tigation process. This is because the production profiles can be complex, as they are driven
by reservoir physics and made even more challenging by a variety of operational events.
Petroleum engineers analyze and evaluate the production profiles of oil wells, understand
their underlying behavior, forecast their expected production, and identify opportunities for
performance improvements. The investigation process is, nevertheless, time-consuming.
This introduces opportunities to optimize these processes. Thus, State-of-the-art level prob-
abilistic machine learning methods are considered DeepAR (David et al., 2019) and Prophet
time series analysis (Taylor and Letham, 2007), that are known to be effective in pattern
recognition and outperforming the state-of-the-art forecasting methods on several prob-
lems. These two algorithms can be used to understand and predict the behavior of oil
wells. Our objective is to determine the viability of these algorithms in predicting the dis-
tribution of future outcomes, specifically with time series data representing the oil produc-
tion of petroleum without having substantial knowledge regarding the extraction process or
physical relationship between the geological and dynamic parameters. In the remainder of
this paper, we first review the DL and time series analysis modeling that will be used to
accomplish the task. Thereafter, we explain the evaluation metrics used to assess the quality
of the forecast; and finally, we present the experimental results and a discussion of our work.

Time series analysis and DCA

Time series analysis

A time series is a sequence of data obtained at many regular or irregular time intervals and
stored in a successive time order; for example, a sequence of measured oil production rates
over time. The objective of time series analysis is to extract useful statistical characteristics
(e.g., trend, pattern, and variability) from a time series, to determine a model that describes
the characteristics, to use the model for forecasting, and ultimately to leverage insights
gained from the analysis for decision supporting and making. Traditionally, time series
models can be classified into generative and discriminative models, depending on how the
target outcomes are modeled (Ng and Jordan, 2002). The main difference between the two
models is that generative models predict the conditional distribution of the future values of
the time series given relevant covariates while the discriminative models use the past value.
In this study, we will use discriminative models, as they are more flexible and require fewer
parameters and structural assumptions than generative models. For more details about
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generative and discriminative model, see (David et al., 2019; Gasthaus et al., 2019; Ng and
Jordan, 2002; Ruofeng et al., 2018).

A critical aspect of discriminative models is the process of reconstructing a single
sequence of data points to yield multiple response observations. To solve this, sequence-
to-sequence (seq2seq) (Cho et al., 2014) and autoregressive recurrent networks (David et al.,
2019) approaches were used to feed and generate output from time series prediction models.
In seq2seq, the model is fed a sequence of time series as inputs, and it produces a time series
sequence as output, unlike the autoregressive model, which reduces the sequence prediction
to a one-step-ahead problem.

DCA

DCA is a type of time series analysis with data type of oil production data. DCA aims to
predict the future production of a well or a field based on historical data. The prediction is
useful for evaluating the economics of the future production and supporting decisions such
as whether a well or a field should be abandoned. Pan’s Combined Capacitance-Resistance
Model (Pan CRM) is DCA method. It is designed to capture the major flow regimes–tran-
sient and semi-steady state flow regimes–relevant for an unconventional well. (Pan, 2016)
proposed a model to capture the productivity index behavior over both linear transient and
boundary-dominated flow. Its formula is given as:

J ¼ bffiffi
t

p þ J1 (1)

where J is the productivity, J1 is the constant productivity index that a well will eventually
reach at boundary dominated flow, b is the parameter of the linear transient flow, b is
related to the permeability in the analytical solution of linear flow into fractured wells
presented by (Wattenbarger et al., 1998). Pan obtained the empirical solution of rate over
time by combining the previous equation and a tank material balance equation.The stan-
dard form is given as:

qðtÞ ¼ DPð bffiffi
t

p þ J1Þe�ð2b ffiffi
t

p þJ1t=ctVpÞ (2)

where ct the total compressibility, Vp the drainage pore volume, and DP is the difference
between the initial reservoir pressure and the assumed constant flowing bottom hole pres-
sure. For small t, the Pan CRM may offer an unrealistically high rate, as q(t) approaches
infinity when t approaches 0. The Pan CRM is analytically derived and has all the param-
eters associated with a reservoir system’s physical quantities. In this study, for each single
well, ct, Vp, DP, b and J1 are determined through history matching with the goal to min-
imize a predefined loss (or objective) function by adjusting the model parameters.

Machine-learning models and techniques for time series analysis

Prophet forecasting model

The Prophet forecasting is a bayesian nonlinear univariate generative model for time series
forecasting, which was developed by the Facebook Research team (Taylor and Letham,
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2007) for the purpose of creating high-quality multistep-ahead forecasting. This model tries
to address the following difficulties common to many types of time series forecasting and
modeling:

• Seasonal effects caused by human behavior: weekly, monthly, and yearly cycles; dips and
peaks on public holidays;

• Changes in trends due to new products and market events;
• Outliers.

The Prophet forecasting model utilizes the additive regression model, which comprises of
the following components:

y tð Þ ¼ g tð Þ þ s tð Þ þ h tð Þ þ et (3)

where y(t) is the variable of interest, g(t) is the piecewise linear or logistic growth curve for
modeling non-periodic changes in a time series, seasonality s(t) represents periodic changes
(e.g., weekly or yearly seasonality), h(t) reflects the effects of irregular holidays, and et
represents the error term that accounts for any uncertain changes not accommodated by
the model (usually, et is modeled as normally distributed noise).

We invoke the growth trend g(t) as a core component of the entire Prophet model. The
trend illustrates how the entire time series expands and how it is projected to evolve in the
future. For analysts, Prophet proposes two models: a piecewise-linear model and a
saturating-growth model.

Nonlinear, saturating growth is modeled using the logistic growth model, which occurs as
follows in its most basic form:

gðtÞ ¼ C

1þ exp�kð1�mÞ (4)

where m is an offset parameter, k is the growth rate, and C is the carrying capacity.
However, the value of C is not inherently a constant, which usually varies over time. It
was then replaced by a time-varying capability C(t). Moreover, the growth rate of k is not
constant. Therefore, it is presumed that the change-point where growth rates change has
been integrated and the growth rate between two change-points is constant.

The piecewise logistic-growth model is formed as follows:

gðtÞ ¼ C

1þ exp�ðkþaðtÞTdÞðt�ðmþaðtÞTcÞÞ (5)

where c is the vector of rate adjustments, d is the vector of correct adjustments at change-
points, and kþ aðtÞTd is the growth rate at time t. a(t) is defined by the following:

aðtÞ ¼ 1 t � s
0 otherwise

� �
(6)

where, s is the time point of change in the growth rate.
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Linear growth is modeled using a constant growth rate piecewise, and its formula is

given as:

gðtÞ ¼ ðkþ aðtÞTdÞtþ ðmþ aðtÞTcÞ (7)

where a(t), k, d, and c are the same as the nonlinear trend model.
In the time series, seasonality reflects periodic changes daily, weekly monthly and yearly

seasonality. To provide a versatile model of periodic effects, the Prophet forecasting model

depends on a Fourier series. Its smooth fitting formula is given as:

sðtÞ ¼
XN
n¼1

ancos
2pnt
P

� �
þ bnsin

2pnt
P

� �� �
(8)

where P is a regular period that the time series may have (for example, P¼ 7 for weekly data

or P¼ 365 for annual data) and N is the number of such cycles that we want to use in the

model. The final seasonal model appears as follows when combining all seasonal time series

models in s(t) into a vector X(t):

sðtÞ ¼ XðtÞb (9)

where b Normalð0; r2Þ is needed before the seasonality to enforce a smoothing.
Holidays and events: To completely understand the effect on holidays of a business time

series or other major events such as workover, production shutdown for operations (for

example, a workover), these constraints are explicitly set by the Prophet forecast model.

Recurrent neural network (RNN)

Compared with the traditional artificial neural network (ANN), the structure of RNN

neuron is different from that of ANN by adding a cyclic connection, which form feedback

loops in hidden layers, and hence the information of the last item in RNN can be trans-

mitted to the current item. The structure of RNN neuron is shown in Figure 1. When the

Figure 1. The structure of Recurrent Neural Network.
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time series X ¼ ðx1; x2; x3; . . . ; xnÞ is input, the sequence of hidden layer is H ¼
ðh1; h2; h3; . . . ; hyÞ and the sequence of output layer is Y ¼ ðy1; y2; y3; . . . ; ynÞ.

The relationship of X, H and Y are listed in the following equations:

hn ¼ rðWxhxn þWhhhn�1 þ bhÞ
yn ¼ Whyhn þ by

( )
(10)

where, r is the non-linear activation function, Wxh,Whh andWhy are the weight matrix from

input to hidden layer, hidden layer to hidden layer and hidden layer to output, respectively,

bh and by are biased terms.

Long short-term memory neural network (LSTM)

The LSTM neural network model (Greff et al., 2017; Hochreiter and Schmidhuber, 1997) is

a type of RNN structure, which is widely used to solve sequence problems. An LSTM tends

to learn long -term dependencies and solve the vanishing gradient problems1 (Grosse, 2017),

an issue observed in training ANN with gradient based learning techniques as well as

backpropagation algorithms. An LSTM allows the storage of information extracted from

data over an extended time period, and shares the same parameters (i.e., network, weights)

across all timesteps.
The structure of the LSTM shown in Figure 2 consists of the long term state ðctÞ and

three multiplicative units N with gðitÞ, output gate ðotÞ, and forget gate ðftÞ— and equiva-

lently write, read, and reset information within the model’s cells. These three multiplicative

gates enable the LSTM memory cells to store and access information over long time periods.

The gates control the amount of information fed into the memory cell at a given timestep.

Unlike traditional RNN methods that overwrite new content at each timestep, the LSTM

state vector and weights are modified at each timestep to take into account any evolution of

the input-output relation occurring over time and carry that information over a long

Figure 2. Architecture of an LSTM cell (Geron, 2017).
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distance. The LSTM functions are listed as follows:

it ¼ r Whiht�1 þWcict�1 þWxixt þ bið Þ
ft ¼ r Whfht�1 þWcfct�1 þWxfxt þ bfð Þ
�ct ¼ tanh Whcht�1 þWxcxt þ bcð Þ
ct ¼ ft � ct�1 þ it � �ct

ot ¼ r Whoht�1 þWxoxt þ boð Þ
ht ¼ ot � tanhðctÞ

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(11)

where the input gate ðitÞ, a forget gate ðftÞ and previous cell state ð�ctÞ control the current cell state
ðhtÞ, and the output gate ðotÞ and current cell state ðctÞ are used to control the hidden state ðhtÞ at
time t. r is the element-wise sigmoid function, � denotes the elementwise dot product operator,
ðxtÞ is the input vector at time t, and ht�1 is the hidden state vector that store all the useful
information prior to time t.Wxi,Wxf,Wxc, andWxo denote the weight matrices of different gates
for input ðxtÞ; Whi, Whf, Whc, and Who are the weight matrices for hidden state ht; Wci, and Wcf

denote the weight matrices of cell state ct�1; and bi, bf, bc, and bo denote the bias vector.

Gated recurrent unit (GRU)

The GRU is similar to the LSTM, but with a simplified structure and parameters. It was first
introduced by (Kyunghyun et al., 2014). GRUs have been used in a variety of tasks that
require capturing long-term dependencies (Junyoung et al., 2014). Similar to the LSTM, the
GRU contains gating units that modulate the flow of information inside the unit. However,
unlike the LSTM, the GRU does not include separate memory cells, and contains only two
gates—the update gate and the reset gate—as displayed Figure 3. The update gate zt decides
how often the unit updates its activation functions. This process takes a linear sum between the
existing state and a newly computed state. The second gate within the GRU, the reset gate rt,
acts to forget the previously computed state. The updated functions are listed as follows:

ht ¼ 1� ztÞht�1 þ zt ~ht

� �
zt ¼ r Wzxt þUzht�1ð Þ
~ht ¼ tanh Wxt þUð rt � ht�1ð ÞÞ
rt ¼ r Wrxt þUrht�1Þð Þ

8>>>><
>>>>:

9>>>>=
>>>>;

(12)

Figure 3. Gated Recurrent Unit: rÞ and z are the reset and update gates, and ht and ~ht are the activation
and the candidate activation (Kyunghyun et al., 2014).
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where the activation ht of the GRU at time t is a linear interpolation between the previous

activation ht�1 and the candidate activation ~ht, W denotes the weight matrices, xt is the

input vector at time t, and U denotes the weight matrices of the cell state.

DeepAR

DeepAR is a generative, auto-regressive model. It consists of a recurrent neural network

(RNN) using Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) cells

that takes the previous time points and covariates as input. In this study, We use the fore-

casting model from Salinas et al. (David et al., 2019). Unlike other methods of forecasting,

DeepAR jointly learns from every time series. In (David et al., 2019) publication, DeepAR

was outperforming the state-of-the-art forecasting methods on many problems.
Let zi;t be the value of time series i at time t, the objective is to model the conditional

distribution Pðzi; t0:Tjzi;1:t0�1; xi;1:TÞ, of the future of each time series ½zi;t0 ; zi;t0þ1
; . . . ; zi;T� :¼

zi;t0:T , given its past ½zi;1; . . . ; zi;t0�2
; zi;t0�1

� :¼ zi;1:t0�1
, where t0 represents the time point from

which zi;t is assumed to be unknown at prediction time, and xi;1:T are covariates that are

presumed to be known for all time points. The time ranges ½1 : t0 � 1� and ½t0 : T� are the

context range and the prediction range, respectively. The model is based on an auto-

regressive recurrent network, summarised in Figure 4. The model distribution

QHðzi;t0 jzi;1:t0 ; xi;1:TÞ; xi;1:T is considered to be a product of likelihood factors:

QHðzi;t0 jzi;1:t0 ; xi;1:TÞ ¼
YT
t¼0

QHðzi;tjzi;1:t�1; xi;1:TÞ

¼
YT
t¼0

lðzi;tjhðhi;t;HÞÞ
(13)

Figure 4. Model Summary: The network inputs are the covariates xi;t at each step t, the goal value at
the previous step zi;t�1, and the previous network output hi;t�1 at each step t. The network output hi;t ¼
hðhi;t�1; zi;t�1; xi;t;HÞ is then used to measure the parameters hi;t ¼ hðhi;t;HÞ of the probability lðzjhÞ that is
used to train the parameters of the model. A sample ẑ i;t�lð�jhi;tÞ is fed back to the next step instead of the
true value when zi;t is unknown (David et al., 2019).
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with hi;t the autoregressive recurrent network output hi;t ¼ hðhi;t�1; zi;t�1; xi;t;HÞ which will

be fed as the next timestep input for hi;tþ1- hð�Þ is a function that is implemented by a multi-

layer recurrent neural network with LSTM or GRU cells parametrized by H, and the like-

lihood lðzi;tjhðhi;t;HÞ being a fixed distribution parametrized by a function hðhi;t;HÞ. The
hi;t0�1, initial state contains zi;t0�1, context range information required to predict values in

the prediction range.
Given the model parameters required to pred ẑi;t0:T �QHðzi;t0 jzi;1:t0 ; xi;1:TÞ can be obtained

directly by ancestral sampling: First, hi;t0�1 is obtained as as a recurrent network output,

then we sample ẑi;t0:T � lð�jhðĥi;t;HÞÞ for t ¼ 1; . . . ; t0 � 1, where ĥi;t ¼ hðhi;t�1; ẑi;t�1; xi;t;HÞ
is initialized with ĥi;t0�1 ¼ hi;t0�1 and ẑi;t0�1 ¼ zi;t0�1. The use of these samples makes it

possible to calculate quantities, like the value distribution quantities, at a particular time

in the prediction range.

Likelihood model. The probability of lðzjhÞ should at best reflect the data statistical properties.

It can be selected between any potential possibility, for example, Bernoulli, Gaussian,

Binomial-negative, etc.
For instance, the mean and the standard deviation are the parameters h ¼ ðl; rÞ in the

Gaussian likelihood case. These are provided to the network output respectively by the

network output and softplus activation to ensure r > 0:

lGðzjl; rÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2

p expð�ðz� lÞ2Þ
2r2

Þ;

lðhi;tÞ ¼ wT
lhi;t þ bl;

rðhi;tÞ ¼ logð1þ expðwT
rhi;t þ brÞÞ

(14)

Loss function. The model parameter H which consists of the RNN hð�Þ parameters and the

hð�Þ parameters, can be learned by maximizing the log-likelihood, as follows:

i ¼
XN
i¼1

XT
t¼t0

loglðzi;tjhðhi;tÞ (15)

with the time series dataset zi;1:Ti:1;...;N and known related covariates xi;1:T. No inference is

needed to calculate the previous equation compared to state-space models with latent var-

iables, as hi;t is a deterministic input function. It can therefore be explicitly optimized with

respect to h with stochastic gradient descent.

Measures for evaluating forecast

As previously mentioned, the purpose of this task is to predict several future timesteps in the

target time series. Confidence intervals are also given and predicting the exact values (such

as point forecasting). These are based on percentiles calculated from a probability
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distribution based on a fixed number of samples (e.g. DeepAR model). To evaluate the
forecast accuracy, we use the mean continuous ranked probability score (mean CRPS).

Mean (CRPS): used to quantify both the accuracy and precision of a probabilistic fore-
cast (Hersbach, 2000). A higher value of mean CRPS indicates less accurate results. CRPS
can be defined as:

CRPS ¼
Z 1

�1
pðxÞ �Hðx� xobsÞ½ �2dx (16)

Here, pðxÞ ¼
Z x

�1
pðyÞdy is the cumulative distribution of a quantity of interest, andHðx� xobsÞ

is the step function, i.e.,

HðxÞ ¼ 0 if < 0
1 ifP 0

� �
(17)

For N samples, the CRPS can be evaluated as follows:

CRPS ¼
XN
i¼0

cici ¼ aip
2
i þ bið1� piÞ2 (18)

where pi ¼ PðxÞ ¼ i=N; for xi < x < xiþ1 (piecewise constant function).

ai ¼
0 if xobs < xi

xobs � xi if xi < xobs < xiþ1

xiþ1 � xi if xobs > xiþ1

8<
:

9=
; (19)

bi ¼
xiþ1 � xi if xobs < xi
xiþ1 � xobs if xi < xobs < xiþ1

0 if xobs > xiþ1

8<
:

9=
; (20)

Data collection and preparation procedure

In this work, we use oil production data from wells in the Midland field. We have selected 22
Midland wells, relatively smooth data, which indicates fewer significant operational
changes. The selected Midland wells have been completed in a natural fractured reservoir
and measured monthly. However, there are some missing measurements (i.e., no recorded
values) for a few months for each selected well. We simply ignore these missing values. Some
measurements have recorded zero values, and we suspect they indicate temporary shut-
down for operations (e.g., a workover). The zero values may interfere with the training
process, so we remove them from the data, then the datasets are rescaled with a standard-
ization. The standardization is included in deep learning to improve neural networks con-
vergence. Table 1 lists the lengths of production history of the selected wells. The lengths
range from 105 to 362months. No matter how long a well’s production history is, we use the
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data of the last 24months (regarded as a short term) for the blind test. Taking Well-ID3 as

an example: As shown in Figure 5, the data covers 108months. The data from Month 1 to

84 are used for building training and forecasting model using DeepAR and Prophet model,

and the data from Month 85 to 108 are used for blind testing to assess the performance of

prediction results. The same procedure is applied to the 22 selected wells individually.

Models implementation

The two models considered, DeepAR and the Prophet time series, are evaluated based on

Midland datasets. The experimental setup which is shared for each dataset evaluation is first

described before the dataset experiments.

DeepAR. DeepAR is a model presented by (David et al., 2019) and then implemented in

Gluon Time Series (GluonTS). GluonTS is a toolkit developed by Amazon scientists based

on the Gluon framework (Alexander et al., 2019). It aims to regroup all the tools required to

build deep learning models for time series forecasting and anomaly detection. DeepAR

configurations are trained as it is not implemented without early stopping during its

Table 1. Production history length of selected midland field wells.

Well-ID 3 5 8 9 11 14 15 16 17 18 20

Length (months) 108 105 105 109 106 308 315 319 362 344 311

Well-ID 21 22 72 142 156 157 171 181 206 249 524

Length (months) 314 307 112 235 246 253 162 136 134 133 105

Table 2. DeepAR fixed training hyperparameters.

Hyperparameter Value

Epochs 100

Batch size 32

Batches/epoch 100

Table 3. DeepAR hyperparameters to optimize for each well.

Hyperparameter Value

Context length 24

Layers 1, 2, 4

Cell type GRU, LSTM

Cell hidden state size 1,54,560

Gaussian number 1, 3, 8

Dropout rate 0.1, 0.4, 0.6

Learning rate 1e-4, 1e-3, 1e-2
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optimization (cf. Tables 2 and 3). If necessary, the final models are trained on the best

parameters without early stopping or validation failure on a new training set. For each

selected wells, the optimization is performed on the following parameters:

• The context length and the learning rate: The number of prior timesteps taken to make

the most precise forecasts. The tested context lengths depend on the data provided.
• Stacking layer number: The number of layers in the recurrent neural network.
• The cell type: Cell type in the recurrent neural network (GRU or LSTM).
• The number of gaussians: The number of Gaussians considered to be the probability

distribution of each timestep in Gaussians’ mixture.
• The dropout rate: The output of each LSTM cell is feed to a Zoneout2 cell which uses this

dropout rate (David et al., 2017).

Prophet time series implementation. An open-source implementation of the Temporal Prophet

time series model that was published with the paper (Taylor and Letham, 2007) can be

found on this web documentation. For each well, the main hyperparameters which can be

tuned are:

• Changepoint prior scale: This is likely the parameter that is most impactful. It determines

the trend change points in particular. If it is, too, the trend will overfit, if it is too small,

the trend will be underfitting, and variation that should have been modeled with trend

changes will be treated with the noise term instead. The default value of 0.05 works for

several time series, but this can be tuned; the range is [0.001, 0.5].
• Sasonality prior scale: This parameter regulates the flexibility of seasonality. Similarly, a

large value helps the seasonality respond to large variations, a small value shrinks the

magnitude of the seasonality. The default parameter is 10, with practically no regularisa-

tion being applied. This is because overfitting occurs here very rarely (there is inherent

Figure 5. History of oil production rate, Well-ID3.
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Figure 6. Oil production time series forecast - DeepAR. Left: Overview of forecast. Right: zoomed forecast.

Table 4. Mean CRPS of probabilistic forecast from DeepAR model.

Well-ID 3 5 8 9 11 14 15 16 17 18 20

Mean CRPS 69 29.15 74 93.5 80.9 15.25 7.89 19.17 9.91 12.01 15.18

Well-ID 21 22 72 142 156 157 171 181 206 249 524

Mean CRPS 23.18 22.14 8.35 27.39 3.47 10.50 21.67 21.37 19.69 27.80 29.91
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Figure 7. Oil production time series forecast - Prophet.
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regularisation because it is modeled with a truncated Fourier sequence, so it is filtered

practically low-pass). [0.01, 10] would possibly be a good range for tuning it.
• Growth: Options are ‘linear’ and ‘logistic’.

