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Abstract: PV power plants utilizing solar energy to generate electricity on a large scale has become a
trend and a new option that has been adopted by many countries; however, in actuality, it is difficult
to anticipate how much electricity PV plants will generate. This analysis of existing photovoltaic
(PV) power plants provides guidelines for more precise designs and performance forecasting of other
upcoming PV technologies. In the literature, some authors have put their efforts into reviewing
studies on PV power systems; however, those reviews are too focused on specific aspects of the topic.
This study will review, from a broader perspective, recent investigations on PV power systems in
the literature that were published between 1990 and 2022. The present study is divided into three
main parts. Firstly, a performance assessment review of PV power plants is presented by taking
different performance parameters into consideration, which were developed by the “International
Electrotechnical Commission (IEC 61724-1)”. These parameters include reference yield, final yield,
performance ratio, capacity utilization factor, and system efficiency. Secondly, different identifying
factors that were investigated in previous studies, and which affect PV performance, were considered.
These factors include solar irradiance, PV technology type, ambient temperature, cell temperature, tilt
angle, dust accumulation, and shading effect. Thirdly, different methods were adopted and suggested
to counter the effects of these influencing factors to enhance the performance efficiency of the PV
power system. A hybrid cooling and cleaning system can use active techniques to boost efficiency
during high solar irradiances and ambient temperatures while depending on passive techniques for
everyday operations. This comprehensive and critical review identifies the challenges and proposed
solutions when using photovoltaic technologies and it will be helpful for researchers, designers, and
investors dealing with PV power systems.

Keywords: solar PV; performance ratio; reference yield; capacity utilization factor; final yield; Grid
Tied Solar System; tilt angle; performance comparison

1. Introduction

The global power sector has been facing difficulties in terms of fulfilling the energy de-
mand due to the increasing population and technology growth [1]. Moreover, conventional
primary sources of energy, such as oil, coal, and natural gas, have a severe negative impact
on the environment [2]; therefore, the global community is looking for, and examining,
sustainable and clean energy sources that can meet energy demands. Renewable energy
sources have gained popularity over the past 20 years, as they are abundant and environ-
mentally beneficial sources of electricity [3]. Thus far, solar energy is the most promising
renewable source of energy, and worldwide, its popularity has vigorously grown. In solar
photovoltaic power generation systems, sunlight is converted into electricity [4]. Solar
radiation that hits the PV panel is converted into photon energy, which is subsequently
used to provide useable electrical power for appliances [5]. The main components of a
PV system include solar panels, an inverter, AC and DC cables, a backup power source, a
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supply grid, and a monitoring system. The solar panels capture solar radiation and convert
it into DC electrical power [6]. The inverter converts DC power into AC electrical power
and supplies it to the load. For instances where there is an absence of solar energy, or no
backup power source, excess solar energy is fed into the grid and used to supply power.
The monitoring system shows the real time status of the PV system [7]. The basic schematic
diagram of a PV system is shown in Figure 1.
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Figure 1. PV plant schematic diagram [8].

The actual conversion efficiency of a PV power system is not same as under standard
test conditions due to external dynamic weather conditions [6]. Moreover, solar irradiance,
tilt angle, ambient temperature, dust, and shading effects, among other factors, also have a
negative impact upon the performance of PV power system [9]. Researchers have worked
hard to identify several strategies for reducing the negative effects of these factors. Indeed,
monitoring the performance of already installed PV power plants from a wider perspective
is essential for the accurate projection of power generation from photovoltaic systems. The
installed global capacity of PV plants at the end of 2021 is shown in Figure 2.

In this paper, a comparative performance analysis of already installed PV power plants,
in different geographical locations, is conducted in accordance with IEC standards [11].
Furthermore, various parameters that have been found to have a detrimental impact on the
performance of PV power systems in previous studies are reviewed, and various strategies
are investigated to improve the efficiency of these systems.
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Figure 2. Installed global capacity of PV plants [10].

2. PV Power Plant Characteristic Parameters

The International Energy Agency (IEA) has developed several parameters to examine
the performance of photovoltaic power plants [12]. These parameters define the overall
performance of the plant with regard to energy generation, solar resource, and the effect
of system losses, as shown in Table 1. The parameters include the performance ratio (PR),
reference yield (Yr), final yield (Yf), capacity utilization factor (CUF), PV module efficiency,
inverter efficiency, and system efficiency.

Table 1. PV power performance parameters.

Parameter Definition Formula Units Symbol References

Reference yield

The entire in-plane irradiation,
Ht, divided by the PV’s
reference irradiation, G, gives
the reference yield, Yr. The
solar irradiance resource for
photovoltaic plants is defined
by the Yr. It is determined by
the location, orientation of the
photovoltaic array, and
seasonal weather variations.

Yr = Ht/G kWh/kW per day Yr [13]

Array yield

Array Yield is the energy
output of a PV array per kW
of installed capacity. It is the
difference between the rated
PV power and the amount of
energy a PV plant generates in
a day or month.

Ya = Epv DC/P rated pv kWh/kW per day Ya [13]
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Table 1. Cont.

Parameter Definition Formula Units Symbol References

Final yield

The final yield, Yf, is
calculated by dividing the
total output of AC energy,
during a defined time interval,
by the installed DC power of
the solar array’s nameplate. It
depicts the time required for
the Photovoltaic array to
operate at its rated power and
produce the same quantity
of energy.

Y f = Epv AC/Pmax G kWh/kW per day Yf [12]

Performance ratio

Performance ratio (PR) is the
PV plant’s final yield divided
by the reference yield. The PR
is based on the plant’s overall
losses during the conversion
process, which are caused by
various components such as
cables, solar panels, and
the inverter.

PR = Y f /Yr % PR [14]

Capacity
utilization factor

For a given time period, the
capacity utilization factor
(CUF) is defined as the actual
output of the photovoltaic
power plant divided by the
theoretical output of the PV
plant for the same period
of time.

CUF = Eac/(Po × 8760) % CUF [15]

PV module
efficiency

The module efficiency
measures how much energy
the solar module converts in
contrast to the amount of
radiation available.

ηPV = Edc
Ht × St % ηPV [16]

Inverter efficiency

The inverter efficiency is
calculated by dividing the AC
power generated by the
photovoltaic power plant by
the DC power generated by
the inverter.

η, Inv = Pac/Pdc % η, Inv [16]

System efficiency

The product of PV module
efficiency and inverter
efficiency gives the
instantaneous PV
system efficiency.

ηsys = ηPV × ηinv % ηsys [10]

Array capture loss

The array capture loss is the
difference between the array
yield and the reference yield.
A loss occurs when the actual
irradiance differs from the
reference or
theoretical irradiance.

La = Yr − Ya kWh/kW per day La [17]

Thermal capture
loss

The thermal energy losses that
occur when the module
temperature increases over
25 degrees Celsius are known
as thermal capture losses (Lct).
They are calculated using the
difference between the
reference and adjusted
reference yields.

Lct = Yr − Ycr kWh/kW per day Lct [18]
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3. Comparative Performance Studies of Different PV Plants

In Table 2, a performance analysis of different PV plants is presented, which took the
performance parameters, developed in accordance with IEC standards, into consideration.
All PV plants in the table are installed in different geographical locations, and they have
different monitoring times and durations [19]. Out of the various performance parameters,
performance ratio is the key factor for measuring the performance of the PV power system.
Performance ratios indicate how effectively the PV power plant is working [20]. They
represent the energy losses that occur at different stages, including array capture loss,
inverter loss, wiring loss, and mismatch loss [21]. The system’s components, including
inverter efficiency, the cables’ characteristics, and its fixed/tracking PV mechanism, are also
important factors which play significant roles in the performance of the PV power system.
Depending on the rated capacity of PV plants, Table 2 is presented in descending order,
from 50 MW to 1.72 kW systems. As per the results of the literature review, only 18% of PV
plants showed a performance ratio less than 70%, which is quite satisfactory. In Figure 3,
the graph shows the performance ratio per year. Plant observation years are displayed
on the horizontal axis, whereas the average performance ratio of the plants observed in
the same year is depicted on the vertical axis. Observations show that the performance
ratio of the plants is increasing with each passing year [22]. This is because, as technology
advances, more precise and effective systems are developed, thus resulting in a higher
performance ratio.
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Table 2. Performance comparison of different PV plants installed worldwide.

