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Abstract

This Thesis is based on five papers, four of which are published and
one has been submitted for publication. For convenience of the reader,
we also include one chapter that contains a brief overview of the results,
some relevant background material, and comments on methods used in
the proofs.

The Thesis studies several problems from modern Harmonic analysis.
More precisely, we focus on studying various properties of Paley-Wiener
spaces: sampling sets, extreme and exposed points of the unit ball, and
contraction operators.
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Introduction

1 Introduction

1.1 Paley-Wiener spaces

The spaces of bandlimited functions will play the central role in this
Thesis. Given a compact set Ω,Ω ⊂ R𝑑 , the Bernstein space 𝐵Ω

consists of all continuous bounded functions in R𝑑 , which are the
inverse Fourier transform1 of tempered distributions supported by Ω.
Equipped with uniform norm ∥·∥∞, 𝐵Ω is a Banach space. We introduce
the Paley–Wiener space 𝑃𝑊 𝑝

Ω
, 1 ≤ 𝑝 < ∞, by

𝑃𝑊
𝑝

Ω
= 𝐵Ω ∩ 𝐿𝑝 (R𝑑)

and endow it with 𝐿𝑝-norm ∥ · ∥𝑝. In case 𝑝 = 2 the space 𝑃𝑊2
Ω

is a
Hilbert one.

The Paley–Wiener spaces turned out to be very useful in mathematical
analysis and applications, particularly, in signal theory and theory of
entire functions, see e.g. [25], [19], [16]. For example, the classical
Whittaker–Kotelnikov–Shannon theorem states that every function 𝑓

belonging to the 𝑃𝑊2
[−𝜋,𝜋] admits a unique representation

𝑓 (𝑥) =
∑︁
𝑛∈Z

𝑓 (𝑛) sin(𝜋(𝑥 − 𝑛))
𝜋(𝑥 − 𝑛) .

We can interpret this result as follows. Every function from the space
𝑃𝑊2

[−𝜋,𝜋] can be reconstructed from its values measured at integer
points. It is very natural to generalize this result and ask when it
is possible to recover every function from 𝑃𝑊

𝑝

Ω
or 𝐵Ω (or some other

space) from certain samples (measurements)?

1.2 Sampling problems

The classical sampling problem deals with the stable reconstruction of
bandlimited functions from uniformly discrete samples. Let Ω be a

1We warn the reader that the normalization of Fourier transform varies in Papers I-V.
The author apologizes for this inconvenience.
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Introduction

compact subset of R𝑑 and 1 ≤ 𝑝 < ∞. Assume that the signal 𝑓

belongs to the Paley–Wiener space 𝑃𝑊 𝑝

Ω
or Bernstein space 𝐵Ω. It is

well known that to ensure the stable recovery of the signal 𝑓 from the
samples { 𝑓 (𝜆)}𝜆∈Λ it suffices to provide the inequalities

𝐴∥ 𝑓 ∥𝑝𝑝 ≤
∑︁
𝜆∈Λ

| 𝑓 (𝜆) |𝑝 ≤ 𝐵∥ 𝑓 ∥𝑝𝑝, 1 ≤ 𝑝 < ∞; (1.1)

∥ 𝑓 ∥∞ ≤ 𝐾 sup
𝜆∈Λ

| 𝑓 (𝜆) |, 𝑝 = ∞, (1.2)

with constants 𝐴, 𝐵, 𝐾 independent of 𝑓 .

In the one-dimensional setting and Ω = [−𝜎, 𝜎], the sampling problem
was completely solved by Beurling [5] for the Bernstein space and
by Ortega-Cerda and Seip [20] for the Paley-Wiener ones. Beurling’s
theorem relates the certain density of the set of measurements with the
size (the length) of the spectrum Ω.

In the multi-dimensional setting, a full description of the sampling sets
is unknown. There is a gap between the necessary condition given by
Landau in [14] (see also [18]) and the sufficient condition established
by Beurling in [4]. The main obstacle in higher dimensions is that the
zero sets of analytic functions are not discrete.

In applications, different sampling methods appear. Below, we will
focus on mobile and dynamical (space-time) sampling.

1.3 Mobile sampling (Paper I)

The mobile sampling problem deals with the recovery of the signal
from the measurements taken along some trajectories, i.e. we know the
values of the function on a union of continuous paths. In this setting,
the inequalities (1.1) and (1.2) are replaced by the estimates

𝐴∥ 𝑓 ∥𝑝𝑝 ≤
∫
𝑃

| 𝑓 (u) |𝑝 𝑑𝑠 ≤ 𝐵∥ 𝑓 ∥𝑝𝑝, for every 𝑓 ∈ 𝑃𝑊 𝑝

Ω
, (1.3)

∥ 𝑓 ∥∞ ≤ 𝐾 sup
x∈𝑃

| 𝑓 (x) |, for every 𝑓 ∈ 𝐵Ω, (1.4)

2



Introduction

where 𝑃 is a union of locally rectifiable curves and we integrate with
respect to arc length. Of course, as usual, the constants 𝐴, 𝐵, 𝐾 do not
depend on the function 𝑓 . We will say that if for the trajectory 𝑃 the
conditions (1.3) and (1.4) are satisfied for some space 𝑃𝑊 𝑝

Ω
or 𝐵Ω then

𝑃 is a mobile sampling set for the corresponding space.

In what follows, we will focus on the dimension 2 and consider the
planar trajectories. The mobile sampling problem was previously in-
vestigated in a number of papers, see [3], [12], [26], [27] and references
therein. We also note that mobile sampling theory has nice applica-
tions, in particular, in magnetic resonance imaging, where the anatomy
of a person is captured by moving sensors, see e.g. [13] and [12].

We mention some relevant results obtained in the papers [3] and [13].
Benedetto and Wu studied the mobile sampling problems on the spiral
curves. In particular, by applying Beurling covering theorem, they have
established a sufficient condition for the Archimedean spiral

𝐴𝜂 = {(𝜂𝜃 cos(2𝜋𝜃), 𝜂𝜃 sin(2𝜋𝜃)) : 𝜃 ≥ 0}

to form a set of stable mobile sampling for 𝑃𝑊2
Ω

space, i.e. the con-
ditions (1.3) are satisfied. In the recent paper [13], Jaming, Negreira,
and Romero introduced a generalization of Archimedean spiral trajec-
tories and called them spiraling curves. For this large collection of
trajectories, they provided necessary and sufficient conditions to form
a set of mobile sampling. Among other requirements, the assumption
of asymptotic equispacing was imposed.

In this Thesis, we contribute to the development of the mobile sampling
theory for Paley-Wiener spaces. In Paper I, which is a joint work with
A. Rashkovskii and A. Ulanovskii, we studied three types of possible
trajectories:

• parallel lines;

• dilations of a convex curve;

• translation of a unit circle.

3
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We mention two main features of our results. First, we do not require
the trajectories to be uniformly distributed, i.e. we managed to get rid
of the equispacing requirement from [13]. Second, we carefully studied
the interaction between the spectrum set Ω and the set of trajectories
𝑃.

Before passing to the main results, we note that we formulate them for
the Bernstein space 𝐵Ω. The transition to the Paley-Wiener space is
provided by Theorem 5 (Paper I), which states that solving the mobile
sampling problem in these two spaces is almost equivalent (up to an
infinitesimally small deformation of the spectra set Ω).

To formulate the main results we need some auxiliary definitions.

Definition 1 Given any u.d. set 𝐻 = {𝑎𝑘 } ⊂ R we denote by 𝐷−(𝐻) its
lower uniform density defined by

𝐷−(𝐻) = lim
𝑟→∞

inf
𝑥∈R

#𝐻 ∩ (𝑥 − 𝑟, 𝑥 + 𝑟)
2𝑟

.

For the collection of parallel lines, we described the mobile sampling
properties in terms of the density of the set of distances between them.

4
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Let 𝑙 ∈ R2 be a straight line through the origin, and let 𝑣𝑙 be a unit
vector orthogonal to 𝑙. Assume that 𝐻 = {𝑎𝑘 } is a set of real numbers.
Let 𝑃 be the collection of translates of 𝑙 by the values 𝑎𝑘 in the given
direction 𝑣𝑙 , i.e.

𝑃 = 𝑙 + 𝐻𝑣𝑙 =
⋃
𝑗∈Z

(𝑙 + 𝑎𝑘𝑣𝑙).

The necessary and sufficient for the trajectory 𝑃 to be a set of mobile
sampling is given by the following

Theorem 1 Set

Γ = Ω −Ω = {𝑥 − 𝑦
�� 𝑥 ∈ Ω, 𝑦 ∈ Ω}.

The set 𝑃 is a mobile sampling set for 𝐵Ω if and only if

𝐷−(𝐻)𝑣𝑙 ∉ Ω −Ω.

Combining this result and the classical Beurling technique, we managed
to solve the mobile sampling problem for the dilations of a convex
curve.

Let 𝐷 ⊂ R2 be a closed convex set of finite positive measure such that
0 ∈ Int (𝐷). Denote by 𝜕𝐷 the boundary of 𝐷, by Ext(𝐷) the closed
set of extreme points of 𝐷 and by

𝐷𝑜 := {x ∈ R2 : ⟨x, y⟩ ≤ 1, y ∈ 𝐷}

the polar set of 𝐷.

Given a u.d. set 𝑄 = {𝑞𝑘 } ⊂ (0,∞), consider the set

𝑃 = 𝑄𝜕𝐷 :=
∞⋃
𝑘=1

⋃
𝑤∈𝜕𝐷

{𝑞𝑘𝑤}. (1.5)

Theorem 2 The set 𝑃 in (1.5) is a mobile sampling set for 𝐵Ω if and only
if

𝐷−(𝑄 ∪ (−𝑄))𝑣 ∉ Ω −Ω, for every 𝑣 ∈ Ext(𝐷𝑜). (1.6)

5
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Finally, for the translates of a circle we provide the solution to mobile
sampling in terms of (two-dimensional lower uniform) density of the
sets of translates.

Take any circle 𝑇 := {𝑥 ∈ R2 : |𝑥 | = 𝑟}, 𝑟 > 0. Let 𝑉 = {𝑣𝑘 }∞𝑘=1 ⊂ R2

be a u.d. set. Set

𝑃 = 𝑉 + 𝑇 :=
∞⋃
𝑘=1

(𝑣𝑘 + 𝑇). (1.7)

Theorem 3 The set 𝑃 in (1.7) is a mobile sampling set for 𝐵Ω if and only
if

𝐷−(𝑉) = lim
𝑟→∞

inf
x∈R2

#𝑉 ∩ 𝐵𝑟 (𝑥)
|𝐵𝑟 (𝑥) |

> 0.

1.4 Space-time sampling (Paper II)

Another way of acquisition of samples is to measure the signal in space
and in time simultaneously, i.e. instead of the measurements { 𝑓 (𝜆)}𝜆∈Λ
taken on some uniformly discrete set Λ we consider the samples { 𝑓 ∗
𝜑𝑢 (𝜆)}𝜆∈Λ,𝑢∈𝐼 , where 𝐼 is some interval, {𝜑𝑢} is a collection of kernels
that satisfy some additional properties, and 𝑓 ∗ 𝜑𝑢 is the convolution
between the function 𝑓 and kernel 𝜑𝑢.

More precisely, the following problem was formulated by A. Aldroubi,
K. Grochenig, and etc. in the paper [1]:

6
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Main problem (space-time sampling) Assume 𝐼 ⊂ R+. Let Λ be a
uniformly discrete subset of R and let 𝜑𝑢 (𝑥) be a collection of functions
parametrized by 𝑢 ∈ 𝐼. What assumptions should be imposed on
the spatial set Λ, the index set 𝐼, and functions 𝜑𝑢 to enable the
recovery of every band-limited signal 𝑓 from its space-time samples
{ 𝑓 ∗ 𝜑𝑢 (𝜆)}𝜆∈Λ,𝛼∈𝐼?

For the Paley-Wiener space 𝑃𝑊 𝑝
𝜎 with 1 ≤ 𝑝 < ∞, the stable recovery

is possible if the inequalities

𝐴∥ 𝑓 ∥𝑝𝑝 ≤
∑︁
𝜆∈Λ

∫
𝐼

| 𝑓 ∗𝜑𝑢 (𝜆) |𝑝 𝑑𝑢 ≤ 𝐵∥ 𝑓 ∥𝑝𝑝, for every 𝑓 ∈ 𝑃𝑊 𝑝
𝜎 (1.8)

are true with some constants 𝐴 and 𝐵 independent of 𝑓 .

We would like to provide an example of application from the paper
[1] that motivates solving the main problem. Consider the initial value
problem for the heat equation:

𝜕

𝜕𝑡
𝑤(𝑥, 𝑢) = 𝑘2 𝜕

2

𝜕𝑥2𝑤(𝑥, 𝑢) 𝑥 ∈ R, 𝑢 > 0 (1.9)

with initial condition
𝑤(𝑥, 0) = 𝑓 (𝑥). (1.10)

It is well-known that the solution is given by 𝑤(𝑥, 𝑢) = 𝑓 ∗ 𝜑𝑢 (𝑥),
where

𝜑𝑢 (𝑥) =
1

√
4𝜋𝑢𝑘

𝑒−
𝑥2

4𝑢𝑘 .

Note that Main Problem applied to this initial value problem provides
the reconstruction of the initial function 𝑓 from the states {𝑤(𝜆, 𝑢)}𝜆∈Λ,𝑢∈𝐼 .
Here, 𝐼 may be taken as 𝐼 = [𝑎, 𝑏], 0 < 𝑎 < 𝑏 < ∞.

We would like to mention some results obtained in [1].

• Unlike the classical sampling setting, the assumptions that should
be imposed on the set Λ to solve the Main Problem cannot be
expressed in terms of some density of Λ (see Example 4.1. in the
mentioned paper). More precisely, one may construct a set with

7
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of arbitrarily small density that provides the stable reconstruction
of the initial signal.

• For the solution of Main Problem we have to require Λ to be
relatively dense, i.e. Λ can’t have arbitrarily large gaps: there
exists 𝑅 > 0 such that for every 𝑎 ∈ R we have

[𝑎 − 𝑅, 𝑎 + 𝑅] ∩ Λ ≠ ∅.

Estimates of this value 𝑅 were obtained in terms of constants
𝐴, 𝐵 from the space-time sampling inequality (1.8).

In Paper II, which is a joint work with A. Ulanovskii, we propose a
solution to the Main problem. To formulate the main result we need to
make two remarks. First, we have to specify the assumptions that we
impose on the kernels {𝜑𝑢}. However, they are quite bulky. For brevity
of exposition, we omit the full list of requirements. But the following
facts are worth mentioning.

• Among others, we require that 𝜑𝑢 decrease at the infinity, be
real and even, and collection {𝜑𝑢}𝑢∈𝐼 should satisfy a certain
completeness property;

• One can easily verify that the Gaussian kernel 𝜑𝑢 (𝑥) = 𝑒−𝑢𝑥
2

satisfy all the assumptions and is the main example.

Second, we refer the reader to the definition of the set 𝑊 (Λ) of weak
limits of all possible translates Λ−𝑡𝑛 of the set Λ to the book [19].

It turns out that, unlike the classical sampling problem, the set Λ must
be in some sense irregularly distributed, see condition (c) in the theorem
below. Our Main Result is as follows:

Theorem 4 Given a u.d. set Λ ⊂ R and a kernel {𝜑𝑢, 𝑢 ∈ 𝐼} that satisfy
some certain assumptions (see conditions (𝛽) − (𝜃) in Paper II). The
following conditions are equivalent:

8
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(a) The inequalities

𝐴∥ 𝑓 ∥2
2 ≤

∑︁
𝜆∈Λ

∫
𝐼

| 𝑓 ∗ 𝜑𝑢 (𝜆) |2 𝑑𝛼 ≤ 𝐵∥ 𝑓 ∥2
2 for every 𝑓 ∈ 𝑃𝑊2

𝜎

are true for every 𝜎 > 0 and some 𝐴 = 𝐴(𝜎) and 𝐵 = 𝐵(𝜎);

(b) For every 𝜎 > 0 there is a constant 𝐾 = 𝐾 (𝜎) such that

∥ 𝑓 ∥∞ ≤ 𝐾 sup
𝜆∈Λ,𝑢∈𝐼

| ( 𝑓 ∗ 𝜑𝑢) (𝜆) |, ∀ 𝑓 ∈ 𝐵𝜎; (1.11)

(c)𝑊 (Λ) does not contain the empty set, and no element Λ∗ ∈ 𝑊 (Λ) lies
in an arithmetic progression.

We conclude this section with the following examples.

• Set Λ = { 1
2 |𝑛 | + 𝑛, 𝑛 ∈ Z}. Then Z ∈ 𝑊 (Λ), since 𝑥𝑘 − Λ weakly

converges to Z for 𝑥𝑘 = 𝑘 . Therefore, the space-time sampling is
not possible, i.e. condition (1.8) is not satisfied.

• Set Λ = 𝑛2. Then ∅ ∈ 𝑊 (Λ), since in Λ there are arbitrarily large
gaps. Therefore, the space-time sampling is not possible.

• Set Λ = Z ∪
√

2Z solves the space-time sampling problem since
no weak limit of translates of Λ lies in an arithmetic progression.

1.5 On geometry of the unit ball of Paley–Wiener spaces with
a spectral gap (Paper III)

In Paper III, written together with A. Ulanovskii, we study the properties
of Paley-Wiener spaces from a slightly different point of view that is
closer to the Functional Analysis. The main focus is on the geometry of
these spaces, more precisely, we study the extreme and exposed points
of the unit ball of the Paley-Wiener spaces with one spectral gap.

Given a Banach space 𝑋 , let 𝐵 ⊂ 𝑋 be the closed unit ball of 𝑋 . Recall
that an element 𝑓 from 𝐵 is called extreme, if 𝑓 is not a proper convex

9
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combination of two distinct points of 𝐵, i.e. there are no such 𝑓−, 𝑓+
belonging to 𝐵 and 𝛼 ∈ (0, 1) that

𝑓 = 𝛼 𝑓− + (1 − 𝛼) 𝑓+.

We note that due to some trivial reasons it is only interesting to study
the geometry of the unit ball of the subspaces 𝐿1 or 𝐿∞ equipped, of
course, with ∥ · ∥1 and ∥ · ∥∞ norm respectively.

The geometry of the unit ball was studied for various function spaces.
We mention the celebrated work by K. de-Leeuw and W. Rudin [15]
in which the description of the extreme points of the unit ball was
presented for the classical Hardy spaces. The exposed points of the unit
ball of Hardy spaces emerged in various problems of Harmonic analysis.
In particular, we mention the relations to Toeplitz operators, completely
nondeterministic Gaussian processes, and theory of de Brange-Rovnyak
spaces, see details in [21], [24], and [7].

The problems of a description of the set of exposed and extreme points
for polynomials on the unit circle and classical Paley-Wiener spaces
𝑃𝑊1

[−𝜎,𝜎] , 𝜎 > 0, were investigated by K. Dyakonov in [10]. To formu-
late his characterization of extreme points for the Paley-Wiener space
𝑃𝑊1

[−𝜎,𝜎] , we need to define certain subsets of the complex plane:

Definition 2 For the function 𝑓 , 𝑓 ∈ 𝑃𝑊1
[−𝜎,𝜎] , we introduce Λ( 𝑓 ) and

Ω( 𝑓 ) as follows.

(i) Denote by Λ( 𝑓 ) ⊂ C \ R the (possibly empty) set of all points
𝜆 = 𝑎 + 𝑖𝑏, 𝑎, 𝑏 ∈ R, 𝑏 ≠ 0, such that 𝑓 (𝜆) = 𝑓 (𝜆̄) = 0, where
𝜆̄ = 𝑎 − 𝑖𝑏.

