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Abstract— This paper presents the design of a robust
observer-based control for a class of nonlinear multi-agent
systems. The leader-following consensus problem is solved in
order for all the agents to follow the trajectory of a virtual
leader in spite of a nonlinear input which depends on the local
and neighboring agents. The main contribution of this paper is
to guarantee the stability and robustness of the estimated states
and the synchronization error for each agent. Linear matrix
inequality (LMI)-based sufficient conditions are obtained for
computing the controller and observer gains. The effectiveness
of the proposed approach is shown considering a formation
control problem in a fleet of unmanned aerial vehicles under a
simulation setting.

Index Terms— Linear matrix inequalities, leader-following
consensus, nonlinear multi-agent systems, networked swarms,
observer-based control.

I. INTRODUCTION

Networked control of unmanned aerial vehicles (UAVs)
has been studied extensively in the literature considering
problems such as formation control [1], [2], [3], containment
control [4], event-triggered control [5], flocking [6], just
to mention a few works. Multi-agent systems have been
of interest due to their potential in accomplishing missions
that a single UAV cannot perform. Multi-agent systems are
integrated by individual dynamical systems called agents
that can communicate their states through networks. Each
individual agent has sensors and actuators for interacting
with their environment [7]. The focus on the consensus
problem of multi-agent systems has been described by
different dynamic models such as: single integrators [8],
double integrators [9], high-order integrators [10], linear
[11], and nonlinear dynamics [12].

Consensus is an important problem in the context of
coordination of multi-agent systems where all the agents
reach an agreement in relation to the states of the other
agents [13]. A consensus algorithm or consensus protocol
is an interaction rule that specifies the exchange of
information between an agent and its neighbors on the
network [14]. Leader-following consensus problem is
considered when all the trajectories of the agents must
converge to a physical or virtual leader agent [15]. In the
last decades, the leader-following consensus problem has
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been employed in fleets of UAVs when the control objective
of the collective group is to follow the trajectories and
velocities described by a physical or virtual agent such as
reported in [16], [17] considering second-order multi-agent
systems, or multi-UAV-systems [18], [19]. As reported
in [3], consensus algorithms and angle transformations
can be applied to manipulate the UAVs. In this light, this
paper takes into consideration the leader-following control
problem in order to synchronize a fleet of UAVs collectively.

An interesting topic in the literature is the leader-following
consensus problem of nonlinear multi-agent systems with a
nonlinearity in the dynamics of the agents. Centralized and
decentralized event-triggered leader-following consensus for
a class of switched nonlinear multi-agent are investigated in
[20]. The distributed leader-following consensus problem for
a class of first-order and second-order Lipschitz nonlinear
multi-agent systems with unknown control directions and
unknown bounded external disturbances is addressed in
[21]. The distributed event-triggered consensus problem for
a class of nonlinear multi-agent systems subject to actuator
saturation considering an uncertain nonlinear function
is presented in [22]. A sampled-data leader-following
consensus of nonlinear multi-agent systems with random
switching network topologies and communication delay is
studied in [23]. In [20] and [21], heterogeneous nonlinear
multi-agent systems have been considered where, in [20],
the nonlinearity is different for each agent and [21]
considers only different values in the agents’ parameters.
[22] and [23] present high-order nonlinear homogeneous
multi-agent systems with a linear and an additive nonlinear
part. However in all works cited [20], [21], [22], [23], the
additive nonlinearity is Lipschitz and only dependent on the
local states of each agent.

Compared to the aforementioned works, an additive
nonlinearity dependent on the neighboring and local states
of the agents, which can influence the performance of the
consensus, is taken under consideration in this paper. The
main contributions of this paper can be listed as follows. 1)
Based on the Lyapunov approach, a robust leader-following
control is designed to follow the trajectories of a physical
or virtual leader agent despite the additive nonlinearity. 2)
Linear matrix inequality (LMI)-based sufficient conditions
are provided in order to guarantee the existence of
the controller and observer gains. 3) To illustrate this
strategy, an extension in a fleet of UAVs which can be
considered as second-order multi-agent system solving the



leader-following formation control problem with a nonlinear
function is presented.

The paper is organized as follows. Notation and basic
graph theory are reported in Section 2. The problem
statement is defined in Section 3. The robust observer-based
leader-following control is designed in Section 4.
Simulations of the formation control problem are used
to show the effectiveness of the proposed strategy in Section
5. Finally, the main conclusions are presented in Section 6.