Results

Figure 6 demonstrates the forecast results for some selected wells using the DeepAR, the

means of forecasts (dashed steel blue curve) comparing to blind-test data (dashed red curve)

and Pan CRM model (black line curve). In general, the production forecast seems to be

reasonable, the DeepAR model can forecast both the upward and downward trends gen-

erally well and outperform the Pan CRM model, it is observed that the prediction intervals

are, mostly, containing the correct values, except for the well-ID11, this could be explained

by being incapable of predicting when changes in production are going to happen. We

quantify the accuracy of the probabilistic forecast using the mean CRPS score as listed in

Table 4. The results for prediction accuracy are quite satisfactory. In most cases, the mean

CRPS decreases as the length of production history increases. This indicates that a longer

production history (i.e., more data) will improve the DeepAR model forecast. A major

drawback of DeepAR is that it has very little to no interpretability. We cannot interpret

any physical meanings from the trained DeepAR model parameters.
Figure 7 shows forecasts from the trained Prophet models. The means of forecasts (the

dashed Steel blue curve) follow the blind-test data (dashed red curve in Figure 7) generally

well. The P5-P95 prediction intervals (grey band in Figure 7) covers most of the blind-test

data. However, for Well-ID8, the forecast significantly deviates from blind-test data and

fails to capture both trends and the peaks and troughs reasonably; more specifically, the

forecast underestimates the oil production rates.
Compared to Prophet, the DeepAR models represent distinct trends in the mean CRPS

score as listed in Table 5. This is possibly due to the DeepAR layer’s capacity to “memorize”

long-term patterns. In contrast, Prophet’s predictions rely majorly on the pattern of the

most previous historical data. Besides, DeepAR indicates that the lowest CRPS errors arise.

Simultaneously, the difference in values is minimal, even though this statement is only valid

for the 5-th and 95-th percentileses. This is demonstrated by the better coverage earned by

the longer periods that compensate for the 50-th percentile’s low accuracy.
Limitation: In the previous section, we presented DeepAR and Prophet trends in the

mean CRPS score as listemonths (2 years). We evaluate the performance of the two methods

for a forecast horizon of 48months, as displayed in both Figures 8 and 9, It can be obviously

seen that the two methods exhibited quite similar performance almost equally well when the

length of wells more than 300months, for the most part, they well capture the trends of oil

production rate in blind tests, and the predictions yielded by each of the models appear to be

quite similar. The models were good at predicting trends and flat lines, but sometimes

Table 5. Mean CRPS of probabilistic forecast from Prophet model for each well.

Well-ID 3 5 8 9 11 14 15 16 17 18 20

Mean CRPS 63.4 29.15 174 153.5 180.9 22.83 14.45 32.06 9.41 16.45 25.73

Well-ID 21 22 72 142 156 157 171 181 206 249 524

Mean CRPS 38.21 33.06 14.55 34.27 13.42 14.20 24.65 27.24 18.39 28.63 36.21
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Figure 8. Oil production time series forecast - DeepAR - 48months horizon forecast.
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Figure 9. Oil production time series forecast- Prophet - 48months horizon forecast.
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undershot/overshot the peaks and troughs, i.e., Well-ID8. However, both the Prophet and
DeepAR did not match production data including quantifying uncertainty, with a small
historical data length. Based on the previous results, we can highlight that the two methods
enrich the family of time series analysis models by extracting the weighted differencing/trend
feature, and contribute to better performance in short-term oil production forecasts, and it
can be an alternative way for oil production forecasting in practical application.

Discussion and conclusion

The purpose of this work is to demonstrate a method of machine learning that could replace
or accelerate manual DCA for short-term oil and gas well forecasting. Probabilistic Prophet
time series analysis and more accurate deep learning models, DeepAR, were considered to
solve this problem. These two have been selected as they outperform the state-of-the-art
methods of forecasting on many topics. For time series forecasting, Prophet is a Bayesian
non-linear univariate generative model proposed by Facebook. The Prophet is also a struc-
tural time series analysis method that specifically models the impact of patterns, seasonality,
and events. For the Prophet, the cyclical duration and event date parameters are set the
same as our model. In contrast, DeepAR is an auto-regressive model based on cells with
GRU or LSTM recurrent neural networks. It learns the parameters for each forecast hori-
zon from a given probability allocation. Then, by sampling several times, one can sample
from certain probability distributions to forecast each horizon or compute confidence inter-
vals. The model validation was carried out on 22 separate midland reservoir field oil pro-
duction datasets. Each has had their outliers removed and missing data replaced. They were
also standardized as a pre- and post-processing to increase the model’s accuracy. Their
performances were evaluated based on mean CRPS metrics. The prediction length was
initially fixed to 24months and planned to be increased to 48months. The models first
went through a hyperparameter optimization to select to optimal parameters of each meth-
ods of each well. The results showed that the deep learning approach and Prophet analysis
yield a satisfactory result in short term forecast, but they may fail to identify long-term
trends in predictions unless the predictions are constantly adjusted. However, The both
approaches relies on the volume and granularity of data to develop capability for predicting
production over a long-time horizon.

This approach can be regarded as “model-free” because, unlike the traditional DCA, the
selection of a specific decline curve model is not required. However, It is important to
highlight some potential drawbacks of applying time series deep learning for oil production
prediction. Deep learning models may suffer significant errors when used for long-term
forecasts. This is in addition to their limited interpretability. That is because the predictions
are computed sequentially and depend on past predictions that have been appended to the
data. Thus, there is a gradual accumulation of error over time. Deep learning models have to
be retrained periodically as more data are collected. Otherwise, their predictions become
highly inaccurate after a long period. Furthermore, another difficulty that may arise when
applying deep learning is that an intermediate-to-expert level of knowledge may be required
during model creation and training, as opposed to other out-of-the-box machine learning
methods that can be trained easily by adjusting their hyperparameters. Therefore, general
NNs may require some adjustments to their cell architecture.

In conclusion, the precise prediction and learning performance presented in the paper
suggests that both Prophet and DeepAR are eligible for use in the petroleum industry’s
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non-linear short-term forecasting problems. Many steps should be taken to further

improve the performance of forecasting over long time horizons, such as the application

to spatiotemporal tasks or the use of an encoder-decoder from sequence to sequence,

where the contextual data (static and dynamic) would be integrated into the model archi-

tecture. Additionally, integrating physics constraints during the training of a deep neural

network. An advantage of such approach is that physics can be introduced into ML

approaches and could replace or speed up manual DCA to perform long term forecast

of oil and gas well.
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Notes

1. The term vanishing gradient refers to the fact that in a feedforward network (FFN) the back-

propagated error signal typically decreases (or increases) exponentially as a function of the distance

from the final layer.
2. Zoneout is an application of dropout where the values are reset to their previous state ðht ¼ ht�1Þ

instead of being dropped out ðht ¼ 0Þ.
3. https://facebook.github.io/prophet/
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Abstract: Carbon capture and storage (CCS) has been increasingly looking like a promising strategy
to reduce CO2 emissions and meet the Paris agreement’s climate target. To ensure that CCS is safe
and successful, an efficient monitoring program that will prevent storage reservoir leakage and
drinking water contamination in groundwater aquifers must be implemented. However, geologic
CO2 sequestration (GCS) sites are not completely certain about the geological properties, which
makes it difficult to predict the behavior of the injected gases, CO2 brine leakage rates through
wellbores, and CO2 plume migration. Significant effort is required to observe how CO2 behaves
in reservoirs. A key question is: Will the CO2 injection and storage behave as expected, and can
we anticipate leakages? History matching of reservoir models can mitigate uncertainty towards
a predictive strategy. It could prove challenging to develop a set of history matching models that
preserve geological realism. A new Bayesian evidential learning (BEL) protocol for uncertainty
quantification was released through literature, as an alternative to the model-space inversion in
the history-matching approach. Consequently, an ensemble of previous geological models was
developed using a prior distribution’s Monte Carlo simulation, followed by direct forecasting (DF)
for joint uncertainty quantification. The goal of this work is to use prior models to identify a statistical
relationship between data prediction, ensemble models, and data variables, without any explicit
model inversion. The paper also introduces a new DF implementation using an ensemble smoother
and shows that the new implementation can make the computation more robust than the standard
method. The Utsira saline aquifer west of Norway is used to exemplify BEL’s ability to predict the
CO2 mass and leakages and improve decision support regarding CO2 storage projects.

Keywords: uncertainty quantification; carbon storage; Bayesian evidential learning; data assimilation

1. Introduction

Carbon capture and sequestration, also known as carbon capture and storage (CCS),
represents a unique potential strategy to minimize carbon dioxide (CO2) emissions into
the atmosphere. It creates a pathway toward a neutral carbon balance, which cannot be
achieved solely with a combination of energy efficiency and other forms of low carbon
energy. However, it can be achieved if CCS is added as a routine technology to any process
that uses fossil fuels. Thus far, geological reservoirs, such as depleted oil or gas fields,
or deep saline aquifers, have been considered as appropriate geologic formations for
storing CO2 emissions at a depth of several thousand meters [1–3]. Saline aquifers provide
large storage capacities, are broadly distributed geographically, and are more accessible
to capture sites as they facilitate the entire CO2 transport process [4]. Several projects
from the pilot-to commercial-scale have been implemented worldwide [5,6]. Cumulative
injection of CO2 in some countries like the United States, Norway, and Canada, is as high
as 220 million tons (Mt). The majority of this cumulative (about 75%) is associated with
enhanced oil recovery operations [7], and estimates show that geological reservoirs can
store between 8000 to 55,000 Gt of CO2 [8], which is the capacity of over 200 years of current
global CO2 emissions.
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However, uncertainties in geological models and rock properties affect the flow mod-
eling and CO2 storage capacities, mitigating the risk of CO2 leakage and consequently the
contamination of clean groundwater. Ensuring the CCS is safe and successful requires
both the storage capacity and CO2 plume migration estimation, because they are used
to identifying the significant uncertainty present in geomodel parameters like porosity,
permeability, and caprock elevation. Storage operations monitoring must ensure the CO2
remains trapped within the reservoir after the injection has stopped.

The standard methods for quantifying uncertainty rely on the consideration of many
plausible geological realizations (ensemble model) and quantification of the statistical
measures of the ensemble parameters. Assessment of the static/volumetric capacity within
a large ensemble model can be easily performed. However, creating highly resolved
simulations for all members of a large model ensemble can quickly become computationally
intractable, which can be solved either by reducing the number of members of the ensemble
or accelerating the simulations required for acquiring each geomodel realization. The
uncertainty of specific parameters has been discussed in several previous studies. For
instance, Allen et al. [9] proposed a simplified method to investigate the causality and
impact of uncertain parameters, including rock properties (permeability and porosity), fault
transmissibility, top-surface elevation, and aquifer conditions in term of temperature and
pressure in terms of both static trapping capacity and dynamic plume migration estimation.

Several studies have demonstrated the application of a data assimilation and opti-
mization strategy for the minimization and mitigation of risks during CO2 injections as
well as the postinjection period at the storage sites. For instance, Dai et al. [10] introduced
a method of analyzing data by employing the probabilistic collocation-based Kalman
filter (PCKF) for the optimization of the surveillance operations within GCS projects. The
method involves the development of surrogate models with the use of polynomial chaos
expansions (PCE) that act as a replacement of the original flow model, followed by an
assessment of the reduced variance of the field cumulative CO2 leak by analyzing the data.
Subsequently, a comparison of the data-worth values of each monitoring strategy is done in
order to select an optimal monitoring operation scheme. Oladyshkin et al. [11] introduced
a framework using polynomial chaos expansion (PCE) as well as bootstrap filters for the
assimilation of the pressure data to reservoir models and quantifying the uncertainty reduc-
tion of the rate of CO2 leak within the storage sites. Only three uncertainty parameters were
considered: reservoir’s permeability, reservoir’s porosity, and wellbore’s permeability. Sun
and Nicot [12] and Sun et al. [13] utilized probability based collocations for the assessment
of how detectable the CO2 leaks were, with the use of the pressure data from the monitoring
wells, for the heterogeneous aquifers that are not certain. Additionally, Chen et al. [14]
introduced a method that focused on machine learning and filter-based data assimilations
to create a CO2 monitoring design, where one determines the optimal monitoring design
by making a choice from the designs for the boosting of the model’s ability to predict
cumulative CO2 leakage. Chen et al. [15] further introduced a framework that focuses on
the ensemble smoother (ES) with multiple data assimilations (ES-MDA) and the geometric
inflation factor (ES-MDA-GEO) to calibrate the reservoir model and monitor the data from
storage sites to predict CO2 migration or leakage detection. González-Nicolás et al. [16]
made a comparison of the use of ES and the restarting of the ensemble Kalman filter (EnKF)
algorithms to detect pathways of potential CO2 leakage with the use of pressure data. In
this vein, Cameron et al. [17] examined how pressure data works in a zone over the storage
aquifer, identifying and quantifying potential leaks. It also performs CO2 storage by using
a particle swarm optimizing algorithm coupled with Karhunen–Loève representations
porosities for model reductions, which detect the aquifer model that matches historical
data. However, there are still conceptual and computational challenges associated with
data assimilation and optimization procedure proposed in the previous listed methods,
as generating a set of models properly conditioned to all historical data that preserve the
geological realism is very challenging process. The limitations have been well-detailed in
Olivier et al. [18], one issue is that of ensemble collapse, which may result in unrealistic un-
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certainty and difficulty to coverage to the target distribution. Another practical limitation is
to render these approaches relevant for a large variety of problems, such as different prior
distributions, different forward models, etc. That also causes significant computational
implementation challenges. This study attempts to introduce an alternative approach that
can circumvent the different problems associated with model-based approaches.

Recently, several approaches have demonstrated that it is possible to provide the
outcomes of subsurface models without the need for model updating and solving the
inverse problem [19]. In relation to this context, Scheidt et al. [20] with Satija et al. [21]
introduced a new protocol for making decisions under uncertainty called Bayesian eviden-
tial learning (BEL). Based on the description provided in [19,22]. BEL relies mainly on data,
model, prediction, and decision under Bayesianism scientific methodologies. BEL is usu-
ally divided into six main stages : (1) Formulation and definition of the decision problem;
(2) prior model definition and specification ; (3) Monte Carlo simulation and falsification of
the prior uncertainty models; (4) Global sensitivity; (5) Uncertainty reduction using data;
(6) Posterior falsification and decision making. In step 5, one may opt for classical inversion
or direct forecasting (DF) [23]. DF utilizes a combination of statistical learning techniques
and the Monte-Carlo sampling method to ensure direct relationships between the data
and the prediction variables. It should be noted that this method requires no completed
explicit model inversions. This results in it being less expensive by a computational amount
when compared to the standard inversion methods. Despite the applications being still
lower in number, DF was successful in applying case studies related to oil reservoir man-
agement, groundwater resources, and geothermal energy problems [21–25]. For instance,
Satija et al. [23] used DF to forecast the future reservoir performance by mapping prior
predictions into low-dimensional canonical space and estimating the joint distributions of
historical and forecast data through linear Gaussian regression; they conclude by stating
that this method displayed uncertainty estimates for production forecasts that reasonably
agreed with rejection sampling. Yin et al. [22] proposed an extended approach based on di-
rect forecasting, called direct forecasting of sequential model decompositions, in which both
geological model parameters and borehole data are used simultaneously. The posterior
results displayed large reductions of uncertainty both spatially, through a geological model
and using gas volume predictions. In the context of CO2 storage, Sun and Durlofsky [26]
introduced a DF method named data-space inversion (DSI) that quantifies the uncertainties
of CO2 plume locations throughout GCS, where the generation of posterior forecasts of CO2
saturation distributions were through the simulation results of prior model realizations
along with observable data. Notably, the generation of posterior geological models were
not in the DSI method, unlike the traditional methods of assimilating data, which involved
ensemble-based data assimilations.

In this work, our intended contribution is to demonstrate how BEL protocol can be
used in designing an uncertainty reduction strategy in predictions and minimizing the risk
of CO2 leakages, facing various sources in uncertainty in terms of permeability, porosity,
temperature, pressure, and caprock depth. Here, we will use a case study problem based
on the Utsira sand reservoir, which is a saline aquifer located in the Norwegian continental
shelf (NCS). This paper also makes a key contribution in extending the DF procedure
through implementing ES-MDA [26] and demonstrating that the DF with ES-MDA [27]
is more robust than the standard procedure proposed in Satija et al. [21]. It also provides
appropriate posterior uncertainty quantification with results that can be compared to
those of the methods proposed in Yin et al. [22]. The paper is structured in multiple
sections. In the following section, we present BEL framework and the associated statistical
methods used to quantify uncertainty. Then, the proposed methodology can be tested
by implementing it in Utsira CO2 storage site involving many uncertainties. Finally, we
provide some concluding remarks and recommend possible future research directions.
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2. Methods: Uncertainty Quantification Framework

In this section, we will introduce the BEL procedure for the data assimilation. The
BEL procedure is based on a Bayesian formulation in the data space, aiming to sample the
conditional/posterior distribution of the interest quantities (in our case, the distribution
of CO2 mass and leakage in the top layer at a future time). BEL can usually be divided
into six main stages [22]: (1) Formulation and definition of the decision problem; (2) prior
model definition and specification; (3) Monte Carlo simulation and falsification of the
prior uncertainty models; (4) Global sensitivity; (5) Uncertainty reduction using data;
(6) Posterior falsification and decision making. Since this paper presents a hypothetical
(but realistic) case study problem, we will focus on steps 2, 3, and 5.

2.1. Prior Model Definition

The prior sampling aims to identify the possible range of model parameterization
and probability distribution for each geological parameter. Let m refer to the vector of
uncertain parameters of a reservoir model using a historical data variable (CO2 saturation
near wellbore region, etc.) as vector d. The forecast (quantity of CO2 mass and CO2 leakage)
is represented by h. The nonlinear function of m through both observed and forecast data
forward model is defined as:

d = Gd(m) and h = Gh(m) (1)

The functions, Gd and Gh, are generated through the use of a reservoir simulator and
by forwarding them to prior geological model realizations, we obtain a set of N samples of
both data and forecast variables.

d = (d1, d2, d3, . . . . . . . . . dN), and h = (h1, h2, h3, .........hN) (2)

Note that we refer dobs as the vector of observation and acquired data.

2.2. Prior Model Falsification

Once the prior samples (both historical and forecast data) are extracted, it is important
to check whether the observed (reference) prior data can predict posterior distribution
that appertains to the prior range. Otherwise, there is a risk that the prediction may be
erroneous. If the prior model is false, suggesting data inconsistency, we must revise the
prior data distribution herein to assess the prior model’s quality and ability to predict the
posterior data [19]. A statistical procedure based on Mahalanobis distance (MD) [28] is
used that handles high dimensional and different types of data measurements with the
primary objective of detecting outliers and determining whether the prior model is false or
not. The MD for each data variable realization d or dobs can be computed as follows:

MD (d) =
√
(d− ρ)β−1((d− ρ), f or n = 1, 2, 3.........., N (3)

Here ρ, and β are the mean and covariance of the data d. Assuming that the dis-
tribution of the data is multivariate Gaussian, the distribution of [MD(dn)]2 would be
chi-squared x2

d. We set the 95th percentile of the x2
d as the tolerance threshold for the

multivariate dimensional point dn. If MD (dobs) falls outside the tolerance threshold
(MD (dobs) > MD (dn), the dobs would be regarded as outliers, and the prior model would
be determined as false, as it would mean that it has a very small probability. It should
also be noted that this method requires data distribution to be Gaussian; if it is not, other
outlier detection techniques such as local outliers detection [29], isolation forest [30], and
One-Class Support Vector Machines [31] are highly recommended.

Next, a machine learning dimension reduction method is applied (e.g., functional
principal component analysis (FPCA) [32] and canonical functional component analysis
(CFCA) [33]) are applied to generate reduced dimension vectors in canonical, dc and hc,
where dimension(dc) << dimension(d); and dimension(hc, ) << dimension(h).
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2.3. Direct Forecasting

Direct forecasting (DF) is a prediction-focused analysis [21,23,25], the main objective
is to build a statistical relationship between the observed data and prediction without re-
solving any geological model inversion problem. More precisely, the main idea behind DF
is to make an estimation of the conditional distribution f (h|d) from the prior Monte-Carlo
sampling. This conditional distribution can be used to generate posterior samples h. In this
paper, we introduce the method proposed in Satija and Caers (2017) [21], which has been
successfully used in a variety of previous studies [19,24,25]. This learning strategy depends
on mapping the problem into a lower-dimensional space through bijective transformations
using machine learning reduction techniques- principal component analysis (PCA) and
canonical correlation analysis (CCA) to maximize linearity between both data and predic-
tion varaibles and then fitting the data through multivariate Gaussian distribution. In the
multivariate Gaussian, all the conditional distributions can be identified analytically and
described as follows:

The linear relationship between data variables and forecast implies that:

dc = Gc
h (4)

G is the linear coefficient that maps hc to dc. Then, the Gaussian likelihood model is
formulated as:

L(hc) = exp(−1
2
(Ghc − dc

obs)
TC−1

dc (Ghc − dc
obs)) (5)

Here, Cdc is the data covariance matrix of the canonical space. Since the prior and
likelihood data are multivariate Gaussian, the posterior is as well Gaussian, and the
posterior mean and covariance are easily computed using the standard methods [34]. With
the likelihood and prior data and a linear model being multivariate Gaussian, the posterior
distribution f (hc|dobs) is also multivariate Gaussian with mean h̃c and covariance model
C̃H that has an analytics solution:

h̃c = h̄c
prior + ChGT(GChGT + Cdc) + CT)

−1(dc
obs + Gh̄c

prior) (6)

C̃h = Ch − ChGT(GChGT + Cdc + CT)
−1GCh (7)

where CT is the error covariance that occurs as a result of the linear fitting. Thus, we can
generate the posterior data by simply sampling from this multivariate Gaussian.

One key element of DF is the way a sufficient Monte-Carlo samples of size N are
determined. Following the results of previous studies on hydrogeophysics [25], and on
oil reservoirs [23], the range of the realizations size N is generally between 100 and 1000.
DF can also be modified. Instead of using linear Gaussian, we can integrate the ensemble
smoother with multiple data assimilation (ES-MDA).

