(c) IEEE

Preprint - accepted for publication at the Societal Automation Conference 1
Copyright

Saving Nine Without Stitching in Time:
Integrity Check After-the-fact

Racin Gudmestad*, Siv Hilde Houmb!, and Martin Gilje Jaatun*!
*University of Stavanger, Norway
fStatnett SF, Oslo, Norway
'SINTEF Digital, Trondheim, Norway

Abstract—Electrical substations transform voltage from high to
low, or low to high for distribution and transmission, respectively,
and are a critical part of our electricity infrastructure. The state
of a substation is continuously measured for monitoring, con-
trolling and protection purposes, using synchrophasor measure-
ments. The IEC 61850 standard defines communication protocols
for electrical substations, including synchrophasor measurement
transmission. However, IEC 61850 does not properly address
cyber security, leaving this critical infrastructure highly vulner-
able to cyber attacks. This paper describes the development
and testing of a novel mechanism for delayed integrity check
for synchrophasor measurements. The results show that the
solution manages to detect when integrity of the synchrophasor
transmission is compromised, without adding any overhead or
delay to the time-critical synchrophasor transmission itself.

I. INTRODUCTION

Substations all over the world are going digital, but expe-
riences from Ukraine [1] have taught us that this is fraught
with danger if cyber security does not receive due attention
in the process. Since the communication protocols for in-
dustrial control systems (ICS) used in substations were not
originally designed with cyber security in mind, the attackers
did not have to find security vulnerabilities in the protocols
to design the modular malware known as “Industroyer” [2]
or “Crashoverride” [3]. They used their knowledge of the
ICS environment, implemented the malware to interact with
switches and circuit breakers at the substations using the
insecure communication protocols, and launched their cyber
attack causing the 2016 Ukrainian blackout. The blackout
affected fewer subscribers than the previous cyber attack on the
Ukrainian power grid in 2015, and only lasted a bit more than
an hour, but recent analysis [4] shows that it had the potential
of causing a much bigger and more serious disruption with
possible physical destruction.

Protection devices within the digital substation have im-
proved and benefited greatly from digitization. It is now
possible to digitize current and voltage signals, and to send this
data to protection devices that can react to it within just a few
milliseconds. Perhaps the most important device responsible
for generating and sending data to protection devices, is the
Phasor Measurement Unit (PMU). The data it generates is
(among other things) used to make sure that the grid’s supply
and demand are perfectly matched. Imbalances between the
two can cause damage to the substation equipment and in
worst case power outages [5]. It is absolutely essential for the

Control
room

Virtual PMU LAN

Proprietary

Optical
current
meter

Sensors
e —

Process bus

Fig. 1. Example digital substation with PMU

control and protection mechanisms that maintain the balance
between supply and demand, that the data from the PMU is
correct and delivered with as little delay as possible.

From a cyber-security perspective, ensuring extremely fast
data-delivery and integrity at the same time is quite a chal-
lenge. The cryptographic functions typically used to provide
information security also increase the data and processing
overhead, thereby increasing the delivery time of each mes-
sage.

II. RELATED WORK
A. Cyber security in synchrophasor transmission

With the increased use of network technology, Intelligent
Electronic Devices (IEDs), and software for monitoring and
controlling substations, the overall attack surface has increased
significantly [6]. With cyber attacks against power grids be-
coming more prevalent, it is crucial that critical infrastructure
such as synchrophasor systems are properly secured.

Synchrophasor systems enhance the real-time monitoring
and analysis of the power grid, and change the view of
the power system from an estimated state, to a real-time
directly measured state [7]. Today, Synchrophasor systems are
not critical for all power system operations. This is either
because the systems are in the experimental stages, or they
only complement existing systems. However, there is a upward
trend in the use of synchrophasor systems in critical functions
such as in Wide-Area Monitoring Systems (WAMS) and Wide-
Area Protection and Control Systems (WAPCS) [7]. There is

no doubt that synchrophasor systems will become a critical
part of the future power grid.

Measurements from PMUs, Phasor Data Concentrators
(PDCs) and super PDCs are responsible for generating over
50% of the data that the WAMS and WAPCS use [8]. The
protocols used to send the synchrophasor data are IEEE
C.37.118.2 or IEC 61850 GOOSE messages. IEEE C.37.118.2
does not include any security mechanisms, whereas IEC has
published IEC TR 61850-90-5 [9] (in the following referred to
as TR 90-5 for brevity), which addresses security by suggest-
ing security mechanisms for encryption and authentication of
SV and GOOSE messages. However, these security features
are applied to every single packet. Since the devices respon-
sible for generating and receiving this traffic have limited
hardware, the delay and overhead that this introduces is very
high. Thus the solutions suggested in TR 90-5 are unsuitable
for time critical real-time data transmission, e.g. synchrophasor
transmissions.