II. PRELIMINARIES

Given a matrix X, X7 denotes its transpose, X > 0(< 0)
denotes a symmetric positive (negative) definite matrix. The
set R denotes the real numbers. ||.|| denotes the Euclidean
norm. For simplicity, the symbol * within a symmetric matrix
represents the symmetric entries. The Hermitian part of a
square matrix X is denoted by He{X} := X + XT. The
symbol @ denotes the Kronecker product.

Lemma 1 ([24]): For real matrices A, B, C, and D with
appropriate dimensions, the Kronecker product @ has the
following properties:

) ( A+B)@C=AC+B&C;

2) (Ax B)" = AT @ BT;
3) (A® B)(C® D) = (AC) ® (BD).

Lemma 2 (Schur complements [25]): For a given

< 0 the following statements

symmetric matrix 4B
Y BT C

are equivalent:

1) A<0,C-BTA'B<0;

2) C<0,A-BTC'B<0.

Lemma 3 (Young’s relation [26]): For given matrices A
and B with appropriate dimensions, for any invertible matrix
S and scalar g > 0, the following holds:

He {A"B} < pA"SA+p 'B"S'B.

A directed graph G is a pair (V, £), where V = {v1,..., vy}
is a non-empty finite node set and €& = {(4,5) : ¢,7 € V} C
Y x V is an edge set of ordered pairs of N nodes (total
agents). The neighbors of node 7 are denoted as 7 € M.
The adjacency matrix A = [a;;] € RY*N associated with
the graph G is defined such that a;; = 0, a;; > 0 if and
only if (i,7j) € € and a;; = 0 otherwise. The Laplacian
matrix £ = [ﬁij] € RVXN of the graph G is defined as
Eii = ZJ;M Qi and ‘Cij = —aij,z' # ]

III. PROBLEM STATEMENT
Consider the following nonlinear multi-agent system:
£i(t) = Awi(t) + Bui(t) + wi (zi(t), z;(t))
where z;(t) € R™ is the vector state, u;(t) € R™ is the
input vector, y;(t) € R™ is the measurement output vector
with matrices A € R?=*"= B ¢ R"=*"u and C € R *"=;
w; : RN — R" is an additive exogenous nonlinearity
which is dependent on the neighboring and local states of
the agents. The following assumptions hold in this paper.

€]

Assumption 1: The pair (A, B) is stabilizable.

Assumption 2: The pair (A, C) is detectable.

Assumption 3: The graph G is strongly connected.

Assumption 4: w; (z;(t), xj(t))T Now; (xi(t),z;(t)) <
267 HT H§; where v > 0 is the bounding parameter,N,, €
R™*"= jg a symmetric positive definite matrix to be
calculated, H € R™ %" js a constant matrix, and §; is
the synchronization error between the agent ¢ and the leader
agent.

Remark 1: Note that w; (z;(t),z;(t)) can represent a
malfunction in the consensus such as false-data cyber-attacks
which depend on the neighboring and local states [27].

An observer-based leader-following control for the
multi-agent system in (1) is designed such that all the agents
follow the reference trajectories in a consensus despite
w; (x;(t),z;(t)). The leader dynamics are described as
follows:

Zr(t) = Az (t) + Bu,(t), ?2)

where z,(t) € R™ is the leader’s state vector, u,(t) €
R™ is the leader’s input vector. The leader agent can be
considered as an exogenous system or a command generator
which generates the desired trajectory to be followed by all
agents [28]. Let us define the synchronization error for each
agent ¢ as follows:

6i(t) = zi(t) — z, (1), (©)
then, the synchronization error dynamics are obtained:
8i(t) = @i (t) — @ (t)
= Awzi(t) + Bui(t) — Az, () — Bu,(t) + wi (zi(t), z; (1)),

= A8 (1) + B (wi(t) — ur(t) +wi (2:(), 2, (1)) -

4)

Definition 1 ([29]): The leader-following consensus
problem is achieved if the multi-agent (1) satisfies:

lim [lz5(t) = 2 (t)] >0, ¥i=1,2,...,N, (5

for any initial condition despite w; (z;(t),z;(t)).
As reported in [29], the standard observer-based
leader-following control is given as follows:

wi(t) =Ko Y aij (#:(t) — (1))

JEN; (6)

