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Preface

This dissertation is submitted in partial fulfillment of the requirements for the de-

gree of Philosophiae Doctor (PhD) at the University of Stavanger. The research

was conducted at the University of Stavanger from August 2018 to March 2023.

The dissertation consists of a collection of 3 research papers and 1 poster paper.

Two research papers have been published, and one is to be submitted. The poster

paper was presented during the conference but was not included in the proceed-

ings. We give detailed information about the papers in the list of papers section.

The dissertation is an individual contribution that aims at providing a holistic

view of the research.

The papers are included in the dissertation after realignment and transforma-

tions to adhere to the requisite format. The content of the papers has been kept

intact.

Apart from the papers, this dissertation also contains the necessary background

information to read the papers. For improved readability, the dissertation re-uses

much content from the included papers.

Racin Nygaard
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Abstract

Preserving knowledge for future generations has been a primary concern for hu-

manity since the dawn of civilization. State-of-the-art methods have included

stone carvings, papyrus scrolls, and paper books. With each advance in technol-

ogy, it has become easier to record knowledge. In the current digital age, human-

ity may preserve enormous amounts of knowledge on hard drives with the click

of a button.

The aggregation of several hard drives into a computer forms the basis for a

storage system. Traditionally, large storage systems have comprised many dis-

tinct computers operated by a single administrative entity.

With the rise in popularity of blockchain and cryptocurrencies, a new type of

storage system has emerged. This new type of storage system is fully decentral-

ized and comprises a network of untrusted peers cooperating to act as a single

storage system. During upload, files are split into chunks and distributed across

a network of peers. These storage systems encode files using Merkle trees, a hi-

erarchical data structure that provides integrity verification and lookup services.

While decentralized storage systems are popular and have a user base in the

millions, many technical aspects are still in their infancy. As such, they have yet

to prove themselves viable alternatives to traditional centralized storage systems.

In this thesis, we contribute to the technical aspects of decentralized stor-

age systems by proposing novel techniques and protocols. We make significant

contributions with the design of three practical protocols that each improve data

availability in different ways.

Our first contribution is Snarl and entangled Merkle trees. Entangled Merkle

trees are resilient data structures that decrease the impact hierarchical depen-

dencies have on data availability. Whenever a chunk loss is detected, Snarl uses

the entangled Merkle trees to find parity chunks to repair the lost chunk. Our

v



results show that by encoding data as an entangled Merkle tree and using Snarl’s

repair algorithm, the storage utilization in current systems could be improved by

over five times, with improved data availability.

Second, we propose SNIPS, a protocol that efficiently synchronizes the data

stored onpeers to ensure that all peers have the samedata. Wedesigned aProof of

Storage-like construction using aMinimal Perfect Hash Function. Each peer uses

the PoS-like construction to create a storage proof for those chunks it wants to

synchronize. Peers exchange storage proofs and use them to efficiently determine

which chunks they are missing. The evaluation shows that by using SNIPS, the

amount of synchronization data can be reduced by three orders of magnitude in

current systems.

Lastly, in our third contribution, we propose SUP, a protocol that uses cryp-

tographic proofs to check if a chunk is already stored in the network before doing

wasteful uploads. We show that SUP may reduce the amount of data transferred

by up to 94% in current systems.

The protocols may be deployed independently or in combination to create a

decentralized storage system that is more robust to major outages. Each of the

protocols has been implemented and evaluated on a large cluster of 1,000 peers.
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Chapter 1

Introduction

According to recent studies, the amount of digital data continues to grow at an ex-

traordinary rate. [32]. Some data may be ephemeral, such as chats or temporary

files created by applications and may be deleted after a short period. Other types

of data, such as photos, videos, and documents may be of significant importance,

and should never be deleted.

Storing such important data on a single hard drive is risky, as the hard drive

may fail and the datamay be lost. Naively increasing the number of hard drives to

create additional copies is expensive, both in terms of the up-front cost of the hard

drive, but also in terms of the cost of electricity. In addition, managing a large

number of hard drives, including replacing failed hard drives, requires significant

time and effort.

For the reasons above, it has become common to use cloud services such as

Google Drive [34], Dropbox [17] and Microsoft Onedrive [46] to store data. Typ-

ically, a user pays a monthly subscription fee to the cloud service provider, and

in return, the cloud service provider ensures that the data is stored reliably and is

available when needed. The cloud service provider may use replication to create

multiple copies of the data, in addition to other techniques to ensure that the data

is available when needed.

Even though cloud services are convenient, they are not without their draw-

backs. A primary concern from the user’s point of view is that they represent a

single legal entity, andmay thus be a single point of failure. In addition, they offer

limited transparency into how securely the data is stored and managed.

As an alternative to cloud services, decentralized storage systems have been
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proposed [37, 13, 83, 74, 4, 39, 70, 84, 77]. In these systems, there is no sin-

gle entity that controls the storage system. The storage system is comprised of a

network of peers that cooperate to act as a single storage system. As such, these

systems have the potential to be more robust to major outages and attempts of

censorship, as the data is stored on multiple peers.

However, the decentralized nature of the storage system also introduces new

challenges. The primary concern is that the peers are untrusted and unreliable.

Hence, many of the previous technologies that were used to ensure data availabil-

ity in cloud services are no longer applicable. As an example, simple replication

requires significantly more coordination due to a lack of reliable information on

the number of copies of the data that exists on the network.

The first generation of decentralized storage systemswas inspired by thewave

of peer-to-peer file-sharing systems of the late 1990s and early 2000s. Well-

known examples include Napster [10], Gnutella [58], Freenet [11] and BitTor-

rent [12]. These systems were effective in distributing popular content but lacked

the ability to preserve data that was rarely accessed. To solve the issue of long-

term persistence, decentralized storage systems such as OceanStore [37], Coop-

erative File System [13] and Tahoe-LAFS [83] were proposed. However, these

systems failed to gain wide adoption, partially due to technical challenges, but

also due to a lack of incentives for the peers to operate correctly.

Ever since the hugely popular Bitcoin [47] protocol was released in 2009,

there has been a surge of interest in blockchain technology and finding ways to

use it to solve real-world problems. With the idea ofWeb3 [78], there was a wide

attempt at applying a token-based economy to many areas. This is also true for

decentralized storage systems, and a new generation consisting of systems such

as Swarm [74], IPFS [4], Filecoin [39], Storj [70], Arweave [84] and Sia [77] have

emerged. These systems use blockchain technology to reward peers with cryp-

tocurrencies, to ensure that they are incentivized to operate correctly.

However, many of the technical challenges of the first generation of decen-

tralized storage systems remain unsolved. In this thesis, we contribute to solving

some of the technical challenges. Specifically, we propose three protocols that

each improve data availability in different ways. While the three protocols are

designed to be used independently, they can also be used together to achieve even

better results. As part of our work, we have implemented the protocols in the Go

programming language and evaluated them on a large cluster of 1,000 peers.
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In Figure 1.1, we show a simplified and generalized upload process in a de-

centralized storage system. During the upload process, the file is split into chunks

and each chunk is given a unique identifier (labeled a−e). Based on the identifier,
the chunks are then distributed to different peers in the network.

Storage
Network

a
b
c

d

e

File

Peer

Figure 1.1: Upload process in decentralized storage systems.

The chunk distribution can be viewed as a mapping from chunk identifiers to the

peers storing the file’s chunks. Since all chunks are needed to reconstruct the file,

the chunk mapping is essential for a functioning decentralized storage system.

We refer to this mapping as the lookup-metadata of the file.

A key distinction between different decentralized storage systems is how they

store the lookup-metadata. The first approach, used by Sia and Storj respectively,

relies on the users themselves or a centralized authority to store a mapping for

each chunk in the file. The second approach, used by Swarm, IPFS, and Filecoin

is to encode the file into a Merkle-based structure [4, 45] so that the user only

needs to store a single chunk identifier. The tradeoff for avoiding the central-

ization in the first approach is that the Merkle-based structure creates metadata

chunks that are used for lookup and adds a hierarchical dependency between the

metadata chunks and chunks of the file. Hence, the new metadata chunks be-

come essential as without them, it is not possible to locate the chunks of the file

in the network.

To prevent data loss, current systems typically add redundancy to the chunks

by replicating them tomultiple peers. However, it is well-known [59, 80, 43] that

replication generates a high storage overhead compared to the redundancy pro-

vided. For better storage utilization, it is possible to use erasure codes instead of

replication. An erasure code takes the chunks of the file as input and create addi-
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tional parity chunks. However, to use erasure codes, additional decode-metadata

is needed to know which parity chunks to use when recovering from data loss.

Similar to the distinction above, those systems that rely on the user or a cen-

tralized authority to store the lookup-metadata, use the same approach for storing

the decode-metadata. However, for systems that useMerkle-based structures, we

were unable to find any prior work that addresses the challenge of applying era-

sure codes to chunks that have a hierarchical dependency.

To the best of our knowledge, the first protocol in this thesis, Snarl, was the

first work that considered the hierarchical dependencies between the lookup-

metadata chunks and the chunks of the file when applying erasure codes. In ad-

dition, Snarl proposes amethod to eliminate the need for a local or remote file for

the decode-metadata. We designed a new Merkle-based structure called entan-

gledMerkle trees that creates sufficient redundancy for both the lookup-metadata

chunks and the chunks of the file. The entangling process achieves this by cre-

ating new parity chunks to intertwine both the lookup-metadata chunks and the

chunks of the file. Our results show that Snarl increases storage utilization by 5×

in Swarmwith improveddata availability. The file recovery is bandwidth-efficient

and uses less than 2× chunks on average.

As depicted in Figure 1.1, chunks are sent to peers in the network. However,

the receiving peer may already store the chunk, wasting significant bandwidth

resources. To mitigate the wasted bandwidth, as the peers are untrusted, users

cannot rely on simply asking the peer if it already has the chunk.

Our second protocol, Storage Upkeep Protocol (SUP) allows users to obtain

cryptographic proof that its files (or chunks) are correctly stored in the network.

To request a proof, a user will first generate a nonce (number used once). The

nonce is then put into a challenge and sent to the network. Recipients of the chal-

lenge are expected to answer by generating a proof consisting of a cryptographic

hash over the chunk data concatenated with a nonce. Including a nonce ensures

that the peers had to be in possession of the given chunk at the timewhen creating

the proof. The primary use case of SUP is to allow users to check the persistence

of their data, before attempting to re-upload it. Our evaluation shows that SUP

may reduce the amount of data transferred by up to 94 % and reduce the time

needed to re-upload the data by up to 82 %.

The third protocol, Succinct Proof of Storage (SNIPS) targets the data syn-

chronization between peers in the network. Efficient data synchronization is im-

4



portant for ensuring that sufficient redundancy is stored in the network, and re-

sponding to rapid changes in network topology. Yet, current methods for data

synchronization are inefficient as they rely on long lists of chunk identifiers to

determine which chunks are missing. In contrast, SNIPS use a novel approach

based on minimal perfect hash functions to create succinct storage proofs that

may be queried to determine missing chunks. Our results show a reduction in

metadata transmitted to synchronize by up to three orders of magnitude.

While the jury is still out on the new generation of decentralized storage sys-

tems, they are promising. Even if the new generation of decentralized storage

systems fails, the research in this thesis will be useful for future generations of

storage systems. During our work, we produced large amounts of source code

needed to implement, analyze, and evaluate the protocols. Parts of the source

code have been made publicly available at https://github.com/racin/phd.

1.1 Common Definitions

Throughout this thesis, the terms storage peer and peer are used interchange-

ably, unless explicitly stated otherwise. We use the term chunking to refer to a

process that splits a file into smaller chunks. Those peers that store a given chunk

are called that chunk’s storer peers.

We have also avoided using the term node when referring to a peer, except

when made clear by the text when discussing other systems. In our text, we use

the term node to refer to an element in a Merkle-based structure.

1.2 Thesis Outline

The rest of this thesis is arranged as follows. Chapter 2 presents a more holistic

view of the background for the material covered in the papers. In Chapter 3 we

build on the background material to present the research questions and main

contributions that this thesis covers. In Chapter 4 we review our contributions

and conjecture that by integrating the contributions we can further improve data

availability in decentralized storage systems. We present a security analysis of the

chunk proofs used inPaper 2 andPaper 3 in Chapter 5. Chapter 6 describes our

experimental evaluation framework used to empirically evaluate our protocols.
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Chapter 7 concludes the thesis, reflects on our contributions, and outlines ideas

for future work. Finally, all 4 papers are included in Chapter 8.

1.3 Reading Guide

The chapters in the thesis are not independent of each other, and their chronologi-

cal order does not reflect the optimal reading order. We recommend the following

for the best reading experience:

1. Contributions

2. Introduction (Chapter 1)

3. Background (Chapter 2)

4. Research Questions (Chapter 3)

5. Included Papers (Chapter 8)

(a) Snarl: EntangledMerkle Trees for Improved File Availability and Stor-

age Utilization (Paper 1)

(b) Lessons Learned from a Bare-metal Evaluation of Erasure Coding Al-

gorithms in P2P Networks (Paper 4)

(c) Cost-effectiveDataUpkeep inDecentralized Storage Systems (Paper3)

(d) SNIPS: Succinct Proof of Storage for Efficient Data Synchronization in

Decentralized Storage Systems (Paper 2)

6. Improving Data Availability (Chapter 4)

7. Security Analysis of Chunk Proofs (Chapter 5)

8. Empirical Evaluations (Chapter 6)

9. Conclusion, Reflections and Future Prospects (Chapter 7)
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Chapter 2

Background

In this chapter, we will present the necessary background material to read the

rest of the thesis. We begin by discussing cryptographic hash functions and the

Merkle tree. Next, we discuss two erasure codes, first the Reed-Solomon code,

and then the Alpha Entanglement code. After this, we discuss distributed hash

tables and proof of storage systems.

We then detail the Swarm storage network, which is a decentralized storage

system that was used as a baseline for all our contributions. Finally, we discuss

a range of decentralized storage systems and conjecture on how applicable our

contributions are to these systems.

We note that much of the background material presented in this chapter also

appears in the included papers. We present a more holistic view of the material

here for the reader’s convenience.

2.1 Overview

Over the years there have been numerous proposals for network-based storage

systems. Notable systems that are well-known in the literature include NFS [49],

OceanStore [37], Ceph [81], Cooperative File System [13] and Tahoe-LAFS [83].

The overarching goal of these systems is to provide a shared file system that is

accessible by multiple clients.

Anetwork-based storage systemmaybe categorized as centralized, distributed

or decentralized. In the following description, we have adapted the classical cat-

egorization found in [71] with more recent terminology found in [56] and [1]. A
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centralized system will typically have a single point of failure and a single admin-

istrator that controls the system. A distributed system may have multiple points

of failure andhas a finite number of administrators that controls the system. Ade-

centralized system has no single point of failure and no single administrator that

controls the system. Each of these degrees of centralization has its own advan-

tages and disadvantages, and the choice of protocols and algorithms will depend

on the degree of centralization, amongst other parameters. As a rule of thumb,

protocols and algorithms tend to become more complex as the degree of central-

ization decreases, with the most complex being decentralized systems. As such,

algorithms and protocols from one system may not be directly applicable to an-

other system.

A decentralized storage system is comprised of a network of storage peers that

collaborate in storing data. The peers are untrusted and are typically connected to

a subset of other peers in a Peer-to-Peer (p2p) network. This category of storage

systems received considerable attention in recent years with the rise of Web3,

cryptocurrencies and blockchain technology.

Using blockchains, the peers are incentivized to correctly store data as they

receive crypto tokens for doing so. The potential of monetary benefits enables

great competition between peers, as each peer wants to maximize their earnings.

This competition may drive peers to rent out their storage space for lower costs,

which in turn may drive down the cost of storage for the end user.

However, without a properly fine-tuned incentivization system, the fierce com-

petition may lead to peers attempting to cheat the system. Cheating peers may

compromise both the security and resiliency of the system and may ultimately

lead to irrecoverable data loss. One such example is peers claiming to store data

when they do not, in an attempt to earn additional crypto tokens.

Hence, to provide long-term data availability we need reliable and efficient

protocols that are agnostic tomonetary benefits. In the following sections, wewill

go into more detail on the protocols of decentralized storage systems. Our focus

will be on the Ethereum Swarm storage network, however many of the concepts

will be similar or relatable to protocols in other storage networks, such as IPFS.
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2.2 Cryptographic Hash Functions

A cryptographic hash function is a common building block thatmaps an arbitrary

length input to a fixed length output. The mapping is one-way, meaning that it

is computationally infeasible to find the input given the output. Additionally, the

mapping is deterministic, such that the same input will result in the same output.

Formally, we assume that a cryptographic hash function H satisfies the fol-

lowing security properties [64, 48].

1. Preimage resistance

2. Second preimage resistance (Puzzle friendliness)

3. Collision resistance

The preimage resistance property states that for any given hash value h, it is com-

putationally infeasible to find a value y such that H(y) = h.

Puzzle friendliness states that for every possible n-bit output value y, if k is

chosen from a distribution with high min-entropy, then it is infeasible to find

x such that H(k || x) = y, in time significantly less than 2n. Second preimage

resistance is stronger form of puzzle-friendliness, which says for any given value

k, it is infeasible to find k′ ̸= k such that H(k′) = H(k).

Collision resistance states that it is infeasible to find any pair of two distinct

values x and y, such that x ̸= y and H(x) = H(y).

2.3 Merkle Tree

AMerkle tree [45] is a hierarchical data structure whose original application was

a digital signature system. Figure 2.1 illustrates a Merkle tree. The Merkle tree

in the figure is binary, meaning that each node has at most two children. Merkle

trees may also be k-ary, where each node has at most k children.

Merkle trees are constructed in a bottom-up fashion. The first step is to split

the input data into smaller pieces, e.g. chunks of a file. Each chunk is then hashed

to produce a leaf node, i.e. HA is the hash of chunkA in Figure 2.1. The next step is

to concatenate the value of k nodes and then hash the concatenated value to pro-

duce a parent node, e.g. HAB = H(HA ∥HB). This step is repeated recursively for

each level, until a single root remains, e.g. HABCDEFGH = H(HABCD ∥ HEFGH).
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HF

F
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HH

H

Figure 2.1: Binary Merkle tree with 8 leaves. The input values (A-H) are in gray.

The design choice of the number of children per node is application specific

and is typically enforced by the protocol. For the same number of leaves, a binary

tree will have a height of log2(n), while a k-ary tree will have a height of logk(n).

The height of the tree is important as it determines the number of internal nodes

that need to be computed to reach the root node. While a high k may reduce the

height of the tree, it causes the internal nodes to span a larger number of children,

which leads to larger inclusion proofs.

An inclusion proof is an important use case of Merkle trees that is used to

prove to a third party that a certain node is part of the tree. To generate the in-

clusion proof, the prover recursively in a bottom-up fashion gathers the siblings

of each parent until the root is reached. For example, to prove that leaf nodeHC

is part of the tree in Figure 2.1, the prover needs to gatherHD,HAB andHEFGH ,

and then send these values to the verifier. Using these values, the verifier can use

HC and HD to compute HCD, then use HAB and HCD to compute HABCD, and

finally use HEFGH and HABCD to compute the root HABCDEFGH . If the newly
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computed root matches the root in the tree, the verifier can be sure that HC is

part of the tree.

Decentralized storage systems such as Swarm, IPFS, and Filecoin split the

files into chunks and encode them in a Merkle-based structure. We say that this

structure comprises both the lookup-metadata as internal nodes and the chunks

of the file as leaves. To illustrate the use of lookup-metadata, we can use the ex-

ample depicted in Figure 2.1 to see how a single chunk would be retrieved. Note

that the retrieval of all chunks would be similar, with the main difference that

all paths would be explored. Starting from the root, we have HABCDEFGH =

H(HABCD ∥ HEFGH). Consider we issue a request for the chunk identifier

HABCDEFGH . The storage network will then return an internal node with the

value ABCDEFGH = HABCD ∥ HEFGH . Thus, we can continue by requesting

another chunk identifierHABCD. Wewill then receive another internal nodewith

the value ABCD = HAB ∥ HCD. The process is repeated with HAB → AB =

HA ∥ HB → HA → A.

2.4 Erasure Codes

To mitigate single points of failure, a common approach is to add redundancy

to the data. The simplest form of adding redundancy is through replicating the

data into multiple copies. However, it has been shown that by using erasure cod-

ing, similar levels of redundancy can be achieved with significantly lower storage

overhead [24].

The most well-known erasure code is the Reed-Solomon (RS) code [57]. RS

codes are typically defined over a finite field of two elements, denotedGF (2u) for

u-bit code symbols. To encode, the RS encoding algorithm takes k information

symbols as input and produces n = 2u − 1 encoded symbols as output, where

n > k. The standard notation is RS(n, k). RS codes aremaximum distance sep-

arable (MDS) [33], and as a result, we may recover the original k symbols from

any k encoded symbols. In other words, the RS code can recover from up to n−k

failures. However, the RS codes are not optimal for recovering from small errors.

To recover any [1, k⟩ original symbols, we still need k encoded symbols.

RS codes are a type of linear block code [33] and do not require keeping pre-

vious states in memory to do the encoding. Other types of codes, which we will

discuss in the next section, require previous states to do the encoding.
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As a last observation, we note that the optimal values of the n and k parame-

ters are application-specific and may depend on the input data. For example, if

the input was a file, and the k parameter was less than the size of the file, then the

naive solution would be to split the file and perform multiple encodings. How-

ever, as we show inPaper 1, this approach achieves less tolerance to failures than

a single encoding with a larger k parameter.

2.5 Alpha Entanglement Codes

Alpha Entanglement Codes (AE) [22] was proposed as practical and flexible era-

sure codes that increase redundancy by interconnecting storage devices (or stor-

age nodes) with redundant information in large storage systems. The paper also

suggests using AE codes on a much granular scale—to interconnect the chunks

of a file. In our work with Snarl in Paper 1 we propose using AE codes to cre-

ate entangled Merkle trees, a resilient data structure that protects both lookup-

metadata and the chunks of a file. Hence, in the following description of AE codes,

we adapt the notation found in the original paper to the context of entangled

Merkle trees.

We begin by giving an overview of AE codes and describing the simplest con-

figuration. Then we discuss the general AE code and its parameters. Finally, we

discuss our extensions to AE code to make them suitable for entangled Merkle

trees and Snarl.

2.5.1 Overview

AE codes are designed to tolerate a large number of failures with low computa-

tion and bandwidth requirements. Redundancy is achieved by using the XOR

(exclusive-or) operation to create an intertwined lattice. The lattice is a graph

G(V,E) where each vertex v ∈ V represents a data chunk, and each edge e ∈ E

represents a parity chunk. The lattice is comprised of strands which is a chain of

alternating data and parity chunks. A remarkable property of AE codes is that any

chunk can be repaired by two other chunks, as opposed to requiring k chunks to

repair a single chunk in RS codes (see Section 2.4). We call such a pair of chunks

a repair pair.

In the following sections, we let di denote the i-th data chunk obtained from
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chunking a file. We begin by illustrating a special case called simple entangle-

ments [21] where the lattice forms a single chain in Figure 2.2. The data chunks

are shown as circles and parity chunks as lines.

di-1 di di+1
pi-2,i-1 pi-1,i pi,i+1 pi+1,i+2

Figure 2.2: Simple Entanglement Codes (α = 1, s = 1, p = 0).

Parities on a strand are calculated by XORing the previous data chunk with the

previous parity chunk. At the very beginning of the strand, the parity pi−1,i does

not exist and is artificially set to all zeros so that pi,i+1 becomes a copy of di.

pi,i+1 = pi−1,i ⊕ di (2.1)

Based on Equation (2.1) and the associative property of XOR, we can easily see

that the repair pair of a data chunk consists of preceding and proceeding parity

chunks.

di = pi−1,i ⊕ pi,i+1 (2.2)

By the same reasoning, we can see how a parity chunk may be repaired by the

proceeding data- and parity chunks.

pi,i+1 = di+1 ⊕ pi+1,i+2 (2.3)

Hence, we see fromEquation (2.1) and Equation (2.3) that a parity chunk has two

possible repair pairs. Note that XOR is also commutative, so the ordering in the

XOR operation does not matter.

2.5.2 Parameters of AE codes

We now discuss the parameters that make up the general AE code. The lattice is

configured by three parameters: α, s and p, with p ≥ s. The α parameter denotes

the number of strands that are connected to each data chunk. Hence, α in essence

controls howmany parities will be created, which has a direct impact on the stor-

age overhead. Each increase in α incurs the same storage overhead as having an

13



extra copy of the data itself.

In other words, α = 2 incurs storage overhead similar to two extra copies of

the data, and α = 3 to three extra copies of the data. Higher values than α = 3

have not been studied in the literature [22]. Increasing α also increases the num-

ber of repair pairs exponentially, which significantly increases fault tolerance, as

there are more repair pairs to choose from.

The s and p parameters denote the number of horizontal and helical strands,

respectively. In a two-dimensional representation, s may denote the number of

rows and p the number of distinct columns. The columns are distinct in the sense

a helical strand will revolve around the lattice structure after p columns. Thus,

different values of s and p will decide which data chunks are connected to which

strand. Hence, some configurations of s and p may provide different fault toler-

ance than others. However, increasing s or p does not impact the storage over-

head, but may impact the time to encode.

By increasing α, the lattice becomes more intertwined, as illustrated by the

α = 3, s = 5, p = 5 configuration in Figure 2.3. With such a configuration, each

data chunk will have α = 3 strands that are connected to it and thus be associated

with α = 3 repair pairs. In other words, data chunk 7 may be repaired by either

of the pairs (p2,7 ⊕ p7,12), (p1,7 ⊕ p7,13) or (p3,7 ⊕ p7,11).

As with simple entanglements, repairing either a data chunk or a parity chunk

is a single XOR operation, as shown in Equation (2.1), Equation (2.2) and Equa-

tion (2.3). However, if we do not possess both chunks needed to fulfill the repair

pair, a repair algorithm may attempt to expand in the lattice to first repair the

chunks contained in the repair pair, and so on.

For the α = 3 configuration, we label the three strand classes as Horizon-

tal (H), Right (R) and Left (L). As s = 5 there are 5 horizontal strands, and simi-

larly, as p = 5 there are 5 helical (right and left) strands. In the two-dimensional

representation, such as Figure 2.3, the helical strands are illustrated as diagonal

lines. To determine the labels of the parities connected to each data chunk, we

may use the rules listed in Table 2.1. The top row of the lattice is denoted top, the

bottom row bottom, and all others center. Formally, data chunk di is at the top

iff i ≡ 1 (mod s), bottom iff i ≡ 0 (mod s), and center otherwise.
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Figure 2.3: Alpha Entanglement with α = 3, s = 5, p = 5 configuration.

2.5.3 Extending AE Codes for Entangled Merkle Trees

Thework ofPaper 1 expands on the usage of AE codes by proposing an algorithm

that allows complex lattices to be closed. Previouswork [21] only considered clos-

ing the lattices with α = 1. The closing is achieved by creating a new parity chunk

in each strand that wraps around from the last data chunk in the strand to the

first data chunk in the strand. We then recalculate the value of the first parity

chunk using Equation (2.1), as it was initially a copy of the first data chunk.

A 1 MB file that is encoded into a Merkle tree in Swarm will comprise 256

Table 2.1: Repair pairs for data chunk di with α = 3.

Data chunk di Horizontal strand Right strand Left strand
Placement Repair pair Repair pair Repair pair

Top pi−s,i ⊕ pi,i+s pi−s·p+(s2−1),i ⊕ pi,i+s+1 pi−s+1,i ⊕ pi,i+s·p−(s−1)2

Center pi−s,i ⊕ pi,i+s pi−s−1,i ⊕ pi,i+s+1 pi−s+1,i ⊕ pi,i+s−1

Bottom pi−s,i ⊕ pi,i+s pi−s−1,i ⊕ pi,i+s·p−(s2−1) pi−s·p+(s−1)2,i ⊕ pi,i+s−1
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leaves, 2 internal nodes and the root. To protect the entire Merkle tree, we view

all 259 elements as data chunks and then use AE codes to create entangledMerkle

trees. In Figure 2.4 we show the closing of a lattice with 259 data chunks. As illus-

trated in the lower parts of the figure, closing the lattice changes the geometrical

shape of each strand class (H, R, L) to a toroidal.

Figure 2.4: Toroidal lattice for a Merkle tree with 259 data chunks.

At first glance, the splice between the [256, 259] column and the [1, 5] columnmay

seem arbitrary. However, the logic to close follows a simple rule. The rule states,

that the splice from the last data chunk will be to the data chunk that initiated the

strand. In the case of data chunk 259 in Figure 2.4, the right strand is initiated by

data chunk 3. In other words, if we were to track the right strand from data chunk

3, we would end up at data chunk 259 (3 → 9 → 15 → 16 → 22 → . . . → 259).

Similarly, the left strand is initiated by data chunk 5. The revolving of the helical

strands is also illustrated on the lower parts of the figure. It can be observed

by following a color on either of the toroidal structures, e.g. green on the right

strand, to see that it will revolve around after p = 5 chunks. In the special case

where the number of data chunks is a multiple of s · p, the splicing would follow
the symmetry of the lattice, e.g., if the lattice contained 25 data chunks, for data

chunk 25. Hence, for data chunk 25 the splice on the right strand would be to

data chunk 1, and the splice on the left strand would be to data chunk 4.
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2.5.4 Encoding the Entangled Merkle Tree

When a file is encoded as a Merkle tree, the tree comprises the following.

• the chunks of the file as leaves

• lookup-metadata in the form of internal nodes

• the root of the tree as the entry point for the file

The purpose of the entangled Merkle tree is to add fault tolerance to all of these

components. Hence, the entangled Merkle tree should avoid interdependencies

between the different components. For example, we cannot rely on an internal

node for lookup being repaired by its children, as without the internal node, the

children cannot be retrieved.

To avoid such interdependencies, the encoding should place a parent node

and its children at least one lead window away from each other. A lead window

for α = 3 describes the number of data chunks that can be encoded before the

helical strands (right or left) revolves around the lattice structure. As illustrated

in Figure 2.4, consider the right strand that follows data chunk 31 on the path

31 → 37 → 43 → 49 → 55 → 56 → .... When it reaches 56, we can see that the

pattern starts to repeat, and thus we can see that a lead window consists of 25

data chunks. Formally, the size of a lead window is defined as the product s · p.
Tomanage these interdependencies, when constructing the entangledMerkle

trees we attempt to place dependant chunks at least one lead window away from

each other. We call this process swapping and have illustrated it in Figure 2.5.
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Figure 2.5: Managing interdependencies through swapping position in the lattice.
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In the figure there we can see that data chunks 26 and 258 have been swapped.

Similarly, data chunks 129 and 176 have been swapped. The reason for this is

that 129 is the internal chunk that is the parent to chunks 1 to 128, and 258 is the

parent to chunks 130 to 257. Hence, by having this new placement, we achieve

improved fault tolerance as we avoid attempting to repair internal chunks using

its children. For further details, we refer to Paper 1 and its presentation from

Middleware.

2.6 Distributed Hash Tables

An overlay network creates a logical network on top of the physical network to

serve as the basis formost p2p systems [27]. One type of overlay network is struc-

tured p2p overlays, commonly referred to as Distributed Hash Table (DHT).

