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A B S T R A C T   

As a potential alternative to Portland cement, geopolymers are getting wider acceptance in the scientific world. 
On a laboratory scale, the latter is being experimented repeatedly to extract valuable and valid results. To 
complement the experimental work and to make use of the data that resulted from previous experiments, sta-
tistical and mathematical models are developed. This article aims to anticipate test results, extract statistical 
relationships from measured properties, and therefore minimize the time and trials needed to run experiments in 
laboratories. Five independent input parameters are measured that cover the SiO2/K2O ratio, temperature, time, 
liquid to solid ratio and the total water content. For each set of these input variables, the consistency of geo-
polymers was obtained. 

Two statistical models have been developed in this regard, the Decision Tree, which is a heuristic machine 
learning model, and the Logistic Regression which is a probabilistic model that calculates and estimates the 
probability for a certain mixture, at different time, temperature, and other independent variables, to reach a 
certain consistency threshold. 

Both model results indicate sufficient performance, and the modelers can use such methods to predict the 
consistency (pumping time) trends of an untested geopolymer mixture. The results of our models are further 
validated by additional statistical tests, such as the receiver operating characteristic curve.   

1. Introduction 

Well cementing and Plug and Abandonment (P&A) operations 
consist of restoring natural barriers with artificial ones. Portland cement 
is the dominant material used for zonal isolation and well abandonment 
as barrier material. The established cement barrier should meet the re-
quirements of local regulators or international independent organiza-
tions such as American Petroleum Institutes, and Norwegians Standards. 
There are a number of criteria for zonal isolation or well abandonment 
materials, including but not limited to, provide long-term integrity 
(eternal perspective), impermeable, non-shrinking, ability to withstand 
mechanical loads/impact, and ensure bonding to steel and formation 
(NORSOK D-010, 2013). 

Despite its widespread usage, Portland cement still faces shortcom-
ings like volume change, permeability, low ductility, and long-term 
durability concerns. These may result in leakage of fluid and 

numerous well integrity challenges. Researchers have been trying to 
develop alternative barrier materials to Portland cement to address the 
challenges associated with the performance of cement and minimizing 
concerns related to the emission of CO2 during its manufacturing pro-
cess. Among available alternative materials to Portland cement, one may 
refer to alkali activated based cement, cement modified with amorphous 
silicates, and geopolymers. 

Geopolymers, also known as inorganic polymers, are mainly 
composed of aluminosilicate obtained from waste streams which react in 
presence of alkali silicate solution (Khalifeh et al., 2015). On a labora-
tory scale, geopolymers developed for zonal isolation have shown su-
perior properties compared to Portland cement. Different researchers 
have analyzed and studied the mechanical, physical and chemical 
properties of geopolymers. Of these properties one may refer to viscos-
ity, thickening time, bulk volume change, uniaxial compressive 
strength, sonic strength, shear bond and hydraulic bond strengths, 
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contamination with drilling fluids, and long-term durability of geo-
polymers at downhole conditions (Khalifeh et al., 2014, 2016; Sugu-
maran, 2015; Salehi et al., 2016, 2017, 2018; Liu et al., 2017, 2019; 
Olvera et al., 2019; Eid et al., 2021). The use of geopolymers is still at an 
early stage, with no field applications until today, and it is mainly 
conducted at laboratory scale. The latter needs to be conducted exten-
sively, repeatedly, and with consistency to have valid and valuable re-
sults, and this consumes time and effort. Previous experimental results 
have shown that geopolymerization reaction is a function of different 
parameters (e.g., reactivity and particle size of precursors, type of 
hardener, molar ratio, liquid to solid ratio, total water content, pH value, 
temperature, total two capacity cations, etc.) and extensive sensitivity 
analysis has already been conducted by different researchers (Chams-
sine et al., 2021; Salehi et al., 2016; Khalifeh et al., 2016). Although 
controlling pumpability of geopolymers by use of admixtures have been 
achieved, this a time-consuming task to conduct sensitivity analysis by 
changing dosage of the admixtures. Therefore, predicting trend of con-
sistency can help researchers to manage time and resources. In addition, 
this prediction can be used in field to find out the pumping time of these 
geopolymers. 

The objective of this article is to predict workability of the geo-
polymers by using statistical and mathematical models to theoretically 
suggest the optimum mix design. The resultant optimized mixture can 
then be experimentally tested and verified. This article considers 
benchmarking against the experimental data on the rock-based geo-
polymers and excludes wider range of experimental data on other types 
of geopolymers. 

2. Experimental procedure 

2.1. Materials preparation 

Rock-based geopolymeric precursors – Geopolymeric precursors consist 
of ground naturally occurring rock, slag and source of amorphous silica, 
mixed to normalize the chemical composition of the precursors. Reac-
tivity, particle size distribution and chemical composition of the pre-
cursors have been extensively discussed by Alvi et al. (2020) and 
Khalifeh (2016). However due to the complexity of modeling, particle 
size and chemical composition of the precursors have not been included 
as input parameters. 

