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Summary

In this work, the potential of utilizing a polyetherimide (PEI) hollow-fiber

membrane to separate synthetic biohydrogen mixture (H2/CO2) was studied.

From the gas separation experiments, where the effects of feed to permeate

pressure ratio (Pfeed/Ppermeate) and stage-cut as key factors were evaluated, it

was found that the PEI membrane had the capacity to purify either H2 or CO2.

It turned out that different separation settings should be chosen in accordance

with the actual technological purpose, defined either as the enrichment of H2

or CO2. The highest H2 concentration (66.4 vol%) in the permeate was achieved

at Pfeed/Ppermeate of 4.62 and stage-cut of 0.47, while the peak CO2 concentra-

tion (79.2 vol%) in the retentate was obtained by applying Pfeed/Ppermeate of 4.55

and stage-cut of 0.65. The assessment and discussion of results indicated the

possible utilization of the CO2-rich fraction (produced by the PEI membrane)

for the biological sequestration using microalgae. To our knowledge, PEI mem-

branes have not yet been tested in such a concept and thus, the results and

experiences can mean a new contribution to the literature.
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1 | INTRODUCTION

Biohydrogen (the H2 gas generated on microbiological
grounds) is an emerging energy carrier and with time,
expected to support the decarbonization of energy sectors
and contribute to sustainability.1-4 Although dark fer-
mentative hydrogen production has been shown as a fea-
sible pathway, the actual success of the technology is
largely influenced by the organic feedstock properties.5-7

In the early stages of development, easily digestible and
relatively simple, carbohydrate-based substrates such as
glucose and starch were mainly deployed to conduct
fundamental studies in dark fermentative hydrogen-
producing systems.8 Nowadays, with the intense progres-
sion of the field, it is rather trending to shift toward the
valorization of complex raw materials especially at
practical-scale applications. These materials, on a wider
spectrum among others, include agro-industrial-, cafete-
ria/food- and municipal-wastes, wastewaters.9-14 Addi-
tionally, there have been research wave and strong

promotion on the cultivation of microalgae as renewable,
so-called third generation biomass sources and their sub-
sequent use of for the biofuel production, including bio-
hydrogen.15,16 Besides the potential of microalgae to
serve as the feedstock for hydrogen fermentation, it was
also demonstrated that versatile effluents of dark fermen-
tation bioreactors can be utilized by certain microalgae
during their own growth and reproduction cycles,17

viewed as an option in the wastewater-to-bioenergy and
hydrogen biorefinery platforms.18,19 This gives a possibil-
ity for the construction of circular bioprocess in which H2

is evolved and microalgae are grown, according to the
scheme demonstrated in Figure 1.20 Another point to be
considered for such an internal, closed-loop design pres-
ented in Figure 1 is the purification of biohydrogen gas
and the simultaneous valorization of the gaseous by-
product with increased CO2 content. These steps can be
assisted by gas separation membranes that bridge the bio-
hydrogen fermenter and the algal photobioreactor and as
an advantage, enable for the biological sequestration and

FIGURE 1 Scheme of a

circular, internal-loop process for

integrated biohydrogen production,

separation and valorization of CO2

to cultivate microalgal biomass as

fermentation feedstock [Colour

figure can be viewed at

wileyonlinelibrary.com]
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conversion of carbon dioxide into biomass and other
value-added components within the integrated system.21

However, even if membranes and their modules are care-
fully selected and operated for the purification of H2 from
the CO2-rich gaseous mixture formed in the fermenter,
achieving full separation is a hurdle and rather, an
unlikely perspective. Consequently, in most cases under
any permeation conditions, the H2-concentrated product
gas will still contain CO2 impurities and likewise, the
CO2-enriched side-product stream will carry a fraction of
H2.

22 Eventually, the behavior of the gas separation
membrane process can be characterized based on the
compositions of the retentate and permeate flows and
their relations to the feed gas quality, which provide an
important and rapid feedback pertain to the capabilities
of a particular membrane for H2/CO2 separation and
enlighten the favorable operating strategy.