Rref Location Latitude and
Longitude

Rated
Capacity

PV
Technology Tilt Angle

Energy
Generation
kWh/Year

Array
Yield

Reference
Yield

Final
Yield PR% CF

% ηsyst
Monitoring Year

/Duration

[23] India 15.68◦ N
and 78.28◦ E 50 MW Poly-crystalline 10◦ 107,326,400 77.9% 24 2019/1 year

[24] Algeria 32.9◦ N
and 0.6◦ E 23.92 MW Poly-crystalline 15◦ 43,261,400 5.46 4.95 82.0 20.64 2017–2020/3 years

[25] Malaysia 3.77◦ N
and 103.2◦ E 20 MW Mono-crystalline 26,304,000 4.19 76.8 15.22 11.54 2020/1 year

[26] Mauritania 18.15◦ N
and 15.98◦ E 15 MW a-si, µa-si 10◦ 4.39 4.27 67.9 19.59 2015/1 year

[27] India 10.15◦ N
and 76.38◦ E 12 MW Poly-crystalline 10◦ 17,611,330 5.5 4.07 86.5 20.12 2016/1 year

[28] India 18.75◦ N
and 79.46◦ E 10 MW Poly-crystalline 33.75◦ , 3.75◦ ,

18.75◦Seasonal Tilt 15,798,192 4.44 3.33 85 17.68 10.12 2015/1 year

[29] Germany 51.16◦ N
and 10.45◦E 5 MW 680 1.9 66.5 1994/4 year

[8] Pakistan 2.5 MW Mono perc 4,015,200 4.63 4.49 80.5 19.03 13.8
[30] Ghana 10.88◦ N

and 1.10◦W 2.5 MW Poly-crystalline 12.5◦ 3,547,800 70.6 16.2 2013–2016/3 years

[2] Pakistan 32.36◦ N
and 74.42◦ E 1 MW Poly-crystalline 30◦ 1,415,664 3.9 76.5 16.17 12.53 2020/1 year

[31] Morocco 35.58◦ N
and 5.38◦ E 1 MW Poly-crystalline 32◦ 1,095,672 3.0 77.3 2020/1 year

[32] Italy 40.19◦ N
and 18.5◦ E 960 kW Mono-crystalline 15◦ , 3◦ 1,321,924 3.9 4.5 3.8 84.4 15.6 14.9 2012–2015/43 months

[33] Malawi 830 kW HIT technology 30◦ 79.5 17.7 14.6 2013–2017/4 years
[34] Italy (PV2) 40.32◦ N

and 18.09◦ E 606 kW Mono-crystalline 15◦ 4 2012/8 months

[35] Thailand 19.30◦ N
and 97.96◦ E 500 kW m-silicon 15◦ 1695.9 2.9 70 9–12 2004/8 months

[11] Spain 370 kW Poly-crystalline 30◦ 5.46 4.42 81 18.45 10–12 2013–2016/3 years
[34] Italy (PV1) 40.32◦ N

and 18.09◦ E 353.3 kW Mono-crystalline 3 3.5–7.9 2012/8 months

[36] Brazil 22.81◦ S
and 47.06◦ W 336.96 kW Poly-crystalline 140,630 83.5 2019/4 months

[37] Lesotho 29.3◦ N
and 27.48◦ E 281 kW Poly-crystalline 30◦ 4.75 6.2 4.17 67 17.20 9.58 2014/8 months

[38] Dubai 25.11◦ N
and 55.41◦ E 200 kW Mono-crystalline 25◦ 352,600 4.82 81.7 2019/1 year

[39] India 31.16◦ N
and 76.02◦ E 190 kW Poly-crystalline 25◦ 812.76 2.23 74 8.3 2011/1 year

[40] Greece 35.34◦ N
and 24.80◦ E 171.36 kW m-silicon 30◦ 1336.4 1.96 67.36 15.26 2007/1 year

[41] Singapore 1.4◦ N
and 104◦ E 142.5 kW Poly- crystalline 3.8◦ ,6.84◦ 101,895 3.86 3.12 81 11.2 2011/18 months

[42] Portugal 41.2◦ N
and 6.48◦ E 124.2 kW a-Si 34◦ 1261 78 2013/3 years

[43] Vietnam 21.01◦ N
and 105.48◦ E 56.7 kW Mono-crystalline 18◦ 68,625 4.0 3.32 82.4 14.45 2019/1 year
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Table 2. Cont.

Rref Location Latitude and
Longitude

Rated
Capacity

PV
Technology Tilt Angle

Energy
Generation
kWh/Year

Array
Yield

Reference
Yield

Final
Yield PR% CF

% ηsyst
Monitoring Year

/Duration

[44] Spain 37.73◦ N
and 3.8◦ W 40 kW Poly-crystalline 1.83 3.26 1.60 49 4.96 2003/1 year

[45] Algeria 27.88◦ N
and 0.27◦ E 28 kW Mono-crystalline 27◦ 45,119 4.5 6.2 4.4 71.89 18.58 10.99 2017–2018/1 year

[46] Oman 23.58◦ N
and 58.38◦ E 20.4 kW 23,595 3.78 5.59 3.64 67 15 10.3 2014–2018/4 years

[47] New Zealand 174.9◦ N
and 41.16◦S 10 kW m-si 41 1616 3.87 2.99 78 11.96 2014/1 year

[48] Hungary 47.35◦ N
and 19.21◦ E 9.6 kW Poly-crystalline,a-si 30◦ 8839 3.07 77.22 9.8 2016/1 year

[49] China 24.78◦ N
and 102.81◦ E 9 kW Multi-junction Dual axis solar

tracker used 3.1 79.8 18.9 2015/1 year

[50] India 23.17◦ N
and 75.78◦ E 6.4 kW Mono-crystalline 1528.125 85.3 2018/1 year

[10] Morocco 35.75◦ N
and 5.83◦ E 5 kW Poly-crystalline 32◦ 6411.300 4.45 79 14.83 11.99 2015/1 year

[51] China 31.20◦ N
and 121.40◦ E 3 kW Poly-crystalline 25◦ 1063.04 3.01 3.62 2.86 80.6 10.73 2009/3 years

[52] South Africa 34.01◦ N
and 25.67◦ E 3.2 kW Poly-crystalline 34◦ 5757 5.8 4.9 84.3 20.41 2013/1 year

[53] Korea 35.90◦ N
and 127.76◦ E 3 kW Mono-crystalline 18◦ 1007 63.3 11.5 7.9 2003/1 year

[54] Morocco 31.64◦ N
and 8.07◦W 2.4 kW Mono, poly, a-si 30◦ 3696 4.96 83.8 2016/4 years

[55] Morocco 33.48◦ N
and 7.54◦ W 2.04 kW Mono-crystalline 30◦ 3370.89 76.7 18.86 11.7 2015–2016/2 years

[56] Morocco 2.4 kW Mono, poly, a-si 32◦ 3245.83 4.34 76.7 18.16 11.67 2018/4 years
[57] Turkey 40.50◦ N

and 31.9◦ E 2.35 kW Mono, Poly, a-si 30◦ 3364.46 91 13.26 2014/1 year

[58] Serbia 43.32◦ N
and 21.89◦ E 2 kW Mono-crystalline 32◦ 1161.704 3.81 93.6 12.88 10.07 2013/1 year

[59] India 20.29◦ N
and 85.82◦ E 2 kW Poly- crystalline 20◦ 2962 70 2019/1 year

[60] Spain 36.71◦ N
and 4.42◦ W 2 kW 9◦ 1424 64.5 7.11 1197/1 year

[12] Ireland 53.4◦ N
and 6.3◦ E 1.72 kW Mono-crystalline 53◦ 885.1 2.64 2.85 2.4 81.5 10.1 12.6 2009/1 year
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4. Different Factors Affecting PV Power System Performance

A photovoltaic system’s output power and lifespan are determined by a number of
factors. The type of PV technology used, the amount of solar radiation received, ambience
of the temperature, cell temperature, shading effect, dust accumulation, module orientation,
weather conditions, and geographical location, are some of the major factors [61]. Figure 4
shows the different factors which effect PV efficiency. This paper examines these important
factors which affect PV system performance.
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4.1. PV Technology

Several PV technologies are available on the market, and they are frequently used
to generate electricity. These include crystalline silicon (i.e., monocrystalline and poly-
crystalline) and other thin film technologies, including amorphous silicon, CdTe, CIS, and
CIGS. Each technology is suitable for different geographical locations [62]. Figure 5 and
Table 3 show the latest technologies that have a high performance efficiency, as well as
their specifications. In the literature, a number of studies compare the performance of PV
technologies [48]. In Morocco, authors have compared three different types of PV technol-
ogy (i.e., (m-si, p-si,a-si)), and they concluded that monocrystalline silicon technologies
(m-si) have the best performance in terms of energy production and performance ratio
(77%); however, they also note that polycrystalline technology is the most cost effective
technology compared with others [54].