(ii) Denote by Ω( 𝑓 ) ⊂ R the (possibly empty) multi-set of all points
𝑥 ∈ R such that 𝑓 (𝑥) = 𝑓 ′(𝑥) = ... = 𝑓 (2𝑛(𝑥)−1) (𝑥) = 0, where
𝑛(𝑥) ≥ 1 denotes the integer such that 𝑓 has zero of multiplicity
2𝑛(𝑥) or 2𝑛(𝑥) + 1 at 𝑥. Every point 𝑥 ∈ Ω( 𝑓 ) is counted with
multiplicity 2𝑛(𝑥).

10
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For the functions with spectra supported on the single interval, Dyakonov
presented the following characterization of extreme and exposed points.

Theorem 5 The set of extreme points of the unit ball of 𝑃𝑊1
[−𝜎,𝜎] , 𝜎 > 0,

consists precisely of the functions 𝑓 satisfying the three conditions:

∥ 𝑓 ∥1 = 1, (1.12)

at least one of the points {±𝜎} ∈ Sp( 𝑓 ), (1.13)

and
Λ( 𝑓 ) = ∅. (1.14)

The set of exposed points of the unit ball 𝑃𝑊1
[−𝜎,𝜎] , 𝜎 > 0, consists pre-

cisely of the functions 𝑓 that are extreme points and satisfy the conditions:

Ω( 𝑓 ) = ∅; (1.15)∫
R
| 𝑓 (𝑥) |𝑤(𝑥)𝑑𝑥 = ∞,∀𝑤 ∈ Hol(C),Type(𝑤) = 0, 𝑤 |R ≥ 0, 𝑤 ≠ 𝑐𝑜𝑛𝑠𝑡.

(1.16)
Here the conditions 𝑤 ∈ Hol(C),Type(𝑤) = 0, mean that w is an entire
function of zero exponential type, i.e. for every 𝜖 > 0 there is a constant
𝐶𝜖 such that

|𝑤(𝑧) | ≤ 𝐶𝜖𝑒𝜖 |𝑧 |, 𝑧 ∈ C.

In his recent paper [11], Dyakonov put forward the following

Problem Assume 𝑆 is a compact subset of R. Describe the extreme
and exposed points of the unit ball of 𝑃𝑊1

𝑆
.

We study this problem in the case of one spectral gap. More precisely,
in Paper III, we consider the spectrum set 𝑆 = [−𝜎,−𝜌] ∪ [𝜌, 𝜎] =

[−𝜎, 𝜎] \ (−𝜌, 𝜌). It turns out that the description of the extreme and
exposed points strongly depends on the relative size of the gap, i.e. the
ratio 𝜎/𝜌.

In Paper III, we completely describe the extreme and exposed points
for the Paley-Wiener spaces with one large spectral gap 𝜎/𝜌 > 1/2. To
present our main result we fix some notation first.

11
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Let 𝑆 = [−𝜎, 𝜎] \ (−𝜌, 𝜌), 0 < 𝜌 < 𝜎. Observe that every function
𝑓 ∈ 𝑃𝑊1

𝑆
admits a unique representation

𝑓 (𝑧) = 𝑓−(𝑧) + 𝑓+(𝑧), Sp( 𝑓−) ⊂ [−𝜎,−𝜌], Sp( 𝑓+) ⊂ [𝜌, 𝜎] . (1.17)

Theorem 6 Assume that 𝑆 = [−𝜎, 𝜎] \ (−𝜌, 𝜌), where 𝜎/2 < 𝜌 < 𝜎.

Then the following statements are true.

1. The set extreme points of 𝑃𝑊1
𝑆

consists precisely of the functions 𝑓
satisfying ∥ 𝑓 ∥1 = 1 and the conditions

at least one of the points {±𝜎}, {±𝜌} belongs to Sp( 𝑓 ); (1.18)

Λ( 𝑓−) ∩ Λ( 𝑓+) = ∅. (1.19)

2. The set of exposed points consists precisely of the functions 𝑓 that
are extreme points and in addition satisfying (1.16) and

Ω( 𝑓−) ∩Ω( 𝑓+) = ∅. (1.20)

When the gap is small, i.e. 0 < 𝜌 ≤ 𝜎/2, the situation is more compli-
cated. We show that the description obtained for the large gaps is not
relevant anymore: there is a function that satisfies all the assumptions
of the previous theorem, however, it is not extreme.

What is more surprising is that the extreme points can’t be described
in terms of symmetric (with respect to R) zeroes.

Theorem 7 Assume that 𝑆 = [−𝜎, 𝜎] \ (−𝜌, 𝜌) and 0 < 𝜌 < 𝜎/4. Then
there exist functions 𝑓1 and 𝑓2 from 𝑃𝑊1

Ω
, ∥ 𝑓1∥1 = ∥ 𝑓2∥1 = 1, satisfying

(1.18) and (1.19) such that

Λ( 𝑓1) = Λ( 𝑓2), 𝑓1 ∈ Ext(𝑃𝑊1
Ω), 𝑓2 ∉ Ext(𝑃𝑊1

Ω).

In addition, for the case of a large gap, we also show that the set of
extreme points is dense on the unit sphere. Moreover, every function
𝑓 from the unit sphere of Paley-Wiener space can be represented as

12
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𝑓 = ( 𝑓1 + 𝑓2)/2, where 𝑓1 and 𝑓2 are extreme points. We note that a
similar result for the Hardy spaces was obtained in [15].

Our proof is based on two remarkable (and very complicated) results
in Harmonic analysis. First, we use the Beurling-Malliavin theorem
on the completeness radius of the exponential family, see [6]. Second,
in our argument, we apply the recent result due to A. Poltoratski and
M. Mitkovski [17] on the sign changes of real measures with a spectral
gap at the origin.

1.6 Contractive projections (Paper IV)

In Paper IV, which is a joint work with A. Kulikov, we continue to
study the Paley-Wiener spaces from the point of view of Functional
analysis. More precisely, we consider the following

Main problem.

Let 𝑋,𝑌 be spaces of functions. Assume that 𝑌 is a subspace of 𝑋 and
𝑃 : 𝑋 → 𝑌 is a projection. What assumptions should be imposed on
𝑋,𝑌 , and 𝑃 to ensure that 𝑃 is a contraction?

This problem was already studied for various function spaces 𝑋 and
𝑌 . For example, the following statement can be deduced from [2] and
[23], see also Theorem 1.1 in [8].

Theorem 8 Let 𝑋 = 𝐿𝑝 (T𝑑), 𝑌 = { 𝑓 ∈ 𝐿𝑝 (T𝑑) | 𝑓 (𝜆) = 0, 𝜆 ∉ Λ}, and
the projection 𝑃 being an idempotent Fourier multiplier. Then projection
𝑃 is a contraction if and only if either 𝑝 = 2 or Λ ⊂ Z𝑑 is a coset.

Recently, O.F. Brevig, J. Ortega-Cerdà, and K. Seip [8] studied the
contractivity of the similar idempotent Fourier multipliers in the case
when 𝑋 is a Hardy space, that is

𝑋 = 𝐻𝑝 (T𝑑) = { 𝑓 ∈ 𝐿𝑝 (T𝑑) | 𝑓 (𝑛1, 𝑛2, . . . , 𝑛𝑑) = 0 if 𝑛𝑘 < 0 for some 𝑘}.

They showed that if 𝑝 ∉ 2N then the only contractions are the same
as in the Theorem 8, while for 𝑝 = 2𝑘, 𝑘 ∈ N, there exist non-trivial
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examples if 𝑑 ≥ 3. For the complete statement of their results, see [8],
Theorem 1.2.

It is natural to consider the analog of this problem in the setting of
Paley-Wiener spaces.

Assume that 𝑆1 and 𝑆2 are disjoint compact sets in R𝑑 . The canonical
projection 𝑃 acting from 𝑃𝑊

𝑝

𝑆1∪𝑆2
to 𝑃𝑊 𝑝

𝑆1
is defined by

𝑃( 𝑓 ) (𝑥) := F −1 [F ( 𝑓 ) · 𝜒𝑆1)] (𝑥),

where F stands for the Fourier transform.

For a set 𝑆 ⊂ R𝑑 and 𝑘 ∈ N0 we define 𝑘𝑆 inductively as 0𝑆 = {0},
(𝑘 + 1)𝑆 = 𝑘𝑆 + 𝑆, where + denotes the Minkowski sum.

The main result of Paper IV is the description of canonical contractive
projections 𝑃 acting from 𝑃𝑊

𝑝

𝑆1∪𝑆2
to 𝑃𝑊 𝑝

𝑆1
.

Theorem 9 Let 𝑆1 and 𝑆2 be disjoint finite unions of parallelepipeds
in R𝑑 . Let 𝑃 be a canonical projection from 𝑃𝑊

𝑝

𝑆1∪𝑆2
to 𝑃𝑊 𝑝

𝑆1
, where

1 ≤ 𝑝 ≤ ∞. We have

1. If 𝑝 ∈ 2N then 𝑃 is a contraction if and only if

mes
(( 𝑝

2
𝑆1 +

( 𝑝
2
− 1

)
(−𝑆1)

)
∩ 𝑆2

)
= 0. (1.21)

2. If 𝑝 ∉ 2N then 𝑃 is a contraction if and only if mes(𝑆1) = 0 or
mes(𝑆2) = 0.

1.7 Completeness of certain exponential families (Paper V)

In Paper V, which is a joint work with A. Kulikov and A. Ulanovskii,
we return to studying Paley-Wiener spaces in the context of sampling
theory. It is well known (e.g., see [19] and [9]) that the problems of
reconstruction of the signal with spectrum supported on the bounded
set 𝑆 in a unique and stable way from the samples measured at the set

14
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Λ are intimately connected to the problems of the completeness and
frame properties of exponential families

𝐸 (Λ) = {𝑒𝑖𝜆𝑡}𝜆∈Λ

in the space 𝐿2(𝑆). Together with the samples { 𝑓 (𝜆)}𝜆∈Λ one can
measure the derivatives of the function 𝑓 at the same points, i.e.
{ 𝑓 (𝑘) (𝜆)}𝜆∈Λ,𝑘∈Γ and Γ ⊂ N. In particular, this approach allows for
the reduction of the density of the set Λ or the number of sensors that
measure the function. Therefore, the completeness or frame properties
of the exponential system

𝐸 (Λ, Γ) = {𝑡𝑘𝑒𝑖𝜆𝑡 : 𝜆 ∈ Λ, 𝑘 ∈ Γ}, Γ ⊂ N0 := N ∪ {0},

are also worthy of investigation. Moreover, one can study these prop-
erties in various functions spaces. Below, we will focus on the system
𝐸 (Λ, Γ) and spaces of square-integrable functions and continuous func-
tions.

The standard "measure of completeness" of the system 𝐸 (Λ, Γ) in 𝐿2

is the so-called completeness radius that can be introduced as

𝐶𝑅(Λ, Γ) = sup{𝑎 ≥ 0 : 𝐸 (Λ, Γ) is complete in 𝐿2(−𝑎, 𝑎)}.

Similarly, one can introduce the frame radius as

𝐹𝑅(Λ, Γ) = sup{𝑎 ≥ 0 : 𝐸 (Λ, Γ) is a frame in 𝐿2(−𝑎, 𝑎)}.

The analog of the completeness radius in the space of continuous func-
tions is straightforward:

𝐶𝑅𝐶 (Λ, Γ) := sup{𝑎 ≥ 0 : 𝐸 (Λ, Γ) is complete in 𝐶 ( [−𝑎, 𝑎])}.

The completeness of exponential families is a classical problem in
Harmonic analysis and a lot of remarkable papers were written in this
field. We mention several relevant results.
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• Of course, for 𝐸 (Z, {0}) = {𝑒2𝜋𝑖𝑛𝑡}𝑛∈Z we have

𝐶𝑅(Z, {0}) = 𝐶𝑅𝐶 (Z, {0}) =
1
2
.

• From the celebrated Beurling–Malliavin theorem (see [6]) we
know that

𝐶𝑅(Λ, {0}) = 𝐶𝑅𝐶 (Λ, {0}) = 𝐷∗(Λ),

where 𝐷∗ is the so-called upper Beurling–Malliavin density.

• It follows from the classical ‘Beurling Sampling Theorem’(see [5]
and [19]) that 𝐹𝑅(Λ) = 𝐷−(Λ), where Λ is a uniformly discrete
set and 𝐷−(Λ) is the lower uniform density of Λ.

• Let Γ𝑁 = {0, 1, . . . , 𝑁−1} then the system 𝐸 (Z, Γ𝑁 ) = {𝑡𝑘𝑒2𝜋𝑖𝑛𝑡}𝑛∈Z,𝑘∈Γ𝑁

has radius of completeness

𝐶𝑅(Z, Γ𝑁 ) = 𝐶𝑅𝐶 (Z, Γ𝑁 ) =
#Γ𝑁

2
=
𝑁

2
,

see e.g. [22].

Note that in all the examples above the radii of completeness of the
exponential families in the spaces 𝐿2 and 𝐶 coincide. It is natural to
ask: is it always the case? More precisely,

Question. Does the equality

𝐶𝑅(Λ, Γ) = 𝐶𝑅𝐶 (Λ, Γ)

hold true for any exponential family 𝐸 (Z, Γ)?

Surprisingly, the answer is generally negative, when Γ ⊂ N0 has "gaps".
In Paper V, we managed to compute the completeness and frame radii
for the exponential system 𝐸 (Λ, Γ) in the particular case Λ = Z. It turns
out that the radius of completeness in space of continuous functions
depends on the cardinalities of the sets

Γ𝑒𝑣𝑒𝑛 = Γ ∩ 2Z and Γ𝑜𝑑𝑑 = Γ ∩ 2Z + 1.
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Let us introduce the value

𝑟 (Γ) :=


#Γ𝑜𝑑𝑑 + 1

2 , if #Γ𝑜𝑑𝑑 < #Γ𝑒𝑣𝑒𝑛,

#Γ𝑒𝑣𝑒𝑛, if #Γ𝑜𝑑𝑑 ≥ #Γ𝑒𝑣𝑒𝑛.

Clearly, 𝑟 (Γ) ≤ #Γ/2, and the inequality is strict whenever

#Γ𝑒𝑣𝑒𝑛 ≠ #Γ𝑜𝑑𝑑 and #Γ𝑒𝑣𝑒𝑛 ≠ #Γ𝑜𝑑𝑑 + 1.

The main result of Paper V is the following

Theorem 10 Given any finite or infinite set Γ ⊂ N0 satisfying 0 ∈ Γ.

Then

(i) 𝐶𝑅(Z, Γ) = #Γ/2;

(ii) 𝐶𝑅𝐶 (Z, Γ) = 𝐹𝑅(Z, Γ) = 𝑟 (Γ).

The proof is based on the properties of totally positive matrices, gen-
eralized Vandermonde matrices, but the key ingredient is a new result
on the certain uniqueness sets of lacunary polynomials. We conclude
this section by formulating this theorem.

Given any finite set 𝑀 ⊂ N0, let 𝑃(𝑀) denote the set of real polyno-
mials with exponents in 𝑀:

𝑃(𝑀) := {𝑝(𝑥) =
∑︁
𝑚 𝑗∈𝑀

𝑐 𝑗𝑥
𝑚 𝑗 : 𝑐 𝑗 ∈ R}.

Given 𝑁 distinct real numbers 𝑡1, . . . , 𝑡𝑁 , set

𝑆(𝑡1, . . . , 𝑡𝑁 ) := {(−1)𝑘 𝑡𝑘 }𝑁𝑘=1. (1.22)

Theorem 11 Assume 0 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑁 . Then both sets

±𝑆(𝑡1, . . . , 𝑡𝑁 )

are uniqueness sets for every space 𝑃(𝑀), where 𝑀 ⊂ N0, #𝑀 = 𝑁.
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Necessary and sufficient conditions are presented for several families of planar curves 
to form a set of stable sampling for the Bernstein space BΩ over a convex set Ω ⊂ R2. 
These conditions ‘essentially’ describe the mobile sampling property of these families 
for the Paley-Wiener spaces PWp

Ω, 1 ≤ p < ∞.
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1. Mobile sampling problem

The classical sampling problem is to determine when every continuous signal (function) f from a certain 
function space can be reconstructed from its discrete samples f(λ), λ ∈ Λ. The classical signal spaces are 
the Paley–Wiener spaces PWp

Ω of Lp-functions in Rd whose spectrum lies in a fixed set Ω ⊂ Rd. When 
p < ∞, the sampling problem asks for which discrete sets Λ ⊂ Rd there exist positive constants A, B such 
that

A‖f‖p
p ≤

∑

λ∈Λ
|f(λ)|p ≤ B‖f‖p

p, for every f ∈ PWp
Ω. (1)

A different method for the acquisition of samples is when the samples of a multi-dimensional signal f
are taken by a mobile sensor that moves along a continuous path γ. The mobile sampling problem is then 
to reconstruct the signal from its samples on a continuous path or a union P of continuous paths. In this 
case one needs to establish a ‘continuous variant’ of the inequalities above:
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A‖f‖p
p ≤

∫

P

|f(u)|p ds ≤ B‖f‖p
p, for every f ∈ PWp

Ω, (2)

where we assume that P is locally rectifiable and integrate with respect to arc length.
The mobile sampling problem has recently attracted much attention. We refer the reader to [4–6,18,19]

for motivation and recent results. The sampling property in Paley–Wiener spaces of several families has
been considered:

(i) Parallel straight lines in Rd (see i.e. [4,18,19] and references therein).
(ii) In [1], a sufficient condition for the Archimedes spiral is presented to form a set of stable sampling. In 

[6], a wide family of spiraling curves in R2 is introduced and necessary and sufficient conditions for sampling 
in Paley–Wiener spaces with convex symmetric spectrum on these trajectories obtained.

In this paper, we consider the mobile sampling problem for three families of trajectories in R2. For each 
trajectory P from one of these families, we present a necessary and sufficient condition for sampling in 
the Bernstein space BΩ := PW∞

Ω with arbitrary convex spectrum Ω. This condition ‘essentially’ describes 
the sampling property of P for the Paley-Wiener space PWp

Ω. We therefore bypass the requirement of a 
uniform (or asymptotically uniform) distribution of trajectories, which has been essential in some previous 
approaches to the subject.

The rest of the paper is organized as follows. First, we give definitions of the classical Paley-Wiener and 
Bernstein spaces, then a short list of notations. In Section 4, we present the classical Beurling’s sampling 
theorem. Our main results are formulated in Section 5 and proved in Sections 7-10. In Section 6, we discuss 
the connection between the sampling in Bernstein spaces and mobile sampling in Paley-Wiener spaces. In 
Section 11, we prove some uniqueness theorems which may have independent interest. Finally, in Section 12, 
we present some higher-dimensional results.

2. Bernstein and Paley–Wiener spaces

In what follows we will use the standard form of the Fourier transform:

f̂(y) =
∫

Rd

e−2πi〈y,x〉f(x)dx, x,y ∈ Rd, (3)

where 〈·, ·〉 is the usual inner product in Rd.
We will consider the following classical spaces of signals (functions):

Definition 1. Let Ω ⊂ Rd, d ≥ 1, be a compact set.
1. The Bernstein space BΩ consists of all continuous bounded functions in Rd, which are the inverse 

Fourier transforms of tempered distributions supported by Ω. Equipped with uniform norm ‖ · ‖∞, BΩ is a 
Banach space.

2. Assume Ω ⊂ Rd has positive measure. The Paley-Wiener spaces PWp
Ω, 1 ≤ p < ∞, are defined as

PWp
Ω := BΩ ∩ Lp(Rd).

Equipped with Lp-norm ‖ · ‖p, PWp
Ω is a Banach space.

