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Abstract
Fused deposition modeling is a modern rapid prototyping technique that is used for swiftly replicating concept modeling, 
physical modeling, and end-of-line manufacture. Precision parameter selection is crucial for generating high-quality products 
with excellent mechanical properties, such as tensile strength. This study looked at three essential process variables: infill 
density, extruder temperature, and print speed. The relationship between these parameters and tensile strength of printed 
polylactic acid components was investigated. Artificial neural network (ANN) and Fuzzy logic (FL) method are utilized 
to develop a prediction model. The test samples have been printed using a 3D forge Dreamer II FDM printing machine. In 
Minitab software, the response surface design of the Box–Behnken technique with 15 experimental sets was used to organize 
the trials. The results revealed that extruder temperature and print speed had a minor impact on tensile strength; however, 
infill density has a large impact. The ANN and FL models all predicted tensile strength with a high degree of accuracy, 
with maximum absolute percentage errors of 2.21%, and 3.29%, respectively. The model and the experimental data were 
found to be in good agreement, according to the findings. Furthermore, when compared to FL modeling, ANN models with 
arithmetical value indices were the best predictive model.
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1 Introduction

Additive manufacturing (AM) is a new technique that cre-
ates a product directly from a computer-aided design (CAD) 
model using a layer-based production approach. Flexible 
thermoplastic filament is extruded via a heated nozzle to 
construct components in fused deposition modeling (FDM), 
which is one of numerous 3D printing procedures. ABS, 
PLA, polycarbonate, Ultem, PEEK, and fiber-reinforced 

thermoplastics are among the thermoplastics and reinforced 
thermoplastic materials that may be produced with FDM. 
In a variety of industries, including as automotive, aviation, 
and medicine, FDM-produced components are progressively 
substituting traditional components [1–5]. The process var-
iables and their settings have a significant impact on the 
mechanical characteristics of FDM produced components. 
As a result, increasing the mechanical features of printed 
components requires analyzing the effects of input elements 
and anticipating results by using appropriate process settings 
[6–8].

Several scholarly studies were conducted to create a pre-
diction model and examine the impact of printing param-
eters on the mechanical qualities of FDM components. For 
instance, Pazhamannil and Govindan [9] built an artificial 
neural network to predict the tensile strength of FDM printed 
objects at various nozzle temperatures, layer thicknesses, 
and infill rates. Using 33 trials and result data, Manoharan 
et al. [10] used ANN to develop mathematical models for 
evaluating the tensile strength of FDM made PLA compo-
nents. The actual tensile strength results were compared to 
the anticipated values using the RSM, ANN, and ANOVA 

 * A. Johnson Santhosh 
 johnsonsanthosh@gmail.com; Johnson.antony@ju.edu.et

 Amanuel Diriba Tura 
 diriba.amanuel@ju.edu.et

 Hirpa G. Lemu 
 Hirpa.g.lemu@uis.no

 Hana Beyene Mamo 
 hanicho2102@gmail.com

1 Faculty of Mechanical Engineering, Jimma Institute 
of Technology Jimma University, Jimma, Ethiopia

2 Faculty of Science and Technology, University of Stavanger, 
Stavanger, Norway

http://orcid.org/0000-0002-5332-7424
http://orcid.org/0000-0001-9588-4707
http://orcid.org/0000-0002-3818-3477
http://orcid.org/0000-0003-4478-2131
http://crossmark.crossref.org/dialog/?doi=10.1007/s40964-022-00346-y&domain=pdf


 Progress in Additive Manufacturing

1 3

findings. According to Enemuoh et al. [11], infill density has 
a significant impact on the tensile strength of the FDM com-
ponent, followed by layer thickness, print speed, and infill 
pattern. Response surface approach is used by Srinivasan 
et al. [12] to predict and optimize the impact of process 
parameters (infill density, infill pattern, and layer thickness) 
on tensile strength in FDM-produced ABS components.

