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Abstract—Histological tissue examination has been a long-
standing practice for cancer diagnosis where pathologists identify
the presence of tumors on glass slides. Slides acquired from
laboratory routine may contain unintentional artifacts due to
complications in surgical resection. Blood and damaged tissue
artifacts are two common problems associated with transurethral
resection of the bladder tumor. Differences in histotechnical
procedures among laboratories may also result in color variations
and minor inconsistencies in outcome. A digitized version of a
glass slide known as a whole slide image (WSI) holds enormous
potential for automated diagnostics. The presence of irrelevant
areas in a WSI undermines diagnostic value for pathologists as
well as computational pathology (CPATH) systems. Therefore,
automatic detection and exclusion of diagnostically irrelevant
areas may lead to more reliable predictions. In this paper, we
are detecting blood and damaged tissue against diagnostically
relevant tissue. We gauge the effectiveness of transfer learning
against training from scratch. Best models give 0.99 and 0.89
F1 scores for blood and damaged tissue detection. Since blood
and damaged tissue have subtle color differences, we assess the
impact of color processing methods on the binary classification
performance of five well-known architectures. Finally, we remove
the color to understand its importance against morphology on
classification performance.
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ing, Artifacts, Deep Learning, Blood, Damaged Tissue

I. INTRODUCTION

Histopathological examination has been a gold standard
practice for cancer diagnosis [1]. Bladder cancer diagnosis
is performed by retrieving a tissue sample by transurethral
resection of the bladder tumor. Preparing a glass slide for
microscopic inspection requires several tissue processing steps.
Producing slides of good quality require histotechnical com-
petence and extensive care in handling the extracted tissue [2].
However, extraneous factors could introduce unintentional
artifacts and variations in a small or large portion of the
slide. Blood and tissue artifacts such as damaged areas result
from complicated specimen collection procedures [2]. Blood
clots on a slide appear as a result of hemorrhage and do not
reveal cancer information. Damaged and burnt tissue is often
unreliable to observe histologic features, and pathologists do
not extract any diagnostic or prognostic information from these
areas [3].

Digital pathology (DP) brings us to unveil the benefits of
deep learning (DL) in pathology. A digitized high-resolution
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version of a glass slide is known as a Whole Slide Image
(WSI). A WSI is a pyramid container pre-stored at several
magnification levels to emulate conventional microscopy and
facilitates rapid zoom in and out. WSIs are information-
rich and contain the potential for automating different tasks.
Despite the benefits of automated WSI analysis, artifacts
transferred to digitized glass slides may adversely affect the
overall performance of computational pathology (CPATH)
systems [4], [5]. Manual quality control (QC) can ensure
the diagnostic relevance of a WSI but can be subjective and
laborious at the same time. Hence, WSI preprocessing can play
a vital role in automatically excluding irrelevant areas before
running a diagnostic or prognostic algorithm. In addition,
artifacts detection methods can find defects at regional levels
in a WSI and benefit existing QC methods [6], [7] that focus
only on metadata, contrast, overall sharpness, and noise for
evaluating WSI quality.

Damaged tissue artifacts and blood can be detected due
to notable differences in color and morphology. Some recent
works in DL for CPATH systems involve manual selection of a
region of interest (ROI) for developing diagnostic models [8],
[9]. Although manual selection provides diagnostically relevant
regions, it curbs the objectivity and speed of the process [10].
Bahlmann et al. [11] used color deconvolution to separate ep-
ithelial regions from cytoplasm tissue, benefiting from the dif-
ference in absorption of Hematoxylin and Eosin (H&E) stains.
Extending a similar idea, Mercan et al. [12] developed binary
logistic models and color histograms to localize diagnostically
relevant areas based on texture features. These methods did
not consider the effects of artifacts on their final goal. There
are, however, some works on detecting blood and damaged
areas; Chadaj et al. [13] proposed a method for detecting blood
clots using decision tree classifiers and color deconvolution
on hemorrhoid specimens. Clymer et al. [14] in their three-
stage framework, detected blood vessels at low magnification
using hierarchical Convolutional Neural Networks (CNN). In
another study, Chadaj et al. [15] segmented damaged tissue
areas in immunohistochemically stained brain tumor slides
using the U-Net model. The limitation of that work with
immunohistochemical staining was overcomed by Wetteland
et al. [3], where damaged tissue and blood patches from HES
WSIs were detected using a multi-scale VGG16.

