
Classical and Quantum Gravity

LETTER • OPEN ACCESS

Symmetric teleparallel geometries
To cite this article: A A Coley et al 2022 Class. Quantum Grav. 39 22LT01

 

View the article online for updates and enhancements.

You may also like
Gravity in extreme regions based on
noncommutative quantization of
teleparallel gravity
Ryouta Matsuyama and Michiyasu
Nagasawa

-

Gravitational waves in higher order
teleparallel gravity
Salvatore Capozziello, Maurizio Capriolo
and Loredana Caso

-

Teleparallel theories of gravity: illuminating
a fully invariant approach
M Krššák, R J van den Hoogen, J G
Pereira et al.

-

This content was downloaded from IP address 158.248.121.9 on 02/02/2023 at 08:17

https://doi.org/10.1088/1361-6382/ac994a
https://iopscience.iop.org/article/10.1088/1361-6382/aacddc
https://iopscience.iop.org/article/10.1088/1361-6382/aacddc
https://iopscience.iop.org/article/10.1088/1361-6382/aacddc
https://iopscience.iop.org/article/10.1088/1361-6382/abbe71
https://iopscience.iop.org/article/10.1088/1361-6382/abbe71
https://iopscience.iop.org/article/10.1088/1361-6382/ab2e1f
https://iopscience.iop.org/article/10.1088/1361-6382/ab2e1f


Classical and Quantum Gravity

Class. Quantum Grav. 39 (2022) 22LT01 (13pp) https://doi.org/10.1088/1361-6382/ac994a

Letter

Symmetric teleparallel geometries

A A Coley1, R J van den Hoogen2,∗ and D D McNutt3

1 Department of Mathematics and Statistics, Dalhousie University, Halifax B3H 3J5,
Nova Scotia, Canada
2 Department of Mathematics and Statistics, St. Francis Xavier University, Antigonish
B2G 2W5, Nova Scotia, Canada
3 Department of Mathematics and Physics, University of Stavanger, Stavanger,
Norway

E-mail: rvandenh@stfx.ca

Received 5 June 2022; revised 20 September 2022
Accepted for publication 11 October 2022
Published 21 October 2022

Abstract
In teleparallel gravity and, in particular, in F(T) teleparallel gravity, there is
a challenge in determining an appropriate (co-)frame and its corresponding
spin connection to describe the geometry. Very often, the ‘proper’ frame, the
frame in which all inertial effects are absent, is not the simplest (e.g, diagonal)
(co-)frame. The determination of the frame and its corresponding spin connec-
tion for F(T) teleparallel gravity theories when there exist affine symmetries
is of much interest. In this paper we present the general form of the coframe
and its corresponding spin connection for teleparallel geometries which are
invariant under a G6 group of affine symmetries. The proper coframe and
the corresponding F(T) field equations are also shown for these teleparal-
lel Robertson–Walker geometries. Further, with the addition of an additional
affine symmetry, it is possible to define a teleparallel de Sitter geometry.

Keywords: affine symmetries, teleparallel gravity,
teleparallel Robertson–Walker spacetimes, teleparallel de Sitter spacetimes

1. Introduction

In teleparallel theories of gravity (summarized in the appendix), the tetrad (or (co-)frame) and
corresponding spin-connection replace the metric as the principal object of study. Often when
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people in the literature talk about symmetric spacetimes, they are actually talking about metric-
symmetric spacetimes, i.e, Killing vectors (KVs). However, in teleparallel geometries this may
not be an appropriate approach and therefore motivates the further study of symmetries in
teleparallel gravity.

An affine frame (intrinsic) symmetry on the frame bundle of M, is a diffeomorphism from
the manifold to itself which leaves the connection invariant and affects the invariant frame in
a very restricted manner, which is characterized by a vector field, X, satisfying [1, 2]:

LXha = λ b
a hb and LXω

a
bc = 0, (1)

where ωabc denotes the components of the spin-connection relative to the geometrically pre-
ferred invariant frame ha determined by the Cartan–Karlhede algorithm [1, 3, 4] and λ b

a is an
element of the linear isotropy group determined by the algorithm. How the matrix λ b

a is chosen
will be briefly discussed in the following section. Details can be found in [2]. This definition
is a frame-dependent analogue of the definition of a symmetry introduced by [5].