Gebisa and Lemu [13] investigated the impact of process 
factors such as air gap, raster angle, raster width, contour 
width, and contour number on the tensile properties of com-
ponents manufactured using the FDM technique and using 
ULTEM 9085 polymeric material. The raster angle, accord-
ing to their research, has a significant influence on tensile 
properties. Hsueh et al. [14] studied how FDM process 
factors affected the mechanical characteristics of PLA and 
PETG materials. The results reveal that when the printing 
temperature rises, the PLA and PETG materials' mechanical 
performance (tension, compression, and bending) increase. 
Furthermore, when manufacturing speed increases, the 
PLA material's mechanical behavior improves, whereas 
the mechanical properties of the PETG material decrease. 
Experimental testing and finite element analysis were uti-
lized by Patil et al. [15] to evaluate the tensile and flexural 
strength of FDM printed PLA components. Rayegani and 
Onwubolu [16] use differential evolution (DE) and the group 
method for data handling (GMDH) to predict and improve 
the relationship between FDM component tensile strength 
and process parameters (part alignment, raster angle, raster 
width, and air gap). The infill density and printing pattern 
had a substantial impact on the tensile strength of polylactic 
acid FDM printed components, according to Zhou et al. [17].

Byberg et al. [18] investigated the effects of layer align-
ment and build direction on the mechanical (tensile, com-
pression, and flexural) characteristics of ULTEM 9085 
thermoplastic. According to their results, the layer orienta-
tions and manufacturing directions have a significant impact 
on the characteristics of this polymer. The contribution of 
process variables (layer height and printing speed) on the 
mechanical characteristics of 3D-printed ABS composite 
was studied by Christiyan et al. [19]. They observed that 
the material's best tensile and flexural strength came from 
a combination of low manufacturing speed and thin layer 
height. Hsueh et al. [20] investigated the impact of print-
ing temperature and filling % on the mechanical parameters 
of FDM printed PLA components using tension and Shore 
D hardness examinations. Raising the filling proportion or 
printing temperature, according to their research, may sig-
nificantly improve the material's tensile Young's modulus, 
ultimate strength, elongation, and Shore hardness.

Pre-processing variables, according to the literature, 
have a considerable impact on the mechanical properties of 
FDM-produced components. It was also critical to look at 
the combined effect of FDM parameters on the mechanical 

characteristics of the components that were created. As a 
result, three crucial pre-processing factors (infill density, 
extruder temperature, and printing speed) for obtaining high 
tensile strength product have been selected. Furthermore, the 
ANN, and Fl approach were used to develop predicted data.

2  Materials and methods

2.1  3D printer and materials

A Flash Forge Guider II 3D printer was used to create the 
specimens in this study. The build envelope of the printer 
measures 280 × 250 × 300  mm3 and can generate compo-
nents with 0.2 mm accuracy. The 3D printer's character-
istics are shown in Table 1. The study employed polylactic 
acid (PLA) since it is a strong thermoplastic and a typical 
FDM material. PLA is a biodegradable polymer filament 
with a higher tensile strength than most existing polymers 
but lower ductility [21]. The mechanical properties of the 
printing materials are shown in Table 2.

Table 1  The specification of the Flash Forge Guider II 3D printer

Name Guider II

Number of extruder 1
Print technology Fused filament fabrication (FFF)
Build volume 280 × 250 × 300 mm
Layer resolution 0.05–0.4 mm
Build accuracy  ± 0.2 mm
Positioning accuracy Z axis 0.0025 mm; XY axis 0.011 mm
Filament diameter 1.75 mm (± 0.07)
Nozzle diameter 0.4 mm
Nozzle temperature 210–250 °C
Platform temperature 0–120 °C
Print speed 10–200 mm/s

Table 2  The specification of the PLA printing materials

Properties Specification

Color Bumblebee yellow
Wire diameter (mm) 1.75 ± 0.05
Recommended printing temperature (°C) 185–205
Recommended printing speed (mm/s) 30–90
Extrusion temperature (°C) 190–210
Bed platform temperature (°C) 25–80
Density (g/cm3) 1.25
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2.2  Experimental design