2.4. Direct Forecasting-ES-MDA (DF-ES-MDA)

ES-MDA is an ensemble-based method introduced by Emerick and Reynolds in
2013 [27], as an alternative to the sequential data assimilation scheme of EnKF. ES-MDA has
successfully improved the performance of history matching, and it is simple to implement.
In its simplest form, the method employs the standard smoother analysis equation a
predefined number of times along with the covariance matrix of the measured data error
that is multiplied by a coefficient a. The coefficients must be selected in a way that the
following equation is satisfied.

Na

∑
k=1

1
ak

= 1 (8)

Here, Na is the number of times the analysis is repeated. The standard ES-MDA
analysis that is applied to a vector of model parameters, m, can be written as:



Energies 2021, 14, 1557 6 of 18

mi = mb
i + Cmd(Cdd + apCD)

−1(dobs − dsim,i), f or i = 1 . . . . . . .N (9)

Here, the subscript i refers to the ith ensemble member, Cmd is the cross-covariance
matrix between the vector of model parameters m and predicted data d; Cdd is the auto co-
variance matrix of the predicted data d; ap is the coefficient that inflates CD, the covariance
matrix of the observed data measurement error; dobs is the observation data perturbed by
the inflated observed data measurement error; dsim the simulated data based on the previ-
ous simulation models; and N is the ensemble size (i.e., number of reservoir models in the
ensemble). Conventionally, the ensemble-based history matching simultaneously updates
N reservoir models. Cmd(Cdd + apCD)

−1 refers to Kalman gain K which is computed with
regularization by SVD using 99.9% of the total energy in singular values. Refer to [27,35]
for more information about the method.

In this work, we modified ES-MDA to generate samples of both historical and pre-
dicted data variables d = [dc, hc]T , given that the vector of observations dc

obs are considered
after applying PCA and CCA. Thus, we can write the DF-ESMDA update equation as:

dk+1
i = dk

i + Kk(dc
obs − dc,k) (10)

Kk = Chcdc(Cdcdc + apCe)
−1 (11)

Cdcdc =
1

Ne − 1

Ne

∑
i=1

(dc
i − d̄c)(dc

i − d̄c)T (12)

Cddc =
1

Ne − 1

Ne

∑
i=1

(di − d̄c)(d− d̄c)T (13)

Here, Ne is the number of components (selected dimension); K refers to the Kalman
gain; Cddc is the cross-covariance matrix between the vector d and historical data; and Cdcdc

is the auto covariance matrix historical data.

2.5. Direct Forecasting on a Sequential Model Decomposition (DF-SMD)

DF can also be extended by replacing the prediction variable h with geological model
variable m (porosity, permeability, etc.) to update the geological model variables and
to obtain f (m|dobs) without traditional iterative model inversions. We employ the same
method of [22] which has been successfully applied to update geological uncertainty with
borehole data. In case of a reservoir, the geological model m consists of structural model s,
rock types r, petrophysical model p, and subsurface fluid distribution f , m = (s, r, p, f ).

The prior model uncertainty is defined as the sequential decomposition of specific
model variables. In order to condition these model variables to wellbore data, we propose
the following direct forecasting equation in a sequential scheme:

f (m|dobs) = f (s, r, p, f |dobs) = f ( f |sposterior, rposterior, pposterior, dobs, f )

f (p|, sposterior, rposterior, dobs, p)

f (p|sposterior, dobs, p) f (s|dobs, p)

From the equation above, the joint uncertainty quantification is equivalent to a se-
quential uncertainty quantification. Furthermore, the uncertainty quantification of a model
component is conditioned to the near wellbore region data and posterior models of the
previous components. Unlike the standard DF of a sequential model decomposition
technique, the posterior realizations p and prior realizations f will aid in determining a
conditional distribution f ( f |pposterior); subsequently, we assess this using near wellbore
region observations dobs of f .

Moreover, due to the high dimensionality of the model variables, distance-based
generalized sensitivity analysis (DGSA) method [36,37] is performed to investigate the
effect of model variables m on the data variables and select a subset with m parameters
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that have the largest impact on the data variables. The main advantage of DGSA is that it
does not require a functional form and it is easy to use and requires relatively low amount
of simulations [19]. For more details, see [36–38].

2.6. Uncertainty Reduction Analysis

The uncertainty reduction analysis is considered as one of the important elements of
decision assessment, and it is employed after the three methods of direct forecasting are
completed. In this paper, we have conducted uncertainty reduction in two metric interests,
including CO2 mass and leakage.

Taking Mc as CO2 mass and the prior probability density function (PDF) of Mc as
P(Mc). P(Mc) is evaluated based on the prior reservoir models. We refer to the number of
uncertainty distributions U(P(Mc)) in a CO2 mass P(Mc) as the following:

U(P(Mc)) = P90P(Mc)− P10P(Mc) (14)

Here, P90P(Mc) and P10P(Mc) are the 90th and 10th percentiles, respectively. The
posterior PDF of P(Mc|dobs) is computed using DF techniques. Therefore, the uncer-
tainty reduction, UR, is specified as the difference between prior uncertainty and posterior
uncertainty in the model outcomes:

UR = U(P(Mc))−U(P(Mc|dobs)) (15)

3. Materials
3.1. Model Description

We test the performance level of the proposed methodology in the Utsira sand, which
is a saline reservoir located beneath the central and northern North Sea as displayed in
Figure 1. In this location, there are over 20 reservoir formations (producing oil and gas
fields, abandoned oil and gas fields and geological formations such as saline aquifers). We
simply use the reservoir dataset provided by the Norwegian Petroleum Directorate (NPD),
which only consists of top-surface and thickness maps and average rock properties. Utsira
formation consists of weakly consolidated sandstone with interlayered shale beds that act
as baffles for the upward migration of the injected CO2, and it has an average top-surface
depth of almost 800 m below the seabed (within the range of 300–1400 m). The storage
capacity of the Utsira system is estimated to be 16 Gt, with a prospectivity of 0.5–1.5 Gt [39].
The boundaries of the aquifers are considered open. An open boundary means that there
is communication between the aquifer and anything that lies adjacent to it, be it another
aquifer or the sea bottom. The corresponding permeabilities in the Utsira geomodel range
from 0.5 to 2.5 darcys. Another study Singh et al. [40] suggested that permeability could
represent within the range of 1.1–5 darcys. Furthermore, In the NCS public datasets, there
is no information about possible leakage through open boundaries or through the caprock.
We acknowledge that these are important factors, but despite these limitations we have
decided to use the Utsira available data to demonstrate BEL framework and discuss its
advantages and potential benefits in future CCS operations. It is important to emphasize
that in our study, some of the injected CO2 can leave the computational domain during
the simulation; these are considered as leaked volumes. Nonetheless, this cannot be the
resulting CO2 that has leaked back into the atmosphere; it will in most instances continue
to migrate beyond the simulation model inside the rock volume.
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Figure 1. Utsira formation. Location of along the Norwegian Continental Shelf (left). Maps of
geomodel depths in meters (below the seabed) (right) [9].

3.2. The General Setup

A total number of N = 200 prior geological realizations were generated using normal
Gaussian distribution. There were uncertainties in terms of porosity, permeability, caprock
elevation, temperature, and pressure. Following the case study by Nilsen et al. [3], which
tested the sensitivity of CO2 migration to many input parameters, it was found that porosity
differences would influence the total volume of rock that the plume comes into contact
with. Increasing the thickness of the pore decreases the overall volume of rock occupied
by the plume, reducing the migration so that the plume does not move far. Permeability
impacts the behavior of CO2 plume flow by changing its speed and direction, creating
a thinner plume that reaches further upslope. As shown in Figure 2, uncertain aquifer
temperature and pressure may also affect the CO2 density, which further impacts plume
migration and storage ability estimates.

Figure 2. Impact of pressure and temperature gradient in CO2 storage capacity.

Moreover, we assume that the Utsira reservoir has one injection well at 1012 m depth.
Then, an injection rate of 10 Mt per year is considered for a period of 40 years, followed by
a 3000-year migration (postinjection) period. Every flow simulation is performed by using
the open-source software MRST-CO2 lab developed by SINTEF [41], the Department of
Applied Mathematics. CO2 lab Computational tools in MRST was specifically designed for
studying the long-term and large-scale storage of CO2.
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4. Results and Analysis
4.1. Scenario 1: Uncertainty Reduction Using Direct Forecasting

Prior Model. A set of N = 200 prior reservoir models is generated by using Monte-
Carlo to the prior distributions. The selected number of models make certain that the
prior distributions are adequately sampled. In all cases, a “reference” model, which is not
incorporated in the set of N prior models, is considered. The prior models are forward
modeled using a MRST-CO2 lab over 3000 years. The CO2 saturation data is collected at
near wellbore region during the 40-year injection period. We intend to assess the quantity
of CO2 mass during the postinjection period and the corresponding CO2 leakage at the
end of time tracking period (3000 years). The prior distribution of modeled of the data
variables for the injection well as well as the forecasts are shown in Figures 3 and 4. From
both figures, we notice a large amount of uncertainties is involved.

Figure 3. Prior measurement data variables.

Figure 4. Prior distribution of prediction data variables—3000 years. The red dashed line is the prior probability den-
sity function.

Falsification. To assess the quality of the prior models, data variables (CO2 saturation)
of the injection well of 200 prior models are used with dobs by employing the MD outlier
detection. The MD of dobs is found to be 2.261, which is below the 95-percentile threshold,
which suggests that the prior model is correct. Figure 5 shows the comparison of MD with
dobs and MD with 200 prior models.

Dimension Reduction and Linearization. To establish a relationship between the
data and forecast variables, it is first necessary to ensure low dimensionality in both
variables. For this purpose, we perform FPCA on the data variables d and h by selecting the
principal components (PCs) that preserve 90 % variance. Accordingly, three dimensions are
retained for both the data and forecast variables (CO2 mass and CO2 leak). The choice of
the three dimensions is based on a compromise—it is important to keep as much variance
as possible while ensuring maximum reduction of the problem’s dimensionality. Thereafter,
CCA is conducted to the reduced data and prediction sets to maximize linearity between
the reduced data and forecast. As shown in Figures 6 and 7, the relationship between the
components in the functional domain is not linear; the application of CCA subsequently
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increases the correlation between the components in the canonical space, except the third
dimension as displayed in Figure 6—CCA fails to establish a unique linear relationship.

Figure 5. Prior falsification using Mahalanobis Distance (MD). The red square is the MD for dobs.
Circle dots Refer the MD Results of 200 data variable samples, and the red dashed line is the 95th
percentile of the Chi-Squared distributed MD.

(a) PCA correlation analysis.

(b) PCA correlation analysis in canonical space.
Figure 6. Functional components correlation analysis. Red lines correspond to the observed (CO2 mass).

Reconstruct Posterior Model. After a linear correlation in low dimensions has been
established, we calculate the posterior distribution of the forecast components. First, we
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use the linear Gaussian regression equation that has been explained in one of the previous
sections, for which hc must be first transformed using a normal score to get hc

gauss. Thus,
Gaussian regression generates a multivariate normal posterior f (hc

gauss|dobs) which can
be easily used to sample forecast components that are conditioned to dc

obs. Second, we
apply modified ES-MDA explained in one of the previous sections to generate the posterior
distribution of forecast variables hc. Moreover, we used Na = 4MDA iterations. It must
be noted that we have added random Gaussian noise to dc

obs, with a mean of zero and a
standard deviation of 10%.

(a) PCA correlation analysis.

(b) PCA correlation analysis in canonical space.
Figure 7. Functional components correlation analysis. Red lines correspond to the observed (CO2 Leak).

Once the posterior distribution of the prediction in the latent dimension space is
established, it can be easily sampled and transformed back into the original initial space,
where the posterior distribution of the prediction is shown in Figures 8 and 9; we notice
that the DF with Gaussian regression techniques predicts a larger uncertainty range for
both CO2 mass and leakage after 3000 years compared to DF with ES-MDA, for which
results are reasonable and data match is excellent, the uncertainty bands are reduced
for both CO2 mass and leakage at the end of 3000 years. The results stipulate that the
proposed DF-ESMDA is more robust than the original DF. Both methods are fast in terms of
computation, but they require running reservoir simulations of the prior ensemble, which
definitely consumes a lot of the computational time.

(a) DF. (b) DF-ES-MDA.
Figure 8. Reconstruct posterior CO2 mass.
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(a) DF. (b) DF-ES-MDA.

Figure 9. Reconstruct posterior CO2 leak.

4.2. Scenario 2: Uncertainty Reduction Using Direct Forecasting on a Sequential
Model Decomposition

We use the same generated prior model used in Scenario 1, but as discussed in the
previous section, we replace the prediction variable h with geological model variable m to
obtain f (m|dobs).

Dimension Reduction. We perform PCA on the model variable m, which consists
of permeability, porosity, temperature, and pressure; we select the PCs that preserve 90%
variance. As displayed in Figure 10, 102 dimensions are retained for both permeability and
porosity, and 165 dimensions are kept for temperature and pressure, respectively.

(a) Permeability. (b) Porosity.

(c) Pressure. (d) Temperature.

Figure 10. Cumulative sum of the PCA eigenvalues for the model m variables.

Global Sensitivity Analysis. In the next step, we would intend to find which PCA
components impact the data prediction such that we can purpose a strategy for reducing the
uncertainty of prediction variables. We apply DGSA based on a Euclidean distance to assess
global sensitivity. Figure 11 outlines the main effects on a Pareto plot in which DGSA identi-
fies the nonsensitive (measure of sensitivity < 1) and sensitive (measure of sensitivity > 1)
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effects. In total, 18 sensitive principal components exist from the pressure spatial model, 22
for temperature, 11 for porosity, and 16 for permeability. These sensitive principal component
and global variables scores are now assigned for uncertainty quantification.

(a) Permeability. (b) Porosity.

(c) Pressure. (d) Temperature.

Figure 11. Global sensitivity of model parameters to measured data.

Linearization. After all sensitive model variables have been mapped into a lower-
dimensional space, we require the application of CCA to establish a useful relationship
between model variables and data variables. Figure 12 indicates that the primary canonical
components d and m exhibit much stronger correlations.

(a) Permeability.
(b) Porosity.

(c) Pressure. (d) Temperature.
Figure 12. First canonical covariates of data and model variables. Red dashed lines correspond to the observed data.
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Reconstruct Posterior Model. Once the linear correlation is maximized in low di-
mensions, it becomes easy to sample the posterior distribution and transform back lower-
dimensional scores into original permeability, porosity, temperature, and pressure dimen-
sion scores. Figure 13 depicts the posterior distribution model realizations by comparing
it to the following prior model, indicating that the model uncertainty range has reduced.
We compare the score of both prior and posterior distribution along the two sensitive PCs
with the highest score. From Figure 14, we notice that the prior samples’ uncertainty has
remarkably reduced. Note that the uncertainty quantification includes all the PCs sensitive
score variables.

Figure 15 compares the Empirical CDF of the ensemble means of the sampled posterior
log-perm, porosity, pressure, and temperature to their counterparts in the prior models.
The results suggest a slight change on the distribution posterior model. Moreover, the
uncertainty reduction is achieved, as the posterior samples are conditioned to the data
variables of the well that are held in within the prediction domain. For verifying this
results, we forward the posterior samples model m for simulation and extract the CO2
mass and CO2 leak posterior samples, and indeed, the posterior prediction distribution
from evidential analysis accordingly reduces the uncertainty on the CO2 mass and CO2
leak as displayed in Figure 16; hence, this provides the input information required on
the distribution of the data regarding CO2 leakage at the end of migration tracking time
(3000 years). From Table 1, it can be observed that integration of DF with ES-MDA would
result in higher uncertainty reduction of CO2 leakage (29.82–66.40 Mt) than the other
techniques at both 40 years (after which we stop injection) and 3000 years.

(a) Permeability. (b) Porosity.

(c) Pressure. (d) Temperature.
Figure 13. Posterior and prior distributions of model variables (first canonical components).
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(a) Permeability. (b) Porosity.

(c) Pressure. (d) Temperature.
Figure 14. Prior and posterior distribution of the scores of the two sensitive PCs with the highest variances.

Figure 15. Empirical CDF computed from ensemble means of prior and posterior parameters.

Table 1. Uncertainty Reduction (UR) of CO2 leak (Mt).

Methods UR—40 Years UR—3000 Years

DF 26.11 51.563
DF-ES-MDA 29.82 66.40

DF-SMD 28.35 56.83
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Figure 16. Posterior distribution of CO2 mass and leakage at 3000 years using DF-SMD. Black dashed lines correspond to
the observed data.

5. Discussion and Concluding Remarks

This paper makes a contribution by showing a novel approach to quantify uncertainty
during the injection of CO2 for its storage and migration in deep saline aquifers by applying
a Bayesian evidential learning (BEL) framework that involves falsification, global sensitivity
analysis, and direct forecasting (DF). We presented a new DF implementation coupled
with ES-MDA. The proposed DF-ES-MDA was compared with the original DF proposed
in [21,23] and DF with sequential model decomposition in [22]. Both of the original methods
mitigate the uncertainty reduction to a linear problem by reducing the high dimensionality
of the original data using PCA and CCA; then, we established a statistical relationship
between the data and forecast for DF and among the model, data, and forecast for DF-SMD.
This estimated relationship combined with Bayesian Gaussian regression is thus used to
generate a statistical forecast of the interest quantities—in our study, CO2 mass and leakage.
The new implementation preserves the main advantage of the original DF—its ability to
provide an ensemble of CO2 mass and leakage forecasts without iterative data inversion
or history matching problems that can be computationally expensive and difficult. The
three methods are advantageous even though the time to execute the reservoir simulations
for the prior models tends to be time consuming. We compared the DF-ES-MDA with the
original DF and DF-SMD of a real field case. Moreover, we showed that the accuracy of
the DF-ES-MDA was consistently enhanced and a higher degree of uncertainty reduction
could be achieved.

However, some criteria must be addressed to ensure the high-quality formulation
of the three methods, in that a key for successful BEL framework application is the defi-
nition of the prior model, which should retain geological realism, as an unrealistic large
uncertainty range may impact the data-prediction relationship and minimize accuracy.
As such, a multivariate outlier detection method is employed to examine the quality of
the prior model distribution compared to the observed case. Furthermore, the dimension
reduction method should be selected based on the nature of the variable itself. Accordingly,
we observed that FPCA was practical in our study for smoothly diversified time-series
dataset (CO2 saturation around near wellbore region), while eigen-image analysis proved
useful in reducing the dimension of the spatial maps, such as permeability, porosity, etc.
Moreover, PCA was mainly chosen as it is simple and bijective. Notably, multiple dimen-
sion reduction techniques, such as auto-encoder [42] and Gaussian process latent variable
models (GPLVM) [43,44], can be included in the BEL framework. Additionally, the choice
of regression technique is guided by the type, dimension, and relationship of the measure-
ments, data, and forecast variables (linear or nonlinear). Due to the high-dimensionality
problems, parametric regression is usually chosen instead of nonparametric techniques,
except that large number of prior samples are available [19]. This work could be improved
and extended in several ways. It is important to note that for this study, we have only
considered quantities such as CO2 saturation through wellbores and their respective CO2
mass and leakage. This approach can be applied to examine the effectiveness of monitoring
and the monitoring duration to lower uncertainty in risk metrics, such as top-layer CO2
saturation and plume mobility and seismic time-lapse data. Accordingly, it will also be
useful to apply the DF procedures to more complex geological models, such as bimodal
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channelized systems, which can be challenging for traditional (model-based) history match-
ing methods, kernel density estimation [45], and extensions of CCA [46] can be included
in the BEL framework to tackle more complex nonlinear inverse problems. Finally, using
data space inversion (DSI), as described by Sun and Durlofsky [26], CO2 leakage detection
under uncertainty should also be considered.
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Abstract: Production forecasting is the basis for decision making in the oil and gas industry, and can
be quite challenging, especially in terms of complex geological modeling of the subsurface. To help
solve this problem, assisted history matching built on ensemble-based analysis such as the ensemble
smoother and ensemble Kalman filter is useful in estimating models that preserve geological realism
and have predictive capabilities. These methods tend, however, to be computationally demanding, as
they require a large ensemble size for stable convergence. In this paper, we propose a novel method
of uncertainty quantification and reservoir model calibration with much-reduced computation
time. This approach is based on a sequential combination of nonlinear dimensionality reduction
techniques: t-distributed stochastic neighbor embedding or the Gaussian process latent variable
model and clustering K-means, along with the data assimilation method ensemble smoother with
multiple data assimilation. The cluster analysis with t-distributed stochastic neighbor embedding
and Gaussian process latent variable model is used to reduce the number of initial geostatistical
realizations and select a set of optimal reservoir models that have similar production performance to
the reference model. We then apply ensemble smoother with multiple data assimilation for providing
reliable assimilation results. Experimental results based on the Brugge field case data verify the
efficiency of the proposed approach.

Keywords: uncertainty quantification; history matching; reservoir simulation; data assimilation;
dimensionality reduction

1. Introduction

Research scientists have worked for many years to develop viable methods to calibrate
complex reservoir models. However, the uncertainty associated with reservoir models
is highly significant, introducing considerable errors in the modeling process. There are
several ways to quantify uncertainty in reservoirs. One is the conditioning of reservoir
parameters to observed production data, a process referred to as inverse problem or
history matching (HM). The first step of HM is parameterization, namely to independently
define and vary the model variables in a numerical reservoir simulation model: porosity,
permeability, the density and permeability of fractures, the initial depths of oil-water and
gas-oil contacts, relative permeability curves, capillary pressure curves, fluid composition,
aquifer strength, and the size and fault transmissibility [1]. It is not realistic to do so,
however, because of the large area of possible adjustment caused by the large number of
grid blocks and variables; the number of varying parameters should therefore be as small
as possible. To do this, a reparameterization method based on the pilot point method, the
spline function method, the wavelet function method, Karhunen–Loeve reparameterization,
and discrete cosine transform was used [2]. The second step is to select the production data,
which must be sensitive to the parameters needed to be history matched. The sensitivity
becomes more complex, however, in cases using reservoirs with multiphase flow. In these
cases, the cross-covariance of production data to model variables is used instead, its main
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advantage being that it is generally smoother and can show a more global relationship
between data and variables, since it is a product of sensitivities and covariances.

The algorithms for HM are diverse. Evolutionary algorithms are often considered the
standard approach, since, by generating a new model combining two Gaussian reservoir
models, the gradual deformation algorithm reduces the HM problem to a one-dimensional
minimization problem [2]. Sambridge (1999) [3] introduced a neighborhood algorithm in
which a resampling of the parameters is led by using information in an available ensemble.
In addition, several other methods have been introduced to optimize reservoir models via
particle swarm optimization [4], simulated annealing [5], and simultaneous perturbation
stochastic approximation [6]. When solving the history matching problem, a key issue
must be considered: uncertainty quantification. Uncertainty quantification requires strong
knowledge of the reservoir characteristics, and uncertainty should be represented by a
set of reservoir models (or realizations) instead of a single history-matched model. The
Markov chain Monte Carlo method (McMC) [7], the randomized maximum likelihood
method [8], the EnKF method [8–10], the ensemble smoother (ES) [11], and the ensemble
smoother with multiple data assimilation (ES-MDA) [12,13] are useful methods to quantify
uncertainty. For all of these techniques, accuracy and speed are two main factors due to the
non-unique solutions and the ill-posed inverse problems.