In this study, we describe and assess the experiences of
H2/CO2 separation by a polymeric, nonporous gas separa-
tion membrane fabricated from polyetherimide (PEI) and
cast into hollow-fibers, which is a favorable arrangement
to get a compact membrane with enhanced gas perme-
ation surface area. The PEI, as stated in the literature, is
one of the most promising materials to be used in mem-
brane gas separation thanks in general to its beneficial
selectivity features, high thermal resistance, reasonable
cost and excellent membrane forming properties.23 The
experiments were conducted with synthetic biohydrogen
mixture comprised of hydrogen and carbon dioxide gases
considered representative of the H2 and CO2 contents gen-
erally found in relevant, dark fermentative anaerobic bio-
reactors. The effects of key parameters, such as feed
pressure and stage-cut were investigated on the PEI mem-
brane module and the compositions of gaseous streams
leaving the membrane module were monitored. In the
end, we discussed the results and concluded the potential
of PEI membrane module for a real hydrogen fermenta-
tion process, which will be the ultimate goal.

The novelty of this research arises from the testing of
PEI membrane by an experimental approach that yield
new data for membraneologists and biotechnologists deal-
ing with the design of hybrid concepts for concomitant bio-
hydrogen production, separation as well as cultivation of
microalgae on fermentation side products, such as through
the valorization of CO2 originated from the process itself.

2 | MATERIALS AND METHODS

2.1 | Membrane material

PEI was obtained from Sabic under commercial name
ULTEM 1000. The formula of a repeated unit of ULTEM

1000 is shown in Figure 2A. Granules were dried at
105�C for 24 hours before use. Solvent for the PEI was
N-methyl-2-pyrrolidone (NMP) with purity 99.5% deliv-
ered by Sigma-Aldrich. Nonsolvent component of spin-
ning solution was absolute ethanol supplied by Penta
Chemicals, Czech Republic.

2.2 | Fabrication and characteristics of
the PEI membrane module

Hollow-fibers and membrane module was prepared uti-
lizing the infrastructure of the MemBrain company in
Czech Republic. Hollow fibers were prepared by phase
inversion process method.24,25 A solution containing
27 wt% PEI, 12 wt% EtOH and 61% by weight of NMP
was used to make hollow-fiber membranes. This solution
was spun using a spinning line at 50�C into a precipita-
tion bath filled with RO water with temperature of 20�C.
During the production of membranes the polymer solu-
tion flow was 2.7 mL/min, bore liquid flow was 3.0 mL/
min, distance of spinning nozzle from the water surface
(air gap) was 9 cm and the towing speed of precipitated
fiber was 17 m/min. Fiber was then towed into the con-
tinuous washing bath an finally collected on winding
wheel. Subsequently, the residual solvent was washed
out from the hollow fibers in tanks using large amount of
water (24 hours), ethanol (24 hours) and hexane
(24 hours). After thorough drying, the surface of hollow
fibers was coated with thin layer of silicone rubber (using
1 wt% solution of PDMS in hexane, crosslinked and dried
at 70�C for 12 hours) to protect the separation layer on
the outer surface of the fiber and to cover microscopic
defects in the fiber. The resulting hollow-fiber membrane
(Figures 2A and 3) had regular rounded shape with the
sponge-like structure containing typical finger-like pores
of relatively small size (<20 μm). As determined using
the optical microscope, the outer and inner diameters of
the hollow fibers were 349 ± 9 μm and 172 ± 5 μm,
respectively.

Hollow fibers were arranged into a bundle of
400 fibers (membrane area: 1200 cm2) and introduced
into a PVC pipe and at the ends of the pipe the fibers
were sealed using specially designed epoxy resin. After
48 hours, when the resin was completely crosslinked,
the end of the pipe was cut with the special blade to
make hollow part of the fibers accessible. Subse-
quently, the PVC flanges were welded from the outer
side at the ends of the pipe. To these flanges, the stain-
less steel flange counterpart was attached over the
Viton o-ring. Finally, the 6 mm Swagelok connectors
were attached to the flanges for easy connectivity to
testing unit.

BAKONYI ET AL. 3



2.3 | Gas separation setup

In this work, the evaluation of the membrane module
containing PEI hollow fibers (Figure 2A-C) was per-
formed in the GSMS-100 gas separation test rig described
by Bakonyi et al26 and Nemestóthy et al27 with scheme
presented in Figure 2D. In brief, the GSMS-100 system is
able to control (by regulator “2” and valve “3”) the pres-
sure and flow of the gas fed (from gas container “1”) to
the membrane (“6”). The actual feed pressure is indicated
by gauge “4.” The membrane is kept in the temperature
regulated chamber “5” (28�C in this research). The actual
difference between the feed and retentate pressures can
be measured by gauge “7.” In the permeate line, the pres-
sure (atmospheric in this study) is displayed by gauge

“8,” the flow is controlled by valves “9” and “10” and
measured by mass flow meter “11.” In the retentate line,
the flow can be adjusted and monitored by valve “14”
and mass flow meter “15,” respectively. Basically, the
whole GSMS-100 device contained a stainless steel pipe-
line where analog pressure gauge “8,” valves, connectors
and fittings were purchased from Swagelok. The digital
pressure gauges “4” and “7” were bought from Hon-
eywell. The mass flow meters were products of the com-
pany Bronkhorst High-Tech B.V. (The Netherlands) and
were subjected to preliminary calibration.