In Brazil, in different climatic conditions, six different technologies (m-si,p-si,CdTe,
CIGS, A-si, µc-si) were compared. The thin film technologies (i.e., a-si) have the best
PR, reaching up to 90%, although they have the lowest temperature coefficient, whereas
the crystalline technologies (m-si, p-si) have the highest temperature coefficient [63]. In
Abu Dhabi, four rooftop PV systems, which used monocrystalline and polycrystalline
technologies, were evaluated. The analysis of the study showed that monocrystalline
technologies perform better than polycrystalline technologies [64]. Figures 6–8 show
performance comparison graphs of different PV technologies. Figures 7 and 8 display
performance comparison graphs for various PV technologies. The I-V and P-V parameters
for monocrystalline silicon and polycrystalline silicon PV technologies are represented
graphically in Figure 7 and the impacts of the climate on various PV technologies are shown
in Figure 8; therefore, these two figures provide a graphical representation of the efficiency
traits of various PV technologies. Table 4 includes a summary of the literature that concerns
the performances of different PV technologies. We conclude that thin film technology
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is more suitable in higher temperature zones than crystalline technology, which is less
suitable in these regions, as it is more efficient, and it shows better results. In regions which
cultivate moderate or low temperatures, crystalline technologies operate more effectively.
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Table 3. PV technologies which are highly efficient [66].

Type of PV Technology Performance Efficiency
(%) Specifications

Poly perc 16–17 Comprises multiple silicon crystal cells. On the rear of a cell, a
passivation layer is added to increase efficiency.

Mono perc 17–19 Consists of a single crystal silicon cell along with Passivated
Emitter and Rear Cell technology.

Shingled mono cells 18–20 Module cells are cut into five or six strips and connected with an
electrically conductive adhesive for conduction.

Half cut mono perc 18–20
A typical module consists of 60 or 72 full cells. Each cell is cut in
half and converted into 120 or 144 half cells. It reduces resistance
and enhances efficiency by using perc technology.

Half-cut mono perc MBB 19–20.5
MBB denotes that a solar cell has 12 or 16 busbars rather than 4, 5,
or 6. This indicates that the modules have a higher power output
and are more reliable.

Shingled mono perc 19–20.5
Along with perc technology, conduction is achieved by cutting
module cells into five or six strips and connecting them with
electrically conductive adhesive.

Half-cut MBB heterojunction 20–22
Along with a multi-busbar, a HJT is a high-power hybrid cell that
combines the finest qualities of crystalline silicon with those of an
amorphous silicon thin film to improve efficiency.

N-type IBC 20–23

A thin p-type silicon (doped with boron) layer is layered over a
much thicker n-type silicon layer in an N-type solar cell. IBC solar
cells, or “interdigitated back contact” solar cells, provide greater
efficiency, energy yields, and reliability. The cell is held together by
a thick layer of tin-plated copper on the back.
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Table 4. Summary of the literature studied, and the effect of different PV technologies.

Location PV Technology Performance Ratio (%) Capacity Utilization
Factor (%) References

KNUST, Ghana

Mono-Si
Poly-Si

a-Si
HIT

67.9
76.3
75.8
74.8

11.47
12.9
12.8
12.6

[70]

Meknes, Morocco Poly-Si
Mono-Si

81.7
79.6 [68]

NMMU South Africa Poly-Si 84.3 [52]

UENR Nsoatre Campus, Ghana
Mono-Si
Poly-Si
CdTe

75.5
75.7
77.4

15.37
15.41
15.75

[15]

Malaysia
Mono-Si

HIT
a-Si

77.85
81.25
83.37

[71]

4.2. Solar Irradiance

Solar irradiance from the sun has a direct relation to the energy generation of a PV
system. The more solar radiation absorbed by the PV modules, the more energy that is
produced from the PV system [72]. Different studies have shown that the solar irradiance
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and power output have a direct relationship [73]. To generate more power, the PV modules
should be directly facing the sun. According to some studies, each degree of deviation
from the south results in a 0.08 percent loss, specifically in the azimuth direction [74]. The
electrical power output from the PV panel increases as the solar irradiation increases [75].
The module current and solar irradiance have a nearly linear relationship, as the module
current increases as the solar irradiance increases [75]. In Cyprus, a study was carried
out on 14 grid-connected PV systems, which took different levels of solar irradiance into
consideration. We conclude that solar irradiance has a significant and direct impact on the
power quality behavior of the PV system [76].

A study analyzes the effect of different outdoor parameters, including solar irradiance,
on power output. The regression analysis showed that the solar irradiance has a coefficient
of determination of 96.5%, thus indicating that it is the most dominant factor [77]. Figure 9
shows different levels of irradiation according to geographical location. Figure 10 shows
the effect of irradiation on the performance of the PV system. As a function of yearly
irradiance on the module plane, the performance ratios for monocrystalline cells were
calculated in the years 1994, 1997, and 2010, as shown in Figure 11. When compared with
the yearly irradiance, monocrystalline cells have the lowest performance ratio in 1994, and
the highest in 2010. As a result, according to the literature, the influence of solar irradiance
on PV panel performance cannot be characterized by a specific percentage increase because
the relationship between the module current and irradiance value is approximately linear.
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4.3. Ambient and Cell Temperature

Due to the incomplete utilization of solar irradiance by the PV power system, the
remaining amount of solar irradiance is converted into heat, which causes the PV modules
to overheat. Ambient temperature is one environmental factor that negatively affects the
PV system’s ability to produce power [81]. As the ambient temperature increases, the
module’s surface temperature also increases. Consequently, the cell temperature of the
PV module also increases, which causes the operating voltage of the cell to decrease, and
the power output of PV system to reduce [82]. The literature examining the impact of
temperature on the efficiency of PV systems is summarized in Table 5. The table depicts
the correlation between the efficiency of solar cells with respect to different temperatures.
According to studies, PV cells lose 0.5% of their efficiency and have a 2.2 mV voltage loss
for every 1 ◦C increase in operational temperature [83]. For monocrystalline PV panels,
the typical power temperature coefficients range from 0.38 percent to 0.45 percent/◦C,
meaning that 0.38 percent to 0.45 percent of power is lost for every 1 ◦C increase in
temperature [84]. In Figures 12 and 13, different graphs are shown which represent the
effect of ambient temperatures and cell temperature on the performance of a PV system.
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As a result, we conclude that there is no specific range of power losses that is due to PV
module temperature increases.
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Table 5. Summary of the literature that concerns the effect of temperature on PV performance.

Correlation Comments References

η = ηT_ref [1 − βref (Tc − Tref) + γlog10 I(t)]
η = instantaneous efficiency,

βref = 0.0044 ◦C −1 [87]

η = ηref [1 − a1(Tc − Tref) + a2 ln(4I(t)/1000)] For Si a1 = 0.005
a2 = 0.052, ignoring term ‘ln’ slightly overestimates [88]
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Table 5. Cont.