A DHT is a distributed system that provides a lookup service for a key-value

store. Due to the logical routing, the DHT allows a peer to reach any other peer,

while only requiring that each peer maintain connections to a small subset of the

total peers in the network. Each peer participating in the DHT is given a unique

peer address that is used to identify the peer. When a new key-value pair is in-

serted into the DHT, the peer address is used to determine which peers should

store the key-value pair. Similarly, to later retrieve the value, a request containing

the key is routed to the peerswhich are responsible for storing the value. Thisway,

we only need to query a fraction of the total peers to retrieve the value. Notable

DHTs that offer logarithmic lookup areChord [66], Pastry [60], Tapestry [86] and

Kademlia [44]. Both Swarm and IPFS use Kademlia as their DHT. In addition,

a recent survey on decentralized storage systems shows that the most common

DHT used in practice is Kademlia [14]. Therefore, the rest of this section will

focus on Kademlia.

Kademlia assigns a 160-bit address to each peer when joining the system.

Keys share the same 160-bit identifier space as peer addresses. To determine the

distance between addresses or keys, the exclusive-or (XOR) operation is used.

Peers maintain a routing table by storing information about other peers in buck-

ets. However, each peer only maintains active connections to a handful of other

peers in each bucket. The routing table for the peer P02 is shown in Figure 2.6.

As shown in the figure, peers havemore granular information about peers that

are closer to them. This allows for a logarithmic lookup time, as with each con-
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Figure 2.6: Kademlia tree with 13 peers. The red dashed rectangles indicate the
buckets of peer P02.

sequent step, the distance between the peer and the key is halved. To illustrate,

consider a peerX, which wants to look up a value y in the Kademlia DHT. PeerX

starts by checking the bucket where it knows y should be located. From the peers

in that bucket, it selects the closest peer to y and queries it for the value. This

peer, which we call Z, does not have y but instead returns a set of peers Z ′ that

are even closer to y than itself. PeerX then selects one ormore peers fromZ ′ and

queries them for y. This process continues until the closest peer in the network,

Y , is discovered. Finally, the request for y is sent to Y , which returns the value to

peerX.

2.7 Proof of Storage

Proof of Storage algorithms provides a way to outsource storage to a third party

while being able to verify that the data is being correctly stored, without having to

transfer the data itself. A Proof of Storage (PoS) system typically has three distinct

actors; the challenger, which issues PoS queries; the prover, which responds to

the queries by creating a proof; and the verifier, which verifies the proof.

The earliest works were published in 2007 [35, 3, 61]. Since that time, there

has been considerable work to construct schemes with additional features and

improved properties [85].

A common strategy in PoS algorithms is that the data owner samples the orig-

inal data to create proving-metadata, before uploading it to storage peers. The

proving-metadata must be kept secret from the storage peer, as it contains in-
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formation on how to verify a proof. Hence, by having the proving data, the data

owner can delete the original data and still be able to verify the data is stored

correctly.

As an illustrative example, consider an imaginary PoS algorithm that ran-

domly samples k bit values and their position p from the original data and stores

them into a map with k entries p → {0, 1}. To then create a challenge, the chal-
lenger selects n random positions from the map and sends them to the prover.

The prover then needs to respond with the corresponding bit values. To verify

the proof, the verifier checks that the bit values are correct.

Note that such a trivial scheme would have limited usage in practice, as with

each new challenge, the prover learns more and more about the map (proving-

metadata). When the prover has learned all the entries in the map, it can simply

delete the uploaded data to save storage space while still being able to answer all

subsequent challenges.

In Paper 3 we propose a PoS scheme that verifies the entire data, not only

random samples. Additionally, in Paper 2 we propose a PoS-like construction

that allows membership queries when multiple data items are included in the

same storage proof.

2.8 Ethereum Swarm

Ethereum Swarm [76] (Swarm for short) is a global decentralized storage net-

work. Swarm’s monitoring website [26] shows that the network has over active

2,900 peers. Peers are incentivized to store and serve data by receiving BZZ to-

kens for doing so. The BZZ token is the native token of the Swarm network, and

it resides on the Ethereum blockchain.

The following sections will detail the technical aspects of data storage, net-

work topology and data synchronization in Swarm. We will use the file termi-

nology to refer to any collection of data that a client wants to persist in the net-

work. Collections of data include a regular single file, parts of a file and any other

streams of bits.
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2.8.1 Data Storage

Swarm splits files into 4 KB chunks. A unique chunk identifier is derived for

each chunk by passing the chunk’s content through a cryptographic hash func-

tion. Swarm creates a 128-aryMerkle tree where each of the file’s chunks is a leaf.

The internal nodes and root of the Merkle tree are also stored in 4 KB chunks

and contain a concatenation of the chunk identifiers of their children. Thus, the

integrity of a file is easily verified using the root hash value, as any modifications

are propagated to the root.

This root also serves as the entry point when retrieving a file from the net-

work. When a client wants to retrieve a file, it first queries the network for the

root chunk. The root chunk is then decoded to reveal the chunk identifiers of the

internal nodes. The same process is repeated for the internal nodes until the leaf

chunks are reached. When all leaves have been retrieved, the file is reconstructed

from the chunks.

2.8.2 Network Topology

Swarm uses a variant of Kademlia, called forwarding Kademlia [74], to main-

tain the overlay network. To illustrate forwarding Kademlia, we use the same

scenario as for regular Kademlia, described in Section 2.6. We consider a peer

X who wants to look up a value y. In the same way, peer X starts by finding the

closest peer Z in the bucket where y belongs. When querying Z for y, instead of

Z returning a list of peers that are closer to y, it will forward the request to one of

them. This forwarding continues until the closest peer Y is reached. The peer Y

then returns the value y through the same path as the request — but in reverse.

Forwarding Kademlia has two main advantages over regular Kademlia. First,

each peer that is a forwarder only knows from which peer they received the re-

quest, and to which peer they forwarded the request. Therefore, it may be diffi-

cult to know which peer originated the request. This may be desirable for storage

systems that want some notion of sender anonymity. Second, the workload of

requesting and decoding responses is spread to more peers in the network. The

distribution of the workload is a form of load balancing. However, as a tradeoff,

as theworkload of requesting is spread tomore peers, we have an increased risk of

failure due to message loss, as peers along the delivery path may fail or otherwise

refuse to forward the request.
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Swarm organizes peers into neighborhoods, based on the similarity of their

peer addresses. The significance of neighborhoods is that each peer is supposed

to replicate their data with its neighbors (see Section 2.8.3). In Figure 2.7 we

show two example neighborhoods obtained in our cluster of 1,000 peers. The

entire network topology is shown on the front page (zoom in to read the peers’

labels) and represented as a histogram in Figure 2.8. In our experimental setup,

we observed 81 distinct neighborhoods of various sizes n ∈ [8, 26]. As chunks are

replicated by all peers in a neighborhood, the varying sizes of the neighborhoods

cause the chunks’ replication factor to vary accordingly.
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Figure 2.7: Swarm neighborhoods with 8 and 17 peers. Peers are labeled with
their address prefix and their cluster instance.

2.8.3 Data Synchronization

In Swarm, chunk identifiers and peer addresses share the same address space. A

neighborhood is a cluster of peers with similar addresses. During upload, each

chunk is distributed to a neighborhood based on the chunk’s content address.

We call this the chunk’s closest neighborhood, and the peers in the neighborhood

are called the chunk’s storer peers. These neighboring peers are responsible for

storing the chunks whose content address is similar to their peer addresses. To

download a file, a peer (or client) will similarly attempt to locate the file’s chunks

in the neighborhoods where the chunk is supposed to be stored.
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Figure 2.8: Distribution of neighborhood sizes in our cluster.

There are three protocols for data synchronization in Swarm; push-sync, pull-

sync and retrieval-cache. The push-sync protocol involves transferring chunks

from the uploader to storage peers, i.e., from the network’s entry point to each

chunk’s closest neighborhood. Second, the pull-sync protocol is activated when a

new peer enters or leaves the network. When pull-syncing, peers will query their

connected peers for a list of chunk identifiers they are storing and then proceeds

to request those within its address space. Lastly, the retrieval-cache protocol is

activated when a peer forwards or otherwise receives a chunk.

In Paper 3 we propose SUP which uses PoS queries to check the persistence

of chunks in the network, before uploading them. Chunks that are not found, will

be uploaded using the push-sync protocol. In Paper 2 we discuss the fallacies of

pull-sync and propose SNIPS as a replacement.

2.9 Other Decentralized Storage Systems

In this section, we briefly describe other current decentralized storage systems.

Many aspects of these systems work similarly to Swarm, however, we will high-

light some aspects in which they differ. In particular we will focus on IPFS [4],

Filecoin [39], Storj [70], Arweave [84] and Sia [77]. A recent survey on decentral-

ized storage systems [14] provides a more comprehensive overview of the field.
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2.9.1 IPFS

The InterPlanetary File System (IPFS) is arguably the most well-known decen-

tralized storage system. It has over 200,000 active peers [41], and over 2 million

weekly users.

When a file is uploaded to IPFS, it is split into 256KB chunks [75]. The chunks

are then encoded into a Merkle DAG (Directed Acyclic Graph). The Merkle DAG

is less rigid than the Merkle tree and allows for more flexible data structures. For

example, the DAG does not need to be balanced, nodes can have values and nodes

can have multiple parents.

IPFS peers are expected to store the entire file themselves and offer no built-

in redundancy protocol. However, if an operator runs multiple IPFS peers, they

can add redundancy to their data by connecting the IPFS peers using IPFS Clus-

ter [38]. IPFS Cluster adds redundancy by replicating the data across the pre-

defined peer instances. To store data at third parties, it is possible to use File-

coin [39]. Filecoin works as a layer on top of IPFS and adds replication and in-

centivizes storage.

Todiscover and transfer data, IPFSuses theBitswapprotocol [16]. To retrieve

data that is stored in the network, the requesting peer uses Bitswap to send a

IWANT-HAVE message to the peers it is connected to. This message contains

a list of chunk identifiers. Then, each peer that is storing either of the chunks

will respond with a IHAVE indicating which chunks it is storing. Finally, the

requesting peer will send a newmessage IWANT-BLOCK to individual peers that

are storing the requested chunks.

2.9.2 Filecoin

Filecoin is a decentralized storage network that uses IPFS as its underlying stor-

age layer. Peers are rewarded with FIL tokens for correctly storing data. To verify

that a peer is storing data correctly, Filecoin uses two separate PoS-based meth-

ods. First, to ensure that a peer is storingmultiple copies of the data—on separate

physical devices—Filecoin uses the Proof of Replication protocol [5]. Second, to

ensure that a peer is storing the data continuously for a long period, Filecoin uses

the Proof of Spacetime protocol [5].

A peer must meet demanding hardware requirements [40] before joining the

network. In addition, a peer must put a deposit of FIL tokens into an account as
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collateral. The collateralmay be slashed (lost) if the peer fails to operate correctly.

2.9.3 Storj

Storj boasts over 21,000 active peers [67]. As with Filecoin, there is a minimum

hardware requirement for joining the network [69]. However, Storj does not re-

quire a deposit of tokens as collateral. To join the network, a user must first reg-

ister an account and then download the Storj client.

There are three different peer classes in the Storj network;Uplink nodes, Stor-

age nodes and Satellites. Uplink nodes represent any service or application that

uploads or downloads data to the Storj network. Storage nodes are the peers that

store the data. Storage nodes are incentivized by receiving STORJ tokens for op-

erating correctly. Lastly, a Satellite peer is a trusted centralized entity that man-

ages the network. The tasks of the Satellite peer include [68]; 1) User account

management, 2) Access management, 3) Payment, 4) Metadata storage, 5) Data

repair and 6) Data auditing.

Storj uses the Reed-Solomon erasure coding scheme to add redundancy to the

data. During the upload process, the Uplink node performs encryption, erasure

coding and chunking. The Upload node then coordinates with the Satellite peer

to distribute the chunks to the Storage nodes.

The auditing service of the Satellite node will periodically request proofs of

retrievability from the Storage nodes. Failure to provide a proof promptly will

result in reduced rewards.

2.9.4 Arweave

Arweave uses blockweave, a blockchain-like structure to store data in the net-

work. As with regular blockchain structures, each block in blockweave has a link

to the previous block. However, each block also has a link to another determin-

istically determined block, creating a structure that resembles a woven pattern—

hence the name blockweave. This deterministically determined block is called

the recall block, and it aids peers that want to keep track of the latest data in the

network—but do not want to download the entire blockchain.

To ensure data permanence, Arweave stores uploaded data directly on-chain

on blockweave. The redundancy is provided through the miners replicating the
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blocks. The Arweave network has just over 100 peers [2]. The peers are rewarded

with the native cryptographic token AR.

2.9.5 Sia

Sia was released in 2014 and is one of the first decentralized storage systems in

the current generation. There are currently around 400 active peers [63].

Peers may be rewarded the cryptographic token siacoin in two ways [62]. The

first way is by performing proof of work [48] to secure the Sia blockchain. The

second way is to become a host that contributes storage to the network. To be

eligible as a host, a peer must put a deposit of siacoins. In addition, the host

will be subject to continuous auditing to ensure that they are storing the data

correctly.

Sia splits files into 40 MB chunks, smaller files than 40 MB will be padded.

The redundancy is provided through Reed-Solomon erasure coding, however, it

offers no solution for themetadata, and lets the user decide how to store it. Should

the metadata be lost, it may not be possible to recover the file. After creating

the parity chunks, Sia will encrypt the file using Threefish [23]. The chunks are

then uploaded to multiple peers, and their locations are also stored in the local

metadata.

2.9.6 Conjectured Applicability of Our Contributions

Wehave presented a brief overview of themost popular decentralized storage sys-

tems. While these systems all aim at storing data, their approaches, implementa-

tion and programming languages differ. Hence, we cannot expect the contribu-

tions herein to work “out-of-the-box”. Rather, the contributions will need to be

adapted to the specific system. In Table 2.2 we summarize our conjectures about

our contributions’ applicability to these systems. We note that we are only con-

sidering the technical applicability of our contributions if implemented in each of

these systems. In the following, we will discuss how our contributions relate to

these systems and elaborate on our conjectures.

First, we havemarkedApplicable for all systems to adapt SUP fromPaper 3. The

reason for this is that all the systems have a similar structure in that they split a

file into chunks and then distribute the chunks to the storage peers. By applying

the techniques proposed in SUP, data transmission can be optimized as only the
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Table 2.2: Conjectured applicability of our contributions.

Decentralized Snarl SNIPS SUP
Storage System Paper 1 Paper 2 Paper 3

Swarm Applicable Applicable Applicable

IPFS Applicable Applicable Applicable

Filecoin Applicable Applicable Applicable

Storj Artifacts applicable Applicable with amendments Applicable

Arweave Applicable Applicable with amendments Applicable

Sia Artifacts applicable Applicable with amendments Applicable

chunks that are missing need to be distributed. Hence, we conjecture that SUP is

applicable to all systems.

Next, for Snarl fromPaper 1, we observe that Swarm, IPFS, and Filecoin have

similar structures for chunking and encoding the data into hierarchical struc-

tures. Previouswork [65] has also implemented a version of Snarl in IPFS.Hence,

we mark these systems as Applicable for Snarl.

Considering the data availability in Storj and Sia, they both useReed-Solomon

erasure coding to add redundancy to the data. However, their approaches have

some weaknesses. In Sia, the repair metadata is stored by the user, and if it is

lost, the data may be unrecoverable. In Storj, the repair metadata is stored by a

trusted centralized entity, and if the entity is compromised, the data may be lost.

In both of these systems, chunks are stored in a flat structure, unlike the hierar-

chical structure considered for Snarl. This makes the repair process significantly

easier, as it does not need to consider dependencies between chunks. However,

Snarl proposes amethod to eliminate the need for a local or remotemetadata file.

Therefore, we mark these systems as Artifacts applicable for Snarl.

As for Arweave, the data is stored directly on the blockchain, and the redun-

dancy is provided through miners replicating the blocks. However, replication

has a high storage overhead compared to the provided redundancy [24]. Hence,

we mark Arweave as Applicable for Snarl.

Finally with regards to SNIPS from Paper 2, we again argue that the struc-

tures of Swarm, IPFS, and Filecoin are sufficiently similar to suggest that the pro-

tocol is applicable for all of them.

We see that in Storj, Sia, and Arweave that the network topology is unstruc-
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tured, and lookup is not decentralized. In Sia the user is responsible for keeping

track of the location of its chunks. In Storj the Satellite peer is responsible for

keeping track of where the chunks are stored. In Arweave, the lookup is prob-

abilistic and involves searching the blockweave. SNIPS aims at efficiently syn-

chronizing data among peers. In SNIPS we assumed a structured network where

peers are clustered together in neighborhoods. We conjecture that even with an

unstructured network topology, the design and methods proposed in SNIPS are

relevant for these systems. Hence, we have marked the SNIPS protocol as Appli-

cable with amendments for these systems.
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Chapter 3

Research Questions

In this section, we build upon the Introduction (Chapter 1) and the Background

(Chapter 2) to present the research questions (RQs) covered by this thesis. The

overarching research topic in this thesis is to design protocols and techniques to

improve data availability in decentralized storage systems. Having a reliable and

efficient data storage system is a prerequisite for providing long-term persistence

guarantees. Thus, the first research question in the thesis is as follows.

RQ 1: How can we improve data availability in decentralized storage

systems?

To answer this question, we need to understand the inner workings of decentral-

ized storage systems. While studying the inner workings of decentralized storage

systems, wediscovered several design choices that result in suboptimal data avail-

ability. These design choices include the use of naive replication schemes which

result in low storage utilization, ineffective data synchronization between peers,

and the lack of storage guarantees for clients. We began our work by evaluating

these design choices analytically. We developed analytical models, simulations

and equations to understand how we could develop new protocols to improve

data availability.

In addition to the analytical work, we also wanted to evaluate our protocols in

a real-world setting. Evaluating decentralized protocols in a real-world setting is

challenging due to the lack of a standardized testbed. To address evaluating our

protocols, we post the second research question.
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RQ2: How canwe evaluate protocols for decentralized storage systems

in a real-world setting?

Research questions RQ 1 and RQ 2 are the main research questions of this the-

sis. We have developed a set of subquestions to answer parts of RQ 1, which will

be presented in the following subsections. Following the presentation of the re-

search questions, we present a mapping between each of the research questions

and our contributions enumerated in the List of Included Papers.

3.1 RQ 3: Applying Erasure Codes to Hierarchical

Data Structures

Modern decentralized storage systems such as Swarm [74], InterPlanetary File

System (IPFS) [4], and Filecoin [39] split files into chunks and encode the chunks

into a Merkle-based structure. The Merkle-based structure comprises lookup-

metadata in the form of internal nodes, the chunks of the file as leaves and the

root of the tree. In the following, we will use a Merkle tree to explain the research

question. However, the research question also applies to theMerkle DAG used in

IPFS and Filecoin.

Figure 3.1 illustrates a file encoded as a Merkle tree. Note that the illustration

uses a non-conventional circular representation of theMerkle tree to depictmany

leaf chunks. In the figure, the root node is labeled 25, and its children, 15 and 24

are internal nodes. The leaves are located on the outer periphery and are only

accessible through the root and internal nodes.

When retrieving the file, the first request contains the chunk identifier of the

root (25). The root is decoded to reveal the chunk identifiers of the internal nodes

(15 and 24). These are then requested to reveal the chunk identifiers of either the

next level of internal nodes or the leaves. The process terminates when all the leaf

chunks ([1− 14] and [16− 23]) are retrieved and the file can be reconstructed.

It is clear that all elements of the Merkle tree are required to retrieve the file.

Thus, to add fault tolerance, we need to consider the entire structure. Currently,

modern decentralized systems use naive replication schemes to add fault toler-

ance. However, it has been shown that replication is less storage efficient than

erasure coding algorithms [59, 43, 80]. The inefficiency of replication schemes
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Figure 3.1: File encoded as a Merkle tree with post-order labeling on the nodes.

as compared to erasure codes can result in significantly higher storage consump-

tion. In simple terms, a file that is replicated X times requires X times the stor-

age space. In comparison, a file that is erasure coded may use orders of magni-

tude less storage space, while still providing the same level of fault tolerance. The

tradeoff of erasure coding versus replication is additional computation to encode

and decode the file and the need to have decode-metadata, which instructs how

to recover from errors.

However, due to these hierarchical dependencies between leaves and internal

nodes in the Merkle tree, it is non-trivial to apply erasure codes. Erasure cod-

ing algorithms are typically defined on flat structures, where the availability of

chunks is independent of each other. To illustrate why applying erasure codes is

non-trivial, we consider naively applying erasure coding to a mix of leaves and

internal nodes. In the following, we will highlight two challenges with this ap-

proach.

First, we end up with a set of parity chunks that would need to be uploaded to

the decentralized storage system. After uploading, we would need to record the

chunk identifiers into the decode-metadata, so that we could use them when re-

pairs are needed. Only those in possession of the decode-metadata are able to do
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repairs. Hence, the decode-metadata would also need to be uploaded to the de-

centralized storage system. However, this represents a significantly reduced fault

tolerance, as the decode-metadata cannot be part of the original erasure code.

Next, an erasure code is often described with two parameters (n, k), with n

representing thenumber of encoded chunks, and k the number of original chunks.

In this case, themaximumnumber of chunks that can be lost is n−k. However, if

there is a dependency between the chunks, it means that the fault tolerance is sig-

nificantly reduced, as the maximum number of chunks that can be lost is lower,

potentially drastically lower.

To address the challenges above, we present the third research question.

RQ 3: How can we apply erasure codes when files are encoded in

hierarchical data structures, such as Merkle trees?

3.2 RQ 4: Synchronizing Storage Peers

Peers in decentralized storage systems are grouped together in smaller clusters

based on their addresses. The peers inside a cluster aim to store the same data,

and hence need to synchronize data with each other.

When a peer joins the storage system for the first time, it is assigned to a clus-

ter. Upon joining, the new peer will attempt to retrieve data stored by other peers

in the cluster. Similarly, when a peer temporarily leaves the storage system, and

later joins again, it will attempt to synchronize with the other peers.

In current systems, synchronization relies on exchanging long lists of chunk

identifiers to determine which chunks a peer is missing. To address the ineffi-

ciency of the synchronization process, we present the fourth research question.

RQ 4: How can we efficiently synchronize data between peers?

3.3 RQ 5: Client Data Upkeep

Recent studies [53, 30, 75, 29, 15] have shown that the peer churn rate in decen-

tralized storage systems is very high. A consequence of a high churn rate — espe-

cially without an efficient method to synchronize between peers, as mentioned in

RQ 4 — is that data is lost. Thus, a client that wants to ensure that their data is

stored in the network must periodically re-upload their files to ensure that they
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are stored in the network. Re-uploading entire files use an excessive amount of

bandwidth, even though only a small fraction of the file’s chunks might be lost.

The above description leads us to the last research question.

RQ 5: How can clients efficiently ensure the persistence of their data?

3.4 Mapping Research Questions to Papers

The relationship between the research questions and the research papers is illus-

trated in Figure 3.2. Research questions RQ 3, RQ 4 and RQ 5 are all derived

fromRQ 1 and each is answered in a separate research paper. In addition, those

papers partially answer RQ 2. However, RQ 2 is also answered in a separate

paper where it is the primary topic.

Paper 1:
Snarl: Entangled Merkle Trees for

Improved File Availability and
Storage Utilization

Paper 2:
SNIPS: Succinct Proof of Storage for

Efficient Data Synchronization in
Decentralized Storage Systems

Paper 3:
Cost-effective Data Upkeep in

Decentralized Storage Systems

Paper 4:
Lessons Learned from a Bare-metal

Evaluation of Erasure Coding
Algorithms in P2P Networks

RQ 1:
How can we improve data
availability in decentralized

storage systems?

RQ 3:
How can we apply erasure codes

when files are encoded in hierarchical
data structures, such as Merkle trees?

RQ 4:
How can we efficiently synchronize

data between peers?

RQ 5:
How can clients efficiently ensure the

persistence of their data?

RQ 2:
How can we evaluate protocols

for decentralized storage
systems in a real-world setting?

Figure 3.2: Mapping research questions to papers. The thicker line from research
questions to papers indicates the main topic of the paper.

3.5 Main Contributions

The main contributions of the thesis and their relation to the research questions

are outlined below. We have made the relevant source code for our contributions

publicly available, and the experimental setup is described in the research papers.

As such, all of our empirical studies should be reproducible.

33



3.5.1 Main Contribution 1

In Paper 1 we answer RQ 3 by proposing entangled Merkle trees and Snarl. An

entangled Merkle tree is a resilient data structure that decreases the impact hier-

archical dependencies have on data availability. Using the entangledMerkle tree,

the root, internal nodes and leaves are encoded together in such a way that data

can be recovered even if the root is missing from the original Merkle tree. To fa-

cilitate the recovery, the client interacts with the underlying decentralized storage

system through Snarl. Snarl’s repair algorithm will retrieve corresponding parity

chunks from entangled Merkle trees to recover from missing or corrupt chunks.

We found that by encoding data as an entangled Merkle tree and using Snarl’s

repair algorithm, the storage utilization could be improved by over 5 times.

3.5.2 Main Contribution 2

Research questionRQ4 is answered by the proposal of SNIPS inPaper 2. Peers

using the SNIPS protocol create a Minimal Perfect Hash Function (MPHF) [20,

42] that is exchanged with neighboring peers. Upon receiving the MPHF, the

recipient peer can query it to determine missing chunks. The missing chunks are

then requested from the sender to synchronize the peer. Our results show that by

using SNIPS, the amount of synchronization data can be reduced by three orders

of magnitude, compared to the state-of-the-art.

3.5.3 Main Contribution 3

We answerRQ 5 in Paper 3, where we propose SUP. SUP is designed to reduce

the amount of bandwidth required by clients that want to ensure that their data is

stored in the decentralized storage system. In current systems, clients may only

ensure data availability by re-uploading the entire file. Unnecessary uploading

wastes significant amounts of bandwidth. The novelty of SUP is to use proof-of-

storage queries to detect missing chunks and then only upload those that were

missing. We show that SUP may reduce the amount of data transferred by up

94% compared to the state-of-the-art.
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3.5.4 Main Contribution 4

All contributions were evaluated using a large real-world cluster of 1,000 peers.

The cluster consists of 30bare-metalmachines runningUbuntu. Real-world eval-

uation is difficult and time-consuming, as the systems and protocols are complex.

In Paper 4 we detail our experience with the evaluations, with a particular

focus on evaluating Snarl from Paper 1. Improvements to the evaluation frame-

work are described in Paper 3. We present a holistic and coherent description

of the evaluation framework in Chapter 6.
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Chapter 4

Improving Data Availability

In this chapter, we connect our contributions and show how they improve data

availability in decentralized storage systems. We recommend reading this chap-

ter after first reading the included papers. A high-level illustration of how the

contributions relate to each other is shown in Figure 4.1.

Thesis

SUP

Snarl

Data Availability

SNIPS

Client Data
Synchronization

Data Redundancy

Peer Data
Synchronization

Data
Synchronization

Client-controlled
Redundancy

System-wide
Redundancy

Data Repair

Proof of
StorageProof of

Storage

Paper 1

Paper 2 Paper 3

Figure 4.1: The relation between the Snarl, SNIPS, and SUP protocols.
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The chapter is organized as follows. We begin with a brief summary of our

contributions and relate them to Figure 4.1. Next, we discuss areas in which the

contributions are complementary. Finally, we conjecture the potential benefits

of integrating the contributions into the same decentralized storage system.

4.1 Brief Summary of Contributions

InPaper 1we present entangledMerkle trees and Snarl. EntangledMerkle trees

provide data redundancy by creating repair pairs for all chunks in the Merkle

tree. Whenever a chunk is missing, Snarl provides data repair by first retrieving a

relevant repair pair from the network and then using the repair pair to reconstruct

the missing chunk.

In Paper 2 we present SNIPS, a novel approach to synchronizing data be-

tween peers efficiently. With SNIPS, a peer uses a Proof of Storage-like con-

struction to create succinct storage proof for the chunks it wants to synchronize.

Each peer then exchanges their storage proofs with other peers. Finally, the peers

query the received storage proofs to determinewhich chunks they aremissing and

need to synchronize.

Finally, in Paper 3 we present SUP, a protocol for efficient client data syn-

chronization. SUP uses PoS-queries to determine which of the client’s chunks

are stored in the network. Then, to ensure persistence the client only needs to

re-upload the chunks that are missing in the network.

We evaluated all three protocols under similar conditions on a large cluster

of 1,000 peers. In Chapter 6 we present a holistic view of the evaluation setup

and the evaluation framework. In the following section, we present some of the

main results of our evaluation and discuss areas in which the contributions are

complementary.

4.2 Highlighting the Main Evaluation Results

As our three contributed protocols, Snarl, SNIPS and SUP are independent and

improve data availability in different ways, they have been evaluated using differ-

ent metrics. In this section, we will go into further detail on the protocol and then

highlight the main evaluation results for each protocol. The section serves as a
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prelude to the detailed analysis of the integration of the protocols given in Sec-

tion 4.3.

Using the entangled Merkle trees and the repair algorithm, Snarl can recover

from corrupt or missing chunks. Our results show that compared to current sys-

tems, the storage utilization can be improved by over 5 times, with improved re-

silience against data loss. A file encoded with Snarl to have storage utilization

comparable to 14 copies of a file achieves better recovery likelihood than a file

replicated 72 times in Swarm. With a network of 1,000 peers, for a 1 MB file, the

file encoded in Snarl has a 99% recovery likelihood, with up to 50% of the peers

being offline or malicious.

While Snarl offers a significant improvement in terms of data availability, it

relies on the internal nodes of the entangled Merkle trees being sufficiently repli-

cated in the network to achieve optimal results. In addition, our results show that

Snarl is more efficient when the total percentage-wise number of missing chunks

is low, i.e. low chunk loss rate. We define repair ratio as the number of parity

chunks retrieved, divided by the number of missing data chunks. The repair ra-

tio is slightly higher than 2 for low chunk loss rates. For a 1 MB file, the average

repair ratio reaches a peak of 2.25 when 25% of the chunks are missing in the

network. The increased repair ratio comes from the fact that entanglement codes

need a complete pair to repair. Thus, if only one chunk in the pair is available,

it might have been a wasteful download, as the repair algorithm must attempt to

make progress using another pair. This suggests that Snarl should attempt to do

repairs while the chunk loss rate is low. However, to detect the chunk loss rate,

we need a mechanism that can efficiently determine which chunks are missing.

Both of our other contributions, SNIPS and SUP, propose protocols that can be

used to efficiently determine which chunks are missing. The SNIPS protocol may

also be used to ensure sufficient replication of the internal nodes of the entangled

Merkle trees.

SNIPS is a protocol that allows peers to efficiently synchronize data with each

other. Efficient synchronization is vital for data availability because peer-to-peer

networks are often subject to high churn. Our results show that SNIPS can reduce

the amount of synchronization data by up to three orders ofmagnitude compared

to current systems. In SNIPS, the peers within a neighborhood periodically ex-

change our proof of storage construction built on MPHFs. This construction al-

lows the recipient to determinewhether it ismissing chunks from the sender, and,

38



if so—request the missing chunks. In addition, SNIPS can be set up so that peers

exchange the MPHFs on the same frequency as blocks are committed to a public

blockchain. For example, to exchange MPHFs once per day using the Ethereum

blockchain, a data synchronization would have to be triggered for each 7200-th

block. Thus, the efficient data synchronization of SNIPS complements Snarl, as

efficient data synchronizationwill aid inmaintaining sufficient chunk replication.

