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1 Introduction

The notion of symmetry is central to our understanding of the laws of nature. Since
more than a century ago, symmetries have been linked to conservation laws by the cele-
brated first Noether theorem; see ref. [1] for a historical account of the subject. Numerous
generalizations of the original approach due to Noether, based on local symmetries1 of a
variational problem, have emerged throughout the years and proven of importance to both

1In mathematical literature, it is common to use the term “local symmetry” for a set of transformations
depending only on the values of the spacetime coordinates, fields and a finite number of their derivatives
at the given spacetime point. This is not to be confused with the notion of local symmetry in classical and
quantum field theory where the parameters of the transformation are, in contrast to global symmetries,
functions of the spacetime coordinates.
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mathematics and physics. Thus, for instance, the concepts of a local symmetry and a local
conservation law have been lifted to the more general partial differential equation setting,
and their relationship therein has been established [2, 3].

About thirty years ago, the study of generalized local conservation laws, based on
higher-rank antisymmetric tensor currents, was initiated in parallel in the mathematics [4,
5] and physics [6–8] communities. These have become known as “lower-degree conservation
laws,” owing to their description in terms of closed differential forms of degree lower than
D − 1 in a spacetime of dimension D; closed (D − 1)-forms are Hodge-dual to the vector
currents of ordinary conservation laws. The concept of a lower-degree conservation law is, in
fact, closely related to that of “nonlocal symmetry” of a partial differential equation, whose
history goes further back, at least to mid-1980s [9–11], see also ref. [12] for a pedagogical
introduction aimed at practical applications.

In the last decade or so, lower-degree symmetries have been attracting growing inter-
est due to their importance for understanding the ordered phases of quantum matter, see
refs. [13–15] for some early works. In the high-energy physics community, it is now common
to use the term “higher-form” rather than “lower-degree” symmetry, which will be used
consistently throughout the rest of this paper. In particular the work of Gaiotto et al. [14]
anticipated much of the subsequent developments, including the perimeter law for Wilson
surfaces as a criterion for spontaneous breaking of higher-form symmetries [16], higher-form
generalizations of the Goldstone [16, 17] and Coleman-Mermin-Wagner [17] theorems, and
the importance of mixed ’t Hooft anomalies for Landau’s classification of phase transi-
tions [18]. Thanks to the fact that local conservation laws govern small departures from
thermodynamic equilibrium, continuous higher-form symmetries have found natural appli-
cations to magnetohydrodynamics [19–22] and to the effective field theory (EFT) descrip-
tion of systems with topological defects [23, 24]. Finally, it has been pointed out [25, 26]
that the spectrum of Nambu-Goldstone (NG) bosons arising from spontaneously broken
higher-form symmetries in nonrelativistic systems features subtleties, analogous to those
found for spontaneously broken 0-form symmetries, see refs. [27–29] for recent reviews.

Remarkably, this still does not exhaust the spectrum of possible realizations of sym-
metry. The actions of symmetries of different degrees may become entangled, in which case
they can no longer by captured by a mere group. A more general mathematical structure
is required, dubbed a “higher group,” see ref. [30] for a nontechnical introduction. Discrete
higher-group symmetries were observed for instance in refs. [31–34]. Continuous 2-group
symmetries were investigated thoroughly by Córdova et al. [35, 36]. To date, two distinct
mechanisms how a continuous higher-group symmetry may arise have been identified. In
ref. [35] it was shown how a global 2-group symmetry descends from a mixed ’t Hooft
anomaly of ordinary 0-form symmetries once part of the symmetry has been gauged. A
higher-group symmetry may also arise from a topological coupling of otherwise discon-
nected sectors possessing symmetries of different degrees; this is the case for the 3-group
symmetry of axion electrodynamics [37, 38], see also the very recent ref. [39].

The goal of this paper is to show that there is another, apparently unrelated, mech-
anism whereby a continuous higher-group symmetry may emerge. I take the low-energy
perspective, assuming that to start with, a given many-body system features spontaneously
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broken continuous p-form symmetry, and its low-energy physics is governed by a bosonic
EFT for the ensuing NG mode(s). It has been noticed previously that for p-form U(1)
symmetries, this automatically implies the existence of an emergent dual (D− p− 2)-form
symmetry that has a mixed ’t Hooft anomaly with the original p-form symmetry [14, 18],
see also ref. [40] for a similar observation in case of a finite Abelian symmetry group. The
new element added here is that when at least two such pairs of symmetries are present, one
can construct new composite, topologically conserved currents. In principle, the topologi-
cal currents of the system then span a whole hierarchy of symmetries of different degrees,
which turns out to naturally support a higher-group symmetry structure. This higher-
group structure can be probed by coupling the system to a set of background gauge fields,
one for each conserved current.

1.1 Some notation and terminology, and the main idea

Throughout the text, I use systematically the language of differential forms. This allows one
among others to put under the same umbrella of “p-form superfluids” systems as different
as ordinary, s-wave superfluids and Maxwell’s electrodynamics. It also underlines the
geometric nature of all the symmetries involved, and considerably simplifies the notation
without having to choose a specific spacetime dimension, D. Readers not familiar with
differential forms may find an elementary introduction at a junior graduate level in ref. [41].
A careful discussion of p-form superfluids without differential forms, including their higher-
form symmetries, was given recently in ref. [42].

For the sake of transparency, at the cost of cluttering somewhat the notation, I will
indicate the degrees of all differential forms using superscripts. Thus, a p-form ω will be
denoted by ω(p); the only exception will be made for 0-form variables, for which the explicit
superscript (0) will be dropped. It will frequently be more economic to indicate the codegree
of the form. Hence, ω[p] will denote a form of codegree p, or equivalently of degree D − p.
The Hodge star operator will be defined in a chosen coordinate basis by

?(dxµ1 ∧ · · · ∧ dxµp) ≡
√
g

(D − p)!g
µ1ν1 · · · gµpνpεν1···νDdxνp+1 ∧ · · · ∧ dxνD , (1.1)

where gµν is the spacetime metric and g without subscripts its determinant, and εµ1···µD is
the fully antisymmetric Levi-Civita symbol defined so that ε1···D = 1. On the few occasions
it will be needed, I will implicitly assume that the spacetime metric has Euclidean signature
so that the square of the Hodge star operator is fixed by

? ?ω(p) = (−1)p(D−p)ω(p). (1.2)

A continuous p-form symmetry will be represented by a (p+1)-form current J (p+1). In the
language of differential forms, current conservation takes the neat form

d†J (p+1) = 0. (1.3)

Here d† is the codifferential, defined by

d†ω(p) ≡ (−1)Dp+D+1 ? d ?ω(p). (1.4)
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It is common to drop the overall sign and express the conservation law (1.3) as the closed-
ness of the Hodge-dual current, ? J (p+1).

For the purposes of this paper, I will distinguish two different types of conserved
currents, which I will call “Noether currents” and “topological currents.” The conservation
of Noether currents requires the equations of motion for the dynamical degrees of freedom
to hold. Topological currents, on the other hand, are conserved identically. It is only
the Noether currents that are in a correspondence with (local) symmetries of the action
functional. Topological currents do not generate any transformation on the local field
variables [43], and are in fact considered trivial in the literature on symmetries of partial
differential equations [2]. There may, however, be finite-energy extended field configurations
that carry an integral charge derived from such currents. This is typically the case when a
symmetry of the system is spontaneously broken and the corresponding vacuum manifold
has nontrivial topology, hence the term “topological currents.”

The distinction between Noether and topological currents is not sharp. Indeed, it
is usually possible to make a given Noether current trivially conserved by introducing a
suitable dual field variable. This idea lies behind the concept of “potential symmetries” of
partial differential equations [44–46]. In the low-energy EFT perspective employed in this
paper, I will however assume that certain symmetry of the quantum many-body system
at hand is given, and is (partially or completely) spontaneously broken in the ground
state. This given symmetry is responsible for the Noether currents of the EFT. There are
standard techniques for the construction of effective actions once the symmetry-breaking
pattern is known, at least for compact internal 0-form symmetries [47–50]. I will moreover
assume that there are no other Noether currents in the effective theory; the existence of
such currents would indicate that the symmetry-breaking pattern has not been identified
properly. On top of the given Noether currents, the EFT may possess additional, accidental
conserved currents; these are by construction topological.

To summarize, the separation between Noether and topological currents is fixed once
the given symmetry is known and the local degrees of freedom (NG bosons) are chosen.
The conservation laws for Noether currents then naturally include the equations of motion
for the NG bosons. Whatever topological currents are present, are emergent and descend
directly from the geometry of the coset space on which the EFT lives.

I now finally get to the main idea of the paper. Suppose that our system possesses
two conserved currents, J (p+1) and K(q+1), corresponding respectively to a p-form and a
q-form symmetry. Then the exterior product of their Hodge duals, (? J (p+1)) ∧ (?K(q+1)),
is necessarily closed. Provided that p + q > D − 2, it represents the Hodge dual of a new
conserved current, corresponding to a new (p+ q −D + 1)-form symmetry. I will refer to
J (p+1) and K(q+1) as “primitive currents” and to ?[(? J (p+1)) ∧ (?K(q+1))] as a “second-
order composite current.” This observation is trivially extended to the statement that all
Hodge-dual currents of the system span a subalgebra of the Grassmann algebra of closed
differential forms on the spacetime manifold. The corresponding set of conserved currents
splits into primitive, second- and possibly higher-order composite currents.

The possibility of existence of composite currents places a constraint on the degrees of
primitive currents one starts with. In concrete applications, Noether currents are usually
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1-form or 2-form, making it impossible to construct new composite currents out of Noether
currents alone in D ≥ 4 dimensions. On the other hand, recalling that a spontaneously
broken p-form U(1) symmetry is associated with an emergent dual (D − p− 2)-form sym-
metry, we see that it is natural to construct composite currents out of primitive topological
currents, which are as a rule of high degree. The typical picture one should expect is there-
fore an EFT with a given spontaneously broken symmetry, on top of which there exists a
hierarchy of emergent symmetries, built upon the Grassmann algebra of closed Hodge-dual
topological currents.2

1.2 Outline of the paper

The rest of the paper starts with a brief introduction to higher-form symmetries in sec-
tion 2. While a comprehensive but accessible review of the subject seems to be missing in
the literature, it is definitely not the intention to provide such a review here. Instead, I
will focus largely on the classical aspects of continuous higher-form symmetries that will be
needed later. It is hopefully clear from the discussion above that the existence of topolog-
ically conserved currents is an essential ingredient of the mechanism behind higher-group
symmetries, proposed in this paper. Section 3 elaborates on when such currents can be
expected, and how they depend on the geometry of the coset space of the given (Noether)
symmetry. It turns out that for compact internal symmetries, there is a class of topological
currents described by de Rham cohomology of the coset space, that is the same geometric
structure that underlies the topological Wess-Zumino terms [53, 54].

The core of the paper comprises the following four sections. In section 4 I first work
out the details in the simplest possible setting, where all the given Noether symmetries are
assumed to be Abelian, and only second-order composite currents are taken into account.
Using the coupling of conserved currents to background gauge fields and the associated
background gauge invariance, I demonstrate that a nontrivial higher-group structure is a
necessary consequence of the existence of composite currents in the theory. Section 5 shows
how the formalism generalizes to the whole hierarchy of composite currents; for the sake of
notational simplicity it is assumed here that all the given symmetries are 0-form. Further
insight into the nature of the new, composite symmetries is gained by switching to the
dual picture where the roles of the given Noether symmetries and their dual topological
symmetries are interchanged; this is discussed in section 6. Finally, section 7 presents the
rather straightforward generalization that allows the given symmetries to be non-Abelian.
Some further comments are deferred to the concluding section 8.

2 Short review of higher-form symmetries

It is customary to take the symmetry as a starting point and thence deduce the existence of
a conservation law via Noether’s theorem. For higher-form symmetries, the question how
to formulate the action of the symmetry on a given set of local field variables is however

2Such a hierarchy of emergent higher-form symmetries, describing conservation of topological defects in
crystalline solids, was considered recently by Nissinen [51]. An idea similar in spirit lies also behind the
discussion of 2-group symmetries in six-dimensional quantum field theories in ref. [52].
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subtle, and will only be touched superficially in section 6. For the time being, I will take
the pragmatic approach and start by postulating the existence of a conservation law for a
(p+ 1)-form current,

d†J (p+1) = 0, or equivalently ∂ν(√gJνµ1···µp) = 0, (2.1)

where Jµ1···µp+1 is the fully antisymmetric contravariant tensor whose components are ob-
tained from those of the (p+ 1)-form current J (p+1) by raising with the metric.