When p = 2, the space PW2
Ω is a Hilbert space consisting of all L2-functions whose Fourier transform 

vanishes a.e. outside Ω.
Observe also that when Ω ⊂ Rd is a compact convex set, the space BΩ admits an analytic description: It 

consists of all entire functions f satisfying

|f(z)| ≤ C exp{−2π max
u∈Ω

〈u,y〉}, z = x + iy, x,y ∈ Rd.
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3. Notations

Given v ∈ Rd, d ≥ 1, and r > 0, we denote by Br(v) := {x ∈ Rd : |x − v| ≤ r} the closed ball in Rd of 
radius r centered at v. By |E| we denote the (d-dimensional Lebesgue) measure of a set E ⊂ Rd and #E

means the number of elements in E.
Set R2

+ := {x = (x1, x2) : x2 ≥ 0}, B+
r (x) := Br(x) ∩ R2

+ and |x| :=
√

x2
1 + x2

2.
Given sets E, S ⊂ R2, Q ⊂ R and x, y ∈ R2, we write

E + S = {x + y : x ∈ E,y ∈ S}, E − S = {x − y : x ∈ E,y ∈ S},
QE = {qx : x ∈ E, q ∈ Q}, dist(x, S) := inf

y∈S
|x − y|.

We say that the Hausdorff distance between E and S is ≤ ε if E ⊂ S + Bε(0) and S ⊂ E + Bε(0).

4. Sampling in BΩ

Definition 2. We say that a set P ⊂ Rd, d ≥ 1, is a sampling set (SS) for the Bernstein space BΩ, where Ω
is a compact in Rd, if there is a constant C > 0 such that

‖f‖∞ ≤ C‖f |P ‖∞, for every f ∈ BΩ, (4)

where

‖f |P ‖∞ := sup
x∈P

|f(x)|.

Definition 3. 1. A set Λ ⊂ Rd, d ≥ 1, is called uniformly discrete (u.d.) if

δ(Λ) := inf
λ,λ′∈Λ,λ �=λ

|λ − λ′| > 0. (5)

The constant δ(Λ) is called the separation constant for Λ.
2. The lower uniform density of a set Λ ⊂ Rd is defined as

D−(Λ) = lim
r→∞

inf
x∈Rd

#Λ ∩ Br(x)
|Br(x)| .

In the classical situation where d = 1 and Ω is an interval in R, the sampling problem for BΩ was 
completely solved by Beurling:

Theorem 1. ([3]) Let Ω ⊂ R be a compact interval. A set P ⊂ R is an SS for BΩ if and only if it contains 
a u.d. set Λ satisfying D−(Λ) > |Ω|.

Observe that if P ⊂ Rd is an SS for BΩ, then P contains a discrete subset which is also an SS for BΩ:

Proposition 1. Assume P ⊂ Rd, d ≥ 1, is an SS for BΩ. Then there exists η > 0 such that every subset 
Λ ⊂ P satisfying

P ⊂ Λ + Bη(0) (6)

is also an SS for BΩ.

We omit the proof, as it easily follows from Bernstein’s inequality, see [10], p. 21.
In particular, the set Λ in this result can be chosen to be u.d.
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Fig. 1. Dilation of a convex curve.

5. Results

In what follows, we assume that Ω ⊂ R2 is a convex set of positive measure.
We will consider the sampling problem for three families of curves in R2: parallel lines, dilations of a 

convex closed curve around the origin and translations of a circle. For every family we present a sufficient 
and necessary condition for sampling in BΩ.

5.1. Parallel lines

Let l ∈ R2 be a straight line through the origin, and let vl be a unit vector orthogonal to l. Given any 
u.d. set

H := {ak}k∈Z ⊂ R,

consider the set of parallel lines

P = l + Hvl :=
⋃

k∈Z

(l + akvl). (7)

Theorem 2. The set P in (7) is an SS for BΩ if and only if

D−(H)vl /∈ Ω − Ω.

5.2. Dilations of a convex curve

Let D ⊂ R2 be a closed convex set of finite positive measure such that 0 ∈ Int(D). Denote by ∂D the 
boundary of D, by Ext(D) the closed set of extreme points of D and by

Do := {x ∈ R2 : 〈x,y〉 ≤ 1,y ∈ D}

the polar set of D.
Given a u.d. set Q = {qk} ⊂ (0, ∞), consider the set

P = Q∂D :=
∞⋃

k=1

⋃

w∈∂D

{qkw}, (8)

see Fig. 1. Set d−(Q) := D−(Q ∪ (−Q)).
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Theorem 3. The set P in (8) is an SS for BΩ if and only if

d−(Q)v /∈ Ω − Ω, for every v ∈ Ext(Do). (9)

The following is a simple corollary of this result and Remark 1 in Section 7.

Corollary 1. (i) Assume Ext(D) = D. The set P in (8) is an SS for BΩ if and only if

d−(Q)∂Do ∩ (Ω − Ω) = ∅.

In particular, if D is the unit circle then P is an SS for BΩ if and only if Diam(Ω) < d−(Q).
(ii) Let D be the square [−1, 1]2. The set P in (8) is an SS for BΩ if and only if the vectors (d−(Q), 0)

and (0, d−(Q)) do not lie in Ω − Ω.

5.3. Translations of a circle

Take any circle T := {x ∈ R2 : |x| = r}, r > 0. Let V = {vk}∞
k=1 ⊂ R2 be a u.d. set. Set

P = V + T :=
∞⋃

k=1
(vk + T ). (10)

Theorem 4. The set P in (10) is an SS for BΩ if and only if D−(V ) > 0.

5.4. Remarks

Let Ω ⊂ R be a compact interval. Beurling’s Theorem 1 solves the sampling problem for BΩ in terms of 
the lower uniform density D−(Λ) of sampling set Λ. The sampling property of Λ in the Paley-Wiener space 
PW2

Ω can be ‘essentially’ described in terms of D−(Λ), see i.e. [10]. See [17] for necessary and sufficient 
conditions for sampling in PW2

Ω.
If Ω ⊂ R is a disconnected set, already when it is a union of two intervals, the sampling property of u.d. 

sets Λ cannot be described in terms of any density of Λ. This is also the case for the spectra Ω ⊂ Rd, d > 1, 
see [10,11]. However, the necessary density condition for sampling remains valid for general spectra Ω ⊂ Rd: 
Landau [7] proved that if a u.d. set Λ is an SS for PW2

Ω, then it satisfies D−(Λ) ≥ |Ω| (see [9] for different 
simpler proof, which in particular extends Landau’s result to unbounded spectra).

Observe that for the mobile sampling (see definition in the next section) there is no analogue of Landau’s 
result. One can define a path density of trajectory P as the ‘average length’ covered by a curve. An example 
is constructed in [4] showing that trajectories P of arbitrarily small path density may nevertheless provide 
mobile sampling for PW p

Ω. Theorem 5 below reduces the mobile sampling problem for the Paley-Wiener 
spaces to the sampling problem for the Bernstein spaces. Hence, our Theorem 4 presents another example 
in this direction. Observe also that it easily follows from Corollary 1 (ii) and Theorem 5, that a union of 
equidistant squares

P :=
⋃

n∈N

{x = (x1, x2) : max{|x1|, |x2|} = n}

provides mobile sampling for PWp
Ω, 1 ≤ p < ∞, for certain convex sets Ω of arbitrarily large measure. 

However, by Corollary 1 (i) and Theorem 5, the union of equidistant circles

P :=
⋃

n∈N

{x ∈ R2 : |x| = n}
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is not an SS for PWp
Ω, whenever Ω is a convex compact set of measure strictly greater than π/4.

6. Sampling in BΩ versus mobile sampling in PW p
Ω

Following [4], we call P ⊂ Rd a trajectory, if P is a countable union of locally rectifiable (continuous) 
curves.

Definition 4. A trajectory P ⊂ Rd is called a stable sampling trajectory (ST) for PWp
Ω, 1 ≤ p < ∞, if 

condition (2) holds with some positive constants A, B.

When the sampling set Λ ⊂ Rd is discrete, it is well-known that the right inequality in (1) is equivalent 
to the condition that there exist r, C > 0 such that #(Λ ∩ Br(x)) < C, for every x ∈ Rd (such sets Λ are 
called relatively uniformly discrete).

In the case of mobile sampling, one has

Proposition 2. Let 1 ≤ p < ∞, Ω ⊂ Rd be a compact set of positive measure and P be a trajectory. The 
following conditions are equivalent:

(i) There is a constant C such that
∫

P

|f(u)|pds ≤ C‖f‖p
p, for every f ∈ PW p

Ω;

(ii) There are constants r > 0 and C > 0 such that

sup
u∈Rd

∫

P∩Br(u)

ds ≤ C. (11)

We skip the proof which is similar to the corresponding proof for sampling on u.d. sets, see [20].
We will need a condition which prohibits P to contain separated curves of arbitrarily small length:

There exists r > 0 such that inf
x∈P

∫

P∩Bδ(x)

ds ≥ δ, for every δ ≤ r. (12)

The following result establishes a connection between sampling in Bernstein and mobile sampling in 
Paley–Wiener spaces:

Theorem 5. Let 1 ≤ p < ∞ and 0 < ε < 1. Let Ω ⊂ Rd be a compact convex set of positive measure and P
a trajectory satisfying (11).

(i) If P is an SS for BΩ and satisfies (12), then it is an ST for PWp
(1−ε)Ω.

(ii) If P is not an SS for BΩ, then it is not an ST for PWp
(1+ε)Ω.

This is an analogue of the corresponding result for the discrete sampling sets, see Theorem 5.30 in [10]. 
We omit the proof of Theorem 5 since it is rather similar to the proof of the mentioned result from [10].

One can check that part (i) of the theorem ceases to be true if condition (12) is dropped.

7. Proof of Theorem 2

Before passing to the proof, we recall several well-known facts.
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A sequence of u.d. sets Qk ⊂ R, k ∈ N, is said to converge weakly to a u.d. set Q′ if for every R > 0
satisfying ±R /∈ Q′, the Hausdorff distance between Qk ∩(−R, R) and Q′ ∩(−R, R) tends to zero as k → ∞.

The following lemma is well-known:

Lemma 1. Assume u.d. sets Qk ⊂ R satisfy infk δ(Qk) > 0, where δ(Qk) is the separation constant defined 
in (5). Then there is a subsequence Qkn

which converges weakly to some u.d. set Q′ satisfying D−(Q′) ≥
lim supn→∞ D−(Qkn

).

One can also define the weak convergence of trajectories. However, in what follows we will not use this 
definition.

The next statement is obvious.

Remark 1. Assume Ω is a convex set and vθ is a non-zero vector with argument θ, i.e. vθ = |vθ|(cos θ, sin θ). 
Then Ω does not contain any segment of length |vθ| parallel with vθ if and only if vθ /∈ Ω − Ω.

Now, we pass to the proof of Theorem 2. Without loss of generality we may assume that l is a vertical 
line and D−(H) = 1. To prove Theorem 2 we have to show that the set P in (7) is an SS for BΩ if and only 
if

(1, 0) /∈ Ω − Ω. (13)

(i) Assume P is not an SS for BΩ. We have to prove that (13) is not true.
Since P is not an SS for BΩ, there is a sequence of functions fk ∈ BΩ, k ∈ N, such that

‖fk|P ‖∞ ≤ 1
k
, ‖fk‖∞ = 1 and fk(xk) ≥ 1 − 1

k
, (14)

for some points xk = (uk, wk) ∈ R2.
Set

gk(x) := fk(x + xk).

Clearly, we have gk(0) ≥ 1 − 1
k and ‖gk|{l+(H−uk)(1,0)}‖∞ ≤ 1

k . By Lemma 1, there is a subsequence kn such 
that the translates H − uk converge weakly to some u.d. set H ′ satisfying D−(H ′) ≥ D−(H) = 1. By the 
compactness property of BΩ (see [10]), (taking if necessary a subsequence of kn) we may assume that gkn

converge (uniformly on compacts in C2) to some non-trivial function g ∈ BΩ. Clearly, ‖g‖∞ = g(0) = 1 and

g(q, x2) = 0, q ∈ H ′, x2 ∈ R. (15)

Fix any small ε > 0. Since D−(H ′) ≥ 1, by a result of Seip (see [16], Theorem 2.3), H ′ contains a 
subset H ′′ ⊂ H ′ such that the exponential system E(H ′′) := {e2πiqt : q ∈ H ′′} forms a Riesz basis in 
L2(−(1 − ε)/2, (1 − ε)/2).

Next, we invoke Pavlov’s characterization of Riesz bases from [13] to ensure that the generating function 
of the exponential system above

ϕ(z1) := lim
R→∞

∏

q∈H′′,|q|≤R

(
1 − z1

q

)
(16)

is well defined, of exponential type π(1 − ε), and

Paper I

33



8 A. Rashkovskii et al. / Appl. Comput. Harmon. Anal. 62 (2023) 1–23

|ϕ(x1 − i)|2 ∈ A2, (17)

i.e. it belongs to the Muckenhoupt class A2.
We briefly note that in [13] and [16], the zeroes of ϕ are supposed to lie strictly above the real 

line. However, one can overcome this obstacle by noting that the exponential system E(H ′′ + i) :=
{e2πi(q+i), q ∈ H ′′} is also a Riesz basis for L2(−(1 − ε)/2, (1 − ε)/2), and its generating function ϕ̃ satisfies 
ϕ(x1 − i) = ϕ(−i)ϕ̃(x1).

Claim 1. There is a constant δ > 0 such that

|ϕ(x1 − i)| ≥ δ

1 + |x1|3
, x1 ∈ R. (18)

This claim can be easily deduced from (17) and Bernstein’s inequality.
Recall that the generating function for a Riesz basis satisfies |ϕ(x1)|/(1 + |x1|) ∈ L2(R). Choose any 

q0 ∈ H ′′ and set ϕ1(x1) := ϕ(x1)/(x1 − q0).
Then ϕ1 ∈ PW [−(1−ε)/2,(1−ε)/2], and the points ±(1 − ε)/2 belong to the spectrum of ϕ1. Set

ψ(z1, z2) :=
g(z1, z2) sin4 ( ε

4z1
)

ϕ(z1)z14 . (19)

By (15) and (16), ψ is holomorphic in C2. By (18), it belongs to L2 on (R − i) ×R. Therefore, ψ ∈ PWΩ′ , 
where Ω′ ⊂ R2 is the spectrum of ψ.

Consider the equality

ϕ1(z1)ψ(z1, z2) = g(z1, z2)ψε(z1), ψε(z1) :=
sin4 ( ε

4z1
)

z4
1

. (20)

The spectrum of ϕ1 contains the endpoints of the interval

I := [−(1 − ε)/2, (1 − ε)/2)]

on the x1-axis. The spectrum of ψε is the interval Iε := [−ε, ε] on the x1-axis. One may now use an analogue 
of the Titchmarsh convolution theorem for higher dimensions:

c.h.(I + Ω′) = c.h.(Spϕ · ψ) = c.h.(Sp g · ψε) ⊂ c.h.(Iε + Ω) ⊂ Ω + Bε(0),

where c.h. means the convex hull and Sp the spectrum. Clearly, the set c.h.(I + Ω′) contains a horizontal 
interval of length |I| = 1 − ε. This is also true for Ω +Bε(0). It follows that Ω contains a horizontal interval 
of length 1 −3ε. Using Remark 1, we see that the point (1 −3ε, 0) ∈ Ω −Ω. Since ε can be chosen arbitrarily 
small, we conclude that (13) does not hold.

Note, that in this reasoning it is essential that Ω is a convex set.
(ii) Assume (13) does not hold. We have to show that P is not an SS for BΩ. This is an easy consequence 

of Beurling’s Theorem 1. Indeed, since translations of Ω do not change the sampling property of P , we 
may assume that [−1/2, 1/2] ∈ Ω. Using Theorem 1, for every ε > 0 there is a function f(x1) ∈ B[−1/2,1/2]
satisfying ‖f |H‖∞ ≤ ε and ‖f‖∞ = 1. It follows that P is not an SS for B[−1/2,1/2]. Therefore, P is not an 
SS for BΩ.
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8. Auxiliary results for the proof of Theorem 3

In this section, Q, D, ∂D have the same meaning as in Theorem 3.
Denote by argw the argument of vector w, i.e. the angle θ such that w = |w|(cos θ, sin θ). We also denote 

by w(θ) ∈ ∂D the unique vector which lies on ∂D satisfying argw(θ) = θ, −π < θ ≤ π.
Recall that for every convex or concave function f(x) defined on an interval I ⊂ R, both one-sided 

derivatives of f exist at every interior point w0 ∈ I. It follows that for every boundary point w(θ) ∈ ∂D, 
both semi-tangent lines w(θ) + l+(θ) and w(θ) + l−(θ) exist, where l±(θ) are straight lines through the 
origin. In particular, if θ = 0 then there exist two lines l+(0) and l−(0) such that

dist(w(θ) − w(0), l+(0)) = o(θ), θ ↓ 0, (21)

and

dist(w(θ) − w(0), l−(0)) = o(|θ|), θ ↑ 0.

For the proof of Theorem 3, we need two lemmas:

Lemma 2. Let l+(0) be the line satisfying (21). Assume a sequence of vectors xk satisfies

arg(xk) > 0, k ∈ N, |xk| → ∞, arg(xk) → 0, k → ∞. (22)

Then there exists a subsequence xkn
and a u.d. set Q′ ⊂ R such that

|w(arg(xkn
))|Q − |xkn

| converge weakly toQ′, D−(Q′) ≥ d−(Q)
|w(0)| . (23)

Condition (23) implies for every R > 0 that

d+
R (Q · ∂D − xkn

,w(0) + l+(0) + Q′ · (1, 0)) → 0, n → ∞. (24)

Here d+
R(A, B) denotes the Hausdorff distance between A ∩ B+

R(0) and B ∩ B+
R(0).

Remark 2. (i) Note that if in (22) we assume that the arguments of xk are negative and tend to zero, then 
a similar to (24) condition holds with the ‘lower’ semi-tangent line l−(0).

(ii) Assume additionally that l+(0) = l−(0), i.e. there is a tangent line to D through w(0). Then one may 
check that for every R > 0 the Hausdorff distance between

(Q · ∂D − xkn
) ∩ BR(0)

and

(w(0) + l+(0) + Q′ · (1, 0)) ∩ BR(0)

tends to zero as n → ∞.

Lemma 3. Assume P is not an SS for BΩ. Then for every n ∈ N and ε > 0 there exist fn ∈ B(1+ε)Ω and 
xn ∈ R2 such that

|xn| > n, ‖fn‖∞ = 1, ‖fn|P ‖∞ <
1
n
, |fn(xn)| > 1 − 1

n
. (25)
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8.1. Proof of Lemma 2

Condition (23) follows easily from Lemma 1. In what follows, for simplicity we assume that

|w(θn)| · Q − |xn| converge weakly to Q′, n → ∞. (26)

We have to deduce (24) from (23). Before we proceed with the proof, observe that (24) is intuitively 
clear. Indeed, since w(0) + l+(0) is a semi-tangent line to ∂D, when qn and |xn| tend to infinity, the set 
(qn∂D − xn) ∩ B+

R(0) is either empty or ‘looks more and more like’ a segment as n → ∞. However, the 
formal proof is somewhat technical.

Below we denote by C different positive constants.
Recall that D is a convex set of positive measure around the origin.
Given a straight line l through the origin, denote by ϕ(l), 0 ≤ ϕ(l) < π, the angle from the positive 

ray R+(1, 0) to l in the counterclockwise direction. Recall that w(θ) + l+(θ) and w(θ) + l−(θ) denote the 
semi-tangent lines to ∂D at the boundary point w(θ) ∈ ∂D, where we assume that ϕ(l+(θ)) ≥ ϕ(l−(θ)) for 
small positive values of θ.

Clearly, for all small enough positive angles θ > θ′ we have

ϕ(l+(θ′)) ≤ arg (w(θ′) − w(θ)) ≤ ϕ(l−(θ)), 0 < θ′ < θ, (27)

and

|w(θ′) − w(θ)| < C(θ′ − θ), 0 < θ′ < θ, (28)

where one may take C = 2|w(0)|.
Clearly, ϕ(l±(θ)) ↓ ϕ(l+(0)), as θ ↓ 0. Therefore, for every ε > 0 there is an angle θ(ε) > 0 such that

0 < ϕ(l+(θ)) − ϕ(l+(0)) < ε, 0 < θ < θ(ε). (29)

Set θn :=argxn. By (22), θn > 0 and θn → 0 as n → ∞. We assume that n is large enough so that 
θn < θ(ε).