Our last contribution, SUP, uses PoS-queries to determinewhich of the client’s

chunks are stored in the network. The SUP protocol assumes that the client has

a local copy of the chunks it wants to confirm the persistence of. For the evalu-

ations, we considered a scenario where a client wants to re-upload its chunks to

the network. We found that SUP can reduce the amount of data that needs to be

uploaded by up to 94% compared to current systems. In addition, the time spend

re-uploading may be reduced by up to 82%.

Finally, in Paper 3, we did a small study on the public Swarm network to

determine the current data availability and rate of decay. Having suchmonitoring

functionality is vital for the success of decentralized storage systems, as it allows

the system to adapt to changing network conditions. For example, the system

could dynamically adjust the redundancy levels or reduce the time between data

synchronizations to maintain the desired data availability.

4.3 Integrating the Contributions

In this section, we conjecture the potential benefit in data availability of integrat-

ing the Snarl, SNIPS, and SUP protocols. In the following subsections, we will

discuss the benefit of each integration. As a reminder, we illustrate the high-level

relationship between the protocols in Figure 4.1. We note that the benefit of in-

tegrating the protocols is not necessarily additive, and new evaluations would be

needed to determine the actual performance of the integrated protocols.

4.3.1 System-wide Redundancy

An integration between Snarl and SNIPS would complement each other in terms

of data availability. First, we would gain fault tolerance against chunk loss from

Snarl, and second, we would gain efficient data synchronization from SNIPS.

The benefit of the integration is made clear when considering the following
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scenario. If we use SNIPS by itself, then if a chunk is lost by all peers in the net-

work, there is no way to synchronize it back to existence. If we use Snarl by itself,

then if the chunks of the entangled Merkle tree are not properly synchronized

between the storage peers, the fault tolerance will be significantly reduced.

4.3.2 Client-controlled Redundancy

The integration of Snarl and SUP would allow clients to monitor and maintain

the redundancy of their data. With SUP, a client can determine the persistence

of their data in the network, and if necessary re-upload missing chunks.

A file encoded with Snarl adds fault tolerance by creating entangled Merkle

trees. The new chunks of the entangled Merkle tree are distributed to the stor-

age peers in the same way as the original chunks. Thus, clients can use SUP to

determine the persistence and if necessary re-upload missing chunks from the

entangled Merkle trees.

We note that Snarl already proposes user-controlled redundancy, which is

the ability to control the redundancy of their data by choosing the encoding pa-

rameters.

4.3.3 Data Synchronization

The SNIPS protocol provides efficient data synchronization between peers, while

the SUPprotocol provides efficient data synchronizationbetween clients andpeers.

We conjecture both types of synchronization are beneficial for achieving high data

availability.

A key parameter with data synchronization is the interval at which it is per-

formed. In Paper 3, we conducted an experiment in the public Swarm network

in an attempt to find the upper bound for this interval. Our results show that

chunksmay become unavailable as soon as 6 days after the initial upload of a file.

These results suggest that a reasonable interval to run SNIPS or SUP could be

daily. However, this is subject to change, depending on the network conditions.

4.3.4 Load-Balancing

Although not directly related to data availability, the integration of SNIPS and

Snarl would enable improved load-balancing. By load-balancing, we mean that

more storage peers are involved in answering a request to retrieve a file.
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After SNIPS have been used to synchronize chunks between peers in a neigh-

borhood, each peer will store the same chunks. Thus, these peersmay collaborate

in answering queries for chunks that belong to this neighborhood.

When Snarl encodes a file into an entangled Merkle tree, parity chunks will

be created. These parity chunks will have their own unique identifier and they

will be stored in the network in the same way as the original chunks. Thus, when

retrieving a file, it is possible to shift the load of answering the query from the

peers storing the original chunks to the peers storing the parity chunks.

Hence, we conjecture that the integration of SNIPS and Snarl would enable a

more efficient load-balancing of the network.

4.3.5 Full Integration

In the previous sections, we discussed the possible benefits of integrating each

pair of protocols. In this section, we discuss integrating all three protocols into

the same system.

While we conjecture that the integration of SNIPS, Snarl, and SUP would be

beneficial for data availability, it remains future work to design, implement, and

evaluate such a system.

As noted in Section 7.2, we suggest that a tighter coupling to the decentralized

storage system would be beneficial for the performance of SNIPS. We note that

both SNIPS andSUPuse chunkproofs for creating their respective storage proofs.

We will analyze chunk proofs in Chapter 5.

Lastly, with the promising benefits of integrating Snarl and SNIPS, the need

for re-uploading chunks may be reduced. However, SUP may still have a role to

play in the system, as an independent mechanism to monitor or audit the data

availability of the system.
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Chapter 5

Security Analysis of Chunk

Proofs

In this chapter, we will analyze the security of the chunk proof proposed in SUP

and also used in SNIPS. Hence, we recommend reading this chapter after reading

Paper 3 and Paper 2. As a reminder, a chunk proof is defined as the crypto-

graphic hash of a nonce (number used once) concatenated with the chunk’s data.

We repeat the chunk proof definition for chunk A in Equation (5.1).

ChunkProofA : cpA = H(nonce || A) (5.1)

The overarching goal is to show that a valid chunkproof can only be generated by a

prover that has both the nonce and the chunk itself. To achieve this, we define two

security games, inspired by multiple sources [3, 85, 8]. In the security games, we

define two actors, first a powerful probabilistic polynomial time (PPT) adversary

A (i.e., dishonest storage peer) and second a PPT verifier V . We say that A wins

the security game if it can use an invalid proof to pass the verification made by V .
If A is unable to do so, unless, with a negligible probability, we say that V wins
the security game, and the protocol is secure.

In the first security game, Gamesoundness, the adversary wins if it can pass veri-

ficationwithout having both the chunk and the correct nonce. In the second secu-

rity game, Gamefreshness, the adversary wins if it can pass verification after saving

storage space by precomputing chunk proofs, then deleting the chunk itself.
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5.1 Definitions and Theory

We define some common notations used in security games. In addition, we give

the theoretical foundation used in our security analysis. The proofs presented

uses an asymptotic approach and are designed for sufficiently large input values.

The security level is determined by the bit lengths of Pseed, Pprbg, and Phash. We

make use of the following notation:

• Let |X| denote the size in bits of a data objectX.

• Let cpA denote the chunk proof for chunk A.

• Let IDA denote the chunk identifier for chunk A.

• Let KV denote a key-value store of chunk proofs.

• Let λ denote the security parameter.

We identify negligible quantities by using negl as a function that outputs a value

less than the inverse of any polynomial. Hence, for every value u > 0, we define

negl(λ) <
1

λu

We assume access to a cryptographic hash functionHwith the security properties

outlined in Section 2.2 that takes an arbitrary length input and that outputsPhash
bits.

H : {0, 1}∗ → {0, 1}Phash

We also assume access to a pseudo-random bit generator (PRBG) that takes a

seed and outputs a uniformly random bit string of length Pprbg.

PRBG : {0, 1}Pseed × {0, 1}Pprbg → {0, 1}Pprbg

Lastly, the proofs make use of the binomial theorem [82]. The binomial theorem

states the following algebraic expansion for an integer k ≥ 0.

(1 + x)k = 1 + kx+
k(k − 1)

2!
x2 + ...+ kxk−1 + xk.
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5.2 Soundness

The security game Gamesoundness between a probabilistic polynomial time (PPT)

adversaryA and a PPT verifier V is defined below. AdversaryA and the verifier V
both store the chunk A which has a unique chunk identifier IDA. The challenger

C runs the PRBG algorithm to generate a unique nonce. The challenger uses IDA

to request a chunk proof for chunk A. However, the nonce is only sent to V . The
adversaryAmakes polynomially many attempts at choosing a valueM to replace

the nonce and use it to generate a chunk proof using Equation (5.1).

cpA ← H(M || A).

The verifier V runs the same algorithm asA to generate cpA, but instead of choos-
ingM, it uses the nonce given by challenger C. AdversaryAwins the Gamesoundness

security game if any chunk proof generated by A is identical to the chunk proof

generated by V .

5.2.1 Proof

We want to prove that the Pr[A wins Gamesoundness] ≤ negl(λ) holds. That is,

chunk proofs satisfy the soundness definition, and there cannot exist a PPT ad-

versary A that can generate valid chunk proofs without knowing the nonce with

a higher than negligible probability.

The number of actions by the PPTA is upper bounded by a polynomial. For a
given security parameter λ, we say that the upper bound for the number of chunk

proofs generated by A is given by O(λx).

There are 2Phash possible distinct chunk proofs. The probability that the ad-

versaryA generates a valid proof and thus wins the security game is given by the
following equation.

Pr[A wins Gamesoundness] =
λx

2Phash
. (5.2)

Let Phash = λ, meaning there are 2λ possible distinct chunk proofs. We want to

show that
λx

2λ
approaches 0 as λ→∞. We begin by defining

c = 21/x = 1 + b (for b > 0)
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Then we find the x-th root of
λx

2λ
,

x

√
λx

2λ
=

λ

cλ

By the binomial theorem, for λ ≥ 2, we have

cλ = (1 + b)λ ≥ 1 + λb+
λ(λ− 1)

2!
b2. (5.3)

We re-arrange Equation (5.3) and drop the 1 + λb terms since they are negligible

compared to the other terms. We thus obtain the inequality

λ

cλ
<

2

(λ− 1)b2
,

Clearly, the right-hand size
2

(λ− 1)b2

approaches 0 as λ→∞. Hence,

0 ≤ λ

cλ
< 1

Recall that c = 21/x and thus

(
λ

cλ
)x =

λx

2λ
≤ λ

cλ

Hence, we see that the following fraction approaches 0 as λ→∞.

λx

2Phash

Finally, we see that the following inequality holds.

Pr[A wins Gamesoundness] ≤ negl(λ)

■

45



5.3 Freshness

The security game Gamefreshness is played by a PPT adversary A. We assume the

existence of an oracle O that outputs a valid chunk proof for any given nonce

and chunk identifier. AdversaryA can access the oracle and makes polynomially
many queries with identifier IDA and a unique nonce for each query. The chunk

proofs are kept in a key-value store, KV , with the nonce as key and cpA as value.
The challenger C runs the PRBG algorithm to generate a unique nonce. Ad-

versaryAwins the Gamefreshness security game ifKV contains a valid chunk proof
cpA for the nonce generated by C with a higher than negligible probability.

5.3.1 Proof

Wewant to prove that the Pr[Awins Gamefreshness]≤ negl(λ) holds. That is, there
cannot exist a PPT adversaryA that can provide a valid chunk proof without stor-
ing the chunk with more than a negligible probability. Adversary Amakes poly-

nomially many queries to the oracleO with identifier IDA and a unique nonce for

each query. Each response is stored in a key-value store, KV . The number of ac-
tions by the PPTA is upper bounded by a polynomial. Hence, for a given security
parameter λ, the upper bound for the number of chunk proofsA can store in KV
is given by O(λx).

The number of possible distinct nonces is 2Pprbg . The probability thatKV con-
tains a valid chunk proof for a given nonce gives the probability for the adversary

winning the security game

Pr[A wins Gamefreshness] =
λx

2Pprbg
.

Let the security parameter λ = Pprbg. By the same arguments used for the sound-
ness proof in Section 5.2, we can see that the following inequality holds.

Pr[A wins Gamefreshness] ≤ negl(λ)

■
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5.3.2 Practical Example

In this section, wewill illustrate a practical example of the freshness security game

as played by a rational storage peer R. We want to show that R cannot reduce

storage consumption by pre-computing chunk proofs for chunk A and storing

them in a key-value storeKV . The values we have chosen for the security param-
eters are weaker thanwhat likely would be used in practice. In particular, we have

chosen Pprbg = 160 and Phash = 160, which is the same as in SHA-1 [18], and |A|
= 256 KB, which is the same as in IPFS [72].

We argue that the size of a chunk proof is less than the chunk itself. If |cpA| ≥
|A|, a rational storage peer R will save storage space, computation, and band-

width by proving chunk possession by simply transmitting the chunk. Thus, we

can assume |cpA| < |A|.
The security parameter Phash gives the number of bits required to store each

chunk proof, and Pprbg gives the number of bits required to store each nonce.
Thus, storing a single pre-computed chunk proof will require at leastPhash+Pprbg
bits. Let y denote the number of chunk proofs in the KV key-value store. Thus,
the size of the key-value store is |KV| = y(Phash + Pprbg) bits.

For a rational storage peer R to reduce storage consumption the following

inequality must hold; |cpA| < |KV| < |A|. By putting in the numbers for the
security parameters, we get the following inequality.

160 < 320y < 2097152

By solving for y, we see that the inequality holds if KV contain less than 6553
chunk proofs. The probability that one of these 6553 pre-generated chunk proofs

could be used to answer the next challenge is negligible,

Pr[R wins Gamefreshness] =
6553

2160
< 2−147.
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Chapter 6

Empirical Evaluations

In this chapter, we will present a holistic view of our evaluation setup and the

evaluation frameworkwe developed to evaluate the performance of our protocols.

Our protocols were not deployed on the public Swarm network. When op-

erating on the public Swarm network, there is no way to control the number of

peers in the network, the amount of data stored by them, their geographical lo-

cation, reliability, and their behavior in general. Hence, for evaluations, we used

a private network of 1,000 Swarm peers that closely resembles the public net-

work. We believe this was necessary to ensure fair and reproducible results for

each individual protocol.

As a step in the direction of reproducible research, we have made the relevant

source code for the evaluation framework and necessary configuration files pub-

licly available together with the other software artifacts of this thesis. We note

that some of the content in this section overlaps with the included papers.

6.1 Evaluation Setup

The experiments were conducted on a cluster of 30 physical machines running

Ubuntu 18.04.4 LTS. Each machine sports an Intel Xeon E-2136 3.30 GHz CPU,

32 GB RAM, a 1.5 TB SSD disk, and 10 Gbit/s NIC. We used the cluster to run

a large network of 1,000 Swarm peers. Using Kubernetes [36] and Helm [28],

we distributed the Swarm peers on 28 machines, using one to host a private

Ethereum network and one for managing the experiment execution. To collect

metrics from each Swarm peer, we used Prometheus [55], a monitoring system
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and time series database. In addition, we used Grafana [25] to visualize the met-

rics. Parsing and aggregating the collected results from the 1,000 peers are pri-

marily done via Python scripts. Figure 6.1 shows a screenshot fromGrafana taken

during the experiment execution. We can see that global Pullsync activity switches

between activity and inactivity. This switching is due to the experiments with dif-

ferent parameters being executed. Using such visualization tools, we can easily

monitor the evaluation execution to determine whether the experiments are run-

ning as expected.

Figure 6.1: Screenshot from Grafana showing the accumulated Pullsync activity.

Helm uses a single configuration file as input to a dozen configuration files dur-

ing the cluster’s initialization. In the single configuration file, we specify param-

eters such as storage capacity, cluster placement, scaling, run-time parameters

of Swarm, and much more. We base our Helm scripts on those provided by the

Ethereum Swarm organization [73].

Peers running in Kubernetes are ephemeral by default, with limited options

for persistent storage. The before-mentionedHelm scripts only supported persis-

tent storage options for cloud providers, but not for private clusters. To provide

persistent storage to the peers from the local SSD, we had to create a Persistent

Volume (PV). Each peer has a dedicated PV, and each PV is linked to a physical

location on the SSD.We used themodulus operator in theHelm configuration file

to create the link so that peer y’s data was allocated to a PV assigned to machine

m = 3 + y mod 28.

This elegantly avoids using the first two machines m ∈ {1, 2} for storing peer
data, as they are used for other purposes. We used the same logic to place the

Swarm peers to avoid using the first two machines.
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6.2 Evaluation Framework

Our evaluation framework was developed and improved upon in several incre-

mental steps throughout the PhD period. The evaluation framework has three

main components:

1. Peer state manipulation

2. Experiment execution

3. Metrics collection

By manipulating the peers’ storage, i.e., adding and removing chunks, we can

evaluate how the protocols performwhen chunks are lost in the network and how

they recover from such loss. Our framework supportsmodifying the peers’ online

status, which allows us to evaluate how the protocols perform under varying de-

grees of churn. The framework also uses the state manipulation component to

ensure identical system states across experiment runs, reducing the chance of

bias in the results.

The framework is also used to interact with peers and execute the experi-

ments. The execution of experiments may be initiated by the command line or

through an API.

Lastly, the framework is used to collect metrics from peers to obtain the result

of an experiment. We obtain the metrics by querying the peers right before the

experiment is run and then again after the experiment has been executed. This

allows us to determine the impact of the experiment as we obtain the delta differ-

ence from the experiment execution. The framework can aggregate metrics from

all peers into a single output file, which subsequently may be used to generate

graphs and tables.

Earlier versions of the evaluation framework were primarily based on Bash

and Python. The Bash scripts were used to execute and manage the experiments

and to control the Kubernetes pods directly. However, we found that to modify

the state of the peers, e.g., to delete or add chunks to the local storage, the pods

could not be running simultaneously. Thus, this approach was not ideal, since

terminating pods is very time-consuming. To continue an experiment execution,

we had to start the pods again andwait until the Swarm instanceswere discovered

and connected so that the Swarm network was fully operational.
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The current version of the framework is written in Go and offers improve-

ments over the previous versions. One of the main improvements is that the

framework can modify the state of peers without terminating them, thereby sig-

nificantly reducing the time to execute experiments. To manipulate the state, we

first integrated our framework with Swarm’s API. Then, we extended Swarm’s

API with a new snapshot feature. The snapshot feature allows us to create snap-

shots of the local storage and later restore the state from the snapshots. Using

such snapshots, we ensure an identical system state across experiment runs and

thus increase the confidence in the results we obtain. To interact with the Kuber-

netes pods, the current version uses the Kubernetes port-forwarding API instead

of relying on the Kubernetes CLI.

When running experiments, the framework is given a set of configuration pa-

rameters to describe the experiment, such as chunk loss, protocols, file addresses,

and snapshots. The framework is then able to repeat the experiment multiple

times, often running several days before completion. We conclude by listing fea-

tures of the current evaluation framework:

• Dataset. Generate andupload files to the Swarmnetwork based on adataset

specification. This functionality accepts a JSON configuration file with the

desired amount of files, their size and optionally the address prefix of the

chunks. After uploading, the framework returns the Swarm addresses of

the files.

• Distribution. Collects data on the replication degree in the network. This

feature enables us to have a fine-grained view of which peers are storing

which chunks. It may be queried using a file’s address, and will then return

the list of peers storing the chunks that comprise that file.

• Experiment execution. Start running the experiment. Supported proto-

cols areData Stewardship, Pullsync, SUP, andSNIPS fromPaper2 andPa-

per 3.

• Listing chunk identifiers. Retrieve a list of chunk identifiers referenced

by a file’s Swarm address. This list of chunk identifiers can be used to decide

what chunks to remove from Swarm peers to experiment with chunk loss.

• Metrics collection. Collects performance and protocol-specific metrics
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from the Swarm peers. The metrics are used to calculate the results from

experiments.

• Neighborhood information. Queries each peer for their neighborhood

information and creates a relation graph. This feature was used to create

the image on the front page and the graphs in Figure 2.7.

• Protocols. Enable and disable protocols. This can be used to study the

protocols separately.

• Snapshots. Create snapshots containing the addresses of all chunks stored

by each Swarm peer. The snapshots can later be uploaded and applied to

restore each peer to its previous state.
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Chapter 7

Conclusion, Reflections and

Future Prospects

The research presented in this dissertation contributes to the field of decentral-

ized storage systems. In particular, it proposes novel protocols for improving

data availability. The protocols have been shown to be practical and have been

extensively evaluated. The following contains a list of the major highlights and

takeaways of this dissertation.

• In Paper 1 we propose Snarl. Snarl creates entangled Merkle trees to pro-

tect both data and metadata against data loss. In addition, Snarl offers de-

centralized repair, where peers can repair datawithout the need for a central

authority.

• In Paper 2 we propose SNIPS for peer data synchronization. SNIPS use

MPHFs to send succinct proofs to neighboring peers. The neighbors then

query the proof to find missing chunks.

• In Paper 3 we propose SUP, a protocol for cost-effective uploads of data.

Using SUP, a client sends Proof of Storage challenges, to determine if a

chunk already exists in the network before uploading it.

• In Paper 4 we present some aspects of our evaluation framework. In ad-

dition, the evaluation framework is discussed holistically in Chapter 6.

• We have discussed how the three protocols may be integrated to provide

even higher data availability in Chapter 4.
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• We have discussed that the protocols are applicable to a range of decentral-

ized storage systems in Section 2.9.6.

• In Chapter 5 we presented security proofs for the chunk proofs used in

SNIPS and SUP.

7.1 Reflections

The contributions presented in this thesis are the result of several years of re-

search. As the research targeted cutting-edge technology within the field of de-

centralized storage systems, we encountered several challenges. In this chapter,

we will reflect on how we overcame the challenges and discuss the limitations of

our work.

We started using Ethereum Swarm to build and evaluate our protocols in

2019. During this time, the current version of Swarm was v0.4.1, and its code

was still a package in the Ethereum code base. After a few months, the Swarm

team decided to move the code to a separate repository. We continued our work

with Swarm through its ”Alpha”, ”Beta”, ”testnet” and ”mainnet” releases, with

the current Swarm release in our latest paper, Paper 2, being v1.9.0.

Doing research so closely on a cutting-edge software project and under such

rapid development was challenging and time-consuming. We constantly had to

adapt our protocol implementations to the changes in the Swarm code base. For

example, the initial versions of Swarm used a different networking framework

and did not have an incentive system.

In addition, the releases had their fair share of bugs and issues, which we had

to work around. As documentation was scarce or rapidly outdated, we regularly

had to resort to reading the source code and the latest commits to understand the

changes.

Nevertheless, working on Swarm was interesting and a great learning expe-

rience. We thank the members of the Swarm team for helpful discussions and

technical assistance throughout the years.
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7.2 Future Prospects

The field of decentralized storage systems is still in its infancy and is under active

research and development. Even though this involves constantly changing land-

scapes and conditions, we conjecture that the techniques and designs presented

in the protocols of this dissertation may be applicable to both current and future

generations of decentralized storage systems.

In the following, we discuss some future prospects of our work. We separate

future prospects into two categories. The first category is protocol improvements,

which are proposals for improving the presented protocols. In the second cate-

gory, we speculate on how our work could be extended to areas outside decentral-

ized storage systems.

7.2.1 Protocol Improvements

In this section, we discuss some future prospects for continuing the work and

improving the presented protocols.

First off, wediscussed the potential benefit of integrating our protocols inChap-

ter 4 for increased data availability. This integration may be used to extend an

existing decentralized storage system or serve as a basis for a new one. It remains

a future prospect to design and implement such a system.

Another related future prospect is to extend the protocols to other decen-

tralized storage systems than Swarm. We have conjectured their applicability to

other decentralized storage systems in Section 2.9.6.

Snarlwas designedwith the goal that no changes should bemade to the Swarm

code base. This design goal was necessary to make Snarl independent of Swarm

and allowed it to be applied to and achieve similar results in IPFS. However, we

believe that a tighter coupling to the storage system may lead to even better re-

sults. By having Snarl as an integral part of the storage system, it would be possi-

ble to periodically check the integrity of the data and its parities and repair them

if necessary.

Snarl was designed to allow the end-user to choose the desired level of re-

silience. However, the evaluations in Paper 1 were done using a single setting,

α = 3, s = 5, p = 5. Further research is needed to determine the optimal settings

for different use cases.
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The repair algorithm in Snarl has the potential for high degrees of parallelism.

However, the current implementation has limited parallelism. In particular for

parity chunk retrieval and simple repairs. A future prospect is to apply parallelism

to complex repair operations. In addition, it remains future work to prove the

correctness of the repair algorithm.

In SNIPS, we useMPHFs to send succinct proofs to neighboring peers. Wedid

not implement theMPHFourselves but used an existingGo-implementation [31].

However, there are several variants of MPHFs, each offering different perfor-

mance characteristics. To further improve the performance of SNIPS, futurework

remains to consider the optimal tradeoff between characteristics, and if necessary

implement our own MPHF.

Whenmultiple peers are findingmissing chunks, the current implementation

of SNIPS does not take advantage of the same gossip mechanism as Pullsync. In

the future, we may implement this to further improve the performance of SNIPS.

In the SUP protocol specification, the PoS challenges are batched. However,

as noted in the paper, in the implementation, challenges are not batched. In the

future, we may implement batching to further improve the performance of SUP.

7.2.2 Extending OurWork to Other Areas

In this section, we discuss how our work could be extended to areas outside de-

centralized storage systems.

First, we conjecture that SNIPS and the PoS-like construction may find ap-

plications outside our proposed use case. In Paper 2 we focused on a single use

case, namely data synchronization in decentralized storage systems. However,

the need for data synchronization is not limited to decentralized storage systems.

Hence, the techniques that SNIPS propose may be applicable for data synchro-

nization in cloud services, distributed databases and other distributed systems.

In addition, we conjecture that SNIPS may be used for other use cases, such as

for monitoring the network’s global redundancy level and for incentives.

Next, clients using the SUP protocol can verify the persistence of their data

in the decentralized storage system. We conjecture that this may be extended to

any storage system. A clientmay be interested in verifying the persistence of their

data, irrespective if the storage system is trusted or not.
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Abstract

In cryptographic decentralized storage systems, files are split into chunks and

distributed across a network of peers. These storage systems encode files using

Merkle trees, a hierarchical data structure that provides integrity verification

and lookup services. A Merkle tree maps the chunks of a file to a single root

whose hash value is the file’s content-address.

A major concern is that even minor network churn can result in chunks

becoming irretrievable due to the hierarchical dependencies in the Merkle tree.

For example, chunks may be available but can not be found if all peers storing

the root fail. Thus, to reduce the impact of churn, a decentralized replication

process typically stores each chunk at multiple peers. However, we observe that

this process reduces the network’s storage utilization and is vulnerable to

cascading failures as some chunks are replicated 10× less than others.
We propose Snarl, a novel storage component that uses a variation of alpha

entanglement codes to add user-controlled redundancy to address these

problems. Our contributions are summarized as follows: 1) the design of an

entangled Merkle tree, a resilient data structure that reduces the impact of

hierarchical dependencies, and 2) the Snarl prototype to improve file

availability and storage utilization in a real-world storage network. We evaluate

Snarl using various failure scenarios on a large cluster running the Ethereum

Swarm network. Our evaluation shows that Snarl increases storage utilization

by 5× in Swarm with improved file availability. File recovery is

bandwidth-efficient and uses less than 2× chunks on average in scenarios with
up to 50 % of total chunk loss.
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1 Introduction

Large-scale decentralized peer-to-peer (p2p) storage systems, such as InterPlan-

etary File System (IPFS) [2] and Ethereum Swarm [27], aim at providing novel

services to satisfy current and future storage and communication needs. In such

p2p systems, integrity verification plays a pivotal role [23], as peers are untrusted

and the network may exhibit significant churn. Further, each peer typically only

stores a subset of each file in fixed-sized chunks, and each chunk is given a content

address for later retrieval. A content address is unique; it is the cryptographic

hash of the chunk’s data. To assist in this integrity verification and retrieval, a

Merkle tree [18] data structure is typically used, where the tree’s nodes are dis-

tributed across the peers of the p2p network based on their content address.

HABCDEFGH

HEFGH

HAB

HA HB HC HD HE HF HG HH

A B C D E F G H

HCD HEF HGH

HABCD

(a) (b)

Figure 1: Merkle tree: (a) Binary Merkle tree built with 8 data chunks (A-H); (b)
content addressing application.

AMerkle tree is a cryptographic data structure thatmapsmultiple elements (nodes)

to a single root node, as seen in Figure 1a. Internal nodes are obtained by hashing

their children recursively using a bottom-up approach, so the root hash value cov-

ers the entire tree. The tree’s integrity can be verified using the root hash value as

anymodification is propagated up. Merkle trees are widely used as theyminimize

audit costs and facilitate a wide range of applications, as mentioned in §2.

Figure 1b shows a file in a content-addressing system, such as the aforemen-

tioned Swarm and IPFS, where all content is placed at the lowest level of the tree,

while the internal nodes and root aremetadata required for lookup. Any given file

will be represented by a unique Merkle tree, where the chunks of the file are the

content at the lowest level. Internal nodes and the root are also stored as chunks

in the p2p network, and contain a concatenation of the content addresses of their

children. Thus, to retrieve the content, we must first request the root using its
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content address and then recursively retrieve internal nodes until we reach the

leaves. Consequently, the loss of the root or an internal node causes a cascading

failure as it is impossible to request their children without the content address.

The data loss in real systems is further exacerbated because they use 𝑘-ary

Merkle trees with a large branching factor, 𝑘. To illustrate the problem, Figure 2

depicts a radial visualization of the 128-aryMerkle tree for a 100MB file stored in

our 1000-peer Swarm cluster. The tree contains 24426 leaves, 191 internal nodes

at level 1, two internal nodes at level 2, and the root at level 3. This figure also

captures information about imbalances caused by the decentralized replication

process in Swarm. Specifically, the replication factor (𝑅) for each chunk is in the

range of 𝑅 ∈ [9, 160]. The root, labeled “1”, has 𝑅 = 132, with its two children

labeled “2” and “3” having 𝑅 = 108 and 𝑅 = 31, respectively. This means that all

data below internal node “3” is far more vulnerable than the data below “2”.

Figure 2: The 128-ary Merkle tree for a 100 MB file obtained in our cluster. The
leaves are along the outer orbit and the root in the center. Edges connecting par-
ents with children are colored according to their replication factor, with darker
edges corresponding to weakly replicated parents.
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1.1 Motivations for This Work

The Merkle trees used in decentralized storage systems introduce hierarchical

dependencies between the content and themetadata, i.e., the content addresses

used to locate the content. Hence, the root and internal nodes must also be avail-

able to ensure that the content is available. In other words, any replication added

to the leaves is futile if the pointers to the leaves are not reachable. Previous ex-

periences support our claim. Wilcox-O’Hearn admitted that about 90 % of all

the content that has ever been stored in the Tahoe-LAFS [32] grids might have

died despite using “erasure coding parameters with massive fault tolerance” [31].

He highlighted that administrators get a false impression by computing reliabil-

ity under the assumption of independent failures because the numbers lead to

many nines of reliability. In particular, for the standard 3-out-of-10 erasure code

and 𝑝 = 0.90 used in Tahoe-LAFS, we get 6 nines of reliability. He concluded

that monitoring is more important than the redundancy parameters used in the

system.

The assumption of independent failures is widely accepted despite that re-

searchers have shown its pitfalls [22]. However, to the best of our knowledge, the

risk of cascading failures in Merkle trees has not been studied. Previous research

on cryptographic file systems focuses on the intersection between integrity and

confidentiality. While some works combine Merkle tree and erasure coding or

replication, the availability of the root and internal nodes has not been consid-

ered. Hence, we observe that the intersection between integrity and availability

has not been sufficiently studied.