Writing eq. (2.1) as d ? J (p+1) = 0, one immediately arrives at the trivial corollary that
for any closed form ω(q) where 0 ≤ q ≤ p, one has

d(? J (p+1) ∧ ω(q)) = 0. (2.2)

Hence, any p-form symmetry implies via the associated conservation law (2.1) the existence
of an infinite number of lower-form local conservation laws. A simple example is provided
by Maxwell’s theory without matter in flat Minkowski spacetime, where the sourceless
Maxwell equation d†F (2) = 0 gives a 1-form conservation law.3 Leaving for the moment
the differential form notation, we find as an immediate consequence that for any scalar
function φ, ∂µ(Fµν∂νφ) = 0. The existence of such induced conservation laws is rarely
mentioned, but has been noted explicitly for instance in refs. [16, 57].

2.1 Integral charges

Associated with the local conservation law (2.1) there is an integral charge, obtained by
integrating the Hodge-dual current ? J (p+1) over a surface of codimension p+ 1,

Q(ΣD−p−1) ≡
∫

ΣD−p−1
? J (p+1). (2.3)

The surface ΣD−p−1 should typically be compact and without boundary, but may also be
noncompact provided the asymptotic behavior of the current at infinity is constrained by
a suitable boundary condition. Indeed, the general definition of the integral charge (2.3)
reduces to its textbook version valid for ordinary, 0-form symmetries if one takes ΣD−1 as
the spatial manifold — whether the latter is compact or not — embedded in the spacetime
as a fixed time slice. The textbook conservation of integral charge then amounts to the
invariance of Q(ΣD−1) under shifts of the spatial manifold in time.

Using the more geometric language of differential forms highlights the fact that charge
conservation is a much more robust, topological concept. Namely, the charge Q(ΣD−p−1)
is invariant under any smooth deformation of the surface ΣD−p−1, as long as the conser-
vation law (2.1) holds in the whole codimension-p domain swept by the surface during the
deformation. The charge can only change if the surface crosses a source of the current,
which can be thought of as a p-dimensional defect on which the p-form d†J (p+1) is nonzero.
In the same spirit, the integral charge Q(ΣD−p−1) necessarily vanishes in case ΣD−p−1 is

3A larger set of nonlocal symmetries and conservation laws of Maxwell’s equations in three and four
spacetime dimensions was identified in refs. [55, 56].
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closed and forms the boundary of some codimension-p domain. Nonzero charge can only
arise if ΣD−p−1 belongs to a nontrivial homology class, or is noncompact.

For a simple illustration of how the integral charge depends on the choice of surface to
integrate over, refer again to Maxwell’s theory without matter, for simplicity taken in the
flat D = 4 Minkowski spacetime. Here F (2) is the conserved current of a 1-form symmetry,
so the integral charge is obtained in accord with eq. (2.3) by integrating ?F (2) over some
two-dimensional surface Σ2. If we choose Σ2 as a closed spatial surface, then Q(Σ2) mea-
sures the electric flux through Σ2. For this reason, the 1-form symmetry associated with
the conservation of F (2) is referred to as “electric.” The electric flux is indeed invariant un-
der smooth deformations of the surface Σ2 thanks to the usual Gauss law of electrostatics.
In line with the general discussion above, Q(Σ2) can in fact only be nonzero if Σ2 belongs
to a nontrivial homology class, which is effectively the case when some electric charge is
present in the domain bounded by the surface. If, on the other hand, we choose Σ2 as the
worldsheet of some fixed closed spatial curve γ1, then Q(Σ2) measures the circulation of the
magnetic field around γ1. In a static electromagnetic field, this is likewise invariant under
smooth deformations of the curve. It can only be nonzero if γ1 belongs to a nontrivial
homology class, which is effectively the case when the curve is threaded by electric current,
in accord with Ampère’s law.

Before concluding the discussion of integral charges, I will briefly mention an interesting
nonrelativistic generalization of 1-form symmetries, put forward recently by Seiberg [58].
In this generalization, the 1-form divergence d†J (2) vanishes only when acting on spatial
vectors. This still makes it possible to define a conserved integral charge by integration over
(spatial) codimension-1 spatial manifolds. Such charges are, however, no longer topological,
that is, they change upon a deformation of the manifold.

2.2 Charged objects

The topological property of the integral charge Q(ΣD−p−1) can be promoted to an alterna-
tive definition of a global symmetry. In case an integral representation of the charge such as
eq. (2.3) exists, this alternative definition is clearly equivalent to the current conservation
property (2.1). Its advantage is, however, that it is more general. Namely, this line of
reasoning leads to the construction of topological operators, realizing the symmetry on the
Hilbert space of a given quantum system. The existence of such operators can be used to
define even discrete higher-form symmetries, where no local conserved current exists. For
a nice review of the implementation of higher-form symmetries via quantum topological
operators, the reader may consult ref. [59].

Going back to continuous higher-form symmetries, the charge operator (2.3) gener-
ates the symmetry transformations on the given quantum system. For ordinary, 0-form
symmetries, the transformations act naturally on local fields, and by extension on any
nonlocal operator constructed out of local fields. The hallmark of a p-form symmetry is
that the corresponding “elementary” charged objects4 are operators with support on some

4The terminology does not seem to be quite settled, and instead of “charged object” the term “defect”
or simply “operator” is sometimes used.
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p-dimensional manifold Cp, which parallels the above observation that the classical source
of the current J (p+1) can be thought of as a p-dimensional defect. The action of the charge
operator (2.3) on the object is nontrivial if the surfaces ΣD−p−1 and Cp are topologically
linked in the spacetime manifold.

For a simple example, recall that for the electric 1-form symmetry of Maxwell’s theory
without matter in D = 4 dimensions, the charge (2.3) measures electric flux when defined
on a spatial surface Σ2. The corresponding charged object can be taken as the worldline
of an electrically charged point particle that lies inside the domain bounded by Σ2. In the
language of gauge theory, the charged operator is the Wilson line defined on the worldline
of the particle.

Maxwell’s theory, with or without matter, has another higher-form symmetry, as-
sociated with the Bianchi identity dF (2) = 0. The corresponding conserved current is
proportional to ?F (2). This is a topological (D − 3)-form symmetry referred to as “mag-
netic.” To see why, one just needs to restrict to D = 4 and observe that for a spatial
surface Σ2, the charge (2.3) measures magnetic flux through Σ2. Intuitively, one can follow
the analogy with the electric 1-form symmetry and conclude that the charged object now
is the worldline of a magnetically charged particle (monopole) surrounded by the surface
Σ2. In the language of gauge theory, this corresponds to a ’t Hooft line. This example
highlights yet another important difference between Noether and topological symmetries.
Namely, since there are no local dynamical degrees of freedom carrying magnetic charge
in Maxwell’s theory, the magnetic monopole should not be viewed as a dynamical object,
but rather as a static defect whose insertion modifies the Hilbert space of the theory.

2.3 Coupling to background gauge fields

One practically useful way to probe the symmetry of a given field theory is to couple its
conserved currents to a set of background gauge fields. In the context of spontaneously bro-
ken 0-form internal symmetries, this strategy has been developed into a versatile tool with
far-reaching applications to particle phenomenology. The ensuing background gauge invari-
ance of the generating functional provides among others an efficient way of constructing an
effective action for NG bosons of the broken symmetry [60, 61]. Here I will use it primarily
to identify the higher-group symmetry in effective theories with composite currents.

A p-form symmetry is associated with a (p+ 1)-form current J (p+1) and thus in turn
with a (p + 1)-form background gauge field A(p+1). Noether symmetries can be gauged
using standard techniques, barring possible obstructions such as ’t Hooft anomalies. Once
the gauged action, S[A], is known, the gauged Noether currents can be identified from

? J (p+1) ≡ δS

δA(p+1) , (2.4)

where the variational derivative with respect to the gauge field is implicitly understood to
act on the action from the left. In bosonic theories, the dependence of the action on the
background gauge fields for Noether symmetries is typically nonlinear, and accordingly the
current (2.4) is modified in the presence of gauge fields. Provided that all the symmetries
of the given theory have been identified correctly, the divergence of the gauged currents

– 8 –



J
H
E
P
0
4
(
2
0
2
1
)
0
4
5

should either vanish or be a local function of the background fields alone. In the latter
case, one speaks of the ’t Hooft anomaly. By construction, whenever the current defined
by eq. (2.4) is anomalous, its divergence corresponds to the consistent anomaly [62].

In contrast to Noether currents, topological currents can be coupled to their respective
gauge fields strictly linearly, by adding a new term to the action,5

S ⊃
∫
A(p+1) ∧ ? J (p+1). (2.5)

This suggests the approach I will take to construct effective actions for theories with a
higher-group symmetry. Namely, I will assume that the Noether symmetries whose spon-
taneous breakdown dictates the dynamical degrees of freedom of the low-energy EFT have
already been gauged. Then I will identify a set of trivially conserved currents and gauge
them with respect to the Noether symmetries. In the last step, I will add a coupling of
these gauged topological currents to their own background gauge fields via eq. (2.5).

3 Emergent topological currents from cohomology

As was stressed in the introduction, the mechanism leading to higher-group symmetry,
proposed in this paper, relies essentially on the presence of topological currents in the given
field theory. It is, in fact, not a problem to find systems with a trivially conserved current.
Indeed, any field theory that contains, among other degrees of freedom, a real scalar field
φ possesses such a current, namely ? dφ. This guarantees a trivial local conservation law,
but does not in itself guarantee the existence of a corresponding global symmetry. For the
latter, the spectrum of the system should exhibit states of finite energy carrying nonzero
integral charge (2.3).

It was already observed in section 2.1 that the integral charge can only be nonzero
when the surface ΣD−p−1 belongs to a nontrivial homology class. By the same token,
the Hodge-dual current ? J (p+1) should belong to a nontrivial cohomology class of closed
(p+ 1)-forms. Here the cohomology is not understood in terms of differential forms on the
spacetime manifold, but rather in terms of differential forms on the jet space of the given
field theory, that is, forms whose coefficients are local functions of the fields and a finite
number of their derivatives. The “characteristic cohomology” of nontrivial forms on the
jet space, closed modulo the equations of motion, was analyzed in refs. [6, 8] using BRST
techniques, assuming flat Euclidean spacetime and a star-shaped target space from which
the fields take their values. However, in systems with a spontaneously broken symmetry,
trivially conserved currents yielding excitations that carry topological charge arise, as a
rule, from the nontrivial topology of the vacuum manifold. A comprehensive classification
of such topological currents does not seem to be available in the literature. Here I would
like to point out that there is a class of topological currents that can be constructed by
exploiting well-known mathematical results for the so-called Wess-Zumino (WZ) terms.

5Throughout the paper, integration is implicitly assumed — unless explicitly stated otherwise — to be
performed over the D-dimensional spacetime manifold, which is for the sake of simplicity assumed to have
no boundary.
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p = 1 p = 2 p = 3 p = 4 p = 5
D = 1 θ-term WZ term — — —
D = 2 1-form current θ-term WZ term — —
D = 3 2-form current 1-form current θ-term WZ term —
D = 4 3-form current 2-form current 1-form current θ-term WZ term

Table 1. Physical interpretation of p-form cohomology generators depending on the spacetime
dimension D. Only generators relevant in D ≤ 4 dimensions are included. In general, a cohomology
generator of degree p on the coset space G/H pulled back to D > p spacetime dimensions gives a
topologically conserved (D − p)-form current, and hence a (D − p− 1)-form symmetry.

The possible presence of WZ terms in the action of the given field theory has attracted
attention for decades, thanks to their relevance for particle phenomenology, close relation
to anomalies and, last but not least, their intrinsic appeal. A geometric construction of
gauged WZ terms in a scope and form relevant for strong nuclear interactions was advanced
nearly four decades ago [63–66], soon after Witten elucidated their geometric nature [67].
Quite recently, the intricate topological properties of WZ and other topological terms have
become subject to a renewed scrutiny [68–71]. It has however been known already since
the 1990s that in systems where a continuous global compact (0-form) symmetry group
G is spontaneously broken to its subgroup H, possible WZ terms in the low-energy EFT
for the ensuing NG bosons are determined by de Rham cohomology of the coset space
G/H, modulo some assumptions on the topology of the coset space and of the spacetime
manifold [53, 54].