Assume θn < θ < θ(ε), and denote by wn(θ) the point with argument θ lying on the semi-tangent line 
w(θn) + l+(θn):

wn(θ) ∈ w(θn) + l+(θn), argwn(θ) = θ. (30)

From (27), (28) and (29) we may deduce that

d = |w(θ) − wn(θ)| < 2Cε(θ − θn), θn < θ < θ(ε), (31)

provided ε is sufficiently small (see Fig. 2).
Fix any R > 0 satisfying ±R /∈ Q′. Then fix a positive number ε < 1/R2.
To prove (24) we show that the Hausdorff distance between

(Q · ∂D − xn) ∩ B+
R(0) (32)

and

(w(0) + l+(0) + Q′ · (0, 1)) ∩ B+
R(0)
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Fig. 2. Approximation of the curve by lines.

tends to zero as n → ∞. Since θn → 0, it suffices to check this for the Hausdorff distance between the set 
in (32) and the set

(w(θn) + l+(θn) + Q′ · (cos θn, sin θn)) ∩ B+
R(0).

Write Q′ ∩ (−R, R) = {q′(1), ..., q′(m)}. By (26), for every large enough n,

Q ∩
( |xn| − R

|w(θn)| ,
|xn| + R

|w(θn)|

)
= {qn(1), ..., qn(m)},

where

|w(θn)|qn(j) − |xn| − q′(j) → 0, n → ∞, j = 1, ...,m.

Since argw(θn) =argxn = θn, this yields

|w(θn)qn(j) − xn − q′(j)(cos θn, sin θn)| → 0, n → ∞, j = 1, ...,m. (33)

We see that it suffices to check that for every j = 1, ..., m, the Hausdorff distance between

{qn(j)w(θ) : θ ≥ θn} ∩ (xn + B+
R(0)) (34)

and

(xn + q′(j)(cos θn, sin θn) + l+(θn)) ∩ (xn + B+
R(0)) (35)

tends to zero as n → ∞.
Observe that for every sufficiently large n, condition qw(θ) ∈ xn + BR(0) implies

θ < θn + 2R/|xn|, q ∈ (C|xn|/2, 2C|xn|),

where we may take C = 1/|w(0)|. Hence, from (31) one may easily check that the distance between the set

{qn(j)w(θ) : θn ≤ θ ≤ θn + 2R/|xn|}
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and the set

{qn(j)wn(θ) : θn ≤ θ ≤ θn + 2R/|xn|} (36)

is less than CRε < C
√

ε.
On the other hand, by (30), the point qn(j)wn(θ) has argument θ and lies on the line qn(j)w(θn) +l+(θn). 

Let uj(θ) be the point on xn + q′(j)(cos θn, sin θn) + l+(θn) satisfying arg(uj(θ)) = θ. By (33), |uj(θ) −
qn(j)wn(θ)| → 0 as n → ∞, which implies that for sufficiently large n, the Hausdorff distance between the 
sets in (34) and (35) is less than C

√
ε. Since ε can be chosen arbitrarily small, this proves (24).

8.2. Proof of Lemma 3

Since P is not an SS for BΩ, there is a sequence of functions gk ∈ BΩ satisfying

‖gk‖∞ = 1, ‖gk|P ‖∞ <
1
k
.

For every k choose a point yk such that |gk(yk)| > 1 − 1/k. If

lim sup
k→∞

|yk| → ∞,

then condition (25) holds for fn(x) := gkn
(x) ∈ BΩ, for some suitable subsequence kn.

Assume that the sequence yk is bounded. We may assume that it converges to some point y0 ∈ R2. 
Using the compactness property of Bernstein spaces, see [10], we may also assume that gn converge to some 
function g0 ∈ BΩ. Clearly, g0 satisfies

‖g0‖∞ = |g0(y0)| = 1, g0|P = 0.

Consider two cases.
1. Assume g0 tends to zero fast in the sense that for every m ∈ (N ∪ {0})2 we have |xmg0(x)| → 0 as 

|x| → ∞, where xm = xm1
1 xm2

2 , x = (x1, x2), m = (m1, m2). Choose a point ym such that

‖xmg0(x)‖∞ = max
x∈R2

|xmg0(x)| = |ym
mg0(ym)|.

Clearly,

|ym| → ∞, max
x∈R2

|xmg0(x)| → ∞, |m| → ∞.

Therefore, for a suitable subsequence mn, the functions

fn(x) := xmng0(x)/‖xmng0(x)‖∞

belong to BΩ and satisfy condition (25).
2. If g0 does not satisfy the decrease condition above, then there exist m ∈ (N ∪ {0})2 and a sequence of 

points yk such that

|yk| > k, |ym
k g0(yk)| ≥ 1, k ∈ N.

Consider the functions

ϕk(x) := xmg0(x)sinc2|m|(ε(x − yk)/2|m|),
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where

sinc(x) := sin x1
x1

sin x2
x2

, x = (x1, x2).

Clearly, ϕk belongs to B(1+ε)Ω, vanishes on P and |ϕk(yk)| ≥ 1. Moreover, for every x in the disk |x| < |yk|/2, 
we have

|ϕk(x)| ≤ |xm|
ε2|m||x − yk|2|m| ≤ 2|m|

ε2|m||yk||m| → 0, k → ∞.

Therefore, the functions

fn(x) := ϕkn
(x)

‖ϕkn
‖

satisfy (25) for a suitable subsequence kn.

9. Proof of Theorem 3

9.1. Proof of sufficiency

Assume P is not an SS for BΩ. We have to show that

There exists v ∈ Ext(Do) satisfying d−(Q)v ∈ Ω − Ω. (37)

Fix any ε > 0. By Lemma 3, there exist fn ∈ B(1+ε)Ω and xn ∈ R2 satisfying (25). Without loss of 
generality, we may assume that the sequence of arguments arg(xn) converges to zero. For convenience, we 
may assume that it converges to zero ‘from above’, i.e. that it satisfies (22).

Using the compactness principle for Bernstein spaces, we may assume that

fn(x + xn) converge to some function f ∈ B(1+ε)Ω. (38)

By convergence we mean the uniform convergence on compacts in C2. Clearly, the limit function f satisfies 
‖f‖∞ = |f(0)| = 1.

By (24), without loss of generality, we may assume that f vanishes on the set of segments (l+(0) +w(0) +
Q′(1, 0)) ∩ B+

R(0). Since f is an entire function, it vanishes on the sets of lines l+(0) + w(0) + Q′(1, 0).
Denote by vl := (cosϕ, sinϕ), |ϕ| < π/2, be a unite vector orthogonal to l+(0). Denote by A ⊂ R the 

uniformly discrete set such that

l+(0) + w(0) + Q′(1, 0) = l+(0) + Avl.

It is easy to check that

D−(A) = D−(Q′)
cosϕ .

Hence, by (23),

D−(A) ≥ d−(Q)
cosϕ|w(0)| .
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Also, since f vanishes on l+(0) + Avl, this set of lines is not an SS for B(1+ε)Ω. Then, by Theorem 2,

d−(Q)
cosϕ|w(0)|vl ∈ (1 + ε)Ω − (1 + ε)Ω. (39)

We will consider two cases:
Case 1. There is a unique point v0 ∈ ∂Do such that 〈w(0), v0〉 = 1.

Claim 2. v0 ∈ Ext(Do).

Indeed, assume v0 /∈ Ext(Do). Then v0 is an inner point of a segment I ⊂ Do. If this segment is vertical, 
then there are infinitely many points v ∈ Do satisfying 〈w(0), v〉 = 1. If it is not vertical, we may find 
points v ∈ I for which 〈w(0), v〉 > 1. None of the above is true. This shows that v0 ∈ Ext(Do).

Claim 3. v0 is orthogonal to l+(0).

Indeed, if not, then there clearly exist infinitely many different vectors v such that 〈v, w(0)〉 = 1 and 
〈v, w〉 ≤ 1 for all w ∈ D. But then v ∈ Do, which contradicts the assumption above.

It follows that v0 = |v0|vl. Since 〈v0, w(0)〉 = 1, we conclude that

v0 = vl

cosϕ|w(0)| .

Now, (37) follows from (39), since it holds for every ε > 0.
Case 2. Assume there exist two points v1, v2 ∈ ∂Do such that 〈w(0),vj〉 = 1, j = 1, 2. Then, clearly, 

the above holds for every v ∈ ∂Do on the vertical segment I between v1 and v2. We may assume that I is 
not a part of any larger segment which lies in ∂Do. Then, clearly, vj ∈Ext(Do), j = 1, 2. Moreover, clearly, 
there is no point v ∈ ∂Do \ I such that 〈w(0), v〉 = 1.

We may assume that v1 lies ‘above’ v2. Similarly to Claim 3, we show that v2 is orthogonal to l+(0).
The rest of the proof repeats the proof above.

9.2. Necessity

For convenience, below we write Bσ := B[−σ,σ].
We need a one-dimensional variant of Lemma 3.

Lemma 4. Assume Λ ⊂ R is a uniformly discrete set, and let σ := D−(Λ)/2. Then for every k ∈ N there is 
a function fk ∈ Bσ+1/k and a point x(k) satisfying

‖fk‖∞ = 1, |fk(x(k)| > 1 − 1/k, |x(k)| > k, ‖fk|Λ‖∞ < 1/k. (40)

Observe that by Theorem 1, Λ is not an SS for Bσ.
The proof of Lemma 4 is similar to the proof of Lemma 3.

Lemma 5. Assume a sequence of positive numbers σ(k) converges to σ > 0. Let Λ(k) ⊂ R be u.d. sets 
satisfying infk δ(Λk) > 0 and such that each Λ(k) is not an SS for Bσ(k). Then there is a sequence x(k) with 
|x(k)| → ∞ such that Λ(k) − x(k) converges weakly to some set Λ which is not an SS for Bσ. If Λ(k) are 
symmetric, then x(k) can be chosen positive.
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Proof. Use Lemma 4 to find a sequence of functions fk ∈ Bσ(k)+1/k satisfying (40) with Λ = Λ(k). Clearly, 
if every Λ(k) is symmetric, we may assume xk > 0. Then the functions fk(x + x(k)) converge to some 
non-trivial function f ∈ Bσ.

By Lemma 1, we may assume that the translates Λk − x(k) converge weakly to some set Λ. Clearly, 
f |Λ = 0, which means that Λ is not an SS for Bσ.

9.2.1. Proof of necessity
Assume d−(Q)v0 ∈ Ω − Ω, for some v0 ∈ Ext(Do). We have to show that P is not an SS for BΩ, i.e. that 

for every small number η > 0 there is a function fη ∈ BΩ satisfying

‖fη‖∞ = 1, ‖fη|P ‖∞ ≤ η. (41)

Since v0 ∈ Ext(Do), there is a point w0 ∈ D, satisfying 〈v0, w0〉 = 1. We may assume that w0 = w(0), 
i.e. w0 = (w, 0), w > 0. Then the line {w : 〈w, v0〉 = 1} is a semi-tangent line to D at the point w(0). We 
may assume that it is the ‘upper’ semi-tangent line w(0) + l+(0). It will be convenient to write it in the 
form

w(0) + l+(0) = w(0) + tu, t ≥ 0,

where u is a unite vector parallel to l+(0) (and so, orthogonal to v0).
Choose any positive sequence θk → 0, k → ∞. Set

σ(k) := d−(Q)
2|w(θk)| .

Then

σ(k) → σ := d−(Q)
2|w(0)| .

By Theorem 1, the symmetric set

Q ∪ (−Q)
|w(θn)|

is not an SS for Bσ(n). Hence, by Lemma 5, there exist x(k) → ∞ such that the translates Q|w(θk)| − x(k)
converge weakly to some set Q′, which is not an SS for Bσ. By Lemma 2, condition (24) holds with 
xk := x(k)(cos θk, sin θk).

Since Q′ is not an SS for Bσ, it follows from the compactness principle for Bernstein spaces, that for 
every ε > 0 there exists δ > 0 such that there is a function g(x) ∈ Bσ−δ satisfying

‖g‖∞ = 1, ‖g|Q′‖∞ ≤ ε.

Consider the function ϕ(x) defined as

ϕ(x) := g (|w(0)|〈v0,x − w(0)〉) .

It is easy to check that ‖ϕ‖∞ = ‖g‖∞ = 1 and

|ϕ(x)| ≤ ε, x ∈ w(0) + tu + Q′(1, 0), t ∈ R.
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By Remark 1, condition d−(Q)v0 ∈ Ω −Ω means that Ω contains an interval I parallel to v0 and of length 
d−(Q)|v0|. Since translations of Ω do not change the sampling property of P for BΩ, we may assume that 
I is symmetric, −I = I. Observe that the spectrum of g lies on [−σ + δ, σ − δ], where 2σ = d−(Q)/|w(0)|. 
Then, clearly, the spectrum of ϕ lies on (1 − δ)I. Therefore, there is a small number δ′ > 0 such that 
(1 − δ)I + Bδ′(0) ⊂ Ω.

Now, choose a point y0 such that |g(y0)| ≥ 1/2. Then we have |ϕ(x)| ≥ 1/2 for all x on the line 
w(0) + (y0, 0) + Ru.

Fix R > 0 and consider the function

ψ(x) := ϕ(x)sinc(δ′(x − x0)), x0 := w(0) − (y0, 0) − 2Ru.

Then ψ ∈ BΩ, |ψ(x0)| ≥ 1/2 and

|ψ(x)| ≤ ε, x ∈ w(0) + Ru + Q′(1, 0). (42)

Since |sinc(x)| → 0 as |x| → ∞, we may assume that R is so large that

|ψ(x)| ≤ ε, |x − x0| ≥ R. (43)

By Lemma 3, we may assume that the Hausdorff distance between the set

(Q∂D − xk) ∩ B+
4R(0)

and

(w(0) + l+(0) + Q′(1, 0)) ∩ B+
4R(0)

tends to zero as k → ∞. We may also assume that BR(x0) ⊂ B+
4R(0). Then, the same is true for the sets

(Q∂D − xk) ∩ BR(x0)

and

(w(0) + Ru + Q′(1, 0)) ∩ BR(x0).

From (42), by Bernstein’s inequality, for all large enough k we get

|ψ(x)| ≤ Cε, x ∈ (Q∂D − xk) ∩ BR(x0),

where the constant C depends only on the diameter of Ω.
Finally, we see that the function

f(x) := ψ(x − xk)
‖ψ‖∞

belongs to BΩ and satisfies (41) with η = Cε, where ε is any positive number.
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10. Proof of Theorem 4

Recall that P is defined in (10).
(i) Assume that D−(V ) = 0. We have to check that P is not an SS for every space BΩ, where Ω is a 

convex set of positive measure.
The proof is easy. Indeed, from D−(V ) = 0 it follows that there is a sequence of points xn such that the 

discs Bn(xn) do not intersect V . We may assume that Bδ(0) ⊂ Ω, for some δ > 0. Then the functions

fn(x) := sinc(δ(x − xn)), n ∈ N,

belong to BΩ and satisfy ‖fn‖∞ = 1. It is obvious that

‖fn|P ‖∞ ≤ ‖fn|R2\Bn(xn)‖∞ → 0, n → ∞,

which proves that P is not an SS for BΩ.
(ii) Assume that D−(V ) > 0. We have to check that P is an SS for every space BΩ. The proof is a simple 

consequence of the uniqueness Theorem 8 below: Assume that P is not an SS for BΩ, i.e. there is a sequence 
of functions fn ∈ BΩ satisfying

‖fn‖∞ = 1, ‖fn|P ‖∞ → 0, n → ∞.

Choose points xn such that |fn(xn)| > 1 − 1/n and set gn(x) := fn(x + xn). Then

gn ∈ BΩ, ‖gn‖∞ = 1, |gn(0)| > 1/n.

Then a subsequence gnk
converges to some non-zero function g ∈ BΩ.

We may assume that the translates V −xnk
converge to some set V ′ ⊂ R2. We have D−(V ′) ≥ D−(V ) > 0. 

It is clear that g|V ′+T = 0. Theorem 8 yields g = 0. Contradiction.

11. Uniqueness sets

Uniqueness sets play an important role in the sampling theory. In particular, Beurling [3] proved that a 
u.d. set Λ is an SS for Bσ if and only if every weak limit of translates Λ − xn is a uniqueness set for Bσ. A 
similar result holds in higher dimension.

Below we consider subsets of R2 that are uniqueness sets for some classes of entire functions of exponential 
type and, in particular, of the Bernstein spaces. We believe such results are of independent interest.

Given an entire function f in Cd, let Zf = {z ∈ Cd : f(z) = 0} denote its zero set. For a generic f , 
the set Zf ∩ Rd is discrete and, as far as we know, only discrete (actually, u.d.) uniqueness sets P ⊂ Rd

for entire functions of exponential type, as well as for BΩ with Ω = I1 × . . . × Id with Ik = [−rk, rk], have 
been considered before (see, for example, [2], [14]). Here we will be interested in the case of non-discrete 
uniqueness sets P ⊂ R2.

Note that, for any entire function f , the set Zf ∩ R2 is represented by the equations f�(x) = 0 and 
f�(x) = 0 with the real analytic functions f� = Re f and f� = Im f . Therefore, any set which is not a 
subset of a locally finite union of real analytic curves and discrete points in R2 is a uniqueness set for the 
whole class of entire functions in C2. In what follows, we work only with sets in R2 that are real analytic.

The idea of our considerations is, as in the case of discrete sets, getting control over the volume of the 
zero set Zf in the balls Bt ⊂ C2 in terms of a counting function, which in our case will be

θ(t) = #{V ∩ Dt}, t > 0, (44)
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where V ⊂ R2 is a discrete set related to P and Dt = {x ∈ R2 : |x| < t} is an open disk in R2.
Three main ingredients are as follows. First, if a set E ⊂ R2 is non-discrete, then there exists at most 

one irreducible analytic variety of complex dimension 1 (i.e., analytic curve) in C2 containing E. Indeed, if 
E ⊂ χj for two irreducible analytic curves χ1 and χ2, then dimC χ1 ∩ χ2 = 1 and thus χ1 = χ2.

Second, for any analytic curve χ and a point a ∈ χ, let σχ,a(t) denote the volume of χ inside the ball

Bt(a) = {z ∈ C2 : |z − a| < t}

and σχ(t) = σχ,0(t). Then, by Lelong’s bound for volumes of analytic sets, see [8], Thm. 2.23,

σχ,a(t) ≥ πt2 (45)

for any t > 0, with an equality if χ is a complex line.
Finally, we will use Jensen’s formula for analytic functions in Cd, see [15]:

mlog |f |(r) := 1
Vd−1

∫

S1

log |f(rz)| dS1(z) =
r∫

r0

μf (t) t−2d+1 dt + Cr0,f ,

where dS1 is the normalized surface measure on S1 = ∂B1, V2d−2 is the volume of the unit ball in Cd−1, 
and μf (t) is the volume, computed with the multiplicities, of Zf in Bt. This gives us for d = 2

mlog |f |(r) ≥ 1
π

r∫

r0

σZf
(t) t−3 dt + Cr0,f . (46)

Another, and more classical, form of Jensen’s formula uses the intersections of χ with complex lines. 
Assume 0 /∈ χ and, for any point s on the unit sphere S1, let nsχ(t) be the number of intersection points of 
χ with the line z = sζ, ζ ∈ C. Let

nχ(t) =
∫

S1

nsχ(t) dS1(s), (47)

then

mlog |f |(r) ≥
r∫

r0

nZf
(t)

t
dt + Cr0,f . (48)

11.1. Straight lines

We start by considering the case when P = {lk} is a collection of straight lines in R2. We will not assume, 
unlike in (7), that the lines are shifts of a single line l, the only condition being that none of the lines passes 
through the origin. Therefore, we can represent them as

lk = {x ∈ R2 : 〈x, ek〉 = 1} (49)

for some vectors ek ∈ R2. Denote vk = ek|ek|−2 and let θ(t) be defined by (44) for V = {vk}. Note that if 
all ek = a−1

k vl for ak ∈ R \ {0}, this gives us precisely the set P from (7).
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Theorem 6. In the above setting, P is the uniqueness set for entire functions of type A, provided

lim inf
t→∞

θ(t)
t

>
3
2 A.