According to the literature, process parameters have a 
significant influence on the mechanical qualities of FDM-
produced components. Therefore, examining the combined 
effects of FDM settings on the mechanical qualities of the 
generated components was critical. As a result, three pro-
cess variables were chosen as research input variables: infill 
density, extruder temperature, and printing speed with three 
levels. The values of each element were adjusted according 
to machine manufacturer recommendations. Table 3 lists the 
process parameters and their ranges that were explored dur-
ing this study. The other parameters are kept at their default 
settings. Table 4 shows the response surface design of the 
Box–Behnken approach, which was used in a total of 15 
tests.

2.3  Specimen fabrication

The test specimen was 3D modeled using CATIA V5 soft-
ware, as per the criteria. The stereo lithography (STL) for-
mat is used to save the CAD file, which is then transferred 
to the slicer for separation into the needed number of layers. 

Using flash print slicing software, the printing settings are 
also included. The slicer then transforms the STL file to a 
G-code file, which the printers use to begin layer-by-layer 
fabrication of the specimen. The ASTM D638- I standard 
[22] was used to create the tensile test specimens. The sam-
ples prepared according to this standard have dimensions of 
165 × 13 × 3.2 mm in length, width, and thickness.

2.4  Experimental procedure

The UNITEK-94100 universal testing machine (UTM) 
(Dhara Agency, Gujarat, India) was used to assess the ten-
sile strength of PLA specimens conditioned according to 
the ASTM D638 standard. The top grip moved at a constant 
pace of 2.5 mm/min, with a maximum load of 100 kN and 
a 5 Hz signal sampling rate. The built-in program recorded 
the ultimate tensile strength, elongation, and force load data. 
When the specimen exceeds 2.5% elongation or breaks, the 
test is terminated. The experimental results of the tensile 
strength are presented in Table 4.

2.5  Artificial neural network (ANN) modeling

ANN is computer programs that are designed after the 
organic neural networks that make up a brain. ANN is 
used to model nonlinear conditions and predict output 
values using training data. An ANN structure network 
consists of input and output layers, as well as multiple 
hidden layer neurons [23]. The neural network has three 
layers: an input layer, an output (or target) layer, and 
a hidden layer in between. Between the input and out-
put layers is a layer known as the hidden layer, where 

Table 3  Process parameters and their range for experiments

S. no. Process parameters Units Levels

− 1 0 1

1 Infill density % 20 60 100
2 Extruder temp °C 190 200 210
3 Print speed mm/s 50 100 150

Table 4  Categorical Box–
Behnken experimental design 
matrix and measured responses

Standard order Run order Input parameters Output response

Infill density 
(%)

Extruder temp. 
(°C)

Print speed 
(mm/s)

UTS (MPa)

13 1 60 210 150 34.79
14 2 60 210 50 32.62
6 3 100 200 150 43.39
11 4 60 200 100 36.67
4 5 100 210 100 45.27
10 6 20 200 150 33.00
8 7 100 200 50 41.00
5 8 100 190 100 43.48
7 9 20 200 50 35.68
1 10 60 200 100 36.81
15 11 20 210 100 36.50
12 12 60 190 150 30.24
9 13 20 190 100 34.84
2 14 60 200 100 36.61
3 15 60 190 50 32.89
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artificial neurons receive a series of weighted inputs and 
generate an output using an activation function. ANN 
uses samples of data rather than the whole data set avail-
able in the system for quick prediction, saving money 
and time in the process. ANN can easily be replaced by 
existing data analysis systems [24].

The ANN model was used to train and evaluate data 
models for 3D printing. MATLAB was used to generate an 
input layer with three inputs, a hidden layer with feed-for-
ward conditions applied, and a single output layer (Fig. 1). 
The network was trained using the experimental data from 
Table 5. The ANN design and learning variables utilized in 
this study are shown in Fig. 1.