Hardener – The geopolymeric binder known as hardener used in this 
study is potassium silicate solution. The used modular ratio ranges be-
tween 2.08 and 2.45. 

Deionized water – Used to adjust the total water to total solid ratio. 

2.2. Testing procedures 

API recommended test procedure (API RP 10B-2, 2013) is followed 
to prepare the slurries, and for measuring thickening time, known also 
with other names such as pumpability and workability. Atmospheric 
consistometer (see Fig. 1) is used to measure the thickening time of the 

slurries. Consistency is the ability of slurry to be pumped or its resistance 
to flow, which is the resultant of the internal cohesion forces between 
the molecules found in the material. Table 1 presents mix design of the 
geopolymeric slurries used in this study, besides the five main param-
eters that have impact on rock-based geopolymers with fixed precursor 
content. The selected temperature ramp-up rate was 1 ◦C/min, and two 
bottomhole circulating temperatures (BHCT) were selected for this 
study: 50 and 65◦C. All these experiments were repeated three times to 
ensure reliability and consistency of the measured data. 

From an operational point of view, slurry consistency is the main 
variable that engineers use to measure the pumpability of cementitious 
material and consequently its placeability. In the context of well 
cementing, a consistency of 40Bc or less is generally considered as 
pumpable and above it as risky to pump. In this document, the time 
required to reach 100 Bc will be referred to as the thickening time. 

Figs. 2 and 3 show the measured consistency data at 50 and 65 ◦C of 
BHCT, respectively. By ramping up the temperature, the consistency 
decreases until a certain limit. This is regarded as the dissolution phase 
where reactive aluminosilicates are dissolved and transported. Then, 
consistency starts to increase from 20 to 40 Bc, this is the oligomeriza-
tion phase. The consistency increase from 40 to 100Bc takes less than 2 
min for the W-78 slurry at 50 ◦C. This is the polycondensation phase 
where all oligomers get linked and the slurry solidifies. When the molar 
ratio of the slurry is increased, the polycondensation rate decreases and 
therefore, the right-angle-set disappears (see test conducted at 65 ◦C). 
All the tests have been conducted three times to minimize errors and 
uncertainties originate from experimental part of this study. 

3. Knowledge and background on modeling 

Classical regression models postulate a relationship between inde-
pendent (predictor) and dependent (response) variables, based on spe-
cific functions, distributions type, and parameter estimates. Such models 
rely on methods such as least square estimation and maximum likeli-
hood to estimate the regression parameters. Least square method and 
maximum likelihood are two main methods used to estimate parameters 
from a random sample in the form of a multivariate regression analysis. 
Least square method is calculated by fitting a mathematical function to 
the points from a data set that has the minimal sum of the deviations 
squared (least square error). Maximum likelihood depends on the joint 
distribution function. Therefore, maximizing the likelihood function 
determines the parameters that are most likely to produce the observed 
data. 

Fig. 1. API mixer and the shape of its blade (left & middle) and the atmospheric 
consistometer and its part (right). 

Table 1 
Experimental data.  

Data 
set 

Modular 
ratio (SiO2/ 
K2O) 

Temperaturea 

range (◦C) 
Timeb 

(minutes) 
Liquid to 
solid 
ratio 

Total 
water 
content 
(g) 

1 2.08 (W-78) 25 -> 50 22.7 ->
51.3 

0.5542 265 

2 2.16 (W-79) 25 -> 50 20.5 ->
99.4 

0.5542 266 

3 2.21 (W-80) 25 -> 50 20.2 ->
106.7 

0.5543 266 

4 2.45 (W- 
108) 

20 -> 65 10.2 ->
100.3 

0.585 232 

5 2.45 (W- 
109) 

20 -> 65 13.5 ->
100.6 

0.585 228 

6 2.45 (W- 
113) 

20 -> 65 17.9 ->
99.9 

0.577 223  

a Continuous set of temperature profile that starts with 0 until it stabilizes and 
reaches a certain value over time. The increment that dictates the increase is 
over 1/1000 per increment. 

b Time is stopped when the reaction reaches the thickening time (Time to 
reach 100 Bc). 
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Other models look beyond linear regression (and variants) for com-
plex multi-dimensional data sets. The idea is to extract the model from 
the data without making any assumptions regarding the underlying 
functional form, such models are referred to as machine learning. These 
methods are referred to as non-parametric, where no assumptions on 
data distribution are made. The latter models are also efficient in 
identifying patterns in data, capturing non-linear relationship between 
variables, and giving accurate results in classification problems, where 
response variable is categorical. Researchers started to include artificial 
intelligence tools to investigate the relationship between input param-
eters and choose the optimum compositions with minimal lab experi-
ments (Van Dao et al., 2019; Pacheco-Torgal et al., 2014). The main 
advantages of machine learning are its ability to learn directly from the 
observed data, its ability to find patterns from incomplete data sets, and 
its ability to generalize results from out of sample observations (Nazari 
and Pacheco-Torgal, 2013). 