The cohomology generators, constructed explicitly in ref. [54], can play multiple roles
depending on the dimension of spacetime they are pulled back to. Namely, a given non-
trivial closed p-form ω(p) on the coset space G/H produces a WZ term when pulled back
to a spacetime of dimension D = p−1. It can however also be used to construct a so-called
θ-term in D = p dimensions, that is a surface term in the action that can only acquire a
nonzero value for topologically nontrivial field configurations. Finally, in D > p dimen-
sions, the cohomology generator ω(p) can be interpreted as the Hodge dual of a topological
(D − p)-form current. As such, it gives rise to a (D − p− 1)-form symmetry. The various
physical interpretations of cohomology generators with p ≤ 5 — which are those relevant
in D ≤ 4 spacetime dimensions — are summarized for the reader’s convenience in table 1.

At first sight, it looks like we have actually managed to classify topological currents,
at least in the context of low-energy EFTs for NG bosons. The above observation should,
however, be taken with a grain of salt. All the cohomology generators responsible for a WZ
term in the action are by construction invariant under the full symmetry group G. Hence,
they give a likewise G-invariant topological current in spacetimes of higher dimension. This
is obviously not the most general possibility, and one can imagine currents that transform
in some nontrivial representation of the global symmetry. To classify such topological
currents, or even find a set of physically relevant examples, remains an interesting open
question. On the other hand, the good news is that the usual homotopy constraints, which
are required for the consistency of the higher-dimensional formulation of WZ terms yet have
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drawn some criticism [68], are now absent. Once the p-form cohomology generator ω(p) is
interpreted as a (D− p)-form current in D dimensions, there is no need to impose a priori
constraints on the topology of the coset space G/H or the spacetime.

3.1 Explicit construction of topological currents

I will now review some explicit results for cohomology generators on a coset space G/H. I
will only include cohomology generators with p ≤ 3, which are those that produce topologi-
cal currents in D ≤ 4 spacetime dimensions; explicit expressions for cohomology generators
up to p = 5 are given in refs. [54, 72]. I will at first assume that G is compact, semisimple
and simply connected, and that H is connected.

Some further notation will be needed. The generators of G will be denoted as Ti,j,....
In order to distinguish broken and unbroken generators, the Latin indices a, b, . . . will be
used for the former and the Greek indices α, β, . . . for the latter. The Lie algebra of G is
then fixed by the structure constants fkij such that

[Ti, Tj ] = fkijTk. (3.1)

A set of background gauge fields for the (0-form) symmetry group G is encoded in the 1-
form connection A(1), taking values in the Lie algebra of G. Under a gauge transformation
with coordinate-dependent parameter g ∈ G, it transforms as usual as

A(1) g−→ gA(1)g−1 + gdg−1, (3.2)

with the corresponding G-covariant field strength 2-form being

F (2) ≡ dA(1) +A(1) ∧A(1). (3.3)

The NG boson degrees of freedom of the coset space G/H are introduced via a matrix-
valued field U . It is customary to think of this as U = e−π

aTa , where πa are the individual
NG fields, but this amounts to a specific choice of coordinates on the coset space and will
not be necessary. All that matters is that U parametrizes the coset space G/H in a chosen
faithful representation of G.

The fundamental object, in terms of which the cohomology generators are constructed,
is the Lie-algebra-valued (gauged) Maurer-Cartan (MC) 1-form,

θ(1) ≡ U−1(d +A(1))U ≡ θ(1)iTi. (3.4)

As is well-known from the coset construction of effective Lagrangians [47, 48], the broken
part of the MC form, φ(1) ≡ θ(1)aTa, transforms covariantly under the whole symmetry
group G and constitutes the basic building block for the construction of G-invariant opera-
tors. The unbroken part of the MC form, V (1) ≡ θ(1)αTα, transforms as a 1-form connection
taking values in the Lie algebra of H. It gives rise to the field strength 2-form

W (2) ≡ dV (1) + V (1) ∧ V (1) ≡W (2)αTα. (3.5)
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A similar field strength 2-form can be composed out of the whole MC form θ(1). This leads
to the so-called MC structure equation,

dθ(1) + θ(1) ∧ θ(1) = U−1F (2)U ≡ F̄ (2) ≡ F̄ (2)iTi. (3.6)

We now have all the pieces needed to spell out the results for cohomology generators
of degree p ≤ 3. In fact, with the assumptions that G is simply connected and H is
connected, it follows at once that the coset space G/H is simply connected (see for instance
the overview of homotopy groups in physics in ref. [73]). The Hurewicz theorem [74] then
in turn implies that the first cohomology group of G/H is trivial. Cohomology generators
of degree 2 take the general form

Ω(2) = −cαW (2)α = 1
2cαf

α
bcθ

(1)b ∧ θ(1)c − cαF̄ (2)α. (3.7)

Here the set of constants cα is required to satisfy the H-invariance condition

cαf
α
βγ = 0, (3.8)

which implies that for compact Lie groups, degree-2 cohomology generators on the coset
space G/H are in a one-to-one correspondence with U(1) factors of H.

In case of p = 3, the cohomology generators are parametrized by constant symmetric
G-invariant tensors dij that vanish on the unbroken subgroup, that is dαβ = 0. They are
most easily expressed in a matrix form by noting that for compact semisimple groups G,
the most general invariant tensor dij reads

dij =
∑
σ

dσ trσ(TiTj), (3.9)

where the index σ labels different simple factors of G and the trace trσ is done over the
σ-th simple component. The possible values of the coefficients dσ are further restricted by
the requirement that dαβ = 0. The corresponding cohomology generator of degree 3 then
takes the form

Ω(3) =
∑
σ

dσ trσ
[1

3φ
(1) ∧ φ(1) ∧ φ(1) − (W (2) + F̄ (2)) ∧ φ(1)

]
. (3.10)

As a matter of fact, this 3-form is only closed in the absence of background gauge fields,
or when only gauge fields for the unbroken subgroup H are present. Background fields for
the broken generators present an obstruction to gauging the form, closely related to the
chiral anomaly in D = 2 spacetime dimensions and expressed by the relation

dΩ(3) = −
∑
σ

dσ trσ(F (2) ∧ F (2)). (3.11)

A similar obstruction appears for all cohomology generators of odd degrees. In the interpre-
tation of cohomology generators in terms of topological currents, it signals the impossibility
to construct a current that is simultaneously conserved and gauge-invariant. When the
topological current is coupled to a new background gauge field of its own, the obstruction
manifests itself by a mixed ’t Hooft anomaly in the generating functional of the theory.

– 12 –



J
H
E
P
0
4
(
2
0
2
1
)
0
4
5

primitive decomposable
p = 1 Ω(1) —
p = 2 Ω(2) Ω(1) ∧ Ω(1)

p = 3 Ω(3) Ω(1) ∧ Ω(1) ∧ Ω(1), Ω(1) ∧ Ω(2)

Table 2. Schematic list of possibilities how to construct cohomology generators of a given degree.
In general, the list of possible decomposable cohomology generators is determined by the partitions
of the cohomology degree: degree-p cohomology includes all decomposable generators of the form
Ω(p1) ∧ Ω(p2) ∧ · · · such that 1 ≤ p1 ≤ p2 ≤ · · · and p1 + p2 + · · · = p.

Let us now see what happens when the coset space G/H is not simply connected [54].
This may happen when G is not simply connected or H is not connected. The first cohomol-
ogy group of G/H may then contain nontrivial generators Ω(1); the simplest example is fully
broken U(1) symmetry with the de Rham cohomology group H1

dR(G/H) ∼= H1
dR(S1) ∼= R.

In general, a G-covariant 1-form assumes the form

Ω(1) = eaθ
(1)a. (3.12)

The conditions of G-invariance and closedness require the coefficient ea to satisfy eafaij = 0.
For compact symmetry groups, only U(1) factors of G can therefore give rise to degree-1
cohomology generators. It follows from eq. (3.6) that

dΩ(1) = eaF
(2)a, (3.13)

implying the same type of anomaly as for the 3-form (3.10).
With the degree-1 generators at hand, it is now possible to form additional generators

of higher cohomology groups through products of lower-degree generators; generators that
can or cannot be decomposed into (linear combinations of) exterior products of lower-
degree generators are referred to respectively as “decomposable” and “primitive” [54]. The
structure of possible generators of cohomology groups with p ≤ 3 is reviewed in table 2.

To summarize the contents of this section, theories with a spontaneously broken com-
pact 0-form symmetry group G may possess G-invariant topological currents, classified by
the de Rham cohomology of the coset space G/H. When pulled back to a spacetime of
dimension D > p, a cohomology generator of degree p gives rise to a topologically con-
served (D − p)-form current, and accordingly a (D − p− 1)-form symmetry. Cohomology
generators of degree 1 typically arise from U(1) factors of the symmetry group. Primitive
generators of degree 2 and 3 are given respectively by eqs. (3.7) and (3.10). Additional,
decomposable generators of higher degrees may be constructed as shown in table 2.

Out of the topological currents, included explicitly in table 1, those in the p = 1 column
are featured in Abelian superfluids, as already observed in ref. [14]. The case of p = 2 and
D = 3 or D = 4, giving rise respectively to a 0-form or a 1-form symmetry, is relevant
for (anti)ferromagnets, where G/H = SU(2)/U(1) so that H2

dR(G/H) ∼= H2
dR(S2) ∼= R.

The corresponding 1-form or 2-form current counts (anti)ferromagnetic skyrmions. This
is a special case of the general class of CPN models, mentioned in ref. [35]. Finally, the
1-form current corresponding to p = 3 and D = 4 appears for instance as the skyrmion
number current in the low-energy EFT of quantum chromodynamics (QCD), as pointed
out in ref. [18], and is seen via anomaly matching to correspond to baryon number.

– 13 –



J
H
E
P
0
4
(
2
0
2
1
)
0
4
5

4 Abelian theories with second-order composite currents

We are now ready to start analyzing the symmetries of concrete field theories possessing
topologically conserved composite currents. The minimal example of such a theory would
be one with two degrees of freedom and a single second-order composite current. It comes,
however, at a little extra cost to work out the details for the much broader class of theories
with an arbitrary number of constituents, the only limitation being to pairwise constructed
second-order composite currents.

Consider a set of pi-form Abelian symmetries distinguished by the flavor index i,
spontaneously broken so that the low-energy description of the system is an EFT of the
corresponding pi-form NG fields, φ(pi)

i . Associated with these is a set of (pi+1)-form back-
ground gauge fields, A(pi+1)

i . In the current presentation, I choose to make the invariance
under these given, Noether-type Abelian symmetries manifest. This can be guaranteed
by making sure that the derivatives dφ(pi)

i only enter the action through the covariant ex-
terior derivatives, Ω(pi+1)

i = dφ(pi)
i − A(pi+1)

i . Other possible choices will be discussed in
section 4.2.