The Cartan–Karlhede algorithm is a method originally developed to locally characterize a
geometry uniquely in terms of a finite set of invariants [1, 3, 4]. In the context of this work,
the algorithm uses the canonical forms of the torsion tensor and its covariant derivatives, up to
some finite order, to determine a class of invariantly defined frames. Relative to this class of
frames, the components of the torsion tensor and its covariant derivatives are invariants, called
Cartan invariants. The Cartan–Karlhede algorithm also provides information on the dimension
of the affine frame symmetry group, along with the dimension of its linear isotropy group.

Since any affine frame symmetry is an isometry but not all isometries are affine frame
symmetries, it follows that symmetries of a spacetime (affine symmetries) are more restrictive
than ‘metric symmetries’. Hence the set of isometries may not represent a set of intrinsic
symmetries for a given teleparallel geometry. Spacetimes with a single affine frame symmetry,
X, were studied in [6], spacetimes with multiple affine frame symmetries having no isotropies
in [7] and spacetimes with isotropies in [2].

For example, it is known [1] that there are no teleparallel geometries admitting a maximal
group of affine frame symmetries other than Minkowski space [5]. In particular, de Sitter and
anti-de Sitter spaces are not maximally symmetric spaces in teleparallel geometry. In general,
if a 4-dimensional (4D) Riemann–Cartan geometry admits a non-zero torsion tensor, then the
maximum dimension of the group of affine symmetries is at most seven [1]. Indeed, in the
example of de Sitter in teleparallel gravity (TdS) presented in [1], neither of the two inequival-
ent frames displayed, along with the trivial connection and with the identical de Sitter metric,
are maximally symmetric (i.e. affine invariant under the full G10 group). The first frame has
an affine symmetry group of 7 dimensions which acts on the 4D spacetime (i.e. the space is
4D homogeneous). The second has a 4D symmetry group. In these two examples, one frame
is diagonal while the other is not and so there is no Lorentz transformation mapping one frame
into the other which also preserves the trivial connection condition. Hence the two teleparallel
geometries are not related by a diffeomorphism. We note that it is the first teleparallel geo-
metry that is a special case of the teleparallel analogue of Robertson–Walker (TRW) geometry
with a G6 Lie algebra of affine symmetries (we will describe this below).

Indeed, there is some confusion in discussions of TRW geometry in the literature. It is not
always clear whether the frame and the spin connection considered has the full G6 Lie algebra
of affine symmetries consisting of spatially homogeneous and isotropic symmetries, which
are isometries of the metric. This is also relevant regarding the discussion of teleparallel de
Sitter (TdS) geometries considered later. In particular, in the literature, when the parameter
k is non-zero, the geometries presented do not always have a G6 of affine frame symmetries;
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typically only three of theKVs are affine frame symmetries.When a proper frame is considered
additional confusion is often present.

Let us comment on the parameter k which determines the nature of the spatial curvature
in the Robertson–Walker (RW) metric. Since the Riemmann curvature is identically zero in
teleparallel geometries, k cannot be related to the spatial curvature of the Riemann tensor.
While ‘ka−2’ can still be interpreted as the curvature of a particular 3-space, in 4-space it is a
component of the torsion scalar: T= 6(H2 − ka−2).

The situation appears to be worse in the case k=−1, in which the absurd situation of
complex valued components of the frame or spin connection are used [8]. Indeed, for k=−1
the connection considered is not ideal for a real-valued teleparallel geometry. Frame/connec-
tion pairs for geometries satisfying a G6 group of affine symmetries have been presented by
Hohmann [9, 10] and others [11, 12]. However, it is still not clear which functions in these
presentations are essential to determining a solution and which are coordinate dependent. A
second challenge is that these approaches cannot explicitly determine subclasses which admit
additional symmetry (instead larger symmetry groups must be assumed and determined to
exist or not exist by trial and error). While most of the literature to date has concentrated
on the analysis of cosmological models having a k= 0 RW metric [13], one can now begin
expanding our understanding of how different symmetry assumptions affect the cosmological
models built in teleparallel theories of gravity.

From the discussion above, we wish to revisit the ideas of affine symmetries. In particular,
we seek to first determine all teleparallel geometries which admit the full G6 Lie algebra of
affine symmetries. We will call such geometries TRW geometries. Building on these results,
we will then propose a definition for the TdS geometry.

