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Abstract
The exploratory phase of a hydrocarbon field is a period when decision-supporting information is scarce while the drilling stakes
are high. Each new prospect drilled brings more knowledge about the area and might reveal reserves, hence choosing such
prospect is essential for value creation. Drilling decisions must be made under uncertainty as the available geological information
is limited and probability elicitation from geoscience experts is key in this process. This work proposes a novel use of geostatistics
to help experts elicit geological probabilities more objectively, especially useful during the exploratory phase. The approach is
simpler, more consistent with geologic knowledge, more comfortable for geoscientists to use and, more comprehensive for
decision-makers to follow when compared to traditional methods. It is also flexible by working with any amount and type of
information available. The workflow takes as input conceptual models describing the geology and uses geostatistics to generate
spatial variability of geological properties in the vicinity of potential drilling prospects. The output is stochastic realizations which
are processed into a joint probability distribution (JPD) containing all conditional probabilities of the process. Input models are
interactively changed until the JPD satisfactory represents the expert’s beliefs. A 2D, yet realistic, implementation of the
workflow is used as a proof of concept, demonstrating that even simple modeling might suffice for decision-making support.
Derivative versions of the JPD are created and their effect on the decision process of selecting the drilling sequence is assessed.
The findings from the method application suggest ways to define the input parameters by observing how they affect the JPD and
the decision process.
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1 Introduction

When oil & gas companies explore or develop new hydrocarbon
reserves, they must plan and decide the order in which the pros-
pects and appraisal wells will be drilled. Value can be added by
sequentially exploring potential drilling areas as the information
gathered from each prospect provides useful information for
choosing the next well to drill or even stop exploring.

In the exploratory phase of a hydrocarbon field, the infor-
mation available for the decisions is scarce, often limited to
seismic interpretations and data from analogous fields.

Drilling the pioneer well opens a new dimension of informa-
tion: well-data. It has a high cost but is fundamental in
confirming oil presence, understanding the geology, correlat-
ing it with the seismic response, and estimating reserves.

The improved understanding that comes from specific well-
data might impact future drilling choices by changing the deci-
sion maker’s (DM) beliefs about the likelihood of uncertain out-
comes from each prospect. The beliefs about the likelihood are
quantified using probabilities which are used in a decision model
that relates decisions, decision alternatives, uncertain outcomes,
and their payoffs. Solving it defines the course of action that
yields the highest expected value (EV) for the decision metric,
often being the net present value, commercially producible re-
serves, or volume of oil in place.

The sequential drilling problem has been discussed in dif-
ferent contexts by several authors, e.g., [1–8]. The main goal
is to create value by identifying the optimal drilling policy and
proceed accordingly. The process is separated into two activ-
ities: (1) probabilistic modeling and (2) solving the sequential

* André Luís Morosov
andre.morosov@gmail.com

Reidar Brumer Bratvold
reidar.bratvold@uis.no

1 University of Stavanger and National IOR Centre of Norway,
Stavanger, Rogaland, Norway

https://doi.org/10.1007/s10596-021-10084-9

/ Published online: 27 August 2021

Computational Geosciences (2021) 25:2109–2130

http://crossmark.crossref.org/dialog/?doi=10.1007/s10596-021-10084-9&domain=pdf
http://orcid.org/0000-0002-5046-6031
mailto:andre.morosov@gmail.com


decision model. A complete probabilistic model is required to
solve the decision model, and different probabilistic models
may lead to different decisions.

Considering the available data in the exploration phase, the
probabilistic modeling of the process is highly dependent on
geoscientists, known as experts in the decision context, which
bear and summarize all technical knowledge available about
the area. The process of transforming the expert’s belief about
the likelihood of uncertain outcomes into probabilities is
called elicitation. Probability elicitation is important in any
decision-making process and is a subject of study that have
developed different assessment techniques to different appli-
cations [9–11].

One difficulty is the high number of assessments necessary
to have a complete probabilistic model. Without any prior
knowledge about variables relationships, it is necessary to
produce kn-1 probability values, where n is the number of
random variables (i.e. wells) and k is the number of their states
(e.g. dry, high productivity, low porosity). The elicitation pro-
cess rapidly grows with the problem dimensions, where a
simple case with 3 wells, each with 3 possible states, requires
26 probability values for a complete JPD. Although 26 assess-
ments may be practically possible for an experienced geosci-
entist who understands probability concepts, it is rarely
achieved by interviewing oil & gas experts. To bypass the
need to explicitly elicit every single joint probability, simpler
methods are available. [1] show how to obtain the JPD from
the marginal probabilities and pairwise conditional probabili-
ties by using the maximum entropy method described in [12]
and used in [13]. The principle is to find the JPD closest to the
joint uniform distribution that still honors all pairwise condi-
tional probabilities. It is equivalent to minimizing the
Kullback-Liebler (KL) distance [14] between the distribution
under construction and the distribution assuming probabilistic
independence between the variables. [15, 16] show how to
build a Bayesian network, which is an implicit way of
representing the JPD, by using marginal probabilities for
source, reservoir and trap levels, and the probabilistic relation-
ships between them resulting in a Bayesian network. The
aforementioned methods are ways of reducing the necessary
number of assessments for probabilistic modeling, but all
count on expert opinion as a primary source of probability
assessment. Another difficulty is the lack of data in the ex-
ploratory period, demanding a higher share of subjective
knowledge in the elicitation process which might not be vis-
ible to or even understood by the DM.1

The method proposed in this article is, to the best of our
knowledge, novel use of geostatistics to help experts and DMs
in the elicitation context described above. It tackles the two

aforementioned difficulties at the same time: (1) provides all
joint probabilities in the JPD regardless of the problem size
and (2) makes probability elicitation, highly based on subjec-
tive knowledge, more transparent. The hard data required2 in
the geostatistical process, which is scarce in the exploration
phase, is replaced by plausible geological property spatial dis-
tributions. The process is very visual, being easy to generate
realizations that best represent expert subjective knowledge by
interactively changing the workflow input parameters.
Another benefit is that geostatistics is a more familiar tool
for geoscientists, when compared to Bayesian networks or
numerical optimization methods, leading to more confident
and intuitive results.

The use of geostatistics to define the drilling campaign has
already been used to generate the JPD in a different context as
discussed in [18]. In their work, the aim was to optimize the
number of wells and their placement in an onshore shale-gas
environment with high uncertainty in productivity outcomes
even for a vastly drilled area. The geostatistics role is to geo-
graphically estimate the chances of success based on findings
of previously drilled wells. Different from the exploration
phase, there is a large set of hard data available and the elic-
itation process is not strictly dependent on experts.
Geostatistics is not limited to geosciences as today, the tech-
nique has application in many other sciences. One example is
shown in [19] who uses geostatistics in epidemiology.

The following sections will provide a very brief introduc-
tion to the basics of geostatistics, introduce and describe the
novel method, and demonstrate its application on a compel-
ling 2D case. Later, alternative JPDs are generated from the
same ensemble of realizations but with different processing
techniques. Each one is used to solve the same sequential
decision problem and the results are compared to observe
the impacts that different processing methods have in the final
decision policy.