Following the installation of PEI membrane module
into GSMS-100, the gas separation measurements were
commenced after successful leakage tests and the ade-
quate integrity of the setup is reflected by the fair (<5%)

FIGURE 2 The material, A, hollow

fibers, B, module, C, of the

polyetherimide (PEI) membrane and, D,

the experimental membrane testing

GSMS-100 apparatus. Notation numbers

in, D, are explained in Section 2.2

[Colour figure can be viewed at

wileyonlinelibrary.com]
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mass balance errors, as shown in Table 1 together with
the experimental plan.

In Table 1, it can be seen that the effects of (a) the
feed to permeate pressure and (b) the stage-cut (ratio of
the permeate flow to the total flow) were investigated.
The binary feed gas containing (45.2 vol%) H2 and
(54.8 vol%) CO2 was prepared in a gas cylinder and
employed as a synthetic H2 fermentation mixture.
Accordingly, this setup was designed to conduct experi-
ment off-line, separately from a bioreactor (“hypothe-
sized integrated system”), which can be a next step based
on the preliminary feedback delivered from this study.
The PEI membrane module was operated in lumen-to-
shell separation arrangement, where the gas is fed into
the hollow fibers and retentate is obtained on the oppo-
site end of the capillaries, while permeate, after passing

through, is collected on the shell side. The actual compo-
sition of gas samples taken under steady-state permeation
conditions via ports “12” and “13” was determined using
gas chromatography method reported elsewhere.28

3 | RESULTS AND DISCUSSION

As foreshadowed in Figure 1, the final goal with the
application of PEI membrane will be the utilization of
CO2-enriched gas fraction (derived from the fermenta-
tion) for the cultivation of microalgae. At the same time,
a H2-rich fraction should continue its path toward fuel
cells. Thus, the objective of the current process evalua-
tion is twofold and should be concerned both with H2and
CO2 purifications.

The numerical results obtained with the PEI mem-
brane in the respective experiments are shown in Table 1.
As it can be concluded from the observed behavior of the
membrane made of glassy polymer PEI,23 this material is
H2-selective (or in other words, CO2-rejective) in coinci-
dence with earlier investigations.29,30 According to the gas
composition data in Table 1, higher concentrations of H2

were achievable in the permeate (shell side of the module).
Furthermore, from the response surface in Figure 4A,
which is fitted to the experimental results of Table 1 to
illustrate trends, it can be drawn that the purity of H2 in
the permeate was notably affected by both the (a) feed to
permeate pressure ratio (Pfeed/Ppermeate) and (b) the stage-
cut, as separation settings. Similar observations can be
made regarding the role of these two separation variables
on the enrichment of CO2 on the opposite, (lumen) side of
the module in the retentate (Figure 4B).

Although in both cases (Figure 4A,B) the positive
effect of higher Pfeed/Ppermeate could be noticed that is in
link with the driving force of the separation, the impact
of stage-cut is somewhat more complex. As a matter of
fact, lower stage-cuts (lower quantity permeate, more
retentate) are favored for purifying H2 in the permeate

FIGURE 3 Microstructure of the polyetherimide (PEI)

hollow-fiber membrane cross-section obtained from scanning

electron microscopy (SEM)

TABLE 1 The experimental plan

for testing the PEI membrane module

with binary H2/CO2 mixture and the

gas composition results obtained

accordingly

Pfeed/
Ppermeate (1) Stage-cut (1)

Gas compositions (vol%) Mass
balance
error (%)Feed Retentate Permeate

H2 CO2 H2 CO2 H2 CO2 H2 CO2

2.45 0.13 45.2 54.8 43.1 56.9 65.8 34.2 1.9 1.6

2.45 0.41 45.2 54.8 35.5 64.5 64.0 36.0 4.3 3.6

2.55 0.57 45.2 54.8 28.0 72.0 61.0 39.0 3.8 3.1

4.55 0.65 45.2 54.8 20.8 79.2 61.1 38.9 4.2 3.4

4.62 0.47 45.2 54.8 29.4 70.6 66.4 33.6 3.4 2.8

Note: Ppermeate: 1 atm (absolute).
Abbreviation: PEI, polyetherimide.
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(Figure 4A), while higher stage-cuts (higher quantity per-
meate, less retentate) seem required to enhance the CO2