1.1. Notation

The notation employed uses Greek indices (µ,ν, . . .) to represent space-time coordinate
indices and Latin indices (a,b, . . .), to represent frame or tangent-space indices. Round brack-
ets surrounding indices represents symmetrization, while square brackets represents anti-
symmetrization. The frame basis is denoted as ha with the corresponding coframe basis ha

where h µ
a h

b
µ = δab . The proper coframe is designated with a h̃a. The metric signature is

(−+++).

2. TRW spacetimes

2.1. Affine symmetry groups with non-trivial isotropies

Teleparallel geometries are characterized by a frame (or coframe) and a metric compatible,
zero-curvature connection. As a starting point to determine the TRWgeometries, we will apply
the following proposition [2]:

Proposition 2.1. The most general teleparallel geometry which admits a given group of sym-
metries, XI, I,J,K ∈ {1, . . . ,N} with a non-trivial linear isotropy group of dimension s can
be determined by solving for the unknowns haµ, f

î
I (with î, ĵ, k̂ ∈ {1, . . . ,n}) and ωabc from the

following equations:

LXIh
a
µ = f îI λ

a
î b
hbµ, (2)

2X[I ( f
k̂
J])− f îI f

ĵ
JC

k̂
î̂j
= CKIJf

k̂
K , (3)

3
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LXω
a
bc = 0, (4)

h µ
c ∂µω

a
bd− h ν

c ∂νω
a
bd+ωafcω

f
bd−ωafdω

f
bc = 0, (5)

where {λa
î b
}s
î=1

are a basis for the Lie algebra of the linear isotropy group, [λ̂i, λ̂j] = Ck̂
î̂j
λk̂,

[XI,XJ] = CKIJXK.

Equations (2) and (4) are the affine symmetry conditions, equation (3) results from the
commutator property of Lie derivatives [LXI ,LXJ ] = L[XI,XJ] while equation (5) is the zero
curvature condition.

Working in coordinates (t,r,θ,ϕ), the KVs associated with the RW metric are:

Xz = ∂ϕ, Xy =−cosϕ∂θ +
sinϕ
tanθ

∂ϕ,Xx = sinϕ∂θ +
cosϕ
tanθ

∂ϕ,

X1 = χsinθ cosϕ∂r+
χ

r
cosθ cosϕ∂θ −

χsinϕ
rsinθ

∂ϕ,

X2 = χsinθ sinϕ∂r+
χ

r
cosθ sinϕ∂θ +

χcosϕ
rsinθ

∂ϕ, (6)

X3 = χcosθ∂r−
χ

r
sinθ∂θ,

where χ≡
√
1− kr2. We write {XI}6I=1 = {X1,X2,X3,Xx,Xy,Xz}, with the commutator con-

stants, CIJK.
The largest linear isotropy group permitted by a spatially homogeneous geometry is SO(3)

and a matrix basis for its Lie algebra is of the form:

λ1̂ =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 ,λ2̂ =−


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 ,

λ3̂ =−


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 , (7)

with the corresponding commutator constants, Cî
ĵ̂k
: C3̂

1̂2̂
=−C2̂

1̂3̂
= C1̂

2̂3̂
=−1.

The first step is to solve equation (3) and determine the form of the functions in f îI through:

2X[I ( f
k̂
J])− f îI f

ĵ
JC

k̂
î̂j
= CKIJ f

k̂
K . (8)

We exploit the freedom of choice in the components of f îI using the isotropy group. The iso-
tropy group affects a change to these components through the equation:

XI(Λ̃
a
b)[Λ̃

−1]bc+Λ̃a
b f

î
I λ

b
î e
[Λ̃−1]ec = f ĵI λ

b
ĵ a
, (9)

where Λ̃a
b is some element of the isotropy group. Since Xz is a generator of a spatial rotation,

we will choose our frame representation so that it acts as a rotation on the basis elements h3

and h4, i.e. f 1̂6 = f 2̂6 = 0. By applying a rotation about h3 and h4, this remaining component f 3̂6
can be set to zero using

X6(Λ̃
a
b)[Λ̃

−1]bc+Λ̃a
b f

î
6λ

b
î e
[Λ̃−1]ec = 0. (10)
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Equation (3) can then be solved in a straightforward manner by using the remaining freedom
in the isotropy group and equation (9):

f îI =



−
√
1−kr2 sin(ϕ)cos(θ)

r sin(θ) − cos(θ)cos(ϕ)
r

sin(ϕ)
r√

1−kr2 cos(ϕ)cos(θ)
r sin(θ) − cos(θ) sin(ϕ)

r − cos(ϕ)
r

0 sin(θ)
r 0

cos(ϕ)
sin(θ) 0 0
sin(ϕ)
sin(θ) 0 0
0 0 0


. (11)