B. Possible cyber attacks against synchrophasor systems

When considering which types of attacks are plausible
against synchrophasor systems, we have to consider both
physical and remote access attacks. The entry points that can
be exploited are the routers into the substation, the physical
IEDs/PMUs/PDCs and the SCADA/HMI that control and
communicate with the synchrophasor system. If the attackers
managed to bypass the security mechanisms at these entry
points, they can attack at any level, i.e., component-wise,
protocol-wise or topology wise [10]. The type of attacks
that threaten PMU networks are: Man-In-The-Middle attacks
(MITM), Denial-Of-Service attacks (DoS), Packet analysis,
data spoofing attacks and injection attacks.

1) Packet analysis: Packet analysis uses tools such as
Wireshark to view packets sent on a network. This type
of reconnaissance ‘“attack” is not harmful in itself, but the
information gathered could be used to discover vulnerabilities
in the network, which could be used in a more severe attacks
in the future (e.g. Denial of Service (DoS) attack). Since
the communication in the PMU network is unencrypted, the
content of the GOOSE messages sent is susceptible to packet
analysis (also called sniffing). Attackers could use packet
sniffers to spy on the network traffic and gather information
such as source/destination IP address, protocol type, open
ports, name and location of components, and data payload.

The best way to mitigate this type of attack is through
encrypting the data, but this is not a valid option in the context
of time-critical synchrophasor systems. The delayed integrity
check does not prevent this type of attack.

2) Denial of Service (DoS): DoS are attacks that com-
promises availability by denying, or reducing the quality of
service to a resource. DoS attacks are one of the most common
threats towards synchrophasor systems [7]. An adversary who
manages to gain access to an internal PMU network could
easily perform a DoS attack simply by flooding the network
with bogus traffic, overwhelming the switches/routers so that
the legitimate traffic from the PMU is delayed or dropped.
DoS attacks can also prevent critical control signals to come
through.

A secure network infrastructure is the best defence against
DoS attacks. This means multi-level protection, with intrusion
detection system in combination with VPN, firewalls, anti-
spam, content filtering, and load balancing. The delayed in-
tegrity check itself does nothing to mitigate this type of attack.

3) Man-In-The-Middle Attacks (MITM): MITM is when an
attacker impersonates two communicating devices and makes
them think that they are communicating directly with each
other. If the attacker manages to get access to the communi-
cation infrastructure, remotely or locally, the attacker can in
theory disguise themselves as the PMU or PDC (spoofing), and
alter the messages sent between the two. This compromises
the integrity of the messages. The attacker can also choose
to drop the messages (DoS attack), thus also compromising
availability.

Since the PMU multicast GOOSE messages using a publish-
er/subscriber mechanism, disguising a subscribing PDC with
the intention of intercepting and altering/dropping GOOSE
messages won’t work. However, this does not mean that
MITM attacks are not a threat in the context of PMUs. Com-
mand and configuration messages are unicast messages sent
between two communicating devices, and are thus susceptible
to a MITM attack. An attacker who successfully manages to
act as a MITM between a PMU and its control application
could have full control of the configuration and behavior of the
PMU. By intentionally misconfiguring the PMU, both integrity
and availability can be compromise.

This issue is not within the primary scope of the delayed
integrity check, and would require another solution. TR 90-5
[9] suggests using a key distribution center (KDC) and au-
thentication mechanisms between all communication devices.
In the context of control and configuration messages, this is a
valid option that should be implemented.

4) Packet injection: There are two types of attacks that
could be performed through packet injection: command injec-
tion and sensor measurement injection. Command injection is
when false control commands are sent to the devices within
the synchrophasor system. Sensor measurement injections is
when false measurements data are injected, tricking the control
algorithms to make the wrong decisions. The latter is the one
relevant in the context of synchrophasor systems.

There is no authentication mechanism in either IEC
61850[11] (pre TR 90-5) or IEEE C37.188 [12], which means
that the PDC or application blindly trusts the messages it
receives to be from a genuine PMU. A packet injection attack
on the synchrophasor communication is therefor quite easy to
perform, as the attacker is not required to obtain or crack any
credentials or keys. If an attacker manages to gain access to
the communication network, he can easily inject packets. The
attacker would however have to spoof the address of the PMU
it wants to impersonate, since the PDC/application only listen
for GOOSE messages with a certain source address.

The delayed integrity check does not provide a mechanism
for authenticating the communication between a PMU and a
PDCl/application, so injecting packets is still as easy as before.
What it does, however, is to detect when this type of attack
occurs in an timely manner. The integrity check runs in parallel
to the synchrophasor communication, and the devices used in

the integrity check has an authentication mechanism between
themselves and the PMU. This makes them able to detect
when malicious traffic not generated by the PMU have been
injected into the communication stream. Thereby detecting
the attack and shutting down the PMU before any harm
can be done, thus indirectly stopping the attack. To prevent
this type of attack completely, one would have to implement
an authentication mechanism between the PMU and all the
devices it communicates with, as well as adding HMACs to
every single GOOSE message. This is the suggested solution
in IEC TR 90-5 [9], but as mentioned in the introduction to
this chapter, the delay and overhead this approach it introduces
is simply to high for real-time synchrophasor communication.