As explained at length in the preceding sections, the presence of the NG fields induces a
set of emergent (D−pi−2)-form symmetries, associated to the topological currents, defined
up to an arbitrary normalization factor as ?Ω(pi+1)

i . These emergent symmetries can be
probed by adding a set of (D− pi − 1)-form background gauge fields, B[pi+1]

i . In addition,
one can construct second-order topological currents, defined again up to normalization as
?
(
Ω(pi+1)
i ∧Ω(pj+1)

j

)
. These are coupled to a set of (D−pi−pj−2)-form background gauge

fields, C [pi+pj+2]
ij . By the graded symmetry of the exterior product, the latter must satisfy

C
[pi+pj+2]
ji = (−1)(pi+1)(pj+1)C

[pi+pj+2]
ij . (4.1)

A generic action featuring the NG fields as well as all the background fields just intro-
duced then takes the form6

S = Sinv +
∫ [

κ1
∑
i

B
[pi+1]
i ∧

(
dφ(pi)

i −A(pi+1)
i

)
+ κ2

2
∑
i,j

C
[pi+pj+2]
ij ∧

(
dφ(pi)

i −A(pi+1)
i

)
∧
(
dφ(pj)

j −A(pj+1)
j

)]
,

(4.2)

where κ1,2 are couplings that fix the normalization of the source terms, and Sinv stands for
a part of the action that is manifestly gauge-invariant, being constructed solely out of the
covariant exterior derivatives of φ(pi)

i and independent of the background fields B[pi+1]
i and

C
[pi+pj+2]
ij . This part of the action by default includes the kinetic term, proportional to∑
i Ω(pi+1)

i ∧ ?Ω(pi+1)
i , as well as higher-order interaction terms. In superfluids, it is known

to be fixed by the equation of state of the system [75, 76].
The whole master action (4.2) is by construction manifestly invariant under the com-

bined gauge transformation of the NG fields φ(pi)
i and the background fields A(pi+1)

i ,

φ
(pi)
i → φ

(pi)
i + α

(pi)
i , A

(pi+1)
i → A

(pi+1)
i + dα(pi)

i , (4.3)
6Here and in the following, sums over flavor indices i, j are explicitly indicated, unless the same index

appears in a given operator exactly twice so that the Einstein summation convention can be used.
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where α(pi)
i is a pi-form symmetry parameter. Due to the Abelian nature of all the sym-

metries involved, we might furthermore guess the analogous transformations for the back-
ground fields B[pi+1]

i and C [pi+pj+2]
ij ,

B
[pi+1]
i → B

[pi+1]
i + dβ[pi+2]

i , C
[pi+pj+2]
ij → C

[pi+pj+2]
ij + dγ[pi+pj+3]

ij (wrong). (4.4)

This works for the κ1 term in the action, leaving behind a mixed ’t Hooft anomaly for the
A

(pi+1)
i and B

[pi+1]
i fields. On the contrary, it does not work for the κ2 term due to the

fact that upon gauging, the second-order composite current that C [pi+pj+2]
ij couples to is no

longer conserved, and moreover its divergence depends nontrivially on the dynamical fields
φ

(pi)
i . This problem can, however, be fixed by modifying the transformation rule for B[pi+1]

i .
Namely, it is easy to verify that the undesired φ

(pi)
i -dependent variation of the action is

removed if all the fields undergo the following simultaneous set of transformations,

φ
(pi)
i → φ

(pi)
i + α

(pi)
i ,

A
(pi+1)
i → A

(pi+1)
i + dα(pi)

i ,

B
[pi+1]
i → B

[pi+1]
i + dβ[pi+2]

i − κ2
κ1

∑
j

(−1)D+pipjγ
[pi+pj+3]
ij ∧ dA(pj+1)

j ,

C
[pi+pj+2]
ij → C

[pi+pj+2]
ij + dγ[pi+pj+3]

ij .

(4.5)

The variation of the action then becomes, apart from surface terms that will generally be
discarded throughout the paper,7

δS =
∫ ∑

i

(−1)D+piκ1β
[pi+2]
i ∧ dA(pi+1)

i . (4.6)

This corresponds to a mixed ’t Hooft anomaly, as will be explained in detail in section 4.2.
Let us pause and think about what we have found. In the absence of the back-

ground fields A(pi+1)
i , the action (4.2) has two independent, naive higher-form symmetries

as indicated by eq. (4.4). Should we choose to erase the composite current and the associ-
ated background field C [pi+pj+2]

ij , we would still find a good symmetry under independent
transformations of A(pi+1)

i and B[pi+1]
i , albeit with an obstruction encoded in the ’t Hooft

anomaly (4.6). To get a firm grasp on the symmetry of the theory, it is however mandatory
to consider simultaneously sources for all of its conserved currents. We find that doing so
requires a deformation of the transformation laws of the background fields as in eq. (4.5).

In the physically simplest case where pi = 0 for all the Noether symmetries and one re-
stricts to D = 3 spacetime dimensions, the A(1)

i and C [2]
ij fields couple to 0-form symmetries,

whereas the B[1]
i fields couple to 1-form symmetries. The transformation rules (4.5) then

7All surface terms that appear in the analysis of the background symmetries of the action throughout
the paper are integrals of exact forms, which vanish on spacetimes without boundary. This can be ensured
by a suitable restriction of the setup, notably by only including background gauge fields with a globally
well-defined connection, and assuming likewise that the gauge transformation parameters α(pi)

i , β[pi+2]
i and

γ
[pi+pj +3]
ij are globally well-defined. Extending the background gauge invariance beyond these limitations

may result in quantization of the couplings κ1,2, depending on the concrete choice of symmetry group.
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precisely match the 2-group structure detailed by Córdova et al. [35], where the transforma-
tion of the 2-form background field picks a contribution proportional to the transformation
parameter of a 0-form symmetry and the field strength of a 1-form background gauge field.
The pattern is however obviously more general and is not restricted to a particular choice
of pi and spacetime dimension.

Modification of the transformation rules for the background fields requires a corre-
sponding modification of the field strengths. This is straightforward to find,

F
(pi+2)
i = dA(pi+1)

i ,

G
[pi]
i = dB[pi+1]

i + κ2
κ1

∑
j

(−1)D+pipjC
[pi+pj+2]
ij ∧ dA(pj+1)

j ,

H
[pi+pj+1]
ij = dC [pi+pj+2]

ij .

(4.7)

All the three field strength forms are now invariant under the simultaneous transformation
of the gauge fields (4.5). Modification of the field strengths in turn affects the Bianchi
identities that they satisfy,

dF (pi+2)
i = 0, dG[pi]

i = κ2
κ1

∑
j

(−1)D+pipjH
[pi+pj+1]
ij ∧ F (pj+2)

j , dH [pi+pj+1]
ij = 0. (4.8)

4.1 Current conservation and Ward identities

While the background field invariance of the action or the generating functional is a prac-
tically useful tool to identify the symmetry of the theory, it is the current conservation
laws and the ensuing Ward identities that relate directly to the correlation functions of the
theory, and thus observables. Following the general definition (2.4) of a current through a
variation of the action with respect to the associated background field, we can set

? J
(pi+1)
Ai ≡ δS

δA
(pi+1)
i

, ? J
[pi+1]
Bi ≡ δS

δB
[pi+1]
i

, ? J
[pi+pj+2]
Cij ≡ δS

δC
[pi+pj+2]
ij

. (4.9)

The variation of action (4.6) under the gauge transformations (4.5) then implies the set of
Ward identities expressed as closure relations for the Hodge-dual currents,8

d ? J (pi+1)
Ai = 0,

d ? J [pi+1]
Bi = −κ1dA(p1+1)

i ,

d ? J [pi+pj+2]
Cij = −κ2

κ1

[
dA(pi+1)

i ∧ ? J [pj+1]
Bj + (−1)(pi+1)(pj+1)dA(pj+1)

j ∧ ? J [pi+1]
Bi

]
.

(4.10)

While the precise form of the Noether current J (pi+1)
Ai depends sensitively on the dynamics

of the system through the invariant part of the action Sinv, the topological currents J [pi+1]
Bi

8Here I am being a bit cavalier toward the double sum over i, j, involved in the κ2 term of the action. In
the cases where diagonal, i = j contributions are present, which is compatible with the graded symmetry of
exterior product when pi is odd, the right-hand side of the relation for d ? J [2pi+2]

Cii will acquire an extra factor
of 1/2 compared to eq. (4.10). Likewise, the current ? J [2pi+2]

Cii implied by eq. (4.11) should be corrected by
a factor of 1/2.
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and J [pi+pj+2]
Cij are determined completely by the source terms in the action (4.2) and read

? J
[pi+1]
Bi = κ1

(
dφ(pi)

i −A(pi+1)
i

)
,

? J
[pi+pj+2]
Cij = κ2

(
dφ(pi)

i −A(pi+1)
i

)
∧
(
dφ(pj)

j −A(pj+1)
j

)
.

(4.11)

The corresponding topological conservation laws can thus easily be verified explicitly.
The relation for d ? J [pi+1]

Bi encodes the mixed ’t Hooft anomaly for the pi-form Noether
symmetry and its (D − pi − 2)-form dual. It was shown in ref. [18] that this anomaly can
be taken as a starting point of a proof of existence of a massless NG boson, alternative to
the usual Goldstone theorem based on the assumption of the existence of long-range order.
The fact that the anomaly appears in the J [pi+1]

Bi current is due to the choice I made to
keep the invariance under the gauge transformation of A(pi+1)

i manifest. This choice can
be altered by adding a local functional of the background gauge fields to the action, as I
will explain shortly.

The Ward identity for J [pi+pj+2]
Cij is of the fusion type discussed in ref. [35], and it

is one of the hallmarks of a higher-group symmetry. Equation (4.10) together with the
transformation rules (4.5) constitutes one of the main results of this paper, showing that
a higher-group symmetry structure is an inevitable consequence of the existence of a com-
posite topological current in the given theory. The remainder of the paper is devoted to an
elaboration of this result. In the following two subsections, I will discuss the detailed prop-
erties of the mixed ’t Hooft anomaly already mentioned several times, and give a couple of
concrete examples of physical systems featuring the higher-group symmetry structure put
forward here. The next three sections then introduce various generalizations of the basic
result just presented, as well as a dual picture where the roles of the Noether and primitive
topological symmetries are interchanged.

4.2 Ambiguities in the anomaly

The variation of the action under the combined gauge transformations (4.5) can be fully
described by a local function of the background gauge fields and the transformation pa-
rameters, I(D) in a notation borrowed from ref. [35], defined by

δS = 2πi
∫
I(D). (4.12)

It follows from eq. (4.6) that for the choice of action (4.2), one has

I(D) = κ1
2πi

∑
i

(−1)D+piβ
[pi+2]
i ∧ dA(pi+1)

i . (4.13)

If we imagine that the D-dimensional spacetime manifold forms the boundary of a (D+1)-
dimensional bulk, this can be understood via the anomaly inflow mechanism as arising from
a Chern-Simons (CS) theory in the bulk. The action of the CS theory is defined by local
function I(D+1) of the gauge fields such that its variation under the transformations (4.5)
satisfies δI(D+1) ≡ dI(D). In our case, it readily follows that

I(D+1) = κ1
2πi

∑
i

(−1)D+piB
[pi+1]
i ∧ dA(pi+1)

i . (4.14)
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Note that the last, nontrivial contribution to the transformation of B[pi+1]
i in eq. (4.5)

drops out of δI(D+1) thanks to the graded symmetry of γ[pi+pj+3]
ij , inherited from that

of C [pi+pj+2]
ij via eq. (4.1). Finally, the exterior derivative of the CS (D + 1)-form (4.14)

gives a gauge-invariant anomaly polynomial, I(D+2) ≡ dI(D+1), that governs the ’t Hooft
anomalies of the theory. Using the same graded symmetry of C [pi+pj+2]

ij , this can be
expressed directly in terms of the field strengths (4.7),

I(D+2) = κ1
2πi

∑
i

(−1)D+pidB[pi+1]
i ∧ dA(pi+1)

i = κ1
2πi

∑
i

(−1)D+piG
[pi]
i ∧ F (pi+2)

i . (4.15)

It is well-known that unlike the gauge-invariant anomaly polynomial (4.15), the D-
dimensional description of the anomaly encoded in the D-form I(D) defined by eq. (4.12)
suffers from an ambiguity. Indeed, one can add to the action an arbitrary local functional
of the background gauge fields only, 2πi

∫
K(D)
c.t. , that serves as a counterterm to modify

the current conservation laws (4.10). Adding such a local counterterm amounts to shifting
I(D) by I(D)

c.t. ≡ δK(D)
c.t. and in turn, via the descent relation δI(D+1) = dI(D), to shifting

the CS (D + 1)-form (4.14) by I(D+1)
c.t. = dK(D)

c.t. . This makes it clear that adding an
arbitrary local functional of the background gauge fields to the action leaves the anomaly
polynomial (4.15) unchanged as expected.

While the counterterm functional can in principle be chosen at will, there are some
natural options that suggest themselves. These are motivated by the observation that, by
eqs. (4.10) and (4.11), the currents J [pi+1]

Bi and J
[pi+pj+2]
Cij are manifestly gauge-invariant

but not conserved. On the other hand, the current J (pi+1)
Ai , while conserved, is not gauge-

invariant due to contributions arising from the A(pi+1)
i -dependence of the source terms in

eq. (4.2), that is due to the very gauge invariance of the other two currents. This is the
usual dilemma in presence of an anomaly. For various reasons, one may want to make one
or both of J [pi+1]

Bi and J
[pi+pj+2]
Cij conserved instead of J (pi+1)

Ai . This is a necessity should
some of the gauge fields actually be dynamical.