Correlation Comments References

η(I(t),Tc) = η((I(t),25◦C)[1 + C3(Tc − 25)] C3 = loss per ◦C
–0.5% [89]

η = ηT_ref [1 − βref (Ta − Tref) − (βref τα I(t)/UL) ] Low predictions 5%, βref = 0.004 ◦C, ηT_ref = 0.15, Tref = 0 ◦C [90]

ηi = ηT_ref [1 − βref (Tc,i − Tref) + γlog10 Ii)]
ηi = hourly efficiency, Ii = hourly incident insoltaion, βref = 0.0045 ◦C −1,

γ = 0.12
[91]

ηpv = ηref − µ(Tc − Tref) µ = coefficient of cell temp. overall [92]
ηi = ηT_ref [1 − βref (Tc,i − Tref)] Tref = 25 ◦C, ηT_ref = 0.15, βref = 0.0041 ◦C−1 [93]

η = ηT_ref [1 − MPTC(TNOCT − Tc)]
MPTC = Max. power temp. coefficient

MPCT = loss per ◦C
–0.5%

[94]

η = η◦ − c(T− T◦ ) T = mean solar cell temp., η◦ = efficiency at T◦, C = Temp.
coefficient [95]

ηi = η25 + b(Tc − 25) b, = b(I(t)), Tin ◦C [96]
ηnom = − 0.05Tsurface + 13.75
ηmeasured = − 0.053Tback + 12.62 Tsurfac = 1.06 Tback + 22.6; nominal vs. measured [97]

4.4. Tilt Angle Orientation

In order to absorb the maximum amount of solar radiation, the PV modules should be
installed in such a way that solar radiation falls vertically on the module’s surface (i.e., at
90◦ to the module surface) [2]. Generally, the latitudinal angle of any region is considered
to be the set criteria at which the modules should be installed [98]. The deviation of the tilt
angle from the latitudinal angle is +15◦ and −15◦ in winter and summer, respectively [99].
In one study, the optimum tilt and azimuth angles, as well as the energy yield, were
examined using the ground measurement data for solar irradiance and air temperature;
these data were accurate to ±2% for 18 cities in Saudi Arabia [100]. The more deviations
there are from the latitudinal angle, the less absorption there is of solar radiation, which
reduces the ability of the PV module to generate power. Table 6 shows a summary of the
literature that concerns the effect of the tilt angle on the performance of the PV system.
Figure 14 shows the experimental setups that are installed at different tilt angles. One
study found the optimal tilt angle by optimizing solar radiation using MATLAB [101]. The
results demonstrate that 99.5 percent of solar radiation is captured when the tilt angles
are adjusted six times annually. Figures 15–18 show different graphs that demonstrate the
effect of tilt angle orientations on the performance of the PV system. We conclude that the
PV panel’s angle of inclination is location dependent, and consequently, site-specific.
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Figure 18. Electrical parameters of a PV system as a function of tilt angle at 750 W/m2.
(a) Open-circuit voltage (Voc); (b) short-circuit current (Isc); (c) maximum power point current (Impp);
(d) maximum power point voltage (Vmpp); and (e) fill factor (FF) [105].

Table 6. Summary of the literature that concerns the effect of the tilt angle.

Location Fixed Angle Tilt Angle Generated Power at
Fixed Angle

Generated
Power at Tilt

Angle
Difference

Increased (%) References

Pakistan 30◦ 14◦ summer and 46◦
winter 1416 MW 1491 MW 5.3% [2]

Serbia 40.6◦ 21◦ summer and 65◦
winter 1356 MW 1450 MW 6.9% [106]

India 30◦ 10◦ min. 80◦ max. with
dual axis tracking system 159.69 MW 211.34 MW 32.34% [107]

Turkey 28◦ Dual axis tracking with
varying tilt angles 121.73 kW 159.2 kW 30.78% [108]

4.5. Dust Accumulation

Dust is a thin layer which partially or fully blocks the sun’s rays falling on the surface
of the PV module, which thus reduces the performance of the module [109]. In Figure 19,
several factors that cause dust deposition on the PV module, and the correlation between
these factors, are shown. The dust accumulation on photovoltaic modules depends on
three dependent variables, including environment, properties of the dust, and manner in
which the PV module was installed. Figure 20 shows the experimental setups of cleaned
and uncleaned PV panels. The typical annual dust reduction factor is 93%; therefore, in this
context, if we use a 100 watt PV panel for testing purposes, it will generate approximately
93 watts due to dust accumulation [110]. A study found that PV voltage dropped by 80%
in a 73 g/m2 area deposited with cement dust [111]. Figures 21 and 22 show performance
graphs of PV modules before and after dust deposition. Table 7 includes a summary
of the literature that concerns the effect of dust accumulation on the performance of PV
systems. As a result, we conclude that dust deposition is climate-specific, and its quantity
is dependent on the location, dust type, and a variety of other parameters.
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Table 7. Summary of the literature that concerns the impact of dust on PV systems.

References Location Dust Composition Methodology Results and Tested
Parameters

[116] Mexico Natural atmospheric dust
Dust impact is tested on mono,
poly, and amorphous silicon

PV panels.

Outdoor testing is conducted
naturally. Dust properties and

maximum power are
examined; monthly efficiency

falls to 13%.

[117] Malaysia Talcum, mud, and
polyethylene

Dust impact on PV glass is
tested artificially, indoors,

during a one month period.

Dust weight, transmittance
reduction, and dust density
transmittance are examined.

[118] Italy Sandy soil

A regression model is
developed for natural outdoor

testing and performance is
examined before and

after cleaning.

Change in PV power
is investigated.

[119] Oman Six outdoor dust samples

Physical and electrical
parameters are taken into
account when conducting

indoor investigations of dust
samples from six
different places.

The examination of several
parameters includes size,

weight, loss, voltage, power,
and efficiency.

[120] Japan

Size distribution of the
dust particle is

characterized using the
Microtrac S3500

Data from a database is
utilized for an energy

consumption assessment.

Analysis of PV system energy
consumption is performed.

[121] United States Various solar technologies
exposed to dust and soiling

Outdoor investigations of
physical, electrical, thermal,
and chemical characteristics.

I-V characteristics, current,
voltage, capacity factor, and
energy yield are examined.

[122] UAE Dust samples of
different sizes

Investigation and modelling of
different dust particles from

distinct UAE locations.

Power, voltage, PV curve,
efficiency, and losses

are examined.

4.6. Shading

The effect of shadows on PV panels can reduce PV power generation [80]. Shade
may be created by various structures, such as trees and poles that are built close to the
PV plant site. Figure 23 illustrates various PV systems with various shadings on the PV
modules. Furthermore, bird sitting, bird droppings, and leaves may fall on the panels,
thus causing the shading effect to occur. As the cells are coupled in a serial fashion, the
current flow in the shaded cells stops, which causes the current flow in the unshaded cells
to halt as well. To reduce the power losses caused by shadings, various interconnection
schemes have been proposed in the literature [123]. One study showed that even though
only 2% of the panel’s area was shaded, the performance of panel was reduced by 70% [124].
Another study was conducted which showed that the performance of the array can be
reduced up to 80% if 5–10% area of the array is shaded [99]. A study was conducted,
wherein a fixed percentage of different kinds of cells were shaded, in accordance with
their characteristics, and results showed that different power losses occurred, varying from
59% to 73% [125]. Figures 24 and 25 include graphs of different shading levels and their
effect on the performance of a PV system. Two maximum power point (MPPs) are seen at
the P-V characteristics curve depicted in Figure 25a according to the shadow movement.
The result indicates that the local maximum power point (LMPP) is separated from the
global maximum power point (GMPP) and that the effect of shading is increasing as seen
in the P-V curves. It is a real GMPP for the shadow situation and has a maximum power
of 3419 W in total cross tied (TCT), hybrid series parallel total cross tied (SP-TCT), and
novel structure (NS) configurations. Other two hybrid PV array configurations, such as
bridge link total cross tied (BL-TCT) and bridge link honey-comb (BL-HC), have power
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outputs of 3372 W and 3379 W, respectively. The shadow movements are rising diagonally
in the instance of the shadow movement depicted in Figure 25b, and several LMPPs are
seen. Figure 25c illustrates the many LMPPs that are detected on P-V curves as the effect
of shadow movement increases. In Figure 25d, the power of the BL-TCT combination
is 2199 W, which is a true GMPP, and the power of the BL-HC combination is 2191 W,
which is extremely close to a true GMPP. LMPPs on P-V curves can result in incorrect
tracking to GMPP as shown in Figure 25d. As a result, we conclude that quantifying
losses due to shade is dependent on the percentage of shaded cells, cell material, and panel
connection. Furthermore, the nature of the shadows on the panel is influenced by the
height of neighboring buildings, the presence of trees, and cross-shading from other panels.
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5. Different Techniques to Mitigate Performance Degradation

The collection of dust on the surface of PV panels has a significant impact on their
electrical power production. Characteristics of the accumulated dust (type, size, shape,
meteorology, etc.) are determined by its geographical source, and the effect of the dust not
only reduces the amount of solar radiation reaching the PV surface, but it also adheres to
these surfaces and scratches them, subsequently causing corrosion [125]. Moreover, cell
temperature also increases due to the heat produced from unabsorbed solar radiation, and
the performance efficiency decreases due to the increase in cell temperature [126]. Both
factors reduce PV performance efficiency, as well as the life span of PV panels. To counter
these issues, proper cleaning of PV panels, and cooling to reduce the cell temperature of PV
panels, within reason, is necessary.