C. Existing Security Mechanisms in IEC 61850

TR 90-5 addresses several aspects of security, with the
following assumptions:

« Authentication and integrity of information is needed
« Confidentiality is optional

TR 90-5 states that information authentication and integrity
should be provided in an end-to-end method, through the use
of information/message authentication codes. Furthermore it
suggests that confidentiality should be optional. To achieve
this TR 90-5 points to the use of symmetric/asymmetric
cryptographic functions and the use of Key Distribution Cen-
ters (KDC) to distribute keys. However, TR 90-5 has a few
inconsistencies and misconceptions in its discussion regarding
security, and it seems like the report has not been written
or reviewed by experts in the field of security [13]. Even
though the introduction to chapter 8: Security Model, states
that it “provides specifications for asymmetric key authenti-
cation/MAC creation” [9], no specifications with regards to
asymmetric cryptography is found anywhere within the report.
TR 90-5 mentions the use of symmetric keys to create and
verify signatures. Symmetric keys are used for MACs (Mes-
sage authentication codes), while digital signatures require
asymmetric keys. The term KDC is also used incorrectly, when
the report states that each IED is its own KDC. When each
IED can distribute keys, they are not KDCs, they just make
use of direct key negotiation.

TR 90-5 leaves out important details in their discussion
about security, e.g. how to perform initial key distribution,
and key distribution to logical devices (PMU/PDC). This
leaves the implementation up to the vendors, giving them
freedom to implement it however they see fit, which is not
optimal when the goal of the IEC 61850 standard is to achieve
interoperability.

1) Key distribution: To provide both asymmetric and sym-
metric cryptographic support to the synchrophasor communi-
cation, key management is needed. TR 90-5 suggests the use
of Key distribution centers (KDCs) to provide symmetric key
coordination between publishers and subscribers. The normal
KDC implementation is to deploy the KDC as a standalone
unit/node, but TR 90-5 argues that this raises concerns in
regards to redundancy and issues related to providing unin-
terrupted delivery of information [9].

Therefore, TR 90-5 suggests that each IED shall be its own
KDC. To allow continuous information exchange, the KDC
needs a mechanism for informing subscribers of an impending
key exchange, and a mechanism that informs subscribers that
a key change has occurred. This is accomplished through the
TimetoNextKey and TimeofCurrentKey session attributes.

When TimetoNextKey reaches 0, the publisher starts using
a new key. The subscriber interacts with the KDC to obtain
the next key, when it detects that TimetoNextKey is a positive
value. It then waits until it receives a PDU with changed Time-
ofCurrentKey in its session header, before using the newly
acquired key. TR 90-5 recommends that the symmetric key-
pairs are changed at least every 48 hours, and the configuration
should allow the definition of a minimum and maximum time
(with 48 hours as default max, and 30 minutes as default min).

2) Authenticated encryption: AES-GCM (Advanced En-
cryption Standard in Galois Counter Mode) with the option
between 128- and 256 bit symmetric keys are proposed. AES-
GCM is considered to be highly secure and is widely adopted
due to its performance. By using one of these functions for
authenticated encryption, both integrity and confidentiality is
ensured. The extra data and processing overhead added to
each message, compared to just adding a MAC is negligible.
Therefore, one could say that you get confidentiality for free.
However, one could also argue that there are cases where
confidentiality is not desired, e.g. when network analysis tools
are needed to inspect packages.

Just like with TimetoNextKey and TimeofCurrentKey, The
TR 90-5 session protocol has a security information attribute in
the session header called SecurityAlgorithm, which specifies
which of the two modes are being used (or if encryption is
used at all).

3) MAC: TR 90-5 incorrectly uses the terms MAC and
signature interchangeably. A MAC uses a symmetric key,
while a signature uses an asymmetric key pair. Since the
report only specifies key distribution and MAC algorithms for
symmetric keys, it is assumed that they actually mean MAC
when they use the term signature. The allowed hash MAC
(HMAC) functions specified are HMAC-SHA265 and AES-
GMAC. As long as authenticated encryption is not being used
it is mandatory to use one of these two MAC functions, oth-
erwise, the option “none” should be used. That way integrity
and authenticity is always ensured for every message.

4) Hash functions: On page 86, TR 90-5 shows a table of
“secure signature hash algorithms” (should be MAC). Listed
are MD5 and SHA-1, which both are deprecated and should
not be used. However, on the section about MAC algorithms
on page 84, SHA-256 is listed as a supported option. MD5
and SHA-1 have been deprecated, but SHA-256 is considered
to be secure today, and could thus be used instead.