4.2.1 Making J
[pi+1]
Bi conserved

The simplest choice of counterterm that suggests itself is

K(D)
c.t. = κ1

2πi
∑
i

B
[pi+1]
i ∧A(pi+1)

i . (4.16)

This cancels the original variation of action as expressed by eq. (4.13) and replaces it, up
to surface terms, with

I(D) + I(D)
c.t. = 1

2πi

[
κ1
∑
i

B
[pi+1]
i ∧ dα(pi)

i

− κ2
∑
i,j

(−1)D+pjγ
[pi+pj+3]
ij ∧ (A(pi+1)

i + dα(pi)
i ) ∧ dA(pj+1)

j

]
.

(4.17)

This somewhat unwieldy expression corresponds to the inflow from a very simple bulk CS
action, which is most easily obtained by adding dK(D)

c.t. to eq. (4.14),

I(D+1) + I(D+1)
c.t. = κ1

2πi
∑
i

dB[pi+1]
i ∧A(pi+1)

i . (4.18)
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This of course yields the same anomaly polynomial (4.15). The variation of the action (4.17)
can be used to obtain the modified Ward identities for the currents, still defined by eq. (4.9).
A short calculation shows that the divergences of J (pi+1)

Ai and J [pi+1]
Bi displayed in eq. (4.10)

must be replaced with

d ? J (pi+1)
Ai → (−1)(D+1)(pi+1)κ1dB[pi+1]

i , d ? J [pi+1]
Bi → 0. (4.19)

The conservation of J [pi+1]
Bi is a simple consequence of the fact that adding the countert-

erm (4.16) shifts the source terms in the action (4.2) so that ? J [pi+1]
Bi → κ1dφ(pi)

i . Finally,
the Ward identity for J [pi+pj+2]

Cij keeps the same functional form as displayed in eq. (4.10),
except that the currents J [pi+1]

Bi on its right-hand side are to be interpreted as the original
ones, given by eq. (4.11). Altogether, the net effect of adding the counterterm (4.16) to
the action is to toggle which of the currents J (pi+1)

Ai and J
[pi+1]
Bi is conserved. This can

be understood in terms of the duality between the associated symmetries, inspected more
closely in section 6.

4.2.2 Making J
[pi+1]
Bi and J

[pi+pj+2]
Cij conserved

What the counterterm (4.16) does is to remove from the action (4.2) the term proportional
to B[pi+1]

i and independent of the dynamical NG fields φ(pi)
i . One may wish to do the same

with the φ(pi)
i -independent term proportional to C [pi+pj+2]

ij as well. To that end, we set

K(D)
c.t. = 1

2πi

(
κ1
∑
i

B
[pi+1]
i ∧A(pi+1)

i − κ2
2
∑
i,j

C
[pi+pj+2]
ij ∧A(pi+1)

i ∧A(pj+1)
j

)
(4.20)

instead of eq. (4.16). The action can then be written in a compact manner as

S + 2πi
∫
K(D)
c.t. = Sinv +

∫ (
κ1
∑
i

B
[pi+1]
eff,i ∧ dφ(pi)

i

+ κ2
2
∑
i,j

C
[pi+pj+2]
ij ∧ dφ(pi)

i ∧ dφ(pj)
j

)
,

(4.21)

where
B

[pi+1]
eff,i ≡ B[pi+1]

i − κ2
κ1

∑
j

C
[pi+pj+2]
ji ∧A(pj+1)

j . (4.22)

One may of course think of this as a mere shorthand notation and carry on with the analysis
of the symmetries of the theory under the transformation (4.5) of the original background
fields B[pi+1]

i and C [pi+pj+2]
ij . The variation of the action is then described, up to surface

terms, by

I(D) + I(D)
c.t. = 1

2πi

(
κ1
∑
i

B
[pi+1]
eff,i ∧ dα(pi)

i − κ2
2
∑
i,j

C
[pi+pj+2]
ij ∧ dα(pi)

i ∧ dα(pj)
j

)
. (4.23)

This corresponds to an inflow of the anomaly from the bulk CS action, given by

I(D+1) + I(D+1)
c.t. = 1

2πi

[
κ1
∑
i

dB[pi+1]
i ∧A(pi+1)

i

− κ2
2 d
(
C

[pi+pj+2]
ij ∧A(pi+1)

i ∧A(pj+1)
j

)]
,

(4.24)
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which once again leads to the same anomaly polynomial (4.15). From the variation of the
action (4.23) one can then extract the modified Ward identities for the currents. This time,
the conservation laws for J (pi+1)

Ai and J [pi+1]
Bi become

d ? J (pi+1)
Ai → (−1)(D+1)(pi+1)κ1dB[pi+1]

eff,i , d ? J [pi+1]
Bi → 0. (4.25)

The conservation law for J [pi+pj+2]
Cij still keeps the functional form given in eq. (4.10), where

J
[pi+1]
Bi is to be interpreted as the new current, ? J [pi+1]

Bi → κ1dφ(pi)
i .

Alternatively, one may think of B[pi+1]
eff,i in eq. (4.22) as a new background gauge field,

replacing B[pi+1]
i . After all, this would have been the natural choice, had I started from the

beginning with the ungauged topological currents, proportional to ? dφ(pi)
i and ?(dφ(pi)

i ∧
dφ(pj)

j ). The transformation rule for this new source follows from eqs. (4.22) and (4.5),

B
[pi+1]
eff,i → B

[pi+1]
eff,i + dβ[pi+2]

eff,i − κ2
κ1

∑
j

C
[pi+pj+2]
ji ∧ dα(pj)

j , (4.26)

where
β

[pi+2]
eff,i ≡ β[pi+2]

i − κ2
κ1

∑
j

γ
[pi+pj+3]
ji ∧ (A(pj+1)

j + dα(pj)
j ). (4.27)

In terms of the background field B[pi+1]
eff,i , the field strength G[pi]

i , defined by eq. (4.7), reads

G
[pi]
i = dB[pi+1]

eff,i + κ2
κ1

∑
j

dC [pi+pj+2]
ji ∧A(pj+1)

j . (4.28)

The variation of the action (4.23) then finally gives the new Ward identities for all the cur-
rents, where the current J [pi+1]

Bi is now defined by the variation of the action with respect to
B

[pi+1]
eff,i . One finds that by construction, both J [pi+1]

Bi and J [pi+pj+2]
Cij are conserved, yet they

are not gauge-invariant. On the other hand, the J (pi+1)
Ai current now becomes manifestly

gauge-invariant due to the absence of A(pj+1)
j in the source terms in the action (4.21). It

is however not conserved, but rather satisfies the fusion-type Ward identity,

d ? J (pi+1)
Ai → (−1)(D+1)(pi+1)

(
κ1dB[pi+1]

eff,i + κ2
κ1

dC [pi+pj+2]
ji ∧ ? J [pj+1]

Bj

)
. (4.29)

This concludes the discussion of alternative presentations of the symmetries of the
action and the Ward identities for the currents. As the analysis shows, there are really two
different sources of violation of naive current conservation: mixed ’t Hooft anomalies and
mixing of currents in presence of background gauge fields, arising from the higher-group
symmetry. These two effects are independent of each other. On the one hand, ordinary
single-component superfluids feature only a 0-form U(1) Noether symmetry and its (D−2)-
form dual together with their mixed anomaly. On the other hand, it will become clear in
section 7 that it is very well possible to have the same higher-group structure with a strictly
invariant action, that is without any ’t Hooft anomaly.
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4.3 Some examples

The mechanism whereby a higher-group symmetry arises from the existence of composite
currents seems very general, but what are the concrete physical systems where it is actually
realized? Thinking for simplicity of a two-component system with NG fields φ(p)

1 and φ(q)
2 ,

the exterior product dφ(p)
1 ∧dφ

(q)
2 will be the Hodge dual of a new conserved current only if

p+ q ≤ D− 3. Hence, there is only one possibility in D = 3 spacetime dimensions, namely
(p, q) = (0, 0). In D = 4 spacetime dimensions, the possible choices modulo permutation
are (0, 0) and (0, 1). While one might of course speculate about the physical relevance of
more complicated examples in higher dimensions, I will focus on these two cases.

4.3.1 The (p, q) = (0, 0) case

Choosing the 0-form compact Abelian U(1) symmetry, the corresponding Abelian NG field
describes an s-wave superfluid. Hence, a field theory with two such NG fields naturally
represents a two-component superfluid mixture.

Each of the superfluid components possesses a 0-form Noether U(1) symmetry corre-
sponding to conservation of particle number, which is spontaneously broken. In the absence
of the background gauge fields A(1)

i , the associated 1-form Noether current equals, up to
normalization, dφi plus higher-order contributions, depending on the precise equation of
state of the system [76]. In addition, each superfluid component possesses a dual (D − 2)-
form U(1) symmetry with the current J [1]

Bi proportional to ? dφi, without any higher-order
corrections regardless of the interactions. This is closely related to the “superfluid velocity”
of the i-th component, which in the nonrelativistic limit takes the form

vi = ∇φi
mi

, (4.30)

where mi is the mass of the constituent (atom or molecule) of the i-th component. From
the general definition (2.3) it follows that the integral charge associated with the current
J

[1]
Bi is obtained by integrating dφi along a closed curve. The dual (D − 2)-form symmetry

therefore measures the winding of the superfluid phase. The corresponding charged object
is the worldsheet of a superfluid vortex, which indeed has dimension D − 2 (the vortex is
a point object in D = 3 and a line object in D = 4) and gives a nonzero winding number
when linked with the closed curve Σ1 on which the charge (2.3) is defined. This (D − 2)-
form symmetry remains unbroken due to the fact that in superfluids, vortices take a finite
amount of energy to excite.

Let us now briefly discuss the modification brought about by adding the background
gauge fields A(1)

i . In the context of superfluids, it is natural to choose the presentation of
symmetries worked out in section 4. Here the Noether U(1) symmetries are exact in the
sense that the corresponding currents J (1)

Ai are exactly conserved. This is expected in an
experimental setup where the particle number can be controlled as long as a finite, closed
sample of the superfluid is used. Then the dual topological (D − 2)-form symmetries are
necessarily anomalous. The conservation law

d ? J [1]
Bi = −κ1dA(1)

i , (4.31)
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being a special case of eq. (4.10), has a simple interpretation in charged superfluids, where
eq. (4.31) tells us that the superfluid winding number is not conserved in the presence of
a background magnetic field. This finds a natural realization in the physics of type-II su-
perconductors, where magnetic field can only exist in the presence of vortices. One should
however treat this analogy with some care since the basic phenomenology of superconduc-
tivity, including the Meissner effect and the very existence of the Abrikosov vortex lattice
in type-II superconductors, relies essentially on the dynamical nature of the magnetic field.
Here, on the contrary, the U(1) gauge fields A(1)

i are treated as a fixed background.
In a two-component superfluid, we now have an additional (D − 3)-form topological

symmetry with current proportional to ?(dφ1 ∧ dφ2), where the background gauge fields
have been set to zero again. In terms of classical field theory, the relation (4.30) between
the gradient of the NG field and the superflow velocity indicates that the composite cur-
rent measures the degree to which the superflows of the two superfluid components are
noncollinear. The integral charge of the (D − 3)-form composite symmetry is obtained
by integrating dφ1 ∧ dφ2 over a two-dimensional surface Σ2. Since the group manifold
U(1) × U(1) has the topology of a torus on which dφ1 ∧ dφ2 defines a volume form up to
normalization, it is natural to choose Σ2 as a torus as well. In D = 4 spacetime dimensions,
the charged object of the composite symmetry can then be taken as the worldsheet of a
Hopf link, built out of two vortex rings, one of the φ1 type and the other of the φ2 type.
The torus Σ2 must be chosen so that it links both vortex rings. The same construction
can in principle be repeated in D = 3 spacetime dimensions, but the interpretation of
the resulting charged object is then less clear since it is necessarily localized in time and
moreover the two linked rings forming the Hopf link do not represent static vortex rings.