2 Geostatistics

Populating subsurface models with uncertain properties (e.g.
porosity and permeability) is a challenging task considering
that the information obtained from actual measurements in the
wells covers only a tiny fraction of the total area of the sub-
surface reservoir. Geostatistics originated in the mining indus-
try [20] as an attempt to better estimate gold ore grade, became
very popular in the oil and gas industry including to spatially
distribute geological properties in subsurface models.

Geostatistics is a general term that includes different tech-
niques to generate subsurface realizations. Perhaps the most
used are Sequential Gaussian Simulation (SGS) and

1 A consistent decision requires the DM to trust the probability assessment,
which is often outsourced to experts. A transparent elicitation process helps the
DM to understand and trust the assessment results.

2 Although often used in geostatistics, well-data is not required. The pilot-
points method is one example of it [17].
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Sequential Indicator Simulation (SIS) for spatial distributions
of continuous and discrete variables, respectively. Both tech-
niques are called simulation because they populate a grid
using a random sequence. If the simulation is repeated with
the same input data, the populated grid (realization) would be
different because the path of populating would be different,
yielding a different result.3 The realizations can be considered
equiprobable and analyzing them collectively shows the un-
certainty related to the spatial distribution of geological
properties.

Newer and more advanced techniques include Multiple-
Point Simulation (MPS), Process-Mimicking modeling, and
Object-Based simulation, each one having its own set of pre-
mises. MPS is similar to SGS but the pairwise spatial statistics
represented by the variogram function is expanded to higher-
order statistical moments through the concept of training im-
ages, which improves its ability to reproduce complex small-
scale features [21]. MPS, SGS, and SIS are “cell-based”, i.e.
the simulations build the distributions cell-by-cell, and are
easily conditioned to hard data but require additional actions
to produce large-scale geometries or structures (trends) in the
realizations. Object-based frameworks can produce large-
scale trends (geometries) by distributing objects like channels
or lobes with uncertain parametric geometries [22]. Process-
mimicking also produces compelling large-scale features
aiming to mimic results obtained from modeling the geologi-
cal process (depositional environments). Both object-based
and process-mimicking approaches provide realizations that
are geologically more appealing but conditioning them to hard
data is not direct as in methods like SGS and MPS [21, 22].
This brief review of the techniques is not exhaustive but mere-
ly exemplifies the multitude of available techniques to gener-
ate stochastic subsurface realizations.

Geostatistical modeling in this article uses the SGS ap-
proach because it is widely used in the Oil&Gas industry,
and is implemented using the Stanford Geostatistical
Modeling Software (SGeMS).4 SGeMS is a flexible open-
source computer package including a large library of algo-
rithms to generate geostatistical realizations, which are de-
scribed in [23].

3 Methodology

During the exploratory phase, geoscientists are expected to
provide probabilities of prospect findings to support drilling
decisions. At this point, the available information about the
subsurface is generally limited to seismic interpretation, anal-
ogous fields, and conceptual geological knowledge.

Geostatistics provides powerful means for probability assess-
ment albeit are not commonly used during this phase due to
the lack of well-data.

This section presents a method summarized in Fig. 1 that
exploits geostatistics to help with probability the elicitations,
which becomes a systematic, transparent, and traceable meth-
od. In the diagram, yellow color indicates input required or
elicitation choices, and blue color indicates the output of the
method.

First, it generates variability in geological property spatial
distributions that geoscientists consider plausible, here called
“Concept models5”. Later it uses the collection of realizations
bearing variability to generate a joint probability distribution
of joint geological events.

3.1 Geological property realizations-set

The realizations set is generated following the left part of the
workflow in Fig. 1. In this workflow, hard data are not limited
to real measurements but include constraints extracted from
geoscientists’ beliefs.

The concept models are the main input for the process and
provide a general shape indicating how the geologic property6

of interest might be spatially distributed in the exploration
area. Each concept model is a deterministic shape upon which
the geostatistical process will generate variability. There
might be as many different concept models as necessary to
cover plausible uncertain scenarios and they are indexed bym
to a total ofM. It is not restrictive in what geological property
to use, provided it will assist the elicitation process supporting
a certain decision. Figure 2 shows an example with 5 concept
models where the geological property is the facies-type indi-
cator. This same example is used in the Application section.
Each concept model entails a set of “Geostatistical
Simulations7” to generate a “Realizations set”.

The final objective of the geostatistical process is to gener-
ate realizations with plausible property variations in the vicin-
ity of preconceived “Well positions”. Collectively, the realiza-
tions create variability of the geological property by being
more similar to the concept model in areas away from the
Well positions and dissimilar to the models in areas near
Well positions. To achieve it, we use a set of “Pilot-points”
[17] to collect values from the concept models and use them as
hard data in the geostatistical process. i.e. condition the sto-
chastic realizations to the expected trends. The areas where
variability is mostly created are centered on the well positions
and their sizes defined by the “Variability range” parameter.

3 This statement assumes that the pseudo-randomnumber seed is not the same.
If it is, the resulting realizations would be the same with the same input data.
4 Available at http://sgems.sourceforge.net

5 In this section, italic style indicates a direct reference to the block diagram in
Fig. 1.
6 The process was designed for a single property. For multiple properties, it
can be repeated to generate one JPD for each property.
7 There is an implicit inner loop in this task that will repeat the simulation
process for all realizations required for each concept m.
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In these areas pilot-points are absent. Figure 2 also shows an
example of how the pilot-points (white dots), well positions
(white crosses), and variability range can be set over the con-
cept models.

The spacing of pilot-points is determined by geoscientists
running the method and will change how similar the realiza-
tions will be to the concepts. If they are too close to each other,
the realizations-set will not have significant variability and if
they are too far from each other, the morphology of the input
model will be compromised. Checking if the set of realizations
has enough variability and still resembles the original concept
can be done by looking at the mean and variance maps, as
shown from Figs. 4, 5, 6, 7, 8, or even looking at individual
realizations sampled from the set as in Attachment A.

For the geostatistical simulations, it is interesting to provide
a target “Distribution” so the output realizations will have the
desired proportion of simulated values, or in other words, the
histogram of each realization will have a certain desired shape.
For example, if a concept model has twice as much low-
property values as high-property values, it is interesting to

keep the same proportion in the realizations. Additionally, it
is necessary to determine a “Variogram” that yields realiza-
tions compatible with the concept model morphology.
Variogram and distribution definitions can be done interac-
tively to restrict realization distortion when compared to the
originating concept.

The likelihood of each concept is represented by the
“Number of realizations” created in each iteration m. For ex-
ample, if it is believed that all concept models are equally
probable, the same number of realizations should be created
for each of them, mimicking a uniform probability distribu-
tion. The “Number of realizations” acts as a weighting factor
for the mathematical aggregation of different experts’ opin-
ions, combining the realizations into the same set, and its
value can be set as an expert consensus or a DM trust-based
definition.