Even though TR 90-5 contains some ambiguities and mis-
conceptions, to some degree it manages to describe a way
to achieve both integrity and authenticity of synchrophasor
communication. However, since important details are left out,
it leaves critical design and implementation decisions up to
each specific vendor. In addition, just because this is the only
solution that TR 90-5 provides, it does not necessarily mean
that it is the best solution. As mentioned several times earlier,

. Alarm

@ <———P%IDS/ADS
=

PMU

Shared Key

Duplicate GOOSE HMAC

PMU

GOOSE

GOOSE
HMAC
WAN LAN

GOOSE message + HMAC
(GOOSE has higher priority than HMAC)

Substation LAN

Fig. 2. Delayed integrity check concept

the increased processing and data overhead by adding MACs
or encryption to each message is not desirable for time critical
communication.

III. DIGITAL SUBSTATION CASE

The conventional approach for assuring integrity is that
the sender creates a hash-based message authentication code
(HMAC) of the original message (OM), and appends this to
the OM before sending it. The receiver hashes the OM with
the same shared secret key and compares the HMAC it gets,
with the HMAC that was appended to the OM. This is done for
each message, and introduces too much data and processing
overhead for a time critical real-time system.

This paper proposes an alternative solution, more specif-
ically a delayed integrity check that processes the HMACs
in a parallel process and raises an alarm in the case of
mismatch. The goal is to develop and test whether it is possible
to use a delayed integrity check for IEC 61850 GOOSE
communication between Phasor Measurement Units (PMUs),
without any (or with minimal) increase in the delivery-time of
the PMU GOOSE messages.

IV. PROPOSED SOLUTION

Fig. 1 illustrates a simplified view of a digital substation. In
reality, the process bus is duplicated, but this is not shown in
the figure for simplification reasons. Our proposed solution
is illustrated in Fig. 2. Briefly stated, regular PMU traffic
is sent unmodified as before, but a special device (denoted
HMAC_PC in the figure) makes a local copy of each GOOSE
message and calculates an HMAC code which is sent sepa-
rately (with lower priority) to the receiving system. On the
recipient side, another unit (Control_PC) collects the HMAC
value and the GOOSE packet, and verifies the correctness of
the HMAC.

The Control_PC needs to buffer all GOOSE messages, and
generate an alarm if either no HMAC message is received
within a certain deadline, or if the associated HMAC is
incorrect (indicating a tampered GOOSE message).

Here a PMU sends synchrophasor information over the
process bus, using the GOOSE protocol. The figure shows
three other devices that are all subscribing to the GOOSE

messages from the PMU: HMAC-PC, Control-PC and PDC.
The PMU and PDC acts as normal, where the PDC receives
a stream of synchrophasor data from the PMU and merges it
together with streams from other PMUs.

The HMAC-PC receives the same data stream as the PDC,
since the PMU multicasts it out on the process-bus to all
listening devices. The HMAC-PC uses a cryptographically
secure hash algorithm (SHA-256) and a shared secret key to
generate a HMAC. This HMAC is then sent from the HMAC-
PC to the Control-PC (over a different VLAN). The Control-
PC uses the same key and GOOSE message to create a HMAC,
it then compares the HMAC it creates with the one sent from
the HMAC-PC. By running the integrity check in parallel on
two separate computers, there is no overhead added to the
GOOSE messages.

This is in essence how the solution works; in the following
we will explain in more detail.

A. Solution design

Due to the limited time and resources at our disposal, this
solution won’t be implemented and tested at a real digital
substation using PMUs, PDCs or a process bus. The goal of
this work is to serve as a proof of concept for the delayed
integrity check, which is why the solution is run and tested
on regular computers over a LAN.

To test this solution, three different programs are run on
three different computers, which are all connected on the same
local network. One computer represents the PMU, one the
HMAC-PC, and one the Control-PC. Since our purpose is to
test this solution, there is no need for a fourth computer acting
as a PDC.

The computer representing the PMU is running a simple
python program. The program uses a Wireshark capture of real
GOOSE messages as data source. The data is converted into
a .txt file which the program reads and extracts real GOOSE
messages from. Each individual GOOSE message in the txt
file is added to an array list, which is iterated over. For each
element (GOOSE message) in the list, a GOOSE message is
extracted from it and sent over UDP to both the HMAC-PC
and Control-PC.

B. HMAC generation

A HMAC is a type of MAC that derives two keys out of the
secret key (outer and inner) and uses two rounds of hashing.
The first key is used together with the message to produce a
inner hash. The second key is hashed together with the inner
hash to produce the final HMAC. The length of the HMAC
is therefore the same as that of the underlying hash function.
The HMAC function is defined like this by RFC 2104 [14]:

HMAC(K,m) = H((K'® opad)||H(K' @ ipad)||m))

o H is a cryptographic hash function (SHA-256)

o m is the message input to HMAC

o K is the secret key

o K’ is a block-sized key derived from the secret key

o opad is the block-sized outer padding, consisting of
00110110 (36 in hexadecimal)

e ipad is the block-sized inner padding, consisting of
01011100 (5C in hexadecimal)

e || denotes concatenation

o & denotes bitwise exclusive or (XOR)

Python has a library called hashlib, which implements a
common interface for many different secure hash and message
digest algorithms. This includes HMAC generation with SHA-
256 as the underlying hash function. HMAC-PC and Control-
PC both use this library to generate HMACs.