5.1. Cleaning Methods

The awareness of PV panel cleaning has resulted in the development of various
dust accumulation mitigation techniques [127]. Figure 26 shows graphs of PV modules’
performance before and after cleaning. The cleaning of PV panels is mainly divided into
two categories; the first is natural cleaning (through wind, rain, snow etc.), and the second
is artificial cleaning (which is further sub-divided into manual cleaning and self-cleaning).
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With regard to manual cleaning, human labor is required to clean the panels. Self-cleaning
is further sub-categorized into active and passive cleaning. Figure 27 depicts a flowchart
that shows the different types of PV cleaning methods. This section will review all the
cleaning techniques used to mitigate the negative effect of dust accumulation.
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5.1.1. Natural Cleaning Methods

In areas with the least air pollution, such as Europe and the United States, where dust
deposition is very low, natural cleaning via wind, rain, and snow can restore the original
performance of a PV system. Figure 28 shows rain cleaning PV panels. In areas with a high
dust deposition rate, such as the Middle East and North Africa, which have large swathes
of desert, there is a need for artificial cleaning methods to restore the original performance
of a PV system. An experimental study was conducted in two European countries (Belgium
and Switzerland), and it was found that rainfall recovered the performance of PV power
plants; there was no need for artificial cleaning methods [128,129]. Cleaning via rainfall
is an unreliable method, especially in areas with a high rate of dust deposition [130]. One
study showed that the dust particles on PV modules converted into mud due to the low
amount of rainfall [130]; therefore, to clean these PV modules, artificial methods are needed.
Another study showed that wind can remove larger dust particles, but due to adhesive
force, it cannot remove smaller dust particles (less than 50 µm) [131].
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5.1.2. Manual Cleaning Method

This approach requires skilled labor, water, and brushes or soft cloth of good qual-
ity. Low quality brushes can scratch the PV modules, which can reduce their efficiency.
Figure 29 shows people manually cleaning PV panels. A study showed that good quality
brushes must be used for cleaning PV module surfaces, otherwise, the performance and
lifespan of the PV modules will be compromised [130]. This method is only suitable for PV
plants with a low capacity [133]. For large-scale PV plants, pressured jets should be used,
along with a brushing technique, so that efficiency can be recovered [134]. A study was
conducted on water cleaning with brushing, and water cleaning without brushing, on PV
modules. It was revealed that the power output increases by 6.9% when the modules were
cleaned with water and brushing, and by only 1.1% when the modules were cleaned with
water but without brushing [118]. This cleaning approach will be a challenge for workers
due to the sensitivity of the modules, and the height at which PV modules are installed.
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5.1.3. Mechanical Cleaning Method

In a mechanical automated cleaning system, different controllers and sensors are used,
along with brushes and a blowing system. Figures 30 and 31 show schematic diagrams of
mechanical cleaning setups for cleaning PV systems. This system is mainly suitable in areas
where cleaning with water is impossible. Due to the complex mechanical design and the
involvement of controllers, this is technique is inefficient and not cost effective; although,
some studies in the literature showed prototypes and designs which perform somewhat
better when using this system. In one study, a mechanical device was designed so that
it used injected water, along with a brushing system, to clean PV panels automatically.
The system showed that the power output increased by 15% when using this cleaning
mechanism [136]. A study conducted on a single axis mechanism with solar tracking
and self-cleaning, in which the PV module was cleaned two times a day, showed that
the amount of power generated further increased due to the tracking system. This self-
cleaning mechanism included a microcontroller, along with a gearbox and stepper motor.
The limitation of this system is the highly complex mechanical design and the cost [137].
In an experimental study, two structures were designed, which effectively reduced the
dust deposition factor. One structure comprises a movement sensor and a dark-activated
sensor, which are controlled by the PLC, and an alarm, for indication purposes. The second
structure included a PIC controller, roller brush, and different alarms [138].
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5.1.4. Electro-Dynamic Display Cleaning Method

In this method, dry dust deposits are removed automatically from PV modules without
using water or any other liquid [139]. A typical schematic diagram and prototype are shown
in Figures 32–34 below. This cleaning method requires a high voltage supply on a screen
to generate electricity, which helps the dust particles charge and move over the edge of
module surface. This system can remove 90% of the dry dust deposits within the first
2 min of operation [140]. The advantages of this approach are fast speed of operation; it
is independent from the complex controller system; and it has a simple controller and
sensors. The disadvantages of this system are high initial costs; it is unable to remove wet
dust deposits as mud particles stick to the module’s surface; and it requires a high voltage
supply which reduces its efficiency by up to 15% [141].
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tened and widely dispersed, carrying dust particles away. The difference between super 
hydrophobic and super hydrophilic surfaces, as shown in Figure 36, is that water droplets 
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5.1.5. Super-Hydrophobic Cleaning Method

The super hydrophobic cleaning method is presented in Figure 35. This method
involves using a porous surface on the outer layer of the module. To prevent water from
sticking to the PV surface, this technology coats it with a hydrophobic coating and a thin
barrier layer; when tilting the PV surface at an angle, water droplets roll from the surface
in the same manner that a ball rolls on a slide. Rainwater or cleaning water accumulates
in low regions on the PV surface, then it quickly evaporates, leaving behind dirt that was
dissolved, to later be removed [144]. It is still necessary to confirm that this method can be
used in dynamic environmental and weather conditions [145]. According to a study, PV
surfaces treated in this way tend to prevent dust accumulation most of the time. Highly
precise structures, or nanostructures, were used to develop this approach [146].

Energies 2022, 15, 7595 29 of 54 
 

 

 
Figure 34. EDS before (up) and after (down) voltage is applied [140]. 

5.1.5. Super-Hydrophobic Cleaning Method 
The super hydrophobic cleaning method is presented in Figure 35. This method in-

volves using a porous surface on the outer layer of the module. To prevent water from 
sticking to the PV surface, this technology coats it with a hydrophobic coating and a thin 
barrier layer; when tilting the PV surface at an angle, water droplets roll from the surface 
in the same manner that a ball rolls on a slide. Rainwater or cleaning water accumulates 
in low regions on the PV surface, then it quickly evaporates, leaving behind dirt that was 
dissolved, to later be removed [144]. It is still necessary to confirm that this method can be 
used in dynamic environmental and weather conditions [145]. According to a study, PV 
surfaces treated in this way tend to prevent dust accumulation most of the time. Highly 
precise structures, or nanostructures, were used to develop this approach [146]. 

 
Figure 35. Super hydrophobic coating [147]. 

5.1.6. Super-Hydrophilic Cleaning Method 
A super hydrophilic surface refers to a surface that has a great attraction to water. 

When the contact angle is close to 0°, a super-hydrophilic surface can be achieved [148]. 
This can be accomplished by coating the nanostructure glass surface with a titanium oxide 
nano-film. With this method, water droplets on the super-hydrophilic surface are flat-
tened and widely dispersed, carrying dust particles away. The difference between super 
hydrophobic and super hydrophilic surfaces, as shown in Figure 36, is that water droplets 

Figure 35. Super hydrophobic coating [147].

5.1.6. Super-Hydrophilic Cleaning Method

A super hydrophilic surface refers to a surface that has a great attraction to water.
When the contact angle is close to 0◦, a super-hydrophilic surface can be achieved [148]. This
can be accomplished by coating the nanostructure glass surface with a titanium oxide nano-
film. With this method, water droplets on the super-hydrophilic surface are flattened and
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widely dispersed, carrying dust particles away. The difference between super hydrophobic
and super hydrophilic surfaces, as shown in Figure 36, is that water droplets on the
hydrophilic surface are flattened and widely spread, but water droplets on the hydrophobic
surface are mostly circular, and do not spread, as illustrated in Figures 37 and 38. A
study claimed that the super-hydrophilic surface is not suited for solar PV modules in
arid climates since it requires rain to clean itself; therefore, this cleaning approach may
be appropriate in areas with moderate to high rainfall [149]. A study found that when
using a nanostructure of super hydrophilic glass, without synthetic treatment, the module
became 1.23 percent more efficient than the super hydrophobic surface—only 1.39 percent
of efficiency was lost [150].