This description of how to create a realizations-set for each
concept (left side of Fig. 1) implies a geostatistical framework
that uses variogram functions as input, which in our case is the
SGS. Our elicitation method could use any geostatistical

Fig. 1 Elicitation Workflow. Yellow color indicates input and blue color output. Each concept model generates a desired number of realizations with
higher variability in the vicinity of the well positions

Fig. 2 Concept models overlaid by control points (white dots), well positions (white crosses), and corresponding variability areas
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framework of choice (e.g. MPS, process-mimicking) by di-
rectly taking realizations-sets from them. The only restriction
is that the realizations satisfactory resemble the concepts and
have variability in the vicinity of the well positions.

3.2 Stochastic dataset

The right side of Fig. 1 shows how to obtain the JPD from the
geostatistical realizations. All realizations collected from allM
concept models are stacked into the “Accumulated realiza-
tions dataset”, from where the “Sampling” task samples prop-
erty values within the “Search range” (r) of “Wells positions”.
Considering the subjective character of the concept models,
the precise position of the prospect is less relevant than its
relative position to the other prospects. In this sense, the
“Search range” (r) is a parameter that defines the area, cen-
tered on each well location, where property values are sam-
pled and must be smaller or equal to the variability range. For
a 2D realization, the total number of samplesNs to be collected
in each realization, considering the total number of wells n, is:

Ns ¼ n 1þ 2rð Þ2 ð1Þ

For example, if the search range is set to 0, only the value
corresponding to the exact location of each well is sampled,
and the collection of the n samples for each realization be-
comes a single entry in the “Stochastic dataset”. In this case,
the number of entries in the stochastic dataset will be the same
number of accumulated realizations. By increasing the range,
it is possible to increase the number of entries for a single
realization by a factor of (1 + 2r)2, reducing the total number
of realizations necessary for better statistical description.

3.3 Processing methods

The “Joint probability distribution” is the end result of the
workflow and is estimated from the stochastic dataset using
the preferred “Processing method”. The simplest processing is
to estimate joint probabilities by counting the occurrence for
each possible joint event in the dataset and dividing it by the
total number of entries. The collection of joint probabilities for
all possible joint-events forms the JPD which might be stored
in a multi-dimensional matrix. Here this approach is simply
referred to as “the counting method” which is the base pro-
cessing used in the JPDs comparison presented in section 8.

In the counting method, joint-events without occurrence
are assigned zero joint-probability so it assumes that there
are enough8 entries to represents the probabilistic problem. It
can be contested, as Carl Sagan said: “absence of evidence is

not evidence of absence”, so the next subsections present a
few other ways of estimating the JPD starting from the same
stochastic dataset.

3.3.1 Additive smoothing

Smoothing is a technique used in language modeling to cor-
rect the probabilities of events not found in the dataset [24].
These techniques adjust the probability estimates by making
the distributions more uniform, i.e. events previously assigned
with zero probability are reassigned with a small probability
value, and events previously assigned with high probability
are reassigned with a slightly lower probability. The additive
smoothing adds a small quantity 0 <α < 1 to the frequency of
a certain joint event. Here this concept was adapted to directly
correct the joint probabilities:

Psmooth ¼ Poriginal þ α

1þ αN
ð2Þ

The probability correction is applied to all N joint proba-
bilities, yielding a new JPD. The value α is designed so the
minimum probability of the corrected distribution corresponds
to a certain arbitrary value instead of 0. For our application, α
was chosen to be about one order of magnitude lower than the
smallest non-zero probability before smoothing, giving α =
1.07 10−6. Also, for cases where α is expected to be much
lower than the maximum joint probability, 1 + αN approxi-
mates the factor by which non-zero probabilities are
decreased.

3.3.2 Maximum entropy principle

The maximum entropy principle (MEP) described in [12] and
used in [1, 25] in the context of optimizing the drilling se-
quence, estimates the JPD through a minimization problem
where the constraints are the marginal and conditional proba-
bilities. While applying our method to the example in section
5, we attempted to generate a JPD starting from the counting
method and applying the MEP later, but it was unsuccessful.
We believe that the failure is due to the size of the distribution,
which has a larger number of variables and constraints when
compared to the published examples. In our example, the
minimization process converges to a JPD very similar to the
initial distribution guess.

3.3.3 Generative modeling

In the machine-learning field, generative models belong to a
class of algorithms designed to estimate the joint distribution
of the random variables based on a training dataset [26, 27].
This concept is interesting since it bridges the gap between our
stochastic dataset and the JPD estimation. Generative models

8 The determination of the number of entries in the dataset will depend on how
many variables exist in the probabilistic model and is part of the elicitation
process. JPDs obtained from datasets with different number of entries can be
compared by solving the decision problem.
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include Naive Bayes, Autoencoders, and Generative
Adversarial Networks (GAN). [28] describe the implementa-
tion of a derivative method from GAN called Conditional
Tabular GAN (CTGAN) which was used here to build an
alternative version of the JPD. Here the CTGAN will be used
to generate a stochastic dataset of 106 and 107 samples when
trained with the original dataset (30,250 samples from range 5
and 110,250 from range 10).

3.4 JPD assessment

While running the elicitation workflow in Fig. 1, experts
should check if the marginal and conditional probabilities
present in the resulting JPD are reasonable given their knowl-
edge of the uncertain process and any supporting data. This
check may be demanding depending on the number of vari-
ables, states, and the experts’ domain knowledge. If the JPD
does not satisfactorily reflect the experts’ beliefs, the entire
workflow should be repeated with different input parameters
until a reasonable JPD is reached. This approach is valuable in
the elicitation process because it extracts the knowledge from
experts visually and interactively, whilst ensuring that the pro-
cess is comprehensive and traceable.

To check how sensitive the decisions are to different num-
bers of entries and processing methods, alternative JPDs cre-
ated from the same dataset can be used to solve the sequential
decision problem. Comparing different JPDs helps experts in
the elicitation process as it provides information about the
effect of the elicitation process in the actual decisions.

3.5 General comments

It is quite easy to make inferences in a probabilistic model
explicitly represented by its JPD. Given the JPD, marginal
and conditional probabilities are found simply by summing
the probabilities over the variables not explicitly elicited,
and doing so becomes a matter of navigating into subsets of
the JPD. For example, to find the marginal distribution inWell
X, the JPD values should be summed over all variables but
Well X, collapsing the multi-dimensional matrix into a single
dimension vector. To find the conditional probabilities ofWell
X given Well Y (or vice versa), the summation will be done
over all variables but Well X and Well Y, collapsing the orig-
inal distribution into a two-dimensional matrix, representing a
subset of the original JPD.

In a 2D application, each horizontal position will contain a
single property value representing it. In a 3D application, each
position has multiple property values along the depth. In this
case, one could assess the corresponding expected hydrocar-
bon reserve values (or equivalent NPV) and sum it along the
depth, resulting in a single value per horizontal position,
transforming the modeling into a reserves-equivalent 2D
model.

4 Facies indicator modeling choice

Facies type indicator is the geological property chosen to be
modeled in the workflow application shown in the next sec-
tion. Themajor reasons are because it relates more directly to a
decision context to optimize the drilling sequence and, is vi-
sually straightforward which helps in the elicitation process.
This section better explains the facies indicator choice and the
reasoning.