Dao et al., (2019) used artificial intelligence to predict the geo-
polymer compressive strength based on the analysis of input parameters 
such as fly ash, sodium silicate solution, sodium hydroxide, and water 
content. They used two different machine learning models to predict the 
compressive strength. Such models are Artificial Neural Network (ANN) 
and Adaptive neuro-fuzzy inference system (ANFIS). The results showed 
that both techniques performed well and consequently show strong 

potential for predicting the compressive strength of geopolymer cement, 
and this is clearly indicated by the low mean absolute error and high 
coefficient of determination of both models, but with an edge that the 
ANFIS model has on ANN. On the other hand, other researchers were 
able to predict compressive strength of geopolymers by using ANN and 
changing its architecture and the choice of its input data. They were able 
to achieve decent results (Nazari and Pacheco-Torgal, 2013; Yadollahi 
et al., 2015; Siva Krishna and Ranga Rao, 2019). The input data used in 
each study are tabulated in Table 2. 

Researchers have also considered using decision tree to predict the 
concrete strength, which resulted in a high accuracy prediction. The 
decision tree showed better results relative to the Linear Regression 
(LR), and ANN (Deepa et al., 2010). In addition to the compressive 
strength, researchers developed ANN modules to predict setting time 
and geopolymerization peak heat. Three models were conceived sepa-
rately with SiO2/Na2O ratio in alkali silicate solution, alkaline solution 
concentration in the liquid phase, and the liquid/fly ash mass ratio 
(L/F), as variable input parameters (Ling et al., 2019). Although ma-
chine learning techniques have advantages regarding saving time, they 
still face several shortcomings. Where it requires a large amount of data, 
it also requires a lot of time for trial and error to reach the optimum 
algorithm. 

Non-parametric models are vast and as previously mentioned; the 
most common method used is the Neural Network. However, it is not 
well suited in our context of study for four main reasons: First, the 
amount of data that is not large enough to let the neural network 
approach outperform other classical approaches. The more data one 
feeds a neural network, the better it gets. In other words, less data in-
dicates weak approximation, which will eventually mean less capability 
of memorizing, and lead to less model performance when generalizing 
on a new data set. Second, most of the variables can be considered as 
categorical (see Table 2) and not a continuous set. As the possible values 
of some of the independent variables (liquid to solid ratio and total 
water content) belong to a finite set of values with low cardinality, so it 
is reasonable to consider these variables as categorical and to use them 
as an input for our decision tree. Third, using another traditional ma-
chine learning algorithm such as Decision Tree will be easier to inter-
pret, especially when analyzing the results. Finally, we have noticed that 
most of cited researchers used machine learning ANN method, have 
constructed several network architectures and compared the result of 
the latter models. It is rather a drawback in such a method, as building a 
Neural Network is considered as a subjective study, where the choice of 
the number of layers, number of neurons, the nature of activation 
functions, stopping condition, among many other parameters, is not 
objective and several unjustified decisions have to be made in this re-
gard. Therefore, and unless the user of the ANN model, conducts an 
exhaustive sensitivity analysis, and studies the robustness of the archi-
tecture chosen while constructing the model, it is meaningless to use 
neural networks and to consider a high level of complexity. The decision 
tree offers a better alternative, because of the nature of data which is a 
better fit for the structure of the Decision Tree algorithm, in addition 
there is no need for sensitivity, or trial and error estimates, which re-
duces the time of cross-validation. 

The decision tree method will be complemented by a probabilistic 
analysis. Estimating the exact value of the consistency is not the primary 
objective of this analysis but the trend. In addition, our data is cate-
gorical and therefore the decision tree results will be complemented by 
evaluating the probabilistic distribution of the level of consistency. In 
other words, a second statistical approach is used to calculate and esti-
mate the probability for a certain mixture, subjected to different phys-
ical and chemical properties, to reach a certain threshold of consistency. 
The latter method is called logistic regression, and it describes to us that 
when any of the input variables listed in Table 2 change, how the con-
sistency will behave in a probabilistic way. This is very useful, espe-
cially, when there are limited experimental data. 

Decision tree – It is a method based on data statistical machine 

Fig. 2. Experimental data shown on graph with temperature profile 
(50 ◦C BHCT). 

Fig. 3. Experimental data shown on graph with temperature profile 
(65 ◦C BHCT). 
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learning. Its operation is based on heuristics which, while satisfying the 
intuition, gives remarkable results in practice. It is an essential explor-
atory technique for uncovering structures in the data, and it is used to 
explain responses for a categorical set of variables. Its tree structure also 
makes them readable by a human being, unlike other approaches where 
the constructed predictor is a “black box". 