For the integrity check to function properly, it is critical to
figure out exactly how to perform the HMAC generation in
terms of how often they should be generated and sent. If a
HMAC is created for every single GOOSE message generated
by the PMU, the traffic on the process bus would be doubled.
Even though the time-critical GOOSE messages would have a
higher priority than the HMACs and be sent over a different
VLAN, the overall delay on the network would still increase
due to the added load on the switches. An option could be to
create HMACs based on randomly selected GOOSE messages,
but this in turns opens a loophole which could potentially be
exploited by attackers. An attacker could use the gap between
two HMAC S to send malicious GOOSE messages completely
undetected.

Another solution could be to send a HMAC based on
several GOOSE messages, by buffering messages and eventu-
ally performing the HMAC calculation on the whole buffer:
HMAC = HMAC(K, Buffer). After n messages, the HMAC
would be sent to the Control-PC for comparison. This reduces
the load on the network, but introduces other issues. If a
GOOSE message is lost, or delivered out of order, the HMACs
would not match. And if n is set too high, an attacker could
potentially send enough malicious GOOSE messages to trick
the control mechanism to making a devastating ill-informed
decision before the HMAC is sent and the attack is detected.

The solution provided in this paper is a combination of both
“single” and “buffer” HMACs. Random GOOSE messages
are picked out and used to create single-HMACs. To ensure
that both HMAC-PC and Control-PC select the same random
message each time, a shared secret key generated by a Diffie-
Hellman key exchange is used as a seed into into a python
function called “random.randrange()”. Randrange() generates
a random value between a given input range (1-250). This is a
deterministic function, meaning that it will produce the same
random value for both computers when they use the same seed.
After a single-HMAC is generated using hmac.new() function,
a new random value between 1-250 is selected. Then the seed
is updated using a Blum Blum Shub (BBS) function with itself
as input, so that the same value is not picked again.

The buffer HMACs are created with the same hmac.new()
function, the difference is the input message. The buffer-
HMAC uses a string consisting of the last 250 received
GOOSE messages. Each new GOOSE message is appended to
this string. HMAC-PC sends the buffer-HMAC for each 250th
GOOSE message it received, and then resets the value of the
HMAC-string. HMAC-PC adds an identifier to the HMAC,
so that the Control-PC can differentiate between single and
buffer HMACs. The Control-PC keeps updating its buffer-
string until it receives a buffer-HMAC from the HMAC-PC,

then it calculates its own buffer-HMAC with the string as
input. After calculating and compering the two HMAGCs, the
string is reset to nothing.

C. Alarm generation

The whole point of this solution is to detect if the integrity
between the communicating parties have been compromised.
How to react if this is detected is not within the scope of this
paper. As for this solution, if a mismatch between the HMACs
is detected, the program simply outputs it into the terminal
of Control-PC like this: “Single/Buffer HMAC detected for
message with id X, mismatch rate = X%

V. EXPERIMENTAL RESULTS
A. Normal conditions

When running a test of the solution as a whole, the scripts
for the HMAC and Control computer are first run. They
start by performing the initial key-exchange. An attacker that
eavesdrops on the key-exchange can obtain all the information
exchanged, but it is still considered to be infeasible to calculate
the shared session key (seed). After the key exchange, the
PMU script is run.

The number of single-HMACs sent between each buffer-
HMAC varies. The HMAC and Control computer select “ran-
dom” IDs between 1-250, and on average 3.18 single-HMACsSs
are sent between each buffe-HMAC. The number 3.18 was
found by simulation, using the same random functions and
with n=10 000 000. A buffer-HMAC is generated for every
250th GOOSE message, but the gap between IDs is 1-466,
and not 1-250. This is because the GOOSE messages in the
Wireshark capture make up of about 53.8% of the data-set,
with other traffic such as Sampled Value (SV) and Precision
Time Protocol (PTP) making up the rest. The IDs are given
sequentially to every packet, independent of the protocol used.

The sending rate of PMU.py is set to 0.015, to simulate the
maximum sending rate of a real PMU(60Hz). Approximately
66 (1000ms/15ms) GOOSE messages are sent each second.
The total time it takes to run a full simulation of the whole
data-set is therefore equal to 86 minutes (66*60 / 345000 =
86.25 min). When running the program on a dedicated LAN,
there is no package loss or out-of-order delivery of the GOOSE
messages. Resulting in 0% mismatch rate for both single and
buffer HMACs.

It is important to mention that even though the mismatch
rate is 0% and there is no packet loss for this experiment,
packet loss is a common phenomenon in modern networks and
a real digital substation process bus would be no exception.
Packet loss could potentially trigger a false-positive HMAC
mismatch in a real substation.

B. Simulated attack

In this subsection two different variations of a packet injec-
tion attack will be simulated. In the first attack, a stream of 250
malicious GOOSE message will be injected sequentially. In the
second attack, malicious GOOSE messages will be injected at
random throughout the simulation.