4.1 Rationale about facies indicator

In the exploratory phase, geological knowledge is frequently
obtained from petroleum system modeling [29], which de-
scribes the genesis process of hydrocarbon accumulations.
The simultaneous presence of factors, namely: kitchen, trap,
seal, migration, and reservoir presence are required for the
hydrocarbon accumulation existence. Commonly, the elicita-
tion process would assess the probability of each of these
conditioning factors independently [15, 16] and estimate the
discovery chance of success (CoS). CoS alone does not help
the DM choose between two successful prospects since one
may be more economically attractive than the other, even with
a smaller CoS. For instance, a well might successfully discov-
er oil but in small quantities or in poor-quality reservoirs,
entailing economic loss. In this sense, a better definition of
success is finding economic hydrocarbon reserves that can
incorporate both CoS and economic value. This way events
where at least one of the genesis factors is absent entail in
absence of reserves whilst events where there is the presence
of hydrocarbons are valued differently by their reserve esti-
mation. A simple model for reserves estimation is presented in
Eq. 3:

Reserves wellð Þ ¼ πr2dho
� �

NTG ΦeSO=BOð ÞORF ð3Þ

Here the reserves attributed to a well is a function of its Net-
to-gross ratio (NTG), average effective porosity Φe along the
oil-bearing zone, average oil saturation (So), formation vol-
ume factor (Bo), estimated oil recovery factor (ORF), the
equivalent drainage radius (rd) attributed to the well, and the
thickness bearing oil (ho). All these parameters are uncertain
but for the sake of illustration, when considering all variables
constant but ho and Φe,the reserves are proportional to the
product hoΦe.

Reserves wellð Þ∝hoΦe ð4Þ

The thickness ho is kept explicit because it might be corre-
lated to seismic surface maps and useful when evaluating
prospect locations. Given the lack of well-data, it is more
reasonable to work qualitatively with facies indicator ( f ) dis-
tribution rather than porosity distributions. The variable f is
categorical (e.g. coarse sand, shale, facies #1, facies #3) and
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relates to geologic numerical properties. Through the use of
correlations found in analogous fields, the porosity becomes a
stochastic function of the facies indicator Φe( f ), just like oil
saturation SO( f ), and recovery factor ORF( f ). In this simpli-
fied representation, the reserves become a function of ho and f.
Moreover, the relationship between facies type and the reser-
voir quality is more intuitive (e.g. shale, laminated sand,
coarse sand).

4.2 Design of facies concept models

The spatial distribution of f can be modeled from basin-level
studies, analogous fields data, and seismic data. Such models
display possible depositional environments and the corre-
sponding possible spatial dispositions of facies. Modeling
could be as simple as a conceptual drawing using analog data
to generate scenarios about the morphology (e.g.
paleochannels, geobodies), could use systematic methods
[30], or even derive from the whole sedimentary basin models
[29]. The last approach is called Basin and Petroleum Systems
Modeling [16] and is available in commercial software.
Seismic inversion techniques are also useful resources for
the conception of facies models needed in the workflow
[31–33]. In [31, 32], the concept of sand probability can be
directly related to the facies models.

4.3 Facies modeling embeds genesis parameters

It might seem strange that in an exploratory context, the un-
certainty about discovery does not account for the genesis
process of hydrocarbon accumulation or, in other words,
how can someone model reserves without knowing if the res-
ervoir contains hydrocarbons? In our method, the genesis fac-
tors (kitchen, trap, seal, migration, and reservoir presence) are
all embedded in the facies modeling. It is assumed that reser-
voir facies occur where all these factors are present whilst all
the events where at least one of the factors is absent are
modeled as non-reservoir facies. This assumption means that
if there is reservoir, there is hydrocarbon. The chances of
success can be calibrated by artificially increasing the joint
events of non-reservoir facies in all wells.

The adjustment of the CoS for different wells can be ac-
complished by generating realizations that have the same ef-
fect on the reserves. One approach is to use a concept model
that includes non-reservoir facies for regions below a certain
CoS threshold and reservoir facies for regions with higher
CoS, adjusting the number of realizations so the marginal
probability of finding non-reservoir corresponds to the expect-
ed probability of unsuccessful drilling. Another approach is to
increase the proportion of non-reservoir facies, used as input
to the geostatistical modeling until the marginal and condi-
tional probabilities are coherent with the traditional CoS con-
cept. In situations where hydrocarbons have already been

found in the area, or for appraisal phases, the facies modeling
does not require any of these adjustments.

5 Application

The method will be demonstrated in a synthetic 2D model,
developed to represent a simple yet realistic exploratory case.
The prospective area is 7,5 km by 10 km and is overlaid by a
grid of 50 m by 50 m cells, resulting in 150 cells in the x-
direction and 200 cells in the y-direction. Regional knowledge
about the basin suggests that the prospection target is a deep
marine depositional environment with the sediment source
located north of the area but with the exact location unknown.
The objective of this example is to identify the optimal drilling
sequence of the exploration campaign, where the prospect
locations are previously chosen based on seismic horizons
and other relevant information. The objective is met through
a decision process that requires the probabilistic assessment of
the area.

The knowledge from different experts about the deposi-
tional environment of the area is represented by the facies
models shown in Fig. 2, which are the concept models in the
elicitation workflow notation. Due to a lack of additional ev-
idence, the five models are considered equiprobable. Shale is
represented by facies type #0 (purple), poor-quality sandstone
by #1 (light blue), medium-quality sandstone by #2 (yellow),
and high-quality sandstone by #3 (red). The average porosity
and permeability attributed to each facies-type increase with
the reservoir quality (from #1 to #3), while shale is not a
reservoir rock. In this example, we limit the number of con-
cept models to five. However, in a more realistic application,
there could be as many models with as many facies types as
necessary to express the limitation of knowledge about the
area.

The prior exploration campaign considers drilling 8 explo-
ration wells denoted A through H with their exact positions
shown in Table 1. The initial drilling order is alphabetical
because wells A, B, and C have respectively the highest CoS
and in case of positive results, further prospects would inves-
tigate further volume.

Figure 3 is obtained by superimposing the 5 concept
models considering the facies categories as scores from 0 to
3, where 0 means non-reservoir and 3 means high-quality
reservoir. The superimposed map is the sum of the scores to
a maximum of 15. In this map is possible to observe the
positions of the 8 exploration wells.

In the elicitation method, the 8 wells become random var-
iables with 4 possible states (facies) where the complete set of
joint probabilities requires 48–1 = 65,535 assessments. The
size of this problem was chosen to be small enough to be
tractable on desktop computers and large enough to portrait
a more generalized process and solution.
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The variability range, spacing of the pilot-points, and
variogram parameters, all necessary to proceed with the
workflow, were determined based on several iterations with
the geostatistics tool. The pilot-points are visible in Fig. 2 as a
grid of white dots and the variability ranges are the vicinity of
the wells where the pilot-points are absent. Themain objective
is to have realizations that respect the geological knowledge
and collectively have variability around the wells. The chosen
pilot-points spacing is 5 cells and the variability range is 10
cells, while the chosen variogram parameters are presented in
Table 2. In addition to expert knowledge, the variogram pa-
rameters can be determined using available data from the area
or analogous fields.