4.3.2 The (p, q) = (0, 1) case

In a QCD-like theory with two light quark flavors of electric charges qu, qd, each of which
carries baryon number b, the low-energy dynamics of neutral pions π0 (ignoring all other
low-energy excitations possibly present) is governed by the following effective Lagrangian
in flat four-dimensional Minkowski spacetime [77],

L = 1
2(∂µπ0)2 +m2

πf
2
π cos

(
π0

fπ

)
− d

16π2fπ
εµναβ

[
(qu + qd)AQµ + 2bABµ

]
∂νπ

0[(qu − qd)FQαβ + F Iαβ
]
,

(4.32)

where d is the dimension of the representation of the color gauge group that a single quark
flavor transforms in. Furthermore, AQµ , ABµ and AIµ are background gauge fields that couple
respectively to electric charge, baryon number and isospin, and FQµν , FBµν and F Iµν are the
corresponding field-strength tensors. Finally, mπ and fπ are the two effective couplings of
the low-energy EFT, representing the pion mass and decay constant.

For physical values of the group charges, d = 3, b = 1/3 and qu = 2/3, qd = −1/3, the
Lagrangian (4.32) reproduces the well-known anomalous coupling of the neutral pion to a
pair of electromagnetic fields. When the electromagnetic field becomes dynamical, whereas
ABµ and AIµ are absent, this is a particular realization of axion electrodynamics [78]. The
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anomalous, topological coupling between the axion (neutral pion) and the electromagnetic
field has been shown to give rise to a semistrict 3-group symmetry [37–39] that is distinct
from the higher-group structure proposed in this paper.

One can, however, choose the group charges differently. Demanding that qu + qd = 0
and dropping for simplicity the background isospin field, the topological coupling of neutral
pions to a pair of photons disappears and the Lagrangian (4.32) reduces to

L = 1
2(∂µπ0)2 +m2

πf
2
π cos

(
π0

fπ

)
− bd(qu − qd)

8π2fπ
εµναβABµ ∂νπ

0FQαβ . (4.33)

Upon taking the “chiral limit,” mπ → 0, to recover an exact shift symmetry for the
neutral pion, and adding a kinetic term for the electromagnetic field, the action stemming
from the Lagrangian (4.33) takes precisely the form of eq. (4.2) with the p = 0 NG field
corresponding to the neutral pion and the p = 1 NG field to the photon. The last term
in eq. (4.33) corresponds to the source term of the form C(1) ∧ dφ(0)

1 ∧ dφ(1)
2 . Thus, in the

context of QCD, the second-order composite symmetry coupled to the background gauge
field C(1) measures the anomalous baryon number of neutral pions. This is responsible for
the appearance of a new phase of QCD in strong magnetic fields, carrying a topological
crystalline condensate of neutral pions, dubbed “chiral soliton lattice” [79].

Within a QCD-like theory described by the low-energy effective Lagrangian (4.33), it
is also straightforward to understand what the quantized charged object corresponding to
the 0-form composite symmetry coupled to the background field ABµ might be. First of all,
the continuous shift symmetry acting on π0 is explicitly broken by the mass term down
to a discrete subgroup. The dual 2-form topological symmetry with current proportional
to ? dπ0 survives. However, its natural charged object is no longer a vortex, but rather a
domain wall, interpolating between the neighboring minima of the potential in eq. (4.33).
Going somewhat beyond the discussion in section 2.1, the topological charge of the domain
wall is obtained by integrating dπ0 over an open curve Σ1 piercing the domain wall. The
charged object of the magnetic 1-form symmetry with current proportional to ?FQ is the
worldline of a magnetic monopole, as explained in section 2.2, and its topological charge
is measured by integrating FQ over a closed surface Σ2 surrounding the monopole. The
charged object of the composite symmetry is then constructed out of a monopole and a
domain wall that are topologically linked. The configuration that does the job is one where
the monopole is surrounded by a spherical domain wall; this kind of soliton was considered
previously in relation to the so-called Witten effect [37]. The charge of the composite object
is obtained by integrating dπ0 ∧ FQ over the three-dimensional domain Σ1 × Σ2.

It is interesting to compare the (p, q) = (0, 1) case of our general setup to the Goldstone-
Maxwell (GM) model, shown in ref. [35] to possess a global 3-group symmetry. In order
to make the notations match, one needs to make the following replacements, where the
right-hand side indicates the notation used by Córdova et al.,

φ
(0)
1 → χ, A

(1)
1 → A(1), B

(3)
eff,1 → Θ(3),

φ
(1)
2 → c(1), A

(2)
2 → B(2)

e , B
(2)
eff,2 → B(2)

m ,

α
(0)
1 → λ

(0)
A , α

(1)
2 → Λ(1)

e , β
(2)
eff,1 → Λ(2)

Θ , β
(1)
eff,2 → Λ(1)

m .

(4.34)
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Then the action (4.21) recovers that of the GMmodel provided one simultaneously identifies
the background field C(1)

12 ≡ C(1) with A(1) and chooses the couplings as

κ1 = i
2π , κ2 = − iκ̂A

4π2 , (4.35)

where κ̂A is the 2-group coupling of the GM model. The transformation rules (4.26) agree
with those displayed in ref. [35] up to a total derivative term absorbed into a redefinition of
β

[pi+2]
eff,i , and the 5-form (4.24) reproduces the bulk CS action shown in eq. (6.69) of ref. [35].

This comparison reveals a possible mechanism to generate further theories with higher-
group symmetry beyond those introduced in this paper. Namely, it is in principle possible
to “contract” the underlying higher-group symmetry by identifying some of the background
fields (and the corresponding transformation parameters), as long as this is consistent with
all the transformation rules. It would be interesting to investigate if one can obtain more
physically relevant field theories in this way.

5 Generalization to higher-order composite currents

In this section, I will generalize the construction put forward above by taking into account
the possibility that a given system possesses composite topological currents of higher order
than two. I should stress right at the outset that the motivation for doing so is theoretical
rather than practical. Namely, there cannot be any nontrivial composite topological sym-
metries of order D or higher in D spacetime dimensions. The first, minimal example of a
higher-order composite symmetry therefore appears in D = 4 and can be thought of as a
three-component superfluid where all the primitive symmetries are 0-form.

On the other hand, the extension of the formalism developed so far reveals a rather
elegant underlying structure, where the deformation of the transformation rule for B[pi+1]

i

displayed in eq. (4.5) repeats iteratively at higher orders. Due to the above-mentioned
practical limitations, I will however restrict the generality of the discussion by the as-
sumption that all the (still Abelian) Noether symmetries present in the system are 0-form.
This makes it possible to avoid having to deal with complicated mixed symmetries of the
higher-order topological currents under permutation of their constituents.

The basic ingredients in the setup are thus a set of 0-form NG fields φi subject to
independent shift symmetries, along with the associated 1-form background gauge fields
A

(1)
i . These will only enter the action through the combinations Ω(1)

i = dφi−A(1)
i , invariant

under the simultaneous gauge transformation (4.3), where pi = 0 and accordingly αi is a
0-form just like φi itself. Out of these covariant derivatives, one can construct n-th order
composite topological currents as ?

(
Ω(1)
i1
∧ · · · ∧ Ω(1)

in

)
up to an arbitrary normalization

factor. These currents can in turn be coupled to a set of background gauge fields B[n]
i1···in .

Both the currents and the gauge fields are fully antisymmetric in their flavor indices.
A generic action featuring all the NG fields and background fields then takes a form

analogous to eq. (4.2),

S = Sinv +
∫ D−1∑

n=1

κn
n!B

[n]
i1···in ∧ (dφi1 −A

(1)
i1

) ∧ · · · ∧ (dφin −A
(1)
in

). (5.1)

– 24 –



J
H
E
P
0
4
(
2
0
2
1
)
0
4
5

Now that it is not necessary to label all the constituents with a generic degree, it is safe
to use Einstein’s summation convention. The sum over source terms for the composite
currents runs in principle up to the maximum possible degree of D− 1, but may terminate
earlier depending on the number of independent primitive currents in the theory. A naive
Abelian transformation of the background fields B[n]

i1···in leads to an undesired, φi-dependent
shift of the action at every order of the sum. This issue can, however, be fixed by using
the following set of simultaneous gauge transformations,

φi → φi + αi,

A
(1)
i → A

(1)
i + dαi,

B
[n]
i1···in → B

[n]
i1···in + dβ[n+1]

i1···in + (−1)D+1κn+1
κn

β
[n+2]
i1···inin+1

∧ dA(1)
in+1

,

(5.2)

which is an obvious generalization of eq. (4.5).9 Upon this gauge transformation, the action
shifts by

δS =
∫

(−1)Dκ1β
[2]
i ∧ dA(1)

i , (5.3)

where I have again discarded surface terms generated by the transformation, see footnote 7
on page 15. It is amusing to point out that this anomalous variation of the action can be
eliminated altogether [80] if one formally extends the sum over source terms in eq. (5.1)
to n = 0. This amounts to adding a D-form background field B[0] to the action through a
tadpole term κ0B

[0], and to equipping the new field with the transformation rule B[0] →
B[0] +dβ[1] +(−1)D+1 κ1

κ0
β

[2]
i ∧dA

(1)
i , which likewise extends the transformation rule (5.2) to

the n = 0 case. The ’t Hooft anomaly indicated by eq. (5.3) of course does not disappear,
it is merely swept under the rug, or more accurately moved from the right-hand side of
eq. (5.3) to the left-hand side.

The deformation of the transformation rules for the background gauge fields as com-
pared to the naively expected Abelian shifts requires an appropriate modification of the
corresponding field strengths. It is easy to check that the following definitions do the job,
generalizing eq. (4.7) to the whole hierarchy of higher-order topological symmetries,

F
(2)
i = dA(1)

i ,

G
[n−1]
i1···in = dB[n]

i1···in + (−1)D κn+1
κn

B
[n+1]
i1···inin+1

∧ dA(1)
in+1

.
(5.4)

The leads in turn to modified Bianchi identities,

dF (2)
i = 0,

dG[n−1]
i1···in = (−1)D κn+1

κn
G

[n]
i1···inin+1

∧ F (2)
in+1

.
(5.5)

9The last background field in the hierarchy transforms merely as B[D−1]
i1···iD−1

→ B
[D−1]
i1···iD−1

+ dβ[D]
i1···iD−1

,
but this can be included in eq. (5.2) by formally setting κD = 0 therein. An analogous remark applies to
eqs. (5.4) and (5.5) below: κD is implicitly understood to be zero wherever it appears.
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With the gauge transformation rules (5.2) and the variation of the action (5.3) at hand,
it is straightforward to extract the Ward identities for all the conserved currents of the
theory. With the definition of the currents,

? J
(1)
Ai ≡

δS

δA
(1)
i

, ? J
[n]
Bi1···in ≡

δS

δB
[n]
i1···in

, (5.6)

one finds upon a few lines of manipulation the following,

d ? J (1)
Ai = 0,

d ? J [1]
Bi = −κ1dA(1)

i , (5.7)

d ? J [n]
Bi1···in = (−1)n κn

κn−1

∑
cyclic π

sgn π dA(1)
iπ(n)
∧ ? J [n−1]

Biπ(1)···iπ(n−1)
for 2 ≤ n ≤ D − 1,

where on the last line the sum runs over all cyclic permutations π of the flavor indices.
The discussion of possible alternative presentations of the symmetry in this general

setup including the whole hierarchy of higher-order topological currents would run in a close
analogy to section 4.2, and I will not go to details. Let me just stress that the action (5.1)
was chosen so that the Noether currents J (1)

Ai are by construction conserved, although
not gauge-invariant. The currents J [n]

Bi1···in , on the other hand, are by construction gauge-
invariant, yet not conserved. The anomalous variation of the action (5.3) can be understood
as arising from anomaly inflow due to a CS theory, living in the (D+ 1)-dimensional bulk,

I(D+1) = κ1
2πi(−1)DB[1]

i ∧ dA(1)
i . (5.8)

Taking an exterior derivative then leads in turn to a gauge-invariant (D+2)-form anomaly
polynomial,

I(D+2) = κ1
2πi(−1)DdB[1]

i ∧ dA(1)
i = κ1

2πi(−1)DG[0]
i ∧ F

(2)
i , (5.9)

where the definition (5.5) of the field strength D-form G
[0]
i has been used.