To simulate the first attack, the following IF-statement have programmed to shut the PMU down to prevent the control
been added to PMU.py: applications that use the synchrophasor data from making a
potentially devastating wrong decision. The decision to send
out a signal that shuts a PMU down based on an increase in
mismatched would be made by an ADS (Anomaly detection
system).

In the second attack, GOOSE messages will be injected
at random, instead of as a sequential stream of messages.
PMU.py have been modified so that for each iteration (each
sent GOOSE message) it selects a random value between 0-
100. If the value is less or equal to 25, the GOOSE message
is sent only to the control computer. This simulates an attack
where an attacker tries to sneak malicious GOOSE messages
into the process bus.

After running the simulation for a about 5000 iterations,
the single mismatch rate stabilises around 25% as expected.
The buffer mismatch rate remains at 100% throughout the
When running a simulation using this modified script, the simulation. This illustrates that the integrity check is capable
GOOSE messages with ID 2345-2760 are only sent to the Of detecting this type of injection attack.

Control computer. As a result, the program outputs a series of

single mismatches and a buffer mismatch for all the GOOSE C. Delay

messages within this range. Fig. 3 shows the output generated Now that the integrity check have been proven to function
during this attack. After the injection attack is completed, the as intended, it is time to look at how the solution performs in
program goes back to running as normal and we can see the terms of delay. For the integrity check to be useful, it must

for i in range (0, length):
For each GOOSE msg DO:
if i > 1250 and i < 1500:

Sends a packet ONLY to control pc
pmu. sendto (GOOSE_Array[i],
control_adr)

else:
pmu. sendto (GOOSE_Array[i], hmac_adr)

Sends a packet to HMAC pc
pmu. sendto (GOOSE_Array[i],
control_adr)

Sends a packet to control pc
time . sleep (0.015)
max rate of PMU GOOSE messages

mismatch rate declining. be able to detect an attack fast enough. Fast enough in this
context means that an attack should be detected before enough
X Windows PowerShell - o x malicious message to make a control decision, have been

received and applied by the control applications/mechanisms.

To figure out the time it takes to calculate a single HMAC,
a simple test is run on PMU.py. This test creates a HMAC
for each GOOSE message in the data-set, and calculates the
average time it takes to create each one. The time it takes on
a laptop with common CPU (Intel Core i7-7700 2.80 GHz
CPU) is 0.00171 second. The same method has been used to
calculate the time it takes for the Control-PC to compare two
HMAC:s. The average time it takes for one HMAC comparison
is 0.00095 seconds.

The next delay that needs to be taken into account is the
time it takes to send the HMAC from the HMAC-PC to the
Control-PC. Since this experiment have been carried out over
Ethernet cables on a LAN with no other traffic, the delay
in this experiment is not representable. Instead data from a
2017 study called “Analyzing Worst-Case Delay Performance
of IEC 61850-9-2 Process Bus Networks Using Measurements
and Network Calculus” [15] is used. The researchers found
that the delay on their process bus was minimum 15.2 p-sec,
average 16.5 u-sec and maximum 17.7 p-sec when sending SV
messages from a merging-unit to a PMU. Since the message
structure and protocol for both SV and GOOSE are similar,
these numbers are assumed to be representable in this context.

It is also assumed that it takes approximately the same
amount of time to send a HMAC from the HMAC-PC to the
Control-PC, as it takes to send a GOOSE from the PMU to a
Fig. 3. Attack 1 output: Injected stream PDC, since both are sent over the same fiber-optic process bus,

and since the HMAC and Control PC is placed close to the

This illustrates that the integrity test works as intended. In PMU and PDC topology-vise. The average delay from when
a real digital substation, when such a dramatic increase in a GOOSE messages is received at a PDC/application, to the
mismatches is observed, the protection mechanisms would be time a mismatch is detected is shown in figure 4

rate:

X = Average time to calculate a HMAC =0.00175
Y = Average time to send over the process bus =0.0000165
Z = Average time to compare two HMACs =0.00095

Average delay = 0.00175 + 0.0000165 + 0.00095 = 0.0026769

GOOSE sent
from PMU

HMAC-PC sends
HMAC

Control-PC receives
HMAC

¥ —X— Y DE—7—>,
|

A A T|me

| €——Average Delay—»|
GOOSE recieved

at HMAC-PC, Control-PC
and PDC/application

Mismatch detected

Fig. 4. Average delay

With an average delay of 0.0026765 seconds and the
maximum messaging rate of a PMU being 0.0166 seconds
(1sec/60Hz), no new GOOSE message would have been gen-
erated and applied before a mismatch had been detected. Thus
proving that the delay introduced by preforming the integrity
check is not a limiting factor.

However, an attacker could (in worst case) get lucky, and
start the injection of packets just after a single/buffer-HMAC
match. The attack would last until the next single-HMAC is
generated and the corresponding mismatch is detected. That
way an attacker would not be able to send enough malicious
messages to trick the control applications/mechanisms to make
a wrong decision, before being detected.