Probabilistic analysis – It can calculate and estimate the probability 
for a certain mixture, at different times, temperatures, and other inde-
pendent variables, to reach a certain threshold. 

In this work, the decision tree method is applied to analyze lab re-
sults of the geopolymer pumpability, uncover structures in the data and 
explain response for a categorical set of variables, in order to predict the 
behavior of non-tested composition. Since the data is categorical, and to 
complement our analysis, a second statistical approach is used to 
calculate and estimate the probability for a certain mixture, subjected to 
different physical and chemical properties, to reach a certain threshold. 
The probability is calculated using a generalized multi-linear model with 
binary dependent variable, otherwise known as logistic regression. 

4. Methods/data and models formulation 

4.1. Model formulation of decision tree 

A decision tree is formed by a set of branches and nodes. Starting 
from the root node to the leaf node each path represents a certain de-
cision rule. The passage from a node to another is based on a logical “if- 
then” rule. In other words, a decision tree models a hierarchy of tests on 
the values of a set of variables called attributes. At the end of these tests, 
the predictor produces a numerical value or chooses an element from a 
discrete set of conclusions. In our context, we are in the case of regres-
sion because the value to predict is a real number (consistency of slurry). 

To split a parent node into child nodes, we focus on the effect of each 
input variable on the target variable. So, starting by the root node one 
can split records into two or more categories based on characteristics 
that are related to the degree of homogeneity of the resultant child 
nodes. The most popular characteristic used to perform the splitting 
procedure is entropy, otherwise known as deviance or information 
attribute. It is analogous to the residual sum of squares in classical linear 
regression. Before explaining the algorithm, some notations will be 
presented in Table 3: 

A node is called pure if all its observations belong to the same region 
of the dependent variable. Now, functions that make it possible to 
measure the degree of homogeneity in the different regions of the 
dependent variables are introduced. The most popular function used to 
measure the homogeneity is Entropy function defined by: 

H (p)= −
∑C

k=1
P(k|p)ln P(k|p) (1) 

So, we recursively and as efficiently as possible divide the set of 
observations through tests defined using variables until one obtains 

subsets of observations containing (almost) only observations belonging 
to the same region (An entropy under a certain fixed threshold to define 
purity). The algorithm continues performing splitting until a pre-defined 
level of homogeneity is reached and this threshold is used as stopping 
criteria of the algorithm. This splitting procedure continues until pre- 
determined homogeneity or stopping criteria are met. In our case, the 
target is to reach a status where all leaf nodes are pure with entropy of 
zero or where a pre-specified minimum change in purity cannot be made 
with any splitting methods. In some cases, a certain input variable is 
used more than one time in the splitting procedure, and in other cases 
some input variable is never used during path rule construction phase. 

Our model was trained on five out of the six sets of data (see Table 2) 
and tested on the 6th set. The quota sampling approach is used instead of 
the purely random sampling approach to select the training and testing 
sets of data. That is why the first five sets out of six (representing 83% of 
the data) were selected to train the model and the last set to test it. This 
kind of approach is usually used when the underlying data is divided 
into several homogeneous subsets which is the case of our data. We 
selected the sets for training data in such a way as to get the best per-
formance on the prediction level when moving to test data. The vali-
dation strategy is performed while taking into account the size of 
experimental data we have at hand. It is based on the fact that the data is 
divided into 5 sets for building both models and one set completely out 
of the bag to validate and test the predictive capability of the model. The 
selection of these sets is based on the principle of minimizing the out of 
bag errors (OOB errors) which is a technique widely used in machine 
learning to reduce overfitting. 

An option to overcome the complexity of predicting exact values of a 
certain dependent output variable through a machine learning tech-
nique is to consider a probabilistic alternative approach based on the 
classical logistic regression, where the target is to compute the proba-
bility of being above a certain threshold instead of predicting the exact 
value. 

4.2. Model formulation of logistic regression 

To evaluate the probabilistic distribution of the level of consistency 
through a generalized multi-linear model with binary dependent vari-
able, we define: 

Yi =F(β
′

Xi)+ εi ; i ∈ {1, 2,…,N} (2)  

where,N = number of observations, F(∙) is a cumulative distribution 
function (CDF), εi is the residual term with E[εi] = 0 and Yi follows a 
Bernoulli distribution of parameter. The notations for the Logistic 
regression are found in Table 4: 

Then, 

Yi =

{
1 When the level of consistency is above a certain threshold

0 Otherwise .

The vector Xi = (X1i,X2i, …,Xpi) represents the p independent vari-

Table 2 
Input statistical model variables found in the previous articles.  