Coding algorithms are more storage efficient than replication [21, 14, 29], but

they require repair metadata to decode. Decoding algorithms need some clue to

start decoding, e.g., the index number of each coded block. A common solution

is to use a metadata file or manifesto. For instance, Tahoe-LAFS treats the meta-

data as an additional erasure-coded file distributed on 𝑘 servers [24]. Another

approach is to store metadata in a local manifest. The caveat is that a local man-

ifest is not publicly accessible and thus limits user collaboration. Hence, having

to manage an additional metadata file is undesirable, especially in decentralized

storage systems.

Some decentralized systems include incentive mechanisms to improve avail-

ability [6]. Currently, the Swarm Foundation is about to deploy an incentive
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layer that will create liabilities for chunk availability in the Ethereum Swarm net-

work [26]. Still, redundancy mechanisms are critical for content survivability.

However, it is well-known that systems built for fault tolerance in networks with

untrusted peers use hefty amounts of redundancy [20, 16, 31]. Thus, we posit

that a method imposing low redundancy yet achieving high fault tolerance will

improve the network’s storage utilization.

1.2 Contributions

We propose a novel solution that combines Merkle trees with alpha entangle-

ment (AE) codes [8] to address the gaps above, aiming at high fault tolerance,

low bandwidth, and low storage requirements. To the best of our knowledge, this

is the first work that addresses the intersection between integrity and availability

when using Merkle trees.

As with other codes, AE codes also require repair metadata. However, we

observe that by exploiting synergies between the Merkle tree structure and the

encoding/decoding algorithm, we can eliminate the need for a local or remote

metadata file. Therefore, our solution only requires the content address of the

tree’s root to locate content even if it is encoded and distributed in a p2p network.

We present Snarl, another way of saying entangle. Snarl does not require any

modification to the underlying storage system and seamlessly integrates with a

local peer in a p2p storage network. Users interact with Snarl when upload-

ing or downloading content. The content is encoded in an entangled Merkle

Tree (eMT) structure before being uploaded to the network. Further, Snarl of-

fers user-controlled redundancy in the sense that the encoding configuration can

be adjusted to match the behavior of the storage network, i.e., higher network

churn requires more redundancy.

We have implemented Snarl and deployed it in our 1000-peer cluster running

Ethereum Swarm. Our results demonstrate that data integrity and availability

for decentralized storage systems can be obtained without significant storage or

bandwidth overhead. Our evaluation shows that Snarl is capable of simultane-

ously improving the storage utilization and file availability in Swarm. Specifically,

with the Snarl-14 configuration, five times the amount of data could be stored in

the network with failure-resiliency comparable to Swarm. We show that file re-

covery is bandwidth-efficient in the presence of failures and uses less than 2.08×
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the chunks on average in scenarios with up to 50 % of total chunk loss.

2 Preliminaries

Integrity and redundancy are interrelated. Systems introduce some form of re-

dundancy to ensure data integrity [25]. Integrity checking requires comparing

data with some derived piece of information to offer a certain level of assurance.

For example, disk mirroring and checksums can detect integrity violations but

cannot recover the original data. Assurance can be increased in a system that

stores 𝑁 > 2 copies using a majority vote, i.e., the majority of the copies are ac-

cepted as valid with some degree of confidence. Other widespread techniques are

RAID parity and error detection and correction algorithms, which can recover

data up to some level. For example, a (𝑛, 𝑘) MDS erasure code encodes 𝑘 data

symbols into 𝑛 coded symbols, and any 𝑘 out of these 𝑛 coded symbols can be

used to decode the 𝑘 data symbols. MDS stands for maximum distance separable

codes and, in practice, it means that a (𝑛, 𝑘)MDS code can recover data up to 𝑛−𝑘
failures.

Hash functions generate a derived piece of information with negligible over-

head. This property made them suitable to check correctness in memory stacks

and queues [3]. Merkle trees [18] leverage the benefits of hash functions. Their

original application was a digital signature system, where the growth of the sig-

nature is logarithmic with the number of messages signed. With its efficient

verification of large amounts of data, it found its way into several other areas—

particularly p2p-based systems, where it is necessary to verify the integrity of

data received from untrusted parties. Often, cryptographic file systems, e.g., SiR-

iUS [10], TDB [15], Tahoe-LAFS [24], useMerkle trees to guarantee integrity. It is

also used in blockchains like Bitcoin [19] and Ethereum [33], decentralized stor-

age systems like IPFS [2] and Swarm [27], revision control systems like Git [4],

and protocols like BitTorrent [5].

2.1 Swarm Overview

Swarm is a decentralized storage system that distributes stored data to a network

of peers. The peer-to-peer network is based on Kademlia [17] for discovery and

routing. By following the protocol, storing, and delivering content, peers are re-
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warded BZZ tokens through a smart contract on the Ethereum blockchain. Ac-

cording to a monitoring website [1], the public network has more than 270 000
peers.

Connecting to the Swarm network requires running a local peer or using a

public gateway. Peers runs the Bee client, which is under active development at

the time of writing. The Bee client will incorporate incentive mechanisms to re-

duce network churn. In this work, we used the more stable Swarm client, v0.5.8.

We run a cluster with 1000 peers isolated from the public Swarm network.

Swarm splits files into 4 KB chunks and places them as leaves in a 128-ary
Merkle tree. The internal nodes and root of the Merkle tree are also 4 KB chunks

and contain a concatenation of the content addresses of their children. Chunks

in Swarm are given a unique content address derived from a cryptographic hash

function over the chunk’s data. All chunks are distributed to peers whose address

has the same prefix as the chunk’s content address, also known as an address

space neighborhood.

Redundancy is of significant importance in Swarm. It is deeply embedded in

its design to provide fault tolerance, censorship resistance, DDoS resistance, and

zero downtime.

Currently, the redundancy in Swarm is provided by a decentralized replication

process called syncing. Syncing is separated into three mechanisms. First, push-

sync involves transferring chunks from the uploader to storage peers, i.e., from

the network’s entry point to each chunk’s corresponding address space neighbor-

hood. Once the chunk reaches the neighborhood, it is replicated to all the peers

within it. Second, when a new peer enters the network, it initiates pull-sync with

its neighbors. When pull-syncing, the new peer queries its connected peers for a

list of chunks they are storing and then proceeds to request those within its ad-

dress space. Lastly, each time a chunk is transferred in the network, all peers that

act as relays between the sender and receiver may choose to replicate the chunk.

2.2 System Requirements

Our primary design goal for Snarl is to increase the resilience of data stored in

a cryptographic decentralized storage system without adding storage overhead.

Snarl should be optional and user-controlled, meaning that the user should be

able to specify the resilience level and choose how much of the resilience will be
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disclosed to the public. Snarl should enable file recovery despite the failure of a

large part of the underlying storage system. Further, any peer should be able to

repair efficiently, without overhead when there are no failures.

Snarl requires no modification to the underlying storage system. However,

we specifically target storage systems that connect the stored data in a graph with

a hierarchical dependency between nodes, typically aMerkle tree. We assume the

presence of APIs to upload and download content.

3 Entangled Merkle Tree

Let 𝑘-𝑀𝑇 (𝑑1, . . . , 𝑑𝑛) denote a 𝑘-ary Merkle tree, where data items 𝑑1, . . . , 𝑑𝑛 are

at the leaves of the tree, and 𝑘 is the branching factor limiting the number of chil-

dren of a node. An internal node of the tree 𝑖ℎ at height ℎwith children 𝑐1, . . . , 𝑐𝑘 is

the hash of the concatenation of its children, i.e., 𝐻 (𝑐1 | | . . . | |𝑐𝑘), for 𝐻 a collision-

resistant hash function. If the concatenated leaves form a file f , we can refer to

its Merkle tree as 𝑘-𝑀𝑇f .

Cryptographic decentralized storage systemsoften split the content into chunks

and provide integrity via a Merkle tree. The Merkle tree maps chunks to a single

root hash value used as a content identifier and entry point for retrieval. However,

a serious concern is that the hierarchical dependencies between chunks can ren-

der several chunks irretrievable, even though they are stored at available peers.

This can happen if a critical storage peer fails, resulting in a logic failure cascade.

To reduce the impact of these dependencies withinMerkle trees, we aim to trans-

form the Merkle tree into a failure-resilient structure.
To fulfill our aims, we define a k-ary entangled Merkle tree (𝑘-𝑒𝑀𝑇) data

structure, constructed from a 𝑘-𝑀𝑇 using these functions in sequence:

k-MT | mapper | swapper | entangler | k-eMT

Snarl implements these functions. The original 𝑘-𝑀𝑇 contains information (the

user file or any arbitrary content) at the leaf level. However, themapper, swapper,

and entangler consider all the nodes of the 𝑘-𝑀𝑇 as information. The entangler

generates 𝛼 𝑘-𝑒𝑀𝑇s as output. These carry redundant information to recreate all

nodes in the original 𝑘-𝑀𝑇 .

We start by describing 𝑘-𝑒𝑀𝑇 in §3.1 and §3.2, followed by the entangler

in §3.3 and §3.4. Themapper is described in §3.5, and lastly, the swapper in §3.6.
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3.1 The 𝑘-𝑒𝑀𝑇: Challenges and Solutions

Let 𝑘-𝑒𝑀𝑇 (𝑝1, . . . , 𝑝𝑚) denote a 𝑘-ary entangledMerkle tree, where items 𝑝1, . . . , 𝑝𝑚

are at the leaves of the tree, and 𝑚 is the total number of nodes in the original

𝑘-𝑀𝑇 . An item 𝑝𝑖 is a parity obtained by the entanglement algorithm and is a

shorten for a parity 𝑝𝑖, 𝑗 , more details are explained in §4.4. An internal node of

the tree 𝑖ℎ is computed as in 𝑘-𝑀𝑇 .

Our 𝑘-𝑒𝑀𝑇 design solves the problemof handlingmetadata for decodingmen-

tioned in §1. We avoid the use of extra metadata by carefully crafting the entan-

gled chunks in a forest formed by the original 𝑘-𝑀𝑇 and a few 𝑘-𝑒𝑀𝑇s created

with the entanglement. By leveraging content-addressing and AE codes, the de-

coding process only needs to know the roots. In fact, some roots may be kept pri-

vate and released only when needed via a smart contract or some other medium.

Moreover, the forest reduces the hierarchical dependencies of the original 𝑘-

𝑀𝑇 , as with the addition of 𝑘-𝑒𝑀𝑇s there are alternative paths for traversal. In

addition, as will be detailed in §4, the new structure can recover frommissing and

corrupt nodes.

We highlight that the design of 𝑘-𝑒𝑀𝑇 is non-trivial. It involves mapping the

elements of a hierarchical structure into a helical lattice structure constructed

by the AE encoding algorithm. As we explain later, the process needs to remove

specific dependencies between chunks, as otherwise, the protection offered by AE

codes would be reduced due to the appearance of additional irrecoverable failure

patterns.

Our solution is designed for 𝑘-𝑀𝑇 with 𝑘 ≫ 2, see §3.6 for more details. This

is consistent with real-world systems, e.g., Swarm uses 𝑘 = 128 and IPFS uses

𝑘 = 174. Large 𝑘 generates a shallow tree that accelerates the lookup in content

address networks.

3.2 Canonical Naming

To aid in the reconstruction of the tree, we devise a canonical naming scheme. A

similar schemewas proposed byMerkle [18] for a 2-𝑀𝑇 with the root node labeled

1, the left child of node 𝑖 labeled 2𝑖 and right child of node 𝑖 labeled 2𝑖 + 1. Our
scheme supports 𝑘-ary branching, and also allows us to assign labels to nodes
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during initial chunking, without knowing the size of the data beforehand. The

scheme is based on a post-order traversal algorithm, with naming starting at the

leaf level (see §3.5 for an example).

3.3 Overview of Alpha Entanglement Codes

AE codes [8] are designed to tolerate a large number of failureswith low computa-

tion and bandwidth requirements. The encoding algorithm produces entangled

chunks embodying parities to be disseminated across the system. Assuming the

chunks are distributed to different storage peers, the decoding algorithm can use

multiple “paths” in the lattice structure to decode the content. Each path requires

the availability of a set of distinct peers. Paths are formed by an 𝑛-length com-

bination of data and entangled chunks, with 𝑛 ≥ 2. The shortest path to repair

a single failure has length two. Multiple paths improve the access and recovery

likelihood for temporarily and permanently unavailable content, respectively. As

such, paths provide for an efficient recoverymechanism for high churn scenarios.

The entanglement process creates a graph of interdependent chunks. In its

simplest form, where 𝛼 = 1, the graph is a path, usually referred to as a chain

or strand. It starts with 𝑒_,1 = 0, a dummy chunk and continues with 𝑒1,2 = 𝑑1,

and then alternates unencoded data chunks and entangled chunks. The strand is

constructed by encoding the entangled elements 𝑒𝑖, 𝑗 according to: 𝑒𝑛,_ = 𝑒𝑛−1 ⊕
𝑑𝑛, with 𝑛 > 1 where 𝑑𝑖 are data chunks presented as input to the encoding al-

gorithm, and 𝑒𝑖, 𝑗 is adjacent to 𝑑𝑖 and 𝑑 𝑗 . Note that 𝑑𝑖 are the ordered chunks

obtained by chunking a file 𝑓 , or the chunks of any arbitrary data stream.

The Cylindrical Helical Lattice

With 𝛼 > 1, the graph becomes a lattice composed of intertwined strands, where

each data chunk 𝑑𝑖 belongs to 𝛼 strands.

Let 𝐿𝐴𝑇𝛼 (𝑑1, . . . , 𝑑𝑛) denote an 𝐴𝐸 (𝛼, 𝑠, 𝑝)-lattice for 𝛼>1, where data items

𝑑1, . . . , 𝑑𝑛 are the lattice vertices 𝑣. 𝐿𝐴𝑇𝛼 is a regular graph of degree 2𝛼 with

𝑑𝑖 ’s position in the lattice according to: top 𝑣 for 𝑖 ≡ 1 (mod 𝑠), central 𝑣 for

𝑖 . 1 ∧ 𝑖 . 0 (mod 𝑠), or bottom 𝑣 for 𝑖 ≡ 0 (mod 𝑠). 𝐿𝐴𝑇𝛼 is composed of

𝑠 + (𝛼 − 1) · 𝑝 intertwined strands. Each strand can be constructed independently
using the equations in §3.3; therefore, lattice construction can be parallelized for

efficiency.
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For 𝛼 ∈ [2, 3], the lattice can be thought of as a weaker version of graph

embedding on a cylinder, i.e., we relax the embedding definition by omitting

the non-intersection condition for edges [12]. In 𝐿𝐴𝑇3, 𝑝 strands are cylindrical

double-helix, denoted RH- and LH-strands (right-handed and left-handed heli-

cal strands), and the remaining 𝑠 strands are in parallel with the cylinder axis,

hence, denoted H-strands (horizontal strands). In 𝐿𝐴𝑇2, the strands are not a

double-helix since there are only 𝑠 + 𝑝 intertwined strands, choosing RH- or LH-
strand does not yield any difference. Helical strands revolve around the imagi-

nary central axis of a cylinder. RH-strands connect vertices in cycles, alternating

a sequence of a top vertex, 𝑠−2 central vertices, and a bottom vertex. LH-strands

connect vertices in cycles, alternating a sequence of a bottom vertex, 𝑠 − 2 central
vertices, and a top vertex. H-strands connect vertices of the same type.

Let 𝐿𝑊 (𝑑𝑖 , . . . , 𝑑𝑖+𝑠·𝑝−1) denote a lead window for 𝛼 = 3, where data items

𝑑𝑖+ 𝑗 · (𝑠+1) with 𝑗 ∈ [0, 𝑝−1] are connected to the same helical strand. The leadwin-

dow describes the interval it takes a helical strand to revolve around the cylinder’s

axis. The concept is similar to the pitch of a helix, i.e., the height of one complete

helix turn, measured parallel to the helix’s axis. Given a flat representation of the

lattice, we can say that if 𝑑𝑖 is a top vertex, a lead window spans an area defined

by 𝑠 rows and 𝑝 columns with its top-left vertex 𝑑𝑖.

3.4 A Variation for AE codes: A Toroidal Lattice

We propose a variation for AE codes based on closed entanglements [7]. Closed

entanglements are entanglements with 𝛼 = 1 that generate a closed path with a

slightmodification to the algorithm to connect 𝑑𝑛 with 𝑑1 by recomputing 𝑒1,2 and

replacing the dummy chunkwith 𝑒𝑛,1. The objective of closing the path is to better

protect the elements at the extreme of the path. The original AE codes, however,

used an “open” lattice. We modified the original design by closing each path that

forms the lattice. As a result, the cylindrical helical lattice is transformed into a

toroidal lattice. The subtleties of the closing are related to the number of nodes,

𝑁, in the tree. If 𝑁 is multiple of 𝑠 · 𝑝 (the number of vertices in a lead window),

the closing is straightforward. For other cases, the connections added to close the

lattice prioritize connecting vertices from the same path. Figure 3 illustrates the

toroidal lattice for a case where 𝑁 is not multiple of 𝑠 · 𝑝.
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Figure 3: Toroidal lattice for a Merkle tree with 259 nodes.

3.5 Mapping the Tree Into a Lattice

Mapping is the first of two steps needed to prepare the input for the entangle-

ment. The encoding algorithm (entangler) takes an input stream of “ordered”

chunks (information), i.e. entangler is deterministic and produces an output that

depends on the order of the input chunks. Internally, the entangler creates 𝐿𝐴𝑇𝛼,

where its vertices 𝑑1, . . . , 𝑑𝑚 correspond to the input stream (𝑚 is the total num-

ber of 𝑘-𝑀𝑇 nodes and not just the leaves). All nodes are treated as information

in our redundancy scheme in order to create redundancy for the internal nodes

and the root too. Each vertex represents a distinct chunk. The order of the input

chunks is reflected in the way the lattice unfolds.

To map the tree into the lattice, the mapper uses a post-order traversal al-

gorithm that reads the tree and generates the input stream. To illustrate, read-

ing the 2-𝑀𝑇 showed in Figure 1a, 𝑀𝑇f (𝐴, . . . , 𝐺) produces the ordered input:

𝐴 → 𝐵 → 𝐻𝐴𝐵 → 𝐶 → 𝐷 → 𝐻𝐶𝐷 → 𝐻𝐴𝐵𝐶𝐷 → 𝐸 → 𝐹 → 𝐻𝐸𝐹 → 𝐺 →
𝐻 → 𝐻𝐺𝐻 → 𝐻𝐸𝐹𝐺𝐻 → 𝐻𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻 . Using our canonical naming, the ele-

ments of the sequence are labeled 1, 2, 3, . . . , 15. Therefore, this example creates

a 𝐿𝐴𝑇𝛼 with 15 vertices. The number of strands in 𝐿𝐴𝑇𝛼 is defined by the entan-

gler (obtained by the coding parameters). Before, we need the swapper to finish

preparing the input for the entangler.
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3.6 Swapping

Swapping is the second and final step to prepare the input for entanglement.

Nodes that have a parent-child relationship cannot be adjacent or in a close neigh-

borhood in the 𝐿𝐴𝑇𝛼. The reason for this is to avoid that a parent is entangled

with its children or with their neighbors. If that occurs, and the chunk repre-

sented by the parent node is missing, then it is not possible to retrieve the ele-

ments in the lattice that are used to recover the missing chunk. The swapping

algorithm (swapper) moves the parents at least one 𝐿𝑊 away from their children.

The swapper looks for a candidate vertex position where none of the vertices in

its neighborhood are children of the swapped vertex.

4 Snarl

The high-level architecture comprises three components: Snarl, a proxy, and the

underlying storage system. Figure 4 shows the architecture and the main pack-

ages of Snarl.

Storage
System

Snarl

replicatorrepairDownload

Upload Proxy

connector

eMT-coder
mapper swapper entangler

Figure 4: Snarl architecture.

Snarl is designed to be a general-purpose tool for providing user-controlled re-

dundancy to any Merkle tree, and requires no modification to the underlying

storage system. Snarl uses a modular approach and comprises four packages:

(i) 𝑒𝑀𝑇-𝑐𝑜𝑑𝑒𝑟 implements encoding and decoding algorithms for the eMT (§3).

(ii) repair contains the algorithmsneeded to recover from failures. (iii) replicator

combines eMTs and replication to further improve storage utilization. (iv) con-

nector abstracts the low-level details of the storage system.

The repair algorithm locates parity chunks in a bandwidth-efficient manner

and is only applied when failures are detected. When downloading content not

encoded with an eMT, Snarl reverts to the retrieval mechanism of the underlying
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storage system. Likewise, a non-Snarl user can download content encoded with

an eMT, as the original Merkle tree is untouched and reachable.

Snarl comprises 4800 lines of Go code and 2200 lines for testing and bench-

marking purposes. We have made the code available in our GitHub repository

(https://github.com/relab/snarl-mw21).

4.1 User InteractionWith Snarl

The user interacts with Snarl using the command-line. To encode content – with-

out interacting with the storage system, we provide the entangle command. The

entangle command takes as input the content that needs protection and the de-

sired level of protection. It will generate 𝛼 files, one for each eMT, and no other

metadata.

To interact with the storage system, the commands download and upload are

used. Upload calls entangle internally before uploading the original Merkle tree

and 𝛼 eMTs to the storage system. After each upload, the storage system replies

with the content address of the root. The user must persist the content addresses

of the roots for the original Merkle tree and the eMTs, as they are necessary to

retrieve the content later. Each content address is small; usually, 32 bytes, de-

pending on the underlying storage system.

To download content from the storage system, a user must supply the origi-

nal Merkle tree root’s content address. When downloading through Snarl, a user

may also pass the content address of the eMTs root, allowing Snarl to repair the

original content if chunks aremissing. The repair process is seamless for the user,

downloading parity chunks on-demand and reconstructing the content, despite

widespread data loss.

4.2 Snarl InteractionWith the Storage System

This section explains how Snarl interacts with the underlying storage system be-

fore detailing how we successfully deployed Snarl using Swarm as the storage

system.

Snarl does not require any change to the underlying storage system. To achieve

this, we assume a proxy that exposes APIs to upload and download content. In

a decentralized storage system, the proxy will be a peer participating in the net-

work. As we expect the various storage systems’ APIs to be slightly different, we
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provide a set of interfaces in our connector package. This allows a separation of

concerns in the other packages, as all storage system-specific details are imple-

mented in separate packages.

To satisfy the connector package’s interfaces, specific details such as theMerkle

tree branching factor, its balancing algorithm, and themaximum chunk sizemust

be implemented. By designating this to its own package, the behavior can bemir-

rored either by calling the proxy, importing a library, or as a separate implemen-

tation of its specification.

Swarm as the Storage System.

Swarm uses a 128-𝑀𝑇 construction for each file. A chunk’s maximum payload

size is 4096 bytes, with an extra 8 bytes describing the accumulated size of all its

leaves if it is an internal node, otherwise its length. The tree is constructed from

left to right ensuring that all non-leaves, except the righter-most, are of the same

size and height. These 8 bytes also subverts the length extension attack [30] and

can be used to determine the canonical index of the node without exploring the

tree. At the same time, the 8 bytes create some difficulty, as our eMT is limited

by the same 4096 bytes. Thus, we cannot encode the chunk size information in

the eMT, as we would have to fit 4104 bytes inside 4096. Instead, we observe that

since the tree’s construction is deterministic, the chunk size can be derived from

the size of the eMT and the chunk’s position.

4.3 Local Repair Information

The edges of the toroidal lattice outlined in §3.4 are the parity chunks needed for

repair, and knowledge of their content address is the only way to retrieve them..

The mapping of parities to content addresses is called repair metadata and is

used by Snarl when requesting parities.

As the size of repair metadata grows linearly with the content’s size, it could

be impractical to store locally for large files. Further, it hinders collaborated re-

pairs, as only thosewith access to themetadata can partake in repairs. Storing the

metadata in the storage system itself is also a bad idea, as the original content’s

resilience would be reduced to the single failure of the metadata.

In Snarl, we instead implement the eMT from §3, which allows requesting

correct parities knowing only the root chunk’s content address. An eMT has the
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same number of leaves as there are chunks in the original Merkle tree. The leaves

are ordered such that the left parity for the chunkwith canonical index 𝑛 is leaf 𝑛 in

an eMT. To find the leaf index for the right parity for the chunk, we implemented

an algorithm according to §3.3.

Wenow illustrate how to retrieve the desired leaves from the 𝑘-𝑒𝑀𝑇 (𝑑1, . . . , 𝑑𝑛).
To retrieve a leaf 𝑑𝑖 from the 𝑘-𝑒𝑀𝑇 , we first request its root to know the content

addresses for their children. Each child is a leaf or an internal node that points

to a subtree. Every subtree of a parent is of equal size, apart from the right-most.

To calculate the subtree’s size, we realize that their size must be a power 𝑦 of the

branching factor 𝑘, where 𝑦 is the chunk’s level, starting at 0 on the leaves. Thus,

given a parent at level ℎ, each parent’s child will have size 𝑘ℎ−1, apart from the

right-most. Therefore, to find a path to leaf 𝑥, we traverse through the 𝑔-th sibling

defined by 𝑔 = ⌈ 𝑥
𝑘ℎ−1 ⌉. This continues recursively by redefining 𝑥 = 𝑥−(𝑔−1) · 𝑘ℎ−1

for each step, until we reach the desired leaf. The pseudo-code is given in Algo-

rithm 1.

Algorithm 1 Parity retrieval from an entangled Merkle tree

1: func GetParity(parentAddr , leafId)
2: parent ← Download(parentAddr)
3: childSize ← parent .branchFactor ∧ (parent .level − 1)
4: if childSize = 1 then ⊲ All children are leaves

5: return Download(parent .child [leafId])
6: next ← math.Ceil(leafId/childSize) ⊲ 𝑔

7: leafId ← leafId − (𝑛𝑒𝑥𝑡 − 1) · childSize ⊲ 𝑥

8: return GetParity(parent .children [next], leafId)

4.4 Repairing Failures

Snarl can detect and repair failures due to both corrupt and missing chunks. It

is agnostic to the reason for a failure, whether it is due to data loss, network par-

tition, malicious behavior, or churn. Integrity verification of chunks is done by

comparing the cryptographic hash of the received datawith the requested content

address. Therefore, we treat corrupt chunks the same way as missing chunks.

A repair begins as soon as a failure is detected during a download and runs

concurrently with the remaining download. Snarl uses the same algorithm to
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Figure 5: Repair algorithm: (a,b,c) horizontal (H-eMT), right (RH-eMT) and left
(LH-eMT) entangled Merkle trees, (d) original Merkle tree, (e) lattice. Failed
downloads are colored with red, successful downloads are colored in green. Re-
pairs are colored with cyan. White is not requested. Users can collaborate to
maintain the system by re-uploading repaired chunks.

repair any node of the Merkle tree. It is intelligently aware that the loss of an

internal node prevents downloading any of its children and will thus give priority

to repairing internal nodes first.

We illustrate the repair algorithm in Figure 5 with three example scenarios.

For illustrative simplicity, we use a Merkle tree with three levels and a branching

factor of 14.

Snarl starts by requesting the root of the original Merkle tree, labeled “25” in

Figure 5d. Then it proceeds through the internal nodes, labeled “15” and “24”,

to the leaves, which hold the content. If a chunk loss or corruption is detected,

even at the root chunk, Snarl immediately requests parity chunks from the eMTs,
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also shown in Figure 5 with three strand types (𝛼 = 3), (a) H-eMT, (b) RH-eMT,

and (c) LH-eMT. The lattice shown in Figure 5e is a virtual data structure used

to coordinate repairs. Each vertex in the lattice represents a chunk from the orig-

inal Merkle tree. The parities in the lattice are illustrated as edges labeled 𝑝𝑋,𝑌 ,

where 𝑋 is the vertex connected on the left, and 𝑌 is the vertex connected on the

right. When downloading a parity, we request the 𝑛-th leaf chunk of an eMT of

the correct strand type, where 𝑛 is the left-connected vertex’s index.

Using the toroidal structure of the lattice, Snarl can repair in many failure

scenarios in which the underlying storage system cannot. After successful repair,

the user can re-upload the repaired data and parity chunks to the storage system,

thus aiding system-wide maintenance.

We consider three example failure scenarios. First, the most basic scenario,

where a single data chunk is lost. As soon as Snarl cannot download data chunk

“2”, it requests parities 𝑝2,7 and 𝑝22,2 from H-eMT. Both are available, and data

chunk “2” is repaired with two parity downloads.

In the second scenario, data chunk “16” is lost, and when attempting to down-

load the parities 𝑝11,16 and 𝑝16,21 from H-eMT, Snarl discovers that 𝑝16,21 is un-

available. Snarl then requests the two adjacent parities from the RH-eMT, i.e.,

parities 𝑝15,16 and 𝑝16,22. Both are available, and data “16” is repaired with three

parity downloads.

Data chunk “19” is lost in the last scenario, including all its adjacent parities

in the H-eMT, RH-eMT and LH-eMT. Snarl can recover from such a scenario by

repairing one of the parity pairs. It requests parity 𝑝9,14 and uses that together

with data “14” to repair 𝑝14,19. Similarly, parity 𝑝24,4 and data “24” are used to

repair 𝑝19,24. Thus, with a complete parity pair, data “19” can be repaired with

only two parity downloads.

During repair, Snarl will expand both vertically and horizontally in the lattice

until either the chunk is repaired or an irrecoverable pattern is detected. The

expansion is recursive and follows the order; H, RH, and LH, referring to the

eMT from which parity chunks are requested first.

4.5 Replicating Entangled Merkle Trees

It has been shown that a combination of erasure codes and replication [9] gen-

erally achieves better storage utilization and lower repair overhead than the two
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methods separately. With Snarl, we propose a similar combination of eMTs and

replication.

We distinguish between replication of internal and leaf chunks. These must

be weighed against each other, as a higher replication factor for internal chunks

improves the likelihood that a leaf chunk can be located but does not contribute

to the repair algorithm. On the other hand, a higher replication factor for leaf

chunks does contribute to the repair algorithm. However, a loss of their parent

results in the de facto loss of all leaves.

Weuse (1) as ameasure to balance the replication of internal versus leaf chunks.

Equation (1) captures the likelihood that a chunk replicated 𝑟 times, with each

replica placed on a distinct peer, would still be available after 𝑓 peers failed in a

network with 𝑛 peers. We observe that adding replicas is an effective measure to

increase recovery likelihood if the replication factor is low. However, at higher

replication factors, the gains of adding another replica approach 0. In fact, with

only 45 replicas, the recovery likelihood ismore than 99.9%, with up to 86%peer

failure.

𝑃(𝑥) = 1 −
𝑛− 𝑓 −1∏
𝑖=0

𝑛 − 𝑟 − 𝑖
𝑛 − 𝑖 (1)

Snarl can scale the replication factor, allowing a user to specify the total storage

consumption of the encoded data to be proportional to uniformly replicating the

original Merkle tree. Further, the weighting of the replication factor for internal

and leaf chunks can also be adjusted. By default, we cap the number of internal

chunk replicas at 45. To differentiate between Snarl configurations, we label them

with the ratio of storage consumption compared to the original Merkle tree. For

example, with Snarl-5, we use the same storage consumption as having 5 copies

of the original Merkle tree.