VI. DISCUSSION

It might have been a viable option to generate HMACs
for every single GOOSE message and use a separate VLAN
to send the messages. It would be a simpler solution to
develop, and it would be more secure since there is no gap
between the single-HMACs that could be exploited. Since the
integrity check is a parallel process running on a separate
VLAN on dedicated computers, there is no processing delay or
overhead added directly to the GOOSE traffic between PMU
and PDC/application.

However, there is a delay added to the traffic indirectly.
Even though the traffic is carried over a different VLAN, it
still utilizes the same network infrastructure (e.g. fiber optic
cables and switches). The assumption is that all this extra
traffic generated by the HMACs would require a much higher
resource usage from the switches, and thus increasing the
overall latency on the network. However, if the switches would
be able to handle the increased load without increasing the
delay of the GOOSE traffic, this solution would be preferred
over the single/buffer-HMAC solution. This is something that
is hard to determine without testing both solutions thoroughly
on real process bus implementation, but this is something
we leave for future work. For now the assumption that the
extra traffic would result in a higher latency and delay stands,
and the random single-HMAC and buffer-HMAC method is
perceived as the best option.

A. GOOSE re-transmission

GOOSE messages are re-transmitted until a new event
occurs, and the messages themselves contain a state number
which tells the IEDs if the message is a re-transmission or a
new message. When creating and testing the delayed integrity
check, this re-transmission mechanism was not included in the
PMU script, each GOOSE message was sent only once. This
will be something that must be handled if the solution is to
be deployed in a real substation. This could be done through
keeping track of the ID of the last seen GOOSE message. For
each message that has a state number which indicated that
the message is a re-transmission, the ID in the re-transmitted
message is compered to the last seen ID. If they match the re-
transmitted message is discarded. The program on the HMAC
and Control computer should also have a chronological list
with the IDs of all the GOOSE messages that have been used
to generate a HMAC. This list should be sent together with
each buffer-HMAC to help determine the cause if there is a
mismatch (e.g. packet loss, out-of-order delivery, injection).

B. Packet loss

In section V-A, the mismatch rate was 0% for the buffer-
HMAC when running a full simulation. On a real process
bus it is highly unlikely that this would be the case, due
to packet loss. Packet loss is a common phenomenon which
would result in a false-positive buffer mismatch. However,
this does not necessarily render the buffer-HMAC useless
and untrustworthy. To deal with this issue, the process bus
should be thoroughly tested and analysed before deploying
the integrity check. This to figure out how high the average
packet loss is on the channel, under all types of operating
conditions. This information could be used to determine if a
buffer mismatch is due to packet loss or not. If the mismatch
rate is higher than what would be expected due to packet
loss, it would give reason the believe that there are malicious
GOOSE message being sent on the network.

Packet loss is usually caused by network congestion, prob-
lems with network hardware, software bugs and overloaded
network devices. However, on a closed network such as a
process bus, where everything is scaled and designed to handle
more than the normal traffic load, network congestion and
overloaded devices should in theory not be a concern. The
packet loss is therefor assumed to be very low (closer to 0%
than 1%). Buffer mismatches would happen due to packet loss
now and then, but not so often that it becomes unreliable.

C. Anomaly based intrusion detection system

To make the decision whether a mismatch is due to packet
loss or malicious activity, an anomaly based intrusion detection
system (ADS) could be used. An intrusion detection system
(IDS) is a system that monitors network activity, classifying
it as normal or malicious. An ADS is a type of IDS that
looks for behavior/activity that deviates from the activity one
would expect on a network, an anomaly. The system is thought
what is normal behavior through a training phase, and uses
this to build a profile for normal behavior. Once deployed,

it compares the current traffic with this profile. If something
deviates from it, like an increase in buffer mismatches or
drastically increased GOOSE message, the ADS would be
programmed to trigger an alarm that tells the PMU to shut
down.

VII. CONCLUSION

We have presented a solution for a delayed integrity check
for IEC 61850 GOOSE communication. The solution offers a
way to ensure integrity, without introducing any extra delay
or overhead to the GOOSE traffic. We have shown that the
proposed solution in TR 90-5 was not well suited for time-
critical real-time data transmission such as GOOSE traffic,
due to the increased overhead and processing delay. We have
therefore presented an integrity check that runs in parallel to
the GOOSE traffic, instead of as an integrated part of it. Thus,
there was no need to make any changes to the existing GOOSE
protocol, and there was no added overhead/processing delay
to the synchrophasor transmission.

The delayed integrity check was implemented using python,
and an experiment set up to serve as a proof of concept was
carried out. The experimental setup consisted of three different
computers (each running a different python script) connected
to the same LAN, and a data set containing real GOOSE
messages. The computers represent a PMU, HMAC-PC, and
Control-PC within the substation. The result of this experiment
showed that the program was able to detect when integrity was
compromised, and did this fast enough to stop an attacker
before any harm could be done to the substation.