Authors Nazari and Pacheco Torgal 
(2013) 

Deepa et al. (2010) Siva Krishna et al. (2019) Van Dao et al. (2019) Yadollahi et al. (2015) 

Methods 
used 

ANN ANN, Linear regression, 
decision tree 

ANN ANFIS ANN 

Input 
variables 

Curing time (days) 
Ca (OH) 2 content (wt%) 
Amount of superplasticizer 
(wt%) 
NaOH concentration (M) 
Mold type 
Geopolymer type 
H2O/Na2O molar ratio 

Water to binder ratio 
Water content 
Fine aggregate ratio 
Fly ash replacement ratio 
Silica fume replacement 
ratio 
Super plasticizer 

Molar concentration of alkali 
solution 

Fly ash 
Sodium silicate solution 
Sodium hydroxide 
Water content 

MS (SiO2/Na2O) 
Na2O content 
Water-blinder (w/b) ratio 
Ultrasonic pulse velocity 

Output 
variable 

Compressive strength of 
geopolymers 

Compressive strength of 
concrete 

Compressive strength of 
geopolymers 

Compressive strength of 
geopolymers 

Compressive strength of 
geopolymers  
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ables for the ith observation, and β = (β1, β2, …, βp) is the vector of co-
efficients to be estimated. Therefore, the problem consists of estimating 
πi based on observations Xi. In our study, the dependent variable is 
qualitative with binary outcomes, the most commonly used CDF is that 
of the logistic distribution defined as: 

F(u)=
eu

1 + eu (4) 

That is the reason to call this regression, in this particular situation, 
“Binary Logistic Model” (Cox, 1958), where the probability, for obser-
vationi, to be above a certain level of consistency will be estimated by: 

πi =
eβ

′
Xi

1 + eβ′ Xi
(5) 

However, equation (5) is not useable unless one estimates the 
parametersβ. To do this, we use the classical principle of maximum 
likelihood. In our case, the likelihood function is given by: 

L(y1,…, yN)=
∏N

i=1
P[Yi = 1|xi]

yi (1 − P[Yi = 1|xi])
1− yi , (6)  

=
∏N

i=1
πyi

i (1 − πi)
1− yi  

where, yi and xi are the observed values of the variables Yi,Xi. By 
applying the logarithmic function, we will obtain the log-likelihood 

function: 

l(y1,…, yN)=
∑N

i=1
[yi ln πi +(1 − yi)ln(1 − πi)] (7) 

Thus, the estimation of β is done by maximizing the log-likelihood 
through solving the system of partial derivatives: 

∂l
∂βj

= 0; j ∈ {1, 2,…, p} (8) 

Solution of system (8) is obtained by the iterative method of Newton- 
Raphson and the estimated parameters will be denoted by ̂β = (β̂1, β̂2,…,

β̂p). 
In our application, we consider the following independent variables: 

X1 = “time in minutes”, X2 = “temperature in degree Celsius”, X3 =

“Modular ratio”, X4 = “Liquid to Solid ratio (l/s)”, and X5 = “Total 
Water”. On the other hand, the level of consistency is considered as 
dependent variable. 

Therefore, an explicit expression of the logistic model is: 

Yi =F(β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5)+ εi; i ∈ {1,…,N} (9)  

where, β0 is the intercept coefficient. 
Now, after estimating all the coefficients of the model and consid-

ering statistically significant ones, we can compute the probability that 
the consistency is above a certain priori fixed threshold for a given time, 
temperature, and ratio. 

Analytically, these probabilities are given by: 

πi =
eβ0+β1X1i+β2X2i+β3X3i+β4X4i+β5X5i

1 + eβ0+β1X1i+β2X2i+β3X3i+β4X4i+β5X5i
(10)  

where, the index i is added to indicate the observation with1 ≤ i ≤ N. 

5. Results & discussion 

5.1. Decision tree results 

As mentioned in the above section, we have a set of 5 independent 
variables and the consistency as the dependent variable. In addition, 
there are six different compositions, otherwise defined as data sets (see 
Table 2). The aim is to analyze the data and try to establish a relation-
ship between the variables, to anticipate the behavior of the 
geopolymers. 

The results of the Decision Tree method are illustrated in Fig. 4. 
Starting from the root node, the temperature in our case, the second and 
third child nodes are formed by splitting it. The split point is the value of 
64.917◦C. As shown, a second independent variable is found in node 2 
and it is the modular ratio (SiO2/K2O). The shape of the tree and the 

Table 4 
Nomenclature of the logistic regression. 
πi = E[Yi] =P[Yi = 1|Xi ] =F(β

′

Xi) (3)   

Variable Definition 

Y Binary dependent variable 
N Number of observations 
F(∙) Cumulative Distribution Function, CDF 
i Index of observation 
εi Residual term 
E[ .] Expected value 
πi Probability of observation i, to be above a certain threshold of 

consistency 
Xi Independent variable 
β Regression coefficients 
β

′ Transpose of B 
e(.) Exponential function 
yi Observed values of the variables Yi 

xi Observed values of the variables Xi 

L(y1 ,…,yN) Likelihood function 
l(y1,…,yN) Log-likelihood function 
β̂ Estimated parameters, by the maximum likelihood method 
β0 Intercept 
h Length of a step between two points 
ORi Odds ratio of variable Xi  

Table 5 
Non-parametric modeling results.  