With the representation of the linear isotropy group’s Lie algebra given in (7) and the form of
f îI determined we can solve equation (2),

X ν
I ∂νh

a
µ + ∂µX

ν
I h

a
ν = f îI λ

a
î b
hbµ, (12)

to determine the most general frame admitting this symmetry group. In general, a coordinate
transformation can be made to simplify the coframe. This coordinate transformation leads to a
Lorentz transformation that will be absorbed by the connection. Therefore, we can work with
the following coframe:

haµ =


1 0 0 0
0 a(t)√

1−kr2
0 0

0 0 a(t)r 0
0 0 0 a(t)rsin(θ)

 . (13)

Using the coframe associated to this matrix, we can readily solve the resulting equations
coming from equation (4) for each of the KV fields. We will assume that the connection is
metric compatible, so thatωabc =−ωbac. The solution to these equations contains two arbitrary
functions W1(t) and W2(t) and has the following non-trivial components:

ω122 = ω133 = ω144 =W1(t),

ω234 =−ω243 = ω342 =W2(t),

ω233 = ω244 =−
√
1− kr2

a(t)r
, (14)

ω344 =− cos(θ)
a(t)rsin(θ)

.

The above connection is themost general connection for any Riemann–Cartan geometry which
admits the symmetry groupwith generators given by equation (6). For this class of connections,
the tensor-part of the torsion tensor is automatically zero and the torsion tensor can be decom-
posed into the vector-part, V= Vaha where Va = Tbba and axial-part A= Aaha where Aa =
1
6ϵabcdT

bcd.
To determine the class of connections that describe a teleparallel geometry we must impose

the flatness condition in equation (5). This has a number of distinct solutions and leads to the
following proposition:

Proposition 2.2. The class of TRW geometries given by the frame (13) and connection (14),
are split into a number of distinct cases determined by the arbitrary functions W1 and W2 in
the connection:

5
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• W1(t) = 0, W2(t) =±
√
k

a(t)
where V=−3ȧ(t)

a(t)
h1, and A=∓2

√
k

a(t)
h1,

• W1(t) =±
√
−k
a(t)

, W2(t) = 0 where V=±3(
√
−k+ ȧ(t))
a(t)

h1, and A= 0,

where a(t) is the frame function and ȧ(t) is its derivative. Each case above contains the subcase
k= 0.

In conclusion, the coframe (13) with the connection (14) will be a teleparallel geometry admit-
ting the desired symmetry group with generators given by equation (6), if the two arbitrary
functions in the connection satisfy one of the above forms. It is natural to ask that these func-
tions are real-valued, and this constraint immediately distinguishes the RW metrics with pos-
itive and negative k.

2.2. TRW proper frames

Assuming that the spacetime geometry is invariant under a G6 group of affine frame sym-
metries, McNutt et al [2] determined the form of the corresponding spin connection briefly
described above. Assuming an orthonormal diagonal coframe in spherical coordinates (13)
with corresponding spin connection determined by equation (14) we can consider the three
scenarios for k. For k=−1 we have W1(t) = δ

√
−k/a(t) and W2(t) = 0, for k= 0 we have

W1(t) = 0 andW2(t) = 0, and for k=+1we have thatW1(t) = 0 andW2(t) = δ
√
k/a(t)where

in each case there is a discrete parameter δ =±1. Since there exists a matrix Λa
b ∈ SO(1,3)

that yields the spin connection via the differential equation

ωab = (Λ−1)acdΛ
c
b. (15)

All that needs to be done is to solve this system of differential equations for Λa
b in each of the

situations k=−1 and k=+1 (noting that k= 0 is a subcase of both). With this Λa
b one can

easily determine a proper coframe h̃a = Λa
bh

b, where hb is given by equation (13).
The torsion scalar for any of the scenarios k= (−1,0,1) has the form

T(t) = 6

(
ȧ
a

)2

+ 12W1
ȧ
a
+ 6W2

1 − 6W2
2 ,

= 6

(
ȧ
a
+W1 +W2

)(
ȧ
a
+W1 −W2

)
,

=−2
3
V2 +

3
2
A2, (16)

where, the magnitudes of the vectorial and axial terms are

V2 = VaV
a =−9

(
ȧ
a
+W1

)2

, A2 = AaA
a =−4W2

2.