In SGeMS software, the variogram ranges are set as the
number of cells, the major-range is measured along the verti-
cal axis, the medium-range along the horizontal axis, and the
azimuth angle is clockwise starting from the vertical axis. The
nugget effect is a variogram parameter that affects the

variability of closely spaced samples and, after the interactive
process, was set to 0.1 for a total sill of 1. The chosen
variogram function was Gaussian.

Finally, the distribution of values is exactly the facies pro-
portion observed in each concept model and, the number of
realizations was arbitrarily set to 50 for each iteration m.
Creating 50 realizations from each of the 5 facies models leads
to a total of 250 realizations.9 This description covers all nec-
essary information used to generate the realizations dataset.

Figures 4, 5, 6, 7 8 present the statistical summaries of
each model, calculated using the same system of scores
from 0 to 3. The average (left figure part) and variance
(right figure part) were calculated for each cell along all
realizations. Within these figures, hotter colors mean
higher values and white squares delimit the areas with the
variability range of 10 cells. The pilot-points are visible in
the variance maps appearing as purple dots. Attachment A
shows realizations samples from each index concept mod-
el. Average maps show that morphology is kept in the
ensemble and the variance maps show that variability
was successfully created within the search area from where
the sampling will occur.

In Fig. 9, the average and variance maps are shown for the
complete accumulated set. From the average map, we observe
that well A is positioned in the area with the highest expecta-
tion and wellHwith the lowest. In the variancemap, the upper
and lower parts have higher values, indicating where the de-
positional concepts differ most, surpassing the variability gen-
erated in the central wells.

The accumulated realizations-set is the key to transform the
elicited knowledge into a statistical process. If facies values
were collected only from the exact well locations, the dataset
would contain 250 occurrences, and would not be reasonable
to directly extract the JPD from it. There must be enough data
to adequately represent the relationship between wells and that
is why the definition of a search range is necessary. It is an
interactive process and here it was decided to look for search
ranges of 5 and 10 cells, resulting in datasets with 30,250 and
110,250 entries, respectively.

Table 2 Variogram ellipsoid ranges and azimuths for each facies model

Model 1 Model 2 Model 3 Model 4 Mode l5

Maj Med Maj Med Maj Med Maj Med Maj Med

Ranges 30 10 30 10 30 10 30 10 30 10

Angles 135 – 0 – 30 – 30 – 0 –

9 The choice of 50 realizations of each concept is arbitrary and does not need
to be larger as the number os samples is boosted by increasing the search
range, i.e., sampling the well surroundings. A sensitivity about the number
of realizations is presented in section 8.Fig. 3 Quality surface superimposing the facies models

Table 1 Well
positioning of the
drilling campaign

Well X index Y index

A 78 123

B 42 50

C 71 90

D 106 88

E 82 165

F 50 120

G 105 60

H 38 158
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Fig. 4 Average map (left) and
variance map (right) of the
realizations set created from
facies model 1

Fig. 5 Average map (left) and
variance map (right) of the
realizations set created from
facies model 2

Fig. 6 Average map (left) and
variance map (right) of the
realizations set created from
facies model 3
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Fig. 8 Average map (left) and
variance map (right) of the
realizations set created from
facies model 5

Fig. 7 Average map (left) and
variance map (right) of the
realizations set created from
facies model 4

Fig. 9 Average map (left) and
variance map (right) of the
accumulated realizations set
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6 JPD quality assessment

Marginal probabilities obtained from both range options
(5 and 10 cells) are shown in Fig. 10 along with their
absolute difference. Moving from range 5 to 10, the larg-
est variations were: P(A = #3) decreased 8,5%; P(A = #2)
increased 7,4%; P(F = #1) increased 6,4%; none of them
significantly changing the shape of the distributions. At
the same time, the number of unique joint events in-
creased from 6662 to 10,825 out of the 65,356 possibili-
ties, meaning that 4163 new unique occurrences were
found and will have a probability assigned. The effects
of the search range in the decision results are shown later
and until then, all references to the realizations dataset are
based on the case with a search range of 10 cells.

Through the process it was possible to obtain a JPD where
all facies types can be expected in every well, i.e. none of the
marginal probabilities are zero. The marginal probabilities
confirm the information from the average map in Fig. 9 where
Well A has the smallest chance of finding shale and the largest
chance of finding high-quality sandstone. Well B has worse
expectation than C and D, whilst Well H has the worst expec-
tation and may end up being canceled depending on the dril-
ling results from other wells.

For the cases where experts do not agree with the results,
changes should be made in the input parameters to guide the
results towards distributions that better represent their belief.
For instance, if one believes that P(A = #0) is too low, increas-
ing the number of realizations from concept model 3 would
increase this probability. If one believes the JPD is too opti-
mistic, then the probability of non-reservoir facies should be
increased for all wells, which can be accomplished by adding
new entries of facies #0 in all wells directly to the stochastic
dataset, increasing their relative frequency.

During the interactive process of creating the JPD, we ob-
served that the maps from Figs. 4, 5, 6, 7, 8, and the marginal
distributions, are good overall indicators of how well the JPD
captures the experts’ expectations considering the chosen
parameters.

Inspection of conditional probabilities to evaluate prospect
dependencies, i.e. how information obtained from one well (or
more) changes the expectation of others, provides a deeper
assessment of the JPD. For an exhaustive assessment of
pairwise conditional probabilities would require 224 condi-
tional distributions, with a total of 896 probability values.
Some of these distributions might bemore relevant than others
and a smarter approach is to find a better indicator of key
dependencies among the prospects.

6.1 Mutual information metric

Information theory, founded by Shannon [34], includes met-
rics that can be used to assess the amount of information

contained in a probability distribution [35, 36]. Among the
metrics, mutual information I(X, Y) 10 stands out because it
represents the amount of information obtained from one well
by observing another:
I X ; Yð Þ ¼ ∑

y∈ f
∑
x∈ f

P x; yð Þlog P x; yð Þ
P xð ÞP yð Þ

� �
ð5Þ

where, in our example, the random variables X and Y are
different wells belonging to the set {A, B,C,D, E, F,G,H}
and can, respectively, assume values x and y from the facies
set f = {#0,#1,#2,#3}. P(x,y) is the pairwise joint probability
while P(x) and P(y) are the marginal probabilities. Mutual
information is symmetric and the complete set of measure-
ments in the original JPD is shown in Table 3.

Well H has the highest values considering all other
wells, indicating that observing its outcome greatly im-
pacts the expectations of the remaining wells, or, observing
other wells greatly impacts expectations for well H. At the
same time, well F has, on average, the lowest mutual in-
formation values meaning that its outcome has a lower
impact on other expectations and vice versa.

I(B,H) = 0.234 stands out as the highest value in the table
because their positioning provides quite different results in al-
most all concept models. For example, it is expected that
B = #0 and H = #3 in model 1 and B = #2 and H = #0 in model
4. in the concept models. I(A,C) = 0.008 stands out as one of the
lowest values in the table because good results in one can mean
good results in the other like in models 2 and 4 or bad results like
in models 1 and 3.