6 Dual description of the higher-group symmetry

Abelian superfluids have a dual description in which the p-form NG field φ(p) is interchanged
with its Hodge dual, and likewise the background fields A(p+1) and B[p+1] are swapped (see
ref. [81] for an introduction). This duality is important for understanding the dynamics
of vortices in a superfluid medium. In D = 3 spacetime dimensions, it actually represents
just one link in a larger network of dualities between various field theories, see for instance
ref. [82] and references therein.

Here I have the modest goal of using the duality to offer a different perspective on the
higher-group symmetry of field theories with composite currents. This will also implicitly
underline the fact that the same physical system can have quite different presentations
based on different local degrees of freedom, possibly featuring different gauge redundancies.
What has to remain the same in such different descriptions are the global symmetries,
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encoded in the background gauge invariance of the generating functional, including their
possible ’t Hooft anomalies [14].

In order to achieve this goal, I will once again restrict myself to the simplest situation
where only second-order composite currents are taken into account. The starting point of
the duality transformation of the action (4.2) is the observation that the NG fields φ(pi)

i

only enter it through their exterior derivatives, dφ(pi)
i . One may wish to cast the theory

in terms of these “currents,” closely related but not identical to the topological currents
J

[pi+1]
Bi . This is done by introducing a “parent action” with dynamical variables J (pi+1)

i

and χ[pi+2]
i ,

S = Sinv +
∫ {

κ1
∑
i

[
B

[pi+1]
i ∧

(
J (pi+1)
i −A(pi+1)

i

)
− dχ[pi+2]

i ∧ J (pi+1)
i

]

+ κ2
2
∑
i,j

C
[pi+pj+2]
ij ∧

(
J (pi+1)
i −A(pi+1)

i

)
∧
(
J (pj+1)
j −A(pj+1)

j

)}
,

(6.1)

where dφ(pi)
i has been replaced with J (pi+1)

i also in the invariant part of the action, Sinv.
The new “vortex variables” χ[pi+2]

i act as Lagrange multipliers for the constraint dJ (pi+1)
i =

0. Indeed, upon integrating χ[pi+2]
i out by using their equation of motion, the “current

variables” J (pi+1)
i are forced to become closed, and once they are cast as J (pi+1)

i = dφ(pi)
i

by virtue of the Poincaré lemma, the original action (4.2) is recovered. The point of this
exercise is that one may wish to integrate out J (pi+1)

i instead of χ[pi+2]
i . By doing so, one

arrives at an EFT formulated in terms of the vortex variables, coupled to the same set
of background fields as the NG fields φ(pi)

i in the original theory (4.2). In fact, one can
choose for each flavor i separately to integrate out either the current or the vortex variable.
In a system with n different flavors of NG bosons, we then have in principle 2n different
representations of the same system.

In order to get insight into how the symmetry of the system is represented in all
these different mutations, it is sufficient to understand how it is realized on the parent
action (6.1). The transformation rules for the background fields must of course remain the
same as in eq. (4.5); the background symmetry of any given theory cannot depend on the
choice of its dynamical variables. What we however need is the transformation rules for
J (pi+1)
i and χ

[pi+2]
i . The former can be guessed to be a simple shift by dα(pi)

i thanks to
the fact that the parent action (6.1) only depends on the difference J (pi+1)

i −A(pi+1)
i . The

latter can be guessed by trial and error. It turns out that the variation of the action (4.6)
is correctly reproduced, modulo surface terms, if one uses the following prescription,

J (pi+1)
i → J (pi+1)

i + dα(pi)
i ,

χ
[pi+2]
i → χ

[pi+2]
i + β

[pi+2]
i + κ2

κ1

∑
j

γ
[pi+pj+3]
ji ∧

(
J (pj+1)
j −A(pj+1)

j

)
.

(6.2)

Three comments are in order here. First, in the absence of composite currents, or of
the background field C

[pi+pj+2]
ij , the particle-vortex duality is perfect: φ

(pi)
i and A

(pi+1)
i

transform by a shift with respect to α
(pi)
i , whereas χ[pi+2]

i and B
[pi+1]
i transform by a
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shift with respect to β[pi+2]
i . The only element that breaks the symmetry between the two

descriptions of the superfluid is the mixed ’t Hooft anomaly of the Noether symmetries and
their duals. This decides whether it is the particle current J (pi+1)

Ai or the vortex current
J

[pi+1]
Bi that is conserved. Coupling in the composite currents via adding the background

fields C [pi+pj+2]
ij makes the action of the symmetry on the vortex variables highly nontrivial,

and the above perfect duality is lost.
Second, the realization of the symmetry in terms of the J (pi+1)

i and χ[pi+2]
i variables is

independent of the choice of the invariant part of the action, Sinv, and given by eq. (6.2).
This is however no longer true when the current variables are integrated out and the trans-
formation of χ[pi+2]

i is to be expressed solely in terms of the χ[pj+2]
j s and the background

gauge fields. The resulting action of the symmetry on χ[pi+2]
i will depend on the choice of

Sinv very sensitively and cannot in general be given in a closed form.
Third, the duality transformation helps to shed some light on higher-form symmetries,

should one wish to think of them in terms of transformations of local degrees of freedom.
Indeed, as eq. (4.5) makes clear, the (D − pi − 2)-form symmetry with parameter β[pi+2]

i

only acts on the background fields. The Noether symmetry with parameter α(pi)
i may also

be higher-form in case pi ≥ 1, but obviously needs the NG field φ
(pi)
i to be realized as a

local transformation. Introducing the dual variable χ[pi+2]
i makes it possible to realize the

dual (D−pi−2)-form symmetry locally as well. The trick of course is that the relationship
between φ(pi)

i and χ[pi+2]
i itself is nonlocal.

Before I show a concrete illustration of the action of the symmetry on the EFT for-
mulated in terms of the vortex variables, let me briefly mention that the above expressions
for the parent action (6.1) and the symmetry transformation (6.2) can be extended to the
setup of section 5 where the whole hierarchy of higher-order composite currents is taken
into account, albeit with the simplifying assumption that all the Noether symmetries, and
thus also the φi variables, are 0-forms. In this case, the parent action can be written as

S = Sinv +
∫ [
−κ1dχ[2]

i ∧J
(1)
i +

D−1∑
n=1

κn
n!B

[n]
i1···in ∧

(
J (1)
i1
−A(1)

i1

)
∧· · ·∧

(
J (1)
in
−A(1)

in

)]
. (6.3)

The variation of the action (5.3) is correctly reproduced if the transformation of the back-
ground gauge fields as indicated in eq. (5.2) is augmented with the following transformations
of the current variables J (1)

i and the vortex variables χ[2]
i ,

J (1)
i → J (1)

i + dαi,

χ
[2]
i → χ

[2]
i + β

[2]
i + 1

κ1

D−2∑
n=1

κn+1
n! β

[n+2]
j1···jni ∧

(
J (1)
j1
−A(1)

j1

)
∧ · · · ∧

(
J (1)
jn
−A(1)

jn

)
.

(6.4)

The β[2]
i term can actually be included in the sum over n by formally extending the latter

to n = 0. Obviously, adding higher-order composite currents makes the transformation
law for the vortex variables even more complicated. In general, if the maximum order of
composite current included is n, then χ

[2]
i shifts by a polynomial of order n − 1 in the

current variables.

– 28 –



J
H
E
P
0
4
(
2
0
2
1
)
0
4
5

6.1 Explicit example with two 0-form symmetries

Let us now have a look at a concrete example. In order to keep things as simple as possi-
ble, I will consider a noninteracting two-component superfluid in a flat three-dimensional
Euclidean spacetime. In this case, the parent action (6.1), now including explicitly the
invariant part, reduces to

S =
∫ [1

2(J (1)
i −A(1)

i ) ∧ ?(J (1)
i −A(1)

i ) + κ1B
(2)
i ∧ (J (1)

i −A(1)
i )− κ1dχ(1)

i ∧ J
(1)
i

+ κ2C
(1) ∧ (J (1)

1 −A(1)
1 ) ∧ (J (1)

2 −A(1)
2 )
]
,

(6.5)

where the implicit sum runs over i = 1, 2, and in the last term, I used the antisymmetry
of C(1)

ij in its flavor indices to replace it with εijC(1).
This theory has altogether four equivalent presentations depending on the independent

choice of the particle or vortex variable as the dynamical degree of freedom for each of the
superfluid flavors. In case one integrates out both vortex variables χ(1)

i , one gets back to
the standard description of the superfluid in terms of a shift-invariant action for the NG
fields φi, see eq. (4.2).

Let us now consider a hybrid description in terms of, say, φ1 and χ(1)
2 . To that end,

we need to integrate out the vortex variable χ(1)
1 and the current variable J (1)

2 . Integrating
out χ(1)

1 leads to the constraint dJ (1)
1 = 0 and in turn to the representation J (1)

1 = dφ1.
The equation of motion for J (1)

2 , on the other hand, reads

J (1)
2 −A(1)

2 = κ1 ?
(
dχ(1)

2 −B
(2)
2

)
− κ2 ?

[
C(1) ∧

(
J (1)

1 −A(1)
1

)]
. (6.6)

This just needs to be plugged back into the action (6.5). Upon a short manipulation, one
arrives at the final expression for the action,

S =
∫ [1

2

∣∣∣dφ1 −A(1)
1

∣∣∣2 − 1
2

∣∣∣κ1
(
dχ(1)

2 −B
(2)
2

)
− κ2C

(1) ∧
(
dφ1 −A(1)

1

)∣∣∣2
+ κ1B

(2)
1 ∧

(
dφ1 −A(1)

1

)
− κ1dχ(1)

2 ∧A
(1)
2

]
,

(6.7)

with the shorthand notation |ω(p)|2 ≡ ω(p) ∧ ?ω(p). The representation of the symmetry
on the dynamical fields in this action descends from that on the parent action, eq. (6.2),

φ1 → φ1 + α1,

χ
(1)
2 → χ

(1)
2 + β

(1)
2 + κ2

κ1
γ
(
dφ1 −A(1)

1

)
,

(6.8)

where γ is the 0-form parameter of the gauge transformation C(1) → C(1) +dγ. This shows
that integrating out the current variable J (1)

2 makes the dual 1-form symmetry with the
parameter β(1)

2 into a nontrivial contact symmetry whereby the shift of χ(1)
2 depends on

the (covariant) derivative of φ1, or in physical terms the superfluid velocity of the first
superfluid component.
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The descendant action (6.8) also nicely illustrates a general feature, pointed out in the
introduction, namely that which current is Noether — that is requires for its conservation
the equations of motion — and which is conserved identically depends on the choice of
dynamical degrees of freedom. In the presentation of the action (4.2) in terms of the NG
degrees of freedom, the J (pi+1)

Ai currents are Noether, whereas J [pi+1]
Bi and J

[pi+pj+2]
Cij are

topological. Now the only topological currents are

? J
(1)
A2 = −κ1dχ(1)

2 , ? J
(2)
B1 = κ1(dφ1 −A(1)

1 ). (6.9)

All the remaining three currents, J (1)
A1 , J

(2)
B2 and J

(1)
C , couple to background fields that

appear in the kinetic terms in the action (6.8), and their conservation thus essentially
depends on the equations of motion. In case of J (1)

C this is really a secondary effect: the
Ward identity for J (1)

C stemming from eq. (4.10) depends crucially on that for J (2)
B2 , but the

Ward identity for J (2)
B2 requires the equation of motion for χ(1)

2 .
If keeping one of the vortex variables makes things complicated, one can expect the

realization of the symmetry to become even more nontrivial in the fully dualized description
where both current variables J (1)

i are integrated out. Then the equation of motion for J (1)
2

is augmented with that for J (1)
1 ,

J (1)
1 −A(1)

1 = κ1 ?(dχ(1)
1 −B

(2)
1 ) + κ2 ?[C(1) ∧ (J (1)

2 −A(1)
2 )]. (6.10)

Equations (6.6) and (6.10) together make a set of linear equations for the two current
variables J (1)

i . It is here that the assumption of a flat three-dimensional spacetime is
needed. The solution can be written jointly for both currents,

J (1)
i −A(1)

i = κ1
1− κ2

2C
2

{
?
(
dχ(1)

i −B
(2)
i

)
+ κ2εij ?

[
C(1) ∧ ?

(
dχ(1)

j −B
(2)
j

)]
− κ2

2C
(1) ∧ ?