It is curious to note how a non-trivial axial part of the torsion scalar only appears in the k=+1
case.

6
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2.2.1. Negative k-parameter TRW case. When k=−1, a Lorentz transformation that satis-
fies the differential equation (15) is

Λ
a
b =


√

1− kr2 −δ
√
−kr 0 0

−δ
√
−kr sin(θ) sin(ϕ)

√
1− kr2 sin(θ) sin(ϕ) cos(θ) sin(ϕ) cos(ϕ)

−δ
√
−kr sin(θ)cos(ϕ)

√
1− kr2 sin(θ)cos(ϕ) cos(θ)cos(ϕ) − sin(ϕ)

δ
√
−kr cos(θ) −

√
1− kr2 cos(θ) sin(θ) 0

 . (17)

We note that any global Lorentz transformation multiplying this transformation is also a solu-
tion. Therefore, one option to properly formulate the k=−1 spacetime geometry is to use the
proper frame h̃a = Λa

bh
b with this Lorentz transformation and with hb given by equation (13),

which necessarily has a trivial spin connection. A second choice is to use the diagonal
coframe (13) and corresponding spin connection one-form

ω
a
b =


0 − δ

√
−k√

1−kr2
dr −δ

√
−krdθ −δ

√
−kr sin(θ)dϕ

− δ
√

−k√
1−kr2

dr 0 −
√
1− kr2dθ −

√
1− kr2 sin(θ)dϕ

−δ
√
−krdθ

√
1− kr2dθ 0 −cos(θ)dϕ

−δ
√
−kr sin(θ)dϕ

√
1− kr2 sin(θ)dϕ cos(θ)dϕ 0

 . (18)

Using either the proper coframe (and trivial connection) or the diagonal coframe/connection
pair (13) and (18) the torsion scalar is

T= 6

(
ȧ
a
+

δ
√
−k
a

)2

. (19)

We assume an energy momentum tensor of the form Tab = ρ(t)uaub+(uaub+ gab)p(t)
describing a perfect fluid with energy density ρ(t) and pressure p(t). The antisymmetric part
of the F(T) teleparallel gravity field equation (A.8) are identically satisfied and the linearly
independent field equations from the symmetric part of the F(T) teleparallel gravity field
equation (A.7) are

− F(T)
2

+ 6F ′(T)

(
ȧ
a

)(
ȧ
a
+

δ
√
−k
a

)
= κρ, (20)

F(T)− 6F ′(T)

(
ä
a
+

(
ȧ
a
+

δ
√
−k
a

)2
)
− 6F ′ ′(T)Ṫ

(
ȧ
a
+

δ
√
−k
a

)
= κ(ρ+ 3p). (21)

The energy conservation equation that follows from the above equations is

ρ̇=−3
ȧ
a
(ρ+ p). (22)

These coframe connection pairs are also valid in the subcase k= 0. Notice that we cannot use
this construction when k=+1 because complex valued coframes or spin connections result.

2.2.2. Positive k-parameter TRWcase. When k=+1, a Lorentz transformation that satisfies
the differential equation (15) is

Λ
a
b =



1 0 0 0

0 cos(θ) −
√

1− kr2 sin(θ) −δ
√
kr sin(θ)

0 sin(θ) cos(ϕ)
√

1− kr2 cos(θ) cos(ϕ)− δ
√
kr sin(ϕ) δ

√
kr cos(θ) cos(ϕ)−

√
1− kr2 sin(ϕ)

0 sin(θ) sin(ϕ)
√

1− kr2 cos(θ) sin(ϕ)+ δ
√
kr cos(ϕ) δ

√
kr cos(θ) sin(ϕ)+

√
1− kr2 cos(ϕ)


.

(23)
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Again any global Lorentz transformation multiplying this transformation is also a solution.
An option to properly formulate the k=+1 geometry is to construct the proper frame

h̃a = Λa
bh

b using this Lorentz transformation and with hb given by equation (13), which neces-
sarily has a trivial spin connection. A second choice is to use the diagonal coframe (13) and
corresponding spin connection one-form

ω
a
b =



0 0 0 0

0 0 −
√

1− kr2dθ + δ
√
kr sin(θ)dϕ −δ

√
krdθ −

√
1− kr2 sin(θ)dϕ

0
√

1− kr2dθ − δ
√
kr sin(θ)dϕ 0 δ

√
k√

1−kr2
dr− cos(θ)dϕ

0 δ
√
krdθ +

√
1− kr2 sin(θ)dϕ − δ

√
k√

1−kr2
dr+ cos(θ)dϕ 0


.