concentration in the retentate (Figure 4B). This is well-
reflected by examining the first two lines in Table 1 at
equal Pfeed/Ppermeate ratios (2.45), where decreasing the
stage-cut from 0.41 to 0.13 resulted in the increment of
H2 concentration in the permeate (from 64 to 65.8 vol%),
while reduced the CO2 content in the retentate (from
64.5 to 56.9 vol%).Therefore, in agreement with the com-
mon experiences and supported by our recent calcula-
tions carried out on PEBAX gas separation membrane,20

simultaneously targeting the purifications of H2 and
CO2is not a feasible option and a decision is needed
which way to go with the adjustment of permeate and
retentate flows to meet the actual preferences. In this
study employing the PEI membrane and a constant feed
gas quality mimicking a realistic mixture of biohydrogen
fermenters (Table 1); on the one hand, the highest H2

concentration of 66.4 vol% in the permeate was attained
at Pfeed/Ppermeate and stage-cut of 4.62 and 0.47, respec-
tively. If the enrichment of H2 was aimed, then the prod-
uct gas with increased H2 content should pass toward
application in fuel cells to produce electricity, such as it
was demonstrated by Lin et al.31 On the other hand, the
suitable conditions for the peak CO2 concentration
(79.2 vol%) in the retentate were Pfeed/Ppermeate and stage-
cut of 4.55 and 0.65, respectively. In this latter case, as an
example, the mixed gas (H2/CO2) selectivity of the mem-
brane, calculated as the ratio of component permeances
(H2:172.2 and CO2:36.8, both in the unit of 10−6 cm3

STP

cm−2 s−1 cm Hg−1 known as GPU),32,33 was found to be
4.68. For comparison, we may recall the findings of

previous studies investigating the performance of PEI
material for H2/CO2 separation. Actually, H2/CO2 selec-
tivity values spanning 5.9 to 6.4 were reported applying
feed pressures up to approximately 10 atm and a temper-
ature of 30�C to 35�C.29,30,34 It should be, however, noted
that these results originate mostly from single gas mea-
surements that are considered ideal and hence, are usu-
ally better than those obtained with a gas mixture. It can
be extracted from the literature that the concentration of
CO2 in the gas entering the photobioreactor can have
notable impact, depending on the tolerance of various
species to elevated CO2 concentrations. As analyzed by
Singh and Singh for several microalgae, for example,
Chlorella, Scenedesmus, Nannochloropsis,35 frequent con-
centration levels of CO2 in the gas supplied for biomass
production are up to 15%. Nevertheless, certain species,
can be cultivated with compromises even under CO2 con-
centrations of 50%,36 70%37 or even 80%, while 100%
likely causes complete inhibition.38 Overall, in line with
these previous findings, it can be argued based on the
assessment of PEI membrane that the module has the
potential to contribute to the management of H2/CO2

separation during biohydrogen fermentation and ensure
a CO2-rich, secondary gas stream (up to 79.2 vol% under
the conditions tested in this work) that may be trans-
formed biologically in an optimized photobioreactor sys-
tem, provided that the underlying microalgae species are
carefully selected. In the future, based on all of these con-
siderations, it is proposed to implement the integrated
system using a real hydrogen gas fermenter and an algal
photobioreactor and explore its operation, readiness level
and energy balance at a larger, postlaboratory scale.

FIGURE 4 The effect of gas separation conditions on the variation of, A, H2 concentration in the permeate and, B, CO2 concentration

in the retentate applying the polyetherimide (PEI) membrane module [Colour figure can be viewed at wileyonlinelibrary.com]
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4 | CONCLUSIONS

In this study, a PEI membrane module was evaluated for
its H2/CO2 separation capability. It was demonstrated in
the experiments that the gas separation task could be man-
aged by the membrane, however, different operating set-
tings needed to be adjusted for purifications of H2 and
CO2 gases. Under appropriate conditions, a CO2-enriched
retentate with 79.2 vol% of CO2 was delivered and its pho-
tobiological transformation pathway employing micro-
algae cultures was discussed considering an integrated
system, where carbon dioxide is captured and converted
into biomass as the renewable feedstock of an envisaged
circular bioprocess producing biohydrogen fermentatively.
We also see significant improvement potential in the opti-
mization of the membrane and the fabrication of the mod-
ule or in special membrane materials tailored for the
separation of H2/CO2 from biological sources.
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