+ai Ko (2i(t) — (1)) +ur(t),
where K. € R™+*"= jg the control gain to be designed, a;
is defined to be 1 whenever the agent ¢ is a neighbor of the
leader and O otherwise, &;(t) is the estimated state vector
of the agent 4, and Z;(¢) is the estimated state vector of its

neighbors j. Based on (4) and (6), it is obtained:

5i(t) =A8;(t) + BK, > ag; (6:(t) — 8;(t)
J%\:/ i /) ™)
+ 0y BK (1) + wi (1), (1)) .
define & = [6:(0)7,62(0)7,...,on(0)T]",
“ “ “ “ T
d=[0:11)T,02(0)T,... 7(31\7(15)T] , the nonlinear input w =

Let us



[ (a(0), 5 ()T e (i), (1)
and A = diag (o1, 2,...,an), thus, £ = £ + A. Then, the
synchronization error dynamics are rewritten using the Kronecker
product as follows':

§=(In®A) 5+ (L®BK:)d +w. ®)

Lemma 4: The matrix £ has nonnegative eigenvalues (0 < A\; =
;i (£),Vi=1,2,...,N). The matrix £ is positive definite if and
only if the graph g is strongly connected [29].

Remark 2: It is worth mentioning if the synchronization error is
zero (0 = 0,t — o0) despite w, then it is said all the agents reach
the consensus.

In this paper, the leader-following control uses the estimation
provided by the following observer:

9i(t) = Cz4(1),

(C))
where Z;(t) € R" is the estimated state vector, ¢;(t) €
R™ is the estimated output vector, and the matrix L, €
R"»*™ is the observer gain to be designed. Let us define
2 = [{f?l(t)T,fIz(t)T,...,.’i?N(f/)T]T, then equation (9) can be
expressed as follows:

i=(In®A)i+ (LoBK)Z+w+ (In® LoC) (x — ).

(10)
Letzy =0,220=0—0=x—2,2= [le,zQT]T then (8) and (10)
can be rewritten as follows:

z:Az+m, (11)
i_ [IN® A+ L® BK. —L ® BK.
where A = 0 In® (A— LoC)L
Given the nonlinear multi-agent system (1), the problem under

consideration in this paper is to synthesize a robust observer-based
leader-following controller K. and observer L, gains described in
(6) and (9) such that all the agents follow the virtual leader (2) in
a consensus despite the nonlinearities.

IV. ROBUST OBSERVER-BASED LEADER-FOLLOWING
CONTROL

In the following subsections, sufficient conditions are presented
in order to guarantee a robust leader-following consensus for the
nonlinear multi-agent system (1). Then, LMI-based conditions are
presented in order to compute the controller and observer gains.

A. Leader-following consensus analysis

Given the closed-loop nonlinear multi-agent system (11), the
following theorem provides sufficient conditions to guarantee a
robust leader-following consensus.

Theorem 1: Assume that Assumptions 1-4 holds; z = 0 is an
asymptotically stable equilibrium state if there exist matrices P; >
0, P, >0, N, > 0, andscalarsB > 0, v > 0 such that the
following holds Vj = 1,2,..., N:

Qi, —-\PBK. P

* Q2 0
* * —N,,

<0, (12)

where Q1;, = He {P1 (A+ \;PABK.)} + BY’HTH and Q, =
He {P, (A — L,C)}.

'Due to space limitation, explicit dependence of signals on time are
omitted.

o (@), xj(t))T] "

(), 2;(t) + Lo (yi(t) — (1)) ,

Proof: Let us calculate the time derivative of the Lyapunov
function V = 27 Pz along any solution of the system (11) given

by:
VvV =2TPs=2."P (Az + [‘6’]) , (13)
where P = diag (INn ® P1,In ® P»). From (13), it is obtained:
V =2z{ (In® PPA+ L ® P\BK.) 21
—22{ (L® PLBK.) 22 + 22] Piw (14)
+ 223 (In @ Po(A — L,0)) 2.

Let us perform a spectral decomposition similarly as reported in
[30], [29], such that £ = TJT ! with a matrix T € RY¥*¥ and
a diagonal matrix J = diag (A1, X2, ..., Ax) € RY*YN Define a
change of coordinates as follows:

= (T_l ® IN) 21,
p2 = (T_l ® IN) 22, (15)
b=(T"®In)w
Replacing (15) in (14) leads to:
V =201 (In @ PLA+ J @ PLBK,) ¢1
—2p1 (J ® PLBK.) @2 + 2¢1 P1¢) (16)
+ 203 (In ® P2(A — L,C)) po.