Proof. Let Lk = {z ∈ C2 : 〈z, ek〉 = 1} be the complex lines containing lk. Then any entire function f �≡ 0
vanishing on all lk also vanishes on all Lk, so

Zf ⊃ Z :=
⋃

k

Lk.

By [12],

σZf
(t) ≥ σZ(t) = 2π

t∫

0

s n(s) ds, (50)

where n(s) is the amount of points vk inside the ball Bs. By the construction, all vk are real, so n(s) = θ(s)
and

σZ(t) = 2π
t∫

0

s θ(s) ds.

There exist A′′ > A′ > A such that θ(s) ≥ 3
2A

′′s for all s > r0 for some r0 > 0. Therefore,

σZ(t) ≥ 2π
t∫

r0

s θ(s) ds ≥ πA′′(t3 − r3
0), t > r0,

and

1
π

r∫

r0

σZf
(t) t−3 dt ≥ A′′ (r − 3

2r0).

If the function f is of type A > 0, then mlog |f |(r) ≤ A′r for r sufficiently big, which, by (46), is impossible.

11.2. Dilations of circles

Next, we will be concerned with dilations of the unit circle T = {x ∈ R2 : |x| = 1}. Let Q = {qk} ⊂ R+
be a discrete set, θ(t) be the counting function of Q, and

P = QT =
⋃

k

qkT .

Theorem 7. P is the uniqueness set for entire functions of type A if

lim inf
t→∞

θ(t)
t

>
A

2α,

where

α =
∫

S1

|s2
1 + s2

2|1/2 dS1(s).
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Proof. Denote γ = {z ∈ C2 : z2
1 + z2

2 = 1}, the unique irreducible analytic curve in C2 containing the circle 
T . For any s ∈ S1 such that s2

1 +s2
2 �= 0, the intersection sq γ of the quadric q γ, q > 0, with the line z = s C

consists of two points given by z = s ζ with (s2
1 + s2

2)ζ2 = q2. Therefore, (47) gives us

nQγ(t) = 2
∫

S1

θ(|s2
1 + s2

2|1/2t) dS1(s).

Take any small ε > 0 and denote Eε = {z ∈ C2 : |s2
1 + s2

2| < ε2}. If θ(t) ≥ A′

2α t for some A′ > A ≥ 0 and all 
t > ε r0, then

nQγ(t) ≥ 2
∫

S1\Eε

θ(|s2
1 + s2

2|1/2t) dS1(s) ≥ (1 − Cε)A′t

with Cε → 0 as ε → 0, and

r∫

r0

nQγ(t)
t

dt ≥ (1 − Cε)A′ (r − r0).

If an entire function f �≡ 0 vanishes on P , then Zf ⊃ Qγ. By (48), it cannot have type A < A′.

11.3. Translations of circles

Finally, we consider translations of a circle T = {x ∈ R2 : |x| = r}.

Theorem 8. Let θ(t) be defined by (44) for a discrete set V ⊂ R2. If

lim
t→∞

θ(t)
t

= ∞, (51)

then P = T +V is a uniqueness set for entire functions of exponential type. More precisely, P is a uniqueness 
set for entire functions of type A > 0 if

B := lim inf
t→∞

θ(t)
t

>
3

2
√

2
A. (52)

Proof. Denote γ0 = {z ∈ C2 : z2
1 + z2

2 − r2 = 0}, the unique irreducible analytic curve containing T .
Let f �≡ 0 be en entire function in C2 of exponential type, vanishing on P . Then its zero set Zf contains 

Z := ∪kγk, where γk = γ0 + vk. Since γk ∩ γj for any j �= k is either empty or a finite set, we have

σZf
(t) ≥ σZ(t) =

∑

k

σγk
(t);

note that there is only finitely many γk intersecting Bt.
Take any t > 0 sufficiently big and denote Kt = {k : γk ∩ Dt/2 �= ∅}. Since Bt/2(a) ⊂ Bt for any 

a ∈ Z ∩ Dt/2, we get, by (45),

σZ(t) ≥
∑

k∈Kt

σγk
(t) ≥ θ(t/2)π(t/2)2. (53)
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Assuming (51), take any N > 0 and let r0 be such that θ(t) > Nt for all t > r0/2. Then, by (53), we get

1
π

r∫

r0

σZf
(t) t−3 dt ≥ 1

4

r∫

r0

θ(t/2) t−1 dt >
N

8 (r − r0),

which, in view of (46), means that f cannot have finite type. This proves the first statement and a weaker 
version of the second one, with B > 8A.

To prove the second statement in full, we need a sharper lower bound on the area of the variety Z than 
(53). Given ε ∈ (0, 1), let r0 be such that

θ(t) t−1 > (1 − ε)B (54)

for all t > r0, and take vk = (ak, bk) such that r0 < |vk| < t. We have

σγk
(t) =

∫

γk∩Bt

dm2 = t2
∫

γk,t∩B1

dm2 = t2σγk,t(1), (55)

where γk,t is the analytic variety {(z1 − ak/t)2 + (z2 − bk/t)2 = t−2}.
When t → ∞, the varieties γk,t converge to γ∞ := {z1 = ±iz2}. The convergence is not uniform in k, 

however we can choose r0 such that, in addition to (54), we have

σγk,t
(1) ≥ (1 − ε)

(
σΓ+

k,t
(1) + σΓ−

k,t
(1)
)

(56)

for any t ≥ r0 and all k with |vk| < t, where Γ±
k,t are the complex lines

z1 − ak/t = ±i(z2 − bk/t)

represent the families

Γ±
t =

⋃

k

Γ±
k,t

as in (49), by 〈(z1, z2), e±
k,t〉 = 1 with

e±
k,t = (1,±i)

c±
k

t,

where c±
k = ak ± ibk. The corresponding reference vectors vk are

v±
k,t = e±

k,t|e±
k,t|−2 (1,±i)c±

k

2t ,

so nΓ±
k,t

(s) = θ(
√

2 s t).
By (50), we have

σΓ±
t
(1) = 2π

1∫

0

s nΓ±
t
(s) ds = 2π

1∫

0

s θ(
√

2 s t) ds = πt−2

√
2 t∫

0

s θ(
√

s) ds,
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so (55), (56) give us

σZ(t) = t2
∑

k

σγk,t
(1) ≥ (1 − ε) 2π

√
2 t∫

0

s θ(s) ds.

Taking into account (54), we get

1
π

r∫

r0

σZf
(t) t−3 dt ≥ (1 − ε)

r∫

r0

√
2 t∫

0

s θ(s) ds t−3 dt

≥ (1 − ε)

√
2 r∫

√
2 r0

θ(s)
2s

(
2 − s2

r2

)
ds ≥ (1 − ε)2 2

√
2

3 B(r − 3r0),

which contradicts (46) if f has type A < 2
√

2
3 B. The proof is complete.

Remarks. 1. As was mentioned before, functions f from the Bernstein class BΩ have the bound

|f(x + iy)| ≤ C exp{2πH(y)},

where H(y) = maxu∈Ω〈u, y〉 is the support function of Ω, and so are of exponential type

A ≤ 2π max
|y|=1

H(y).

Actually, as follows from the Jensen’s inequality, the constant A in the both theorems can be chosen as

A = 2π
∫

S1

H(y) dS1(z).

2. The circle T can be replaced with a trace of arbitrary irreducible entire analytic curve. Moreover, the 
whole collection P can be formed by uniformly bounded arcs Tk = γk ∩ R2 for irreducible analytic curves 
γk satisfying dim γk ∩ γj = 0, j �= k, the set V in the definition of the counting function θ(t) being formed 
by arbitrary points vk ∈ Tk.

12. Multi-dimensional extensions

Below we assume that the dimension d ≥ 3 and that Ω is a compact convex set of positive measure in 
Rd.

1. The following extension of Theorem 2 holds true: Let l ⊂ Rd be a hyperplane through the origin, ul be 
a unit vector orthogonal to l and H ⊂ R be a u.d. set. Then P = l + Hul is an SS for BΩ if and only if 
D−(H)ul /∈ Ω − Ω. The proof is similar to the proof of Theorem 2.

2. One may check that an analogue of Theorem 4 holds in higher dimensions for P = V + T , where 
V ⊂ Rd is a u.d. set and T ⊂ Rd is a (d − 1)-dimensional sphere.

3. We guess that a multi-dimensional analogue of Theorem 3 is also true. In any case, one may prove the 
following multi-dimensional variant of Corollary 1:

(i) Let Q ⊂ (0, ∞) be a u.d. set and B1(0) the unit ball in Rd. The set Q∂B1(0) is an SS for BΩ if and 
only if Diam(Ω) < d−(Q).

(ii) Let D be a convex polytope around the origin. Then Q∂D is an SS for BΩ if and only if d−(Q)v /∈ Ω −Ω, 
for every vertex in the polar set (polytope) v ∈ Do.
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For a wide family of even kernels {ϕu, u ∈ I}, we describe 
discrete sets Λ such that every bandlimited signal f can be 
reconstructed from the space-time samples {(f ∗ ϕu)(λ), λ ∈
Λ, u ∈ I}.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The classical sampling problem asks when a continuous signal (function) f can be 
reconstructed from its discrete samples f(λ), λ ∈ Λ. In the dynamical sampling problem, 
the set of space samples is replaced by a set of space-time samples (see e.g. [1], [2], [3], 
[5] and references therein). An interesting case is the problem of reconstruction of a 
bandlimited signal f from the space-time samples of its states f ∗ ϕu resulting from the 
convolution with a kernel ϕu. An important example (see [3] and [4]) is the Gaussian 
kernel ϕu = exp(−ut2), which arises from the diffusion process.
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Denote by PWσ the Paley–Wiener space

PWσ := {f ∈ L2(R) : supp(f̂) ⊆ [−σ, σ]},

where f̂ denotes the Fourier transform

f̂(t) =
∫

R

e−itxf(x) dx.

A set Λ ⊂ R is called uniformly discrete (u.d.) if

δ(Λ) := inf
λ,λ′∈Λ,λ �=λ′

|λ − λ′| > 0. (1)

The following problem is considered in [3]: Given a u.d. set Λ ⊂ R and a kernel 
{ϕu, u ∈ I}, where I is an interval. What are the conditions that allow one to recover a 
function f ∈ PWσ in a stable way from the data set

{(f ∗ ϕu)(λ) : λ ∈ Λ, u ∈ I}? (2)

In what follows, we denote by Φu the Fourier transform of ϕu and assume that the 
functions ϕu(x) and Φu(t) are continuous functions of (x, u) and (t, u), respectively.

It is remarked in [3], that the property of stable recovery formulated above is equivalent 
to the existence of two constants A, B such that

A‖f‖2
2 ≤

∫

I

∑

λ∈Λ
|(f ∗ ϕu)(λ)|2 du ≤ B‖f‖2

2, ∀f ∈ PWσ. (3)

It often happens in the sampling theory that inequalities similar to the one in the 
right-hand side of (3) are not difficult to check. It is also the case here, it suffices to 
assume the uniform boundedness of the L1(R)-norms ‖ϕu‖1:

Proposition 1. Assume

sup
u∈I

‖ϕu‖1 < ∞. (4)

Then for every σ > 0 and every u.d. set Λ there is a constant B such that
∫

I

∑

λ∈Λ
|(f ∗ ϕu)(λ)|2 du ≤ B‖f‖2

2, ∀f ∈ PWσ.

We present a simple proof in Section 3.
Hence, the main difficulty lies in proving the left-hand side inequality.
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Recall that the classical Shannon sampling theorem states that every f ∈ PWσ admits 
a stable recovery from the uniform space samples f(k/a), k ∈ Z, if and only if a ≥ σ/π. 
The critical value a = σ/π is called the Nyquist rate. Since the space-time samples (2)
produce “more information” compared to the space samples, one may expect that every 
f ∈ PWσ can be recovered from the space-time uniform samples at sub-Nyquist spatial 
density. However, it is not the case, as shown in [4] for the convolution with the Gaussian 
kernel. On the other hand, it is proved in [3] that uniform dynamical samples at sub-
Nyquist spatial rate allow one to stably reconstruct the Fourier transform f̂ away from 
certain, explicitly described blind spots.

It is well-known that the nonuniform sampling is sometimes more efficient than the 
uniform one. For example, this is so for the universal sampling, see e.g. [6], Lecture 6. It 
is also the case for the problem above: For a wide class of even kernels, we show that data 
(2) always allows stable reconstruction, provided Λ is any relatively dense set “different” 
from an arithmetic progression.

To state precisely our main result, we need the following definition: Given a u.d. set 
Λ, the collection of sets W (Λ) is defined as all weak limits of the translates Λ −xk, where 
xk is any bounded or unbounded sequence of real numbers (for the definition of weak 
limit see e.g. Lecture 3.4.1 in [6]).

Consider the following condition:

(α) W (Λ) does not contain the empty set, and no element Λ∗ ∈ W (Λ) lies in an arith-
metic progression.

The first property in (α) means that Λ is relatively dense, i.e. there exists r > 0 such 
that every interval (x, x +r) contains at least one point of Λ. It follows that every element 
Λ∗ ∈ W (Λ) is also a relatively dense set.

The second condition in (α) means that no Λ∗ ∈ W (Λ) is a subset of b + (1/a)Z, for 
any a > 0 and b ∈ R.

Let us now define a collection of kernels C: A kernel {ϕu, u ∈ I}, where I is an interval, 
belongs to C if it satisfies the following five conditions:

(β) There is a constant C such that

sup
u∈I

|ϕu(x)| ≤ C

1 + x4 , x ∈ R; (5)

(γ) There is a constant C such that

‖ϕu′ − ϕu‖1 ≤ C|u − u′|, u, u′ ∈ I; (6)

(ζ) Every ϕu is real and even: ϕu(x) ∈ R, ϕu(−x) = ϕu(x), x ∈ R, u ∈ I;
(η) sup

u∈I
|Φu(t)| > 0 for every t ∈ R;
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(θ) For every w ∈ C and every σ > 0, the family {Φ′′
u(t) + wΦu(t), u ∈ I} forms a 

complete set in L2(0, σ).

Clearly, condition (5) implies that the derivatives Φ′′
u(t), u ∈ I, are continuous and 

uniformly bounded. Condition (ζ) implies that the functions Φu are real and even.
It is easy to check that C contains the Gaussian kernel, where I = (a, b) is any interval 

such that 0 < a < b < ∞. Indeed, it is trivial that conditions (β) - (η) are fulfilled. 
By using the Fourier transform, condition (θ) follows from the easy fact that there is 
no non-trivial function g ∈ L2(R), ̂g ∈ L2(0, σ), such that g(x) is orthogonal to every 
function (x2 + w) exp(−tx2), t ∈ J , where J ⊂ (0, ∞), is any non-empty interval.

Our main result is as follows:

Theorem 1. Given a u.d. set Λ ⊂ R and a kernel {ϕu, u ∈ I} ∈ C. The following 
conditions are equivalent:

(a) The left inequality in (3) is true for every σ > 0 and some A = A(σ);
(b) Λ satisfies condition (α).

2. Space–time sampling in Bernstein spaces

The aim of this section is to prove a variant of Theorem 1 for the Bernstein space Bσ.
It is well-known that every function f ∈ PWσ admits an analytic continuation to the 

complex plane and satisfies

|f(x + iy)| ≤ Ceσ|y|, x, y ∈ R, (7)

where C depends only on f .
The Bernstein space Bσ is defined as the set of entire functions f satisfying (7) with 

some C depending only on f . An equivalent definition is that Bσ consists of the bounded 
continuous functions that are the inverse Fourier transforms of tempered distributions 
supported by [−σ, σ].

Denote by C0 the collection of kernels {ϕu, u ∈ I} satisfying the properties (β)-(θ) in 
the definition of C above. However, we do not require I to be an interval. In particular, 
it can be a countable set.

Theorem 2. Given a u.d. set Λ ⊂ R and a kernel {ϕu, u ∈ I} ∈ C0. The following 
conditions are equivalent:

(a) For every σ > 0 there is a constant K = K(σ) such that

‖f‖∞ ≤ K sup
λ∈Λ,u∈I

|(f ∗ ϕu)(λ)|, ∀f ∈ Bσ; (8)

(b) Λ satisfies condition (α).
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To prove this theorem we need a lemma:

Lemma 1. Assume f ∈ Bσ and {ϕu, u ∈ I} ∈ C0. If (f ∗ϕu)(0) = 0, u ∈ I, then f is odd, 
f(−x) = −f(x), x ∈ R.

Proof. 1. Given a function f ∈ Bσ, set

fr(z) := f(z) + f(z̄)
2 , fi(z) := f(z) − f(z̄)

2i .

Then fr, fi are real (on R) entire functions satisfying f = fr + ifi. It is clear that both 
fr and fi satisfy (7), so that they both lie in Bσ. Hence, since every ϕu is real, it suffices 
to prove the lemma for the real functions f ∈ Bσ.

2. Let us assume that f ∈ Bσ is real. Write

fe(x) := f(z) + f(−z)
2 , fo(x) := f(z) − f(−z)

2 .

Clearly, fe ∈ Bσ is even, fo ∈ Bσ is odd and f = fe + fo. Since ϕu is even, we have 
(fo ∗ ϕu)(0) = 0, u ∈ I. Hence, to prove Lemma 1, it suffices to check that if a real even 
function f ∈ Bσ satisfies (f ∗ ϕu)(0) = 0, u ∈ I, then f = 0.

3. Let us assume that f ∈ Bσ is real, even and satisfies (f ∗ϕu)(0) = 0, u ∈ I. If f does 
not vanish in C then f(z) = eiaz for some −σ ≤ a ≤ σ, which implies a = 0, f(z) ≡ 1. 
Then (f ∗ ϕu)(0) = Φu(0) = 0, u ∈ I, which contradicts condition (η).

Hence, f(w) = 0 for some w ∈ C. It follows that f(−w) = 0. Set

g(z) := f(z)
z2 − w2 .

Denote by G the Fourier transform of g. Then G is continuous, even and vanishes outside 
(−σ, σ). Now, condition (f ∗ ϕu) = 0, u ∈ I, implies:

0 =
∫

R

ϕu(s)f(s) ds =
∫

R

(s2 − w2)ϕu(s)g(s) ds =

−
σ∫

−σ

(Φ′′
u(t) + w2Φu(t))G(t) dt = −2

σ∫

0

(Φ′′
u(t) + w2Φu(t))G(t) dt.

Using property (θ), we conclude that G = 0 and so f = 0. �

2.1. Proof of Theorem 2

We denote by C different positive constants.
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1. Suppose W (Λ) contains an empty set. It means that Λ contains arbitrarily long 
gaps: For every ρ > 0 there exists xρ such that Λ ∩ (xρ − 2ρ, xρ + 2ρ) = ∅. Set

fρ(x) := sin(σ(x − xρ))
σ(x − xρ)

∈ Bσ. (9)

Then ‖fρ‖∞ = 1. Using (5), for all x such that |x − xρ| ≥ 2ρ, we have

|(fρ ∗ ϕu)(x)| ≤
∫

|s|< |x−xρ|
2

2
σ|x − xρ| |ϕu(s)| ds+

∫

|s|> |x−xρ|
2

|ϕu(s)| ds ≤ C

|x − xρ| . (10)

It readily follows that (8) is not true.
2. Suppose Λ∗ ⊂ b + (1/a)Z for some Λ∗ ∈ W (Λ), b ∈ R and a > 0. Since Λ∗ − b ∈

W (Λ), we may assume that b = 0.
Consider two cases: First, let us assume that Λ ⊂ (1/a)Z. Set σ = πa. Clearly, the 

function f(z) := sin(πaz) ∈ Bσ. Since every function ϕu is even while f is odd, one may 
easily check that (f ∗ ϕu)(k/a) = 0, k ∈ Z, so that (8) is not true.