The effect of a hybrid hydrophobic and hydrophilic coating on the surface of a PV
module has been explored. According to the literature, this hybrid coating has outstanding
anti-reflective and anti-soiling capabilities. When a PV module’s surface is coated with a
hybrid hydrophobic and hydrophilic coating, water collection rates rise by 95% compared
with an uncoated glass surface, and 51% compared with evenly coated, hydrophobic,
low-iron glass [151].
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5.1.7. Drone-Based Cleaning Method

Drones are emerging as a viable tool for the solar panel business. They hold a number
of benefits, including the fact that they encompass a broad range of surveillance technolo-
gies, they can inspect, they have an efficient data logging capacity, and they possess the
ability to work at long ranges [154]. Drones for PV cleaning and monitoring applications
have been presented in recent studies as a way to reduce the amount of human labor
involved in the cleaning process [155,156]. Figure 39 shows PV panels being cleaned with
drone technology. In a recent study, using an infrared measurement aerial system, PV
modules were monitored to find anomalies in PV panels in a solar power plant [157].
Drone technology has advanced quickly in recent years, prompting experts to explore new
research avenues in this area. Drones can revolutionize the way solar modules are cleaned,
just as they have done recently in other fields. One study concerning drone retrofitting
found that the brush and microfiber based-cloth wiper are best-suited for drone-based solar
panel cleaning due to their low weight, small size, and ease of usage [158]. Some companies
offer commercial products for cleaning solar panels, which include drones, and such drones
have inbuilt glass cleaning equipment, as well as a removable cleaning solution container.
These companies also intend to utilize drones for cleaning mirrors using concentrated solar
energy [159].
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5.1.8. Ultrasonic Self-Cleaning Method

This method is used to remove pollutants from water-based media. Dirt, oil, grease,
polishing compounds, and mold-releasing agents are some of the pollutants that can be
found in the environment. Metals, glass, ceramics, and other materials can all be cleaned by
using this technique. Due to the small size of the comparatively large droplets, ultrasonic
cleaning may efficiently reach small cracks and remove very fine dust particles. The
resonance frequency of the transducer is determined by the size of the bubbles and the
size of the spray, which ranges from 20 to 80 kHz in ultrasonic transducers used in the
cleaning sector. Figure 40 shows PV panels before and after being cleaned via ultrasonic
cleaning. A study was conducted on the use of ultrasonic cleaning as a cleaning method,
and it discovered that surface immersion in an independent bath was the best way to obtain
a positive outcome. Experiments have demonstrated that cleaning PV surfaces requires a
thin liquid layer (less than 1 mm) to produce the cavities required for the surface cleaning
process to be completed [161].
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5.1.9. Robot Cleaning Method

The design and development of a robotic cleaner for cleaning PV modules at the
Quaid-e-Azam Solar Park was reported in a study (QASP) [162]. To provide a slippage-free
motion and cleaning on a glassy surface, the mechanism principally consists of a ducted
fan, a roller brush, and blower fan. A series of field trials and experiments have shown
that the method is effective in cleaning the modules [162]. According to a study, robotic
cleaning raises installation and maintenance costs while lowering water consumption. They
conducted the experiment using two monocrystalline PV modules that were identical. The
cleaning system on one PV module comprises an electrical motor and a brush that uses
a spray, whereas the cleaning system on the other PV module does not require any other
mechanism [163]. When compared with a PV module that was not cleaned, the PV module
that was treated with the cleaning system generated more power; however, the cleaning
system’s operating costs were higher throughout the same test period. In 2017, a robot
was designed, introduced, and tested, in order to clean a 1 MW solar power plant in a
study, as shown in Figure 41. The generated power was collected on a daily basis and
compared with the generated power obtained from panels that were not cleaned during the
same period. The findings revealed that the cleaning technique was successful in reducing
the impact of dust on the solar panel’s power output. As a result, power generation
increased by 32.27 percent on average [162]. In Figure 42, a portable robotic cleaning
system, with a versatile platform that travels the length of a panel, is shown. The robot’s
control system was implemented using an Arduino microcontroller. The robot’s initial
testing phase yielded positive results, thus indicating that such a system is feasible. Future
design enhancements have been considered, particularly regarding the various means that
are available to transfer the robot from one panel to the next. Finally, it was discovered that
robotic cleaning solutions are practical and can aid in the efficient maintenance of clean
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PV panels [162]. Table 8 includes a summary of the literature which examines different
cleaning methods for PV systems.
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References Cleaning Method Advantages Disadvantages Max. Efficiency

[131] Natural cleaning No resources required
No cost required

Ineffective for small dust
particles and is

weather dependent

[166] Manual Cleaning No electricity required and
environmentally friendly

Costly, needs water, and
human intervention needed
Scratches may be produced

99%

[138] Mechanical Cleaning

Cleaning and scrubbing
the PV

Automatic activation
whenever required

Electricity required
Maintenance cost is high 95%

[167] Electrodynamic screens
No need of any mechanical

or moving parts
Fast and effective

Cost is high
Less effective for
smaller particles

High voltage and digital
signals required

PLC microcontroller
is required

90%
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Table 8. Cont.

References Cleaning Method Advantages Disadvantages Max. Efficiency

[165] Robotic Cleaning
Low power consumption

and rechargeable
Automatic cleaning

Cost is high
Filters need to be

changed periodically

[168] Super-hydrophobic
Cleaning No need of electricity Optical performance reduced 71.8%

[150] Super-hydrophilic
Cleaning

Further enhances
natural cleaning

Limited lifetime
Ineffective in the long term 70%

[169] Ultrasonic Cleaning
No water required

No human intervention
needed

High levels of humidity
make it less effective 75% to 99%

[155] Drone-based Cleaning Automatically functions
Highly effective High cost

5.2. Cooling Methods for PV Systems

External climate variables such as sunlight, wind speed, moisture, atmospheric temper-
ature, and concentrated dust all influence the changes in surface temperature. As it is more
difficult to change the other parameters involved, increasing efficiency can be achieved
by lowering the operating temperature. Figure 43 shows the efficiency of solar cells with
respect to temperature. Solar radiation is an unpredictable parameter; for example, this is
especially the case when photovoltaic panels are installed on building façades, which are
vertical and non-directional surfaces. A variety of cooling strategies have been tested and
discussed in the literature to make photovoltaics more efficient by minimizing the issue
of temperature increases. Figure 44 shows a flow chart of different cooling techniques for
PV systems.
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5.2.1. Air Cooling

Fans, or other techniques which create airflows, are used in active air-cooling systems.
Waste heat generated by solar panels can be utilized in these systems. As a result, if metallic
materials with fins are mounted on the back surface of photovoltaic panels, in order to
provide more air circulation, the cooling of the panels can be significantly improved [171].
By creating an air gap between the walls and the photovoltaic system, the temperature
of the photovoltaic system can be kept below 40 ◦C. Open-air channels, metal frames,
fins, and ducts beneath solar panels are examples of forced airflow solutions. Array ducts
were used in a study to significantly lower the temperature of solar panels and boost their
efficiency by 12% to 14% [172]. For the purposes of thermal management and temperature
reduction, air cooling systems are commonly used in a variety of devices. Although air
cooling is not as efficient as liquid cooling, it does have some advantages, such as little
material usage and cheap running costs. The air is circulated using a mechanical device,
such as a pump, with this form of heat control [173]. The results of a study using forced air
cooling to increase the performance of a PV module were compared with PV modules that
did not have any cooling system. According to the comparison, adopting an air-cooling
approach resulted in greater electric efficiency and a better power ratio by 7.2 percent and
6 percent, respectively [174]. Air precooling can considerably increase the effectiveness of
PV thermal management due to the high ambient temperatures in specific areas. According
to some studies, this difficulty can be overcome by using air precooling [175]. To examine
air precooling, a subterranean heat exchanger was employed in a study. Figure 45 shows a
diagram of their experimental setup. In their research, different ambient air temperatures
of 35, 40, and 45 degrees Celsius, as well as varying flow rates, were evaluated to see how
they affected the module’s efficiency. It was discovered that by using a heat exchanger, it
is possible to adjust the temperature effectively. By comparing the power output of the
panels, it was evident that using this type of cooling can increase daily electrical efficiency
by up to 29.11% [176].