(24)

Using either the proper coframe (and trivial spin connection) or the diagonal
coframe/connection pair (13) and (18) the torsion scalar is

T= 6

((
ȧ
a

)2

− k
a2

)
, (25)

which is independent of δ. Assuming a perfect fluid as in the k=−1 case, the antisymmetric
part of the field equations are identically satisfied and the symmetric part of the field equations
are

− F(T)
2

+ 6F ′(T)

(
ȧ
a

)2

= κρ, (26)

F(T)− 6F ′(T)

(
ä
a
+

(
ȧ
a

)2

− k
a2

)
− 6F ′ ′(T)Ṫ

(
ȧ
a

)
= κ(ρ+ 3p). (27)

In this k=+1 case, there is no dependence on the discrete parameter δ. The energy conser-
vation equation is again given by (22). Further, the equations once again reduce to the k= 0
field equations by setting k= 0 or become invalid if k=−1.

2.2.3. Discussion. In most cases involving the construction of cosmological models in F(T)
teleparallel gravity, authors have only considered the k= 0 case (e.g. see review [14]). For the
k=±1 cases, there have been many erroneous attempts to find solutions, many involving
the use of complex tetrads. Ferraro and Fiorini [8] made one of the first attempts to properly
determine the frame corresponding to a particular assumed symmetry. They were successful
in constructing a proper frame for the k=+1 case, but the corresponding k=−1 case res-
ulted in a complex quantities. More recently, Hohmann and collaborators, were successful in
constructing real valued proper frames for both the k=−1 and k=+1 cases [5, 15, 16]. The
geometrical approaches employed in [5, 15, 16] are similar to that presented here. However,
in short, the definitions are not identical, we only discuss affine symmetries, and we avoid any
complex quantities. Since we have made no assumptions a priori, our results are general. We
shall discuss this in more detail in [2] (which contains all the necessary mathematical details
and some additional examples).

3. Teleparallel ‘de Sitter’ (TdS)

There are no teleparallel geometries admitting a maximal group of affine frame symmetries
other than Minkowski space [5]. If a 4D teleparallel geometry has a non-zero torsion, then
the maximum dimension of the group of affine symmetries is at most seven [1]. Therefore, let

8
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us investigate the following particular scenario to study the analogue of de Sitter geometries
in general relativity (GR).

Using the Cartan–Karlhede algorithm [1], we can determine two different classes ofG7 geo-
metries by requiring that the Cartan invariants are all constant. This follows from the formula
for the dimension of the affine frame symmetry group, N= s+ 4− tp where s is the dimen-
sion of the linear isotropy group and tp is the number of functionally independent invariants
at the conclusion of the algorithm. If all of the Cartan invariants are constant, then tp = 0 and
the dimension of the linear isotropy group is three, yielding a seven-dimensional affine frame
symmetry group.

Solving the differential equations arising from the requirement that the only non-trivial
components of the Cartan invariants are Tabc gives two classes of possibilities. In each case
we will use equations (2)–(4) to determine the form of the new affine frame symmetry.

In the first case we have that a(t) = A0eH0t, k= 0, H0 ̸= 0 where H0 is a constant. In this
case, the affine frame symmetry is of the form

X7 =− 1
A0H0

∂t+ r∂r. (28)

The resulting Lie algebra of {XI}7I=1 = {X1,X2,X3,Xx,Xy,Xz,X7} is given by

[X1,X5] = X3, [X1,X6] = X2, [X1,X7] = X1,
[X2,X4] =−X3, [X2,X6] =−X1, [X2,X7] = X2,
[X3,X4] = X2, [X3,X5] =−X1, [X3,X7] = X3,
[X4,X5] =−X6, [X4,X6] = X5, [X5,X6] =−X4.

(29)

By inspection, this is a subalgebra of the Lie algebra for the group of metric (Killing) sym-
metries of de Sitter spacetime. We therefore propose the following definition.

Definition 3.1. The TdS geometry is a teleparallel geometry with a G7 Lie group of affine
symmetries which is a subgroup of O(1,4).