Many parametrization methods used in DR have already been introduced. For in-
stance, Vo and Durlofsky [14] used principal component analysis (PCA) to reparametrize
high dimension data into low dimensional space, then regenerated new realizations based
on principal parameters from PCA for data assimilation, while others have used singular
value decomposition [15] and Kernel PCA (KPCA) [16]. Muzammil. H et al. [17] applied
PCA to account for the model-error component during model calibration. Kang et al.
(2017) and Kang et al. (2019) [18,19] also introduced PCA to select suitable models for
EnKF. Tolstukhin et al. [20] demonstrated how data analytics can improve efficiency of
ensemble history matching by analyzing the statistics that link the static model ensemble
and the dynamic model ensemble update. Satija et al. [21] proposed a method known as
direct forecasting (DF) based on projecting the prior predictions into a low-dimensional
canonical space to maximize the projected oil data and estimate the joint distribution of
historical and forecasted data through linear Gaussian regression; they concluded that
this method provided uncertainty estimates regarding production forecast that reasonably
agreed with rejection sampling. Park et al. [22] proposed an extended approach based on
direct forecasting, where both of the geological model parameters and dynamic data are
simultaneously used. Our approach in the current paper is different from the previous
work in Kang et al. (2019) [19]. Dimensionality reduction techniques such as PCA and SVD,
however, are linear approaches that may not accurately represent the relationship between
high dimensional parameters and latent variables in reduced space, which likely lead to
poor performance of model assimilation and prediction. In addition, the use of EnKF tends
to be computationally prohibitive in certain circumstances and also generates spurious
correlations leading to loss of geological realism and underestimation of uncertainties
(ensemble collapse). In this work, we propose a novel scheme to reduce the number of
ensemble members while preserving the prediction quality by combining ES-MDA with
machine learning DR techniques and cluster analysis. In this paper, we demonstrate the
efficiency of using the non-linear DR techniques t-distributed stochastic neighbor em-
bedding (t-SNE) [11] and Gaussian process latent variable model (GPLVM) [23,24] along
with clustering K-means to select effective reservoir models and save computational time
without simulating and assimilating the entire initial ensemble. This study uses the Brugge
field reservoir case to demonstrate that the new implementation can make computation
faster and more robust than the standard procedure proposed in [12,13] and can provide
appropriate posterior uncertainty quantification.

The paper is structured as follows. In the next section, we present the complete
methodology, by which we tested the proposed workflow in the well-known Brugge
field reservoir model. In addition, several cases, involving different reference models,
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are considered. Finally, some concluding remarks and possible future work directions
are provided.

2. Materials and Methods

The procedure applied in this study has four main stages:

1. The first stage includes generating ensemble reservoir models and analyzing whether
the observed (reference) prior data can predict posterior distribution that appertains
to the prior range.

2. The second stage involves reducing the ensemble dimension and constructing a 2D
space by using t-SNE and GPLVM.

3. The third stage uses clustering K-means to extract a set of reservoir models with the
least production error compared to the reference model.

4. After extracting the models and selecting the most informative ones, we began the
HM process using ES-MDA, and finally we compared the performance of history
matching analysis of the proposed workflow with the standard ES-MDA without
using dimensionality reduction techniques.

The general steps of the approach are shown in Figure 1 and algorithm solutions
employed are described in more detail later.

Figure 1. Flow chart for the history matching with dimensionality reduction framework.

2.1. Prior Sampling and Analysis

Due to the high dimensionality and nonlinearity of subsurface systems physics-based
models, Monte Carlo simulations were used to sample and identify the possible prior range
of model parameterization and probability distribution for each geological parameter
(e.g., the structural model, rock types, the petrophysical model, and subsurface fluid
distribution). Let m ∈ RN denote the vector of uncertain static parameters of a reservoir
model with a dynamic data variable (e.g., oil production and water cuts) as vector d. The
nonlinear function data forward model is defined as

d = Gd(m) (1)

The function Gd is generated through a reservoir simulator and by applying it to prior
geological model realizations, m =

{
m1, m2, m3, . . . . . . . . . mN}. We obtained a set of N

samples of dynamic data variables, d =
{

d1, d2, d3, . . . . . . . . . dN}. We refer to the vector of
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observation data as dobs. Once the prior samples are generated, it is important to check
that the observed data can be predicted by the prior model, in order for the posterior
distribution to appertain in the prior range. Otherwise, there is a risk that the prediction
will be erroneous. If the prior model is falsified, which indicates inconsistency with the data,
we must revise the prior data distribution herein to evaluate the quality of the prior model
and its ability to predict the data. We proposed a statistical procedure based on Robust
Mahalanobis distance (RMD) [25,26], which handles high dimensional and different types
of measurements of the data, the main objective being to detect outliers and determine if
the prior model is falsified or not. The RMD for each data variable realization d or dobs was
computed as follows:

RMD (d(n)) =
√
(d(n) − ρ)β−1(d(n) − ρ), f or n = 1, 2, 3 . . . . . . . . . , N (2)

where ρ and β are the mean and covariance of the data d. Assuming the distribution of the
data is multivariate Gaussian, the distribution of [RMD(dn)]2 would be chi squared x2

d.
We set the 95th percentiles of x2

d as the tolerance threshold for multivariate dimensional
point dn. If RMD (dobs) fell outside of the tolerance threshold (RMD (dobs) > RMD (dn),
the dobs would be regarded as outliers, and the prior model would be falsified, as it has a
very small probability. It should also be noted that this method requires data distribution to
be Gaussian; if it is not, other outlier detection techniques such as isolation forest [27], local
outliers detection [28], and one-class support vector machines [29] are highly recommended.

2.2. Dimensional Reduction

A single reservoir model is represented by numerous grid blocks, each with unique
reservoir properties, such as permeability, porosity, and net-to-gross. Accordingly, we con-
struct a vector X containing the reservoir properties of all grid blocks. We also use multiple
ensembles of realizations to account for geological uncertainties X ∈ RN,m. Furthermore,
typical ensembles are formed by hundreds of realizations, in that we are faced with a high-
dimensional problem. Geological realization with similar geological parameters trends will
have similar production histories. As we aim to analyze the main geological distribution of
the data, reducing the data dimensions is reasonable. Therefore, we utilize two different DR
methods: t-SNE [11] and GPLVM [23,24], to characterize reservoir parameters efficiently
by projecting the parameters into a 2D plane. However, t-SNE is a non-linear DR algorithm
developed for exploring high-dimensional data. It maps multi-dimensional data to a two-
or three-dimensional dataset that can be visualized in a scatter plot. Additionally, t-SNE
learns joint probabilities defined by two points on a two-dimensional space to be as close
as possible to conditional probabilities, defined by two points on high-dimensional space.
For more details about t-SNE, one can refer to [11] and Appendix A. GPLVM differs from
t-SNE, primarily because it is a Bayesian non-parametric DR method that uses Gaussian
process to learn a low-dimensional representation of high-dimensional data. The main
advantage of the GPLVM is that it allows the use of nonlinear covariance functions, i.e.,
that it can represent non-linear functions from the latent space to the data space. The
probabilistic nature of the GPLVM also gives it advantages in dealing with missing data
values. For more details about GPLVM, one can refer to [23,24] and Appendix A.

2.3. Clustering K-Means:

K-means clustering is an unsupervised learning method that is widely used because
of its efficiency and simplicity. K-means is used to find the cluster configuration that
minimizes the square error over all K clusters [30]:

J =
K

∑
k=1

M

∑
x(l)∈ck

∥∥∥x(l) − µk
∥∥∥2

, uk =
∑x(l)∈ck x(l)

|Sk|
(3)
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with uk as the centroid of the cluster, and ck refers to the mean of a point within the cluster,
|Sk| is the number of samples in the cluster ck.

K-means clusters provide an optimal solution by minimizing of the distances between
data and their centroids. The centroid is computed by the average of the data in each
cluster. Several methods exist that allow the selection of the cluster sizes, including the
gap statistics, elbow-method as well as the silhouette-method. In this study, we use the
silhouette-method to determine the optimal number of clusters. The silhouette index varies
between −1 and 1, where a value close to 1 means that the data is appropriate within its
cluster. For all of the data-points, the silhouette value s(i) can be determined with the
following equation:

s(i) =
b(i)− a(i)

max{a(i), b(i)} (4)

where a(i) represents average distances within a specific cluster and b(i) is the minimum
average distance from data in other separate clusters. Specifically, a(i) shows how the
i-th data is grouped within its cluster, and b(i) indicates the closest distance of adjacent
clusters. Therefore, if a(i) is small, that means that the data are well grouped; however, if
the silhouette value is close to 1, the b(i) is large.

2.4. ES-MDA and the Localization Technique

Opposite to the production forecast where the “unknown” reservoir behavior is
predicted by using the “known” reservoir model variables, history matching inverses
the process and estimates the “unknown” reservoir model variables with the “known”
observed reservoir behavior. The general objective function for history matching is

J(m) =
1
2
‖g(m)− dobs‖2 (5)

where g(m) is the simulated data with model variables m composed of reservoir variables
(e.g., permeability, facies, porosity, and net to gross), and dobs is the observed data. The goal
of history matching is to minimize the objective function (m) by finding acceptable model
variables m and minJ(m). ES-MDA is an ensemble-based method introduced by Emerick
and Reynolds [12]. In its simplest form, the method employs a standard smoother analysis
equation a pre-defined number of times, with the covariance matrix of the measured data
error multiplied by coefficient a. The coefficients must be selected such that the following
condition is satisfied:

Na

∑
k=1

1
ak

= 1 (6)

where Na is the number of times the analysis step is repeated. The ES-MDA analysis
applied to a vector of model parameters, m, can be written as

ma
i = mb

i + K(dobs − dsim,i), f or i = 1 . . . . . . .N (7)

Here, i is defined as the ith ensemble members; ma
i is defined as an updated uncertainty

vector, mb
i , the initial or previous uncertainty vector; K, the Kalman gain matrix, which is

used to compute by regularizing with SVD using 99.9 % of all the energy; dsim,i refers to
simulation data obtained from previous models. Ensemble-based HM updates N reservoir
models simultaneously. In addition, the Kalman gain matrix can be determined as follows:

K = Cmd
(
Cdd + apCD

)−1 (8)

Cmd is the cross-covariance matrix between the vector of model parameters m and predicted
data d; Cdd is the auto covariance matrix of predicted data d; ap is the coefficient to inflate CD,
which refers the covariance matrix of the observed data measurement error.

However, there are still conceptual and computational challenges associated with
ES-MDA, one issue is that of ensemble collapse, which may result in unrealistic uncertainty
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and difficulty to cover the target distribution. To avoid this, a localization technique is im-
plemented in the equation by introducing a correlation matrix R via an element-by-element
multiplication, also known as Schur product (◦). There are different ways of computing
R. One of the most common approaches is the distance-dependent localization [31], in
which all data points (oil rate, water rate) and model variables (permeability, porosity)
are presumed to have certain physical locations connection. The ES-MDA equation is
updated to:

ma
i = mb

i + R ◦ K(dobs − dsim,i), f or i = 1 . . . . . . .N (9)

The parameter R is assumed to be from 0 to 1 depending on the distances for well
locations [32]:

R(h, L) =


− 1

4 (
h
L )

5 + 1
2 (

h
L )

4 + 5
8 (

h
L )

3 + 5
8 (

h
L )

2 + 1 , 0 6 h < L
1

12 (
h
L )

5 − 1
2 (

h
L )

4 + 5
8 (

h
L )

3 +− 5
3 (

h
L )

2 − 5( h
L ) + 4− 2

3 (
h
L )
−1 + 1 , L < h 6 2L

0 , h > 2L

 (10)

where h is the Euclidean distance between a specific grid cell and well location, and L refers
to the critical length, corresponding to influential regions for every well data. Therefore, a
high value of R means that grid blocks are close to the wells.

2.5. General Setup

We tested the performance of the proposed methodology in the Brugge field case study.
The Brugge field is a complex oilfield constructed by TNO [33]. The model consists of nine
layers, and each layer has 139× 48 gridblocks. The total number of gridblocks is 60,048,
with 44,550 active cells. There are 20 producers and 10 injectors in the reservoir models.The
reservoir is being depleted by voidage replacement. The producers and injectors are “smart
wells”, i.e., with vertical flow control, with three perforation intervals per well. For each
producer well, the fluid rate is set to max value of 3000 bbl/day, and flowing bottom hole
pressure superior to 50 Bar. For each injector well, the fluid rate is set to a max value of
4000 bbl/day, and the corresponding flowing bottom hole pressure less than 180 Bar. We
used 104 initial geostatistical realizations provided by TNO and assumed one of 104 as a
reference model. In the HM analysis, oil production rates (OPR), water cuts (WCT), and
the bottom hole pressure (BHP) were considered, and the model variables to be updated
included permeability (PERMX, PERMY, and PERMZ), porosity, and NTG in all active cells.
Figure 2 shows the log permeability in the first layer for six random realizations. For more
information about the Brugge benchmark, see [33].

Figure 2. Example log of permeability (K) distribution for six of 103 different geological realizations
of the Brugge field.
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3. Results
3.1. ES-MDA with DR

The data assimilations were conducted using ES-MDA with localization, with Na = 5.
Besides the ES-MDA-t-SNE and ES-MDA-GPLVM, we performed the HM on assimilation
observation data for the first 4 years and the rest (6 years) for forecasting.

To assess the quality of prior models, a field oil production rate of 103 prior models
was used with dobs by applying the RMD outlier detection. The RMD of dobs was found
to be 8.802, which is below the 95th percentile threshold. This means that the prior is
not incorrect. Figure 3 shows a comparison between RMD with dobs and RMD with
103 prior models.

Figure 3. Prior falsification using RMD. The red diamond is the RMD for dobs. Circle dots refer to
the RMD results of 103 data variable samples, and the red dashed line is the 95th percentile of the
chi-squared distributed RMD.

We applied t-SNE and GPLVM to reservoir models and reduced the dimension into
2D space. Additionally, the silhouette method is used to find optimal cluster numbers
(ranges of 2 to 7 clusters) for both GPLVM and t-SNE 2D space. As displayed in Figure 4,
the dashed line is used to denote the average silhouette, the silhouette plot with 2 clusters
showed the highest value. Therefore, each model was divided into 2 clusters.

Figures 5 and 6 show a scatter plot of the 103 models on a 2D plane, with each dot in-
dicating individual models. When selecting the cluster with the least production error and
comparing the forecast accuracy of different forecasting methods among several data sets,
there are many performance measures from which to select. In this study, we chose to eval-
uate, for our forecasting results, a probabilistic metric called the mean continuous ranked
probability score (CRPS). The mean CRPS quantifies both accuracy and precision [34], and
higher values of the CRPS indicate less accurate results. The mathematical formulations of
the mean CRPS are listed in Appendix A. We compared the field oil production rate (FOPR)
errors between each cluster and reference model and selected the cluster with the least
production error for the data assimilation process, as displayed in Table 1. Only 46 models
were selected using t-SNE and 44 models using GPLVM. In Figure 7, we compare the
average permeability values between initial 103 models and the selected 46 and 44 models
using t-SNE and GPLVM, respectively. Both selected models with t-SNE and GPLVM have
a quite similar distribution and quite similar selected reservoir models, and differences
were found only in two models.
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Figure 4. Silhouette plots with different cluster numbers—t-SNE 2D space.

Figure 5. Model selection using t-SNE.

Figure 6. Model selection using GPLVM.
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Table 1. Measurement error between the reference model and each cluster.

Methods
t-SNE GPLVM

CRPS Realization CRPS Realization

Cluster 1 89.78 46 96.77 44
Cluster 2 130.67 57 128.66 59

(a) All ensemble models (103). (b) Selected 46 models with t-SNE.

(c) Selected 44 model with GPLVM.
Figure 7. Mean of permeability Darcy values in logarithmic scale.

The total simulation for each method is listed in Table 2. We can see that ES-MDA
uses around 220 min for the entire process, while ES-MDA-t-SNE and ES-MDA-GPLVM
use around 120 and 101.5, respectively. By employing reduction techniques, more than 45%
of the total simulation time was saved.

Table 2. CPU time for the whole process.

Methods CPU Time (Minutes) Time Reduction

ES-MDA 220 0
ES-MDA-t-SNE 120 45.5%

ES-MDA-GPLVM 101.5 53.86%
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Figures 8 and 9 compare the ensemble means distribution of the reconstructed updated
posterior log-perm and porosity on Layer 1 using the standard ES-MDA, ES-MDA-t-SNE,
and ES-MDA-GPLVM to their counterparts in the prior models. The results suggest a
slight change on the posterior model in areas where the wells are located. Moreover, the
uncertainty reduction is achieved, as the posterior samples are conditioned to the dynamic
data variables of the well that are contained within the prediction domain. The results show
quite similar posterior permeability and porosity distribution for both ES-MDA-t-SNE and
ES-MDA-GPLVM, which is expected, as they differ only in two models.

Figure 8. Average log–permeability distribution on Layer 1 from an initial ensemble, the corresponding updated model by
ES-MDA, ES-MDA-t-SNE, and ES-MDA-GPLVM.
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Figure 9. Average porosity distribution on Layer 1 from an initial ensemble, the corresponding updated model by ES-MDA,
ES-MDA-t-SNE, and ES-MDA-GPLVM.

Figures 10 and 11 depict the HM profiles for both oil and water cuts of two methods
(ES-MDA-t-SNE and ES-MDA-GPLVM) at producers BR-P5, BR-P6, and BR-P19, with
respect to the standard ES-MDA and reference model. The vertical dashed line represents
the last time of the HM process. The production forecast seems to be reasonable and reliable
in the two methods compared to the standard ES-MDA, although only 45.54% and 53.86%
of the simulation time is required for ES-MDA-t-SNE and ES-MDA-GPLVM, respectively.
The ES-MDA-t-SNE, however, predicts the WOPR data at BR-P6 better than the ES-MDA-
GPLVM does, which is likely related to the fact that the WWCT data of BR-P6 are better
when using ES-MDA-t-SNE. The matching and forecast ranges with ES-MDA-GPLVM,
however, deviate from the reference, especially in BR-P5 and BR-P6.
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Figure 10. Oil production rate STB/day for three wells with ESMDA, ES-MDA-tSNE and ES-MDA-GPLVM. The blue
dashed line is utilized as an indication of the end of historical data and the start of the prediction period. The red dashed line
represents the observed data points. The grey region refers to the forecast within P10 and P90 obtained with the ES-MDA.
The light blue region represents P10-P90 obtained from ES-MDA-tSNE or ES-MDA-GPLVM.
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Figure 11. Water cuts for three wells with ESMDA, ES-MDA-tSNE and ES-MDA-GPLVM. The blue dashed line is utilized as
an indication of the end of historical data and the start of the prediction period. The red dashed line represents the observed
data points. The grey region refers to the forecast within P10 and P90 obtained with the ES-MDA. The light blue region
represents P10-P90 obtained from ES-MDA-tSNE or ES-MDA-GPLVM.

For a quantitative comparison, we applied the mean CRPS metric to further evaluate
the methods used at all simulated well data from the history-matched ensembles over
the historical and prediction period, as displayed in Figure 12. The ES-MDA-t-SNE and
ES-MDA-GPLVM provide interesting results, with the lowest CRPS average compared to
the prior model, and although we used few ensembles models and saved around 45–53%
of the simulation time, the results seem to be comparable to the standard ES-MDA.
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Figure 12. Violin plot of the mean CRPS of the historical and prediction data (OPR, water cuts, and BHP).

Since the uncertainty ranges are quantified in all wells at the three cases, we con-
ducted another comparison by boxplots of the normalized field cumulative oil and water
production predicted by each method, as displayed in Figure 13. It should be noted that
the values are normalized to the cumulative production from the reference case, which
is also added for comparison. Both ES-MDA-t-SNE and ES-MDA-GPLVM cover the true
values for both oil and water production in the box ranges.

Figure 13. Boxplot of the normalized cumulative production after 10 years.

3.2. Effect of Different “Reference” Models

The previous section evaluated the ES-MDA-DR procedure on a single ‘reference’
model. We now evaluate the methodology on five additional ‘referred’ models: Test
Case 1, Test Case 2, Test Case 3, Test Case 4, and Test Case 5 (we reiterate that neither
reference model was included in the set of N = 103 prior models). Similarly, the data
assimilations were conducted using ES-MDA with localization. Apart from the ES-MDA-t-
SNE and ES-MDA-GPLVM, we performed the HM on assimilation observation data for
the first 4 years and the rest (6 years) for forecasting. Note that the reference value varies
considerably between the test cases, as shown in Figure 14. The cumulative distribution
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function (CDF) for each test case is quite different, except the test case-1 and case-3, which
show some similarities.

Table 3 demonstrates the posterior normalized field cumulative oil and water produc-
tion predicted by each method in terms of P10 and P90 statistics at 10 years. For four cases,
the ES-MDA, ES-MDA-t-SNE, and ES-MDA-GPLVM, predictions surround the reference
data within the the P10 to P90 range and showed a narrower range of uncertain prediction
results. However, in Test Case 2, the cumulative oil production is biased in comparison
with the reference production, which is likely explained by whether the problems with the
prior ensemble or the selected reference model. The ensemble means distribution of the
reconstructed updated permeability posterior for the top-layer for all five cases, as shown
in Figure 15. The results suggest a slight change in the posterior model where the wells
are located. Additionally, one can expect uncertainty reductions due to the conditioning
of the posterior samples to dynamic data variables of wells that are contained within the
forecast domain. The results exhibit quite similar posterior permeability distribution for
both ES-MDA-t-SNE and ES-MDA-GPLVM. In sum, the results for the five different test
cases imply that the DR procedure can indeed provide updated geological models and
predictions with different reference models at a significantly reduced computation time.

Figure 14. Empirical CDF computer from field oil production total for different test cases.

Table 3. Posterior prediction for different test cases. The P10 and P90 statistics are computed using
the forecast results for field cumulative oil at 10 years.