5 Evaluation

We evaluate Snarl using the toroidal lattice variant of closed entanglements de-

scribed in §3.4. The encoding parameters are 𝛼 = 3, 𝑠 = 5, 𝑝 = 5, as it has been
previously studied in the literature [8]. It’s worth noting that Snarl allows the

user to adjust these parameters to fine-tune the performance and redundancy to

19



its requirements. We compare Snarl with full uniform replication, where every

chunk has the same number of copies, and with Swarm’s default redundancy.

In our first evaluation, we studied how files in Swarm are replicated in our

cluster. We then evaluate the chunk distribution of files encoded with Snarl.

Next, we study Snarl’s file availability on our cluster of 1000 Swarmpeers to show

how Snarl can increase storage utilization by over 80%. We show that the encod-

ing speed of Snarl is linear, requiring only 3.6 seconds for a 1 GB file. The effec-

tiveness of our repair algorithm is evaluated by examining bandwidth overhead

incurred in different failure scenarios.

5.1 Experimental Setup

Weran our experiments on a cluster of 30machines runningUbuntu 18.04.4 LTS.

Each machine is equipped with Intel Xeon E-2136 3.30 GHz CPU, 32 GB RAM,

1.5 TB SSD disk, and 1 Gbit/s NIC.We usedHelm [11] and Kubernetes [13] to dis-

tribute 1000 Swarm peers on 28 machines. We use the remaining two machines

to host the Snarl client, the bootstrapping peer, and manage the experiment exe-

cution.

The bootstrapping peer allows the Swarm peers to discover each other and

to achieve their desired connectivity. Swarm’s maxpeers parameter is left un-

changed, allowing a peer to connect with up to 50 peers in the network.
Each chunk’s replication factor is highly variable in Swarm, as we discuss in

§5.2. To compensate for this variability and make the comparisons fair, we need

to adjust each chunk’s replication factor to match the evaluated coding scheme.

To facilitate these adjustments, we have developed a set of tools.

Our first tool, listchunks, lists the content addresses of all the chunks of each

file in our storage network. The second tool, deletelist, determines which chunks

must be deleted fromwhich peer. To evaluate files of different sizes, we must run

listchunks and deletelist for each file. To obtain an aggregated delete list, we use

a third tool, combinelist. Finally, the aggregated list is passed to deletechunks, to

delete the chunks on the peers in the storage network.

Swarm has three mechanisms for chunk distribution, also called syncing. Two of

these mechanisms, push-syncing, and pull-syncing, can be disabled with the no-

sync command-line option when starting a peer. However, the syncing process

for chunks delivered through the Kademlia [17] DHT cannot be disabled. This

20



posed a challenge for us, as the increased chunk replication would unduly skew

the results for the different coding schemes.

Hence, to ensure an identical system state across experiment runs, we must

counteract this built-in syncing process. To that end, we create a snapshot of the

entire storage network and recover from a snapshot between each experiment

run. Further, we ensure that each peer is well-connected before each experiment

run. To reach sufficient connectivity, the peers must first discover each other.

We monitor the discovery process by periodically polling Swarm’s inter-process

communication file, bzzd.ipc. As soon as the desired connectivity is reached, we

start the next experiment run.

5.2 Replication in Swarm

Our study reveals that the replication factor (𝑅) in the Swarm network is not uni-

form at the chunk level, meaning that some chunks are more replicated than oth-

ers. However, the file size does not appear to impact 𝑅 notably. For file sizes 1MB,

10MB, and 100MB, we found that each chunk was in the range 𝑅 ∈ [9, 162], with
an average 𝑅 of 72. The relatively high average 𝑅 of 72 means that for every giga-

byte of original data stored in the network, the collective resources of the storage

peers will consume at least 72 gigabytes.

We plot the relative chunk replication for a 100 MB file in Figure 6. The file

consists of 25803 unique chunks, with a 𝑅 that ranges from 9 for 26 chunks

(0.1 %) to 162 for 3 chunks (0.01 %), with an average 𝑅 of 72.36. The horizon-

tal axis shows the replication factor, and the vertical axis shows the relative fre-

quency of occurrence.

Figure 7 shows how the chunks are distributed on the storage peers by plotting

the number of chunks each peer stores for the same 100 MB file. We have sorted

the peers in ascending order of the number of chunks stored. Interestingly, the

values appear to follow a power-law distribution. The number of chunks stored

ranges from 105 on peer 1 to 12865 on peer 1000, with an average number of

chunks stored 1867.

5.3 Chunk Distribution

We observe that a file encoded with Snarl occupies a broader range of the address

space than with full replication.
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Figure 6: Relative chunk replication for a 100MB file stored in a Swarm network
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Figure 7: Storage consumption for a 100 MB file in a Swarm network consisting
of 1000 peers. Peers are enumerated on the horizontal axis, sorted by the number
of chunks stored.

By mapping the first two bytes of the content address for each chunk, we get

an idea of how a file would be distributed in the network, as chunks are placed at

peers that share the same prefix. We repeated the experiment 10000 times with

randomly generated files and report the average result.

For a 1MB file in Swarm, there are 259 unique chunks with Swarm’s full repli-

cation, with 258 distinct prefixes, meaning that 2 chunks share the same two first

bytes in their address. Snarl encoding generates 1048 unique chunks, with 1039

distinct prefixes.

A file encoded with Snarl is evenly spread and occupies 1.59 % of the address

space, while a replicated file occupies only 0.39 %. Consuming more address

space is advantageous to mitigate an attack attempting to make a file unavailable
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by monopolizing a small section of the address space.

5.4 File Availability

Next, we empirically estimate Snarl’s file availability from the recovery likelihood

for different failure scenarios. We compare the results of Snarl to full uniform

replication, where each chunk in the Merkle tree is replicated the same number

of times. We also compare with Swarm, which has a chunk distribution similar

to that shown in Figure 6. In the case of replication, it is clear that the file can be

recovered as long as at least one replica of each chunk that composes the file is

available. We conduct two types of evaluations for file availability. In the first ex-

periment, we obtain the recovery likelihood by artificially marking some percent-

age of chunks unavailable and trying to recover the file. The second experiment

is similar, except that we mark some percentage of storage peers unavailable.

Our evaluations show that Snarl provides a higher recovery likelihood for a lower

storage consumption than the case for full replication. We list the storage con-

sumption used by each scheme in Table 1.

5.4.1 Chunk Loss

We compare files of sizes 1, 10, and 100 MB encoded with Snarl-5, Swarm with

replication factor 5 (R-5), and replication factor 10 (R-10). We run 10000 itera-

tions of each experiment, with new random input data for each. Snarl-5 used for

this evaluation has the same storage consumption as R-5; thus, we use this as the

baseline for our evaluations.

Because we are only interested in recovering the entire file, a single chunk

loss will make the file unavailable. Hence, the recovery likelihood is expected to

decrease as the file size increases. As the number of chunks that compose a file in-

creases, given the same chunk loss percentage, the likelihood of an irrecoverable

error also increases. From Figure 8, we can observe that the impact on recovery

likelihood for larger files is less for Snarl than for full replication for all three file

sizes.

FromFigure 8, we can see that Snarl-5 has a significantly higher recovery like-

lihood than both R-5 and R-10, with up to 50 % chunk loss. Given 45 % chunk

loss, Snarl-5 has a recovery likelihood of 99 % for a 1 MB file, while R-5, in com-

parison, has 1 % recovery likelihood, and R-10 92 %.
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Table 1: Snarl performance when encoding files of different size: storage con-
sumption given in MB and total chunks number, the number of internal nodes
in the 𝑘-𝑀𝑇 and the 𝛼 𝑘-𝑒𝑀𝑇 unique and total nodes including replicas, the
maximum chunk loss/peer failure for 99 % recovery likelihood per redundancy
scheme. Higher values are better for max. chunk loss/peer failure.

Storage Consumption: MB::>total chunks
Scheme 1 MB 10 MB 100 MB

R-5 5.06::>1295 50.41::>12905 503.96::>129015
R-10 10.12::>2590 100.82::>25810 1007.93::>258030
Snarl-5 5.06::>1295 50.41::>12905 503.96::>129015
Snarl-14 13.15::>3626 131.07::>36134 1310.31::>361242
Swarm-72 72.60::>18585 723.69::>185264 7292.91::>1866986

Internal Nodes: unique::>total
Scheme 1 MB 10 MB 100 MB

R-5 3::>15 21::>105 203::>1015
R-10 3::>30 21::>210 203::>2030
Snarl-5 15::>165 87::>2784 818::>33518
Snarl-14 15::>330 87::>3915 818::>36810
Swarm-72 3::>104 21::>1548 203::>14258

Max. Chunk Loss Max. Peer Failure
Scheme 1 MB 10 MB 100 MB 1 MB 10 MB 100 MB

R-5 14 % 8 % 5 % 14 % 14 % 14 %
R-10 37 % 29 % 22 % 40 % 40 % 40 %
Snarl-5 45 % 38 % 34 % 50 % 47 % 43 %

Table 1 summarizes themaximum chunk loss percentage that the redundancy

scheme can tolerate and still provide 99 % recovery likelihood.

5.4.2 Peer Failure

Wenow evaluate Snarl deployed with 1000 peers, where each peer stores some of

the chunks that compose the file. For this evaluation, we use Snarl-5 and Snarl-

14. We choose Snarl-14 to evaluate the improved storage utilization Snarl offers,

as Snarl-14 has a storage consumption roughly 81 % lower than regular files in

Swarm. For each experiment we run 10000 iterations.

We can see from Figure 9 that Snarl-5 outperforms both R-5 and R-10, even

considering that R-10 requires twice the storage. Interestingly, Snarl-14 outper-

forms the redundancy provided by Swarm while using less than 20 % of the stor-

age. In other words, if every file in Swarm were encoded with Snarl, storage uti-
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Figure 8: Recovery likelihood for various chunk loss rates.

lization would increase so that five times the amount of data could be stored in

the network, with improved resiliency against failures. The recovery likelihood

of replicated files for R-5, R-10, and Swarm, seems to be largely unaffected by

the file size. This is because we need all chunks that compose the Merkle tree

to recover the file, combined with the fact that chunks in Swarm are not uni-

formly distributed over the entire network. In other words, chunks are placed at

peers with similar addresses, and therefore we are evaluating the likelihood that

all peers in at least one address region are failing. Because chunks for various file

sizes in Swarm are distributed to the same address region, the recovery likelihood

is independent of file size, at least for files 1 MB and up.

Table 1 summarizes the maximum peer failure percentage that the redun-

dancy scheme can tolerate and still provide 99 % recovery likelihood.

5.5 Encoding Speed

We evaluate the encoding performance of Snarl bymeasuring the time for encod-

ing files from 1 MB to 1 GB. We ran this experiment on a single machine in our

cluster.

Since encoding is based on lightweightXORoperations, it canbe implemented
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Figure 9: Recovery likelihood for various peer failure rates.

efficiently. We iterate over the file, and for every chunk, we XOR with the previ-

ously added chunks to create the parity chunks. We keep the last parity chunks

in memory to perform the XOR operation with the newly added chunk to create

the new parity. The cumulative time it takes to execute the XOR operations is

the most significant factor for larger file sizes. As expected, the encoding time is

linear with the file size; a file of 1 MB takes 3.8 milliseconds, a 10 MB file takes

37 milliseconds, a 100 MB file takes 360 milliseconds, and a file of 1 GB takes

3.6 seconds.

Decoding is also based on XOR, where two parity chunks are used as input

to the XOR operation to reconstruct a data chunk. Thus, decoding a file requires

using the same number of XORoperations as chunks in the file, resulting in linear

time complexity. The actual time required for decoding, however, will largely

depend on the network latency.

5.6 Network Overhead

We have previously outlined the repair algorithm in §4.4. As long as there are

no failures, there is no need for any parity chunks. Only when failures occur

will Snarl start requesting necessary parity chunks from the network. Each data
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chunk is connected with three parity pairs in the lattice, as shown in Figure 5e.

At best, a single failure or missing data chunk can be repaired with only a single

pair. Both chunks in the pair are requested in parallel, and if either of them is un-

available, the next pair will be requested. However, in the case none of the three

pairs can be downloaded, Snarl will expand outwards in the lattice, requesting

additional parities to repair the parity pairs. This process is recursive and termi-

nates onlywhen the data chunk is repaired or an irrecoverable pattern is detected.

Therefore it is crucial that Snarl is bandwidth-aware and only requests the

minimal number of parities necessary for successful retrieval. In addition, Snarl

should be able to traverse the eMT to find the correct parities needed for each

type of failure.
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Figure 10: Download overhead for a 1 MB file in Snarl with increasing levels of
chunk loss.

We measure the bandwidth efficiency of Snarl by counting how many additional

chunks are downloaded compared to Swarm with no failures. Figure 10 shows

howmany additional chunks were downloaded for various amounts of chunk loss

in a 1 MB file. Each experiment was executed with 10000 iterations. The error

bars show the standard deviation. We can see that Snarl does not retrieve any par-

ities when there are no failures, and with failures present, the number of chunks

downloaded grows linearly with the failure rate.

To evaluate the repair efficiency of Snarl, we define the repair ratio as the

number of parities retrieved, divided by the number of lost data chunks. Figure 11
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Figure 11: Repair overhead for a 1 MB file in Snarl with increasing levels of chunk
loss.

plots our findings, showing that the repair ratio is slightly higher than2until there

is a high number of chunk losses, after which it starts to decrease. It decreases

because each parity is connected to two data chunks in the lattice, and thus if both

of these data chunks are lost, Snarl will only retrieve this parity from the network

for the first repair operation and then from the local storage for the second one.

6 Design Alternatives

We now discuss two interesting alternatives based on erasure coding to add re-

siliency to the Merkle tree.

6.1 Swarm Tree

Swarm tree is a design alternative outlined in [28, §5.1], which to our knowledge,

has not yet been implemented. In Swarm tree, erasure coding is added at the sys-

tem level to protect the tree from data loss. The tree’s non-leaf nodes are encoded

using a (128,112)MDS erasure code, i.e., each node can have 112 child nodes, with

16 entries for parities.

Since Swarm tree is a system-level redundancy scheme, it does not allow users

to control the replication parameters of the coding scheme. Further, since each

28



internal node in the Swarm tree is part of a stripewith 112 data chunks and 16 par-

ity chunks, usersmust retrieve parities, even if there are no failures. By encoding

all redundancy information in the sameMerkle tree as the original file, usersmust

disclose resiliency levels publicly. As with any (𝑛, 𝑘) MDS code, we need any 𝑘-

of-𝑛 chunks to recover the stripe. Thus, to repair a single chunk, we first need to

retrieve 𝑘 chunks to recover the stripe and then reconstruct the chunk.

An unknown replication factor protects the root chunk, and thus we ignore

this apparent weakness in our evaluations. Swarm tree’s description states that

there should be 16 parity blocks in each stripe, independent of data elements.

We can calculate the probability of an irrecoverable error for chunk losses by

realizing that this scheme is equivalent to a composition of a sequence of MDS-

stripes, i.e., a 1 MB file would be split into 4 stripes; (128, 112)-(128, 112)-(48, 32)-
(19, 3), where the first number inside each bracket is the stripe length 𝑛 and the

second number is the data elements 𝑘. The first three stripes contain the 256 leaf
nodes, while the last stripe contains the internal nodes. Thus, an irrecoverable

error in any of these stripes effectively renders the entire composition, or file,

unavailable.

To evaluate the irrecoverable likelihood, wehavedeveloped equation (2), where

𝑐 is the total number of chunk losses, 𝑆𝑝 is the number of parity blocks in a stripe,

𝑆 is the set of stripes and 𝑑 is the set of chunk losses per stripe. The set 𝐷 cap-

tures all possible combinations of chunk losses per stripe, e.g., given |𝑆 | = 3, we
can have 𝑥 chunk losses in stripe 1, 𝑦 losses in stripe 2, and 𝑧 losses in stripe 3,

where 𝑥 + 𝑦 + 𝑧 = 𝑐. Let 𝐿 be a subset of 𝐷, as described by (2), containing those

scenarios that lead to critical failure. The product
∏ |𝑆 |

𝑛=1
(𝑆𝑛
𝑑𝑛

)
gives the number of

combinations of the given failure scenario using multivariate geometric distribu-

tion, i.e., all possible ways to select 𝑥 chunks from stripe 1, 𝑦 from stripe 2, and 𝑧

from stripe 3.

𝑃(𝑐) =

|𝐿 |∑ |𝑆 |∏
𝑛=1

(
𝑆𝑛
𝑑𝑛

)
|𝐷 | , 𝑤ℎ𝑒𝑟𝑒 |𝐷 | =

(∑
𝑆

𝑐

)
, 𝑐 ≤ ∑

𝑆,

𝐿 ← {∀𝑑 ∈ 𝐷 : |𝑑 | = |𝑆 | ∧∑ 𝑑 = 𝑐 ∧ ∃𝑑𝑛 ∈ 𝑑 : 𝑑𝑛 > 𝑆𝑝}

(2)

Further, if we assume that the probability of chunk loss (𝑏) is independent, all
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stripes are of identical length (𝑛), and with the same parity parameter (𝑛-𝑘), we

can simplify (2) to (3). For a stripe to be available, we need at least 𝑘 out of 𝑛

elements, thus the sum
∑𝑛−𝑘

𝑘=0 the probability that we have up to 𝑘 losses for a

given chunk loss 𝑏. The product
∏ |𝑆 | gives the recovery likelihood for the entire

chain.

𝑃(𝑋) = 1 −
|𝑆 |∏ 𝑛−𝑘∑

𝑘=0

(
𝑛

𝑘

)
𝑏𝑘 × (1 − 𝑏)𝑛−𝑘 (3)

Equation (3) shows the pitfall of this approach—recovery likelihood decreases

drastically with file size. This is because Swarm’s branching factor is constant

at 128, and thus the only way to accommodate a larger file is to add branches,

resulting in more stripes and higher |𝑆 |.
File availability given chunk loss is shown for various file sizes in Figure 12. In

the legend, [sample] denotes results from random sampling; similar for [eq (2)]

and [eq (3)]. Interestingly, results from (3) with stripes 20 and 200 fit nicely

with results obtained from random sampling for file sizes 10 MB and 100 MB,

respectively. From this, we can deduce that with a constant parity parameter,

empty branches contribute little to the number of irrecoverable errors.
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Figure 12: Availability of Swarm tree for various file sizes.
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6.2 Coded Merkle Tree

Coded Merkle tree [34] is similar to Swarm tree in that they extend each level of

the Merkle tree with additional erasure-coded blocks. There are two main dif-

ferences between them. First, in Swarm tree, the input data is segmented into

stripes of length 112 and extended with 16 parity blocks to 128 in total. In coded

Merkle tree, all input data is placed in the same stripe and then extended with

the appropriate number of parity blocks, depending on the coding rate (𝑟 = 𝑘/𝑛).
Secondly, Swarm tree always extends a stripe with 16 parity blocks, even if the

stripe is not complete. In coded Merkle tree, the length of the extension depends

solely on the coding rate, leading to several different coding settings.

7 Conclusion

This paper introduced Snarl, a user-controlled storage component that lets users

control how to store data redundantly. Snarl can also improve storage utiliza-

tion in cryptographic decentralized storage systems. These systems typically split

the content into chunks and provide integrity verification and lookup services via

a Merkle tree. The root and internal nodes are used to locate data in content-

addressed storage and must thus be stored redundantly.

We have designed an entangled Merkle Tree, a resilient data structure that

protects all nodes in the Merkle tree.

Based on our evaluation on Ethereum Swarm, we conclude that if every file

was encoded with Snarl, five times as much data could be stored in the network,

with a comparable failure-resiliency. We believe that these findings may prompt

developers to incorporate Snarl into their systems.
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Abstract

Data synchronization in decentralized storage systems is essential to guarantee

sufficient redundancy to prevent data loss. We present SNIPS, the first succinct

proof of storage algorithm for synchronizing storage peers. A peer constructs a

proof for its stored chunks and sends it to verifier peers. A verifier queries the

proof to identify and subsequently requests missing chunks. The proof is

succinct, supports membership queries, and requires only a few bits per chunk.

We evaluated our SNIPS algorithm on a cluster of 1000 peers running

Ethereum Swarm. Our results show that SNIPS reduces the amount of

synchronization data by three orders of magnitude compared to the

state-of-the-art. Additionally, creating and verifying a proof is linear with the

number of chunks and typically requires only tens of µs per chunk. These

qualities are vital for our use case, as we envision running SNIPS frequently to

maintain sufficient redundancy consistently.
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1 Introduction

Decentralized storage systems such as Ethereum Swarm [52], Filecoin [32], and

InterPlanetary File System (IPFS) [6] are built on top of large peer-to-peer net-

works. The network’s peers collaborate in pooling their storage capacity to pro-

vide a single storage system. The peers in Filecoin and Swarm are rewarded to

incentivize their contribution of storage and bandwidth to the network. Peers do

not trust each other; instead, they rely on cryptographic primitives to verify the

integrity of the data they are tasked to store. The integrity verification is per-

formed on fixed-size chunks obtained by splitting files. Chunks are immutable

and are identified by their content address, a cryptographic hash of the chunk’s

content. Figure 1 illustrates the process of uploading a file to a decentralized stor-

age system.

Storage
Network

26
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File

Peer

Figure 1: A file is split into chunks and distributed to neighborhoods of different
sizes (number in circles).

During upload, each chunk is distributed to a neighborhood based on the

chunk’s content address. A neighborhood is a cluster of peers with similar ad-

dresses. These neighboring peers are responsible for storing the chunks whose

content address is similar to the peers’ addresses. To download a file, peers will

similarly attempt to locate the neighborhoods storing the file’s chunks. As Fig-

ure 1 shows, the neighborhoods can be of varying cardinality. Thus, the size of

a chunk’s neighborhood determines the chunk’s replication factor. And since re-

constructing a file requires access to all of its chunks, having sufficient redun-
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dancy becomes paramount.

Recent studies [43, 28, 50, 27, 13] of the network dynamics of Ethereum

Swarm and IPFS show that these systems may have tens of thousands of peers

connected simultaneously. However, the studies also show high churn rates,

where only a smallminority of peerswill remain online continuously for 24 hours.

Consequently, peer neighborhoods are constantly changing, potentially compro-

mising the availability of stored files. One study shows that data loss is inevitable,

as it might happen as quickly as within a few days [43]. Hence, storage systems

must maintain sufficient redundancy to reduce the likelihood of data loss. And

maintaining redundancy requires efficient data synchronizationmethods.

State-of-the-art protocols for data synchronization in current systems are highly

inefficient. In Swarm, the protocol is called Pullsync, and it relies on peers ex-

changing long lists of the chunk identifiers they are storing so that the other

peer can request the missing chunks. In an attempt to optimize Pullsync, each

peer keeps track of the last synchronization state of its neighbors. However, as

we show in Section 2.3.3, this optimization is flawed, as inconsistencies can oc-

cur. Filecoin [32] and IPFS uses a protocol called Bitswap [15] for data synchro-

nization. Like Pullsync, Bitswap also exchanges long lists of chunk identifiers

for content discovery and synchronization. Bitswap is under active research [14,

34, 35], and various optimizations have been proposed, e.g., GraphSync [33] and

CAR mirror [55]. However, these proposals still rely on exchanging long lists of

chunk identifiers.

Previouswork [1, 9, 17] on data synchronization in peer-to-peer networks pro-

posed protocols using Bloom filters [7] for approximate reconciliation. As the

name suggests, approximate reconciliation does not guarantee that all chunks

are synchronized. A subset of a file’s chunks could be enough to reconstruct the

file if it was erasure-coded [45]. However, adding erasure coding to storage sys-

tems based on Merkle trees is non-trivial, because of hierarchical dependencies

between the content and the metadata [42]. Hence, we focus on the case where

all chunks must be synchronized.

A space-efficient way for peers to ensure they are fully synchronized is to

use Proof of Storage (PoS) algorithms [2]. PoS algorithms allow peers to con-

vince each other what data they are storing without transferring the data itself.

These algorithms typically have three distinct actors; the challenger, which is-

sues PoS queries; the prover, which responds to the queries by creating a proof;
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and the verifier, which verifies the proof. However, verification typically either

completely fails or passes; there is no partial verification. Even though a peer

might have a subset of chunks, the verification will fail as the peer does not have

all the chunks. Moreover, to synchronize data, the verifier would not only need to

partially verify proofs but also determine which subset of chunks weremissing. A

naive PoS-based partial verification approach that creates a proof for each chunk

would require communication overhead comparable to exchanging the chunk

identifiers themselves.

1.1 Contributions

This paper presents SNIPS, a novel protocol for data synchronization in decen-

tralized storage systems. SNIPS uses a novel PoS-like construction to gener-

ate succinct storage proofs. The proofs are small, typically only a few bits per

chunk, and can be generated and verified efficiently. Our PoS construction is

non-interactive, allowing verifiers to make use of the storage proof without a pre-

ceding challenge phase typically used in PoS algorithms. If both prover and ver-

ifier have an identical set of chunks, then both will immediately be convinced of

each others state. Moreover, our construction also allows the verifier to perform

membership queries on the proof to determine which chunks are missing, even

when the prover and verifier have disjoint sets of chunks. The verifier may ob-

serve false positives for some local chunks that were not part of the prover’s proof.

However, our SNIPS protocol can reconcile these false positives.

Peers using the SNIPS protocol generate storage proofs and exchange them

with their neighbors. Upon receiving a storage proof, the peer can query the proof

to identify any chunks that it is missing and request the missing chunks from the

sender. False positives are eliminated iteratively with increasingly more accurate

proofs. In summary, a SNIPS proof provides two features; (1) it convinces the

recipient that the sender has the data, and (2) the recipient can query the proof

to determine which chunks it is missing.

Our implementation of SNIPS in Ethereum Swarm shows that it is a practical

protocol that can be used in decentralized storage systems. The evaluations show

significant bandwidth savings with a reduction in synchronization data transmit-

ted by up to three orders of magnitude compared to current systems. Moreover,

creating and verifying proofs typically requires only tens of microseconds per
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chunk. While our evaluation does not compare with Bitswap and its derivatives,

SNIPS’s approach complements these protocols, and we expect Bitswap would

also benefit from our approach.

Our contributions are summarized as follows:

• A new PoS-like construction for creating storage proofs amenable to partial

verification and identification of missing chunks.

• The design of SNIPS, a data synchronization protocol for decentralized stor-

age systems, and its implementation in Ethereum Swarm.

• A rigorous simulation of bandwidth usage and synchronization overhead

and a performance evaluation of SNIPS on a real-world cluster.

2 Preliminaries

We assume a content-addressed decentralized storage system [6, 52] built on top

of a peer-to-peer network, where each storage peer is connected to a subset of the

peers in the network. That is, the peers are clustered into small neighborhoods,

which collectively share the responsibility of persisting chunks from a specific

section of the address space.

We assume no trust in the storage peers and the peer-to-peer network may

experience significant churn. We rely on the storage system’s underlying network

to route messages between peers.

Each storage peer has access to cryptographic key pairs for signing and verify-

ing digital signatures and we assume that cryptographic primitives cannot easily

be circumvented. Let ⟨𝑚⟩p denote a message 𝑚 signed by peer p.

A peer’s public key is further used to generate a unique address for use in the

overlay network. This address serves as the baseline for the connectivity graph

for the overlay network, such that peers are more likely to be connected to other

peers with similar addresses.

In our algorithm, we assume that all peers have access to a shared source

of randomness. One approach to obtain shared randomness is to use the block

hash of a future block in a public blockchain [46]. Alternative methods include

multi-party computation [10], Shamir’s secret sharing [48], verifiable delay func-

tion [8], or verifiable random functions [40].
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We define the following metrics for evaluating SNIPS.

Definition 1 (Similarity) The similarity between two sets, AandB, is the over-

lap coefficient [53]; |𝐴 ∩ 𝐵|/min(|𝐴|, |𝐵|).

Definition 2 (Proof Accuracy) Let 𝑀𝑖 be the set of missing chunks identified

when querying a proof. Let 𝑀𝑝 be the set of chunks a peer is missing from a

proof. The proof accuracy is then |𝑀𝑖 |/|𝑀𝑝 |.

2.1 Proof of Storage Model

In our PoS model, there are only provers and verifiers, also referred to as stor-

age peers. Our PoS-like construction allows peers to (i) efficiently synchronize

chunks and (ii) verify the integrity of their stored chunks with their neighbors.

We assume that peers have full copies of the chunks they store.

Our construction does not provide storage guarantees to clients, as we do not

rely on a challenge phase. We assume clients upload their data to the storage sys-

tem. Moreover, chunks in decentralized storage systems are stored on different

peers independently of their location within a file. Thus, our PoS scheme does

not bind chunks to a specific location within a file, as it is not required for our use

case. Other protocols can provide these guarantees to clients [43, 2].

2.2 Threat Model

We consider the threats that can be waged against SNIPS by insider attackers

(peers). We do not consider outsider attackers without credentials, as the stor-

age peers will reject messages from such attackers. Colluding peers is also not

considered; other mechanisms are needed to mitigate collusion attacks (see Sec-

tion 7.2). Denial of service attacks is out of scope for this paper, as the underlying

storage system should mitigate such attacks. We focus on forms of attack that

aims to compromise the integrity of the storage peers’ stored data:

Replay attacks. We consider peers attempting to replay protocol messages to

trigger illicit behavior.

Upload attack. After receiving a request for a missing chunk, an attacker may

attempt to upload a different chunk.

Pollution attack. Malicious peers may attempt to pollute the storage system

by creating and distributing invalid chunks.
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Non-repudiation attack. A SNIPS proof can be viewed as a commitment to

synchronize the containing chunks. We consider a non-repudiation attack, where

the attacker attempts tomodify the containing chunks after distributing the proof.

Moreover, an attacker may attempt to construct a storage proof that results in

a false consistency (see Section 3.4). Section 4.5 discusses these threats and their

mitigations.

2.3 Swarm

Swarm [52] is a global decentralized storage and communication system that dis-

tributes stored data to a network of peers. Swarm’s p2p overlay network is based

on Kademlia [39], and has more than 2000 active peers [25].

Each peer in Swarm deploys a smart contract, called checkbook, to an EVM-

compatible blockchain, e.g., Ethereum or Gnosis. The contract is used to reward

peers with BZZ tokens when they contribute resources to the network. Specifi-

cally, peers pay to download chunks and are rewarded for delivering chunks and

forwarding messages. After deploying the contract, each peer generates a unique

peer address used to identify it in the network. The address is generated by hash-

ing the concatenation of the peer’s Ethereum public key, the network identifier,

and the hash of the block immediately following the one that deployed the peer’s

checkbook contract. The peer is then placed in the neighborhood that shares the

longest prefix with the peer’s address.

2.3.1 Data Storage in Swarm

Swarm splits files into 4 KB chunks. A unique chunk identifier is derived for each

chunk from a cryptographic hash of its content, also referred to as its content

address. Swarm creates a 128-ary Merkle tree where each of the file’s chunks is a

leaf. The internal nodes and root of theMerkle tree are also stored in 4 KB chunks

and contain a concatenation of the chunk identifiers of their children.

Chunk identifiers and peer addresses share the same address space. When a

chunk is uploaded to thenetwork it is sent to the closest peer, based on the chunk’s

identifier [49]. The chunk is then replicated by each peer in the closest peer’s

neighborhood. Figure 2 shows the distribution of neighborhood sizes obtained

in our cluster of 1000 peers. We observed 81 distinct neighborhoods of various

sizes (𝑛) with 𝑛 ∈ [8, 26]. As chunks are replicated by all peers in a neighborhood,
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the varying sizes of the neighborhoods cause the chunks’ replication factor to vary

accordingly.
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Figure 2: Distribution of neighborhood sizes in our cluster.