Color variations are common due to inconsistencies in
the staining procedure among laboratories and the color re-
sponse of WSI scanning hardware [16]. Color normaliza-
tion is a common preprocessing step in the CPATH system
for reducing the altered color appearance [17]. Since color
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Figure 1. An overview of our proposed blood and damaged tissue detection method. Patches are extracted from a WSI using a predefined size. Various color
processing schemes are applied to the obtained dataset before extracting features. A classifier with three FC layers is added after each CNN to evaluate their
ability of finding hidden representations. Finally, blood and damaged tissue are classified against diagnostically relevant tissue.

processing techniques change the appearance, their position
in the preprocessing pipeline is debatable. Color processing
applied before artifacts detection may ultimately influence
the appearance of blood and damaged areas. Several CPATH
studies perform color normalization on a controlled dataset
to improve overall classification performance [16], [18], [19].
However, the effect of color processing on artifacts is often
overlooked. Color normalization methods are reported to yield
better performance, but how they affect artifacts detection is
not yet discussed in the literature.

In this paper, we are performing binary blood and damage
tissue classification on H&E WSI using five well-known CNN
architectures. We report the performance of models trained
from scratch against transfer learning setting. Color might be
an important factor for detecting blood and damaged tissue
artifacts; therefore, we assess the effect of color processing
methods on model performance. Finally, we remove color to
quantify the importance of color against morphology in blood
and damaged tissue detection. An overview of our pipeline can
be seen in Figure 1.
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Figure 2. Examples of blood, damaged, and artifact-free patches in our
dataset. Blood and damaged patches have subtle color and morphological
differences compared to normal (artifact-free) tissue.

Table I. Number of patches for blood, damaged and artifact-free classes.

Region Training Validation Test Total
Blood 16,743 4,86 1,409 22,338

Damaged 2,577 332 1,023 3,932
Artifact-free 5,249 1,441 2,144 8,834

II. DATA MATERIALS

We analyzed 55 WSIs of bladder tumor resection speci-
mens from Erasmus MC, Rotterdam, The Netherlands. These
images are H&E stained and scanned at 40x using a Hama-
matsu Nanozoomer. WSIs are in ndpi format with pixel size
of 0.227 µm x 0.227 µm. A split of 35/10/10 WSIs is used
for a training, validation, and test set. WSIs were manually
annotated by non-pathologist for air bubbles, blood, damage,
fold, and blur, and the rest of the tissue is considered artifact-
free. Since WSIs are gigapixel images, they are too large to fit
into the memory at once; thus, we split the images into sub-
images (patches) of 224 × 224 pixels at 40x magnification.
Figure 2 shows some examples of extracted patches for three
classes. Table I further shows the breakdown of the total
number of patches extracted for each subset.

III. METHOD

Figure 1 provides a graphical overview of our proposed
blood and damaged tissue detection method. Background and
foreground are separated using Otsu thresholding. Patches
from a WSI foreground are extracted for desired classes
using an 80% overlap between the grid and annotation mask.
The Histolab [20] library is used to extract patches from a
WSI. We have created two color normalized and a gray-scale
version of the obtained dataset to train CNN architectures for
various experimental setups. VGG16 [21], GoogleNet [22],
MobileNet [23], ResNet [24], and DenseNet [25] are chosen
CNN candidates based on their benchmark performance on
ImageNet [26] dataset. Our proposed system uses these CNN
as backbones by removing fully connected (FC) layers and
using them as feature extractors. A custom classifier with three
FC layers is added to all architectures.

A. Color Processing

Three different color processing schemes are tested; Nor-
malization by Macenko [27] and Vahadane [16], two pop-
ular color deconvolution-based normalization methods, and
reducing color influence by converting RGB patches to gray-
scale. The latter can be used to investigate if the models
relies more on morphology instead of colorimetric features
for discriminating blood and damaged patches from artifact-
free regions. The color processing stage in Figure 1 depicts
example outcome of each scheme on three classes.

Let I ∈ Rm×n be a vectorized image normalized to [0,1],
where m =3 (color channels) and n=number of pixels. The



Table II. Results from experiment no. 1: our proposed method is tested with different feature extractors (as architecture backbone) with no color processing
applied. We compare architectures‘ performance when feature extractors are trained with random weights (scratch) against ImageNet weights (transfer learning).