5.2.2. Liquid-Based Cooling

The continuous operation of this type of cooling system requires water; indeed, these
methods are challenging, and additional energy for pumping is needed. Solar-powered D.C.
pumps in active cooling technologies can be used to circulate water in any of these systems.
A variety of active cooling systems that use water have been investigated, and some of the
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more effective approaches are discussed in this section. Another effective cooling method is
forced convection, which is created using a liquid flow inside the channels that are inserted
into the back of PV modules [177]. Under Egyptian climate conditions, a comparison of
cooling solutions for PV modules, with reflectors, was conducted. The study looked at three
alternative cooling techniques: forced air, water cooling, and a combination of forced air and
water cooling. The results revealed that under Egyptian climate conditions, water cooling
was the optimal cooling method for PV modules [178]. Several unique ideas regarding the
liquid cooling of PV modules are being investigated, with the goal of achieving a more
uniform temperature in the cells; one such idea is the implementation of a converging
channel, which was tested in a study [179]. The prototype design of the channel is shown
in Figure 46. In terms of temperature uniformity, the 2◦ converging angle produced the best
results. According to the system’s thermal study, the PV temperature can be reduced by
employing converging channels from 71.2 ◦C to 45.1 ◦C, and from 48.3 ◦C to 36.4 ◦C, on a
typical hot day in June and a typical cold day in December, respectively. Other factors, such
as the type of coolant used, influence how much the temperature drops by in PV panels
that use liquid cooling [180]. The contact thermal resistance at the heat sink/cell interface
is the fundamental disadvantage of the abovementioned liquid cooling approaches. Direct
liquid immersion is recommended as a solution to this problem [181]. With this cooling
method, the cell is submerged in a circulating fluid, which is commonly utilized for cells
in concentration systems due to its high convective heat transfer coefficient [182]. The
Reynolds number and the inlet temperature of the circulating fluid are two of the most
effective elements in terms of modifying the temperature of the cooled cell [183].
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5.2.3. Heat Pipe-Based Cooling

A heat pipe is made up of three parts: an evaporator, an adiabatic transfer section,
and a condenser with working fluid—these comprise both the liquid and gas sections of
the pipe. For greater absorption and heat transfer in solar collectors, one study used a
nano-material base fluid [184]. Heat pipes are an appropriate upgrade from solid heat
sinks, or in some cases, an alternative to the pumped liquid cooling system. They have a
high thermal conductivity, are easy to bend and shape, and have a long life. A heat pipe
is a two-sided sealed pipe, constructed of copper or aluminum, that works with water
or ammonia as a working fluid. Due to its low sensitivity to tilt angles, compared with
its gravity-assisted counterparts, pulsating heat pipes (PHP) are one of the most widely
used forms of heat pipe [185]. Due to its unique properties, PHPs are a viable alternative
to conductive fins for cooling PV modules. A single-turn PHP was used to manage the
thermal behavior of a PV panel in a published study [186]. The PHP was placed at the
back of the module in this study, as illustrated in Figure 47. As shown in Figure 48, heat
was dispersed through radiation and convection. On monocrystalline silicon solar cells, a
finite difference approach for solving the transient heat equation was used at a heat flow of
1000 W/m2 and an immediate surrounding temperature of 291 K. The numerical findings
demonstrated that using PHP instead of copper, while maintaining the same size and
geometry, resulted in a greater reduction of the PV modules’ temperature.
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5.2.4. Heat Sink-Based Cooling

A heat sink is a device or material that absorbs and transfers heat from one object to
another via thermal contact (either direct or radiant). Ambient air, an induced draught air
column, or a coolant is used to dissipate heat [187]. Additional components for heat sinks,
such as fins made from metallic materials that are mounted on the back of photovoltaic
panels to enable convective heat transfer from air to panels, might improve the passive
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cooling of photovoltaic panels [188]. Heat sinks with a high thermal conductivity are
usually placed behind the solar cell. As the cooling speed may be high, transverse ribs,
V-shaped ribs, and arc-shaped rough surfaces, are utilized to improve the heat transfer
coefficient [189]. The heat transfer area, which is the area that transfers heat from the solar
cells to the ambient environment, is increased by using a heat sink. One study devised
an approach for increasing electricity efficiency by attempting to cool the solar panels
using heat sinks and a wicker-like structure made of copper and aluminum fins [190].
Due to its simplicity and low cost, it offers a great deal of potential for cooling PV panels.
Figures 49 and 50 show the heat sink mechanism used for cooling the PV panel. One study
used aluminum fins in the shape of an ‘L’ and pasted them on the back of the PV panel with
thermal conductive paste. During the analysis, it was discovered that randomly distributed
fins, with holes on the back, provided optimum cooling for the PV panel, since air was able
to permeate the interior section of the structure at 1 m/s [191].
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5.2.5. Phase Change Materials-Based Cooling

Phase change materials (PCM) comprise one of the PV cooling techniques that work
efficiently. PCMs are compounds that can retain thermal energy, thus allowing for tem-
perature control. When these undergo a physical change, such as during the melting and
freezing cycle, they absorb or release considerable amounts of so-called “latent” heat. Or-
ganic oil, inorganic salt hydrates, and eutectics are all mentioned as PCM [193]. A working
system using PCM technology may be seen in a Japanese home that uses air to cool PV pan-
els. The PCM installed in the building’s roof and ceilings are charged by a grid-connected
4.2 kW system, which reduces the building’s heating and cooling requirements [194]. It
should also be noted that the increase in efficiency with PCM is greatest in areas with
high solar radiation throughout the year. Other factors that were discovered as having a
significant impact on panel efficiency include the thickness of the panels and the thermal
conductivity of the PCM. The PV panels’ cooling performance with microencapsulated
PCM was investigated, and it was discovered that PCM with a melting temperature of 30
◦C performed better than PCM with a melting temperature of 28 ◦C. One study concluded
that after a certain thickness, PCM could not entirely solidify at night, thus compromising
its cooling capacity [195]. A PCM-based cooling setup for a PV panel was developed in a
study. As illustrated in Figure 51, paraffin-based PCM, with a melting temperature of 38 ◦C
to 43 ◦C, were inserted at the rear of a panel in this particular setup. When comparing the
annual electricity generated by the panel, in hot climate conditions, it was discovered that
employing PCM for cooling resulted in a 5.9% increase in electricity generation. Further-
more, less cooling was seen under peak hot and cold conditions, which was attributed to
partial solidification and melting, respectively [196].
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5.2.6. Nanofluid-Based Cooling

In most nanofluid-based PV/T systems, nanofluid can be used in two ways: as a
coolant and as a spectral filter. According to the literature, PV/T systems that employed
nanofluid in any form, as a coolant or filter, had higher overall exergy generation and
energy efficiency than PV/T systems that used conventional fluid [197]. An experimental
study was conducted to explore the benefits of a PV/T system on the PV module. The
study recognized the PV/T technologies’ potential in Hong Kong. The maximum electrical
efficiency achieved during the experiment was 16 percent, although the authors did not
investigate the thermal performance. The experiment’s setup is shown in Figure 52 [198].
To cool the PV panel and improve system performance, various nanoparticles combined
with water are employed as nanofluids [199]. To improve heat transportation, different
nanoparticles, with varying weight percentages, are utilized [200]. Some nanoparticles
used for this purpose are aluminum oxide (Al2O3), zinc oxide (ZnO), titanium oxide (TiO2),
magnetite (Fe3O4), silicon carbide (SiC), and copper oxide (CuO); these are all examples
of minerals.
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5.2.7. Hybrid Cooling

A typical PV/T device comprises a PV module linked with a thermal absorber. Techni-
cally, solar collectors for hybrid PV/T can be created so that they perform with an efficiency
of over 80 percent, in a cumulative capacity. In the PV/T system, the electrical and thermal
outcomes cannot be considerably increased at the same time. Moreover, research into hy-
brid cooling systems that use the following configurations at the same time is uncommon,
such as PV/T with PCM; PCM with nanofluids; a heat pipe with a heat sink; and a heat
sink with PCM. The experimental setup for a hybrid cooling system is shown in Figure 53.
The use of a nanofluid in a PCM system, based on PV/T, is examined and compared with
the use of a traditional PV module [201]. A study employed water-based boehmite to cool
photovoltaic panels with 0.01 wt%, and saw a 27 percent boost in efficiency [202]. An
experimental study was conducted in which a heat exchanger, water pumps, a nanofluid
container, and a data collecting system were all included in the system. A water tank
was built behind the enclosure to store the thermal output. To avoid heat escaping into
the environment, the PCM container was isolated from its back and sides with 2 cm of
thick glass wool. This insulation caused all the heat from the PV panels to condense in the
reservoir, which was subsequently drained using water and nanofluids [203]. For home and
commercial applications with high electrical and thermal energy demands, technologies
can provide significant financial benefits. Table 9 shows a summary of the literature which
examined different cooling techniques for PV systems.
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Table 9. Summary of different cooling techniques noted in the literature.