2.6  Fuzzy logic modeling

The idea of modeling parameters when the values are 
unknown or linguistic variables are used instead of numeri-
cal values is known as fuzzy logic. This hypothesis of idea 
was for the first time developed by Zdeh [25]. Fuzzy mod-
eling is an effective approach for dealing with such chal-
lenges in the conditions outlined, especially for anticipating 
outcomes. There are many other kinds of fuzzy membership 
functions, such as triangular, trapezoidal, and Gaussian, that 
may be used with almost any mathematical operator [26, 
27]. In the present study, three inputs, namely infill density, 
extruder temperature, and printing speed are used with one 
output, i.e., ultimate tensile strength (UTS). The triangle 
membership function, as described by Eq. (1), explored for 
these parameters. The fuzzy set A can be seen in this equa-
tion, along with the fuzzy number x. A(x) is the membership 

function, and the factors l, m, and u signify the lowest, most 
likely, and major possible rates, respectively.

Figure 2 illustrates the membership functions of all the 
parameters of this study including the output and inputs of 
the proposed fuzzy modeling using fuzzy inference system 
(FIS). For each of the inputs, a three-degree triangular fuzzy 
membership function with three linguistic standards like L 
(Low), M (Medium), and h (High) are deliberated. A seven-
degree triangle fuzzified function is proposed for the output, 
with Very Low (VL), Low (L), Low Medium (LM), Medium 
(M), High Medium (HM), High (H), and Very High (VH) 
as options. A fuzzy inference system (FIS) is presented to 

(1)𝜇A(x) =

⎧
⎪⎨⎪⎩

(x−l)

(m−l)
, l ≤ x < m,

(u−x)

(u−m)
, m < x ≤ u,

0, otherwise

Fig. 1  Structure of the neural 
network

Table 5  Learning parameters designated for ANN

Type of network Feed-forward neural network

Training function Train Levenberg–Marquardt(LM)
Adaption learning function LEARNGD (Gradient descent)
Performance function Mean square error
Network topology 3-10-1
Transfer function TANSIG
Number of hidden layers 1
Number of neurons 10
Training method Back-propagation
Number of epochs 1000
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develop the fuzzy model, and its properties are provided in 
Table 6.

Figure 3 illustrates the triangular membership functions 
of all the parameters of this study including the inputs and 
output of the proposed fuzzy modeling using FIS. In the 
fuzzy logic modeling, fifteen If–Then rules were considered.

3  Results and discussion

3.1  Investigation of effect of process parameters 
on tensile strength

Analysis of variance (ANOVA) was used to examine the 
results for tensile characteristics in order to explore the 
major factors that influence the quality measures. Factors 
with a very modest probability (Prob > F value) less than 
0.05 are considered significant in the ANOVA table, whereas 
factors with a probability (Prob > F value) larger than 0.1 are 
considered inconsequential. Furthermore, larger F values 
and lower P values have a greater impact on the performance 
characteristic derived from designed process parameters. 
Table 7 shows the ANOVA of each process parameters on 
ultimate tensile strength of PLA parts. According to the 
ANOVA results (Table 7), the combinations of infill density 

and extruder temperature are insignificant factors affecting 
the final tensile strength of PLA parts.

Figure 4 shows the main effects plot for UTS, which dem-
onstrates the fluctuation of UTS with the inputs. This main 
effect graph for the average value of UTS shows that the UTS 
declines with increasing infill density, but then dramatically 
increases after 60%. Extruder temperature has less effect on 
UTS, and UTS increases somewhat as extruder temperature 
rises, but at around 200 °C, it begins to decline slightly. In 
other circumstances, UTS increased as print speed increases, 
but at around 100 mm/s, it begins to decrease.