By Lemma 4 all the eigenvalues \; are positive, then (14) can be
rewritten as follows:

N
V=Y ¢l He{PiA+ \;PIBK.} 1,

j=1
N N
—2> @l NPIBKeps; 42> ¢l Pig; (1)
j=1 j=1
N
+ 3, He {P2(A = LoC)} 3.
j=1

T
Let ¢; = [,cfj , ap%;. , qﬁf] , then (17) is rewritten as follows:

N
V=>4l 61,
j=1
He{P (A+ X\;PABK.)}

= *

—A\jP1BK. P
He{P; (A—Lo,C)} O
* 0

(18)

According to Assumption 4, the following constraint is holding:
w; Now; < +26] HTHé;. (19)
Then, using the Kronecker product, it is obtained:
T(In @ No)w < y*0" (In@ HTH ) 6. (20)
Replacing (15) in (20) leads to::
6" (In 2 N6 <7%6] (In@ HTH) g1 @1)

Similarly, (21) can be rewritten as follows:
N N
ST Nuty <> el H Hen, 22)
j=1 j=1

which is equivalent to the quadratic inequality
N —*HTH 0 0
> ow) 0 0 0

=1 0 0 No

W; < 0. (23)



When (23) is satisfied, by using the S-procedure [31], then (18) is
equivalent to the existence of P, > 0, P, > 0, N, > 0, and a
scalar 8 > 0 such that:

N
VSZl/ffﬂjwj,
j=1
Qi, —-\PBK. P 24
Q=1 = Q2 0 |,
* * — N,

where Q1; = He {P1 (A+ X\;PABK.)} + BY’HTH and Q, =
He { P2 (A — LoC)}. If the matrix Q; < 0,Vj =1,2,..., N, then
V' < 0, which completes the proof. |
Due to the products between decision variables, condition (12)
represents a bilinear matrix inequality, which is much harder to
handle computationally due to lack of convexity [32]. The following
theorem provides LMI-based conditions in order to design the
controller and observer gains.

B. Controller K. and observer L, gains synthesis

Theorem 2: The equilibrium state z = 0 for the system (11)
is asymptotically stable if there exist matrices P > 0, P> > 0,
N, > 0, N, M,, and scalars p > 0, ;& > 0 such that the following
holds Vj =1,2,..., N:

Q, 0 I PH —-)\BN. 0
* Qo 0 0 0 1
* x =N, 0 0 0
x % % —pl 0 o | <0 @
* * * * P 0
* * * * * —uPr

where Q1 = He {Af_’l + )\jBNC} and Q2 = He { A — M,C}.
The controller and observer gains are calculated as K. = NCI-:’I_ 1
and L, = P2_1Lo respectively.

Proof: Pre- and post-multiplying (12) by diag (Pl_ LI ),
the following is obtained:

Fi, —NBK. I

* Fo 0 <0, (26)
* * — N,
where P, = Pl_l, ﬂlj = He{APl +)\jBKc151} +

By?P L HTHP,, and F, = He {P>(A - L,C)}. Using Lemma
2 and selecting p = (8~%)"* (26) becomes:

Fi; —ABK. 1 P
* ]'—2 0 0
N N _N, o | < 0. 27)
* * * —pl

where .Flj = He{APl +>\jBKC]51}. Note that (27) can be
rewritten as follows:

Fi; 0 1 P H
* ]‘—2 0 0
* * — N, 0
* * * —pl 28)
—\;BK.
+ He 0 01 0 0y <o.
0

Applying Lemma 3 in (28), the following inequality is obtained:

.Flj 0 I PlH
* Fo 0 0
* * — N, 0
* * * —pl
—\;BK.
+u 8 P [-)\;(BK)" 0 0 0 (29
0
0
A0 10 0] <o,
0

where 1 > 0. Using Lemma 2 in (29), selecting N, = K.P; and
M, = P> L,, the inequality (25) is obtained, which completes the
proof. |
In order to show the effectiveness of the proposed strategy, the
following example presents a comparison between the classical
leader-following formation control and the proposed strategy.