Damaged Blood
Feature Extractors Validation Test Validation Test

Acc. F1 MCC F1 MCC Acc. F1 MCC F1 MCC

VGG16 94.07 0.83 0.80 0.8 0.66 98.41 0.98 0.95 0.99 0.97
MobileNet 92.66 0.8 0.76 0.82 0.69 94.95 0.96 0.87 0.99 0.97
GoogleNet 94.24 0.82 0.80 0.84 0.70 94.06 0.95 0.86 0.99 0.97
ResNet 92.49 0.79 0.75 0.75 0.6 94.01 0.95 0.85 0.99 0.96Sc
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DenseNet 94.36 0.83 0.81 0.76 0.62 96.39 0.97 0.93 0.99 0.93

VGG16 95.6 0.87 0.85 0.86 0.77 99.39 0.995 0.98 0.997 0.98
MobileNet 95.71 0.88 0.86 0.89 0.81 98.91 0.992 0.97 0.997 0.98
GoogleNet 94.25 0.84 0.81 0.89 0.79 98.64 0.990 0.96 0.994 0.97
ResNet 95.37 0.86 0.84 0.85 0.75 99.04 0.993 0.97 0.994 0.96Tr
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DenseNet 93.68 0.81 0.78 0.88 0.79 98.56 0.990 0.96 0.997 0.98

Table III. Results from experiments no. 2 and 3: our proposed method is tested with different feature extractors (as architecture backbone) with three color
processing applied. Outcomes are compared with experiment no. 1 to quantify the effect of color processing in blood and damaged tissue detection.

Damaged Blood
Feature Extractors Validation Test Validation Test

Acc. F1 MCC F1 MCC Acc. F1 MCC F1 MCC
VGG16 95.43 0.87 0.84 0.93 0.86 98.89 0.99 0.97 0.99 0.92
MobileNet 94.81 0.85 0.82 0.91 0.83 98.50 0.98 0.96 0.99 0.94
GoogleNet 94.02 0.81 0.79 0.88 0.78 97.81 0.98 0.94 0.99 0.94
ResNet 95.38 0.87 0.85 0.90 0.82 98.73 0.99 0.96 0.99 0.94M
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DenseNet 94.07 0.81 0.79 0.83 0.72 98.66 0.99 0.96 0.99 0.93

VGG16 93.45 0.80 0.77 0.91 0.83 99.09 0.99 0.97 0.99 0.97
MobileNet 95.54 0.87 0.84 0.88 0.80 98.17 0.99 0.96 0.99 0.97
GoogleNet 93.01 0.78 0.84 0.88 0.79 98.93 0.99 0.97 0.99 0.95
ResNet 94.36 0.84 0.85 0.95 0.90 98.73 0.99 0.96 0.99 0.96V
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DenseNet 92.7 0.77 0.77 0.82 0.72 98.66 0.99 0.96 0.99 0.96

VGG16 93.90 0.81 0.79 0.89 0.80 99.07 0.99 0.98 0.99 0.95
MobileNet 96.05 0.88 0.86 0.88 0.79 98.93 0.99 0.97 0.99 0.94
GoogleNet 92.72 0.77 0.74 0.88 0.79 98.25 0.98 0.95 0.99 0.96
ResNet 93.28 0.78 0.76 0.86 0.77 99.04 0.99 0.97 0.99 0.95G
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DenseNet 93.11 0.78 0.76 0.87 0.78 98.91 0.99 0.97 0.99 0.96

Beer-Lambert law states I = I0exp(WH), where W ∈ Rm×s

is the stain color apperance matrix (3× 2), and H ∈ Rs×n is
the stain density map for each pixel (2× number of pixels).
The optical density (OD) space makes the linear relationship
with the combination of stains, and can be defined as:

OD = − log10(I) = WH (1)

When color normalization is performed based on a reference
image, the Wref is used instead of the W when transforming
back to RGB space. The main difference in many color
deconvolution and/or normalization methods relies in how W
and H are estimated from the OD image.

1) Macenko Color Normalization: The Macenko‘s
method [27] is based on singular value decomposition (SVD)
of the OD transformed image. The two largest singular values
are used to create a plane representing the W, and data is
represented and normalized on this plane.

2) Vahadane Color Normalization: Vahadane‘s structure-
preserving technique [16] is also based on the OD space.
It adds a sparseness constraint on each row of H from the
assumption that only either eosin or hematoxylin is present at
a given pixel.

3) Gray-scale Transformation: Input RGB patch (I) is
converted to grays-scale (L) mode using ITU-R 601-2 luma
transform, defined as L = 0.2989R+ 0.5870G+ 0.1140B.

B. Evaluation Metrics

Let TP, TN, FP, FN denote true positive, true negative,
false positive, and false negative, respectively. Then, Precision
= TP/(TP + FP ) and Recall = Sensitivity = TP/(TP +
FN). We report F1 score defined as; F1 = 2 · (precision ·
recall)(precision + recall) and the Mather Correlation Coef-
ficient (MCC) as defined in Eq 2. MCC returns a higher
value ∈ {−1, 1} when a binary predictor detects majority
of positive and negative instances correctly. MCC provides
a reliable statistical measure in a binary classification task
with imbalanced dataset which reflects most of the medical
scenarios [28]. Finally, we provide the receiver operating
characteristics (ROC) curve, which highlights classification
performance on all classification thresholds.