The contour plots showing the influence of each of the 
two input variables on ultimate tensile strength are shown in 
Fig. 5a–c. Blue colored zones represent very low and low-
level values, green zones show low-medium, medium, and 
high-medium values, while yellow zones represent high and 
very high volumes in these graphs. Figure 5a exhibits the 
impact of infill density (ID) and extruder temperature (ET) 
on the UTS, and the contour plots in the figure illustrate that 
higher UTS values were obtained at increased infill density 
and extruder temperature. Figure 5b depicts the impact of 
ID and printing speed (PS) on UTS. It can be seen from 
these interaction graphs that infill density has a consider-
able impact on UTS, while printing speed has a little impact 
on UTS. In a similar fashion, the impact of ET and PS on 
UTS is depicted in Fig. 5c, which shows that greater UTS 
values were achieved at 100 mm/s printing speed and 200 °C 
extrudes temperature.

3.2  Results of artificial neural network modeling

When the error, or the difference between the expected 
and predicted output, is less than a defined upper bound, 
or when the number of epochs exceeds a specified 
threshold, the ANN is stopped training. A score near to 
1 implies a strong connection, while a value close to 0 
shows a random relation. Figure 6 illustrates the 78-iter-
ation regression graphs developed by artificial neural 
networks. The regression plots obtained reveal that for 
training, testing, validation, and total data, 0.99901, 1, 

Fig. 2  Layout of the designed 
Fuzzy Logic

Table 6  Properties of the proposed FIS

FIS type Mamdani

Inputs; outputs 3; 1
Input membership function Triangular
Output membership function Triangular
Weights of rules 1
Number of rules 15
And method Min
Implication method Min
Aggregation method Max
Defuzzification method Centroid
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1, and 0.99918, respectively, suggesting the best fitness 
after repeated training. This indicates that the ANN mod-
el's anticipated outcomes appear to be in line with the 

experimental data. The ANN model worked adequately, 
as shown in Table 8, with average percentage error of 
0.40% from the experimental results, demonstrating its 

Fig. 3  Triangular MFs of a Infill density b Extruder temperature c Print speed and d Tensile strength

Table 7  ANOVA for ultimate 
tensile strength of PLA parts

A is infill density, B is extruder temperature, and C is print speed

Source DF Adj SS Adj MS F value P value

Regression 9 276.258 30.6954 324.52 0.000
A 1 1.505 1.5045 15.91 0.010 Significant
B 1 4.581 4.5809 48.43 0.001 Significant
C 1 1.992 1.9921 21.06 0.006 Significant
A*A 1 74.079 74.0785 783.17 0.000 Significant
B*B 1 4.911 4.9114 51.92 0.001 Significant
C*C 1 31.231 31.2310 330.18 0.000 Significant
A*B 1 0.004 0.0042 0.04 0.841 Not Significant
A*C 1 6.426 6.4262 67.94 0.000 Significant
B*C 1 5.808 5.8081 61.40 0.001 Significant
Error 5 0.473 0.0946
Lack-of-fit 3 0.452 0.1506 14.30 0.066
Pure error 2 0.021 0.0105
Total 14 276.731
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Fig. 4  Main effect plots of 
UTS for means with all process 
parameters

(a) (b)

(c)

Fig. 5  Contour plots of a infill density (ID) and extruder temperature (ET), b infill density and printing speed (PS) and c extruder temperature 
and printing speed with ultimate tensile strength
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Fig. 6  Regression plots for ultimate tensile strength obtained using artificial neural networks

Table 8  Comparative evaluation 
of predictive models

Exp. trials Experimental 
results of UTS

ANN model FL model

Predicted results % errors Predicted results % errors

4 34.79 34.7898 0.001 35.3 − 1.47
5 32.62 32.6479 − 0.09 32.7 − 0.25
6 43.39 43.3666 0.05 42.8 1.36
7 36.67 36.6974 − 0.07 37.8 − 3.08
8 45.27 44.8277 0.98 44.1 2.58
9 33.00 32.8279 0.52 32.7 0.91
10 41.00 40.752 0.61 40.3 1.71
11 43.48 43.1152 0.83 42.8 1.56
12 35.68 35.6601 0.01 35.3 1.07
13 36.81 36.6974 − 0.31 37.8 − 2.69
14 36.50 36.5263 − 0.07 35.3 3.29
15 30.24 30.9083 − 2.21 31 − 2.51
16 34.84 34.8451 − 0.01 35.3 − 1.32
17 36.61 36.6974 − 0.24 37.8 − 3.25
18 32.89 32.8872 0.01 32.7 0.58
Average percentage error 0.40 1.84
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potential for future usage. Sample number 12 exception-
ally over predicts with maximum absolute deviation of 
2.21%.