Machine 
Learning Model 
used 

Decision Tree ANN 

Hyper- 
parameters  

❖ The minimum sum of weights in 
a node in order to be considered 
for splitting (20)  

❖ The minimum sum of weights in 
a terminal node (7)  

❖ The depth of the tree (0) means 
that no restrictions are applied to 
tree sizes.  

❖ The number of considered cross 
validations (10)  

❖ Activation function 
= ReLU function  

❖ Number of hidden 
layers = 1  

❖ Number of nodes in 
the hidden layer = 3  

❖ Loss function =
Mean Squared 
Errors, MSE  

❖ Optimizer = Adam  
❖ Batch size = 50  
❖ Epochs = 200 

R-squared 0.93 0.90 
MSE 30.2 42.8  

Table 3 
Nomenclature of the decision tree.  

Variable Definition 

n Number of observations 
k Index of leaf node representing a particular region of the dependent 

variable (k = 1, …,153) 
p Position of the node inside the Tree 
N(p) Number of observations associated with the node that is in position p. The 

latter is related to the corresponding layer in the decision tree 
N(k|p) Number of observations related to a certain region k of the dependent 

variable given that we are at the position p 
P(k|p) Proportion of observations belonging to region k among those in position 

p 
H (.) Shannon’s Entropy  
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splitting procedure is about finding attribute that returns the highest 
information gain (lowest entropy). The final nodes, called leaf nodes, 
show the predicted outcome of consistency. It is worth noting that in our 
case we have 153 predicted outcomes for consistency and each of these 
discrete values is the mean value of observations in that node. For 
example, the final node on the left side of the graph has an average value 
of 4.67 Bc consistency; this value is the mean of 99 observations that fall 
under this node. 

The decision tree in our case is graphically exhaustive, and it is 
important to note that certain input variables are used more than once in 
the partition (as can be seen in child node number 3, Temperature 
variables in that case). 

Finally, we will have 153 leaf nodes consisting of different suggested 
values of consistency. These values will be used to make predictions of 
the consistency of a new set of observations by following the corre-
sponding path throughout the tree. 

Fig. 5 represents the real values of consistency for W-113 mixture 
and the predicted values. There are two predictive series. Once using the 
whole six data sets to construct the model and predict the consistency (In 

this case all the data set is used to train and test the data at the same 
time, otherwise known as in-sample forecasting), and the second is done 
using only a part of the data set (otherwise known as out-of-sample 
forecasting) to test and evaluate the model on the remaining data set. 
It is trivial to see that the model built on the whole sets of data is per-
forming better than the model where we are splitting data between 
training and testing sets and this is mainly a consequence of an over 
fitting. To avoid an over fitting and to test the ability of the model to 
generalize and to give good predictions for new observations, it is better 
to adapt the out-of-sample approach. 

To further visualize the results, Fig. 6 illustrates the predicted versus 
observed values. The lot resembles to a straight line at approximately 
45◦, and this is a clear indication of a good fit. This is further confirmed 
by calculating the correlation coefficient, which stands at a high value of 
0.93. It is worth mentioning that we may have identical observed con-
sistency values for different combinations of underlying independent 
variables, while the predicted value will differ, and this is particularly 
seen in Fig. 6, more specifically in the interval between 10 and 20. 

Fig. 4. Tree branches.  

Fig. 5. Predictive power of the model.  Fig. 6. Predicted vs. Observed.  
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Starting with one root node, the splitting of the data follows the path 
of more than 300 internal nodes “if then rule”, until it reaches the final 
153 leaf nodes. The splitting procedure that relies on entropy, used to 
measure the homogeneity of the data is efficient and reached the pre- 
specified target. In addition, the model can explain and evaluate the 
effects of the predictor variables (Temperature, time, liquid to solid 
ratio, total water content) one at a time, rather just all at once. This has 
been shown in Fig. 4. The tree structure makes the interpretation of the 
results easy. The comparison with the ANN model has been explained in 
theoretical terms, however and in order to apply both models on the 
same data set and compare the results, the authors decided to apply the 
ANN model. After applying the latter with optimal hyper-parameters, 
we got the following results: 

To recap and to avoid the over-fitting issue in machine learning 
models, we are applying the following steps:  

- Applying the classical technique of splitting the data into training 
and testing set. The model is built on the training set and tested on 
the testing set to assess its ability of generalization. The selection of 
the latter is based on an iterative cross validation.  