Reference P10 P90

Prior - 9.099 × 105 1.114 × 106

Test Case 1
ES-MDA

1.108 × 106
1.045 × 106 1.112 × 106

ES-MDA-t-SNE 1.049 × 106 1.114 × 106

ES-MDA-GPLVM 1.053 × 106 1.124 × 106

Test Case 2
ES-MDA

1.071 × 106
9.752 × 105 1.042 × 106

ES-MDA-t-SNE 9.764 × 105 1.013 × 106

ES-MDA-GPLVM 9.609 × 105 1.016 × 106

Test Case 3
ES-MDA

1.099 × 106
1.037 × 106 1.116 × 106

ES-MDA-t-SNE 1.052 × 106 1.121 × 106

ES-MDA-GPLVM 1.050 × 106 1.111 × 106

Test Case 4
ES-MDA

1.046 × 106
1.008 × 106 1.088 × 106

ES-MDA-t-SNE 1.012 × 106 1.081 × 106

ES-MDA-GPLVM 1.018 × 106 1.078 × 106

Test Case 5
ES-MDA

9.698 × 105
9.361 × 105 9.993 × 105

ES-MDA-t-SNE 9.428 × 105 9.986 × 105

ES-MDA-GPLVM 9.340 × 105 9.867 × 105
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(a) Test cases 01 (b) Test cases 02

(c) Test cases 03
(d) Test cases 04

(e) Test cases 05

Figure 15. Average log permeability distribution on Layer 1 using different reference models.
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3.3. Effect of Reference Model Parameters Outside Prior Distribution

In the previous section, we presented the results of ES-MDA, ES-MDA-t-SNE, and
ES-MDA-GPLVM for tests where every ‘reference’ model was within the prior distributions.
This indicates that there is consistency between the prior realizations used in the three
methods with the underlying ‘reference model. Here, we aim to evaluate the performance of
the three methods for cases that involve a reference model, which is not consistent with the
prior realizations. More precisely, the reference model is characterized by parameters that
fall outside the prior ranges. Figure 16 displays the permeability cumulative distribution
function (CDF) between the generated reference model along with P10 and P90 prior
ensemble. We observe that the ‘reference’ model permeability parameters for this example
lie outside the range of the prior distributions. RMD outlier detection was used as displayed
in Figure 17 to verify the prior uncertainty variables (field oil production) on the reference
variable. The results show that the RMD of dobs falls above the 95th percentile threshold, in
that the prior model is falsified.

Figure 16. Empirical CDF computed from prior permeability (P10 and P90) and the reference model.

Figure 17. Prior falsification using Robust Mahalanobis distance (RMD). The red diamond is the
RMD for dobs. Circle dots refer to the RMD results of 104 data variable samples, and the red dashed
line is the 95th percentile of the chi-squared distributed RMD.

Figures 18 and 19 depict the HM profiles for both oil and water cuts of three methods
at producers BR-P5, BR-P6, and BR-P19, with respect to the prior ensemble and reference
model. The results indicate that the standard ES-MDA and ES-MDA with DR failed to
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match the reference data, and the predictions from the referenced models do not lie within
the predicted P10 to P90 percentile. Figure 20 displays a boxplot of field cumulative water
and oil production obtained by each method and the prior ensemble. Overall, the results do
not cover the reference values, which is clearly explained by the lack of representativeness
of the prior realizations. The previous results evidently demonstrate the success of our
procedure based on a degree of the quality in terms of the prior parameter ranges. We
emphasize that it is crucial that the prior simulation results contain the observations. Oth-
erwise, we would not expect ES-MDA with DR to provide reasonable posterior predictions,
and in practice, we should adapt the prior ensemble before using it for model conditioning.

Figure 18. Oil production rate STB/day for three wells with ESMDA, ES-MDA-tSNE and ES-MDA-GPLVM. The blue
dashed line is utilized as an indication of the end of historical data and start of prediction period. The red dashed line
represents the observed data points. The grey region refers to the forecast within P10 and P90 obtained with the ES-MDA.
The light blue section represents P10-P90 obtained from ES-MDA-tSNE or ES-MDA-GPLVM.
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Figure 19. Water cuts for three wells with ESMDA, ES-MDA-tSNE and ES-MDA-GPLVM. The blue dashed line is utilized as
an indication of the end of historical data and the start of the prediction period. The red dashed line represents the observed
data points. The grey region refers to the forecast within P10 and P90 obtained with the ES-MDA. The light blue section
represents P10-P90 obtained from ES-MDA-tSNE or ES-MDA-GPLVM.

Figure 20. Boxplot of the normalized cumulative production after 10 years. The red line indicates the cumulative production
of the reference case.

4. Concluding Remarks

In this study, we presented a novel history matching framework with DR while
preserving realistic geology and matching the production data, which was achieved by
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explicitly integrating t-SNE, GPLVM, and clustering K-means with ESMDA to reduce
the simulation time and quantify the uncertainty on reservoir models. The proposed
procedure yielded reliable results by selecting a set of good prior ensemble reservoir
models, with similar production performance to the reference model, before applying
the data assimilation process. Accordingly, we compared the new implementation with
the standard ES-MDA in a field reservoir problem with a large number of wells and a
long production history. Based on the obtained results, the proposed ES-MDA with DR
is concluded to be computationally faster than the original one, and it is very simple to
implement and integrate with different types of data and models. We also evaluated our
procedure with five different ‘reference’ models, where we observed that the ES-MDA
with DR posterior predictions displayed considerably less uncertainty, and was indeed
able to provide improved geological models and predictions at a significantly reduced
computation time. Moreover, we also considered a test case where the reference model
lay outside the prior distributions, but the results were clearly inconsistent and biased. In
conclusion, the accuracy of both methods is highly relied on the ability and quality of the
prior realizations to provide appropriate estimates of the prior uncertainty.

We recommend that further studies apply our procedures to more complex geological
models such as bimodal channelized systems. This approach can be applied to examine
and overcome the challenges in 4D seismic history matching as capturing the value of 4D
seismic data can lead to better reservoir management decisions. It will also be interesting to
introduce into the framework more non-linear DR techniques, such as a deep autoencoder,
a stacked autoencoder, and a generative adversarial network. Additionally, combining
the data-space inversion (DSI) method with ES-MDA may more accurately predict oil
production with computationally faster simulation.
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Appendix A

Appendix A.1. t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE is a non-linear dimensionality reduction algorithm developed for exploring
high-dimensional data [14]. It maps multi-dimensional data to a two- or three-dimensional
dataset Y = {y1, y2, ..., yn} that can be visualized in a scatter plot. The t-SNE algorithm
begins by computing a joint probability distribution pij over pairs of points xi,xj(i 6= j):

pj|i =
exp(−‖xi−xj‖2

/2τ2
i )

∑l,s∈[n],l 6=s(1+‖yl−ys‖2)−1 , pij =
pi|j+pj|i

2n (A1)

where τi is a tunable parameter that controls the bandwidth of the Gaussian kernel around
point xi. In two-dimensional map Y = {y1, y2, ..., yn} ⊂ R2, the affinity qij between points
yi and yj (i 6= j) is defined as:

qij =
(1 +

∥∥yi − yj
∥∥2
)−1

∑l,s∈[n],l 6=s(1 + ‖yl − ys‖2)−1
(A2)

t-SNE then attempts to find points yi in R2 that minimize the KL-divergence between
p and q:



Energies 2021, 14, 3137 21 of 23

f (y1, y2, ..., yn) := KL(p ‖ q) = ∑
i,j∈[n],i 6=j

pijlog
pij

qij
(A3)

The objective function f is minimized using the following gradient descent:

∂ f
∂yi

= 4 ∑j∈[n]\{i}(pij − qij)qijZ(yi − yj) , i ∈ [n] (A4)

Appendix A.2. Gaussian Process Latent Variable Model (GPLVM)

GPLVM, introduced by Lawrence (2005) [23], is a Bayesian non-parametric dimen-
sionality reduction method that uses a Gaussian process to learn a low-dimensional Q
representation of high-dimensional data D. In Gaussian process regression (GP) settings,
where we are given inputs X and outputs Y, we choose a kernel and learn hyperparameters
that best describe the mapping from X to Y. The GP likelihood function is written as:

p(Y | X) =
D

∏
d=1

p(yd | X) (A5)

Here, yd represents the dth columns of Y and:

p(Y | X) = N (yd | 0, KNN + β−1 IN) (A6)

N is the number of the observation, and KNN is the covariance matrix defined by
the covariance or kernel function K(x, x́). The kernel function was modified to a squared
exponential form to fit the automatic model selection of the dimensionality of latent space:

K(x, x́) = σ2
f exp

(
1
2

Q

∑
q=1

αq(xq − x́q)
2

)
(A7)

In the GPLVM, we do not have X; we are only given Y. We need to learn X along
with the kernel hyperparameters. We do not perform maximum likelihood inference on X.
Instead, we set a Gaussian prior for X and learn the mean and variance of the approximate
(Gaussian) posterior p(Y | X).

p(X) =
N

∏
n=1
N (xn | 0, IQ) (A8)

With each xn the nth row of X. The joint probability model for the GPLVM model is:

p(Y, X) = p(Y | X)p(X) (A9)

The hyper parameters of the model are the kernel parameters θ == (σ2
f , α1, α2, ..., αQ)

and the inverse variance parameter β.

Appendix A.3. Mean Continuous Ranked Probability Score (CRPS)

Mean CRPS is used to quantify both the accuracy and precision of a probabilistic
forecast [34]. A higher value of mean CRPS indicates less accurate results. CRPS can be
defined as:

CRPS =
∫ ∞

−∞
[p(x)− H(x− xobs)]

2dx (A10)

Here, p(x) =
∫ x
−∞ p(y)dy is the cumulative distribution of a quantity of interest, and

H(x− xobs) is the step function,
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H(x) =
{

0 i f < 0
1 i f > 0

}
(A11)

For N samples, the CRPS can be evaluated as follows:

CRPS =
N

∑
i=0

cici = αi p2
i + βi(1− pi)

2 (A12)

where pi = P(x) = i/N, f or xi < x < xi+1 (piecewise constant function)

αi =


0 i f xobs < xi

xobs − xi i f xi < xobs < xi+1
xi+1 − xi i f xobs > xi+1

 (A13)

βi =


xi+1 − xi i f xobs < xi

xi+1 − xobs i f xi < xobs < xi+1
0 i f xobs > xi+1

 (A14)
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a b s t r a c t

In this work, we provide a more consistent alternative for performing value of information (VOI) analyses
to address sequential decision problems in reservoir management and generate insights on the process
of reservoir decision-making. These sequential decision problems are often solved and modeled as
stochastic dynamic programs, but once the state space becomes large and complex, traditional tech-
niques, such as policy iteration and backward induction, quickly become computationally demanding
and intractable. To resolve these issues and utilize fewer computational resources, we instead make use
of a viable alternative called approximate dynamic programming (ADP), which is a powerful solution
technique that can handle complex, large-scale problems and discover a near-optimal solution for
intractable sequential decision making. We compare and test the performance of several machine
learning techniques that lie within the domain of ADP to determine the optimal time for beginning a
polymer flooding process within a reservoir development plan. The approximate dynamic approach
utilized here takes into account both the effect of the information obtained before a decision is made and
the effect of the information that might be obtained to support future decisions while significantly
improving both the timing and the value of the decision, thereby leading to a significant increase in
economic performance.

© 2021 Chinese Petroleum Society. Publishing services provided by Elsevier B.V. on behalf of KeAi
Communication Co. Ltd. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

1. Introduction

Reservoir management is defined as the utilization of available
technology, financial assets, and human resources to maximize the
economic recovery of a reservoir. This type of management involves
a series of operations and decisions, from the initial stage of the
discovery of a reservoir to the final stage of field abandonment
(Wiggins and Startzman, 1990). A significant number of decision-
making problems related to reservoir management are regarded
as sequential problems, as most petroleum engineers and geo-
scientists are used to considering the information gathered, sup-
porting their future decision making, and maximizing the value
created by the reservoirs. However, the models for reservoir man-
agement decisions may be computationally prohibitive and
intractable if several sequential decisions and uncertainties are
involved. To solve this issue and successfully execute good reservoir

management, decision analysis (DA) is recommended due to its
several advantages (Evans, 2000). (Howard, 1988) stated that “DA is
a systematic procedure for transforming opaque decision problems
into transparent decision problems through a series of transparent
procedures.” In the context of reservoir management, DA is used as
a consistent means of evaluating different approaches and alter-
natives to determine the optimal scenario to maximize the net
present value (NPV) of any project (Evans, 2000). Enhanced oil
recovery (EOR) is an important phase in the field development
planning process and is mainly applied whenever the primary and
secondary recovery mechanism are not sufficient to displace the
hydrocarbon from the remaining reserve. EOR methods include
gas-flooding, polymer flooding, surfactant flooding, CO2 flooding,
and thermal flooding. However, EOR may not be applied to the
process if it is not cost-effective. Therefore, a key decision in the
development the planning process pertaining to the implementa-
tion of EOR methods is determining the best time to initiate an EOR
process. With this method, oil companies can estimate the period
for which the field will be economically profitable. However, since
the initiation of EOR demands a high cost, it is important to assess

* Corresponding author.
E-mail address: amine.tadjer@uis.no (A. Tadjer).

Contents lists available at ScienceDirect

Petroleum Research
journal homepage: http: / /www.keaipubl ishing.com/en/ journals /

petroleum-research/

https://doi.org/10.1016/j.ptlrs.2021.05.006
2096-2495/© 2021 Chinese Petroleum Society. Publishing services provided by Elsevier B.V. on behalf of KeAi Communication Co. Ltd. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

Petroleum Research xxx (xxxx) xxx

Please cite this article as: A. Tadjer, R.B. Bratvold, A. Hong et al., Application of machine learning to assess the value of information in polymer
flooding, Petroleum Research, https://doi.org/10.1016/j.ptlrs.2021.05.006

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:amine.tadjer@uis.no
www.sciencedirect.com/science/journal/20962495
http://www.keaipublishing.com/en/journals/petroleum-research/
http://www.keaipublishing.com/en/journals/petroleum-research/
https://doi.org/10.1016/j.ptlrs.2021.05.006
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ptlrs.2021.05.006


its impact on the decision-making process. The value of informa-
tion is a type of decision analytics that is suited to quantifying the
value of prior information (Schlaifer, 1959). was the first to intro-
duce and define the concept of VOI in the context of business
decision-making. Since then, the VOI approach has appeared in
several textbooks and references, e.g., (Raiffa and Schlaifer, 1961;
Howard, 1966; Clement, 1991; Bratvold and Begg, 2010; Howard
and Abbas, 2016). The first application of this concept in the oil
and gas (O&G) industry was done by (Grayson, 1960). (Bratvold
et al., 2009) presented an overview of the use of VOI analysis in
the O&G industry. Recently (Eidsvik et al., 2016), and (Dutta et al.,
2019) demonstrated a comprehensive application of this method
in the domain of earth sciences and subsurface energy. In the O&G
industry, two different approaches are used to include the impact of
information: closed-loop reservoir management (CLRM) and
sequential reservoir decision making (SRDM). These approaches
serve as a priori analyses, and each technique is implemented
before the collection of additional information. Thus, whenever
additional data are gathered, both CLRM and SRDM can be readily
applied to make use of those data. However, for a complicated
decision-making problem with many uncertain outcomes, alter-
natives, and decision points, these approaches suffer from the
“curse of dimensionality.” For a more detailed description of SRDM
and CLRM, see (Howard and Abbas, 2016; Bratvold et al., 2009;
Barros et al., 2015; Hong et al., 2018).

In previous studies (Hong et al., 2018), illustrated a method for
ADP, specifically the Least-Squares Monte Carlo (LSM) algorithm,
which was proposed by (Longstaff and Schwartz, 2001). This al-
gorithm can be implemented with a production model based on
exponential declines to determine the optimal time to switch from
one recovery phase to another. Theoretically, LSM implementation
is independent of production models but still suffers from the curse
of dimensionality in the action space, where the computational
effort of LSM will increase exponentially with the number of both
alternatives and decision points, according to (Powell, 2016) and
(Hong et al., 2018). Apart from this (Alkhatib and Babaei, 2013),
showed that LSM can be used in a homogenous reservoir model in
the context of surfactant flooding.

Our approach in the current study is different from that of
(Alkhatib and Babaei, 2013) and (Hong et al., 2018). Here, the
objective is to do a VOI analysis of in the context initiating polymer
flooding in reservoir development plan, where a decision problem
is constructed where to determine the optimal time to switch from
water flooding to polymer injection based on the information from
production profiles and oil prices, and the switch happens only
once. The analysis is done on a constructed case study involving
both homogenous and heterogeneous reservoir model, Further, we
use various machine learning regression approach that lies within
the domain of ADP to directly estimate the conditional expected
value given the data outcomes without approximating the poste-
rior probabilities of reservoir properties. The ADP approach utilized
here accounts for both the effect of the information of both pro-
duction profiles and oil prices obtained before a decision is made
and the effect of the information that might be obtained to support
future decisions.

The paper is divided into multiple sections. In the following
section, we provide a consistent basic concept and equation for VOI
computation. Second, we propose a workflow of assessing VOI
using machine learning methods and, following this, we test the
proposed methodology by implementing it in an ensemble ho-
mogenous and heterogeneous reservoir model, where we perform
fast analysis of the optimal EOR switch time using the proposed
workflow. Fourth, we include oil price as uncertain economic
parameter, and finally, some concluding remarks are added.

2. Value of information and decision making

The VOI in any information gathering activity depends on two
fundamental uncertainties; (1) the uncertainties we hope to learn
but cannot directly observe; which we call events of interests, and
(2) the test results referred as the observable distinctions (Bratvold
et al., 2009). In Reservoir management data gathered until time t
which a decision will be made is the observable distinction, and
future prediction production after time t is the events of interest.
We denote the observable distinction as x, since x is very high
dimension; it is difficult to represent the distribution of x in
analytical form, we usually approximate the distribution of x by
Monte Carlo sampling. Assuming a risk neutral decision maker, VOI
is defined as:

VOI ¼
�

Expected value with
additional information

�
�
�
Expected value without
additional information

�

In mathematical form, this is:

VOI ¼ f0;Dg (1)

D ¼ EVWII � EVWOI (2)

The lower limit of VOI is always 0, since if D is negative when
EVWOI > EVWII, the decision-maker can always choose not to
gather information.

In a decision-making context, the decision without information
(DWOI) is the alternative that optimizes the expected value (EV)
over the prior value, and EVWOI is the optimal EV over the prior.

EVWOI ¼ maxa2A

� ð
vðx; aÞpðxÞdx

�
zmaxa2A

"
1
b

XB
b¼1

v
�
xb; a

�#

(3)

where a is the decision alternative from the a set of A, x is the
distinctions of interests, v(x, b) is the value function that assigns a
value to each alternative outcome pair for a given x and realization
b, and p(x) is the prior probability distribution of x.

Similarly, if we have perfect information regarding the value of x
that the distinction of interests would take, we would choose the
optimal action for that value of x. The decision with imperfect in-
formation (DWII) is the alternative that optimizes the expected
value over the posterior value:

EVWII ¼
ð
maxa2A

"
Eðvðx; aÞjyÞ

� �pðyÞdyz1
B

XB
b¼1

maxa2AE
h
vðx; aÞjyb

#
(4)

Where p(y) is the marginal probability distribution over y.
Additionally, the decision with perfect information (DWPI) can

also be determined in this decision-making context. For instance, in
reservoir engineering, perfect information is the information that
reveals the true reservoir properties and the impacts of the re-
covery mechanism. Taking the EOR initiation problem as an
example, the EVWith Perfect Information (EVWPI) is themaximum
NPV for every path based on prior realizations or distributions.
Then, averaging these NPVs over the paths would result in the
EVWPI. In this way, every path would have an optimal decisionwith
perfect information. The difference between EVWPI and EVWOI is
the value of the perfect information (VOPI).
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3. Value computation by ADP

We use an ADP method called the simulation-regression (or
least-squares Monte Carlo) method to calculate the expected value
with imperfect information. The simulation regression method
involves Monte Carlo simulation and regression for (approxi-
mately) calculating the conditional expected value given data.

Monte Carlo simulation:

1. Many possible realizations of state variables (xb) such as
porosity and permeability are generated using Monte Carlo
simulation model.

2. Forward modelling is performed to generate modeled (future)
production data (yb) from t0 to tend, with the addition of random
noises generated from the statistics measurements errors to the
modeled production data.

3. For each decision alternative a, the NPV(xb, a) is calculated.
4. The EVWOI is then calculated using the following equation:

EVWOI ¼
"
1
b

PB
b¼1NPV

�
xb; a*DWOI

�#
a*DWOI ¼

argmaxa2A

"
1
b

PB
b¼1NPV

�
xb; a

�#

where a*DWOI is the optimal decision without information and it
is identical to each realization.

Backward induction.

1. Starting recursively from the last decision point in time, in order
to estimate the expected NPV (ENPV) with alternative a condi-
tional on the modeled production data, ENPV(x, a)|y, we regress
[NPV1j, NPV2j,…, NPVB(x, a)] on themodeled production profiles.
This procedure is repeated for each of the alternatives.

2. The optimal decision is then determined by choosing the
alternative that achieves the highest value of conditional ENPV
given the known information.

3. The EVWII is then as follows:

EVWII ¼ 1
b

PB
b¼1NPV

�
xb; a*DWII

�
yb
��

a*DWII

�
yb
�
¼ arg 1

b

P
b¼1

Bmaxa2AE
h
NPV

�
xb; a

����yb i; where a*DWII

�
yb
�

is the optimal decision with given information yb

4. Finally, the VOI is given by maxf0; EVWII � EVWOIg

The process of ADP is further detailed in Hong et al. (2018);
Longstaff and Schwartz (2001).

Various methods (linear or non-linear) can be used for regres-
sion to calculate the conditional ENPV given data. In the next sec-
tion, we will review the regression methods used in this study.

3.1. Machine learning algorithms (regression methods)

e Least Squares Monte Carlo Methods (LSM), is a state-of-the-art
dynamic programming approach used in financial engineering
with real options initially proposed by (Longstaff and Schwartz,
2001). (Jafarizadeh and Bratvold, 2009) recommended the use
of the LSM technique as a potential real option valuation tech-
nique for the oil industry (Willigers and Bratvold, 2009).
explained how LSM simulation can handle more realistic valu-
ation situations with multiple uncertain variables. One of the
limitations of the LSM method is its high-dimensional space,
through which the computational time can increase exponen-
tially (Hong et al., 2018).