Though very intuitive, this metric lacks description on
whether the pairwise relationship has a positive or negative
correlation, or in other words, how finding a specific facies
type affects the probability of finding another facies type.

6.2 Pairwise entropy variation

Entropy is a measurement of how much uncertainty is
contained in the distribution, reaching its highest value for
the uniform distribution and zero when a single event has
100% probability; i.e., certainty. The entropy is given by:

H Xð Þ ¼ − ∑
x∈ f

P xð Þlog P xð Þð Þ ð6Þ

where H is the entropy of the random variable X and P(x) is
the probability of X having facies x. For the application in this
article, each well has 4 possible states, hence the maximum
entropy of any marginal distribution corresponds to the entro-
py of the uniform distribution of 4 discrete states which is
0.6021. Extending this concept to a case where information
about another variable Y is known to be y, the conditional
entropy value is calculated as:

10 In this article all information-theoretic metrics are calculated with logarithm
base e
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H X jY ¼ yð Þ ¼ − ∑
x∈ f

P xjyð Þlog P xjyð Þð Þ ð7Þ

The difference H X jY ¼ yð Þ−H Xð Þ is called here pairwise
entropy variation ΔH X jY ¼ yð Þ and measures how much un-
certainty has changed aboutX after finding thatY= y. It hasmore
resolution than mutual information because it shows how specif-
ic facies values impact the posterior distribution. The values.

Table 4 shows the entropy variations as a percentage of the
entropy from the uniform distribution (0.6021) for the vari-
ables in the rows after finding specific facies value in the
variables in the columns.

The values in the table theoretically range from −100% to
100%. Positive difference means posterior distribution is clos-
er to the uniform distribution (i.e. less certain) and a decrease
in entropy value means that it is closer to depicting a single
most probable outcome (i.e. more certain).

The relationships are not symmetric; e.g., ΔH AjH ¼ 0ð Þ ¼
8:6% while ΔH H jA ¼ 0ð Þ ¼ −62%. The fact that specific
observations have specific impacts on the posterior distribu-
tions provides a more comprehensive quality check of the
JPD. Table 4 results help pinpoint the extreme examples of
how information reduces uncertainty in Fig. 11 or increases
uncertainty in Fig. 12.

Based on a thorough analysis of all relationships (suppressed
here), it is possible to better understand the relationships among
wells. Starting with well H, P(H= #0) increases greatly with
A = #0 and G = #0, while P(H = #3) increases greatly with
B = #0 and G = #3. This relationship follows directly from the
alignment of prospects H, A, D, and G in the direction of facies
#3 path in the concept model 1 (see Fig. 4) while being almost
orthogonal to the alignment of prospects B and C in concept
models 2, 3 and 4 (see Figs. 5, 6, 7). This is the same reason
for P(B = #0) greatly increase with H= #3 and C= #0. On the
other hand, central prospectsA,C,D, andF, have less probability
variations among them, suggesting that the difference among
facies models is the main contributing factor for higher entropy
variations. If a smoother entropy variation is desired, more con-
cepts should be added to the workflow, resulting in a
transitioning pattern of the main directions of deposition.

7 Optimal sequential drilling policy

The purpose of developing the JPD is to support decisions on
optimal drilling policy, so, it is important to assess how different
JPDs affect the decision results, similar to a sensitivity analysis.
In this section, the decision framework and the method of se-
quence optimization are briefly described. Figure 13 shows a
simplified schematic of the decision model with 8 wells, each
having 4 possible states. Initially, there are 9 alternatives: drill
one of the 8wells or none. If the choice is to drill, each alternative

expands into a set of possible outcomes where each outcome
connects to another decision node, until the last drilling decision
is made.

In a sequential forward-thinking, after deciding the first posi-
tion, there will be fewer alternatives for the next decision and so
on, until the last decision. Revenue11 and probability12 values are
assigned to each possible outcome. The goal is to identify the
sequence of decisions that maximizes the exploration campaign
EV, i.e. identify the optimal drilling policy. It is done by always
choosing the alternative with the highest expected revenue value,
no matter the outcome. To that end, it is necessary to know the
optimal choices of all future decision epochs, so, EV calculations
must be done exhaustively in a backward fashion, starting from
the possible decision nodes of the last epoch. This method of
solving sequential decision models was studied and formalized
by Bellman in [37] and for probabilistic applications is called
Stochastic Dynamic Programming (SDP), summarized with this
modified version of Bellman’s equation:

Vi ωð Þ ¼ ∑
k

j¼1
P xi ¼ ojjω
� �

r ji þ δV ω j
i

� �� �� � ð8Þ

where, for a generic decision node, each alternative indexed i has
k possible outcomes o indexed j, each with probability
P(xi = oj|ω) and immediate reward ri

j. The vector ω, represents
all the information available at this decision node and is updated
to ωi

j when outcome oj is observed in the alternative i. Finally,
Vi(ω) represents the EV of each alternative at decision nodes,

considering each outcome immediate reward r ji added to the
maximum expected value V(ωi

j) of all subsequent optimal deci-
sions deriving from oj, discounted by a factor δ. Equation 8 is
recursive and shows how to substitute all future decisions deriv-
ing from each alternative, by a single revenue EV obtained by
applying the highest EV criterion. The optimal decision never
has a negative EV because there is always the option of not
drilling.

The solution process promotes the orderly substitution of
each decision node in the model by its equivalent EV when
applying the optimal criterion. It starts from the last decision
stage (V(ωi

j) = 0) and proceeds backward until a single EV
representing the optimum policy is found. Since all possible
future EV (known as continuation values in [1, 6]) had to be
calculated in the process, the optimum policy contains the best
course of action for every possible outcome.

7.1 Revenue model

The revenue model, also known as the value function in [38],
describes the immediate reward ri

j for every possible outcome in
the decision model. For simplicity, in our application, the

11 The revenue model is defined in section 7.1.
12 Obtained accordingly from the JPD
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revenue model presents a constant relationship with the facies
type found in the wells. The net revenue is −10 economic units if
the well lands in facies type #0, representing the cases where
there are no hydrocarbon reserves. If the well lands facies #1,
net revenue is −1 economic unit, representing a small reserve
volume but not enough to compensate for the drilling cost. If it
lands in facies #2 or facies #3, the net revenue is 20 and 40
economic units, respectively, reflecting that reserves are correlat-
ed with facies type through different porosity and permeability
distributions in different facies, as described in Eqs. 3 and 4.

The discount factor plays a role in balancing the prospect’s
direct monetary reward (ri

j) and indirect expected monetary
reward (V(ωi

j)) obtained in the future. In the oil exploration
context, the wells might only produce after the declaration of
commerciality and production facilities are built. For that, we
chose not to penalize future cash flows during the exploration
campaign by setting δ = 1.

7.2 Solution complexity

The termination branches of the equivalent decision tree are
called leaves and are estimated to be 3.4 billion for the current
example, including the “Don’t drill” alternative. The exponen-
tial increase of the number of leaves with the size of the se-
quence (dimensions) was called the “curse of dimensionality”
in [37] and is one major reason why sequential decision prob-
lems are frequently simplified. Our method describes an

elicitation process that provides the JPD explicitly in a matrix
form, which helps to solve the sequential decision model by
reducing the solution time when compared to implicit JPD
representations like Bayesian networks.