3.3  Results of fuzzy logic modeling

Based on the data in Table 6, the MATLAB R2019a pro-
gram was used to obtain the outcomes of the suggested 
fuzzy model. Instead of dealing with a fuzzy number 
using Eq. (2), the FIS output should be defuzzified to 
offer a number as the final result after modeling. In this 
equation, x* is the output crisp number, xi is the center 
point of each component, µ (xi) is the ith rule’s level, 
and n is the number of the processed rules in the fuzzy 
model. After computation using this equation (Eq. (2)), 
the produced outputs are compared with the experimental 
results.

The fuzzy modeling of the rules is shown in Fig. 7, 
where the experimental results, fuzzy predicted data from 
FIS, and the percentage error between each pair of data 
are given in Table 8. The largest inaccuracy of results 
given in the table is related to sample number 11, which 
underpredicts by 3.29%. Such results clearly demonstrate 
that the fuzzy modeling system is a very effective strategy 
that can be utilized when there is no precise data for the 
inputs or when performing the experimental analysis is 
challenging.

(2)x∗ =

∑n

i=1
xi.�

�
xi
�

∑n

i=1
�
�
xi
�

3.4  Comparative evaluation of the predictive 
models

To compare the ANN, and FL the predictive result and the 
experimental results of UTS are analyzed by their aver-
age percentage error of the responses. Error percentage for 
ANN, and FL were computed individually by comparing 
the predicted values with the test results using Eq. (3). The 
average percentage error of the ANN model was 0.40%, 
and the FL model was 1.84%, as shown in Table 8. This 
demonstrates that the ANN model was the most accurate 
or best predicting model technique. Figure 8 compares the 
plotted output data from experimental, ANN modeling, and 
FL modeling.

4  Conclusions

Applications of artificial neural networks, and fuzzy logic 
techniques to predict tensile strength for parts produced from 
PLA material using fused deposition modeling are proposed 
in this paper. All of the investigations were carried out using 
a 15 Box–Behnken response surface design to alter the input 
parameters at different levels. The relationship between input 
parameters and output result were studied using analysis of 
variance and main effect plots. The results of the experi-
ments were used to train and test the developed models. 
The artificial neural network and fuzzy logic model were 
all designed using the MATLAB R2019a neural toolbox and 

(3)%Error =
Actual − predicted

Actual
× 100

Fig. 7  Rules set for the given 
data
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fuzzy toolbox, respectively. The models' capability to predict 
was measured in percentage error. The following findings 
may be taken from the research:

• According to the ANOVA results, the combinations of 
infill density and extruder temperature are insignificant 
factors that affect the ultimate tensile strength of PLA 
parts.

• Infill density has the greatest impact on ultimate tensile 
strength while indicates that extruder temperature and 
printing speed have little effect on UTS, according to the 
main effect plots.

• According to 3D and contour plots, the highest Ultimate 
tensile strength were achieved at higher infill density, 
higher extruder temperature, and printing speed in the 
center.

• The ANN and FL models can accurately predict tensile 
strength with average percentage errors of 0.40, and 1.84 
respectively.

• The ANN and FL models exhibit a close correlation 
between expected and experimental outcomes with less 
than 5% error. When compared to FL modeling, ANN 
models with arithmetical value indices were likewise the 
most predictive.

Acknowledgements The authors also acknowledge Jimma Institute of 
Technology's, Faculty of Mechanical Engineering for providing experi-
mental facilities and financial assistance for this study.