- The complexity of the model was controlled. To do this control a 
regularization parameter was added to the objective (loss) function 
to penalize complex and deeper models.  

- Finally, the main hyper-parameters of the neural network were tuned 
in a way to get an optimal result in terms of R2 and MSE on the 
testing data. To do this tuning a grid search technique (limited one, 
after considering some prior assumptions about some parameters, in 
order not to use all combinations) was applied. 

5.2. Logistic regression results 

Before applying the logistic model to the set of data, and to label our 
data into two binary values (two classes), we start by fixing a threshold 
for the consistency above which the binary dependent variable Y is 
equal to 1. 

To do that, we will focus on approximating the increasing trend of 
the consistency around a certain consistency value fixed based on the 
previous graphical analysis. Based on a second order Taylor expansion 
and using numerical approximation, one can approximate the derivative 
of a function f at a point xi by: 

f
′

(xi) ≅
− f (xi+2) + 4f (xi+1) − 3f (xi)

2h
(11)  

where h is the length of the step between the points xi, xi+1 and xi+2. 
Then, by applying equation (11) we choose to approximate the 
increasing trend of consistency when the function reaches a level where 
the curve of the consistency in terms of temperature starts to increase in 
a significant way and the curve starts to a clear concave upward form. 
This number is selected to be the average of all the detected consistency 
levels for different ratios. The choice of the average is reasonable 
because the underlying data is well structured and there is no evidence 
of an outlier, which can disturb and skew the mean (see Table 5). 

The results, for different values of ratios, are presented in Table 6. 
Based on the results presented in Table 6, we observe that the trend 
around a consistency level 15.7 is large enough to consider 15.7 as 
“apriori” threshold to build the binary dependent variable of the logistic 

regression model. 
Now, by applying the maximum likelihood principle and considering 

the significant independent variables, we get the following estimators 
for the different parameters, see Table 7. 

The negative sign of β3 indicates that when the modular ratio in-
creases the probability that the consistency is above 15.7 decreases, 
which fits with logically expected results. In addition, the positive sign 
of β1 indicates that when the time increases the probability that the 
consistency is above 15.7 increases, which also fits with logically ex-
pected results. 

Going beyond the results of the fitted logistic regression model and 
statistical significance, one can further investigate the impact of each 
predictor variable (see Table 8) with the dependent variable by 
exploring the odds ratio. The odds ratio of a variable Xi with a coefficient 
βi is given by: 

ORi = eβi (12) 

The interpretation of ORi can be as follows  

• If ORi ≅ 1 this means that the variable Xi does not have a substantial 
impact on the decision that should be made on dependent variable 
level  

• The more the ORi exceeds unity, the more we can say that when the 
value of the variable Xi increases the probability of getting Y = 1 
increases as well  

• By the same token, we can say that if 0 ≤ ORi < 1, the more we can 
say that when the value of the variable Xi decreases the probability of 
getting Y = 1 increases, inverse proportions. 

It is clear that variables with the highest impact on the consistency 
are “Liquid to solid ratio” and “Modular Ratio”. On the contrary, vari-
ables “Time” and “Temperature” do not have a big impact. 

Now, one can compute the probability of a consistency level greater 
than 15.7 for any value given time an assumption about the independent 
variables by applying the following equation: 

π =
e427.16+0.35X1+…− 1.58X5

1 + e427.16+0.35X1+…− 1.58X5
(13) 

A good logistic regression model is the one that maximize the per-
centage of positives (i.e., the cases where Yi = 1) that are successfully 
classified as positive (called specificity) and the percentage of negatives 
(i.e., the cases whereYi = 0) that are successfully classified as negatives 
(called sensitivity). Table 9, shows the validation results and can be 
interpreted as such: 

• Letter A, designates the successful prediction of the number of ob-
servations that are below the Consistency threshold.  

• Letter B, designates the unsuccessful prediction of the number of 
observations that are above the Consistency threshold, and this 
number accounts for 433 observations. If our model was completely 
successful, then this number should be zero. In other words, there 
should be zero number of unsuccessful predictions. 

Table 6 
Taylor expansion results.  

Ratio 2.08 2.16 2.21 2.45 
(W- 
108) 

2.45 
(W- 
109) 

2.45 
(W- 
113) 

Consistency level 21.01 18.33 16.17 7.37 17.67 13.63 
Derivative f ′

(x)
approximation 

37.87 30.178 34.79 45.21 39.26 48.40  

Table 7 
Maximum likelihood results.  