A. Further work

The goal of the program described in this paper was to
serve as a proof of concept for the delayed integrity check.
The program was tested on a LAN with a data-set of GOOSE
messages. It is recommended to develop the integrity check
further, so that it could be tested on a process bus in a
real digital substation on real-time GOOSE traffic. Further
investigation into the use of buffer/single-HMACSs versus a
HMAC for each GOOSE message should also be conducted.

The use of session keys with a maximum and minimum
duration could also be implemented (like in TR 90-5). As of
now, once a key is set, it stays in use until the program on
both the HMAC and control computer is turned off and on
again. Instead the key generated by the BBS function could
be used as a session key. Once a predetermined timer runs out,
the HMAC-PC switches to the next session key, and sends a
message to the Control-PC informing it to do the same.

Lastly the solution should be integrated with an anomaly
based intrusion detection system, for the purpose of generating
alarms that quickly and correctly initiate preventive measures
when an attack is detected. To aid the ADS in determining the
cause of a mismatch, the following feature could be added to
the integrity check: A list containing the IDs of all the HMAC-
ed GOOSE messages could be sent from the HMAC-PC to the
Control-PC together with the buffer-HMAC. If there is a buffer
mismatch, the Control-PC would compare received list with a
corresponding list of it’s own. If the Control-PCs list is missing

some IDs, it would indicate packet loss. If the Control-PCs list
has more IDs than the HMAC-PCs, it would indicated packet
injection. And if the lists have the same amount of IDs but in
different order, it would indicate out of order delivery.

ACKNOWLEDGMENT

The research reported in this paper has been supported by
the FME Cineldi research project (257626/E20), funded by the
Norwegian Research Council. This paper is based on the first
author’s MSc work at the University of Stavanger.

REFERENCES
[1] A. Cherepanov and R. Lipovsky. (2017) Indus-
troyer: Biggest threat to industrial control systems
since stuxnet. WeLiveSecurity by ESET. [Online]. Avail-
able: https://www.welivesecurity.com/2017/06/12/industroyer-biggest-

threat-industrial-control-systems-since-stuxnet/

[2] A. Cherepanov, “WIN32/INDUSTROYER A new
threat for industrial control systems,” 2017.
[Online]. Available: https://www.welivesecurity.com/wp-

content/uploads/2017/06/Win32_Industroyer.pdf

[3] Dragos Inc. (2017) CRASHOVERRIDE - Analysis of the
Threat to Electric Grid Operations. [Online]. Available:
https://dragos.com/blog/crashoverride/CrashOverride-01.pdf

[4] J. Slowik, “CRASHOVERRIDE: Reassessing the 2016 Ukraine
Electric Power Event as a Protection-Focused Attack,”
Dragos Inc., 2019. [Online]. Available: https://dragos.com/wp-

content/uploads/CRASHOVERRIDE.pdf

[5] H. Haes Alhelou, M. E. Hamedani Golshan, T. Njenda, and P. Siano,
“A survey on power system blackout and cascading events: Research
motivations and challenges,” Energies, vol. 12, 02 2019.

[6] D. U. Case, “Analysis of the cyber attack on the ukrainian power grid,”
Electricity Information Sharing and Analysis Center (E-ISAC), vol. 388,
2016.

[7] C. Beasley, G. K. Venayagamoorthy, and R. Brooks, “Cyber security
evaluation of synchrophasors in a power system,” in 2014 Clemson
University Power Systems Conference, March 2014, pp. 1-5.

[8] M. D. Hadley, J. McBride, T. Edgar, L. O’Neil,
and J. Johnson, “Securing wide area measurement
systems,” Tech. Rep., 2007. [Online]. Available:

https://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/8-
Securing_ WAMS.pdf

[9] IEC, “IEC TR 61850-90-5:2012 communication networks and systems
for power utility automation - part 90-5: Use of IEC 61850 to transmit
synchrophasor information according to IEEE ¢37.118, IEC std. 61 850-
90-5, 2012-05.” pp. 1-148.

[10] Y. Lu, M. Jafari, P. Skare, and K. Rohde, “An integrated security system
of protecting smart grid against cyber attacks,” 02 2010, pp. 1 — 7.

[11] IEC, “Communication networks and systems in substations - part 7-

2: Basic communication structure for substation and feeder equipment

- abstract communication service interface (acsi), iec std. 61 850-7-2

(first edition), 2003-05,” pp. 1-148.

“IEEE standard for synchrophasor measurements for power systems,”

IEEE Std C37.118.1-2011 (Revision of IEEE Std C37.118-2005), pp.

1-61, Dec 2011.

[13] M. G. Jaatun and M. E. G. Moe, “PMU/PDC security considerations
using IEC TR 61850-90-5,” SINTEF memo, 2019.

[14] D. H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing
for Message Authentication,” RFC 2104, Feb. 1997. [Online]. Available:
https://rfc-editor.org/rfc/rfc2104.txt

[15] H. Yang, L. Cheng, and X. Ma, “Analyzing worst-case delay perfor-
mance of iec 61850-9-2 process bus networks using measurements and
network calculus,” 05 2017, pp. 12-22.

[12]