Note in this geometry the covariant derivative of the torsion tensor is zero.
Using our coframe/spin connection pair determined earlier (either proper or not), the tor-

sion scalar, and magnitudes of the vectorial and axial parts of the Torsion scalar for the TdS
geometries are

k= 0, T= T0 = 6H2
0 , V2 =−9H2

0 , A2 = 0 . (30)

The field equations in the TdS case reduce to

κρ=−κp=−1
2
F(T0)+ 6F ′(T0)H

2
0 , (31)

where necessarily ρ and p are constant. The equations formally reduce to their GR counterparts
only when F(T) = T. We note that the effective equation of state

ωeff =
p
ρ
=−1, (32)

is the same as its GR counterpart, however, the effective cosmological constant Λeff ≡ κρ
depends on the two parameters F(T0) and F ′(T0).

9
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3.1. Teleparallel Einstein static (TES)

In the second case, a(t) = A0 a non-zero constant, k=±1. These geometries correspond
to the direct product R×M3, where M3 is a locally homogeneous and isotropic Rieman-
nian manifold. This is reflected in the Lie algebra structure of the affine frame symmetries
{XI}7I=1 = {X1,X2,X3,Xx,Xy,Xz,X7}, where X7 = ∂t and

[X1,X5] = X3, [X1,X6] = X2, [X2,X4] =−X3,

[X2,X6] =−X1, [X3,X4] = X2, [X3,X5] =−X1,

[X4,X5] =−X6, [X4,X6] = X5, [X5,X6] =−X4,

[Xi,X7] = 0, i ∈ {1, . . . ,6}.

(33)

Since X7 = ∂t is the additional affine frame symmetry, this geometry is necessarily static. This
geometry can be considered as the analogue of the Einstein static geometry in GR, which we
shall call the TES geometry.

Using our coframe/spin connection pair determined earlier (either proper or not), the torsion
scalar, and magnitudes of the vectorial and axial parts of the torsion scalar are

k=−1, T= T0 =− 6k
A2
0

, V2 =
9k
A2
0

, A2 = 0,

k=+1, T= T0 =− 6k
A2
0

, V2 = 0, A2 =− 4k
A2
0

. (34)

The field equations in the TES case reduce to

κρ=−1
2
F(T0) and κp=

1
2
F(T0)+ 2F ′(T0)

k

A2
0

, (35)

where necessarily ρ and p are constant. For the TES model the effective equation of state

ωeff =
p
ρ
=−1− F ′(T0)

F(T0)
4k
A2
0

, (36)

where in GR the Einstein static metric yields ωeff =−1/3.

4. Discussion

We have clarified the role of choosing an appropriate spin connection for a given coframe
ansatz. Using an algorithm developed in [2] we have constructed a set of invariant coframes
and more importantly their corresponding spin connection that respects the affine frame sym-
metries that have been imposed. In particular, we have presented the coframe and its corres-
ponding spin connection for teleparallel geometries which are invariant under a G6 group of
affine symmetries. In addition, the proper coframe has also been determined in each case and
the field equations expressed. The corresponding metric is RW type and is characterized by a
spatial curvature parameter k= {−1,0,1}. It is interesting to note that in the k=−1 case the
field equations result in two different situations.

In the TRW cases, having an appropriate spin connection/coframe pair results in a situation
in which the antisymmetric part of the field equations are identically zero. Having an appropri-
ate spin connection/coframe pair defined via symmetry requirements, is not always compatible
with the antisymmetric part of the F(T) teleparallel field equations. Indeed it has been shown

10
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in [6] that when there is a single affine symmetry requirement, that the antisymmetric part of
the field equations place severe constraints on the geometry.

In teleparallel geometries with non trivial torsion, since the dimension of themaximal group
of affine symmetries is seven, we define the TdS geometry as that nontrivial teleparallel geo-
metry which has a seven dimensional group of symmetries that is also a subgroup of the group
of the Killing symmetries of the de Sitter metric. Furthermore, using a similar technique, we
are able to define the teleparallel analogue of Einstein static geometry.

With the proposed definition of TdS, it now becomes possible to extend this work by con-
sidering perturbations of TdS. Further, this analysis provides a solid foundation for the devel-
opment of generalizations of TRW cosmological models through the construction and analysis
of teleparallel Bianchi geometries.
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Appendix. Overview of F(T) teleparallel gravity

As an alternative to Riemmannian geometries which are typically characterized by the
curvature of a Levi-Civita connection calculated from the metric, teleparallel geometries are
characterized by the torsion. The torsion is a function of the coframe, derivatives of the
coframe, and a zero curvature and metric compatible spin connection. Teleparallel geometries
provide an alternative framework in which to build a theory of gravity. A variety of teleparal-
lel gravitational theories based on a Lagrangian can be constructed using various scalars built
from the torsion and functions thereof. One subclass of teleparallel gravitational theories is
dynamically equivalent to GR and is appropriately called the teleparallel equivalent to general
relativity (TEGR) [17].