Now, assume that Λ∗ ⊂ (1/a)Z, for some Λ∗ ∈ W (Λ). This means that for every small 
ε > 0 and large R > 0 there is a point v = v(ε, R) ∈ R such that (Λ − v) ∩ (−R, R) is 
close to a subset of (1/a)Z in the sense that for every λ ∈ Λ ∩ (v −R, v +R) there exists 
k(λ) ∈ Z with

|λ − v − k(λ)/a| ≤ ε, λ ∈ Λ ∩ (v − R, v + R).

For simplicity of presentation, we assume that v = 0, a = 1, and that

Λ ∩ (−R,R) = {λk : |k| ≤ m}, |λk − k| ≤ ε, m = [R], |k| ≤ m. (11)

The proof of the general case is similar.
Fix ε := 1/

√
R. Set

f(x) := sin(πx) sin(εx)
εx

∈ Bπ+ε (12)

and

fk(x) := sin(πx) sin(ελk)
ελk

.

Then
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∣∣f(λk − s) − (−1)k+1fk(s)
∣∣ ≤

∣∣∣∣[sin(π(λk − s)) − sin(π(k − s))] sin ε(λk − s)
ε(λk − s)

∣∣∣∣+
∣∣∣∣sin(πs)

(
sin ε(λk − s)
ε(λk − s) − sin ελk

ελk

)∣∣∣∣ . (13)

By (11),

|sin(π(λk − s)) − sin(π(k − s))| ≤ πε, s ∈ R,

and so the first term in the right-hand side of (13) is less than πε for every s ∈ R. To 
estimate the second term in (13), we use the classical Bernstein’s inequality (see e.g. [6], 
Lecture 2.10):

∣∣∣∣
sin ε(λk − s)
ε(λk − s) − sin ελk

ελk

∣∣∣∣ =

∣∣∣∣∣∣

s∫

0

(
sin ε(λk − u)
ε(λk − u)

)′
du

∣∣∣∣∣∣
≤ |s|

∥∥∥∥∥

(
sin(εs)

εs

)′∥∥∥∥∥
∞

≤ ε|s|.

Therefore,

|f(λk − s) − (−1)k+1fk(s)| ≤ πε(1 + |s|), s ∈ R.

Observe that

(f ∗ ϕu)(λk) =
∫

R

(f(λk − s) − (−1)k+1fk(s))ϕu(s) ds + (−1)k+1
∫

R

fk(s)ϕu(s) ds.

Since fk is odd, the last integral is equal to zero. It follows that for every |k| ≤ m we 
have

|(f ∗ ϕu)(λk)| ≤ πε

∫

R

(1 + |s|)|ϕu(s)| ds, u ∈ I.

Hence, using (5) we conclude that

|(f ∗ ϕu)(λ)| ≤ Cε, λ ∈ Λ ∩ (−R,R), u ∈ I.

On the other hand, for all λ ∈ Λ, |λ| ≥ R and |s| < 1/ε =
√

R, we get

|f(λ − s)| ≤ 1
ε|λ − s| ≤

√
R

R −
√

R
< 2ε,

provided R is sufficiently large. This and (5) imply

|(f ∗ ϕu)(λ)| ≤ 2ε
∫

|s|<
√

R

|ϕu(s)| ds +
∫

|s|>
√

R

|ϕu(s)| ds ≤ Cε, λ ∈ Λ, |λ| ≥ R, u ∈ I.
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Since ε can be chosen arbitrarily small, we conclude that (8) is not true.
3. Assume condition (α) holds. We have to show that for every σ > 0 there is a 

constant K = K(σ) such that (8) is true.
Assume this is not so. It means that there exist σ > 0 and a sequence of functions 

fn ∈ Bσ satisfying

‖fn‖∞ = 1, sup
u∈I,λ∈Λ

|(fn ∗ ϕu)(λ)| ≤ 1/n.

Choose points xn ∈ R such that |fn(xn)| > 1 −1/n, and set gn(x) := fn(x +xn). It follows 
from the compactness property of Bernstein spaces (see e.g. [6], Lecture 2.8.3), that there 
is a subsequence nk such that gnk

converge (uniformly on compacts in C) to some non-
zero function g ∈ Bσ. We may also assume (by taking if necessary a subsequence of nk) 
that the translates Λ − xnk

converge weakly to some Γ ∈ W (Λ). By property (α), Γ is 
an infinite set which is not a subset of any arithmetic progression.

By Lemma 1, we see that every function g(x −γ), γ ∈ Γ, is odd, g(x −γ) = −g(−x −γ). 
This gives g(x) = −g(−x − 2γ), x ∈ R. Hence, for every γ, μ ∈ Γ we have g(x − 2γ) =
g(x − 2μ), x ∈ R. Clearly, this implies that g is a periodic function and Γ is a subset of 
an arithmetic progression whose difference is a half-integer multiple of the period of g. 
Contradiction.

3. Space–time sampling in Paley–Wiener spaces

In what follows we assume that I is an interval. Throughout this section we denote 
by C different positive constants.

The next statement easily follows from (6) and (8).

Corollary 1. Assume condition (8) holds for some kernel {ϕu} satisfying (6), a u.d. set 
Λ and σ > 0. Then there is a constant K ′ = K ′(σ) such that

‖f‖2
∞ ≤ K ′

∫

I

sup
λ∈Λ

|(f ∗ ϕu)(λ)|2 du, ∀f ∈ Bσ.

We skip the simple proof.

3.1. Proof of Proposition 1

Take any function f ∈ PWσ and denote by F its Fourier transform. It follows from 
(4) that ‖Φu‖∞ ≤ C, u ∈ I. Hence, the functions F · Φu ∈ L2(−σ, σ) and

‖f ∗ ϕu‖2 = ‖F · Φu‖2 ≤ ‖Φu‖∞‖F‖2 ≤ C‖f‖2.

Clearly, f ∗ϕu ∈ PWσ, for every u. Using Bessel’s inequality (see e.g. Proposition 2.7 
in [6]), we get
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∑

λ∈Λ
|(f ∗ ϕu)(λ)|2 ≤ C‖f ∗ ϕu‖2

2 ≤ C‖f‖2
2, u ∈ I,

which proves Proposition 1.

3.2. Connection between space–time sampling in Bσ and PWσ

Observe that if Λ is a sampling set (in the ‘classical sense’) for the Paley–Wiener space 
PWσ′ , then it is a sampling set for the Bernstein spaces Bσ with a ‘smaller’ spectrum 
σ < σ′, and vice versa (see Theorem 3.32 in [6]). We provide a corresponding statement 
for the space-time sampling problem.

For the reader’s convenience, we recall the main inequalities:

‖f‖2
2 ≤ D

∫

I

∑

λ∈Λ
|(f ∗ ϕu)(λ)|2 du, (14)

‖f‖∞ ≤ K sup
λ∈Λ,u∈I

|(f ∗ ϕu)(λ)|. (15)

Theorem 3. Let Λ be a u.d. set, a kernel {ϕu} satisfy (5) and (6) and σ′ > σ > 0.
(i) Assume that (15) holds with some constant K for all f ∈ Bσ′ . Then there is a 

constant D such that (14) is true for every f ∈ PWσ.
(ii) Assume that (14) holds with some constant D for all f ∈ PWσ′ . Then there is a 

constant K such that (15) is true for every f ∈ Bσ.

Proof. The proof is somewhat similar to the proof of Theorem 3.32 in [6], but is more 
technical.

(i) Assume that (15) holds for every f ∈ Bσ′ . Fix any positive number ε satisfying

σ + ε ≤ σ′. (16)

Set

hε(x) := sin εx

εx
, ε > 0. (17)

It is easy to check that

hε(0) = 1, ‖hε‖2
2 = C

ε
, ‖h′

ε‖2
2 = Cε. (18)

For every f ∈ PWσ, we have

‖f‖2
2 =

∫

R

|f(x)|2 dx ≤
∫

R

sup
s∈R

|hε(x − s)f(s)|2 dx.
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Note that hε(x − s)f(s) ∈ PWσ+ε ⊂ Bσ′ . By Corollary 1, for every x and s,

|hε(x − s)f(s)|2 ≤ C

∫

I

sup
λ∈Λ

∣∣∣∣∣∣

∫

R

ϕu(λ − s)hε(x − s)f(s) ds

∣∣∣∣∣∣

2

du ≤

C

∫

I

∑

λ∈Λ

∣∣∣∣∣∣

∫

R

ϕu(λ − s)hε(x − s)f(s) ds

∣∣∣∣∣∣

2

du.

Write

J = Ju(x, λ) :=

∣∣∣∣∣∣

∫

R

ϕu(λ − s)hε(x − s)f(s) ds

∣∣∣∣∣∣

2

.

Then

‖f‖2
2 ≤ C

∫

R

∑

λ∈Λ

∫

I

J dudx. (19)

Clearly,

J ≤ 2(J1 + J2),

where

J1 :=

∣∣∣∣∣∣

∫

R

ϕu(λ − s)hε(x − λ)f(s) ds

∣∣∣∣∣∣

2

= |hε(x − λ)|2 |(f ∗ ϕu)(λ)|2 ,

J2 :=

∣∣∣∣∣∣

∫

R

ϕu(λ − s)(hε(x − s) − hε(x − λ))f(s) ds

∣∣∣∣∣∣

2

.

Using property (5) and the Cauchy–Schwarz inequality, we have

J2 ≤
∫

R

|ϕu(λ − s)| ds
∫

R

|ϕu(λ − s)||hε(x − s) − hε(x − λ)|2|f(s)|2 ds ≤

C

∫

R

|ϕu(λ − s)||hε(x − s) − hε(x − λ)|2|f(s)|2 ds.

Observe that

|hε(x − s) − hε(x − λ)|2 =

∣∣∣∣∣∣

λ∫

s

h′
ε(x − v) dv

∣∣∣∣∣∣

2

≤ |s − λ|
λ∫

s

|h′
ε(x − v)|2 dv.
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Hence,

J2 ≤ C

∫

R

|ϕu(λ − s)||s − λ|

⎛
⎝

λ∫

s

|h′
ε(x − v))|2dv

⎞
⎠ |f(s)|2 ds.

Using (18), we have
∫

R

∑

λ∈Λ

∫

I

J1 dudx =
∫

R

|hε(λ − x)|2 dx
∑

λ∈Λ

∫

I

|(f ∗ ϕu)(λ)|2du ≤

C

ε

∑

λ∈Λ

∫

I

|(f ∗ ϕu)(λ)|2du.

To estimate the second sum we switch the order of integration and apply (18):
∫

R

∑

λ∈Λ

∫

I

J2 dudx ≤

∫

R

∑

λ∈Λ

∫

I

|ϕu(λ − s)||s − λ||f(s)|2
⎛
⎝
∫

R

λ∫

s

|h′
ε(x − v)|2dv dx

⎞
⎠ duds ≤

Cε

∫

R

∫

I

∑

λ∈Λ
|ϕu(λ − s)||s − λ|2|f(s)|2duds.

Now, by (5) we get

∑

λ∈Λ
|ϕu(λ − s)||s − λ|2 ≤ C

∑

λ∈Λ

(λ − s)2
1 + (λ − s)4 < C, u ∈ I, s ∈ R,

where the second inequality holds since Λ is a u.d. set (see definition in (1)). Hence,
∫

R

∑

λ∈Λ

∫

I

J2 dudx ≤ Cε|I|‖f‖2
2,

where |I| is the length of I.
Combining this with the estimate for J1 and using (19), we conclude that

‖f‖2
2 ≤ C

ε

∑

λ∈Λ

∫

I

|(f ∗ ϕu)(λ)|2 du + Cε|I|‖f‖2
2.

Choosing ε small enough, we obtain (14).
(ii) Assume (14) holds with some constant D for all f ∈ PWσ′ .
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We will argue by contradiction. Assume that there is no constant K such that (15)
holds for every f ∈ Bσ. This means that there exist gj ∈ Bσ such that ‖gj‖∞ = 1,

sup
u∈I,λ∈Λ

|(gj ∗ ϕu)(λ)| <
1
j
, (20)

and for some points xj we have |gj(xj)| ≥ 1/2.
Assume ε > 0 satisfies (16) and let hε be defined by formula (17). Set

fj(x) := gj(x)hε(x − xj).

It is clear that for every j we have fj ∈ PWσ′ , ‖fj‖∞ ≤ 1, and that |fj(xj)| ≥ 1/2. The 
last two inequalities and the Bernstein’s inequality imply that there is a constant K ′ > 0
such that

‖fj‖2 ≥ K ′, j ∈ N. (21)

By (14), we get

‖fj‖2
2 ≤ C

∫

I

∑

λ∈Λ
|(fj ∗ ϕu)(λ)|2du = C

∫

I

∑

λ∈Λ

∣∣∣∣∣∣

∫

R

gj(x)ϕu(λ − x)hε(x − xj)dx

∣∣∣∣∣∣

2

du.

This gives

‖fj‖2
2 ≤ C(J̃1 + J̃2), (22)

where J̃1 and J̃2 are defined as follows:

J̃1 :=
∫

I

∑

λ∈Λ

∣∣∣∣∣∣

∫

R

gj(x)ϕu(λ − x)(hε(x − xj) − hε(λ − xj))dx

∣∣∣∣∣∣

2

du,

J̃2 :=
∫

I

∑

λ∈Λ

∣∣∣∣∣∣

∫

R

gj(x)ϕu(λ − x)hε(λ − xj)dx

∣∣∣∣∣∣

2

du.

By Bessel’s inequality (see, e.g. [6], Proposition 2.7) and (18),

∑

λ∈Λ
|hε(λ − s)|2 ≤ C‖hε‖2

2 ≤ C

ε
, ∀s ∈ R.

Therefore, using (20) we arrive at

J̃2 ≤ C

εj2 |I|.
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Let us now estimate J̃1. Recall that ‖gj‖∞ = 1. Using the change of variables x = t +λ,
we get

J̃1 ≤
∫

I

∑

λ∈Λ

⎛
⎝
∫

R

∣∣∣∣∣∣
ϕu(−t)

t∫

0

h′
ε(s + λ − xj) ds

∣∣∣∣∣∣
dt

⎞
⎠

2

du.

Now, use the Cauchy–Schwarz inequality:

J̃1 ≤
∫

I

∑

λ∈Λ

∫

R

|ϕu(−t)|2(1 + t2)2 dt

∫

R

1
(1 + t2)2

∣∣∣∣∣∣

t∫

0

h′
ε(s + λ − xj) ds

∣∣∣∣∣∣

2

dt du.

Using again the Cauchy–Schwarz inequality and condition (5), we arrive at

J̃1 ≤ C

∫

I

∑

λ∈Λ

∫

R

|t|
(1 + t2)2

∣∣∣∣∣∣

t∫

0

|h′
ε(s + λ − xj)|2 ds

∣∣∣∣∣∣
dt du.

Finally, Bessel’s inequality yields
∑

λ∈Λ
|h′

ε(s + λ − xj)|2 ≤ C‖hε‖2
2 ≤ Cε,

and we conclude that

J̃1 ≤ C|I|ε.

We now insert the estimates for J̃1, J̃2 in (22) and use (21) to get the estimate

(K ′)2 ≤ C

εj2 + C|I|ε.

Choosing ε sufficiently small, we arrive at contradiction for all large enough j. �

3.3. Proof of Theorem 1

The proof easily follows from Theorems 2 and 3.
Assume that the assumptions of Theorem 1 hold.
(i) Assume that Λ satisfies condition (α). Then by Theorem 2, for every σ > 0 there

exists K = K(σ) such that inequality (8) is true. Applying Theorem 3, we see that there 
exists A = A(σ) > 0 the left-hand side inequality in (3) is also true for every σ > 0.

(ii) Assume that Λ does not satisfy condition (α). Then by Theorem 2, there exists σ >

0 such that there is no constant K for which condition (8) is true. Applying Theorem 3, 
we see that for every positive σ′ > σ there is no constant D such that inequality (14)
holds for every f ∈ PWσ′ .
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Contractive projections in Paley-Wiener spaces

Aleksei Kulikov Ilya Zlotnikov

July 19, 2022

Abstract

Let S1 and S2 be disjoint finite unions of parallelepipeds. We describe
necessary and sufficient conditions on the sets S1, S2 and exponents p such
that the canonical projection P from PW p

S1∪S2
to PW p

S1
is a contraction.

1 Introduction

In the present short paper, we study the particular case of the following

Main problem.
Let X,Y be spaces of functions. Assume that Y is a subspace of X and

P : X → Y is a projection. What assumptions should be imposed on X,Y , and
P to ensure that P is a contraction?

The case when X is an Lp space and Y is an arbitrarily closed subspace
of Lp was completely solved by T. Andô [1]. He showed that if p 6= 2 and
P leaves constants intact then P is a conditional expectation with respect to
some σ-algebra. He also obtained a complete characterization even without this
assumption, see [1], Theorem 2.

One prominent example is the case X = Lp(Td), Y = {f ∈ Lp(Td) | f̂(λ) =
0, λ /∈ Λ} and the projection P being an idempotent Fourier multiplier. In this
case the result of Andô has the following simple formulation.

Theorem 1. The projection P is a contraction if and only if either p = 2 or
Λ ⊂ Zd is a coset.

Recently, O.F. Brevig, J. Ortega-Cerdà, and K. Seip [2] studied the con-
tractivity of the similar idempotent Fourier multipliers in the case when X is a
Hardy space, that is

X = Hp(Td) = {f ∈ Lp(Td) | f̂(n1, n2, . . . , nd) = 0 if nk < 0 for some k}.

They showed that if p /∈ 2N then the only contractions are the same as in the
result of Andô, while for p = 2k, k ∈ N there exist non-trivial examples if d ≥ 3.
For the complete statement of their results, see [2], Theorem 1.2.

Since the Hardy spaces are the subsets of the Lebesgue spaces on the torus
with some restrictions on the Fourier transform, it is natural to consider the

1
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analogue of the problem solved in [2] in the setting of Euclidean spaces. Specif-
ically, in this note we consider the operators acting on the Paley-Wiener spaces.
For the Fourier transform of the function f from Lp, 1 ≤ p ≤ ∞, we fix the
notation

F(f)(t) =

∫

Rd

f(x)e−2πi〈x,t〉dx, t ∈ Rd,

where 〈·, ·〉 stands for the scalar product and the integral is understood in the
sense of distributions.

We recall that for a compact set S ⊂ Rd and 1 ≤ p ≤ ∞ the Paley-Wiener
space PW p

S is defined by

PW p
S =

{
f ∈ Lp(Rd) : Sp(f) := suppF(f) ⊂ S

}
.

Sometimes, the spaces PW∞
S are called Bernstein spaces in the literature. We

refer the reader to books [3] and [4] for more details regarding properties of
Paley-Wiener spaces.

Assume that S1 and S2 are disjoint compact sets. In what follows we deal
with the canonical projection P acting from PW p

S1∪S2
to PW p

S1
defined by

P (f)(x) := F−1[F(f) · χS1)](x).

For a set S ⊂ Rd and k ∈ N0 we define kS inductively as 0S = {0},
(k + 1)S = kS + S, where + denotes the Minkowski sum.

Theorem 2. Let S1 and S2 be finite unions of parallelepipeds in Rd such that
mes(S1 ∩ S2) = 0 and let P be a canonical projection from PW p

S1∪S2
to PW p

S1
.

We have

1. If p ∈ 2N then P is a contraction if and only if

mes
((p

2
S1 +

(p
2
− 1

)
(−S1)

)
∩ S2

)
= 0. (1)

2. If p /∈ 2N then P is a contraction if and only if mes(S1) = 0 or mes(S2) = 0.

Remark 1. Note that from this theorem it follows that if P is a contraction for
p = 2(n+ k), n, k ∈ N then it is a contraction for p = 2n as well. On the other
hand, for each n ∈ N there are sets S1, S2 such that P is a contraction if and only
if p = 2m,m ∈ N,m ≤ n. For example, we could take S1 = [0, 1], S2 = [n, n+1].
Note also that we can not have projections for all p ∈ 2N (unless mes(S1) = 0
or mes(S2) = 0) since for large enough n we have

mes ((nS1 + (n− 1) (−S1)) ∩ S2) > 0.