Author contributions ADT and HBM: Conceptualization; ADT and 
AJS: methodology; ADT: software; ADT and HGL: validation; ADT 
and HBM: formal analysis; ADT and HBM: investigation; ADT and 
HGL: resources; ADT and HGL: data curation; ADT: writing—
original draft preparation; HGL: writing—review and editing; HGL: 

visualization; AJS and HGL: supervision; HBM: project administra-
tion; HGL: funding acquisition. All authors have read and agreed to 
the published version of the manuscript.

Data availability Not applicable.

Declarations 

Conflicts of interest The authors declare no conflict of interest.

References

 1. Gebisa AW, Lemu HG (2018) Investigating effects of Fused-
deposition modeling (FDM) processing parameters on flexural 
properties of ULTEM 9085 using designed experiment. Materials 
(Basel) 11:1–23

 2. Peterson AM (2019) Review of acrylonitrile butadiene styrene in 
fused filament fabrication: a plastics engineering-focused perspec-
tive. Addit Manuf 27:363–371

 3. Tura AD, Mamo HB, Jelila YD, Lemu HG (2021) Experimental 
investigation and ANN prediction for part quality improvement 
of fused deposition modeling parts. IOP Conf Ser Mater Sci Eng. 
https:// doi. org/ 10. 1088/ 1757- 899X/ 1201/1/ 012031/ meta

 4. Motaparti KP, Taylor G, Leu MC, Chandrashekhara K, Castle J, 
Matlack M (2017) Experimental investigation of effects of build 
parameters on flexural properties in fused deposition modelling 
parts. Virtual Phys Prototyp 2017(12):1–14

 5. Dong G, Wijaya G, Tang Y, Zhao YF (2018) Optimizing process 
parameters of fused deposition modeling by Taguchi method for 
the fabrication of lattice structures. Addit Manuf 19:62–72

 6. LaleganiDezaki M, Ariffin MK, Serjouei A, Zolfagharian A, 
Hatami S, Bodaghi M (2021) Influence of infill patterns generated 
by CAD and FDM 3D printer on surface roughness and tensile 
strength properties. Appl Sci 11(16):7272

 7. Hsueh MH, Lai CJ, Chung CF, Wang SH, Huang WC, Pan CY 
et al (2021) Effect of printing parameters on the tensile proper-
ties of 3d-printed polylactic acid (Pla) based on fused deposition 
modeling. Polymers (Basel) 13(14):2387

Fig. 8  Comparison of experi-
mental and predicted outputs

https://doi.org/10.1088/1757-899X/1201/1/012031/meta


Progress in Additive Manufacturing 

1 3

 8. Algarni M, Ghazali S (2021) Comparative study of the sensitivity 
of pla, abs, peek, and petg’s mechanical properties to fdm printing 
process parameters. Curr Comput-Aided Drug Des 11(8):995

 9. Pazhamannil RV, Govindan P, Sooraj P (2019) Prediction of 
the tensile strength of polylactic acid fused deposition models 
using artificial neural network technique. Mater Today Proc 
46(18):9187–9193

 10. Manoharan K, Chockalingam K, Ram SS (2020) Prediction of ten-
sile strength in fused deposition modeling process using artificial 
neural network technique. AIP Conf Proc 2311(1):080012

 11. Enemuoh EU, Duginski S, Feyen C, Menta VG (2021) Effect of 
process parameters on energy consumption, physical, and mechan-
ical properties of fused deposition modeling. Polymers (Basel) 
13(15):2406

 12. Srinivasan R, Pridhar T, Ramprasath LS, Charan NS, Ruban W 
(2020) Prediction of tensile strength in FDM printed ABS parts 
using response surface methodology (RSM). Mater Today Proc 
[Internet] 27:1827–1832

 13. Gebisa AW, Lemu HG (2019) Influence of 3D printing FDM 
process parameters on tensile property of ultem 9085. Procedia 
Manuf 30:33–338

 14. Hsueh MH, Lai CJ, Wang SH, Zeng YS, Hsieh CH, Pan CY et al 
(2021) Effect of printing parameters on the thermal and mechani-
cal properties of 3d-printed pla and petg, using fused deposition 
modeling. Polymers (Basel) 13(11):1758