A particularly interesting generalization of the TEGR is F(T) teleparallel gravity [18–20].
In the covariant approach to F(T) teleparallel gravity [21], the teleparallel geometry is defined
in a gauge invariant manner as a geometry with zero curvature, having a spin-connection that
vanishes in a very special class of frames (‘proper frames’) where all inertial effects are absent,
and non-zero in all other frames [17, 21, 22]. Therefore, the resulting teleparallel gravity theory
has Lorentz covariant field equations and is therefore locally Lorentz invariant [23].

As we have complete freedom to choose a coframe in which to do our computations,
we choose the coframe so that the tangent space metric has the following form gab =
ηab = Diag[−1,1,1,1]. This orthonormal gauge choice still allows a O(1,3) subgroup of
GL(4,R) of residual gauge transformations which leaves the metric gab = ηab invariant.
One can now restrict attention to the proper or proper ortho-chronous Lorentz subgroups,
SO(1,3) or SO(1,3)+, as desired in any given physical situation. Most importantly, within
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this orthonormal gauge choice, the resulting field equations transform homogeneously under
the remaining O(1,3) (or SO(1,3) or SO(1,3)+) Lorentz gauge transformations.

The Lagrangian for F(T) teleparallel gravity is given in terms of the scalar quantity, T,
called the torsion scalar, defined in terms of the torsion tensor and the super-potential

T=
1
2
T aµνS

µν
a , (A.1)

where the super-potential, Saµν , is constructed from the torsion tensor and various contractions
with the metric and coframes,

S µν
a =

1
2

(
T µν
a +Tνµa−Tµνa

)
− h ν

a T
ϕµ
ϕ + h µ

a Tϕν
ϕ. (A.2)

The complete Lagrangian for F(T) teleparallel gravity is

L=
h
2κ
F(T)+ LMatt, (A.3)

where κ is the gravitational coupling constant, κ= 8πG/c4, where we have chosen units so
that c= 1.

The variations of the Lagrangian, which include a non-trivial spin-connection [21, 24], yield
Lorentz covariant field equations. If we consider the spin-connection as an independent quant-
ity having zero curvature and being metric compatible, then the gravitational Lagrangian (A.3)
can be written using Lagrange multipliers to impose these two constraints. The corresponding
variations yield the following

ωabµ = Λa
c∂µΛ

c
b and ω(ab)µ = 0, (A.4)

where given our orthonormal gauge choice, Λa
b ∈ SO(1,3) (Note: Λ c

b ≡ (Λ−1)cb).
We define the canonical energy momentum

hΘ µ
a =−δLMatt

δhaµ
. (A.5)

Since we have assumed the invariance of the field equations under SO(1,3), the canonical
energy momentum is symmetric Θ[ab] = 0. Further, it can be shown that the metrical energy
momentum Tab now satisfies

Tab ≡−1
2
δLMatt

δgab
=Θ(ab). (A.6)

Variations of the Lagrangian describing F(T) gravity (A.3) with respect to the coframe can
be decomposed into a symmetric and antisymmetric parts

κΘ(ab) = F ′ ′(T)S ν
(ab) ∂vT+F ′(T)Gab+

1
2
gab (F(T)−TF ′(T)) , (A.7)

0= F ′ ′(T)S ν
[ab] ∂vT, (A.8)

where Gab is the usual Einstein tensor calculated from the metric.
If T= const., then the field equations for F(T) teleparallel gravity are equivalent to a res-

caled version of TEGR (which looks like GR with a cosmological constant and a rescaled
coupling constant) [21]. In the case of TEGR, where F(T) = T, equation (A.8) vanishes. For
F(T) ̸= T, the variation of the gravitational Lagrangian by the flat spin connection is equivalent
to the anti-symmetric part of the field equations in equation (A.8) [21, 25]. Further, since the
canonical energy momentum is symmetric,Θ[ab] = 0, then the anti-symmetric part of the field
equations (A.8) limit the possible solutions of spacetimes with a specific symmetry [6].
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