Remark 2. We also note that, in contrast with the Hardy space setting, our
argument does not depend on the dimension under the assumption that S1 and
S2 are finite unions of parallelepipeds (in fact, the proof is still valid under even
more general assumptions, see Remark 4).
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2 Proofs

For simplicity, we consider the case d = 1, i.e. the sets involved are disjoint
unions of intervals. The proof of the general case is done exactly in the same
way and therefore is omitted.

We follow the argument from [2] (see Lemma 3.1 there) and invoke the
criterion due to H.S. Shapiro from [5].

Lemma 1. Assume that S1 and S2 are disjoint compact sets. Let f ∈ PW p
S1
.

The following statements are equivalent:

(a) The inequality
‖f‖Lp ≤ ‖f + g‖Lp

is true for every g ∈ PW p
S2
.

(b) The equality ∫

R

|f(x)|p−2f(x)g(x) dx = 0 (2)

holds for every g ∈ PW p
S2
.

For 1 < p < ∞ this lemma immediately follows from [5], Theorem 4.2.1.
In the case p = 1, the statement follows from [5], Theorem 4.2.2, since the set
{x : f(x) = 0} has measure zero for any non-trivial entire function f . Informally,
this lemma corresponds to taking the derivative of ||f + εg||pLp at ε = 0.

2.1 Proof of Theorem 2, Part 1.

Now, we consider p ∈ 2N, i.e. p = 2k, k ∈ N. First, we note that the sufficiency
of condition (1) follows from Lemma 1. Indeed, take any q ∈ PW p

S and denote
by f = P (q) and g = q−f . Note that f ∈ PW p

S1
and g ∈ PW p

S2
. Since Schwartz

functions are dense in PW p
S if S is a finite union of intervals, we will assume that

f, g are Schwartz functions so that all Fourier transforms are genuine functions.
By Titchmarsh’s theorem, we have

Sp(|f(x)|p−2f(x)) = Sp(fk(x)(f(x))k−1) ⊂ kS1 + (k − 1)(−S1).

Using condition (1) and Plancherel’s theorem, we get

∫

R

|f(x)|p−2f(x)g(x) dx =

∫

R

F(|f |p−2f̄)(t)F(g)(t) dt = 0.

Applying Lemma 1, we finish the proof of the sufficiency:

‖q‖Lp = ‖f + g‖Lp ≥ ‖f‖Lp.

Second, we assume that for the sets S1 and S2 equation (1) does not hold
and prove that the projection P : PW p

S1∪S2
→ PW p

S1
, is not a contraction. We
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use again Lemma 1 and reduce the problem to the construction of functions f
and g that violate condition (2). Recall that p = 2k, k ∈ N, and set

f(x) = F(χS1)(x), g(x) = F(χS2)(x),

where χS stands for the indicator function of the set S. Note that f, g ∈ Lp(R)
since p ≥ 2. Denote by

Φ(t) = F−1(|f |p−2f)(t).

Since S1 is a finite union of intervals, Sp(Φ) = kS1 + (k − 1)S1 and, moreover,
Φ(t) > 0 on the interior of kS1 + (k − 1)S1. We have

∫

R

|f(x)|p−2f(x)g(x) dx =

∫

S2

Φ(t)dt > 0.

Thus, we arrive at a contradiction, since by Lemma 1 we have

‖f‖Lp > ‖f + g‖Lp .

2.2 Proof of Theorem 2, Part 2.

First, we prove that the canonical projection P : PW p
S1∪S2

→ PW p
S1

is not a
contraction if p is not an even integer and 1 ≤ p < ∞.

We have to find functions f from PW p
S1

and g from PW p
S2

such that (2)
does not hold. Clearly, it suffices to prove the following

Lemma 2. Let 1 ≤ p < ∞ and p /∈ 2N. Assume that I and J are non-empty
disjoint intervals. There is a function f from the Paley-Wiener space PW p

I

such that mes(Sp(|f |p−2f) ∩ J) > 0.

Proof. Without loss of generality we can assume that I = [−1, 1]. First, we
consider the case p > 1. Set

h(x) = (x2 − 1)
cos(2πx)− cosh(2π)

N∏
k=1

((x+ k)2 + 1)

, (3)

where N > 1
2(p−1) + 2 so that |h(x)|p−1 ∈ L1(R). Therefore, the function

g(x) = |h(x)|p−2h(x) belongs to L1(R) as well. Note that by the Paley-Wiener
Theorem h ∈ PW p

I . On the other hand, since h changes sign at the points ±1,
the function g is not analytic. Therefore, its Fourier transform G = F(g) is a
continuous function which is not compactly supported. Also, note that since h
is even, G is even as well.

Let J = [a, b] and assume without loss of generality that a > 1. Since G is
not compactly supported, there exists x0 ∈ R such that x0 > a and x0 ∈ supp G
(here we used that G is even so its support must extend both to +∞ and −∞).
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Since G is continuous and G(x0) 6= 0, we have G(x) 6= 0, x0 − ε < x < x0 + ε
for small enough ε.

Consider f(x) = h( a
x0
x). Since a

x0
< 1, f also belongs to PW p

I . On the
other hand, we have

F(|f |p−2f)(ξ) =
x0

a
G
(x0

a
ξ
)
.

Thus, F(|f |p−2f)(a) = x0

a G(x0) 6= 0 and mes(supp F(|f |p−2f) ∩ J) > 0 as
required.

Remark 3. Although it seems plausible that SpG = R we only managed to
prove that SpG is unbounded.

Next, we deal with p = 1. Consider the same function h(x) with N = 2.
Note that Q(x) = |f(x)|p−2f(x) = 2χ[−1,1](x)− 1, whence

F(Q)(x) =
2 sin(2πx)

πx
− δ0,

where δ0 is a Dirac delta measure at 0. Clearly, the support of the distribution
F(Q) is R. This finishes the proof of the lemma.

It remains to consider p = ∞. In this case we will show that the projection
is not contractive directly. Again, we assume that S1 ⊃ [−1, 1]. Set

f(x) =
sin(2πx)

2πx
, f ∈ PW∞

S1
.

Put g(x) = F(χS2)(x). Clearly, g(0) > 0 and g ∈ PW∞
S2
. Consider fε(x) =

f(x) − εg(x). We are going to show that for sufficiently small positive ε we
have ‖fε‖L∞ < 1. This will contradict contractivity and finish the proof of the
theorem.

Note that f(x), g(x) → 0 as |x| → ∞. Since f(0) = 1 and |f(x)| < 1 when
x 6= 0, for every δ > 0 there exists ε > 0 such that |f(x)− εg(x)| < 1 if |x| > δ.
Thus, it remains to consider |x| < δ.

We have 1−x2 ≤ f(x) ≤ 1 if |x| < 1
100 . On the other hand, g(x) = c0+O(x)

for some c0 > 0 if x is close enough to 0. Thus,

0 < Re(f(x) − εg(x)) ≤ 1− εc0 + Cε|x|
and

|Im(f(x)− εg(x))| ≤ Cε|x|
for some constant C and small enough x. Therefore,

|f(x)− εg(x)| ≤ 1− εc0 + 2Cε|x|.

Choosing δ so that δ < 1
100 and 2Cδ < c0, we get that

|f(x)− εg(x)| < 1

for |x| ≤ δ. Thus, ||f − εg||L∞(R) < 1 and the projection is not contractive.
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Remark 4. In fact, our results hold more generally when the sets S1, S2 are
closures of open sets with boundaries of measure 0 and results for p /∈ 2N re-
quire only that S1, S2 contain some open balls. On the other hand, it would be
interesting to study the case of arbitrary closed sets S1, S2 of positive measure
with empty interior.
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Abstract

Let Γ be a subset of {0, 1, 2, ...}. We show that if Γ has ‘gaps’ then the
completeness and frame properties of the system {tke2πint : n ∈ Z, k ∈ Γ}
differ from those of the classical exponential systems. This phenomenon is
closely connected with the existence of certain uniqueness sets for lacunary
polynomials.

Keywords: completeness, frame, totally positive matrix, generalized Vandermonde

matrix, uniqueness set, lacunary polynomials

1 Introduction

Let Λ be a separated set of real numbers. Denote by

E(Λ) := {e2πiλt, λ ∈ Λ}

the corresponding exponential system.
Approximation and representation properties of exponential systems in dif-

ferent function spaces is a classical subject of investigation. In particular, the
completeness and the frame problems of E(Λ) for the space L2(a, b) can be
stated as follows: Determine if

(a) (Completeness property of E(Λ)) every function F in L2(a, b) can be ap-
proximated arbitrarily well in L2-norm by finite linear combinations of
exponential functions from E(Λ);

(b) (Frame property of E(Λ)) there exist two positive constants A and B such
that for every F ∈ L2(a, b) we have

A∥F∥22 ≤
∑

λ∈Λ

|⟨F, e2πiλt⟩|2 ≤ B∥F∥22,

where ⟨·, ·⟩ is the usual inner product in L2(a, b).
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Note that the notion of frame is very important and can be defined in similar
manner for an arbitrary system of elements E = {eλ} in a Hilbert space H. If
E is a frame in H, then every element f from H admits a (maybe, non-unique)
representation

f =
∑

eλ∈E

cλeλ,

for some l2−sequence of complex numbers cλ (see e.g. [3]).
It is easy to check that the completeness property of E(Λ) is translation-

invariant: If E(Λ) is complete in L2(a, b), then it is complete in L2(a+ c, b+ c),
for every c ∈ R. As a ‘measure of completeness’, one may introduce the so-called
completeness radius of E(Λ):

CR(Λ) = sup{a ≥ 0 : E(Λ) is complete in L2(−a, a)}.

Similarly, the frame property of E(Λ) is also translation-invariant, and one may
introduce the frame radius as

FR(Λ) = sup{a ≥ 0 : E(Λ) is a frame in L2(−a, a)}.

Both radii above can be expressed in terms of certain densities:

(A) The celebrated Beurling–Malliavin theorem [1] states that CR(Λ) =
D∗(Λ). Here D∗ is the so-called upper (or external) Beurling–Malliavin density.

(B) It follows from the classical ‘Beurling Sampling Theorem’ [2] (see also a
detailed discussion in [7]) that FR(Λ) = D−(Λ), where Λ is a separated (also
called uniformly discrete) set and D−(Λ) is the lower uniform density of Λ.

We refer the reader to [8] or [11] for a complete description of exponential
frames for the space L2(a, b). It is not given in terms of a density of Λ.

Observe that the proofs of (A) and (B) use techniques from the complex
analysis.

The density D∗ can be defined and the Beurling–Malliavin formula for the
completeness radius remains valid for the multisets (Λ,Γ(λ)), where Λ ⊂ R and
Γ(λ) = {0, ..., n(λ)− 1}, i.e. for the systems

E(Λ,Γ(λ)) := {tke2πiλt : λ ∈ Λ, t = 0, ..., n(λ)− 1}. (1)

Here n(λ) is the multiplicity (number of occurrences) of the element λ ∈ Λ.
The same is true for the frame radius, see [4]. In particular, if Λ = Z and
Γ(λ) = ΓN := {0, ..., N − 1}, λ ∈ Λ, then one has

CR(Z,ΓN ) = FR(Z,ΓN ) = N/2 = #ΓN/2, (2)

where #Γ is the number of elements of Γ, CR(Z,ΓN ) and FR(Z,ΓN ) are the
completeness and frame radius of E(Z,ΓN ), respectively.

One may consider the completeness property of systems in (1) in Lp(a, b)
and C([a, b]). For each of these spaces, the completeness property is translation-
invariant. Clearly, the completeness in C([−a, a]) implies the completeness in
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Lp(−a, a) for every 1 ≤ p < ∞. Observe that if E(Λ,Γ(Λ)) is not complete in
C([−a, a]), its deficiency in C([−a, a]) is at most 1, i.e. by adding to the system
an exponential function e2πiat, a ̸∈ Λ, the new lager system becomes complete
in C([−a, a]) (see e.g. discussion in [10]). It easily follows that every system in
(1) has the same completeness radius for every space considered above.

2 Statement of Problem and Results

Let us now introduce somewhat more general systems. Assume that Λ ⊂ R is
a discrete set and that to every λ ∈ Λ there corresponds a finite or infinite set
Γ(λ) ⊂ N0 := {0, 1, 2, 3, ...}. Set

E(Λ,Γ(λ)) = {tγe2πiλt : λ ∈ Λ, γ ∈ Γ(λ)}.

Inspired by a recent work of H. Hedenmalm [5], we ask: What are the com-
pleteness and frame properties of E(Λ,Γ(λ))? In this note we restrict ourselves
to the case Λ = Z and Γ(n) = Γ ⊂ N0, n ∈ Z, is a fixed set. That is, we will
consider the completeness and frame properties of the system

E(Z,Γ) := {tγe2πint : n ∈ Z, γ ∈ Γ}, Γ ⊂ N0.

Let us now introduce the formal analogues of the completeness and frame
radius:

CR(Z,Γ) := sup{a ≥ 0 : E(Z,Γ) is complete in L2(−a, a)},

FR(Z,Γ) := sup{a ≥ 0 : E(Z,Γ) is a frame in L2(−a, a)}.
We also define the completeness radius CRC(Z,Γ) in the spaces of continuous
functions:

CRC(Z,Γ) := sup{a ≥ 0 : E(Z,Γ) is complete in C([−a, a])}.

In what follows, to exclude trivial remarks, we will always assume that 0 ∈ Γ.
Set

Γeven = Γ ∩ 2Z and Γodd = Γ ∩ (2Z+ 1),

and introduce the following number

r(Γ) :=





#Γodd +
1
2 , if #Γodd < #Γeven,

#Γeven, if #Γodd ≥ #Γeven.

Observe that r(Γ) < #Γ/2 unless #Γeven = #Γodd or #Γeven = #Γodd + 1.
It turns out that the completeness and frame properties of E(Z,Γ) may differ

from the ones for the systems considered above. In particular, we have

Theorem 1. Given any finite or infinite set Γ ⊂ N0 satisfying 0 ∈ Γ. Then
(i) CR(Z,Γ) = #Γ/2;
(ii) CRC(Z,Γ) = FR(Z,Γ) = r(Γ).
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Below we prove more precise results.
Theorem 1 shows that property (2) is no longer true for the systems E(Z,Γ).
The proof of part (i) uses mainly basic linear algebra. We will see that

the completeness property of E(Z,Γ) in L2(a, b) is translation invariant, and so
CR(Z,Γ) still can be viewed as a ‘measure of completeness’ of E(Z,Γ).

On the other hand, neither the frame property in L2(a, b) nor the com-
pleteness property in C([a, b]) is translation invariant in the sense that both
of them depend on the length of the interval (a, b) and also on its position.
This phenomenon is intimately connected with the solvability of certain sys-
tems of linear equations and also with the existence of certain uniqueness sets
for lacunary polynomials, see Theorem 2 below.

Given any finite set M ⊂ N0, let P (M) denote the set of real polynomials
with exponents in M :

P (M) := {P (x) =
∑

mj∈M

cjx
mj : cj ∈ R}.

If M ⊂ N0 consists of n elements (shortly, #M = n), then clearly no set
X ⊂ R satisfying #X ≤ n − 1 is a uniqueness set for P (M), i.e. there is a
non-trivial polynomial P ∈ P (M) which vanishes on X. This is no longer true
if #X = n. Moreover, there exist real uniqueness sets X, #X = n, that are
uniqueness sets for every space P (M),#M = n. Indeed, by Descartes’ rule of
signs, each P ∈ P (M) may have at most n − 1 distinct positive zeros, and so
every set of n positive points is a uniqueness set for P (M). Here we present a
less trivial example of such sets. Given N distinct real numbers t1, . . . , tN , set

S(t1, . . . , tN ) := {(−1)ktk}Nk=1. (3)

Theorem 2. Assume 0 < t1 < t2 < · · · < tN . Then both sets ±S(t1, . . . , tN )
are uniqueness sets for every space P (M),M ⊂ N0,#M = N.

The rest of the paper is organized as follows: In Section 3 several auxiliary
results are proved. Theorem 2 is proved in Section 4. We consider the com-
pleteness property of E(Z,Γ) in L2(a, b) and in C([a, b]) in Sections 5 and 6,
respectively. Finally, in Section 7 we consider the frame property of E(Z,Γ)
and also present some remarks.

3 Auxiliary Lemmas

Given N ∈ N,x = {x0, . . . , xN−1} ⊂ R, and Γ = {γ0, γ1, . . . , γN−1} ⊂ N we
denote by V (x,Γ) a generalized N ×N Vandermonde matrix,

V (x; Γ) :=




xγ0

0 xγ0

1 xγ0

2 . . . xγ0

N−1

xγ1

0 xγ1

1 xγ1

2 . . . xγ1

N−1

. . . . . . . . . . . . . . .

x
γN−1

0 x
γN−1

1 x
γN−1

2 . . . x
γN−1

N−1




. (4)
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We will usually assume that 0 ∈ Γ. Note that if Γ = {0, 1, . . . , N − 1}, then the
matrix V (x; Γ) is a standard Vandermonde matrix, and it is easy to compute
its determinant and establish whenever it is invertible or not. However, if Γ
has gaps, the situation is more complicated. In the case when xi > 0 for all
i = 0, . . . , n − 1, one may use the following result from the theory of totally
positive matrices, see e.g. [6] and [9].

Proposition 1. (see [9], section 4.2) If 0 < x0 < x1 < · · · < xN and γ0 <
γ1 < γ2 < · · · < γN , then V (x; Γ) is a totally positive matrix. In particular, it
is invertible.

This statement is no longer true if x contains both positive and negative
coordinates.

We will be interested in a particular case where x = (s, s+ 1, ..., s+N − 1)
for some s ∈ R. Consider the problem: Describe the set of points s ∈ R such
that the matrix V ((s, . . . , s+N −1); Γ) is invertible for every Γ ⊂ N0,#Γ = N .

Lemma 1. V ((x0, x1, . . . , xN−1); Γ) is not invertible if and only if there exists
a polynomial P ∈ P (Γ) which vanishes on the set {x0, x1, ..., xN−1}.
Proof. Write Γ = {γ0, γ1, . . . , γN−1}. The matrix V ((x0, x1, . . . , xN−1); Γ) is not
invertible if and only if its transpose is not. The latter means that there is a non-
zero vector a = (a0, . . . , aN−1) satisfying V ((x0, x1, . . . , xN−1); Γ)

TaT = 0. This

means that the polynomial
∑N−1

j=0 ajx
γj vanishes at the points x0, . . . , xN−1.

Lemma 2. Given N ≥ 2, the matrix V ((s, . . . , s +N − 1); Γ) is invertible for
every Γ ⊂ N0,#Γ = N, 0 ∈ Γ, if

(i) s ≥ 0;
(ii) s ∈ (−N/2,−N/2 + 1) \ (1/2)Z.
Part (i) is a direct consequence of Proposition 1.
Part (ii) follows from Lemma 1, Theorem 2, and the observation that for

every s ∈ (−N/2,−N/2+1) such that s does not equal k/2 for some k ∈ Z, the
set {s, . . . , s+N − 1} can be written as ±S, where S is defined in (3).

Clearly, by Lemma 2, the determinant of V ((s, . . . , s+N − 1); Γ) is a non-
trivial polynomial of s. Hence, for every fixed Γ, this matrix is invertible for
every s outside a finite number of points.

In what follows, by measure we mean a finite, complex Borel measure on R.
Given a measure µ, as usual we denote by µ̂ its Fourier-Stieltjes transform

µ̂(x) =

∫

R

e−2πixt dµ(t).

We also denote by δx the δ-measure concentrated at the point x.