[
C(1) ∧

(
dχ(1)

i −B
(2)
i

)]}
,

(6.11)

where C2 is a shorthand notation for ?(C(1) ∧ ?C(1)). The resulting action for the vortex
variables χ(1)

i follows by inserting this in eq. (6.5), and I will not write it out explicitly.
The transformation rule for χ(1)

i likewise descends from eq. (6.2) and is given implicitly by

χ
(1)
i → χ

(1)
i + β

(1)
i −

κ2
κ1
γεij

(
J (1)
j −A(1)

j

)
. (6.12)

Here we thus end up with a realization of both 1-form symmetries as contact symmetries,
whereby the transformation of each of χ(1)

i depends on the exterior derivative of both of
χ

(1)
i . One could have hardly expected to be able to reveal the underlying higher-group

structure directly, without starting from the description in terms of the NG fields φi.

7 Generalization to non-Abelian symmetries

In this section, I will outline a different generalization of the basic setup introduced in sec-
tion 4. Namely, as explained in section 3, in systems with spontaneously broken symmetry,
additional, emergent topological symmetries naturally arise from the geometry of the coset
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space on which the NG degrees of freedom live. The Abelian setup of section 4 is a special
case, whereby every Abelian NG field φ(p) gives rise to a topological current, equal ? dφ(p)

up to a normalization factor.
I will now allow for the possibility that the Noether symmetry whose spontaneous

breakdown is responsible for the existence of the NG modes may be non-Abelian. Owing to
the fact that higher-form symmetries are naturally Abelian [14], I will simplify the notation
by only taking into account 0-form Noether symmetries from the outset. The low-energy
dynamics is then governed by a set of NG scalars, πa, that parametrize the coset space
G/H of the spontaneously broken 0-form symmetry. Associated with the whole 0-form
symmetry group G, there is a set of background gauge fields, conveniently merged into a
matrix 1-form connection, A(1) ≡ A(1)iTi.

As shown in section 3, a class of emergent topological symmetries is associated with the
de Rham cohomology of the coset space G/H. Explicit forms for cohomology generators
of degree one to three were given in eqs. (3.12), (3.7) and (3.10). Here I will make the
general assumption that the given theory possesses a set of globally well-defined pa-forms
Ω(pa)
a with the properties that (i) they are gauge-invariant under the simultaneous gauge

transformation of the NG fields and the background gauge field A(1) of G, and (ii) dΩ(pa)
a

is a local function of A(1) alone, independent of the NG fields.10 Both of these properties
are satisfied by the (gauged) cohomology generators listed in section 3.

The Hodge duals ?Ω(pa)
a play the role of the topological currents. Associated with

each of them, there is a background gauge field B
[pa]
a . Analogously to section 4, I will in

addition allow for the second-order topological currents ?
(
Ω(pa)
a ∧ Ω(pb)

b

)
, and couple them

to a set of background gauge fields C [pa+pb]
ab with the symmetry property

C
[pa+pb]
ba = (−1)papbC [pa+pb]

ab . (7.1)

A generic action including such primitive and second-order composite topological currents
then takes the form

S = Sinv +
∫ (

κ1
∑
a

B
[pa]
a ∧ Ω(pa)

a + κ2
2
∑
a,b

C
[pa+pb]
ab ∧ Ω(pa)

a ∧ Ω(pb)
b

)
. (7.2)

Since the basic strategy for analyzing the background gauge symmetry was settled in
the previous sections, I can go through the individual steps rather quickly. First, in order
to get rid of undesired, NG-field-dependent terms in the variation of the action, the naively
expected transformations of the background fields have to be modified to

A(1) → gA(1)g−1 + gdg−1 where g ∈ G,

B
[pa]
a → B

[pa]
a + dβ[pa+1]

a + κ2
κ1

∑
b

(−1)D+(pa+1)(pb+1)γ
[pa+pb+1]
ab ∧ dΩ(pb)

b ,

C
[pa+pb]
ab → C

[pa+pb]
ab + dγ[pa+pb+1]

ab ,

(7.3)

10In section 4 the same indices i, j, . . . were used for the primitive topological currents as in section 3 for
the generators of the symmetry group Ti,j,.... This is consistent if one deals with completely broken Abelian
symmetry. In the present section, a different set of indices is needed, and I will use the lowercase fraktur
letters a, b, . . .
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where the first line is simply copied from eq. (3.2). Note that thanks to the fact that dΩ(pa)
a

only depends on the 1-form background gauge fields of G, the transformation of B[pa]
a is

well-defined. Under the simultaneous transformations (7.3), the action (7.2) changes, up
to surface terms, by

δS =
∫ ∑

a

(−1)D+paκ1β
[pa+1]
a ∧ dΩ(pa)

a . (7.4)

This is only nonvanishing, leading to a ’t Hooft anomaly, for cohomology generators Ω(pa)
a

of odd degrees, whose full gauging under G faces an obstruction, related to the chiral
anomaly. Topological currents based on cohomology generators of even degrees can be
added to the action without affecting its full gauge invariance under G.

The modified transformation laws (7.3) require an appropriate modification of the field
strength for B[pa]

a ,

F (2) = dA(1) +A(1) ∧A(1),

G
[pa−1]
a = dB[pa]

a − κ2
κ1

∑
b

(−1)D+(pa+1)(pb+1)C
[pa+pb]
ab ∧ dΩ(pb)

b ,

H
[pa+pb−1]
ab = dC [pa+pb]

ab .

(7.5)

This in turn leads to a modified Bianchi identity for G[pa−1]
a . For the sake of completeness,

I list the Bianchi identities for all the symmetries,

dF (2) = F (2) ∧A(1) −A(1) ∧ F (2),

dG[pa−1]
a = −κ2

κ1

∑
b

(−1)D+(pa+1)(pb+1)H
[pa+pb−1]
ab ∧ dΩ(pb)

b ,

dH [pa+pb−1]
ab = 0.

(7.6)

Once a concrete action is known, explicit expressions for the currents that the back-
ground gauge fields couple to can be obtained as usual by taking variation of the action
with respect to the background fields,

? J
(1)
A,i ≡

δS

δA(1)i , ? J
[pa]
B,a ≡

δS

δB
[pa]
a

, ? J
[pa+pb]
C,ab ≡ δS

δC
[pa+pb]
ab

. (7.7)

The symmetry transformations (7.3) along with the variation of the action (7.4) then imply
a set of conservation laws, or Ward identities,

d ? J (1)
A,i = 0,

d ? J [pa]
B,a = κ1dΩ(pa)

a ,

d ? J [pa+pb]
C,ab = κ2

κ1

[
dΩ(pa)

a ∧ ? J [pb]
B,b + (−1)papbdΩ(pb)

b ∧ ? J [pa]
B,a

]
.

(7.8)

Recall that, in line with footnote 8 on page 16, the right-hand side on the last line has to
be augmented with an additional factor of 1/2 in case that a = b and pa = pb is even.
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Finally, as mentioned above, the variation of the action (7.4) may be nonvanishing,
depending on whether the gauged cohomology generators Ω(pa)

a are closed or not. In the
latter case, a ’t Hooft anomaly is present, which may be understood as arising from a CS
theory in the (D + 1)-dimensional bulk,

I(D+1) = κ1
2πi

∑
a

(−1)D+paB
[pa]
a ∧ dΩ(pa)

a . (7.9)

This in turn leads to a (D + 2)-form anomaly polynomial that characterizes the anomaly
without ambiguities related to its representation in the D-dimensional action,

I(D+2) = κ1
2πi

∑
a

(−1)D+padB[pa]
a ∧ dΩ(pa)

a = κ1
2πi

∑
a

(−1)D+paG
[pa−1]
a ∧ dΩ(pa)

a . (7.10)

To see if there actually are any examples of physical systems featuring such a non-
Abelian generalization of composite currents, one can follow the line of argument of sec-
tion 4.3. In a theory with two cohomology generators Ω(p)

a and Ω(q)
b , the exterior product

Ω(p)
a ∧ Ω(q)

b will be the Hodge dual of a new conserved current only if p + q ≤ D − 1.
Since the degree-one cohomology generators are reserved for Abelian symmetries that were
thoroughly discussed in the preceding sections, we need at least one of p, q to be larger
than 1 for a qualitatively new example. This leaves us with a single possibility in D = 4
spacetime dimensions, namely (p, q) = (1, 2) up to permutation. This combination of co-
homology generators appears, for instance, in the class of theories with a direct product
symmetry-breaking pattern, G×U(1)→ H×{}, such that H itself has as at least one U(1)
factor, giving the 2-form cohomology generator (3.7). The simplest example of symmetry
of this type is SU(2) × U(1) → U(1) × {}, which can be thought of as describing a phase
of condensed matter where (anti)ferromagnetism and superconductivity coexist. In this
interpretation, the SU(2) factor of the symmetry group corresponds to spin, whereas the
spontaneously broken U(1) factor to electric charge [83].

8 Summary and discussion

In this paper, I have outlined a new mechanism whereby a set of mutually independent
continuous higher-form symmetries in a given field theory can be deformed into a nontrivial
higher-group structure. The basic idea has a very simple formulation in the language of dif-
ferential forms. A continuous symmetry, 0-form or higher-form, corresponds to a conserved
current whose Hodge dual is a closed form. The Hodge duals of all conserved currents of
the given theory naturally span a closed algebra under the exterior product. Coupling the
whole hierarchy of currents to their respective background gauge fields inevitably leads to
a higher-group structure.

Several different incarnations of this mechanism were introduced and analyzed through-
out the paper. The one of probably the greatest practical value is the simplified setup of
section 4 where only second-order composite currents are taken into account and all the
primitive symmetries are assumed to be Abelian. This can however be generalized in
different directions with little effort. Thus, section 5 shows how the whole hierarchy of
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higher-order composite currents can be included, albeit with the simplifying assumption
that the given, Noether symmetries are 0-form in addition to being Abelian. Section 7
gives up on the latter assumption and shows how one can utilize higher-form topologi-
cal symmetries arising from the de Rham cohomology of the coset space, defined by the
spontaneous breakdown of the given 0-form symmetries.

Here I would like to append a few concluding remarks. First, while the bulk of this
paper is formulated using background field methods, the view of higher-form symmetry
based on topological operators and extended charged objects is no less interesting. In this
regard, the concrete examples worked out in section 4.3 suggest that quite generally, one
can expect the charged object of a composite current to consist of charged objects of the
constituent currents, topologically linked to each other. Its charge is in turn defined by
integrating (the Hodge dual of) the composite current over a surface that is topologically
the Cartesian product of surfaces defining charges of the constituent charged objects.

Second, the whole construction was pitched as being crucially based on the existence
of topological composite currents, that is currents that are identically conserved and arise
from the geometry of the given system rather than from its dynamics. This limitation is,
in fact, not essential. In section 6, the dynamical field variables are changed by a duality
transformation, which roughly speaking interchanges the role of Noether and topological
currents. It is therefore perfectly possible to find the same higher-group structure using
composite Noether currents. The realization of the symmetry on the dynamical degrees
of freedom then, however, becomes very nontrivial and could hardly be guessed directly,
without using duality in the first place.

Third, the notation used throughout the paper suggests that the composite currents
are constructed by taking exterior products of (Hodge duals of) different primitive currents.
This is not really necessary. One can certainly think of topologically conserved composite
currents of the type ?(dφ(p) ∧ dφ(p)); these are the diagonal, i = j contributions to the
action (4.2). The presence of such contributions is however seriously limited by spacetime
dimension. Namely, the graded symmetry of the exterior product requires that p be odd,
hence such “diagonal” composite currents can only exist in D ≥ 5, and the lowest dimension
in which they correspond to a higher-form symmetry is D = 6 [52].

Finally, let me reiterate that the whole paper is phrased in the language of bosonic
low-energy EFT, where all the topological currents, primitive or composite, emerge in
the infrared as a consequence of spontaneous breakdown of a given continuous symmetry,
responsible for the dynamical NG degrees of freedom. The type of EFT put forward here
describes the low-energy dynamics of such systems. One might, however, also be interested
in their equilibrium or near-equilibrium thermodynamics. The first attempt to develop
a hydrodynamic description of systems with a higher-group symmetry has already been
made [84], and the concrete examples presented in this paper might hopefully provide
motivation for further efforts in this direction.
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