The mathematical depiction of the ordinary least square is the
following:

yn ¼
Xk
i¼0

bixni þ e (5)

where xi is the explanatory variable i.e. production profiles, and y is
a dependent variable i.e. NPVs. The coefficient b minimizes the
error prediction.

e Partial Least square (PLS), is a regression technique that is
frequently used for high-dimensional methods (Rosipal and
Kr€amer, 2006 34e51). It takes into account the structures of
both the explanatory variable and the dependent variable. This
model is linear, as shown in Eq (5). However, b coefficients are
found in a different way than with the ordinary least squares
method. The principal of PLS regression involves data x and y,
which are decomposed into their latent structures in an iterative
process such that the covariance of the latent structure is
maximized.

e Principal Component Regression (PCR), reduces a large num-
ber of explanatory variables xi in a regression model to a small
number of principal components. PCRmainly differs from PLS in
that the dependent variables in the former are regressed on the
principal components of the data using linear regression Abdi
(2010).

e Neural Network (NN), often simply called multilayer percep-
tron MLP), is a nonlinear method for either classification or
regression (Liu et al., 2019). The NN model consists of several
layers, each containing a large number of neurons. Each neuron
receives an input and provides a corresponding output through
functional operations such as weight, bias, and transfer function
(see Fig. 1). In mathematical form, the MLP parameters is given
as follows:

q ¼ ðW1; b1;W2; b2;…;WL; bLÞ (6)

whereWi is a weight matrix and bi is the corresponding bias vector
of the L � th neural layer. A function can then be given as follows:

yðxÞ ¼ FðxjqÞ (7)

For neurons, the standard form is given as:

zli ¼ fl

0
@X

j

wl
ijz

l�1
j þ bl

1
A (8)

Where zli denote the value of the i � th neuron in the l � th layer;

zl�1
j is the i � th neuron in the (l � 1) layer; and wl

ij2wl; b
l
ij2bl.

When l ¼ 0, zo ¼ x the input explanatory variables i.e. production
profiles, when l¼ L, zL¼ y is the network dependent output variable
i.e. NPVs. zl represents an intermediate variable. The function f(.)
represents the hidden node output, and is given as an activation
function e.g. Relu;fðxÞ ¼ maxðx;0Þ; Sigmoid;fðxÞ ¼ 1

1þe�x

e Gaussian process regression (GPR), is a non-parametric
Bayesian machine learning technique, used to model an un-
known value function with the help of a Gaussian process
(Rasmussen, 2004). A Gaussian process V � GPðm; kÞ, is
completely specified by its mean function mðxÞ ¼ E½VðxÞ � and

covariance function � kðx;x́ Þ ¼ 1
ffiffiffiffiffiffiffiffi
2ps2

p
e

kx�x
́ k

2 2s2. GPR is a kernel-
based which does not attempt to identify “best-fit” models of
the data. Instead, GPR computes the posterior Gaussian process
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by conditioning on the observed the values. In this study, we
choose k to be the Gaussian radial basis function,

kðx; x́ Þ ¼ 1ffiffiffiffiffiffiffiffi
2ps2

p e
kxj

22s2 and assume that we observe y ¼ V(x) þ ε,

where ε � N �
0; s2

ε

	
; ε is the gaussian noise …

e Automated Machine Learning (Auto ML), in general, machine
learning typically requires substantial human resources to
determine a relevant pipeline (including various types of pre-
processing and the choice of the regression method and
hyperparameters). In response to this, various Auto ML tech-
niques have been developed to build systems that can automate
the process of designing and optimizing machine learning
pipelines. In our study, we use an Auto ML technique called the
Tree-Based Pipeline Optimization Tool (TPOT). TPOT was first
proposed by (Olson and Moore, 2019). In short, TPOT optimizes
machine learning pipelines using a stochastic search algorithm
such as genetic programming.

4. VOI in polymer flooding recovery

In this section, we use two more realistic examples to illustrate
how the methodology discussed in sections 2 and 3 can be applied
to reservoir simulations and modeled to solve the EOR initiation
time problem.

4.1. 2D reservoir model

Consider a simple 2D reservoir model with homogenous
permeability and porosity fields. This model simulates the
displacement of oil to the producer by two water-well injections.
We used an ensemble of N ¼ 500 realizations for the permeability.
The top view of this reservoir model and the well position are
shown in Fig. 2, and other important reservoir parameters and PVT
properties are shown in Table 1.

Problem setting: For the problem setting of this example, a
total period of 6 years of production time is supposed. We consider
two recovery phases: water flooding and polymer. We will analyze
the optimal time to switch from water flooding to polymer injec-
tion. This analysis will provide useful insights into the reservoir
development plan, and the decision will affect the learning over
time. After each year of production, the decision of whether or not
to inject a polymer has to be made, but the switch happens only
once. This indicates that there will be 5 different switch times and
decisions to be made (see Table 2 and Fig. 3).

The oil and water production of 500 ensembles are modeled

using the reservoir simulation model and inform the decision-
making. Thus, to obtain the measured rates, the measurement er-
rors should be normally distributed with a mean of zero and a
standard deviation of 10% of the modeled rates and then added to
the modeled rates. Fig. 4 shows the oil and water production for all
realization of some decision alternatives.

The value function is defined as the NPV for each decision
alternative corresponding to each realization. NPV is a function of
revenue from the oil production and costs for water production,

Fig. 1. Illustration of a neuron and multi-layer perceptron configuration (Liu et al., 2019).

Fig. 2. The front view of the 2D reservoir model.

Table 1
Values of important reservoir parameters and PVT properties e the 2D reservoir
model.

Water density, kg/m3 1080
Oil density, kg/m3 962
Water viscosity, pa.s 0.48 � 10�3

Oil viscosity, pa.s 5 � 10�3

Water compressibility, 1/bar 4.28 � 10�5

Oil compressibility, 1/bar 6.65 � 10�5

Initial reservoir pressure, bar 234
Porosity 0.3
Polymer Concentration INJECT 1, kg 4
Polymer Concentration INJECT 2, kg 1
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water injection, and polymer injection. The NPV is calculated using
the following equation:

Where k is the index of time step, nT is total number of time steps,b
realization of reservoir, qk0 is the field oil production rate at time k,

qkwp is the field water production rate at k, qkwi is the field water

injection at time k, qkci is the total polymer injection rate at time tk;
P0, Pwp, Pwi and Pci. The values of economic parameters used is also
listed in Table 3.

Results: To compute the VOI of the polymer injection, we need
to regress the NPVs on the simulated oil and water production
profiles for each decision alternative. The various machine learning
techniques discussed in section 3 are employed to perform the
regression in this case. To prevent and reduce “the overfitting” in
the machine learning training process, we use a 10-fold cross-
validation (Crowley and Ghojogh, 2019Crowley and
Ghojogh, 2019). Fig. 5 shows the box plots of squared logarithmic
error regression loss (RMSLE),1 for each decision alternative under
each ML method and LS. GP, LS, PLS, and Auto-ML perform signif-
icantly better than PCR and NN. We measured the CPU running
time for each ML method. The results show that GP, LR, PLR, and
PCR required more-or-less the same time and were notably faster
than NN, which required 8 min and approximately 3 h for Auto-ML.

The DWOI is to have the polymer injection finished by the end of
first year, and the EVWOI is found to be $ 55.59 million. Moreover,

the EVWPI is estimated to be $57.18 million. This makes the VOPI
$1.59 million. The highest EVWII corresponding to the machine
learning was obtained through the Auto-ML (see Table 4), which is
$56.64 million. The respective VOI is $0.842 million. This result
indicates that it is not economical to proceed with any information-
gathering activity if the cost of the activity is more than $0.842
million. This result also illustrates that including the effect of future
information and decisions could improve the EV by 1.73%, which is
the percentage of the fraction of VOI to EVWOI.

The cumulative distribution functions (CDFs) of the NPVs asso-
ciated with DWOI, DWII, and DWPI are plotted in Fig. 6. In this
figure, the DWII moves the CDF of the NPV corresponding to the
DWOI to the right. In this way, integrating the effects of future in-
formation and decisions into the decision-making process would
increase the ENPV. Here, some realizations result in a smaller NPV
with DWII than the NPV with DWOI since the recovery efficiency
increment is very small or ML approach fails to find a near-optimal
solution. Furthermore, the DWPI moves the curve of CDF even
further to the right, as shown in Fig. 6. This occurs because the NPVs
corresponding to the DWPI are always higher, which would lead to
a higher ENPV than the values of DWII and DWOI.

The normalized frequency distribution (NFDs) of Waterflooding
injection lifetime is illustrated in Fig. 7. Based on these results, it is
more worthwhile to switch from water flooding to polymer at the
end of year 1 (i.e., there is an 72.8% chance that the polymer re-
covery mechanism should be used starting at the end of the first

Table 2
Decision problem setting.

Injection period 6 years
Alternative Continue or switch the injection at times {1, 2,3,4,5}
Uncertainty permeability and porosity.
Value derived from the decision situation Net present value
Information data Oil and water production profiles

Fig. 3. Decision flow chart for Polymer flooding injection.
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�
xb; a

�
Pwi � qkci

�
xb; a

�
Pci

i
t

ð1þ rÞtk=t
(9)

1 https://www.rdocumentation.org/packages/corer/versions/0.2.0/topics/
meansquaredlogerror
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year). There is only a 23% chance that it is optimal to switch after 5
years and 4.6% after 4 years of water-flooding recovery. The specific
switch time depends mainly on the simulated production and the
uncertainty geological realization.

4.2. 3D reservoir model

Here, we consider a modified version of the standard Egg
reservoir model, which is a 3D channel model (Jansen et al., 2014)

Fig. 4. Ensemble oil production and water production profile for the alternative “inject polymer flooding at the end of the first year” and for the alternative “inject water flooding”.
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that contains 8 injection wells and 4 production wells. The model
consists of 100 realizations of channelized reservoirs with
60 � 60 � 7 grid cells of which only 18,553 cells are active, thus
producing the shape of an egg, as illustrated in Fig. 8.

The average reservoir pressure is set at 400 bar, and the initial

water saturation is considered uniform over the reservoir at a value
of 0.1. The remaining geological and fluid properties used in this
study are presented in Table 5. We modified the oil viscosity in the
standard Egg model to make the reservoir a candidate to undergo
polymer flooding.

Problem setting: The problem setting in this example is largely
the same as that of the 2D reservoir model. Here, we consider a
maximum life cycle of 10 years in total. Wewill analyze the optimal
time to switch from water flooding to polymer injection after each
year of production, but the switch happens only once. This indicates
that there would be 9 different switch times and decisions to be
made.

The oil and water production levels of 100 ensembles are
modeled using the reservoir simulation model and inform the de-
cision. Fig. 9 shows the oil and water production for all realizations
(i.e., to inject polymer during the ninth year or to maintain the
water-flooding recovery process for the whole life of the produc-
tion cycle).

Results: For the Egg reservoir model, the DWOI involves
injecting the polymer by the end of 9 years. The corresponding
EVWOI is $133.91 million, and the EVWPI is estimated to be $136.7
million. Thus, the VOPI is $2.79 million. The highest EVWII corre-
sponding to machine learning was obtained by Auto-ML and pro-
vides an EVWII of $135.92 million for information from oil and
water production profiles. The related VOI is $2.01 million. There-
fore, the operator should not proceed with any information-
gathering activity if the cost of the activity is more than $2.01
million; further, the effects of future information and decisions
would improve the EV by 1.5% (2.01/133.91).

Fig. 10 compares the CDFs corresponding to the different
methods. Here, the NPV resulting from the ML approach (DWII) is
higher than that of the DWOI, as ML allows learning over time. The
DWPI moved the CDF curve further to the right, leading to higher
ENPV than that of ML and DWOI.

Fig. 11 shows that for the optimal switch time to inject polymer
flooding corresponding to the decision-making with ML, there is a
51% chance of initiating the EOR phase at the end of the year after 9
years, with 33% optimal chances of switching after 8 years, and 16%
after 7 years of water-flooding recovery. The mean oil production
rate (shown in Fig.12) decreases significantly with a close similarity
measurement, but after 7 years, the rate corresponding to DWII
increases slightly, as the decision to switch is applied for some
realizations.

Fig. 5. Boxplot of RMSLE for the entire decision alternative.

Table 3
Values of economic parameters.

Parameter Value Unit

P0 220 $/m3

Pwp 47.5 $/m3

Pwi 12.5 $/m3

Pci 12 $/kg
r 8% e

t 365 days
Dt 30 days

Table 4
VOI obtained by machine learning algorithms.

VOI $ million VOI/EVWII

LR 0.523 0.94%
PLR 0.602 1.08%
Auto-ML 0.842 1.73%
GP 0.536 0.96%
PCR 0.559 1.01%
NN 0.369 0.66%

Fig. 6. CDFs of NPVs corresponding to DWOI, DWPI, and DWOII.

Fig. 7. NFDs of the polymer injection corresponding to decision with ML.
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4.3. Uncertainty in oil price

In both previous studies, we did not include uncertainties into
the economic parameters even though they have a significant
impact on the decision. Therefore, in this work, oil price is treated
as an uncertain parameter and considered in the regression analysis
for determining the optimal stopping time given a switch time in
the EGG reservoir model. Uncertain economic variables must be
modeled as Markovian processes and variants over time. Hence, we
follow a stochastic process. There are two commonly used sto-
chastic models for describing uncertainties in economic variables:
the Geometric Brownian Motion (GBM; also known as the random-
walk model) and the OrnsteineUhlenbeck (OU) Stochastic Process
(also known as the mean-reverting model; refer to Uhlenbeck and
Ornstein (1930)for more details).

A process “S” can be stochastically modeled using the Ornstein-
Uhlenbeck process as shown below:

dSt ¼ q ðm� StÞdt þ sdWt (10)

where q is the speed of mean reversion, m is the long-term mean
which the process reverts, s is themeasure of process volatility, and

Wt stands for a Brownian motion, where dWt � Nð0;
ffiffiffi
d

p
tÞ. To

implement this stochastic equation in a simulation, it must be
discretized. (Gillespie, 1996) noted that only when the discretized
time, Dt, is sufficiently small, the simulation of the process work
well. Thus, the discretized equation is shown below:

St ¼
�
St�1 � e�qDt	þ m

�
1� e�qDt	þ

2
4s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2qDt

2q

s
� dWt

3
5

(11)

However, if any commodity price, including oil prices or any
other cost, is modeled using the above discrete time expression,

negative values might be generated. This is not realistic, as negative
commodity prices never exist. To avoid this problem, the lognormal
distribution of the commodity price is used. Thus, in this context,
the logarithm of the modeled parameter, namely pt ¼ ln[St], is
assumed to follow the mean-reverting process. This process can
then be mathematically described as follows:

dpt ¼ k½p̄ �pt �dt þ spdzt (12)

where k is the speed of mean reversion, p
̄
is the long-term mean to

which the logarithm of the variable reverts, sp stands for the
volatility of process, and dzt describes the increments of standard
Brownian motion. Subsequently, to numerically solve for pt, the
stochastic equation is discretized as shown below (by assuming

dzt � ð0;
ffiffiffi
d

p
tÞ, where dt ¼ 1 year).

pt ¼
�
pt�1 � e�kDt	þ p

̄ �
1� e�kDt	
þ

0
@sp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e�2kDt

2q

s

� Nð0;1Þ
1
A

(13)

After calculating pt, the value of St cannot directly be obtained
using the equation of St ¼ ept. This is because the mean of the
lognormal distribution is added with half of the variance, namely
0.5 � var(pt), for the exponential of a normal distribution. There-
fore, half of the variance is deducted using the equation below:

VarðptÞ ¼ �
1� e�kDt
� sp2

2k
(14)

To use this model, a decision must be made to determine its
parameters. This process is known as calibration, and since the
logarithm of the variables is assumed to follow the mean-reverting
process, least squares regression, which was suggested by (Smith,
2010), is conducted on the datasets of pt ¼ ln[St]. To calibrate the
OU parameters for modeling the oil price, a set of oil price data is
required. For illustration, we used the annual oil price data from the
NYMEX future prices of 1985e2020 (considering only historical
data) (EIA and U.E.I.A, 2019), as shown in Fig. 13. These data are
available on the U.S. Energy Information Administration website.

To begin the procedure of calibration, the following equations
are used:

Fig. 8. (Left) Reservoir model displaying the position of the injectors (blue) and producers (red). (Right) Six randomly chosen realizations. (From (Jansen et al., 2014)).

Table 5
Reservoir parameters of Egg model.

Water density, kg/m3 1000
Oil density, kg/m3 900
Water viscosity, pa.s 10e3
Oil viscosity, pa.s 20 � 10-3
Water compressibility, 1/bar 10e5
Oil compressibility, 1/bar 10e5
Initial reservoir pressure, bar 400
Porosity 0.2
Polymer Concentration 2
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xt ¼ pt � Dt ¼ ln½Pt�Dt � (15)

yt ¼ pt ¼ ln½Pt� (16) yt ¼ axt þ bþ d� (17)

The OU parameters are estimated using the values of a and b:

Fig. 9. The oil production and the water production profile for the realization of the alternative “inject polymer flooding at the end of the first year” and for the alternative “inject
water flooding”.
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p
̄ ¼ b

1� a
; k ¼ �ln a

Dt
; sp ¼ sd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ln a

Dt
�
1� a2

	
s

(18)

where d is the approximation error introduced in the least-squares

regression, sd stands for the standard deviation of the approxima-
tion errors, and Dt is the difference in two time-steps. Refer to
(Smith, 2010) for more details regarding the derivation of the
equations.

Using the parameters in Table 6, the oil price corresponding to
the respective costs is modeled forward in time. Fig. 14 presents the
probabilistic model of the oil price.

Results: By adding the uncertain oil price to the previous results
obtained in the egg reservoir model, the DWOI provides 9 years of
water-flooding recovery and then one-year polymer recovery. This
results in a total lifetime of 10 years. Thus, the EVWOI is found to be
$134.53 million. Moreover, the EVWPI is estimated to be $137.98
million, which makes the VOPI $3.46 million. The EVWII corre-
sponding to the ML approach was obtained with through Auto-ML,

Fig. 10. CDFs of NPVs corresponding to DWOI, DWPI, and DWII.

Fig. 11. NFDs of the polymer injection corresponding to the decision-making with ML.

Fig. 12. Mean oil production rate corresponding to the DWOI and DWII. Left: Overview of the rate. Right: zoomed rate (last 5 years).

Fig. 13. Historical of annual oil prices from 1985 to 2020.

Table 6
Values of parameters used in the mean-reverting model.

Parameter Oil price

Initial value 26.25
Equilibrium Value 26.25
Volatility sd 0.2719
Mean reversion speed, k 0.1165
dt, year 1
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with an estimate of $136.04 million. This yields a special VOI of $
1.52 million, which indicates that it is not economical to proceed
with any information-gathering activity if the cost of the activity is
more than $1.52 million. Moreover, this result also illustrates that
including the effect of future information and decisions would
improve the EV by 1.13%, which is the percentage of the fraction of
VOI to EVWOI.

The NFDs of the total lifetime corresponding to the decisions
with machine learning are displayed in Fig. 15. This result recom-
mends switching from water flooding to polymer injection at the
end of years 8 and 9 (i.e., there is a 53% chance that the polymer
recovery mechanism should be started after year 9). There is only a
32% chance that will be optimal to switch after 8 years and 5% after
both 6 and 7 years of water-flooding recovery. The specific switch
time depends mainly on the measured production uncertainty of
geological realization and oil prices.

Fig. 16 compares the CDFs of the NPVs associated with DWOI,
DWII, and DWPI. Here, DWII approachesmove the CDFs of the NPVs
corresponding to the DWOI to the right (i.e., the ENPV increases),
which allows for learning over time. Some realizations ultimately
yield a smaller NPV with DWII than the NPV with the DWOI. This is
possibly due to a suboptimal decision, as the machine learning al-
gorithm is an approximate method that, for some of the path de-
cisions, makes suboptimal choices. The DWPI further moves the
CDF curve to the right, leading to a higher ENPV. This is obvious
because when perfect information is available, all realizations will
have a higher NPV.

5. Concluding remarks

In this paper, we demonstrated and described the usefulness of
utilizing the concepts of decision analysis and value information to
support the recovery phase in the field of oil development with
limited computational resources. We applied some linear and
nonlinear machine learning regressions to compute the VOI, which
yielded comparable results and globally optimal solutions. The
methodology could be adapted and applied to other fields such as
energy storage and well-placement optimization.

However, the value of machine learning may be small and not
very significant, as there is always an approximation error when
applying the machine learning regression function. Moreover, how
closely a regression function can estimate the actual expected
values and the accuracy of this method also largely depend on a
prior sample of Monte Carlo simulations, alternatives, and infor-
mation; furthermore, in some cases, the model choice may not be
material.

Therefore, we conclude that for solving the optimal EOR initia-
tion time for both 2D and 3D channel reservoir models, the ma-
chine learning regression method can be used to approximate the
value functions that appear in dynamic programming and can be
considered a robust approach, as it includes and quantifies un-
certainties in dynamic and state variables, including uncertainty in
economic parameters, which are important to make good and
insightful decisions. However, this method's computational effort is
still subject to a finite and limited number of alternatives and de-
cision points. Therefore, we believe that a new theory and meth-
odology based on clustering techniques, in combinationwith proxy
models, must be developed to reduce computational costs and
reliably solve real-world sequential decision-making problems.
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Fig. 14. Oil prices modeled using the mean-reverting process.

Fig. 15. NFDs of the polymer injection corresponding to the decision with ML.

Fig. 16. Graph of CDFs against NPVs with respect to DWOI, DWII, and DWPI.
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Nomenclature

2D/3D Two Dimensional/Three Dimensional
ADP Approximate Dynamic Programming
AutoML Automated Machine Learning
CDF Cumulative Density Function
CLRM Closed Loop Reservoir Management
DWI Decision with Additional Information
DWOI Decision without Additional Information
DWPI Decision with Perfect Information
ENPV Expected NPV
EOR Enhanced Oil Recovery
EV Expected Value
EVWI EV with Additional Information
EVWOI EV without Additional
GPR Gaussian process regression
LS Least Squares
LSM Least-Squares Monte Carlo
MCMC Markov-Chain Monte Carlo
MCS Monte Carlo Simulation
NFD Normalized Frequency Distribution
NN Neural Network
NPV Net Present Value
PCR Principal Component Regression
PLS Partial Least square
RMSLE Root Mean Squared Logarithmic Error
VOI Value-of-Information
VOPI Value-of-Perfect-Information
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A B S T R A C T

Carbon capture and sequestration (carbon capture and storage or CCS) represents a unique potential strategy
that can minimize CO2 emissions in the atmosphere, and it creates a pathway toward a neutral carbon balance,
which cannot be solely achieved by combining energy efficiency and other forms of low carbon energy. To
contribute to the decision-making process and ensure that CCS is successful and safe, an adequate monitoring
program must be implemented to prevent storage reservoir leakage and contamination of drinking water in
groundwater aquifers. In this paper, we propose an approach to perform value of information (VOI) analyses
to address sequential decision problems in reservoir management in the context of monitoring the geological
storage of CO2 operations. These sequential decision problems are often solved and modeled by approximate
dynamic programming (ADP), which is a powerful technique for handling complex large-scale problems and
finding a near-optimal solution for intractable sequential decision-making. In this study, we tested machine
learning techniques that fall within ADP to estimate the VOI and determine the optimal time to stop CO2
injections into the reservoir based on information from seismic surveys. This ADP approach accounts for both
the effect of the information obtained before a decision and the effect of the information that might be obtained
to support future decisions while significantly improving the timing, value of the decision, and uncertainty of
the CO2 plume behavior, thereby significantly increasing economic performance. The Utsira saline aquifer west
of Norway was used to exemplify ADP’s ability to improve decision support regarding CO2 storage projects.