Lemma 3. Let µ be a measure supported by an interval [α, α+1]. The following
are equivalent:

(i) µ̂ vanishes on Z;
(ii) µ = A(δα − δα+1), for some A ∈ C.
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Proof. We present a proof of (i) ⇒ (ii). The converse implication is trivial.
Since suppµ ⊂ [α, α+ 1], it is easy to see that the entire function

f(z) := e2πi(α+1/2)zµ̂(z)

satisfies
|f(x+ iy)| ≤ Ceπ|y|, x, y ∈ R, (5)

with some constant C. Since f vanishes on Z, the function g(z) := f(z)/(sinπz)
is also entire. Clearly, there is a positive constant B such that

| sin(π(x+ iy))| ≥ Beπ|y|, for all x, y ∈ R, inf
n∈Z

|x+ iy − n| ≥ 1/4.

This, (5) and the maximum modulus principle imply that g(z) is bounded in C.
hence, g is a constant function, from which the lemma follows.

Let us now consider measures µ that are ”orthogonal” to E(Z,Γ):
∫

R

tγe−2πint dµ(t) = 0, for all γ ∈ Γ, n ∈ Z. (6)

Lemma 4. Assume that Γ ⊂ N0,#Γ = N, 0 ∈ Γ, and that a measure µ is
concentrated on [α, α + N ]. If µ satisfies (6), then there is a finite set S ⊂
(α, α+ 1) and measures µs, s ∈ S, and ν such that

(i) µ =
∑
s∈S

µs + ν;

(ii) ν and µs, s ∈ S, satisfy (6);
(iii) The representations are true:

dν =
N+1∑

j=1

ajδα+j−1, dµs =
N∑

j=1

cs,jδs+j−1, s ∈ S, cs,j ∈ R, aj ∈ R. (7)

Note that µs satisfies (6) if and only if

N∑

j=1

(s+ j − 1)γcs,j = 0, for every γ ∈ Γ, s ∈ S. (8)

A similar observation is true for the measure ν.

Proof of Lemma 4. Clearly, µ admits a unique representation

dµ(x) =
N∑

j=1

dµj(x− j + 1), (9)

where each µj is a measure supported by [α, α + 1) for j = 1, . . . , N − 1, and
suppµN = [α, α+ 1]. Then (6) is equivalent to

∫

[α,α+1]

e−2πint
N∑

j=1

(t+ j − 1)γ dµj(t) = 0, for every γ ∈ Γ, n ∈ Z.
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It follows from Lemma 3 that µj satisfy the system of N equations

N∑

j=1

(t+ j − 1)γdµj(t) = Cγ(δα − δα+1), for every γ ∈ Γ. (10)

The corresponding matrix on the left hand-side is V ((t, . . . , t +N − 1),Γ). As
we mentioned above, the subset S ⊂ (α, α + 1) of the zeros of its determinant
is finite. Therefore, (10) implies that each measure µj , 1 ≤ j < N, may only be
concentrated at {α} and on S, while the support of µN belongs to {α, α+1}∪S.
We may therefore write:

dµj =
∑

s∈S

cs,jδs + ajδα, 1 ≤ j ≤ N − 1;

dµN =
∑

s∈S

cs,Nδs + aNδα + aN+1δα+1.

This and (9) proves part (i) of the lemma, where ν and µj are defined in (7).
Finally, part (ii) easily follows from (10).

4 Uniqueness sets for lacunary polynomials

In this section we will prove Theorem 2. Clearly, if S(t1, . . . , tN ) is a uniqueness
set for P (M), then so is −S(t1, . . . , tN ), since P (−x) ∈ P (M) whenever P (x) ∈
P (M). Therefore, it suffices to prove that S(t1, . . . , tN ) is a uniqueness set for
every space P (M),#M = N.

Assume a polynomial P ∈ P (M) vanishes on S(t1, . . . , tN ). If P is even or
odd, we have P (tk) = 0, 1 ≤ k ≤ N , and by the Descartes’ rule of signs we
deduce that P ≡ 0. Thus, we can assume that P ̸≡ 0 is neither even nor odd
and derive a contradiction from there.

Consider the polynomials

Pe(x) =
∑

mj∈M,2|mj

cjx
mj =

1

2
(P (x) + P (−x))

and

Po(x) =
∑

mj∈M,2∤mj

cjx
mj =

1

2
(P (x)− P (−x)).

If one of them is identically zero, then P is even or odd and we are done. Let
M have K even elements and N −K odd elements. Then Pe has at most K− 1
positive roots and Po has at most N −K − 1 positive roots by the Descartes’
rule of signs. We are going to show that Pe and Po together have at least N − 1
positive roots thus getting the contradiction we need.

Let us consider the graphs of P (x), −P (x) and P (−x), see Figure 1. Since
we assumed that P is neither even nor odd, these are three different polynomials.
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Figure 1: P (−x) has many intersections with either P (x) or −P (x)

For simplicity we first cover the case when P (x) and P (−x) do not have common
positive zeroes. We indicate tk with odd indices by crosses.

By assumption each cross except the first one and the last one is separated
from the other crosses by the zeroes of P (x). That is, it is contained in a
connected component bounded by the pieces of the curves y = P (x) and y =
−P (x). Thus, to get from the cross number m to the cross number m + 1 we
have to exit the component containing the first and enter the next one, giving
us at least two intersections of the curve y = P (−x) with curves y = P (x)
and y = −P (x). Additionally, if N is even, then we also have to exit the last
connected component as well, since there must be at least one more zero of P (x)
after the last cross. In total we will always have at least N − 1 intersections,
that is Pe and Po together have at least N − 1 positive roots as we wanted.

Now, we indicate the necessary changes in the case when P (x) and P (−x)
have common positive roots. If we have two crosses which are not zeroes of
P (x) but between them there is a zero of P (x), then the curve y = P (−x) can
go directly from the connected component of the first cross to the connected
component of the second cross through this zero. But if P (x0) = P (−x0) = 0
then x0 is a zero for both Pe and Po, thus we anyway get two zeroes.

It remains to consider the case when we have a cross which is also a zero of
P (x). Assume that crosses from the number m to m+ l are zeroes of P (x) and
crosses number m− 1 and m+ l+ 1 are not (or there are no crosses with these
indices). Then each of these l + 1 zeroes are both zeroes for Pe and Po, thus
giving us two intersections. Finally, since the m + l’th cross is separated from
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m + l + 1’st by at least one more zero of P (x) we have to enter the connected
component corresponding to this zero and the same between m’th and m− 1’st
zero, thus giving us the same number of intersections as in the case when P (x)
and P (−x) did not have common zeroes.

5 Completeness of E(Z,Γ) in L2(a, b)

Part (i) of Theorem 1 follows from

Theorem 3. Given any finite set Γ ⊂ N0, the system E(Z,Γ) is complete in
L2(a, b) if and only if b− a ≤ #Γ.

Proof. (i) Assume b−a ≤ N := #Γ. It is then a simple consequence of Lemma 4
that E(Z,Γ) is complete in L2(a, b). Indeed, if the system is not complete
then there exists non-trivial f ∈ L2(a, b) which is orthogonal to our system.
Therefore, the measure f dx is also orthogonal to the system, but it can not be
a sum of delta measures unless f is identically zero.

(ii) Assume that b− a > N . We have to prove that E(Z,Γ) is not complete
in L2(a, b), i.e. that there is a non-trivial function F ∈ L2(a, b) such that

b∫

a

tγe−2πint F (t) dt = 0, for every γ ∈ Γ, n ∈ Z. (11)

The existence of such a function follows essentially from elementary linear alge-
bra.

We have b = a+N + δ, for some δ > 0, and may assume that δ < 1. Write
F in the form

F (t) =

N∑

j=0

Fj(t− j), t ∈ (a, a+N + δ),

where Fj(t) := F (t+ j)1(a,a+1)(t) vanish outside (a, a+ 1) for j = 0, ..., N − 1,
and fN vanishes outside (a, a + δ). Here 1(a,a+1) is the characteristic function
of (a, a+1). Clearly, to prove (11) it suffices to find N +1 non-trivial functions
Fj as above satisfying for a.e. t ∈ (a, a+ 1) the system of N equations

N∑

j=0

(t+ j)γFj(t) = 0, for all γ ∈ Γ, t ∈ (a, a+ 1).

Rewrite this system in the matrix form

V (t)·(F0(t), ..., FN−1(t))
T = −((t+N)γ1 , ..., (t+N)γN )T ·FN (t), Γ = {γ1, ..., γN},

where V (t) := V ((t, t + 1, . . . , t + (N − 1); Γ) is a generalized Vandermonde
matrix defined above, whose determinant has only finite number of real zeroes.
Therefore, there is an interval I ⊂ (a, a+δ) where V (t) is invertible and satisfies

sup
t∈I

sup
x∈RN , ∥x∥=1

∥V −1(t) · x∥ < ∞.
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Now, one can simply choose FN (t) := 1I(t) and set

(F0(t), ..., FN−1(t))
T := −V −1(t) · ((t+N)γ1 , ..., (t+N)γN )T · 1I(t).

Remark 1. One can check that the above result on completeness of E(Z,Γ) in
L2(a, b) remain true for the space Lp(a, b), 1 ≤ p < ∞.

6 Completeness of E(Z,Γ) in C([−a, a])

Theorem 4. E(Z,Γ) is complete in C([−a, a]) if and only if a < r(Γ).

Clearly, this theorem implies CRC(Z,Γ) = r(Γ).

Proof. 1. Suppose a ≥ r(Γ). We have to check that the system is not com-
plete in C([−a, a]). Clearly, it suffices to produce a bounded measure µ on
[−r(Γ), r(Γ)] which satisfies (6).

Set O := #Γodd,E := #Γeven and

f(x) =





sin(πx) +
O∑

k=1

αk sin ((2k + 1)πx) , if O < E,

1 +
E∑

k=1

αk cos (2πkx) , if O ≥ E,
(12)

where {αk} ⊂ R.

Lemma 5. There exist numbers αk in (12) such that f satisfies

f (γ)(n) = 0, γ ∈ Γ, n ∈ N. (13)

It is easy to check that f in (12) is the Fourier-Stieltjes transform of a
measure supported by [−r(Γ), r(Γ)]. One may therefore easily see that Lemma 5
proves the necessity in part (i) of Theorem 4.

Proof of Lemma 5. Consider the case E ≤ O.
We wish to find αk so that the function

f(x) = 1 + α1 cos(2πx) + · · ·+ αE cos(2πEx)

satisfies (13).
It is clear that every odd derivative of f vanishes on Z. Therefore, it suffices to

find the coefficients so that f (γ) vanishes on Z for every γ ∈ Γeven (in particular,
for γ = 0). This is equivalent to saying that the coefficients must satisfy the
following system of E linear equations:

γ = 0 : α1 + · · ·+ αE = −1

and
γ ∈ Γeven, γ ̸= 0 : (2π)γα1 + (4π)γα2 · · ·+ (2πE)γαE = 0.

This system has a unique non-trivial solution by Proposition 1.
The case E > O is similar, and we leave the proof to the reader.
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We return now to the proof of Theorem 4.
2. Assume a < r(Γ).We have to show that E(Z,Γ) is complete in C([−a, a]),

i.e. that the only measure µ on [−a, a] which satisfies (6) is trivial.
We will consider the case E ≤ O, i.e. r(Γ) = E. Clearly, we may assume

that E = O and so E = N/2, where N := #Γ is an even number. Also, to avoid
trivial remarks, we assume that N ≥ 4.

Assume that µ is concentrated on [−a, a] and satisfies (6). By (7) and
Lemma 4, since µ({±N/2}) = 0, we have

dµ =
∑

s∈S

dµs + dν =
∑

s∈S

N∑

j=1

cs,jδs+j−1 +

N∑

j=2

ajδ−N/2+j−1,

where S is a finite subset of (−N/2,−N/2 + 1) and the coefficients cs,j satisfy
for every s ∈ S the system of equations (8). By part (ii) of Lemma 2, this
system has only trivial solutions cs,j = 0, j = 1, ..., N, s ∈ S \ (1/2)Z, and so

µ = ν1 + ν, dν1 :=
N∑

j=1

cjδ−N/2+j−1/2,

where ν and ν1 both are orthogonal to E(Z,Γ).
Let us check that ν = 0. It is more convenient to write ν in the form

ν =

N/2−1∑

k=−N/2+1

bkδk, bk := aN/2+k+1.

Then clearly, (6) is equivalent to the system of N − 1 equations:

N/2−1∑

k=−N/2+1

kγbk = 0, for every γ ∈ Γ.

This is equivalent to the following systems:

N/2−1∑

k=0

kγ(b−k + bk) = 0, γ ∈ Γeven,

N/2−1∑

k=1

kγ(b−k − bk) = 0, γ ∈ Γodd.

One may now use Proposition 1 to deduce that b−k + bk = b−k − bk = 0, for
every k, thus bk = b−k = 0 for every k, that is ν = 0. Similarly, one may check
that ν1 = 0, and so µ = 0.

The proof of the case O < E is similar is left to the reader.

Remark 2. One can prove that for a ∈ [r(Γ),#Γ/2], the deficiency of E(Z,Γ)
in C([−a, a]) is always finite.
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7 Frame Property of E(Z,Γ)
The frame property of E(Z,Γ) in L2(a, b) is closely connected with the com-
pleteness property of E(Z,Γ) in C([a, b]):

Theorem 5. Assume a < b and ϵ > 0.
(i) If E(Z,Γ) is complete in C([a, b]), then E(Z,Γ) is a frame in L2(a, b).
(ii) If E(Z,Γ) is not complete in C([a, b]), then E(Z,Γ) is not a frame in

L2(a− ϵ, b+ ϵ).

Observe that to finish the proof of Theorem 1, it remains to show that
FR(Z,Γ) = r(Γ). This follows easily from Theorem 4 and Theorem 5.

Proof of Theorem 5. (i) Assume that the system E(Z,Γ) is complete in C([a, b]).
We have to show that it is a frame in L2(a, b).

Recall that E(Z,Γ) is a frame in L2(a, b) if there are positive constants A,B
such that

A∥F∥22 ≤
∑

n∈Z

∑

γ∈Γ

|⟨F, tγe2πint⟩|2 ≤ B∥F∥22, for every F ∈ L2(a, b). (14)

Using the Fourier transform, this is equivalent to the condition

A∥f∥22 ≤
∑

n∈Z

∑

γ∈Γ

|f (γ)(n)|2 ≤ B∥f∥22, (15)

where f is the inverse Fourier transform of F .
It is standard to check that the right hand-side inequality in (14) (and in

(15)) holds for every interval (a, b), see e.g. [7], Lecture 2. So, we only prove
the left hand-side inequality.

By Theorem 1, E(Z,Γ) is not complete, and so is not a frame in L2(a, b) when
b− a > N := #Γ. Therefore, in what follows we may assume that a+ k − 1 <
b ≤ a+ k, for some k ∈ N, k ≤ N .

Write

F (t) =
k−1∑

j=0

Fj(t− j), Fj(t) := F (t+ j) · 1(a,a+1)(t). (16)

Then we have

⟨F, tγe2πint⟩ =
a+1∫

a

e2πint




k−1∑

j=0

(t+ j)γFj(t)


 dt.

Hence,
∑

n∈Z
|⟨F, tγe2πint⟩|2 = ∥

k−1∑

j=0

(t+ j)γFj(t)∥22.
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We see that the left hand-side inequality in (14) is equivalent to

∥Vk(t) · (F0(t), . . . , Fk−1(t))
T ∥22 ≥ A∥F∥22, (17)

where
Vk(t) := V (t, . . . , t+ k − 1; Γ)T

denotes the k ×N matrix which consists of the first k columns of V (t, . . . , t +
N − 1; Γ), and we set

∥(G1, . . . , Gk)
T ∥22 := ∥G1∥22 + · · ·+ ∥Gk∥22.

Let us first consider the case b = a+k. Since E(Z,Γ) is complete in C([a, b]),
there is no measure µ on [a, b] orthogonal to this system. Then, since any
measure of the form

dµ =

k−1∑

j=0

xjδt+j , (x1, . . . , xk) ∈ Rk \ {0}, t ∈ [a, a+ 1],

is not orthogonal to E(Z,Γ), we see that Vk(t) · xT ̸= 0, for every x ∈ Rk \ {0}
and t ∈ [a, b]. Therefore, there is a constant A such that

∥Vk(t) · xT ∥2 ≥ A∥x∥2, t ∈ [a, a+ 1],

which implies (17).
Now, let us assume that b = a + k − 1 + δ, where 0 < δ < 1. Then the

function Fk−1 in (16) satisfies Fk−1(t) = 0, δ < t < 1. Similarly to above, for
every vectors x ∈ Rk and y ∈ Rk−1 we have

∥Vk(t) · x∥ ≥ A1∥x∥, t ∈ [a, a+ δ], ∥Vk−1(t) · y∥ ≥ A2∥y∥, t ∈ [a+ δ, a+ 1],

from which (17) follows.
(ii) Assume that the system E(Z,Γ) is not complete in C([a, b]). We have to

show that it is not a frame in L2(a− ϵ, b+ ϵ), for every ϵ > 0. We may assume
that 0 < ϵ < 1/2.

Let g be the inverse Fourier transform of a measure µ on [a, b] that is or-
thogonal to the system. Then g(γ) vanishes on Z, for every γ ∈ Γ.

Choose any r, 0 < r < ϵ, and consider the function

f(x) := g(x)φ(x), φ(x) :=
sin(πrx)

πrx
.

Then, clearly, f is the (inverse) Fourier transform of an absolutely continuous
measure on (a− r, b+ r) ⊂ (a− ϵ, b+ ϵ), and

∥f∥2 > C > 0, where C does not depend on ϵ. (18)

We will need
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Lemma 6. There is a constant C such that
∑

n∈Z
|φ(j)(n)|22 ≤ Cjrj , j ∈ N. (19)

The proof of the lemma follows from two observations:
(i) φ is the Fourier transform of 1(−r/2,r/2)(t)/r, and so φ(j) is the Fourier

transform of
(−2πit)j1(−r/2,r/2)(t)/r.

It easily follows that ∥φ(j)∥22 ≤ Crj , j ∈ N.
(ii) The sum in (19) is equal to the norm ∥φ(j)∥22.
Using (19), since g(γ), γ ∈ Γ, vanishes on Z and the functions g(j), j ∈ N, are

bounded on R, one can easily check that
∑

n∈Z

∑

γ∈Γ

|f (γ)(n)|2 =
∑

n∈Z

∑

γ∈Γ

|(gφ)(γ)(n)|2 ≤ Cr,

for some C. This and (18) imply that the left hand-side inequality in (15) is
not true for all small enough values of r.

Remark 3. Observe that by Theorem 3, E(Z,Γ) is not complete in C([a, b])
whenever b − a > N := #Γ. Let us state two results on the completeness of
E(Z,Γ) in C([a, b]) when a ≥ 0:

(i) Using part (i) of Lemma 2 and Lemma 4, one may check that E(Z,Γ) is
complete in C([a, b]) whenever b − a < N and if a > 0 then we don’t need the
assumption 0 ∈ Γ.

(ii) One may also prove that E(Z,Γ) is complete in C([a, a+N ]) if and only
if a ̸∈ N0.

Remark 4. Let us come back to the exponential systems E(Z,Γ(n)) defined in
the beginning of Section 2. Here we present a simple example which illustrates
that such systems may have strikingly different completeness properties in L2-
spaces and C-spaces.

Let f(x) = sin(πx/2). Then f (2k)(2n) = f (2k+1)(2n+ 1) = 0, for every k ∈
N0, n ∈ Z. Then, since f is the inverse Fourier transform of (δ1/4 − δ−1/4)/2i,
the system

{t2ke4πint : k ∈ N0, n ∈ Z}
⋃

{t2k+1e2πi(2k+1)t : k ∈ N0, n ∈ Z}

is not complete in C([−1/4, 1/4]). On the other hand, one may check that it is
complete in L2(I) on every finite interval I ⊂ R.
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