8 Comparison of results

In this section, the JPDs obtained from alternative processing
methods will be used to identify the decision policy that opti-
mizes the sequential drilling problem. By comparing the re-
sults, it is possible to evaluate the impact of different consid-
erations on the final decision policy and optimized value. The
idea is to select the smallest search range and simplest pro-
cessing method, or in other words, the lowest probabilistic
model resolution, from which there is no change in the deci-
sion process.

8.1 Comparison description

Table 5 shows 16 different JPDs using search range of 5 cells
(indexed from 1 to 8) and 10 cells (indexed from 9 to 16). The
starting point is the counting method based on the 250 reali-
zations (50 from each concept) corresponding to distributions
1 and 9. The additive smoothing method (blue font) is applied
over distributions 1 and 9 considering two different values of
minimum joint-probability (Pmin), consequently altering the
maximum joint-probability value (Pmax). The CTGAN algo-
rithm (red font) is trained using the same dataset from distri-
butions 1 and 9, and used to generate other versions of the JPD
by resampling the model using 106 and 107 samples, increas-
ing the number of unique joint-events found. The sensitivity
of the JPD to the number of realizations is assessed from
increasingly larger geostatistical datasets. Distributions 6 and
7 are obtained by counting joint-events from 500 realizations
set, and distributions 14 and 15 from 1000 realizations13.

13 The initial 250 realizations set is a subset of the 500 realizations set, which is
also a subset of the 1000 realizations set.

Fig. 10 Comparison of marginal probabilities obtained with a search range of 5 and 10 cells

Table 3 Pairwise mutual information

Well A B C D E F G H

A 0.094 0.008 0.022 0.038 0.020 0.018 0.091

B 0.094 0.037 0.056 0.152 0.026 0.083 0.234

C 0.008 0.037 0.021 0.024 0.021 0.032 0.100

D 0.022 0.056 0.021 0.065 0.017 0.072 0.088

E 0.038 0.152 0.024 0.065 0.017 0.058 0.118

F 0.020 0.026 0.021 0.017 0.017 0.024 0.128

G 0.018 0.083 0.032 0.072 0.058 0.024 0.136

H 0.091 0.234 0.100 0.088 0.118 0.128 0.136
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The table is divided into two parts. The Distribution
Parameters part shows metrics evaluated exclusively using
the JPDs and the Optimal policy summary part shows the
general results of solving the decision problem using each
distribution. The number of unique events indicates how
many joint-events are assigned positive probability value,

whilst all absent joint events14 are assigned zero probability
of occurrence.

14 The number of possible joint-events for 8 random variables each having 4
states is 65,536. The number of joint-events assigned zero probability is the
difference between 65,536 and the number of unique events found in the
dataset.

Table 4 Relative pairwise entropy variation given outcome finding
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In our analysis, the JPD obtained from the 1000 realizations is
considered the comparison reference, and the KL-distance [14]
measures how dissimilar each JPD is to this reference distribu-
tion15. The entropy value is presented as a measure of howmuch
uncertainty is present in each distribution. Its minimum possible
value is 0 corresponding to a JPD where a single joint event has
100% probability of occurrence (certainty). Its maximum possi-
ble value is 4.82 corresponding to the uniform distribution with
the 8 variables with 4 possible states each (highest uncertainty).

The prior EV is calculated using the marginal probabilities
obtained from each distribution (e.g. Fig. 10) and the revenue
model described in section 7.1. This value corresponds to the
expected value of the drilling sequence before gathering any
additional information. V0 is the exploration campaign’s optimal
expected revenue, i.e. when the drilling sequence follows the
optimal drilling policy identified by the SDP using geological
information.ΔV0 is the difference between the prior EV and V0
(posterior) corresponding to the total value of information (VoI)
of the drilling sequence. Prior EV is the minimum EV of the
sequence, consequently,ΔV0 is higher or equal to zero.

The last columns show the first well of the policy followed by
the candidates for the second well. The first does not depend on
any additional information while the second well depends on the
outcome of the first one, hence there are 4 possible candidates.

8.2 Results analysis

Increasing the number of geostatistical realizations slight-
ly increases the entropy and manages to increase the

number of unique events but with a much lower propor-
tion. The limited number of samples raises concerns about
the overfitting of the JPDs. This concern is the main rea-
son different processing techniques are tested. The pro-
cessing options provide alternatives for building the JPD
that avoids assigning zero probability to events given the
limited number of samples from the stochastic dataset.
The regularization effect is observed in the column
Unique events where the CTGAN greatly increases the
number of observed joint-events and the smoothed distri-
butions provide (by definition) join-probability values to
all 65,536 possible events. The effect is also observed by
the slight increase of the entropy and the increase in KL
distance from the reference distributions (7 and 15).

Analyzing the metrics for JPDs built using a search range
of 5 cells against the ones using and 10 cells, we observe that
the processing methods have similar effects on both ranges,
except for the Prior EV. There is a systematic difference of
about 5 economic units between the prior EV of these two
ranges which is propagated to the posterior V0 and conse-
quently disappears in the ΔV0. This difference comes from a
fundamental difference in the marginal probabilities which in
turn reflects the spatial uncertainty modeled in the JPDs.
When using the range of 5 cells, the proportion of neighboring
facies type is lower as the sampling area has a lower overlap
with the neighbor facies type in the concept models (see Figs.
4, 5, 6, 7, 8). Increasing the search range from 5 to 10 adds
more spatial uncertainty, systematically increasing the entropy
and reducing the prior EV of all deriving JDPs. This search
range relationship is important to the elicitation process as this
helps experts to better tune this parameter according to their
prior beliefs.

15 Distributions built using range of 5 cells use distribution 7 as reference and
distributions built using range of 10 cells use distribution 15 as reference.

Fig. 11 Examples of high decrease in entropy given new information
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At last, using different JPD versions might change the deci-
sions to be made, i.e. the policy. The initial part of the policy
from both reference distributions (7 and 15) are identical, regard-
less of the search range, starting with wellC and having wellG if
C = #0 or wellD for any other result. The policies from the JPDs
using the CTGAN method differ most from the reference distri-
bution, with distribution 13 having the biggest difference. All
other distributions (excluded the ones from CTGAN) have very

similar policies to the reference, with the difference being that if
C = #0, then wellD is recommended, and if C = #1, then wellG
is recommended. This is a minor change because when one
follows these policies to the third well in the sequence,G appears
after D and G appears after D.

It is interesting to observe that although wellA has the highest
marginal EV, the first well in the policies is well C which ranks
2nd in the marginal EV. After well C, either well D or G is the

Fig. 13 Decision tree schematic

Table 5 Comparison of the JPDs under consideration

Fig. 12 Examples of increase in entropy given new information
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next in the drilling sequence ranking 3rd and 4th in the marginal
EV. Well G appearing as a second candidate is interesting be-
cause its EV ranks 4th in the marginal EV and it is positioned
farther away from the center, indicating its spatial information
relevance in the decision-making process. Overall, the geological
information brought by G compensates its prior lower expected
values.