Coefficients Estimate Std. Error z value Pr (>|z|) 

Intercept (β0) 110.27 5.993 18.398 <2e-16 *** 
X1 (Time, β1) 0.015 0.001 11.535 <2e-16 *** 
X2 (Temperature β2) 0.014 0.004 3.804 <1e-4 *** 
X3 (Modular ratio β3) − 59.11 3.438 − 17.191 <2e-16 *** 
X4 (l /s ratio β4) 142.81 13.594 10.505 <2e-16 *** 
X5 (Total water β5) − 0.222 0.014 − 16.287 <2e-16 *** 

***Indicates statistical significance with a confidence level of 0.1% level. 
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• Letter C, means that the model is unsuccessful in predicting the 
number of observations that are below the threshold, and therefore 
has detected 1771 observations.  

• Letter D, designates the successful prediction of our model, for 3246 
observations that are above the threshold. 

Then, for this particular threshold, the sensitivity attributed to letter 
A, is 2,171 /2, 604 ≈ 83% and the specificity is 3,246 /5,017 ≈ 65%. 
However, a more powerful criterion to evaluate the global performance 
of a logistic regression without fixing any threshold is the Receiver 
Operating Characteristic (ROC) curve. ROC Curve gives us an idea of the 
performance of the model under all possible values of threshold by 
plotting Sensitivity in terms of specificity. The model is as good as the 
curve is close to the optimal situation (i.e., the point of coor-
dinates(1, 1)). In our context, and as can be seen in Fig. 7, the area under 
the ROC curve is close to 1, more specifically 0.88. Then, we can say that 
our model has a global prediction accuracy of88%. 

The results of the fitted logistic regression model indicate that all the 
variables used to predict the consistency results are statistically signif-
icant. This confirms the dependency between all our data set. Going 
further and to measure the impact of each predictor variable with the 
dependent variable the odds ratios are computed. Results clearly show 
that variables with the highest impact on the consistency are “Liquid to 
solid ratio” and “Modular Ratio”. Thus, when the value of both ratios 

increases, the probability of having a consistency level of 15.7 and above 
increases (threshold). To validate the probabilistic model, the sensitivity 
and specificity are computed. The results confirm that the model prob-
ability results can account successfully for most of the dataset and that 
few observations are overlooked. The latter, however, is a validation of 
the results for a particular threshold, and a more powerful criterion to 
test the global performance of the model is the ROC curve. While using 
the latter validation method we can have a good performance of the 
model under all possible values of threshold. 

6. Conclusion 

Applying statistical models to experimental data can be useful, 
especially when the main aim is to understand the causal relationship of 
such variables. In this work, mathematical and statistical methods were 
applied to forecast consistency profile of the geopolymeric slurries, 
designed for downhole applications. Logistic regression is used as a 
classification method (compute probability), whereas the decision tree 
is used for forecasting purposes. The non-parametric Decision Tree, as an 
alternative to the commonly used Neural Network, was successfully 
used. The decision tree model could accurately forecast the consistency 
values. Accuracy of the forecast was illustrated by the high correlation of 
determination and an almost linear q-q plot (Fig. 6). The model could 
explain and evaluate the effects of the predictor variables (temperature, 
time, molar ration, liquid to solid ratio, total water content) one at a 
time, rather just all at once. 

Fitted logistic regression model indicates that all the variables used 
to predict the consistency results are statistically significant with a 
considerable confidence level. Results show that variables with the 
highest impact on the consistency could be “liquid to solid ratio” and 
“modular ratio”. Model results were further validated by the high global 
prediction accuracy. 

To the best of the author’s knowledge, it is the first time that such 
two models are combined in a complimentary way, in an attempt to 
study the impact and importance of independent variables on geo- 
polymer consistency. One is used for point regression prediction, and 
the second is used for classification, and both confirm the same results. 
The second major contribution of this manuscript is that the authors are 
proposing a mathematical/numerical method based on Taylor expan-
sion to fix the optimal threshold of the logistic regression while classical 
methods were fixing this threshold either based on simple descriptive 
statistical analysis or using expert’s opinion. Finally, this study enables 
its user to perform sensitivity analysis by changing parameters, 
analyzing the modeling results, and then do experiments to validate the 
prediction. Time and resources management are the core drivers for 
conducting the project. 

Although the limited data sets were sufficient for forecasting results, 
it is well known that a larger data set plays in a critical role in such 
statistical models, as long as the data contain meaningful information 
and not only noise. Therefore, and pursuing further research, one can 
enlarge the data set, in terms of the number of observations and the 
number of measured properties. In addition, other machine learning 
models can be used to model and predict the consistency, such as but not 
limited to, Random Forest, Bagging and Boosting techniques. Addi-
tionally, for future work, when more variables are available one can 
study the sensitivity of the results in different ways e.g., test the impact 
of each variable by a permutation of its values or bootstrapping 
techniques. 

These models can also generalize the decision tree approach, and 
therefore we can extract more information in the context of supervised 
models with high complexity of the underlying independent variables. 
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