2.3.2 Swarm’s Pullsync Protocol

The goal of Swarm’s Pullsync protocol [52, 49] is to synchronize chunks between

neighboring peers. Pullsync aims to provide eventual consistency among peers

within a neighborhood despite churn. However, Pullsync does not scrub or verify

the integrity of the stored data. Figure 3 gives an overview of the protocol; the

following is a simplified description of the steps.

Get Cursors

P1

P2

P3

Send Cursors Range Offer Want
t

{Wd}

{Wd}

{Wa}

{Wa}

{d}

{a}

Upload

Figure 3: Overview of Swarm’s Pullsync protocol.

All peerswithin a neighborhood runPullsyncwith each other. Each peermon-

itors the network for topology changes, such as peers joining or leaving, and trig-
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gers the Pullsync protocol on such events. Consider two peers 𝑃1 and 𝑃2 respond-

ing to a topology change.

Peer 𝑃1 sends a request to its neighboring peers to get the number of chunks

(cursor) stored in its neighborhood. Based on the received cursors, 𝑃1 determines

if it is missing any chunks, and which peer has the chunks that it may need.

Upon receiving a request for a range of chunks, peer 𝑃2 creates an offer re-

quest containing an array of chunk identifiers in the range. When 𝑃1 receives the

offer request, it populates a bit vector with 1s for the chunk identifiers it is miss-

ing, and 0s otherwise. The bit vector is sent back to 𝑃2, which will retrieve the

missing chunks and deliver them to 𝑃1, concluding the synchronization process.

2.3.3 Inconsistencies in Pullsync

Pullsync’s inconsistencies can be explained by examining the first three phases

in Figure 3. The Get Cursors and Send Cursors are only sent the first time two

peers synchronize. After this, each of the peers will keep the other’s cursor in

memory, and use those for the Range phase.

The issuewith this ariseswhen a peer deletes a chunk. Deletion of chunksmay

be caused by malicious behavior or errors in the Swarm Bee client. However,

deletions may also be completely benign, such as due to garbage collection or

mechanisms in the incentive layer [22, 52]. In addition, the Swarm Bee client

exposes an API for the user to delete chunks.

When a peer deletes a chunk, unless it is the last chunk added to the peer, the

internal cursors will not be updated. Therefore, no matter how many times the

peer runs the Pullsync protocol, it will not synchronize the deleted chunk. This

causes inconsistencies in which chunks are stored by the neighborhood, andmay

ultimately result in chunks being lost.

2.4 Minimal Perfect Hash Function

Our enhanced PoS construction described in Section 3 uses a Minimal Perfect

Hash Function (MPHF) [18, 37] to generate storage proofs. An MPHF is a bi-

jective map from a set of 𝑁 elements (keys) to the integers [1, 𝑁] (index values).
Each key of the set is mapped to exactly one value, and each value is paired with

exactly one key. Figure 4 illustrates the mapping.
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Figure 4: Minimal Perfect Hash Function bijective mapping.

The MPHF allows constructing a space-efficient, collision-free mapping of

huge datasets with up to 1012 keys. While the theoretical limit is as low as 1.44
bits per key [4], practical implementations typically require a few bits per key.

The MPHF is intended for static datasets and has no operations for adding, up-

dating, or deleting elements. That is, the set of keys must be static and known in

advance. The expected lookup time is𝑂 (1), and a mapping can be constructed in
𝑂 (𝑁) time.

Querying the map for a key that was part of the original set returns the cor-

responding value in the range 𝑣 ∈ [1, 𝑁]. However, if the key was not part of
the original set, it may return any value in the range 𝑣 ∈ [0, 𝑁]. When the value

0 is returned, the key was not part of the original set; however, any other value
𝑣 ∈ [1, 𝑁] may be a false-positive. We define a Find function for MPHF:

Find(elm) :


0 elm definitely not in the set

𝑣 ∈ [1, 𝑁] elm might be in the set

3 Enhanced Proof of Storage Construction

We are now ready to introduce our enhanced non-interactive PoS construction.

The construction generates proofs with the following properties: (1) it convinces

the recipient that the sender has the data, and (2) the recipient can query the proof

to learn which elements are missing. The construction consists of two algorithms

executed by a prover and a verifier peer.

3.1 Prover Algorithm

The prover uses the CreateProof function in Algorithm 1 to generate a storage

proof for the set of chunks, CP, that the prover stores. The storage proof is con-
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structed in two steps.

3.1.1 Create a proof of possession for each stored chunk

The prover computes a proof of possession for each chunk 𝑎 ∈ CP using Equa-
tion (1), as shown in Lines 7-10 of Algorithm 1. We refer to this proof as the chunk

proof [43].

ChunkProof𝑎 : 𝑐𝑝𝑎 = H(nonce | | 𝑎) (1)

The chunk proof is the cryptographic hash of a nonce (number used once) con-

catenated with the chunk’s data. As long as the nonce is unpredictable, the prover

cannot claim to store a chunk that it does not, since it must have both the chunk

and nonce when generating the proof. We, therefore, derive the nonce from a

shared source of randomness, as discussed in Section 2. To that end, the nonce

captures the recency of the chunk proof. We discuss the frequency of proof gener-

ation in Section 4.4. As an optimization, the prover may generate a storage proof

for a limited range [start, end]. In our evaluation, however, we use the entire
range of chunks.

3.1.2 Compress possession proofs into a single storage proof

The prover compresses the chunk proofs to a succinct storage proof. We accom-

plish this by constructing an MPHF (Line 11), such that each chunk proof cp is

mapped to a unique index idx ∈ [1, 𝑁], where 𝑁 is the number of chunks.

Finally, on Lines 12-14, we build a reversemapping from theMPHF indices to

the chunk identifiers. Find always returns a valid mapping here since the MPHF
was constructed from the same chunk proofs. The prover can use this reverse

mapping to identify the missing chunks requested by a verifier.

index-id : idx ↦→ chunk.id Reverse map

mphf : cp ↦→ idx
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Algorithm 1 Prover: Storage Proof Generation
1: Local persistent state at prover:

2: CP ⊲ Set of chunks stored by prover

3: index-id ⊲ Reverse map: MPHF index to chunk ID

4: func CreateProof(nonce, start, end)

5: chunkProofs← { }
6: cp-id← ⟨ ⟩ ⊲ Temporary map: chunk proof to chunk ID

7: for each chunk ∈ CP : chunk.id ∈ [ start, end ] do
8: cp← H(nonce ∥ chunk) ⊲ Chunk proof

9: chunkProofs← chunkProofs ∪ cp

10: cp-id[cp]← chunk.id

11: mphf← new MPHF(chunkProofs)
12: for each cp ∈ chunkProofs do ⊲ Fill reverse map

13: idx← mphf.Find(cp) ⊲ Index of cp in proof

14: index-id[nonce][idx]← cp-id[cp] ⊲ Save cp’s chunk ID

15: return [mphf, nonce, start, end ] ⊲ Storage Proof

3.2 Verifier Algorithm

Next, we explain how the verifier can use a storage proof from the prover to iden-

tify chunks that the verifier may be missing using the FindMissingChunks func-

tion shown in Algorithm 2.

Given a storageproof , the verifier computes chunkproofs for each local chunk ∈
CV over the proof’s range. These chunk proofs are then used to query the prover-

generated MPHF using the Find function (Line 8). Thus, if the chunk proof is in
the MPHF proof, Find returns an idx ∈ [1, 𝑁]. Otherwise, idx = 0 is returned.
We use idx as an index into the mfc array. On Line 10, the verifier decrements

the idx-th entry inmfc to indicate that the local chunk ∈ proof. Once the verifier
has processed all the chunk proofs, we usemfc to identify themissing chunks and

collisions as follows:

mfc[idx]


= 1 verifiermissing chunk for idx

= 0 verifier found chunk locally

< 0 verifier has collision(s) for idx

That is, entries inmfcwhose value is still equal to 1 must bemissing (Line 15),

and we add them to themissing set. Entries whose value equals 0 are notmissing

and require no further processing. For entries with a negative value (Line 17),
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however, the verifier found two or more chunk proofs that mapped to the same

index value, i.e., a collision. We discuss this issue in Section 3.3.

It is essential to recognize that the verifier cannot specify the missing chunks

in the form of chunk identifiers or chunk proofs. Instead, the missing set con-

tains index values that the prover can use to look up the missing chunks’ identi-

fiers in the index-id reverse mapping. Recall that the prover built the index-id on

Lines 12-14 of Algorithm 1.

Algorithm 2 Verifier: Find Missing Chunks
1: Local persistent state at verifier:

2: CV ⊲ Set of chunks stored by verifier

3: func FindMissingChunks(proof)

4: size← | proof.mphf | ⊲ Number of chunks in proof

5: mfc← [1, . . . , 1]size ⊲ Initially, all chunks are missing

6: for each chunk ∈ CV : chunk.id ∈ [ proof.start, proof.end ] do
7: cp← H(proof.nonce ∥ chunk)
8: idx← proof.mphf.Find(cp) ⊲ Index of cp in proof

9: if idx ≠ 0 then ⊲Might be in the set

10: mfc[idx] ← mfc[idx] − 1 ⊲ Found chunk or collision

11: missing← { }
12: collision← false

13: for i← [1, size] do
14: if mfc[i] = 1 then
15: missing← missing ∪ i ⊲Missing chunk

16: else if mfc[i] < 0 then
17: collision← true ⊲ Found collision

18: return [missing, collision ] ⊲Missing chunks

3.3 Collisions

This section explains why collisions can occur when verifying a proof. Recall

that MPHF’s Find function may return a false positive, which can happen when a
chunk not part of the original set responds with “might be in the set.” Formally:

Definition 3 (False Positive) Let CP be the set of chunks used to construct

the storage proof and let cp ∉ CP. Then we have a false positive if Find(cp) > 0.

Given that MPHF admits false positives, it is also possible to have a collision.

A collision happens when multiple chunks map to the same index value in the
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proof. Having a collision means that there is at least one false positive. Formally:

Definition 4 (Collision) Let CP be the set of chunks used to construct the

storage proof, and let cp𝑎 ∈ CP and cp𝑏 ∉ CP such that cp𝑎 ≠ cp𝑏. Then we

have a collision if:

Find(cp𝑎) = Find(cp𝑏)

The prover and verifier independently build their chunk proofs from CP and
CV, respectively. Since CV may differ from CP, and the verifier use chunk
proofs from CV to query the prover’s storage proof , the verifier may observe

a collision if two or more chunk proofs map to the same index value (Line 8 in

Algorithm 2).

We simulated a single peer verifying proofs of different sizes to determine the

probability of false positives. As we can see from Figure 5, the probability of ob-

serving false positives increases with the number of chunks in the proof. Given a

proof of 108 chunks, the probability of observing a false positive is 99.78 %. Al-

though false positives and collisions can occur, their impact is limited as SNIPS

uses a strategy of repeated proof generation until all missing chunks are discov-

ered. We describe the strategy in Section 4 and evaluate it in Section 6.4. In fact,

we conjecture that even if the proof had a 100 % probability of false positives,

SNIPS would be able to discover all missing chunks. We reason by observing that

even if false positives exist, it is still possible to discover missing chunks — unless

these false positives result in false consistency, which we discuss next.

14



10 100 1000 104 105 106 107 108

Chunks in SNIPS Proof

10−8
10−7
10−6
10−5
10−4
10−3
0.01

0.1
1

Pr
ob

ab
ilit

y

False Positive
False Consistency
Birthday Paradox

Figure 5: Probability of false positive and false consistency as a function of the
number of chunks in the proof. The dotted green line shows an estimation of
false consistency.

3.4 False Consistency

As we explained in Section 3.3, it is possible that the verifier peer can observe a

collision if two or more chunk proofs map to the same index value. While such

collisions are unlikely, they are easy to detect and recover from. In this section, we

discuss false consistency—a related problem that may only occur when similarity

is below 1, i.e., both peers have chunks that the other does not.

Definition 5 (False Consistency) Whenapeer believes it has nomissing chunks

after querying a proof. However, at least one chunk used to query the proof

gave a false positive, and the value of the false positive exactly matches the last

remaining expected value.

To explain false consistency, consider a proof exchange between two peers,

𝑃1 and 𝑃2. Peer 𝑃1 stores chunks {𝑎, 𝑏, 𝑐} and peer 𝑃2 stores chunks {𝑎, 𝑏, 𝑑},
where chunk 𝑐 ≠ 𝑑. When peers 𝑃1 and 𝑃2 evaluate each other’s proof to identify

missing chunks, it is possible that they both have a false positive, resulting in two
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distinct mappings, as illustrated here:

𝑃1 : [𝑎 ↦→ 3, 𝑏 ↦→ 1, 𝑑 ↦→ 2]
𝑃2 : [𝑎 ↦→ 1, 𝑏 ↦→ 2, 𝑐 ↦→ 3]

In this case, there are no collision mappings nor any mapping to 0. That is,
𝑃1 believes it has all chunks in the storage proof sent by peer 𝑃2 and vice versa.

Thus, both peers falsely conclude that they have the same set of chunks.

Figure 5 shows the results of simulating a single peer verifying proofs of differ-

ent sizes to determine the probability of false consistency. The probability of false

consistency decreases linearly with an increasing number of chunks in the proof,

and becomes negligible for a large number of chunks. As an example, for a proof

with 1000 chunks, corresponding to a peer storing only 4 MB, the probability of
observing a false consistency is less than 0.09 %.

Fortunately, as the number of chunks increases, observing a false consistency

is unlikely in practice. By using a different nonce for each proof, there is a very

high probability that the false consistency will be resolved in the next proof ex-

change.

We can model the probability of a false consistency using the birthday para-

dox [23], shown as a green line in Figure 5. The birthday paradox is a classic tech-

nique used to find the probability of a collision of two or more randomly chosen

elements in a set. In our case, we let 𝑁 be the cardinality of the set of all possi-

ble index values in the proof, and let 𝑘 represent the number of peers exchanging

proofs. The equation is given in Equation (2) as follows:

𝑃(𝑐) = 1 − 𝑁!
(𝑁 − 𝑘)!

1
𝑁 𝑘

(2)

As there are only 2 peers exchanging proofs, we can simplify to get the expression

𝑃(𝑐) |𝑘=2 = 1/𝑁 .

4 The SNIPS Protocol

This section presents SNIPS, a data synchronization protocol for decentralized

storage systems. SNIPS allows storage peers to perform periodic checks for miss-

ing chunks with negligible bandwidth overhead and without a preceding chal-
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lenge phase.

SNIPS provides a mechanism for peers to exchange storage proofs, and to

iteratively improve synchronization accuracy. Used together with the PoS con-

struction in Section 3, we can use fewer bits per chunk in the storage proof. Thus,

SNIPS helps to strike a balance between the size of the storage proof versus the

iterations needed to synchronize the peers.

We first give an overview of SNIPS’ three phases, as shown in Figure 6. While

Figure 6 illustrates the different phases as if they are synchronized, SNIPS oper-

ates entirely asynchronously. Each peer can progress at their own pace.

In the Prove phase, each peer constructs a storage proof for its chunks. Peer

𝑃1 constructs the proof 𝑆𝑎,𝑏,𝑐, representing that it stores the chunks {𝑎, 𝑏, 𝑐}. Sim-
ilarly, 𝑃2 constructs 𝑆𝑏,𝑐,𝑑, and 𝑃3 constructs 𝑆𝑏,𝑐. The peers 𝑃1, 𝑃2, and 𝑃3 send

their storage proofs to the other two.

Upon receiving the storage proof 𝑆𝑏,𝑐,𝑑 from 𝑃2, 𝑃1 detects that it is miss-

ing chunk {𝑑} and requests it from 𝑃2 with the 𝑅𝑑 message in the Select phase.

Similarly, 𝑃2 detects that it is missing chunk {𝑎} and requests it from 𝑃1. In the

same way, 𝑃3 detects that it is missing chunks {𝑎, 𝑑} and requests them from 𝑃1

and 𝑃2, respectively. Finally, the requested chunks are uploaded in the Upload

phase, and the storage redundancy is recovered. Next, we explain each phase in

more detail.

Prove
t

{Rd}

{Sb,c,d}

{Sa,b,c}

{Sb,c}

P1

P2

P3
{Rd}

{Ra}

{Ra}

{d}

{a}

Select Upload

Figure 6: Space-time diagram of SNIPS’s phases.
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4.1 Prove Phase: Storage Proof Generation

In the Prove phase, shown in Algorithm 3, each peer constructs a storage proof

for the set of chunks that the peer stores using the CreateProof function in Algo-

rithm 1. The proof is then digitally signed to preserve its integrity and to link it to

the prover’s public key.

The Prove phase is triggered via the NewProof message in two ways: periodi-

cally from the local peer (see Section 4.4) or from another peer to quickly recover

from a collision (see Line 8 in Algorithm 4).

Algorithm 3 Prove Phase: Storage Proof Generation
1: upon receive ⟨ NewProof | nonce, start, end ⟩ do
2: proof← CreateProof(nonce, start, end)
3: send ⟨ Prove | proof ⟩p ⊲ Signed by peer p

4.2 Select Phase: Request Missing Chunks

In the Select phase, shown in Algorithm 4, a storage peer expects to receive Prove

messages from other peers periodically. Upon receiving a storage proof , the peer

calls the FindMissingChunks function to identify any potentially missing chunks.

If the peer detects missing chunks, it can request them by sending a Select mes-

sage to the peers that created the corresponding storage proofs.

As wementioned in Section 3.2, evaluating the storage proof can result in col-

lisions. The collision flag indicates this. Thus, to reconcile collisions, we trigger a

new Prove phase (Line 8). However, we wait until the peer’s requested chunks

have been received, as indicated by the UploadDone message. Depending on

the peer neighborhood’s storage size to synchronize and the similarity between

prover and verifier, it may require multiple iterations to reconcile all collisions.

Since the verifier only knows the prover’s missing chunk indexes, we may re-

quest the same chunk from multiple peers. Hence, we sequentially process the

proofs from different peers to avoid duplicate chunk uploads. However, we re-

quest chunks from the same peer concurrently. Upon receiving chunks, we eval-

uate them against all proofs.
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Algorithm 4 Select Phase: Request Missing Chunks
1: upon receive ⟨ Prove | proof ⟩p do ⊲ Verified proof from peer p

2: [missing, collision ]← FindMissingChunks(proof)
3: if missing = ∅ then
4: return ⊲ Nothing is missing

5: reply ⟨ Select | proof.nonce, missing ⟩ ⊲ Request chunks

6: if collision then

7: upon receive ⟨ UploadDone ⟩ do
8: reply ⟨ NewProof | proof.nonce, proof.start, proof.end ⟩

4.3 Upload Phase: Send Missing Chunks

The Upload phase presented in Algorithm 5 is simple. In this phase, the prover

responds to Select messages by uploading the missing chunks to the verifier.

The prover peer that created the storage proof stores the index-id reverse

mapping for the nonce associated with the storage proof. Hence, to facilitate the

upload, the prover uses the index-id mapping. We find the chunk identifier in

the reverse mapping for each index value in the request’s missing set. Then we

use that chunk identifier to find the chunk in the local storage, CP, and send that
chunk to the requesting verifier peer. Finally, the UploadDone message signals

to the verifier peer that the upload is done.

Algorithm 5 Upload Phase: Send Missing Chunks
1: Local persistent state at prover:

2: CP ⊲ Set of chunks stored by prover

3: index-id ⊲ Reverse map: MPHF value to chunk ID

4: upon receive ⟨ Select | nonce, missing ⟩ do
5: for each idx ∈ missing do

6: chunkid← index-id[nonce][idx]

7: chunk← {𝑐 : 𝑐 ∈ CP ∧ 𝑐.id = chunkid}
8: reply ⟨ Upload | chunk ⟩
9: reply ⟨ UploadDone ⟩

4.4 Proof Generation Frequency

Webriefly explore how to limit the execution frequency of SNIPS. For example, in

a decentralized storage system, we envision SNIPS running approximately once

per day.
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To accomplish this, we can configure protocol execution to follow the block

generation frequency of a public blockchain. For example, we can trigger the

Prove phase by extracting a new nonce from the blockchain every 𝑘-th block.

The nonce can be the hash of the blockchain’s current block header. Since blocks

are produced at regular intervals, we can limit protocol execution to the desired

frequency. For example, Ethereum has an average block time of around 12 sec-

onds [20, 19]. Thus, to generate a storage proof once a day, we can trigger execu-

tion every 7200-th block (24h · 60m · 60s/12s).
Having the peers issue proofs on the same interval for the same nonce allows

the peers to amortize the cost of proof generation. We leave it for future work to

explore how the peers can coordinate the proof generation to save costs.

4.5 Security Analysis and Mitigation Strategies

This section provides a cursory security analysis of SNIPS and some mitigations.

We note that the underlying storage system already mitigates several attack vec-

tors. For example, we do not consider omission and freeloading in this work,

since the underlying storage system should mitigate these attacks. More work is

needed to understand if SNIPS exposes additional attack vectors for such attacks

and how to mitigate them. We analyze the storage peer integrity attacks outlined

in Section 2.2 in the following.

Replay attack. An attacker can wage a replay attack by sending the same

Prove or Select message multiple times. A peer may process these replayed mes-

sages without affecting the storage peer’s integrity. However, such attacks impact

the protocol’s performance due to repeated work and added network traffic. We

note that processing NewProof and Prove messages are more costly than pro-

cessing Select messages (see Figure 10a). Thus, we may also rely on the storage

system’s mechanisms for rate-limiting peers.

An alternative mitigation strategy is discarding replayed messages based on

the nonce and peer address. With this strategy, peers cannot retransmitmessages

for the same nonce and must wait for the next synchronization round instead.

Upload attack. A misbehaving peer may upload different chunks than those

requested in the Select phase. Tomitigate this, the receiving peer first checks that

the uploaded chunks belong to its neighborhood. Next, the peer checks that the

uploaded chunksmap to the expected index values in the storage proof previously
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received from the uploading peer.

To illustrate, consider the example in Figure 6, where 𝑃2 sent a request for

𝑅𝑎 and then received chunk 𝑎 from 𝑃1. Thus, 𝑃2 can check that 𝑎 maps to 𝑅𝑎 in

the original storage proof 𝑆𝑎,𝑏,𝑐 sent by 𝑃1. If the mapping is incorrect, then 𝑃2

rejects the chunk. If 𝑃1 sent one of the other chunks in 𝑆𝑎,𝑏,𝑐 that 𝑃2 already has,

then 𝑃2 will also reject the chunk.

Pollution attack. A misbehaving peer may attempt to pollute the storage sys-

tem by creating invalid chunks, e.g., chunks not uploaded by a client. The attack-

ing peer may include the invalid chunks in the storage proof and hope that other

peers will request them. SNIPS does not prevent this attack; we leave it to the un-

derlying storage system to mitigate it. A trivial mitigation strategy requires peers

to embed the client’s signature with each upload.

Non-repudiation attack. When a peer distributes a storage proof, it commits

to the chunks in the proof. However, an attacker could attempt to deceive other

peers into accepting a non-verified chunk by exploiting a collision in the proof

sent during the Prove phase.

Consider a scenario with two peers, 𝑃1 and 𝑃2, where 𝑃1 is the attacker. Let

𝑃1 have the chunks {𝑎, 𝑏}, and 𝑃2 have {𝑎}, but not 𝑏. At the start of the protocol,
𝑃1 creates a storage proof 𝑆𝑎,𝑏 and sends it to 𝑃2. Next, 𝑃2 sends a request 𝑅𝑏 for

chunk 𝑏 from 𝑃1. Assume now that 𝑃1 can find a trojan chunk 𝑏′ ≠ 𝑏, such that

Find(cp𝑏′) = Find(cp𝑏). Finally, 𝑃1 can upload 𝑏′, and 𝑃2 would accept 𝑏′ as a

valid chunk instead of 𝑏, even though 𝑏′ is not contained in 𝑆𝑎,𝑏.

We argue that this attack is difficult to perform in practice for typically sized

storage systems. First, the attacker must find a candidate chunk 𝑏′ that collides

with 𝑏. Second, 𝑏′ must have the same chunk identifier prefix as 𝑏; otherwise,

𝑏′ would belong to a different neighborhood, and 𝑃2 would not accept it. This

involves hashing over each candidate 𝑏′ until the resulting chunk identifier has

a shared prefix. Then, the attacker must compute the chunk proof of 𝑏′, as de-

scribed in Section 3.1, and then determine if it collides with 𝑏. If the chunk proof

does not collide, the attacker moves to the next candidate 𝑏′.

Given a prefix length of 𝑙 bits and a proof of 𝑛 chunks, the probability of find-

ing a chunk 𝑏′ with both a shared chunk identifier prefix and that collides with 𝑏

is 1/(2𝑙𝑛). Hence, given a 16-bit prefix and a proof of 1 million chunks, the prob-
ability of finding a trojan chunk is 1.53 · 10−11.

To further mitigate the non-repudiation attack, e.g., for smaller-sized stor-
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age systems, we can include a “proof checksum” in the storage proof. The proof

checksum is a hash of the chunkproofs in the storage proof, i.e.,H(cp1 ∥ cp2 ∥ . . . ).
Wemention briefly that an attackermay also attempt to exploit the possibility

of a false consistency. However, this attack would be at least as costly as the non-

repudiation attack.

5 Implementation

We implemented SNIPS as a package in Swarm Bee v1.9.0. The implementation

comprises about 800 lines of Go code plus about 1900 lines for benchmarking,

testing, and metrics collection. Our implementation is based on the protocol de-

scribed in Section 4. For the MPHF, we used the implementation from [29] with

the recommended expansion factor 𝛾 = 2.
In this section, we describe the implementation details of the protocol. We

start by describing the protocol messages and the data structures used by the

prover and verifier. Next, we describe how we implemented the prover and veri-

fier, including some optimizations. Lastly, we describe some aspects of our eval-

uation framework.

5.1 Protocol Messages

We defined SNIPS’ four messages using protocol buffers [24]. First, the Proof

message contains an 8-byte nonce, two 32-byte start and end fields, a 4-byte en-

try for the proof’s length, and a variable-length entry for the MPHF proof itself.

Additionally, the proof is signed, adding another 97 bytes for a Swarm-specific

signature. The Swarm-specific signature allows peers to verify that the proof’s

creator is within the same neighborhood.

The Select message only contains an 8-byte nonce and a bit vector. The bit

vector allows us to efficiently select multiple chunks in the same message.

The NewProof message only contains an 8-byte nonce. This is a deviation

from the protocol described in Section 4, where the NewProof message also con-

tains the start and end of the proof. This is because, in our implementation, the

prover keeps track of the start and end, and it is thus unnecessary to include them

in themessage. Lastly, the UploadDonemessage is only used as a signal and does

not contain any data.
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5.2 Prover

At some point, each peer in the network will act as a prover. Therefore, as soon as

a peer starts, it will begin listening for new blocks to be added to the blockchain.

The other trigger to initiate proof generation is when a peer receives a New-

Proof message. In this case, the peer will check if a proof for the same nonce

already exists in the id-proof cache. If so, the peer will obtain the proof from the

id-proof cache instead of generating a new one. Hence, we can amortize the cost

of generating the chunk proofs by caching the chunk proofs. This is particularly

useful if peers issue proofs on the same interval for the same nonce, e.g., every

7200-th block.

5.3 Verifier

The verifier uses the same id-proof cache as the prover. In addition, the verifier

uses a bit vector to represent the missing chunks in the Select message instead

of a list of indexes. We observe the benefit of using a bit vector increase as the

number of missing chunks increases. The added overhead of the bit vectormakes

it comparable to sending the index for only a single missing chunk.

5.4 Blockchain as a Shared Randomness Source

To obtain a shared randomness source, we implemented a small probe that listens

for new blocks from the Ethereum blockchain. Once a new block is received, the

probe will determine if it is the next one in the interval by comparing its block

number with the next expected block number. If the block number is greater or

equal to the next expected block number, the probe will query the blockchain for

the block hash of the next expected block number. Thus, even if we were slow to

query the blockchain for new blocks, once we catch up, we will use the same block

hash as the other peers for the nonce.

5.5 Evaluation Framework

Wegive a brief overview of the evaluation frameworkwe implemented to evaluate

the performance of SNIPS andPullsync. To collectmetrics, weuse thePrometheus [44]

monitoring system. We registered interesting metrics for SNIPS and Pullsync,

such as the number ofmessages sent, the number of bytes inmessages, the time to
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process messages, and more. In addition, as the protocols do not wait for chunks

to be synchronized before terminating, we used Prometheus tomonitor the peers’

activity to determine when synchronization was completed.

In both SNIPS and Pullsync, communication is contained within neighbor-

hoods. To ensure that we only collected metrics from peers in the neighbor-

hoods and did not have any outside interference, we added an API endpoint to

the Swarm Bee client that allowed us to query the neighborhood of a peer.

6 Evaluation

This section presents our evaluation of SNIPS. Using a real-world Swarm deploy-

ment on our cluster, we measured SNIPS’s performance in terms of the amount

of transmitted data, bandwidth savings, synchronization time, computation time,

and per-chunk bandwidth requirements. We compared our measurements to

Swarm’s Pullsync protocol. We evaluate full synchronization runs in scenarios

with chunk loss (CL) and adding new chunks (CA).

Our results show that SNIPS uses up to three orders of magnitude less syn-

chronization data than Pullsync. SNIPS’s computational overhead shows that it

is a practical protocol requiring only tens of microseconds per chunk to create

and verify proofs. We also simulated the performance of SNIPS in the most chal-

lenging synchronization scenarios, where the similarity between peers is 0. The
simulations show that SNIPS performswell under challenging conditions and can

always efficiently synchronize peers. We varied the number of chunks so that the

neighborhoods’ total storage ranges from 1 MB to 1000 MB and up to 10 GB for
some experiments.

6.1 Experimental Setup

The experiments were conducted on a cluster of 30 physical machines running

Ubuntu 18.04.4LTS.Eachmachinehas 32GBRAM, an IntelXeonE-21363.30GHz

CPU, a 1.5 TB SSD disk, and 10 Gbit/s NIC.We used the cluster to run a large net-

work of 1000 Swarm peers. Using Kubernetes [31] andHelm [26], we distributed

the Swarm peers on 28 machines, using one to host a private Ethereum network

and one for managing the experiment execution.
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Thedistribution of our Swarmnetwork is shown inFigure 2. There are 81 neigh-

borhoods whose size varies between 8 and 26 peers. Since SNIPS’s synchroniza-
tion operations are confined to a single neighborhood, we evaluated the protocol

with neighborhoods of 8, 17, and 26 peers. Hence, a rough Fermi estimate for
the system-wide bandwidth savings would be 81× the individual savings of one
neighborhood.

6.2 Consistent Pullsync

Comparing the performance of SNIPS and Pullsync is challenging due to Pull-

sync’s inconsistencies. In addition, SNIPS has fewer phases than Pullsync, and

the initiator of SNIPS wants to upload chunks, while the initiator of Pullsync

wants to download chunks. To compensate, our durationmeasurements are taken

from when the protocol is initiated until all peers are fully synchronized. How-

ever, this is not without caveats, as Pullsync gossips new chunks to its neighbors,

reducing the chunk distribution time while potentially wasting bandwidth due to

duplicate chunk uploads. While SNIPS could trivially implement a similar opti-

mization, our priority is to reduce the amount of transmitted data.