V. EXAMPLE: APPLICATION TO FORMATION CONTROL

According to [3], a fleet of unmanned aerial vehicles (UAVs)
can be represented as a double integrator multi-agent system
manipulating the angles of each UAV. Let us consider the following
second order nonlinear multi agent system:

pi(t) = vi(t),
0 (t) = ui(t),

where p;(t),vi(t),w:(t) € R™ are respectively the position,
velocity, and acceleration input (V¢ = 1,2,...,N) in an ng
dimensional Euclidean space, and the leader’s dynamics are

considered: )
pr(t) = v (1),
or(t) = ur(t).

Two components are considered in the acceleration input @;(t) =
ui(t) + wi(pi(t),p;(t)) where u;(¢) is the control input and
wi(pi(t),p;(t)) € R™ is a nonlinear input. Let us define h;
and h; € R"4 as the rigid desired-position formation which is
considered to be constant. The synchronization error between the
agent ¢ and the virtual agent is defined as p;(¢) = p:(t) — pr(¢),
Bi(t) = vi(t) — vr(t), and &(t) = [pi(t)" — AT, 5:(1)T]"; thus,
the synchronization dynamics (30) and (31) can be represented as
follows:

3i(t) = Ai(1) + Bua(t) + @i (pi (1), p; (1)),

Fi(t) = C8;(t)
A — |:0nd><nd Ind :| B — |:0nd Xnd] (32)
ng

ngXng

(30)

€1V

ngXng
C=[Ing Ongxnal s @i(pi(t),pj (1) = Bwi(pi(t), p;(1)).
In order to design a formation control based on the leader-following

approach developed in this paper, the control (6) is modified as
follows:

U; = Kc Z Qg (Zi‘l — Q_AZJ) +O.’7;KC ("%1 — fr) =+ u,«(t). (33)
JEN;

where K. is the robust control gain to be calculated, T =

[Di(t)" —hiT,'ﬁi(t)T]T is the estimated state vector of the

second-order agent i, Z; = [ﬁj(t)T—th,f}j(t)T]T is the

estimated state vector of the second-order agent j, and Z, =

[pT T, v, (t)T]T. The formation control (33) can be rewritten as
follows:

U; = KC Z Q5 (37, — §]> =+ QZKC& (34)
JEN;



TABLE I
DESIRED FINAL SHAPE, INITIAL POSITIONS, AND INITIAL VELOCITIES
OF EACH AGENT.

Desired positions Initial position Initial velocity

h1 = [0,0,0]7 p1(0) = [—4,—1,0]T | »1(0) =[0,0,0]T

ho = [4,0,0,]T p2(0) = [-1,1,0]7 | v2(0) =[0,0,0]"
hs = [6,2v/3,0]7 | p3(0) = [-2,—2,0]7 | v3(0) =[0,0,0]T
ha = [4,4+/3,0]T pa(0) = [-2,4,0T | v4(0) =[0,0,0]T
hs =[0,4v/3,0]" p5(0) =[3,2,07 [ vs5(0) =[0,0,0]7
he = [—2,2/3,0]7 p6(0) = [2,3,0]7 v6(0) = [0,0,0]”

Leader

Fig. 1. Communication topology between agents.

After connecting (32) and (34), the closed-loop system can be
represented as in (8). The nonlinear input is defined as follows:

b Zii
wilt) = == > aysin(||zy]) | ——==—
Li; JEN; 1+ ||Zij||2 35)
zi; = p;(t) — pi(t) — hy + hi,
where b > 0.

Remark 3: According to [33], [34], [35], [36], [7], the reachable
formation has to satisfy the constraints Ah; = 0, Vi =
1,2..., N. By satistying the above constraints, the controller and
observer gains can be calculated with Theorem 2 to solve the
leader-following formation control problem using the control law
in (33) when Assumption 4 is fulfilled.