 15. Patil C, Sonawane PD, Naik M, Thakur DG (2020) Finite element 
analysis of flexural test of additively manufactured components 
fabricated by fused deposition modelling. AIP Conf Proc. https:// 
doi. org/ 10. 1063/5. 00343 06

 16. Rayegani F, Onwubolu GC (2014) Fused deposition modelling 
(fdm) process parameter prediction and optimization using group 
method for data handling (gmdh) and differential evolution (de). 
Int J Adv Manuf Technol 73:509–519

 17. Zhou X, Hsieh SJ, Ting CC (2018) Modelling and estimation of 
tensile behaviour of polylactic acid parts manufactured by fused 
deposition modelling using finite element analysis and knowledge-
based library. Virtual Phys Prototyp 13:177–190

 18. Byberg KI, Gebisa AW, Lemu HG (2018) Mechanical properties 
of ULTEM 9085 material processed by fused deposition mod-
eling. Polym Test 72:335–347

 19. Christiyan KGJ, Chandrasekhar U, Venkateswarlu K (2016) A 
study on the influence of process parameters on the Mechanical 
Properties of 3D printed ABS composite. IOP Conf Ser Mater Sci 
Eng. https:// doi. org/ 10. 1088/ 1757- 899X/ 114/1/ 012109

 20. Hsueh MH, Lai CJ, Liu KY, Chung CF, Wang SH, Pan CY et al 
(2021) Effects of printing temperature and filling percentage on 
the mechanical behavior of fused deposition molding technology 
components for 3d printing. Polymers (Basel) 13(17):2910

 21. Boschetto A, Giordano V, Veniali F (2013) Surface roughness 
prediction in fused deposition modelling by neural networks. Int 
J Adv Manuf Technol 67:2727–2742

 22. ASTM D638-03 Standard Test Method for Tensile Properties of 
Plastics. https:// www. astm. org/ d0638- 03. html

 23. Santhosh AJ, Tura AD, Jiregna IT, Gemechu WF, Ashok N, Pon-
nusamy M (2021) Optimization of CNC turning parameters using 
face centred CCD approach in RSM and ANN-genetic algorithm 
for AISI 4340 alloy steel. Results Eng 11:100251

 24. Mahmood MA, Visan AI, Ristoscu C, Mihailescu IN (2021) Arti-
ficial neural network algorithms for 3D printing. Materials (Basel) 
14(1):163

 25. Zadeh LA (1999) Fuzzy sets as a basis for a theory of possibility. 
Fuzzy Sets Syst 100:9–34

 26 Ouellet V, Mocq J, El Adlouni S-E, Krause S (2021) Improve 
performance and robustness of knowledge-based FUZZY LOGIC 
habitat models. Environ Model Softw [Internet] 144:105138

 27. Basic A, Peko I, Krolo J, Bagavac P (2021) Fuzzy logic modeling 
of ultimate tensile strength and cost in fused deposition modeling 
process of additive manufacturing. In: International Conference 
Mechanical Technologies and Structural Materials, pp 1–10

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); 
author self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement and 
applicable law.

https://doi.org/10.1063/5.0034306
https://doi.org/10.1063/5.0034306
https://doi.org/10.1088/1757-899X/114/1/012109
https://www.astm.org/d0638-03.html

	Prediction of tensile strength in fused deposition modeling process using artificial neural network and fuzzy logic
	Abstract
	1 Introduction
	2 Materials and methods
	2.1 3D printer and materials
	2.2 Experimental design
	2.3 Specimen fabrication
	2.4 Experimental procedure
	2.5 Artificial neural network (ANN) modeling
	2.6 Fuzzy logic modeling

	3 Results and discussion
	3.1 Investigation of effect of process parameters on tensile strength
	3.2 Results of artificial neural network modeling
	3.3 Results of fuzzy logic modeling
	3.4 Comparative evaluation of the predictive models

	4 Conclusions
	Acknowledgements 
	References