MCC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
(2)



C. Experimental Setup

Our experimental setup was built on Pytorch [29] DL
framework. Color normalization was implemented on extracted
patches using Histocartography library [30]. Several hyperpa-
rameters were explored using grid-search. Final parameters
were fixed to a batch size of 32, SGD optimizer, ReduceL-
ROnPlateau scheduler initialized with the learning rate of 0.01,
dropout of 0.2, focal loss [31] to cope with the class imbalance
and early stopping with the patience of 10 epochs on validation
loss to avoid over-fitting.

Figure 3. Receiver operating characteristics (ROC) curves for MobileNet and
VGG16 for blood and damaged tissue detection.

IV. EXPERIMENTAL RESULTS

We have conducted several experiments to quantify CNN
performance in detecting blood and damaged tissue artifacts.
We use model weights with the lowest validation loss during
the training process to report evaluation metrics on validation
and test sets.

A. Experiment 1

In this experiment, we compare all architectures’ classifi-
cation performance when trained from scratch against transfer
learning. Table II shows learning with different feature extrac-
tors (as architecture backbone) initialized with random (scratch
setting) and ImageNet weights (transfer learning setting). Mo-
bileNet yields the best results for damaged tissue detection in
the transfer learning setting. It improves MCC and F1 against
its counterpart in the scratch setting by 10% and 8% on the
validation set, respectively. For blood detection, VGG16 is
outperforming all other feature extractors in both settings. F1
and MCC scores are higher in blood detection than damaged
tissue detection, which can be due to visible morphological
and color differences of blood against artifact-free regions.
Figure 3 further manifests the ability of MobileNet and VGG16
for damaged tissue and blood detection.

Training from scratch might give good results for some
feature extractors (i.e., DenseNet for damaged tissue detection)
since the training set is not large enough, and architectures
can be over-trained on validation data but fail to perform well
on unseen data. Overall, architectures trained with transfer
learning setting converge better and take less training time

than their counterparts in the scratch setting. Therefore, we use
transfer learning setting to continue with our next experiment.

B. Experiment 2

The purpose of experiment 2 is to quantify the effect
of color processing on detecting blood and damaged tissue,
which we know has different colors than normal tissue. We
have reported the classification performance of all architectures
using Vahadane and Macenko color normalized versions of
the dataset in Table III. For damaged tissue, architectures do
not improve with color normalized datasets compared to the
original dataset. Except for VGG16, which generalizes well
for the test set with both color processing schemes. In the
case of blood detection, there is a slight performance drop
with all feature extractors in both cases. Overall, Vahadane
color normalization yields better results in the blood detection
task than Macenko color normalization.

Color normalization schemes increase the computational
complexity of the task and result in little to no improvement
compared to experiment 1. It could be due to the fact that
color processing heavily affects blood and damaged regions
as shown in the color processing stage of Figure 1. Therefore,
architectures might rely on morphology to distinguish blood
and damaged regions more than the color.

C. Experiment 3

In order to further explore the importance of color, we
removed the color of the dataset by transforming RGB patches
to grayscale. In the last row of Table III, we can see more
or less similar classification performance for damaged tissue
detection. For blood detection, most of the feature extractors
yield little detrimental effect on MCC values compared to the
transfer learning setting in Table II. Therefore, color is far
less critical than tissue morphology in detection of blood and
damaged tissue artifacts.

V. CONCLUSION AND FUTURE WORK

WSI preprocessing is promising for CPATH systems as
well as QC tools. Abnormalities in the data may add irrelevant
morphological features and pose a greater risk of inaccu-
rate predictions; thus, automatically excluding artifacts and
diagnostically irrelevant areas can be important for CPATH
systems. We have demonstrated the ability of several CNN
architectures in detecting blood and damaged tissue from H&E
WSI. MobileNet and VGG16 have shown to be effective
backbones for detecting damaged tissue artifacts and blood,
respectively.

Classification of blood against diagnostically relevant areas
is less challenging than damaged tissue. CNN architectures
rely more upon morphological features than color to differen-
tiate between these regions. Therefore, instead of improving
detection performance for artifacts, color normalization meth-
ods only enhance the computational complexity of the task.
Artifact detection can be performed before color normalization
in preprocessing pipeline of CPATH systems. This work can
be further extended to improve QC methods and detect other
artifacts such as blur, folded regions, and air bubbles.
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