1. Introduction

Carbon capture and storage (CCS) is increasingly considered a
promising strategy for reducing CO2 emissions. Geological reservoirs,
such as depleted oil or gas fields or deep saline aquifers, are being
considered as appropriate geological formations that can store CO2
emissions at a depth of several thousand meters (Harp et al., 2017;
Jin et al., 2017; Nilsen et al., 2015a). However, uncertainties in
geological models and rock properties affect flow modeling and CO2
storage capacities, mitigating the risk of CO2 leakage and contaminat-
ing clean groundwater. To contribute to the decision-making process
and ensure that CCS is successful and safe, a monitoring program
must be implemented in addition to regulations based on conformance
(understanding of CO2 behavior), containment (ensuring control of
CO2 migration), and contingency (detecting and addressing significant
anomalies and leakages) (Dupuy et al., 2017). Several studies have
demonstrated the utility of applying time-lapse seismic and electro-
magnetic surveys to adequately monitor CO2 storage in geological
formations. For instance, seismic surveys of the Sleipner storage site
have been conducted regularly. From these surveys, a large quantum of

∗ Corresponding author.
E-mail address: amine.tadjer@uis.no (A. Tadjer).

data has become accessible for research, resulting in several published
studies (for instance, (Arts et al., 2004; Dupuy et al., 2017; Furre et al.,
2017)). Furre et al. (2017) summarized 20 years of monitoring CO2
injection at Sleipner. The authors concluded that the monitoring pro-
gram at Sleipner, which is strongly reliant on seismic surveys, has been
successful, with CO2 contained safely in the storage unit. However,
since time-lapse seismic data are costly, it is important to assess their
impact on the necessary decisions and design monitoring programs
effectively to optimize the relationship between value and cost. One
possible method of estimating the value of a monitoring scheme is the
decision-analytic metric of the value of information (VOI) (Howard,
1966). VOI is an estimate of the additional value that information
brings to a decision situation (Howard, 1966). If the prospect values
linked to the different decision alternatives are specified in monetary
units, the VOI provides a monetary calculation of the additional value
of data collection before deciding. From a decision-analytical view-
point, information is useful not only if it eliminates uncertainty but also
if it promotes better decisions and maximizes value results by reducing
uncertainty. In the context of underground reservoir management, the
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concept of VOI has been applied to decision analysis in petroleum
exploration and production (Newendorp, 1975; Riis, 1999). The im-
portance of seismic information has been studied regularly. Decision
tree models have been used to measure the economic effect of seismic
imaging on reservoir management (Bickel et al., 2008). Although
seismic information is considered imperfect, a significant value can
be extracted from this information. Furthermore, Bickel et al. (2008)
introduced a general VOI model that can drive multiple objectives,
budgetary limitations, and quantitative models relating seismic param-
eters to reservoir properties. The decision model also provides objective
estimates of seismic measurement reliability. In addition, (Bratvold
et al., 2009) extensively reviewed the application of VOI in petroleum
exploration and formed a rather interesting argument. In Eidsvik et al.
(2015) work, VOI analysis was integrated with geostatistical modeling
to provide applications for the petroleum industry as well as mining
and groundwater management.

In general, applications of VOI analyses in the context of CCS
operation monitoring are limited. For instance, Sato (2011) provided
two demonstrations of VOI applied to the CO2 sequestration problem.
The first example considered a storage reservoir with a fault (potential
leak-pathway), followed by a cross-well interference test conducted to
determine whether the fault is tight or permeable. A discrete proba-
bility was assigned to the reliability of the test. The second example
considered a continuous uncertainty: the net present value (NPV) of
the project was linked to the radial extent of the saline aquifer, which
was assumed to be lognormally distributed. The accuracy of the infor-
mation gathering was not based on empirical data, but rather assumed
to be described by a triangular probability density function. Puerta-
Ortega et al. (2013) later extended Sato’s work; they quantified VOI by
prior scenarios based on the reservoir’s current knowledge, contractual
conditions, and regulatory constraints.

In real-world applications, the analytical calculation of the VOI
is generally challenging. Therefore, a computationally efficient ap-
proach to estimate the VOI in such cases is the approximate dynamic
programming (ADP), which is presented and used in the field of fi-
nancial engineering with real options (Longstaff and Schwartz, 2001;
Jafarizadeh and Bratvold, 2009). Hong et al. (2018a) illustrated a spe-
cific method for ADP, the least-squares Monte Carlo (LSM) algorithm.
This approach uses Monte Carlo sampling and statistical regression
techniques to estimate the VOI. This algorithm can be implemented
with a production model based on exponential declines to determine
the optimal time to switch from one recovery phase to another. The-
oretically, the implementation of LSM is independent of production
models; however, LSM still suffers from dimensionality in the action
space, where the computational effort of LSM increases exponentially
with the number of both alternatives and decision points. Eidsvik et al.
(2017), Dutta et al. (2019) used a simulation-regression approach to
approximate the VOI; an ensemble was used as part of this approach to
compute the predicted values directly. Anyosa et al. (2021) developed
a statistical learning method to assess the probability of an early
CO2 leakage detection through a key fault at the Smeaheia site and
then conducted a VOI analysis of monitoring strategies, considering an
underlying decision situation connected to continued injection of CO2,
or termination of this process. In this setting, geophysical monitoring
is valuable if it leads to improved decisions for the injection program.

Our approach in the current study is different from that of Anyosa
et al. (2021). Specifically, a decision problem is constructed where CO2
is injected into a reservoir and the decision-maker conducts seismic
surveys to decide between continuing or stopping the injection based on
information from the survey results. The actual VOI calculation in our
case was computed using the ADP methodology. The ADP methodology
used here illustrates both the impact of the seismic survey data obtained
before a decision is made and the effect of the data information that can
be obtained to support future decisions. The analysis was performed on
a constructed case study involving the Utsira storage site. Further, we
use a machine learning regression approach that lies within the domain

Fig. 1. Steps of a – VOI analysis, and b – Terminal analysis.

Fig. 2. Decision tree elements of VOI versus terminal analysis Hong et al. (2018b).

of ADP to estimate the VOI and determine the optimal time to stop the
CO2 injections into the reservoir.

This paper is divided into multiple sections. In the following section,
we distinguish between the VOI and terminal analysis, define VOI, and
present the general steps in terms of its assessment. Next, we present
the Utsira Formation along with the methods used to generate seismic
data. Subsequently, we present a complete methodology for assessing
the VOI using machine learning methods and then test the proposed
methodology by implementing it in the Utsira reservoir fields. Finally,
we offer concluding remarks and recommendations for future research
directions.

2. Background

In this section, we provide a brief background of the VOI analysis.
We also introduce the Utsira saline aquifer along with the standard
approach employed to estimate model 4D seismic data.

2.1. Decision analysis and VOI in the energy industry

Decision analysis has been extensively used in the energy industry
since the 1960s. Bratvold et al. (2009) identified several papers in
the O&G literature that present cases where the information value
is calculated after the information has been gathered. This can take
the form of historical lookbacks to document the impact of informa-
tion (Aylor Jr., 1999; Waggoner, 2000). Raiffa and Schlaifer (1961)
referred to this as ‘‘terminal analysis’’. Terminal analysis involves the
evaluation of selection between alternatives after a test (actual or
hypothetical) has been conducted and the data have been gathered,
whereas VOI analysis, often called ‘‘preposterior analysis’’ (Raiffa and
Schlaifer, 1961), regards the decision problem as it appears before
a test has been conducted. Fig. 1 illustrates the stages of VOI and
terminal analyses. Fig. 2 depicts the decision-tree elements of VOI
versus terminal analysis, where the circles and squares represent the
uncertainty and decision nodes, respectively. The data of concern in a
VOI analysis (Fig. 2a) are future data, which are unknown and treated
as uncertain. In contrast, the data of concern in terminal analysis
(Fig. 2b) are historical data, which are already known and treated as
certain.

Although a terminal analysis might offer valuable insights, it is not
a replacement for VOI analysis. Furthermore, it introduces bias for two
reasons. First, from a communication and publishing perspective, there
is a strong incentive to not publish or communicate unsuccessful (those
unable to demonstrate any value creation) information-gathering activ-
ities. Second, it ignores cases in which information was not gathered
but should have been.

VOI in any information-gathering activity depends on two funda-
mental uncertainties: (1) the uncertainties we hope to learn about but
cannot directly observe; these are called ‘‘events of interest’’, and (2)
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the test results referred to as observable distinctions (Bratvold et al.,
2009). In reservoir management, the data gathered until time 𝑡 when
a decision is made is the observable distinction, and prediction after
the time 𝑡 runs out constitutes the event of interest. We denote the
observable distinction as 𝑥. Since 𝑥 has very high dimensions, it is
difficult to represent the distribution of 𝑥 in an analytical form because
we usually approximate it with the help of Monte Carlo sampling. In
terms of a risk-neutral decision maker, VOI is defined as follows:

𝑉 𝑂𝐼 =
[

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑤𝑖𝑡ℎ
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

]

−
[

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

]

In mathematical form,

𝑉 𝑂𝐼 = {0, 𝛥} (1)

𝛥 = 𝐸𝑉𝑊 𝐼𝐼 − 𝐸𝑉𝑊𝑂𝐼 (2)

The lower limit of VOI is always 0 because if 𝛥 is negative when
𝐸𝑉𝑊𝑂𝐼 > 𝐸𝑉𝑊 𝐼𝐼 , the decision-maker can always choose not to
gather information.

In a decision-making context, the decision without information
(DWOI) is the alternative that optimizes the expected value (EV) over
the prior, and 𝐸𝑉𝑊𝑂𝐼 is the optimal EV over the prior.

𝐸𝑉𝑊𝑂𝐼 = 𝑚𝑎𝑥𝑎∈𝐴

[

∫ 𝑣(𝑥, 𝑎)𝑝(𝑥)𝑑𝑥
]

≈ 𝑚𝑎𝑥𝑎∈𝐴

[

1
𝑏

𝐵
∑

𝑏=1
𝑣(𝑥𝑏, 𝑎)

]

(3)

where 𝑎 is the decision alternative from the 𝑎 set of 𝐴, 𝑥 is the
distinctions of interests, 𝑣(𝑥, 𝑏) is the value function that assigns a value
to each alternative outcome pair for 𝑎 given 𝑥 and realization 𝑏, and 𝑝(𝑥)
is the prior probability distribution of 𝑥.

Similarly, if we have perfect information regarding what value 𝑥
the distinction of interests will assume, we can choose the optimal
action for that value of x. The decision with information (DWI) is an
alternative that optimizes the expected value over the posterior.

𝐸𝑉𝑊 𝐼𝐼 = ∫ 𝑚𝑎𝑥𝑎∈𝐴[𝐸(𝑣(𝑥, 𝑎)|𝑦)]𝑝(𝑦)𝑑𝑦 ≈ 1
𝐵

𝐵
∑

𝑏=1
𝑚𝑎𝑥𝑎∈𝐴𝐸[𝑣(𝑥, 𝑎)|𝑦𝑏]

(4)

Where 𝑝(𝑦) is the marginal probability distribution over 𝑦.
Furthermore, the decision with perfect information (DWPI) can also

be determined in this decision-making context. For instance, in reser-
voir engineering, perfect information is the information that reveals
the true reservoir properties and impacts of the recovery mechanism.
Considering the CO2 injection operation problem as an example, the
EV with perfect information (EVWPI) is the maximum NPV for every
path based on prior realizations or distributions. Averaging these NPVs
over the paths would result in 𝐸𝑉𝑊 𝑃𝐼 . In this respect, every path has
its optimal decision with perfect information. The difference between
𝐸𝑉𝑊 𝑃𝐼 and 𝐸𝑉𝑊𝑂𝐼 is the value of perfect information (VOPI).

2.2. Utsira CO2 storage

Utsira is a saline reservoir located beneath the central and northern
North Sea as shown in Fig. 3. In this location, there are over 20
reservoir formations (producing or abandoned oil and gas fields and
geological formations such as saline aquifers). We used the reser-
voir dataset provided by the Norwegian Petroleum Directorate, which
consists of only top-surface and thickness maps and average rock prop-
erties. The Utsira Formation consists of weakly consolidated sandstone
with interlayered shale beds that act as baffle for the upward migration
of the injected CO2, and it has an average top-surface depth of approx-
imately 800 m below the seabed (within the range of 300–1400 m).
The storage capacity of the Utsira system is estimated to be 16 Gt, with
a prospectivity of 0.5–1.5 Gt (Andersen et al., 2014). The boundaries
of the aquifers were considered open. An open boundary means that

Fig. 3. Location of Utsira formation along the Norwegian Continental Shelf (left). Maps
of geomodel depths in meters (below the seabed) (right) (Allen et al., 2018).

there is communication between the aquifer and anything that lies
adjacent to it, be it another aquifer or the sea bottom. The correspond-
ing permeabilities in the Utsira geomodel range from 0.5–2.5 darcys.
Another study (Singh et al., 2010) suggested that permeability could be
within the range of 1.1–5 darcys. Furthermore, the NCS public datasets
contain no information about possible leakage through open boundaries
or the caprock. We acknowledge that these are important factors,
but despite these limitations, we decided to use the Utsira available
data to demonstrate the ADP framework and discuss its advantages
and potential benefits in future CCS operations. In our study, some
of the injected CO2 can leave the computational domain during the
simulation; these are considered as leaked volumes. Nonetheless, this
cannot result in CO2 leaking into the atmosphere; in most instances, it
will continue to migrate beyond the simulation model inside the rock
volume.

2.3. Rock physics model and 4D seismic data

The most favorable reservoir conditions for seismic monitoring can
be calculated by forward modeling of the seismic response to long-
term CO2 storage. This study includes a mathematical model that can
indicate the impact of fluid and mineral substitution and the effect of
porosity changes on the seismic properties of the reservoir, resulting
in subsequent variations in the seismic wave velocities of the rock.
To describe the changes in seismic velocity, we used the Gassmann
model (Gassmann, 1951), which is more effective than other models,
such as Krif’s, Duff Mindlin’s, and Wyllies’ time-average models because
of its simplicity and clarity (Nguyen and Nam, 2011). The Gassmann
model can be used to calculate seismic velocities using the bulk module,
which is ultra sensitive to fluid saturation variation (Han and Batzle,
2004).

The p-wave velocity of a saturated rock can be measured on the
bulk modulus, shear modulus 𝜇𝑠𝑎𝑡 and the density 𝜌𝑠𝑎𝑡 of the rock, and
the s-wave velocity depends on 𝜌 and 𝜇𝑠𝑎𝑡. The interaction was given
by Avseth et al. (2005).

𝑣𝑝 =

√

√

√

√

𝐾𝑠𝑎𝑡 +
4
3𝜇𝑠𝑎𝑡

𝜌𝑠𝑎𝑡
(5)

𝑣𝑠 =
√

𝜇𝑠𝑎𝑡
𝜌𝑠𝑎𝑡

(6)

Considering the porosity value 𝜙, the Gassmann equation is used to
calculate the bulk modulus 𝐾𝑠𝑎𝑡 as follows:

𝐾𝑠𝑎𝑡 = 𝐾𝑑 +
(1 −𝐾𝑑∕𝑘𝑚)2
𝜙
𝑘𝑓

+ 1−𝜙
𝑘𝑚

+ 𝑘𝑑
𝑘2𝑚

(7)

𝐾𝑑 , 𝐾𝑚, and 𝐾𝑓 are bulk moduli of dry rock, solid matrix, and pore
fluid, respectively. The shear modulus 𝜇𝑠𝑎𝑡 is dependent only on the
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shear modulus of dry rock 𝜇𝑑 at generally low frequencies (since the
shear modulus of a fluid is zero), considering the following:

𝜇𝑠𝑎𝑡 = 𝜇𝑑 (8)

The density of a saturated rock can be calculated as follows:

𝜌 = 𝜙𝜌𝑓 + (1 − 𝜙𝑚𝑖) (9)

where 𝜌𝑓 is the fluid density and 𝜙𝑚 is the mineral density.
Since porosity, density, and moduli including 𝐾𝑑 , 𝐾𝑚 and 𝜇𝑑 of the

core are known or measured before the core flooding experiment, we
can obtain 𝑉𝑝 after calculating the values of 𝐾𝑓 and 𝜌𝑓 of the core.

As there are two different pore fluids (water and CO2) in CO2-
injected reservoirs, one should further consider measuring the bulk
modulus 𝐾𝑓 and fluid density 𝜌𝑓 , yet part of the injected CO2 is
dissolved in the pore water. We considered only the pore fluid as a
mixture of pure water and pure CO2 for convenience, meaning that
𝑆CO2

+ 𝑆𝑤 = 1.
For the computation of 𝐾𝑓 , we use Wood’s equation (Wood, 1941):

1
𝐾𝑓

=
𝑆𝑤
𝐾𝑤

+
(1 − 𝑆𝑤)
𝐾CO2

(10)

where 𝐾𝑤 and 𝐾CO2
are the bulk moduli of water and CO2, respectively.

The bulk density of the fluids 𝑟ℎ𝑜𝑓 can be obtained as a weighted
average with respect to water saturation 𝑆𝑤:

𝜌𝑓 = 𝑆𝑤𝜌𝑤 + (1 − 𝑆𝑤)𝜌CO2
(11)

where 𝜌𝑤 and 𝜌CO2
are the densities of water and CO2, respectively.

As CO2 is injected into a reservoir, 𝑆𝑤 decreases to change the
values of 𝐾𝑓 and 𝜌𝑓 , and thus, also 𝑉𝑝. Therefore, we can estimate 𝑆𝑤
and 𝑆CO2

by monitoring 𝑉𝑝.
In the current study, we aimed to use seismic data to map the

CO2 plume within a reservoir. We assumed the elastic properties to be
homogeneous in the individual layers. Each layer has elastic properties
such as p-wave velocity 𝑉𝑝, s-wave velocity 𝑉𝑠, and bulk density 𝜌.
Furthermore, we assumed that the elastic properties when the rock is
saturated only by brine are known, and they are denoted as 𝑉 1

𝑃 , 𝑉 1
𝑆 ,

and 𝜌1. The new values of the elastic properties, after CO2 has partially
replaced the brine, are denoted as 𝑉 2

𝑃 , 𝑉 2
𝑆 , and 𝜌2.

For conventional Amplitude versus offset (AVO) analysis, the AVO
responses are approximated by linear trigonometric functions of the off-
set or angle. An approximate way to describe the relationship between
𝑅 and 𝐺 is given by Avseth et al. (2005):

𝑅(𝜃) ≈ 𝑅0 + 𝐺𝑠𝑖𝑛2𝜃 (12)

where 𝑅0 (intercept) and 𝐺 (curvature) are AVO attributes that depend
on elastic properties at a given point in the subsurface. Let 𝛥𝑉𝑝 =
𝑉𝑝2 − 𝑉𝑝1 and 𝑉𝑝𝑚 = (𝑉𝑝2 + 𝑉𝑝1)∕2 (arithmetic mean). We define similar
quantities of 𝑉𝑠 and 𝜌. Approximate relationships between the AVO
attributes and elastic properties were given by Avseth et al. (2005):

𝑅0 =
1
2

( 𝛥𝑉𝑝
𝛥𝑉𝑝𝑚

+
𝛥𝜌
𝛥𝜌𝑚

)

(13)

𝐺 = 1
2

𝛥𝑉𝑝
𝛥𝑉𝑝𝑚

− 2
(

𝑉𝑠
𝑉𝑝

)2 (

2
𝛥𝑉𝑠
𝛥𝑉𝑠𝑚

+
𝛥𝜌
𝛥𝜌𝑚

)

(14)

The AVO attributes for a given point can be estimated by recording the
seismic amplitudes at different reflection angles.

3. Value computation by ADP

We used an ADP method called the simulation-regression (or LSM)
method to calculate the expected value with imperfect information.
The simulation regression method involves Monte Carlo simulation and
regression for approximately calculating the conditional expected value
of given data.

Monte Carlo simulation:

1. Numerous possible realizations of state variables (𝑥𝑏) such as
porosity permeability, temperature, pressure and caprock eleva-
tion are generated using Monte Carlo simulation model.

2. Forward modeling is performed to generate modeled AVO at-
tributes data, with the addition of random noises generated from
the statistics measurements errors to the modeled AVO data.

3. For each decision alternative 𝑎, the 𝑁𝑃𝑉 (𝑥𝑏, 𝑎) is calculated.
4. The EVWOI is then calculated using the following equation:

𝐸𝑉𝑊𝑂𝐼 =
[

1
𝑏
∑𝐵

𝑏=1 𝑁𝑃𝑉 (𝑥𝑏, 𝑎∗𝐷𝑊𝑂𝐼 )
]

𝑎∗𝐷𝑊𝑂𝐼 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴
[

1
𝑏
∑𝐵

𝑏=1 𝑁𝑃𝑉 (𝑥𝑏, 𝑎)
]

Where 𝑎∗𝐷𝑊𝑂𝐼 is the optimal decision without information and
it is identical to each realization.

Backward induction

1. Starting recursively from the last decision point in time, to
estimate the expected NPV (ENPV) with alternative 𝑎 condi-
tional on the modeled AVO data, 𝐸𝑁𝑃𝑉 (𝑥, 𝑎)|𝑦, we regress
[𝑁𝑃𝑉1𝑗 , 𝑁𝑃𝑉2𝑗 ,… , 𝑁𝑃𝑉𝐵(𝑥, 𝑎)] on the AVO data. This proce-
dure is repeated for each of the alternatives.