9 Assumptions and implications

This section states the implicit assumptions made during the
elicitation method and its subsequent application in the se-
quential decision model.

9.1 Geostatistical framework given new data

Once the geostatistical realizations provide a satisfactory JPD,
they are not used anymore because the spatial relationship they
provide is present in the JPD and because all possible outcomes
(in our example is facies types) are considered in the modeling.
In other words, the JPD is capable of standing alone during the
actual exploration campaign.

However, in the situation where the belief of the original
assumptions (e.g. concept model, variogram) changes as a
result of new geological evidence, the original JPD would be
inadequate and the whole elicitation process would have to be
repeated to properly update the JPD.

The SDP adds value by considering the intertwined relation-
ship among decision and information which would not be pos-
sible to exploit without at least two subsequent information ac-
quisitions using the same JPD. Rebuilding the geostatistical re-
alizations every time new information arrives is considered a
closed-loop approach (e.g. [39]) which fundamentally differs
from the SDP. For this reason, it is beneficial to try to anticipate
many different scenarios during the elicitation process.

9.2 Production interference

The revenue model described in section 7.1 assumes that the
outcome of one well does not affect the outcomes of the other
wells, e.g. when the decision metric is hydrocarbon volume
in-place. This assumption does not hold for reserves if the
production of the wells under consideration might be signifi-
cantly affected by the production (or injection) from the
others. In this case, the revenue model must account for these
interferences, described in [38] as a coupled value function.

The development of revenue models that account for produc-
tion interference among wells can be done through the use of
subsurface flow simulations and are the subject of future work.

9.3 Well locations given new data

Another assumption upon the method builds is the fixed loca-
tion of the drilling candidates. The consideration of the vari-
ability and search ranges means that small location changes
within these areas are already accounted for in the modeling.
But in situations where new information demands larger loca-
tion changes, another JPD would have to be replaced.

If the original input parameters and assumptions still hold,
the same realizations set could be used to re-sample the sto-
chastic dataset. This is a great advantage of the method be-
cause the effort of building a JPD with different numbers of
wells and positions does not depend on the realizations set.

[40] presents a method that intentionally starts with a larger
number of candidate positions and lets the SDP “filter” the
poorer locations and the changing of well location is naturally
done by the drilling policy obtained from the SDP.

10 Conclusions

The work presented here shows a novel method to elicit proba-
bilities for value creation and decision-making support in the
context of hydrocarbon exploration. It is based on a geostatistical
process that “translates” geological expert knowledge into prob-
abilities through the creation of conceptual models representing
possible subsurface bodies. In the absence of well-data, the con-
ceptual models can be created based on any other source of
information available whilst the presence of well-data further
assist conceptual modeling. The method is by nature interactive
as it gradually shapes input parameters to assess if resulting re-
alizations and their corresponding JPDs are representative of
experts’ current beliefs.

Implementation complexity depends on available resources.
Even a relatively simple 2Dmodel, as presented and discussed in
this article, might suffice for decision-making. The application of
the method illustrated how to specify required input parameters.
While creating the realizations, the parameters to be determined
are the variogram functions, number of realizations, variability
range, and pilot-point spacing. Later, to build the JPD the param-
eters required are the search range and the processingmethod. To
assess whether the resulting JPD reflects the expert’s beliefs re-
garding geological relationships, quality-check procedures were
demonstrated. Our experience is that the overall content of the
JPD can be effectively16 and comprehensively probed through
the inspection17 of sampled realizations (see Attachment A), av-
erage and variance maps, and marginal probability distributions.

16 Here are presented the last result, after iterating several times with the
geostatistical workflow. The inspections were effective during the iterations
partial results which are surpassed here.
17 Visual inspection to check if the process generated variability keeping the
intended geometric “shape” of the property spatial distribution. The accep-
tance criterion is left to the experts conducting the process.
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Further adequacy of the JPD is assessed through mutual infor-
mation and entropy variation indicators, which analyze the con-
ditional relationships among wells.

Increasing the search range increases the number of
unique joint-events samples used in the JPD estimation
which helps to reduce the overfitting effect. It also incor-
porates more spatial uncertainty to the JPD, reducing the
optimal EV of the drilling sequence. It was also observed
that the choice of 50 realizations from each concept model
(250 in total) is robust enough considering the decision
results, dismissing the need for probabilistic models with
“higher resolution” (i.e more realizations). In the attempt
to reduce, overfitting additive smoothing seems better
than CTGAN because it did not change the resulting
policy.

The policies obtained from the different JPDs seem to be
similar among them. All optimal policies, begin with wells A
orC and continue with either A, C,D, orG. A brief geological
analysis shows that the exploration path within the policies
seems to adapt to the probability contents of the different
JPDs.

Future work will extend the approach discussed in this
paper beyond the exploration phase of hydrocarbon fields
where, traditionally, the decisions are embedded in the
modeling workflow through optimization procedures [39,
41, 42]. An extension of the probabilistic approach pre-
sented here has the potential to improve decision-making
during the development phase because the decisions will
benefit from significantly better data support and the large
number of reservoir simulations aimed to generate proba-
bilistic production forecasts under geological uncertainty.

Attachment A: Samples from the ensemble
of realizations

Fig. 14 Samples from the realizations of the concept model 1
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Fig. 15 Samples from the realizations of the concept model 2

Fig. 16 Samples from the realizations of the concept model 3
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Fig. 17 Samples from the realizations of the concept model 4

Fig. 18 Samples from the realizations of the concept model 5
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Nomenclature JPD, Joint probability distribution; DM, Decision mak-
er; SGeMS, Stanford Geostatistical Modeling Software; EV, Expected
Value; SDP, Stochastic Dynamic Programming; KL, Kullback and
Leibler (distribution divergence metric); n, Total number of wells (ran-
dom variables); k, Number of outcomes (possible states); m, Index of the
concept model; M, Total number of concept models; Ns, Number of
samples in each realization; r, Search range, in number of cells; CoS,
Chance of success; NTG, Net to gross ratio; So, Average oil saturation;
Bo, Formation volume factor; ORF, Oil recovery factor; rd, Equivalent
drainage radius; ho, Thickness bearing oil;Φe, Effective porosity; f, Facies
type indicator; I(X,Y), Mutual information of random variable X and Y;
P(x), Probability of variable X = x; P(x,y), Probability of variable X = x
and Y = y; H (X), Entropy of variable X distribution; H (X|Y = y),
Conditional entropy of variable X distribution given Y = y; ΔH
X jY ¼ yð Þ , Pairwise entropy variation; Vi(ω), Expected value from
alternative i; ω, Observation vector or key; i, Alternative index; j,
Outcome index; ri

j, Immediate reward from outcome j of alternative i;
V(ωi

j), Expected value coming from outcome j of alternative i; Poriginal,
Joint probability from the maximum likelihood method; Psmooth, Joint
probability after additive smoothing; α, additive smoothing parameter;
Ν, Total number of probability values in the JPD; VoI, Value of
information
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