For data transmission measurements, we were able to isolate data synchro-

nization traffic from chunk uploads. However, to evaluate the chunk loss sce-

nario, we modified Pullsync so that it does not cause inconsistencies. When new

chunks are added, we compare SNIPS with vanilla Pullsync.

6.3 Real-world Comparison of SNIPS and Pullsync

We first compare SNIPS with Pullsync by measuring the data transmitted and

time to synchronize a neighborhood under the same conditions in our cluster. We

repeated the experiments 10 times for each configuration, and fixed the similarity

between peers to 1, meaning that |𝐴 ∩ 𝐵| = min( |𝐴|, |𝐵|).
In the CL scenario, peers initially store between 1 MB and 1000 MB of chunk

data. We then varied the amount of chunk loss from 0% to 100%. Figure 7 (a, b, c)
shows themetadata transmitted to synchronize a neighborhoodof sizes 8, 17, and
26, respectively. SNIPS (solid lines) transmits 2-3 orders of magnitude lessmeta-
data than Pullsync (dashed lines). The results are consistent for all neighborhood

storage sizes.
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Figure 8 (a, b, c) shows the time to synchronize a neighborhood of sizes 8, 17,
and 26, respectively. The synchronization time includes downloading the syn-
chronization metadata and uploading the chunks. SNIPS is always faster than

Pullsync for small storage sizes (1, 10 MB) and the 8-peer neighborhood. For the

17- and 26-peer neighborhoods and larger storage sizes (100, 1000MB), Pullsync

is slightly faster when there is more than 30 % and 50 % chunk loss. Pullsync is

faster in these cases despite transmitting more metadata because of Pullsync’s

gossip optimization, explained in Section 6.2. Our experiments were performed

on cluster nodes connected via unsaturated 10 Gbit/s links. We conjecture that

the gossip optimization will be less effective in an Internet environment where

peers are connected over lower-bandwidth links.

In the CA scenario, we add 1 MB to 1000 MB of new chunk data to a peer and

observe the synchronization behavior. The metadata transmitted to synchro-

nize a neighborhood of sizes 8, 17, and 26 are shown in Figure 7d. As expected,
the amount of metadata is linear with the new chunk data uploaded for Pullsync.

However, SNIPS has a sublinear relationship, which becomes more pronounced

for larger uploads. Overall, SNIPS transmits 1-1.5 orders of magnitude less data

than Pullsync.

Figure 8d shows the time to synchronize a neighborhood of sizes 8, 17, and 26.
SNIPS is always faster than Pullsync for 10 MB of new chunks. However, due to

the gossip optimization, Pullsync has a slight advantage when there are 100 MB

or more new chunks.

We summarize the same results in Table 1 in the form of average bandwidth

savings and speedup.
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Table 1: Average bandwidth savings (KB) and speedup (ms) with SNIPS vs Pull-
sync. RSE is the relative standard error.

CL: Bandwidth Savings CA: Bandwidth Savings
Peers Size Avg (KB) Avg (%) RSE (%) Avg (KB) Avg (%) RSE (%)

8 1 MB 308 98.7 0.4 23 79.8 0.6
10 MB 2981 99.1 0.1 139 75.5 0.4
100 MB 29849 99.6 0.1 1582 92.2 0.1
1000 MB 298957 99.7 0.0 16630 95.1 0.3

17 1 MB 1038 99.1 0.4 75 84.7 0.2
10 MB 10166 99.4 0.1 474 82.2 0.1
100 MB 91024 99.7 0.0 4449 93.6 0.1
1000 MB 909988 99.8 0.0 44463 95.5 0.0

26 1 MB 2293 99.4 0.3 152 87.8 0.6
10 MB 22619 99.6 0.1 1142 87.7 0.2
100 MB 226274 99.8 0.1 11907 96.2 0.1
1000 MB 2265603 99.9 0.0 123972 97.4 0.1

CL: Speedup CA: Speedup
Peers Size Avg (ms) Avg (%) RSE (%) Avg (ms) Avg (%) RSE (%)

8 1 MB 25400 47.0 1.2 25069 46.6 1.4
10 MB 31821 52.0 1.5 31859 50.6 2.2
100 MB 89170 64.6 1.9 99949 59.1 2.1
1000 MB 741126 73.0 1.5 651543 55.8 1.5

17 1 MB 24056 44.9 1.2 23150 43.4 1.0
10 MB 20513 38.4 2.3 14385 27.2 3.7
100 MB -3833 -3.5 1.4 -56847 -37.5 0.6
1000 MB -156825 -20.7 1.5 -614137 -52.3 1.2

26 1 MB 955 3.1 1.3 1354 4.4 1.6
10 MB 4451 11.1 2.5 -307 -0.7 3.2
100 MB 96969 41.7 1.2 17451 6.6 1.3
1000 MB -29329 -2.8 1.6 -788973 -57.3 1.8
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Figure 7: Comparison of data transmitted between SNIPS and Pullsync when
synchronizing peer neighborhoods. We vary the neighborhood storage sizes be-
tween 1, 10, 100, and 1000 MB. The peer neighborhood sizes 𝑛 = {8, 17, 26}.
Plots (a, b, c) show the data transmitted as we vary the chunk-loss rate (CL).
Plot (d) shows the data transmitted as we vary the amount of new chunk data
added (CA).
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Figure 8: Comparison of time spent between SNIPS and Pullsync when synchro-
nizing peer neighborhoods. We vary the neighborhood storage sizes between 1,
10, 100, and 1000 MB. The peer neighborhood sizes 𝑛 = {8, 17, 26}. Plots (a, b, c)
show the duration as we vary the chunk-loss rate (CL). Plot (d) shows the dura-
tion as we vary the amount of new chunk data added (CA). The duration includes
the time to transmit synchronization metadata and uploading chunks.
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6.4 SNIPSWith Varying Degree of Similarity

Recall themetrics similarity, |𝐴∩𝐵|/min( |𝐴|, |𝐵|) and proof accuracy, |𝑀𝑖 |/|𝑀𝑝 |,
defined in Section 2. We now simulate SNIPS’s performance when similarity < 1,
meaning both peers have chunks that the other does not. As Section 3.3 explains,

this complicates the synchronization as querying with chunk proofs not part of

the original proof may cause collisions.

We initialize the peers with the same amount of chunks for all simulations.

Depending on the similarity setting, the total amount of chunks a peer is storing

after concluding synchronization will range from the initial amount when simi-

larity is 1 (chunks are fully overlapping) to 2× the initial amount when similarity
is 0 (chunks are fully disjoint).

We first simulate the transmitted synchronizationmetadata. As expected, the

transmitted metadata per peer when similarity is 1 in Figure 9a closely matches

the transmittedmetadata when chunk loss is 0% in Figure 7. For all storage sizes,

the transmitted metadata increases by slightly less than one order of magnitude

when similarity decreases from fully overlapping (1) to fully disjoint (0). The

growth in transmitted metadata comes from the need for additional sequential

Prove and Select phases until the peers have fully synchronized. For each round

of Select, the peers become more synchronized, and their subsequent proofs be-

come larger and more accurate.

Figure 9b shows the number of Select messages needed for two peers to syn-

chronize fully. As the peers initially have the same amount of chunks, when sim-

ilarity is 1, peers are already synchronized, and no Select messages are needed.

The number of Select messages increases as the similarity decreases.

Finally, we evaluated the accuracy of the proofs, as shown in Figure 9c. Inter-

estingly, the amount of chunks does not impact the proof accuracy. When similar-

ity is 1, the proof accuracy is always 1, since all missing chunks are identified with

a single Select message. Moreover, the proof accuracy improves with the num-

ber of Select messages. This is because each proof contains more chunks than the

previous, allowing the peer to identifymoremissing chunks. The highest number

of Select messages needed to fully synchronize was 4.
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Figure 9: SNIPS’s performance with varying degrees of similarity 𝑠 = [0, 1]. The
labels define each peer’s initial storage before the synchronization process begins.
(a) Synchronization data for two peers. (b) Number of Selectmessages needed for
two peers to fully synchronize. (c) Proof accuracy as a function of iterative Select
messages. Vertical lines show the standard error.

6.5 Computation Overhead

We measured the time spent creating and selecting missing chunks (verifying)

from a SNIPS proof by extracting the time from the logs obtained from running

the experiment in Section 6.3 on our cluster. We isolate the time spent creat-

ing chunk proofs as this is common for both operations. Our results are shown

in Figure 10a and Table 2.

The results show that the verifier spends slightly less time creating chunk

proofs than the prover. In addition, the time spent selecting missing chunks is

slightly less than the time spent creating the proof.
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Figure 10: Space and time overheads. (a) Time spent creating and selectingmiss-
ing chunks from a SNIPS proof. (b) Time spent per chunk creating and selecting
missing chunks from a SNIPS proof. (c) Per chunk overhead for a SNIPS proof
for different neighborhood storage sizes (bits per chunk). Vertical lines represent
error bars.

In comparison, we found that the average time to answer one peer with a long

list of chunk identifiers in Pullsync’s Offer phase amounts to 73.2 seconds for

100 MB of chunks and 728.6 seconds for 1000 MB of chunks. The Offer phase is

executed partially in parallel and thus further study is needed to determine the

exact time spent in sequential operations.

Next, we measured how the time spent correlates with the size of the proof.

Figure 10b shows that only tens of microseconds are necessary for either opera-

tion. As the size of the proof increases, the time spent per chunk seems to sta-

bilize. The time per chunk is slightly higher for 1 MB proofs due to the constant

overhead for signing the proof. This overhead is amortized over many chunks for

larger proofs, thus lowering the per-chunk time.
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Table 2: Time spent creating and selecting missing chunks from a SNIPS proof.

Prover Verifier
Operation 100 MB 1000 MB 100 MB 1000 MB

Chunk proofs 622 ms 4517 ms 359 ms 3327 ms
Create 628 ms 4017 ms
Select 240 ms 3838 ms

6.6 Storage Overhead

We extracted the size of the SNIPS proofs from the experiments presented in Sec-

tion 6.3. As the size of the proof is proportional to the number of chunks, we

measured the storage overhead in terms of bits per chunk. Our results are shown

in Figure 10c. The overhead approaches 3.3 bits per chunk for a proof containing

1000 MB of chunks. As in Section 6.5, the overhead for 1 MB of chunks is dom-

inated by constant overheads. In this case, the higher number of bits per chunk

for 1 MB of chunks is due to the digital signature, the nonce, and the [start, end]
range. However, for larger storage sizes, this overhead is amortized.

7 RelatedWork

We contrast our work with two main categories of related work: PoS construc-

tions and data synchronization protocols.

7.1 Bloom Filter Variants and Set Reconciliation

A Bloom filter [7] is a probabilistic data structure for dynamic sets that supports

a similar membership query as our PoS-like construction. The Bloom filter uses

𝑘 hash functions to map each element to 𝑘 bits in a bit array. When querying a

Bloom filter, the results will be 𝑘 array positions. If either of the 𝑘 array positions

is 0, then the element is definitely not in the set. Otherwise, we say that the ele-

ment might be in the set, as the membership query suffers from false positives.

The false positive rate of a Bloom filter can be improved by increasing the number

of bits used per element.

A crucial difference between the Bloom filter and our PoS-like construction is

that our membership query always returns an index value index value [0, 𝑁] that
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can be used to identify missing elements. As pointed out in previous works [16],

it is not obvious how to identify missing elements from the Bloom filters array

positions, other than testingmembership on all possible elements in the universe.

An invertible Bloom filter (IBF) [16] is an extension to the standard Bloom fil-

ter that allows a query to extract the elements in the set—if the set is small enough.

The IBF embeds an XOR field in each cell which is calculated over all the keys in

the cell. Two IBFs can attempt to use the XOR fields to identify the elements in

their symmetric difference.

Set reconciliation using IBF was suggested in [17]. Their results show that the

method can only identify the missing elements with high probability when the

symmetric difference is less than30%. In comparison, wehave shown that SNIPS

can always identify the missing elements, even when the symmetric difference is

100 % (the maximum).

A cuckoo filter [21] is an alternative to a Bloom filter that supports deletion

and approximate membership tests. Elements are inserted into the cuckoo filter

by hashing the element with two different hash functions and then mapping the

hash value to at least one of the two resulting candidate buckets.

Recent work [38] has proposedMCFSyn for multi-party set reconciliation us-

ing marked cuckoo filters (MCF). Each peer generates an MCF vector that is sent

to a centralized participant. The centralized participant then creates an overall

MCF vector and distributes it to the peers. The peers can then identify themissing

elements by comparing their MCF vectors with the overall MCF vector. The pro-

tocol requires that the set of peers are fixed for the duration of the protocol. Both

false positives (identifying a missing element as being in the set) and false nega-

tives (identifying an element as missing from the set) are possible in the protocol,

resulting in excessive communication and inaccurate reconciliation. In contrast,

SNIPS is a decentralized protocol that does not require a fixed set of peers and

does not suffer false negatives.

7.2 Proof of Storage Algorithms and Accumulators

PoS algorithms [2, 30, 47] allow a peer to prove that it possesses a chunk of data

without revealing the chunk itself. Three actors are involved in a PoS protocol: a

challenger, a prover, and a verifier. As summarized in [54], the features, security,

and performance of PoS algorithms vary greatly.
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A related feature is public verifiability, first introduced in [2]. With this fea-

ture, anyone can take on the verifier role and verify the proof. Algorithms with

this feature require that the original data owner generates andpersists somemeta-

data to be used by other peers to create storage challenges and to verify the proofs.

The metadata adds extra overhead, and it needs to be generated for each data

chunk that should be publicly verifiable. Should this metadata be lost, the orig-

inal data owner must regenerate it. Our PoS-like construction allows anyone to

possess the original data set to verify the proof without needing additional meta-

data.

Wemention briefly that some PoS schemes [12, 11] can detect colluding peers

by encoding each replica differently or by relying on timing assumptions. How-

ever, these reliances are unsuitable for decentralized storage systems.

An accumulator is a cryptographic construction representing a set of elements

and allows the issuance of membership proofs without revealing the elements

themselves [5]. A universal accumulator [36] allows a prover to generate both

membership and non-membership proofs. Other variants include accumulators

based on Bilinear maps [41] and Merkle trees [3]. Unlike our PoS-like construc-

tion, accumulators can give definite answers to membership queries. However,

they would require a different witness for each chunk, which must be constantly

updated, potentially overwhelming the system.

7.3 rsync

A popular tool for data synchronization is rsync. The rsync algorithm [51] is de-

signed to reduce the amount of data needed to transfer files between two peers.

Rsync achieves this by only transferring blocks not already at the destination and

using a rolling checksum to detect changes within files. However, rsync is unsuit-

able for decentralized storage systems as it is limited to synchronizing one peer

at a time.

8 Conclusion

This work presents SNIPS, a novel protocol for data synchronization in decen-

tralized storage systems. Having efficient data synchronization that can run fre-

quently and respond to network churn is paramount for keeping sufficient re-
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dundancy levels in the storage system. SNIPS features a PoS-like construction

for creating storage proofs that support membership queries. Peers exchange

storage proofs with neighboring peers and query the proofs to identify missing

chunks and subsequently request them. The proofs typically require only a few

bits per chunk.

Our contribution includes rigorous experiments on a real-world cluster to

show that SNIPS is a practical protocol. In addition, we have demonstrated the

correctness of SNIPS by simulating the performance under worst-case scenarios.

We compare SNIPS to Pullsync, the state-of-the-art protocol for data synchro-

nization in Ethereum Swarm. Our results show that Pullsync is vulnerable to in-

consistencies, does not provide storage guarantees, and uses up to three orders

of magnitude more synchronization data than SNIPS.

The potential impact of SNIPS on other decentralized storage systems seems

promising but is yet to be fully explored. We believe there are other uses for the

PoS-like construction, but we leave them for future work.
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Abstract

Decentralized storage systems split files into chunks and distribute the chunks

across a network of peers. Each peer may only store a few chunks per file. To

later reconstruct a file, all its chunks must be downloaded. Chunks can

disappear from the network at any time as peers are untrusted and may

misbehave, fail or leave the network. Current systems lack a secure and

cost-effective mechanism for discovering missing chunks. Hence, a client must

periodically re-upload all of the file’s chunks to keep it available, even if only a

few are missing from the network. Needlessly re-uploading chunks waste

significant amounts of the network’s bandwidth, takes additional time to

complete, and forces the client to pay for unwarranted resources.

To address the above problem, we propose SUP, a novel protocol that utilizes

proof-of-storage queries to detect missing chunks. We have evaluated SUP on a

large cluster of 1000 peers running a recent version of Ethereum Swarm. Our

contributions include the design and implementation of SUP and a study of

Swarm’s redundancy characteristics. Our evaluation shows that SUP

significantly improves bandwidth utilization and time spent on data upkeep

compared to the existing solution. In common scenarios, SUP can save as much

as 94 % bandwidth and reduce the time spent re-uploading by up to 82 %.

While dependent on the storage network’s bandwidth pricing policy, using SUP

may also reduce the overall monetary costs of data upkeep.
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1 Introduction

In large-scale decentralizedpeer-to-peer storage systems such asEthereumSwarm [43,

39] and InterPlanetary File System (IPFS) [7], peers collaborate by storing and

serving each other data. These systems aim to pool the storage and computational

resources of the peers together to create affordable and reliable storage for every-

one. Anyone can upload files to the network, which are split into smaller chunks,

as shown in Figure 1. Each chunk is replicated in a small subset of the total peers

in the network.

Local Peer

File
Storage
Network

Figure 1: The local peer split files into chunks. The chunks are uploaded to dif-
ferent peers in the storage network.

The main challenge with this idea follows from the fact that the peers are un-

trusted, and the networks may exhibit significant churn. The peers may inten-

tionally or by accident delete or corrupt the data they are tasked to store. Fur-

thermore, a peer may itself become unreachable by the other peers due to issues

with network connectivity, or it may have failed in other ways. To mitigate the

unreliability of the peers, the incentives of the network motivate correct behavior

with cryptographic tokens.

Even though previous work [29] has proposed solutions for data resilience,

both IPFS [37] and Swarm still rely on a high degree of replication to keep data

persistent. Without maintenance, as long as there are misbehaving peers and

churn, the replication degree of chunks will decrease over time. The minimal

replication of a file’s chunks is also of particular interest, as the unavailability of

a single chunk may cause the de-facto unavailability of the entire file. We have

studied chunk availability in the public Swarm network and found that chunks

can become unavailable as soon as 6 days after upload.
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To maintain a high degree of replication, these systems rely on the client to

continuously re-upload their data [20]. In Swarm, this process is calledDataStew-

ardship. However, Data Stewardship always re-uploads all chunks of a file. For

large files, this consumes unnecessarily large amounts of bandwidth. IPFS does

not have a dedicated process for re-uploads [35, 42] and relies solely on its stan-

dard upload functionality.

In this work, we propose Storage Upkeep Protocol (SUP), a lightweight proof-

of-storage system that uses storage proofs to save bandwidth when re-uploading

data. A proof-of-storage system has three distinct actors, the challenger, the

prover and the verifier. It is an essential requirement that the prover cannot pre-

compute the proof before seeing the challenge. As such, each challenge is coupled

with a unique nonce and thus a verified proof ensures that the prover had the data

when the proof was created. SUP is targeted for usage in decentralized storage

systems where the data is de-duplicated and peers are untrusted.

We evaluate SUP on a large cluster consisting of 1000 Swarm Bee peers. The

results show that SUP can provide up to a 94 % reduction in the bandwidth con-

sumed in the network when re-uploading. It also provides faster re-uploads; in

common scenarios, the time spent re-uploading is reduced by up to 82 %.

Our contributions are summarized as follows:

• The design and implementation of SUP, a cost-efficient data upkeep proto-

col built for decentralized storage systems.

• A performance evaluation of SUP and Data Stewardship on a real-world

cluster.

• Monitoring data availability over four weeks in the public Ethereum Swarm

network.

2 Swarm Overview

In this section, we present an overview of the Swarm network and its data upkeep

protocol, Data Stewardship.

Swarm [43] is a global decentralized storage and communication system that

distributes stored data to a network of peers. According to a monitoring web-

site [17], the public network has more than 2000 active peers in the past month,
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and over 863 000 total peers. The peers connect to the Swarm network using the

Swarm Bee client. Swarm’s p2p overlay network used for routing and discovery

is based on the Kademlia distributed hash table (DHT) [26].

Each peer in Swarm is required to deploy a smart contract, called checkbook,

to an EVM-compatible blockchain, e.g., Ethereum or Gnosis. The smart con-

tract is used to reward peers with BZZ tokens when they provide resources to

the network. In the current version of Swarm, providing bandwidth is incen-

tivized. Specifically, peers pay to download chunks and are rewarded for deliv-

ering chunks and forwarding messages. After deploying the smart contract, each

peer generates a unique peer address used to identify it in the network. The ad-

dress is generated by hashing the concatenation of the peer’s Ethereum public

key, the network identifier, and the hash of the block immediately following the

one that deployed the peer’s checkbook smart contract.

2.1 Data Storage in Swarm

Swarm splits files into 4 KB chunks. A unique chunk identifier is derived for

each chunk by passing the chunk’s content through a cryptographic hash func-

tion. Swarm creates a 128-aryMerkle tree where each of the file’s chunks is a leaf.

The internal nodes and root of theMerkle tree are also stored in 4 KB chunks and

contain a concatenation of the chunk identifiers of their children.

Chunk identifiers and peer addresses share the same address space. When a

chunk is uploaded to the network it is sent to the closest peer, whose address has

the greatest proximity to the chunk’s identifier. The proximity of two addresses

is the number of equal prefix bits in both addresses [39].

Each chunk is replicated by its storer peers; these are the closest peer and that

peer’s nearest neighborhood. A neighborhood is a set of peers that have the same

proximity to an address. A peer’s nearest neighborhood is the neighborhood with

8 or more members that have the closest proximity to the peer’s address.

Any peer may choose to store any given chunk. However, a chunk may be

irretrievable by other peers unless it is stored by its storer peers. This follows

from how messages are routed in Swarm, which we discuss next.
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2.2 Message Routing in Swarm

The message routing protocol in Swarm, called forwarding Kademlia, differs

from the original Kademlia description [26]. In the original description, the peer

X, which wants to look up a value y in the DHT, starts by asking the closest peer

it knows to y. This peer, which we call Z, then returns a set of peers Z ′ that are

closer to y than itself. This process continues until the closest peer in the network,

Y , is discovered. Finally, the request for y is sent to Y .

In forwarding Kademlia, instead of Z replying to X with a list of candidates

that are closer to y, it will forward the request to one of them. That peer then

forwards the request to the closest peer it knows. Eventually, the request reaches

a peer Y that knows of no closer peer to y than itself. Then, Y returns y along the

same path as the request, if it has y.

Kademlia allows peers to find chunks in logarithmically many steps; if the

chunk is stored at the correct peers, that is, its storer peers as defined above. A

chunk that is not stored by its storer peers is not guaranteed to be found through

Kademlia routing. Peers may, however, choose to cache chunks to improve re-

trievability.

2.3 Data Stewardship

“It is in the nature of Swarm that data eventually disappears” [20]. Swarm clients

use amechanism calledData Stewardship [20] tomitigate this fact by periodically

re-uploading their data to the storage network. This, of course, requires the client

to have the data that it wishes to re-upload.

The client initiatesData Stewardship by specifying a chunk identifier. Data Stew-

ardship then uploads the chunk to its storer peers using the push-sync protocol.

If the chunk is the root of a Merkle tree, it uploads the entire tree.

2.4 Data Availability in Swarm

We conducted a four-week experiment on the public Swarm network to see how

quickly chunks would disappear. We uploaded a 5 MB file to the Swarm gate-

way [40] and checked the availability of its chunks once a day. The chunk avail-

ability over time is shown in Figure 2. Green bars indicate that the whole file is

retrievable, and red bars indicate that some chunks were unavailable. On the 6th
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day, we observed that some of the chunks were unavailable, but they returned

on the 7th day. After the 16th day, the file remained unavailable due to missing

chunks.

We count chunks in one of 16 buckets (0-f), based on the first four bits of the

chunk identifier, each time they are unavailable. Then, we normalized the buck-

ets to account for the fact that there is some variation in how many of the file’s

chunks have the same 4-bit prefix. Finally, we plot the relative size of each bucket

in Figure 3 as the accumulated (blue) bars. These bars show the frequency that

chunks belonging to each bucketwere found to be unavailable. We also count how

many unique chunks fall into each bucket. That is, if the same chunk is unavail-

ablemultiple times, we count it only once. We normalize and plot the relative size

of these counts also in Figure 3 as the unique (orange) bars.

In Figure 3, we see that chunks in buckets c and e were most often found to

be unavailable. However, buckets 5 and 4 have the most unique chunks. Almost

none of the unavailable chunks were found in bucket 8. This seems to suggest

that certain parts of the network are less reliable than others.
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Figure 2: Chunk availability over time.

3 SystemModel and Requirements

We assume the presence of a p2p network, where each peer is connected to a sub-

set of the total peers in the network. An overlay network is used to routemessages

between unconnected peers. Each peer generates a private key that is used to dig-
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Figure 3: Faulty chunk identifier frequency.

itally signmessages, and a corresponding public key so that other peers can verify

the signature. The key distribution and management are out of the scope of this

paper.

The public key is further used to generate a unique address for use in the over-

lay network. The address serves as the baseline for the connectivity graph for the

overlay network, such that peers are more likely to be connected to other peers

with similar addresses.

There are three distinct actors in the protocol, the Challenger which issues

proof-of-storage challenges, the Prover which receives the challenges and pro-

duces the proofs, and the Verifier which evaluates the correctness of the proof.

Requirements. 1) We design the protocol to prevent provers from comput-

ing valid proofs before receiving challenges. 2) A valid proof must ensure with an

overwhelming probability that the prover was in possession of the data when the

proof was created. 3) Proofs are bound to a specific prover, and cannot be reused

by others. 4) Proving and verification must be efficient. 5) Proofs should be of a

small constant size.

3.1 Threat Model

Challengers and provers in SUP may attempt to attack the system. Verifiers only

receive proofs and thus cannot attack the system. A malicious challenger may

trigger a Sybil attack by manufacturing a large number of challenges and sending

these to the provers. The provers would then have to spend computational- and
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I/O-resources to compute the proofs, which the attacker would discard. Individ-

ual provers may attempt to construct proofs for data they do not store. Similarly,

a collection of provers may collude to answer proof-of-storage challenges for the

same reason. Provers may also generate false proofs that verifiers would spend

resources to reject.

We addressmalicious challengers in Section 4.3 andmalicious provers in Sec-

tion 4.2. We discuss colluding provers in Sections 4.2 and 4.4. Finally, we address

false proofs in Section 4.5.

4 The Storage Upkeep Protocol

SUP is a novel protocol designed to save bandwidth and reduce time spent re-

uploading data to decentralized storage networks comprised of untrusted peers.

Re-uploading is defined as uploading previously uploaded data to the network

and is often necessary to persist data, e.g., due to network churn or unreliable

peers. The reduction in bandwidth and time spent comes from SUP’s issuing of

storage challenges and awaiting storage proofs before selectively uploading only

those chunks that were missing or had invalid proof.

Our design is flexible, and modularized and does not require changes in the

system’s existing protocols. Instead, we add a newprotocol to significantly reduce

the amount of data transmitted during the re-uploading process.

SUP relies on the underlying P2P network to route messages between peers.

The space-time diagram in Figure 4 illustrates SUP’s protocol execution. In the

figure, one entity acts as both the challenger and verifier, and three storage peers

are labeled P1, P2, and P3. The challenger, P1 and P2, all store a set of chunks

labeled {a, b, c}, whileP3 only stores {a, b}. The protocol startswith the challenger
sending a proof-of-storage challenge to the storage peers. Upon receiving the

challenge, each storage peer computes a proof for those chunks it is storing and

sends that proof to the verifier. The verifier processes each proof, and for P3’s

proof, the verifier will detect that P3 is missing chunk {c}. The verifier will then
enter the re-upload phase and send the missing chunk to P3.

Each peer has access to cryptographic keys for digitally signing and verifyingmes-

sages. In the following algorithm description, we let Σ(m) denote the digital sig-

nature of amessagem and pub a peer’s public key. The following subsections will
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Figure 4: The message flow between the challenger, verifier, and the storage
peers.

detail the most significant actors in the protocol.

4.1 Re-upload

Algorithm 1 gives a high-level pseudo-code for SUP. The client interacts with its

local peer and calls Reupload with a list of chunk identifiers it wishes to persist in
the storage network. If no list is given, the default is to use the identifiers of all

chunks stored by the local peer. Given the list of chunk identifiers, the challenger

creates a proof-of-storage challenge by calling CreateChallenge (Section 4.3).

The challenge is then sent via the p2p network to the storage peers responsible

for storing the chunks.

Each storage peer awaits challenge messages (Section 4.4) and generates a

proof-of-storage proof for those chunks covered by the challenge that the peer

is storing. Upon receiving a proof, the verifier will attempt to validate the proof

using VerifyProof (Section 4.5). For each valid proof, the verifier removes chunk

identifiers covered by the proof from the list of chunks to be re-uploaded.

Once the verifier has processed all proofs, the uploadList variable will only

contain chunk identifiers that are missing from the network and must be re-

uploaded. The verifier will iterate over the uploadList and upload the chunks

to the storage peers.

We leave counting the proven chunk identifiers to get information about the

redundancy in the network for future work.
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Algorithm 1 Reuploader
1: Local persistent state at challenger/verifier:

2: C ▷ Set of stored chunks

3: S ▷ Set of storage peers

4: uploadList ▷ Identifiers for chunks to upload

5: remaining ▷ Outstanding storage proofs to verify

6: func Reupload(chunkIDs)

7: if chunkIDs = ∅ then
8: chunkIDs← {c.id ∀ c ∈ C} ▷ Identifiers of all stored chunks

9: chal← CreateChallenge(chunkIDs) ▷ Algorithm 2

10: uploadList← chunkIDs

11: remaining← |S|
12: send ⟨ chal ⟩ to S ▷ Send chal to storage peers

13: upon receive ⟨ proof ⟩ do ▷ proof verified signature

14: if VerifyProof(proof) then ▷ Algorithm 4

15: for all chunkID ∈ proof do

16: uploadList← uploadList \ chunkID

17: remaining← remaining− 1

18: upon event remaining = 0 do ▷ All proofs processed or timeout occurred

19: for all chunkID ∈ uploadList do

20: chunk← {c : c ∈ C ∧ c.id = chunkID}
21: send ⟨ chunk ⟩ to S ▷ Upload missing chunk

4.2 Proof Construction

The primary purpose of our storage proof is to assure the challenger that the peer

in question is currently storing the data queried in the challenge. To ensure that

the peer is storing the data when generating the storage proof, we need to remove

any way to pre-compute proofs before receiving the challenge. Resistance against

pre-computing proofs is achieved by having the challenger embed a unique nonce

(number used once) into each challenge query. The nonce is unknown to provers

before they process the challenge.