2. The optimal scenario was then determined by selecting the
option that achieves the highest NPV value, given the known
information. The EVWII is then as follows:

𝐸𝑉𝑊 𝐼𝐼 = 1
𝑏
∑𝐵

𝑏=1 𝑁𝑃𝑉 (𝑥𝑏, 𝑎∗𝐷𝑊 𝐼𝐼 (𝑦
𝑏))

𝑎∗𝐷𝑊 𝐼𝐼 (𝑦
𝑏) = 𝑎𝑟𝑔 1

𝑏
∑𝐵

𝑏=1 𝑚𝑎𝑥𝑎∈𝐴𝐸[𝑁𝑃𝑉 (𝑥𝑏, 𝑎)|𝑦𝑏]

𝑎∗𝐷𝑊 𝐼𝐼 (𝑦
𝑏) is the optimal decision with given information 𝑦𝑏

3. Finally, the VOI is given by 𝑚𝑎𝑥 {0, 𝐸𝑉 𝑊 𝐼𝐼 − 𝐸𝑉𝑊𝑂𝐼}.

The process of ADP is further detailed in Hong et al. (2018a,b),
Longstaff and Schwartz (2001).

Since the dimensions of the time-lapse data are much larger than
the number of realizations, simple regression techniques, such as lin-
ear regression, do not work in this case. Instead, we used nonlinear
regression.

4. VOI for time-lapse seismic data in the utsira field CO2 storage

4.1. Decision problem definition

With regard to the problem setting of this example, we assumed
that the Utsira reservoir has one injection well at a depth of 1012 m;
then, an injection rate of 10 Mt per year is considered for a period of
40 years, followed by a 3000-year migration (post-injection) period.
Every flow simulation was performed using the open-source software
MRST-CO2 lab developed by Sintef (Lie, 2019). We considered two
options: continuing or stopping the injection. We then analyzed the
optimal time to stop the injection based on seismic surveys, which
have the highest value when detecting a potential leakage of CO2. This
analysis provides useful insights into the reservoir development plan,
and the decision affects learning occurring over time. A total of N=100
prior geological realizations were generated using a normal Gaussian
distribution. Here, there is uncertainty in permeability, porosity, tem-
perature, pressure, and caprock elevation. Following the case study
by Nilsen et al. (2015a), which tested the sensitivity of CO2 migration
to many input parameters, it was found that porosity differences would
influence the total volume of rock with which the plume comes into
contact. Increasing the thickness of the pore decreases the overall
volume of the rock occupied by the plume, reducing the migration so
that the plume does not move far. Permeability impacts the behavior
of the CO2 plume flow by changing its speed and direction, creating
a thinner plume that reaches further upslope. As shown in Fig. 4,
uncertain aquifer temperature and pressure may also affect the density
of CO2, which further impacts the plume migration and storage ability
estimates.
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Fig. 4. Impact of pressure and temperature gradient in CO2 storage capacity.

Table 1
Decision problem setting.
Injection period 60 years

Alternative Continue or stop the injection
at times {14,26,32,40,50,55}

Uncertainty/States Permeability, porosity, temperature,
pressure, and caprock elevation
(100 realizations)

Value derived from
the decision situation

Net present value

Information data AVO attributes

In addition, we let 𝑡 ∈ (14, 26, 32, 40, 50, 55), and denoted the time in
years when the decision of whether to entirely stop the CO2 injection
operation has to be made. We assumed that the injection cannot be
resumed once it has stopped. This indicates that the number of decision
points in this case is 1200 (𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 × 𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡 × 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠) (see
Table 1).

4.2. Modeling the data and the value outcomes

For each simulation and decision alternative, we extracted CO2
saturations for each cell in a particular area of the reservoir at different
times. This area is marked in blue in Fig. 5 and contains the injection
well. We were interested in the saturation at the top of the reservoir
to generate the AVO data simulation for each cell. Fig. 6 shows the
average saturation for the two scenarios at different times. On average,
CO2 plumes behave differently depending on the injection stop time.
However, the injection stopping times are not the only factors that
differ between the simulations; they also have different porosities,
permeabilities, caprock elevation, temperature, and pressure, which
affect the behavior of the plume.

Fig. 7 demonstrates the comparison between CO2 saturation at in-
jection well in two different alternatives (1 : stop injection at 14 years,
7 : stop injection at 60 years) for 100 realizations, one can point out
that significant uncertainties are involved.

To estimate the elastic properties and simulate the AVO data, we
followed what was presented in the previous section; to estimate the
elastic properties of the caprock and initial p- and s-wave velocities
at the top of the reservoir, we used well-log data from Dupuy et al.
(2017). The initial velocities of the top of the reservoir were estimated
by selecting the average value of the velocities over a thickness of
60 m into the reservoir. The estimated values correspond to the values
presented by Dupuy et al. (2017). We calculated the initial bulk density
of the reservoir for different cells with varying porosities using Eq. 12.
The initial velocities of the reservoir may also depend on porosity.
Following Dupuy et al. (2017) the authors found that the p-wave
velocity decreased rapidly when a small percentage of CO2 replaced
the brine and remained relatively constant for CO2 saturations greater

Fig. 5. Reservoir grid, with the area of the seismic survey marked in Blue.

Table 2
Brine, CO2 properties and rock frame in Utsira sands. The values are
derived from (Furre et al., 2017) and (Dupuy et al., 2017).
Properties Parameter Value

Utsira sands 𝐾𝑠 (GPa) 39.3
𝐺𝑠 (GPa) 44.8
𝜌𝑠 (kg/m3) 2664

Brine 𝐾𝑤 (GPa) 2.31
𝜌𝑤 (kg/m3) 1030
𝜂 (Pa.s) 0.00069

CO2 KCO2
(GPa) 0.08

𝜌CO2
(kg/m3) 700

𝜂CO2
(Pa.s) 0.000006

Rock frame 𝑚 1
𝜙 0.37
𝑘𝑜 (m2) 2 10–12
𝑘𝐷 (GPa) 2.56
𝐺𝐷 (GP) 8.5

than 50%. In addition, VS increases with SCO2, and a linear behavior
is shown by the S-wave velocities and bulk density. Variations in the
S-wave velocity are limited because VS fluid dependence is found only
in the density term (shear modulus is independent of fluid properties).
The properties of fluids and minerals are also derived from Dupuy et al.
(2017) as shown in Table 2.

Fig. 8 shows the average 𝑅0 attributes for the two different scenarios
at different times. Comparing this with Fig. 6, we see that the average
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Fig. 6. Average saturations at times 14 and 50 Years.

of 𝑅0 attributes offers a clear picture of the average saturation. Fig. 9
illustrates the average G attributes for the two different scenarios at
different times. Comparing this with Fig. 6, we notice that the average
𝐺 attributes provide an excellent picture of the average saturation.

To compute the VOI using ADP, the NPV for each decision alter-
native corresponding to each realization must be evaluated. As our
objective is to minimize excess leakage and preserve caprock integrity,
the simplest objective function would be measuring the amount of CO2
injected 𝑀𝑖𝑛𝑗 and penalizing the amount of CO2 𝑀𝑙𝑒𝑎𝑘 that has left the
aquifer through the open boundaries or by leakage through the caprock,
which can be associated with project costs and penalty fine if leakage
occurs. The NPV function will then conceptually be of the form of the
amount of money saved by storing CO2 minus both the project costs
and the penalty fine. For illustration purposes, $34/t CO2 would be

Fig. 8. Average 𝑅0 attributes at time 14 and 50 years.

deployed as the market price in the form of carbon credits to avoid
CO2 emissions. Also, $1.2/t CO2 would be utilized as a leakage-related
fine. The cost of the CO2 captured is in the range of $11/t CO2–$32/t
CO2 (Puerta-Ortega et al., 2013), this value was fixed at approximately
$25/t CO2 for our study (Sintef, 2019). Furthermore, $3.5/t CO2 was
set to cover the costs of construction, operation, and maintenance (Bock
et al., 2003). The cost estimate for storage in the onshore USA saline
formation is $2.8/t CO2 (IPCC, 2005), and the monitoring cost is in the
range of $0.2/t CO2. The net cost would be then $25/t CO2 + $3.5/t
CO2 + $2.8/t CO2 + $0.2/t CO2 = $31.5/t CO2; hence, the NPV can
be expressed as the following:

𝑁𝑃𝑉 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝐶𝑜𝑠𝑡 − 𝑃𝑒𝑛𝑎𝑙𝑡𝑦

Fig. 7. CO2 saturation profiles for all realizations: Alternatives 1 and 7.
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Fig. 9. Average 𝐺 attributes at time 14 and 50 years.

where,

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = $34∕𝑡CO2 × (𝑀𝑖𝑛𝑗 −𝑀𝑙𝑒𝑎𝑘)
𝐶𝑜𝑠𝑡 = $31.5∕𝑡CO2 ×𝑀𝑖𝑛𝑗

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = $1.2∕𝑡CO2 ×𝑀𝑙𝑒𝑎𝑘

4.3. Value regression using machine learning

To compute the VOI of time-lapse seismic data, we needed to regress
the NPVs on the measured AVO attributes for each decision alternative
and boundary conditions. We used an automated machine learning
(Auto ML) technique called the tree-based pipeline optimization tool
(TPOT). The TPOT was first proposed by Olson and Moore (2019).
In short, the TPOT optimizes various machine learning pipeline tech-
niques using stochastic search algorithms such as genetic programming.
To prevent and reduce overfitting in the machine learning training
process, we used 5-fold cross-validation. Cross-validation was run sep-
arately for each strategy. Fig. 10 shows a plot of the fitted values using
machine learning versus the observed values for the entire sample. A
high correlation was observed between the fitted and observed values,
with a correlation coefficient of approximately 0.94.

The DWOI is to finish the CO2 injection by the end of 26 years,
and the EVWOI is found to be $385.63 million. Moreover, the EVWPI
is estimated to be $891.48 million. This pegs the VOPI at $505.85
million. The highest EVWII corresponding to machine learning was
obtained through the Auto ML and provided an EVWII of $628.46
million, with a related VOI of $242.85 million. This result indicates that
it is uneconomical to proceed with any information-gathering activity
if it costs more than $242.85 million. This result also illustrates that
including the effect of future information and decisions could improve

Fig. 10. Plot of fitted values versus observed value using the 𝑅0 − 𝐺 data.

Fig. 11. Graph of PDFs against NPVs with respect to DWOI and DWII.

the EV by 62.97%, which is the percentage of the fraction of VOI to
EVWOI.

The probability density function (PDF) of NPVs associated with
DWOI and DWII are plotted in Fig. 11. From this figure, we notice
that the NPV resulting from the ML approach (DWII) is higher than
that of the DWOI. In this aspect, integrating the effects of future
information and decisions in decision-making would increase the ENPV.
Some realizations end up with a smaller NPV with DWII than the NPV
with DWOI, which may be due to a suboptimal decision, as the machine
learning algorithm is the approximate method, which, for some of the
path decisions, makes suboptimal choices.

The normalized frequency distribution (NFD) of the CO2 injection
is illustrated in Fig. 12. Based on these results, it is more worthwhile
to cease CO2 injection between 14 and 40 years (i.e., there is a 38%
and 32% chance that the CO2 injection mechanism should be stopped
at the end of 14 and 26 years, respectively). There is only a 22% less
chance that it is optimal to stop the same after 40 years. The specific
stop time depends mainly on the measured seismic data and geological
realization, including the uncertainty in permeability, porosity, caprock
elevation, pressure, and temperature.

4.4. Sensitivity analysis in AVO attributes

The next step is to assume the AVO attributes 𝑅0 and G to be noisy
and normally distributed:

(𝑅0, 𝐺)𝑇 ≈  (𝑚, 𝑇 )

where the mean 𝑚 is calculated using Eqs. 11 and 12. Following Eidsvik
et al. (2015), the covariance matrix corresponding to the one set for the
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Fig. 12. NFDs of the CO2 optimal stop injection time corresponding to the
decision-making with ML.

Fig. 13. Average 𝑅0 attributes at times 14 and 50 years.

likelihood model for AVO data was set to the following:

𝑇 = 𝑐
(

0.062 −0.7 × 0.06 × 0.17
−0.7 × 0.06 × 0.17 0.172

)

Where c > 0.
Figs. 13 and 14 demonstrate 𝑅0 and 𝐺 attributes, respectively, for

the two different scenarios. Comparing these with Fig. 6, which con-
tains the same simulations, we observe that the 𝑅0 attributes present
an effective picture of the saturation; however, there is significant noise
for the 𝑅0 attributes. This is expected as the variance is higher for 𝐺
than for 𝑅0.

Fig. 14. Average 𝐺 attributes at times 14 and 50 years.

By adding uncertainty in AVO attributes, the EVWII is estimated to
be $617.11 million. This makes the VOI $231.48 million. This result
indicates that it is uneconomical to proceed with any information-
gathering activity if it costs more than $231.48 million. This result also
illustrates that including the effect of future information and decisions
could improve the EV by 60.03%, which is the percentage of the
fraction of VOI to EVWOI.

The NFDs of the total lifetime corresponding to the decisions with
machine learning are displayed in Fig. 16. This result recommends
stopping CO2 injection at the end of years 14 and 26 (i.e., there is
more than a 60% chance that the CO2 injection mechanism should
be stopped after year 26). There is only less than 5% chance that it
will be optimal to stop the injection after 32 and 40 years. The specific
stop time depends mainly on the perturbed measured seismic data and
uncertainty of geological realization.

Fig. 15 shows a comparison of the PDFs corresponding to the
different methods. The NPV resulting from the ML approach (DWII)
is higher than that of the DWOI, as ML allows learning over time.
Moreover, some realizations resulted in a smaller NPV with ML than
with the DWOI. This may be due to suboptimal decisions.

4.4.1. Sensitivity analysis in carbon price
In both previous studies, we did not include uncertainties in the

carbon price, even though it significantly impacted the decision. There-
fore, in this work, the carbon price was treated as an uncertain param-
eter and considered in the regression analysis to determine the optimal
stopping time in CO2 injection monitoring.

The carbon price is modeled as Markovian processes and variants
over time. Hence, it is assumed to follow a stochastic process. There
are two commonly used stochastic models to describe uncertainties in
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Fig. 15. NFDs of the CO2 optimal stop injection time corresponding to the
decision-making with ML.

Fig. 16. Graph of PDFs against NPVs with respect to DWOI and DWII.

economic variables: the geometric Brownian motion (also known as
the random-walk model) and the Ornstein–Uhlenbeck (OU) stochastic
process (also known as the mean-reverting model; refer to Uhlenbeck
and Ornstein (1930) for more details).

A process ‘‘S’’ can be stochastically modeled using the Ornstein–
Uhlenbeck process as shown below:

𝑑𝑆𝑡 = 𝜃 (𝜇 − 𝑆𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 (15)

where 𝜃 is the speed of mean reversion, 𝜇 is the long-term mean which
the process reverts, 𝜎 is the measure of process volatility, and 𝑊𝑡 stands
for a Brownian motion, where 𝑑𝑊𝑡 ∼ 𝑁(0,

√

𝑑𝑡). This stochastic equa-
tion must be discretized to be implemented in the simulation. Gillespie
(1996) opined that the simulation of the process would work well only
when the discretized time 𝛥𝑡 is sufficiently small. Thus, the discretized
equation is as follows:

𝑆𝑡 = (𝑆𝑡−1 × 𝑒−𝜃𝛥𝑡) + 𝜇(1 − 𝑒−𝜃𝛥𝑡) +

[

𝜎 ×
√

1 − 𝑒−2𝜃𝛥𝑡
2𝜃

× 𝑑𝑊𝑡

]

(16)

However, if any commodity price, including carbon prices per unit,
or any other cost is modeled using the above discrete-time expression,
negative values might be generated. This is not realistic, because nega-
tive commodity prices never exist. To avoid this problem, we used the
lognormal distribution of commodity prices. Thus, in this context, the
logarithm of the modeled parameter, namely 𝜋𝑡 = 𝑙𝑛[𝑆𝑡], is assumed to
follow the mean-reverting process. This process can be mathematically
described as follows:

𝑑𝜋𝑡 = 𝜅[�̄� − 𝜋𝑡]𝑑𝑡 + 𝜎𝜋𝑑𝑧𝑡 (17)

where 𝜅 is the speed of mean reversion, �̄� is the long-term mean that
the logarithm of the variable reverts, 𝜎𝜋 stands for the volatility of
process, and 𝑑𝑧𝑡 describes the increments of standard Brownian motion.
Subsequently, to numerically solve for 𝜋𝑡, the stochastic equation is

Fig. 17. Historical of carbon prices from 1985 to 2021.

discretized as shown below (by assuming 𝑑𝑧𝑡 ∼ (0,
√

𝑑𝑡), where 𝑑𝑡 =
1 year).

𝜋𝑡 = (𝜋𝑡−1 × 𝑒−𝜅𝛥𝑡) + �̄�(1 − 𝑒−𝜅𝛥𝑡) +

(

𝜎𝜋 ×
√

1 − 𝑒−2𝜅𝛥𝑡
2𝜃

×𝑁(0, 1)

)

(18)

After calculating 𝜋𝑡, the value of 𝑆𝑡 cannot directly be obtained
using the equation of 𝑆𝑡 = 𝑒𝜋𝑡. This is due to the fact that half of the
variance is added to the mean of the lognormal distribution, namely
0.5 × 𝑣𝑎𝑟(𝜋𝑡), for the exponential of a normal distribution. Therefore,
half of the variance is deducted using the following equation:

𝑉 𝑎𝑟(𝜋𝑡) = [1 − 𝑒−𝜅𝛥𝑡] ×
𝜎𝜋2

2𝜅
(19)

To use this model, a decision must be made to determine its pa-
rameters. This process is known as calibration, and since the logarithm
of the variables is assumed to follow the mean-reverting process, the
least-squares regression, which was suggested by Smith (2010), was
conducted on the datasets of 𝜋𝑡 = 𝑙𝑛[𝑆𝑡]. To calibrate the OU parameters
for the modeling of the carbon credit price, a set of carbon credit price
data is required. For illustration, the annual carbon credit price data,
namely prices from 2008 to 2020 (considering only historical data),
which is available on the European Union Emissions Trading System
carbon market price European Union Emissions Trading System carbon
market price (2021), were used as displayed in Fig. 17.

To start the procedure of calibration, we used the following equa-
tions:

𝑥𝑡 = 𝜋𝑡 − 𝛥𝑡 = 𝑙𝑛[𝑃 𝑡 − 𝛥𝑡] (20)

𝑦𝑡 = 𝜋𝑡 = 𝑙𝑛[𝑃 𝑡] (21)

𝑦𝑡 = 𝑎𝑥𝑡 + 𝑏 + 𝛿 (22)

The OU parameters are estimated using the values of 𝑎 and 𝑏:

�̄� = 𝑏
1 − 𝑎

, 𝜅 = −𝑙𝑛 𝑎
𝛥𝑡

, 𝜎𝜋 = 𝜎𝛿

√

−2𝑙𝑛 𝑎
𝛥𝑡(1 − 𝑎2)

(23)

where 𝛿 is the approximation error introduced in the least-squares
regression, 𝜎𝛿 is the standard deviation of the approximation errors,
and 𝛥𝑡 is the difference in two time-steps. Refer to Smith (2010) for
more details regarding the derivation of the equations.

Using the parameters in Table 3, the carbon price corresponding to
the respective costs is modeled forward in time. Fig. 18 presents the
probabilistic model of the oil price.

By adding uncertainty in the carbon price, the DWOI provides
14 years CO2 injection time, and the EVWOI is found to be $432.50
million. Moreover, the highest EVWII corresponding to machine learn-
ing was $870.23 million, which also illustrates that including the effect
of future information and decisions improves the net present value. The
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Table 3
Values of parameters used in the mean-
reverting model.
Parameter Carbon price

Initial value 34
Equilibrium value 34
Volatility 𝜎𝛿 0.4811
Mean reversion speed, 𝜅 0.2647
𝑑𝑡, year 1

Fig. 18. Carbon prices modeled using the mean-reverting process.

Fig. 19. NFDs of the CO2 optimal stop injection time corresponding to the
decision-making with ML.

NFDs of the total lifetime corresponding to the decision with machine
learning are shown in Fig. 20. This result recommends stopping CO2
injection mostly at the end of years 14 or 32 (i.e., there is a more
than 32% chance that the CO2 injection mechanism should be stopped
after years 14 and 32). There is only a less than 10% chance that it is
optimal to stop the injection after 26, 40, 50, and 55 years. The specific
switch time depends mainly on the uncertainty of geological realization
and perturbed modeled AVO attributes, including uncertainty in carbon
prices.

Fig. 19 shows a comparison of the PDFs of NPVs associated with
DWOI and DWOII. The NPV resulting from the ML approach (DWII)
is higher than that of the DWOI, as ML allows learning over time.
Furthermore, some realizations resulted in a smaller NPV with ML than
with the DWOI. This may be due to suboptimal decisions.

5. Discussion and concluding remarks

We presented a VOI framework that can be used to compute the
VOI in a reservoir development plan. Specifically, we applied the
framework to evaluate the VOI of time-lapse seismic data in the context

Fig. 20. Graph of PDFs against NPVs with respect to DWOI and DWII.

of CO2 storage and the detection of potential CO2 leakage. A case has
been developed where, based on information from seismic surveys and
carbon credit prices, a decision-maker must decide on the best time to
continue or stop the CO2 injection. The reliability of a seismic survey
and carbon prices are likely to increase with time and the amount
of CO2 injected into the reservoir. In this context, the decision of
when to perform the survey becomes a trade-off between test reliability
and the amount of CO2 at risk of leakage. For this study, we used
the Utsira field CO2 storage atlas, which is located in the North Sea,
and considered a storage location for the full-scale Norwegian CCS
project. We used an approximate dynamic approach to estimate the
VOI for seismic surveys. Nevertheless, when a seismic survey is most
important, the VOI estimates do not provide an accurate response.
Notwithstanding, we may tentatively claim that in the injection phase,
a seismic survey should not be performed too early or too late. In
addition, the value of learning induced by machine learning may be
small and insignificant, as there is always an approximation error when
applying the machine learning regression function. In addition, the
closeness of a regression function to estimate the actual expected values
and the accuracy of this method mainly depend on the prior sample
of Monte Carlo, alternatives, and information, and, in some cases, the
model choice may not be material.

In conclusion, the VOI framework can generally be applied to
any type of spatial data and in the context of decisions other than
reservoir development. The framework can be evaluated as an interplay
between three key factors: the decision-making situation consisting of
alternatives and prospect values, the uncertain variables of interest
that affect the prospect values, and the data that informs about these
variables of interest. Moreover, the approximate dynamic methodology
can be applied to estimate the conditional expectation of prospect
values given the data outcomes, and thereby to evaluate the VOI. This
computational efficiency of ADP allows VOI computation in complex
decision situations where the rigorous Monte Carlo methodology is
intractable. However, the VOI is still quite uncertain, and to consis-
tently estimate the VOI in complex sequential decision cases, it might
be beneficial to increase the number of realizations or reduce the
number of alternatives in innovative ways. Therefore, a new procedure
and methodology based on clustering techniques, in combination with
proxy models, must be developed to reduce computational costs and
efficiently solve real-world sequential decision-making problems.
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