LMI in Theorem 2 is solved with the following parameters: p =
0.01, H = I (H is selected in such a way Assumption 4 is fulfilled),
and A = diag (1,0,0,0,0,0). Six agents are considered shaping a
hexagon with the parameters in Table 1. The leader’s control input
is ur = [0,0,0.5t]7 — v,(t) and for testing the nonlinearity has
b = 4. The communication topology is shown in Fig. 1 with the
following Laplacian matrix:

2 -1 0 0 -1 0
0 1 0 -1 0 0
-1 0 1 0 0 0
L=19 0o -1 1 0 o0
0 0 0 0 1 -1
0 0 -1 0 -1 2

Two simulations are considered. In Simulation, A the classical
formation control as reported in [7] is designed adding the nonlinear
input and in Simulation B the proposed strategy is used. In order
to calculate the controller and observer gains in Simulation A the
separation principle is used obtaining K. = —[In,,In,], and
L, = [1.000617,,0.25041%,]". Tn Figs. 2 and 3, the agents’
trajectories are plotted in order to show the difference in the final
shape of the agents throughout the simulations. Fig. 2 shows the
profile of the agents’ trajectories in Simulation A and it is clear
that the agents cannot reach the desired formation due to the

nonlinearity. In contrast, Fig. 3 illustrates how all the agents can
achieve the desired formation in spite of the nonlinearity.

Trajectory of all agents

— Agent;
— Agents

" Agents
400 — Agent,
| — Agent;
— Agentg
- -Agent,

Fig. 2. Profile of the agents’ trajectories (Simulation A, classical formation
control).

Trajectory of all agents

1
e
400 - \
300
—~
n
Qo
Q‘ 200
~—
N 100
0
RS L e
8 o
6 / 7
: 5

yoo) 2

Fig. 3. Profile of the agents’ trajectories (Simulation B, proposed strategy).

Figs. 4 and 5 illustrate the performance of the consensus of
the final positions between the agent ¢ and its neighbors j. Let
us define d;; = ||p; — pi — hj + hs||. In Simulation A (Fig. 4),
since the agents cannot achieve the desired formation, the consensus
between the agents is not achieved. In Simulation B (Fig. 5), the
agents reach the desired formation despite the nonlinearity and the
synchronization error converges to zero.



Consensus of the positions

—dip—di5—dys dzs—dy;

—di3—dig—das—d35—dyg

—dy—daz dyg—d3s—dsg
20 30 40

Time (s)

Fig. 4. Consensus of the agents’ positions (Simulation A, classical
formation control).

Consensus of the positions

12 —dig—di5—dyy d3s—dyss
—di3—dig—dys—d3s—dys
—dig—daz dag—d3s—dsz
10
8
6
4 [
2
0 10 20 30 40

Time (s)
Fig. 5. Consensus of the agents’ positions (Simulation B, proposed
strategy).

Figs. 6 and 7 illustrate the profile of the difference between the
velocities of each agent and the target velocities described by the
leader agent. The agents can follow the velocities of the leader
agent in both simulations because the objective of the malfunction
is only affecting the agents’ positions.

Consensus of the velocities

8 5,
5 | — Agent; — Agent,
| — Agenty — Agent;
| |~ Agentz — Agentg
50 100 150

L@b
o 2
|P-¥

50 100 150

%107

Y

50 100 150

Time (s)

Uiz - ’UTZ

Fig. 6.  Consensus of the agents’ velocities (Simulation A, classical

formation control).

Consensus of the velocities

— Agent; — Agenty
— Agenty — Agents
Agents — Agentg

20 25 30 35 40

20 25 30 35 40

20 25 30 35 40

Time (s)

Velocities of the agents (Simulation B, proposed strategy).

Fig. 7.

Fig. presents the evaluation of
wi(zi(t), x](t))TNwwl(xl(t) z;(t)) and ~26FHTHS, in
order to show that the constraint in Assumption 4 is always
fulfilled all over Simulation B. The dotted line represents
wi (2 (), 2 (1)) Nowi(wi(t), ;(t)), whereas the solid line
represents 'yg@ HT HS;, and different colors are used to denote
different agents.
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50
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Fig. 8. Profile of the nonlinear input and the upper bound (Simulation B,
proposed strategy).

VI. CONCLUSIONS

In this paper, the leader-following consensus problem for a
class of nonlinear multi-agent system has been studied. Sufficient
conditions are established that guarantee the computation of the
controller and observer gains in order to calculate a control law
such that achieves the control goal. The general strategy has been
exemplified using the formation control problem in second-order
multi-agent systems adding a nonlinear input. A comparison
between two simulations has been presented in order to show
the effectiveness of the proposed strategy. In particular, it has
been shown that if the Assumptions 1-4 are fulfilled then all the
agents converge to the trajectories of the leader agent despite the
nonlinear input. As future work, the proposed approach will be
tested considering a fleet of UAVs subject to cyber-attacks on an
experimental platform.
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