The proof construction assumes the existence of a cryptographic hash func-

tion that is preimage-resistant [34] and puzzle-friendly [27]. The preimage re-

sistance property states that for any given hash value h, it is computationally in-

feasible to find y such that H(y) = h. Puzzle friendliness states that for every

possible n-bit output value y, if k is chosen from a distribution with high min-

entropy, then it is infeasible to find x such that H(k || x) = y, in time significantly
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less than 2n. We define chunk a’s chunk proof in (1), as the cryptographic hash of

the concatenation of a nonce and a’s data.

CPa = H(nonce || a) (1)

Hashing fixes the size of chunk proofs to a small constant. Note that the concate-

nation order nonce || a in (1) is essential, since otherwise the chunk proof may

be vulnerable to the length extension attack [14]. This weakness is present in

well-known iterative hash functions based on theMerkle-Damgård construction,

such asMD5, SHA-1, and SHA-2. In the length extension attack, an attacker with

knowledge of H(m1) and the length of m1 can calculate H(m1 || m2) for an ar-

bitrary message m2 without knowing m1. If we flipped the concatenation order

in the chunk proof to be H(a || nonce), a dishonest prover could store only H(a)

and the length of a and delete chunk a. Upon receiving a new challenge, a prover

could use the length extension attack to calculate H(a || nonce) without knowing
a. We recommend computing the chunk proof in (1) using a strong cryptographic

hash function without known weaknesses, such as the length extension attack.

The chunk proofs are aggregated to form a full storage proof for the challenge.

We chose to aggregate the chunk proofs using XOR. Using XOR reduces mem-

ory consumption, as we only need to keep a small fixed amount of data in mem-

ory. The prover computes the hash of the concatenation of the aggregated chunk

proofs and the prover’s public key. Concatenating with the public key prevents

other peers from copying the aggregated chunk proof to use it to claim they are

storing the chunks. For a peer with the public key pub, the base proof for a set of

chunks {a, b, c} is given in (2).

BPa,b,c = H((CPa ⊕ CPb ⊕ CPc) || pub) (2)

Since XOR is both associative and commutative, the order in which chunk proofs

are aggregated does not impact the final result. We want that our scheme allows

a prover to answer subsets of a challenge. For example, a challenger might is-

sue a challenge for the chunks {a, b, c, d, e}, but the recipient peer can only prove

{a, b, c}. To encode that only the chunks {a, b, c} are included in the proof, we

introduce a bitmap L. The i-th bit in L represents whether or not the i-th chunk

is included in the proof. For example, L = 111002 means that chunks {a, b, c} are
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included in the proof.

In addition, we need to embed the nonce to allow the verifier to know which

challenge is being proven, as the challenger might have issued multiple chal-

lenges. Lastly, we require that the prover digitally signs the base proof, providing

message integrity and proof that it is authorized to issue proofs for the included

public key. This allows the verifier to determine that the proof comes from the

intended peer. Given a challenge requesting proofs for {a, b, c, d, e}, a peer stor-
ing chunks {a, b, c} should respond with a proof according to (3), where bitmap

L = 111002.

Proofa,b,c = {BPa,b,c, nonce, L, Σ(BPa,b,c), pub} (3)

4.3 Challenger

When a client wants to re-upload data using SUP, we send a challenge to the other

storage peers to determine which chunks are missing from the network andmust

be uploaded. The challenge contains a list of chunk identifiers that the challenge

concerns.

Toprevent provers frompre-computing proofs, the challenger embeds anonce

in the challenge. The nonce is obtained by generating a random value and then

cryptographically committing to the value by hashing it. The purpose of crypto-

graphically committing is to be able to dispute any claim over who was the orig-

inator of the challenge, as only the challenger will be able to reveal the preimage

of the committed nonce.

Finally, the list of chunk identifiers is packed together with the committed

nonce and then digitally signed to create the challenge. By digitally signing the

challenge, we can prevent unauthorized or excessive issuance of challenges. In

addition, the signature allows provers to verify the integrity of the challenge. Al-

gorithm 2 lists the pseudo-code.

4.4 Prover

Algorithm 3 lists the pseudo-code for proving chunk possession after receiving a

challenge. The prover initially verifies the integrity of the challenge, and its digital

signature to preventmisuse. For each chunk identifier contained in the challenge,

the prover checks if it stores the chunk, and if so, it creates a chunk proof for it,
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Algorithm 2 Create Challenge
1: Local persistent state at challenger:
2: commits ▷Map of nonce pre-images
3: challenges ▷Map of chunk identifiers in sent challenges
4: pub ▷ Challenger’s public key

5: func CreateChallenge(chunkIDs)
6: k← RandomValue()
7: nonce← H(k)
8: commits[nonce]← k ▷ Commit to the nonce
9: challenges[nonce]← chunkIDs
10: chal← [ nonce, chunkIDs ]
11: return [ chal, Σ(chal), pub ]

as described in (1), and then aggregates it to the base proof described in (2). The

base proof is initialized to a null vector with the same length as the hash function.

Including both the committed nonce and the chunk data in the chunk proof

means that the prover must know both simultaneously, making pre-computation

infeasible. To aggregate the chunk proofs, we use XOR with the base proof. This

reduces the algorithm’smemory consumption, as the chunk’s data can be garbage

collected from memory after creating each chunk proof. The bitmap L indicates

which chunks are included in the proof. As the chunks are processed in the same

order as the challenge, we add 2i to the bitmap tomark the i-th chunk as included.

After processing all the chunks, we cryptographically hash the concatenation

of the base proof with the prover’s public key to create the final base proof. In-

cluding the prover’s public key prevents other peers from eavesdropping on the

communication to re-use the proof for themselves. We then create the final proof

using the final base proof, the received nonce and L. The final proof is returned

to the challenger together with its digital signature.

4.5 Verifier

The pseudo-code for the verifier is listed in Algorithms 4 and 5. Any peer who

stores the same chunks the storage proof covers can verify the proof. To verify

a storage proof, the verifier calculates a new proof for the same chunks and then

compares it to the received proof. When the proof covers fewer chunks than the

challenge, we use the bitmap L to know which chunks are covered by the proof.

The prover claims that the challenge’s i-th chunk is covered by the proof only if

L’s i-th bit is set. The verifier returns true only if the received proof matches the
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Algorithm 3 Prove Data Possession
1: Local persistent state at prover:
2: C ▷ Set of stored chunks
3: pub ▷ Prover’s public key

4: upon receive ⟨ chal ⟩ do ▷ chal verified signature
5: baseProof← [0]H.length

6: L← 0 ▷ Bitmap of chunks included in proof
7: for i← 0 to |chal.chunkIDs| do
8: chunk← {c : c ∈ C ∧ c.id = chal.chunkIDs[i]}
9: if chunk ̸= ∅ then
10: baseProof← baseProof ⊕H(chal.nonce ∥ chunk)
11: L← L | (1≪ i) ▷ Add 2i to L

12: baseProof← H(baseProof ∥ pub)
13: proof← [ chal.nonce, L, baseProof ]
14: reply ⟨ proof, Σ(proof), pub ⟩ ▷ Send proof to challenger

newly calculated proof.

Typically, a challenge is sent tomultiple peers, and for verification of multiple

proofs, the verifier can leverage caching to amortize the cost of I/O operations to

fetch chunks. That is, the verifier caches each chunk proof so that it can verify

multiple proofs from different storage peers without accessing its local storage

for each of them. When iterating through the proof, each chunk proof is retrieved

from the cache or computed on the fly and stored in the cache for future lookups.

Algorithm 4 Verify Proof
1: Local persistent state at verifier:

2: C ▷ Set of stored chunks

3: challenges ▷Map of chunk identifiers in sent challenges

4: func VerifyProof(proof)

5: myProof← [0]H.length

6: chunkIDs← challenges[proof.nonce] ▷ chunkIDs that may be in proof

7: for i← 0 to |proof.L| do ▷ |proof.L| is ⌊log2 proof.L⌋+ 1

8: if proof.L & 2i ̸= 0 then ▷ Chunk is included in proof

9: chunkProof← GetChunkProof(proof.nonce, chunkIDs[i])

10: if chunkProof = nil then

11: return false ▷ Error: Must store all proven chunks to verify

12: myProof← myProof ⊕ chunkProof

13: myProof← H(myProof ∥ proof.pub)

14: returnmyProof = proof.baseProof
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Algorithm 5 Get Chunk Proof
1: Local persistent state at verifier:

2: C ▷ Set of stored chunks

3: chunkProofs ▷Map of all processed chunk proofs

4: func GetChunkProof(nonce, chunkID)

5: if chunkProofs[nonce ∥ chunkID] = nil then

6: chunk← {c : c ∈ C ∧ c.id = chunkID}
7: if chunk = ∅ then
8: return nil

9: chunkProofs[nonce ∥ chunkID]← H(nonce ∥ chunk)

10: return chunkProofs[nonce ∥ chunkID]

5 Implementation

We have implemented SUP as a package in Swarm Bee version 1.7.0 (released

24 July 2022). The implementation consists of about 700 lines of Go code, plus

about 600 lines of code for benchmarking, testing and metrics collection. We

have made the source code available at: (https://github.com/relab/sup).

5.1 Adapting SUP to Swarm

We presented SUP in Section 4 as a protocol suitable for use in a generalized

decentralized storage network. To implement SUP in Swarm, we had to deviate

slightly from the protocol specification. The following paragraphs explain how

we implemented SUP in Swarm.

1) Our implementation sends one chunk identifier per challenge instead of

multiple identifiers batched together in a single challenge. In Swarm, each chunk

should be stored by its storer peers, as defined in Section 2.1. The challenger

cannot accurately predict which chunks will share the same storer peers, due to

its incomplete view of the network. Furthermore, the probability that any two

chunks will share the same storer peers decreases as the network size increases.

A possible way to implement batching is to split the batches if a forwarder notices

that some chunk identifiers in the batch have different storer peers. Nevertheless,

SUP significantly improves bandwidth use even without this optimization, com-

pared to Data Stewardship. Therefore, we leave it to future work to implement

this optimization.
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2)We introduce a forwarder role to relay challenges fromchallengers to provers

that are not directly connected. A challenger sends a challenge to the directly con-

nected peer closest to the challenge’s chunk identifier. A peer receiving a chal-

lenge becomes a forwarder of that challenge if it is directly connected to a peer in

even closer proximity to the target chunk identifier; otherwise, the peer becomes

the prover. Proofs are returned to the challenger through each forwarder who

helped deliver the challenge.

3) The challenger is unlikely to be directly connected to the prover. A mech-

anism is needed for the challenger to verify that the proof comes from the cor-

rect part of the network, that is, the chunk’s storer peers. As discussed above, the

challenger cannot accurately predict the storer peers for a chunk. However, it can

make an informed guess about the storer peers’ proximity to the chunk. Peer ad-

dresses are uniformly distributed in Swarm. Challengers can expect storer peers

to have at least the sameproximity to the chunk identifier as the challenger’s prox-

imity to its nearest neighbors. Therefore, we require provers to include a block

hash with each chunk proof. This should be the block hash used to generate the

prover’s peer address. The verifier can then recover the public key from the signa-

ture of the proof and combine it with this block hash to recover the peer address of

the prover. The verifier can compute the prover’s proximity to the chunk identi-

fier using the recovered peer address. Based on the verifier’s view of the network,

the verifier can ensure that the prover is at least as close as the chunk’s storer

peers should be.

4) Finally, our implementation omits signatures of challenges. We note that

the request messages in other Swarm protocols, such as push-sync and the re-

trieval protocol, do not include such signatures. We believe that including sig-

natures would compromise sender anonymity, as the prover must identify the

signer to verify a signature. Sender anonymity is a “crucial feature of Swarm” [43].

Therefore, as explained above, we chose to omit signatures on challenges, but they

are still necessary on proofs. We believe an incentive system would encourage

forwarder peers to forward challenges without modification. However, imple-

menting such an incentive system is beyond the scope of this paper.
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5.2 Structure

In our SUP implementation in Swarm Bee, the same peer acting on behalf of the

client fulfills the roles of challenger and verifier. Other peers may assume the

role of forwarder or prover, depending on their proximity to the target chunk in

a challenge.

We expose a private HTTP API endpoint in the Swarm Bee peer as a direct

replacement for Data Stewardship. When invoking the API, the client specifies

the identifier of the chunk, or the root chunk of a file, to be re-uploaded. This

chunk identifier is input into a Reupload function, which performs the roles of

the challenger and verifier.

SUP registers a new protocol with the libp2p runtime. libp2p [25], is the net-

working library used by Swarm Bee. Whenever a peer receives a new connection

using this protocol, the libp2p runtime invokes a handler function specified by

SUP. This handler performs the functions of the forwarder and prover.

5.3 Challenger and Verifier

When SUP is invoked through the API, the challenger computes the list of chunks

to re-upload. The client can specify an entire file by inputting the identifier of the

file’s root chunk. In this case, the challenger traverses down the entireMerkle tree

that composes the file to collect all the chunk identifiers. Then, for each chunk

identifier, the challenger invokes the reuploadChunk function.

The reuploadChunk function creates a challenge, consisting of a nonce and the
chunk identifier, and then sends it to the closest peer and waits for a response. If

a proof is received in response, the challenger verifies it and checks the address

of the prover, as explained in Section 5.1. If no response was received, or the

proof was invalid, reuploadChunk invokes push-sync to re-upload the chunk to

the network.

5.4 Forwarder and Prover

SUP’s libp2p handler function implements the forwarder and prover roles. The

handler’s job is to receive a challenge and then respond with a proof, if possible.

As explained in Section 5.1, it takes on the forwarder role if it is directly connected

to a peer closer to the chunk identifier. Otherwise, it takes on the role of prover
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and generates a storage proof for the chunk if it has the chunk. In either case, the

handler eventually sends the proof back to the peer from whom it received the

challenge.

If a proof could not be obtained, the handler closes the communication stream

instead. This causes a cascade where every previous forwarder in the chain be-

tween the challenger and the handler closes their communication streams also.

Eventually, the challenger detects that its communication stream with its closest

peer was closed and re-uploads the chunk.

6 Evaluation

In this section, we present our evaluation of SUP.Wemeasured and compared the

message sizes of SUP and Data Stewardship to estimate SUP’s theoretical band-

width savings. We ran experiments with both protocols on a network of 1000

Swarm peers to measure the bandwidth use and re-upload duration in several

different scenarios. Our results show that SUP saves up to 94 % bandwidth and

uses up to 82% less time thanData Stewardship. Its bandwidth use and re-upload

duration scale linearly with the number of lost chunks.

6.1 Experimental Setup

To run our experiments, we used a cluster of 30 physicalmachines. Eachmachine

is installed with Ubuntu 18.04.4 LTS and has 32 GB RAM, an Intel Xeon E-2136

3.30 GHz CPU, a 1.5 TB SSD disk, and 1 Gbit/s NIC. To orchestrate the cluster

and manage 1000 Swarm Bee peers, we used Kubernetes [23] and Helm [19].

We distributed the Swarm Bee peers on 28 of the machines, used one to host a

private Ethereum network, and the last one to manage the experiment execution.

In our setup, we used version 1.7.0 [38] of Swarm Bee with ourmodifications and

SUP implementation.

6.2 Evaluation Framework

Tomeasure the practical bandwidth savings of SUP in comparisonwithData Stew-

ardship, we ran the two re-upload protocols on files with different chunk loss
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rates. We developed an evaluation framework that facilitates the uploading of

files to Swarm and the random removal of a percentage of chunks.

Our evaluation framework improves uponpreviouswork evaluating Swarm [28].

The previous work required all peers to be terminated before the evaluation tool

could modify the state of each peer. Our framework, however, can operate di-

rectly on online peers. We accomplish this by adding new features to SwarmBee’s

debug API and integrating our framework with the API.

We used the framework to write a program for running our experiments. The

program is given a set of file addresses to re-upload, a range of chunk-loss per-

centages, and snapshots listing the chunks stored by each peer. For each file, it

applies a modified snapshot with a percentage of the chunk identifiers belonging

to the file removed. Then, it performs a re-upload for the file using one of the

two re-upload protocols. Lastly, it measures the re-upload duration and gathers

metrics from each peer to calculate the bandwidth usage.

The evaluation program uses the Kubernetes port-forwarding API to connect

to peers from outside the Kubernetes cluster. When running experiments us-

ing our framework, we discovered and reported amemory leak in the Kubernetes

port-forwardingAPI client (https://github.com/kubernetes/kubernetes/issues/
112032).

6.3 Message Sizes

We measured the message sizes for the request and response messages in SUP

and push-sync (used by both SUP and Data Stewardship). SUP’s requests (chal-

lenges) are 68 bytes, and its responses (proofs) are 205 bytes. Push-sync’s re-

quests (chunk deliveries) are 4256 bytes, of which 4104 bytes is the chunk itself,

and its responses (receipts) are 135 bytes. In Table 1, we use these message sizes

to estimate the bandwidth usage of a single instance of SUP andData Stewardship

when the chunk is available and unavailable. We do not consider the unexpected

case where an invalid proof is received, in which the transmission of the invalid

proof comes in addition to the challenge, delivery, and receipt.

Based on the estimates in Table 1 we derive a linear expression for bandwidth

usage in SUP: 273+4186l bytes, given chunk loss rate l ∈ [0, 1]. From this expres-

sion, we calculate that SUP should use less bandwidth than Data Stewardship

until 98.38 % chunk loss.
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Table 1: Estimated bandwidth usage for one chunk.

Chunk Availability SUP Data Stewardship SUP Savings

Available 273 B 4391 B 93.78 %
Unavailable 4459 B 4391 B -1.55 %

6.4 Cost-effectiveness of SUP

We demonstrate that SUP is cost-effective by comparing it against Data Stew-

ardship in Swarm Bee. The evaluations were made on our cluster with 1000

Swarm Bee peers. We varied the file sizes from 1 to 100 MB, and the chunk loss

rates from 0 to 100 %. The chunk loss rate is defined as the percentage of chunks

that are missing in the network. Each experiment was repeated 22 times, and the

results are presented in Figure 5. As expected, the results show that the benefit

of SUP deteriorates as the chunk loss rate increases. Our results show that when

the chunk loss rate reaches around 90%, it is more cost-effective to re-upload the

chunk, without checking if it is already stored. A previous study of file availability

in Swarm [29] shows that even with a high replication degree, the storage system

breaks down long before reaching such extreme rates of chunk loss. Our exper-

iment on the data availability in the public Swarm network conducted over four

weeks, presented in Section 2.4, shows that the chunk loss rate peaked at 12 % on

a single day and was less than 10 % on all other days.

As forecasted in Section 6.3, we observe in Figure 5a that bandwidth usage in

SUP scales linearly for files of 1 MB, 5 MB, and 10 MB. As expected, bandwidth

usage is not affected by chunk loss in Data Stewardship for the same file sizes. We

observe the same effect in Figure 5b, which shows the relative bandwidth used by

SUP compared to Data Stewardship for files ranging from 1 to 100MB. The eight

lines representing SUP are more or less completely overlapping and range from

6.3 % bandwidth usage at 0 % chunk loss to 104 % bandwidth usage at 100 %

chunk loss. The bandwidth usage of SUP and Data Stewardship is similar when

around 95 % of the network’s chunks are missing.

Figure 5c shows our results when evaluating the protocol execution duration

of SUP and Data Stewardship for files of 1MB, 5MB, and 10MB. By protocol exe-

cution duration, we mean the total time elapsed since the client initiated the pro-

tocol until allmissing chunks have been re-uploaded. We see that SUPhas a lower

execution duration thanData Stewardship until the chunk loss rate reaches 90%.
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Figure 5: Cost-effectiveness for different chunk-loss rates. (a,c) The red vertical
lines show the standard error.

Interestingly, Data Stewardship is slower when the chunk loss rate is low. We be-

lieve this effect is due to storage peers updating their prioritized list of chunks to

garbage collect when receiving a chunk they already have. When comparing the

relative protocol execution duration, we see in Figure 5d, that SUP only uses 20%

of the time that Data Stewardship uses when the chunk loss rate is low, and that

SUP remains superior for all file sizes until between 85 to 90 % chunk loss rate.

7 RelatedWork

This sectionwill discuss how other proof-of-storage (PoS) algorithms relate to the

one presented in SUP. The earliest relevant works were published in 2007 [21, 4,
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31]. Since that time, there has been considerable work to construct schemes with

additional features and improved properties [30, 15, 11, 44, 45, 3, 22, 5, 52, 18,

51, 48, 46, 47, 6, 8, 9, 13, 50, 33, 41, 32, 10, 1, 2, 12, 16].

Proof-of-storage algorithms provide a way to outsource storage to a remote

server while being able to verify that the peer is correctly storing the data. The

verifications are done via three actors, a challenger, a prover, and a verifier. PoS

algorithms are closely related to proof-of-retrievability, which not merely asserts

that the data is stored but also can be retrieved. The variety of PoS algorithms dif-

fers in performance, as summarized in [49]. The three actorsmust share the com-

putational burden of the PoS algorithm. However, the algorithms divide the com-

putational share differently. Some algorithms also require some pre-processing

and additional metadata at one or more of the actors and thus has some storage

overhead. Lastly, the number of bits required to transmit a challenge or a proof

differs between the algorithms.

The PoS algorithm in SUP stands out in a few ways. First, there is no storage

overhead on any of the actors. Second, the proofs generated by our algorithm ver-

ify the entire chunk, as opposed to a few specific bits or random samples. Third,

our algorithm targets decentralized storage systems where peers are untrusted

and unreliable. Lastly, as we have targeted the re-uploading use case, there are

several features that our algorithm does not require.

The first feature ispublic verifiability, allowing anyone, not just the data owner,

to query the remote server with storage challenges. Such schemes require that

the data owner generates some proving metadata that other peers can use to

generate challenges and verify proofs. Other definitions for public verifiability,

sometimes called public auditability, allows a peer to assert the correctness of a

challenge or proof to a third-party. Typically, such a feature is desired in proto-

cols where peers want to prove the misbehavior of other peers. One example is

FileCoin [24], where storage peers must periodically prove data possession and

integrity. Other peers can verify the storage peer’s proofs, and if found invalid,

they can punish the storage peer by excluding it from the network or taking its

collateral.

The next feature is updatable, which allows metadata to be partially modi-

fied on the storage peers. An updatable scheme is well suited for use cases where

data updates are frequent and computing the metadata needed for proving is ex-

pensive. As previously mentioned, SUP does not need any additional metadata.
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Moreover, the decentralized storage systems that we target are immutable.

Lastly, some schemes can detect the data’s replication degree. Typically, these

schemes work by encoding the data differently for each storage peer. For our

use case, this is not sufficient, as storage peers are untrusted and may collude

in answering storage challenges. In addition, such a design requires additional

metadata, which is undesirable for SUP.

8 Conclusion

This paper presents SUP, a protocol for cost-effective data upkeep in decentral-

ized storage networks. The need for data upkeep is well documented in both

IPFS [36] and Swarm [20]. We monitored the data availability in the public

Swarm network over four weeks. We found that clients can be expected to re-

upload their files 6 days after the previous upload to keep the file available. Cur-

rent protocols for re-upload waste resources, as they require clients to upload

the entire file, even though only a few chunks may have been lost. SUP employs

a novel proof-of-storage algorithm, which is used to determine what is already

stored in the network before unnecessarily uploading existing data. In addition,

SUP does not incur additional storage overhead at the peers.

We have demonstrated a working solution in a large P2P network with 1000

peers running a recent version of Ethereum Swarm. SUP saves up to 94% band-

width and reduces re-uploading time by up to 82 %. This reduction benefits the

client as bandwidth consumption is linked to monetary cost, and it also improves

the entire network resource utilization. The source code is made available to sup-

port the adoption of SUP in other decentralized storage networks.
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Abstract

We have built a bare-metal testbed in order to perform large-scale, reproducible

evaluations of erasure coding algorithms. Our testbed supports at least 1000

Ethereum Swarm peers running on 30 machines. Running experimental

evaluation is time-consuming and challenging. Researchers must consider the

experimental software’s limitations and artifacts. If not controlled, the network

behavior may cause inaccurate measurements. This paper shares the lessons

learned from a bare-metal evaluation of erasure coding algorithms and how to

create a controlled-environment in a cluster consisting of 1000 Ethereum

Swarm peers.
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1 Background and Motivation

We are designing algorithms to protect data in decentralized networks, such as

the Ethereum Swarm peer-to-peer network. The Merkle tree [6] is a widely-used

hash tree to authenticate data. In content-addressed storage, a hash tree can be

used to locate the chunks in the network. That permits to locate a large number

of chunks by knowing only the tree’s root. Due to the tree structure, it is critical

to protect chunks in the path between the root and the data chunks (leaves).

Large-scale experimental evaluation of erasure codes is rarely observed in the

literature. Wewant to implement algorithms and understand their impact on dis-

tributed storage networks. Typically, the metrics of interest are latency, through-

put, network- and storage overhead. Many conditions can affect measurements,

including individual peers’ behavior and the need to run hundreds or thousands

of concurrent instances. To obtain meaningful results, we run our experimental

evaluations in a controlled environment and, at the same time, close to a real-

world scenario. Our bare-metal cluster consists of 30 machines, running up to

1000 Swarm peers [8].

This paper shares insight fromour evaluation environment and lessons learned

by observing the peers’ behavior. Our evaluation techniques can help others im-

prove the evaluation of erasure codes in large networks. We discuss our exper-

imental setup, the main challenges, and the tools developed to solve them. The

source code for the tools will be made available [7].

2 Ethereum Swarm

Swarm is a decentralized storage and communication system. Swarm’s test net-

work is relatively large; a 3-month study found 6,500 unique peers [3]. The basic

unit of storage is a chunk limited to 4K bytes.

Swarm splits a file into chunks for upload and computes a cryptographic hash

of each chunk. This hash is also known as the content address and is necessary

to access the chunk later.

Chunks that belong to the same file are organized in a Merkle tree. During

retrieval, the client initially queries the network with the root’s content address.

It then deciphers the root chunk to retrieve its children’s content address, for

which it again queries the network. This process continues until all leaves are
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Figure 1: Merkle tree illustrated with branching factor 3, resulting in 9 leaves, 3
internal nodes and 1 root.

retrieved and the original file has been rebuilt.

3 Adding Redundancy

The current Swarmdeployment can support traditional erasure coding techniques

on a per-chunk basis. For example, by using Reed-Solomon coding [9], a file con-

sisting of 𝑘 chunks can be encoded using 𝑛 > 𝑘 chunks so that any 𝑘-out-of-𝑛

chunks can be used for retrieval.

Unfortunately, erasure coding the original file would not be sufficient, as this

would only apply to the leaves of the Merkle tree, while the internal nodes would

be vulnerable to data loss.

Our research revolves around finding better ways to add redundancy to the

Merkle tree. To that end, we have used several coding schemes and developed

novel algorithms for use with Merkle trees. We have evaluated our algorithms

experimentally. Next, we describe our setup and how we were able to evaluate

our algorithms in a cluster of 1000 peers.

4 Experimental Setup

Our cluster consists of 30 machines running Ubuntu. We use Helm [2] and Ku-

bernetes [4] to distribute the load and quickly scale up to 1000 Swarm peers. We

avoid overloading the cluster machines to facilitate restarting the experiment if

our algorithms cause a crash or get stuck while debugging.

Helm uses a single configuration file as input to a dozen configuration files

during the cluster’s initialization. In the single configuration file, we specify pa-

rameters such as storage capacity, cluster placement, scaling, run-time parame-

ters of Swarm, and much more. We base our Helm scripts on those provided by
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the Ethereum Swarm organization [1].

Peers running in Kubernetes are ephemeral by default, with limited options

for persistent storage. The before-mentionedHelm scripts only supported persis-

tent storage options for cloud providers, but not for private clusters. To provide

persistent storage to the peers from the local SSD, we had to create a Persistent

Volume (PV). Each peer has a dedicated PV, and each PV is linked to a physical

location on the SSD.We elegantly used themodulus operator in the Helm config-

uration file to create the link so that peer 𝑦’s data was allocated to a PV assigned

to machine 𝑦 mod 29.

5 Dealing with Replication

Each peer in Swarm is assigned a unique identifier in a Kademlia [5] overlay net-

work, and peers are grouped into neighborhoods based on the similarity of their

identifiers. Inside neighborhoods, peers attempt to replicate their data to each

other. Peers with the most similar identifier to a chunk is deemed responsible for

persisting that chunk.

As peers have their own view of the overlay network, some “superpeers” may

exist in multiple neighborhoods. This results in some chunks being more repli-

cated than others, and in our particular setup, this ranged from 9 replicas to 154

replicas. Figure 2 shows how the chunks of a 100 MB file were replicated, and

Figure 3 shows how the chunks were distributed to the peers. To ensure fair com-

parisons between algorithms, we need to replicate chunks exactly once.

20 40 60 80 100 120 140 160
Replication
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Figure 2: Chunk replication with 1000 Swarm peers.

Swarm offers no tools to control each peer’s storage, so the only way to achieve

this was to develop our own tools. Our first tool is named listchunks (1), and its
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Figure 3: Chunks stored by each Swarm peer.

main objective is to list the content address of all the chunks belonging to each

file in our storage network. The listchunks tool achieves this bymerely appending

each new chunk’s content address it traverses from the root chunk when retriev-

ing the file.

The second tool isbakedeletion (2), which is responsible for figuring outwhich

chunks must be deleted from which peer. It generates the deletion list by iter-

atively simulating the removal of chunks from peers while following four basic

rules; (A) All peers must have some chunks, (B) Cardinality of unique chunks

must be equal after deletion, (C) Peers can not get new chunks, (D) Replication

factor for each chunk must be uniform.

To run experiments on different file sizes, we need to run tools (1) and (2) for

each file we want to evaluate, as rule (A) must be respected for each file. Thus, we

need to aggregate all deletion lists, and this is done in the third tool combinestor-

age (3).

Finally, the aggregated deletion list is passed to deletechunks (4), which goes

through the storage network, peer by peer, and deletes the mapped chunks.

6 Dealing with Syncing

To ensure an identical system state across test iterations, we had to control the

chunk distribution, or syncing. The push-syncing and pull-syncing can both be

disabled by the command-line option no-sync when starting the peer.

However, the syncing process that occurs when chunks are delivered through

the Kademlia DHT can not be disabled. Therefore we had to create our own pro-

cedures to create snapshots of the storage states and recover from a snapshot
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between each test iteration.

The snapshot of a peer is created by copying all the chunks stored by the peer

immediately after we have made replication uniform for all chunks, as discussed

in Section 5. Before initiating the copying process, we must first terminate the

peers to avoid data corruption.

To ensure an identical system state between test iterations, we (A) replace the

local storage with the snapshots for each of the peers, (B) ensure that the no-sync

option is turned on and (C) ensure that each peer is well-connected. When the

test iteration concludes, we (D) shut down the peers, and for the next iteration,

we continue from step (A) again.

We achieve step (A) by merely copying the snapshot to the peers using rsync.

To reach sufficient connectivity required for step (C), the peersmust first discover

each other. We monitor this process by periodically polling the inter-process

communication file bzzd.ipc. As soon as the desired connectivity is reached, we

can continue with the experimental evaluation, e.g., file availability is given peer

failures.

7 Conclusion

In this paper, we have shared our experiences with running a 1000 peer clus-

ter of Ethereum Swarm instances. Without these tools to manage the peers, the

configuration would be a nightmare scenario and ensuring they are all running

correctly, even worse. With the assistance of these tools, we can make fair com-

parisons of redundancy algorithms in a P2P storage system.
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