References Cooling Type Cooling Agent Electrical Performance Findings

Air Cooling
[204] Air Cooling Air

Performance efficiency increased
from 8–9% (before cooling) to

12–14% (after cooling).

Heat transfer simulation model
developed and compared with

experimental results.

[205] Air cooling Air Electrical efficiency range was
12–12.4%.

By reducing the depth of the
channel, the thermal efficiency
range was 15–31%, with little

impact on electrical efficiency or the

[206] Air cooling Air By reducing cell temperature, the
electrical efficiency was enhanced.

heat transfer rate. Performance
efficiency increased by arranging

fins perpendicular to air flow.

[173] Air cooling Air Electrical efficiency increased to a
satisfactory level.

Theoretical model was developed
by using a thin flat metal sheet
suspended in the middle of an

air channel.

Liquid Cooling
[207] Liquid cooling Water Electrical efficiency increased

by 9%.

A numerical model was developed
which estimates electrical and

thermal parameters.
Using this system, the cell

temperature dropped to 20%.

[208] Liquid–Gas cooling Water and air Electrical efficiency increased
to 38%.

Dual phase cooling model
proposed which reduced the cell

temperature by 20%.

[182] Liquid cooling De-ionized water
immersion

Electrical performance was not
favorable for a long period of time.

The coefficient of the convective
heat transfer was approximately

6000 W/m2K.

Heat Pipe Cooling
[209] Heat pipe cooling Serpentine half

pipe
Electrical performance increased

above 11.5%.

A mathematical model was
developed and validated with
experimental data. Thermal

efficiency increased up to 70%.

[186] Heat pipe cooling Pulsating heat
pipe single turn

Electrical efficiency of system
increased to 18%.

A transient numerical simulation
was performed with actual data.
Cell temperature was reduced to

16.1 K. Efficiency increased
very quickly.

[210] Heat pipe cooling
Heat pipe with
microchannel

loop mechanism

Electrical efficiency of system
increased from 10% to 16%.

Thermal max. efficiency was
71.67%. Condensation and

evaporation improved using
this system.
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Table 9. Cont.

References Cooling Type Cooling Agent Electrical Performance Findings

Heat Sink Cooling
[211] Heat sink cooling

Air cooled,
perforated

aluminium fins

Pmp and Voc increased by 18.67%
and 10%, respectively.

CFD analysis performed with and
without fins. Thermal efficiency

increased by 14.65%.

[192] Heat sink cooling
Air cooled,
perforated

aluminum fins

Electrical efficiency increased by
2% with use of randomly

placed fins.

System was efficient for both high
and low solar isolation.

[212] Heat sink cooling Air cooled,
aluminum fins

Electrical efficiency increased
by 2.72%.

Experimental and economic
analysis presented. Thermal
efficiency increased by 8.7%.

Phase Change
Materials (PCM)

[196]
PCM PCM-RT42 Electrical efficiency increased

by 5.9%.

Comparative analysis performed
for both summer and winter.
Average annual temperature

dropped to 10.5 ◦C.

[213] PCM Organic paraffin
wax

Electrical efficiency increased
to 5.39%.

Position of PCM influenced the
efficiency. Module temperature

reduced to 15 ◦C.

[214] PCM Heat exchanger
and paraffin wax

Electrical efficiency improved to
5.18%.

Extracted heat in this system can
be utilized for other purposes.

Temperature was reduced to 23 ◦C.

[215] PCM RT28HC Electrical efficiency improved
to 4.3–8.7%.

Simulations on TRNSYS software
were performed for data

validation. Temperature decreased
to 35◦ C.

Nano-fluid Based
Cooling

[180]
Nanofluid

Ag/water
(10% vol.)

Al2O3/water
(10 vol%)

Electrical efficiency improved to
3.9% and 1.83%, respectively.

Two types of nanofluids were used.
Performance of the PV/T collector

was experimentally analyzed.
Thermal efficiency improved to
12.43% and 4.54%, respectively.

[198] Nanofluid SiC/water
(1 wt%)

Electrical efficiency improved
to 13.52%.

Thermal efficiency of this system
increased to 81.73%.

[216] Nanofluid Al2O3-water Electrical efficiency increased
to 50%.

Thermal efficiency for this system
increased above 55%.

[199] Nanofluid and
Ultrasonics Atomized CuO Electrical performance increased

to 51.1%.
Thermal efficiency improved

to 57.25%.

6. Recommendations and Future Challenges

During the last two decades, PV-based electricity generation has become increasingly
popular all over the world. PV power systems have emerged as one of the main prospective
power supply options. According to this literature review, the following comprise the
recommendations and future challenges in this field.

• Enhancing PV technology and efficiency would be more advantageous in terms of
greenhouse gas emissions per unit of electricity generated.

• By using photovoltaic power plants as a source of renewable energy-based power
production, the level of greenhouse gas emissions will be reduced from what is
currently being produced due to fossil-fuel-based power plants.

• Another significant factor to consider when connecting local PV power generation
to the grid is power quality, as low power quality can create serious issues for most
equipment and financial losses.

• There is a need to focus on hormonic distortion, power factor correction, voltage, and
frequency regulation issues.

• To build artificial intelligence-based models for reducing dust accumulation, and
to reduce the impact of similar issues, further studies should be conducted. The
developed model will help determine the appropriate cleaning strategy based on
the model pattern. In addition, hybrid cleaning methods are worth investigating
to determine the optimum combination, especially with regard to making the most
economical choice and for selecting the best materials.

• In order to make the cell’s working conditions more flexible, it would be benefi-
cial to research hybrid cooling technologies that combine many alternative thermal
management strategies.
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• A hybrid system can use active techniques to boost efficiency during high solar irradi-
ance and ambient temperature periods, while also depending on passive techniques
for everyday operations.

7. Conclusions

This paper examines, evaluates, and synthesizes published research on photovoltaic
power systems in terms of their advancements and challenges faced. The review pro-
vided an intensive look at (1) the performance assessment of PV power plants, (2) various
factors affecting their performance, and (3) different methodologies adopted to mitigate
these negative effects. Using the IEC standard, various PV plants from around the world
were compared. According to this review, PV power plants can easily operate in most
of the global locations mentioned, since different power plants have been able to supply
enough electricity in terms of kWh/kW/year in nearly every region of the world. It has
been shown that plant performance improves each year as PV material-based technol-
ogy and inverter topologies also improve. It was also proven that a variety of factors
(some of which have a positive impact on production, whereas others have a negative
impact), affect the overall performance of PV systems. To mitigate the negative effect on
PV systems, different cleaning and cooling techniques have been investigated, analyzed,
and compared. Several variables, including PV size, design, location, water accessibility,
dust type, and other attributes, were taken into consideration when determining the opti-
mal cleaning techniques for each PV system. This comprehensive and critical review on
PV power systems will be helpful for researchers, designers, and investors dealing with
photovoltaic systems.
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Nomenclature

PV Photovoltaic
PR Performance Ratio
CUF Capacity Utilization Factor
YR Reference yield
YF Final Yield
AC Alternative Current
DC Direct Current
IEA International Energy Agency
IEEFA Institute for Energy Economics and Financial Analysis
Voc Open circuit Voltage
Isc Short circuit Current
CdTe Cadmium Telluride
m-Si Multi crystalline silicon
a-Si Amorphous silicon
CdTe Cadmium telluride
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CIGS Copper indium gallium selenide
HIT Heterojunction technology
βref Reference temperature coefficient
Epv Photovoltaic Electricity Generated
Eac AC Energy output
Tamb Ambient Temperature
Ht Total in-plane irradiance
G PV’s reference irradiance
St PV Modules Area
ηPV Module Efficiency
ηinv Inverter Efficiency
Hsys System Efficiency
η Instantaneous efficiency
η Efficiency
Lc Capture losses
Ls System losses
PLC Programmable logic control
PIC Peripheral interference controller
MPCT Maximum power temp. coefficient
TNOCT Nominal operating cell temperature
Tref Reference temperature
ηT_ref Efficiency at reference temperature
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