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Preface

Preface

Geopolymers are a cementitious material that has been under study for
many years. The material is noticed as a potential full replacement for
traditional cementitious material both in construction and petroleum
industry. The applicability of geopolymer material in the oil & gas
industry, for well cementing and zonal isolation applications, is
dependent on the development of chemical admixtures that can enhance
performance and prepare the material for downhole conditions. Many
admixtures are available in literature, however no inclusive study has
been presented for their efficiency and applicability yet under a variety
of temperatures from low to elevated. The results are highly dependable
on the source of solid precursor, which in this case is granite-based
geopolymer.

In this study, chemical admixtures of different roles have been examined
on granite-based geopolymer material for oil & gas applications. The
solid precursor mix design was previously developed inhouse at the
University of Stavanger. The study focuses on the applicability of
chemical admixtures using cement testing equipment following on
available standards of cement testing to create a realistic comparison
with traditional cement. The study touches up on both, applicability in
the field under downhole conditions and scientific analysis of chemical
reactions triggered by chemical admixtures. This thesis is part of the
SafeRock Project which is in collaboration between UiS and operator
and service companies. Thus, the need to present efficient admixtures
and focus on their behavior in downhole conditions was a necessity to
progress through the project.

This work is composed of a review section describing the work in this
research study and published articles that dive in-depth into the scientific
findings. The papers are attached in the appendix and labeled using
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roman numbers. The outcome of this research can be summarized by the
following papers:

Paper I: A variety of chemical admixtures were tested with the objective
of finding a suitable retarder for granite-based geopolymer system at an
operational temperature of 50°C. Rheological and short-term mechanical
properties were examined for curing periods up to 7 days. Findings
included the combination of different admixtures together where it was
concluded that zinc and potassium species have a great impact on the
setting time and that more in-depth analysis must be done specially the
effect of temperature on slurry behavior and mechanical properties.

Paper 1l: The effect of temperature and admixture concentrations was
examined on workability, viscosity, fluid loss, compressive strength,
sonic strength development, and crystallography. Results highlighted the
effect of chemical admixture and the link between mix design and
operational temperature.

Paper I11: Analysis of microstructure and crystallography was conducted
in-depth to find the reason behind poisoning phenomenon of retarders
and the properties of the outcome product. Results did not highlight any
accurate visualization of the retarders’ effect, which suggests the focus
must be on a reaction level. In addition, results indicated that the
retarders had an active window up to 14 days, and then they were
incorporated into the bulk matrix as observed in mechanical strength
measurements.

Paper IV: Analysis of reaction mechanism was done using computational
modeling (density functional theory calculations) and Raman
spectroscopy at 50°C. An in-house lab-controlled sample was developed
to avoid the complexity of minerals involved in the reaction.

Paper V: Investigation of possible role of calcium and sodium species as
strength development agents, in addition to zinc and potassium species
as retarders, was conducted at operational temperature of 60°C BHCT &

Vi
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80°C BHST. Findings indicated that strength development agents can
assist in countering the poisoning phenomenon imposed on mechanical
properties by retarders. However, tuning of concentrations must be
studied to have a mix design with superior properties.

Paper VI: Development of three mix designs and tuning using calcium
species, as accelerators, incorporated into the dry solid precursors.
Rheological and mechanical properties were tested to assess the
applicability of these neat mix designs at a range of temperature between
5 to 60°C. It is concluded that operational temperature and composition
of mix designs highly affect the kinetics of the reaction, or in other words
the degree of completion of the reaction.

vii
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Introduction

1 Introduction

Cementitious material formulate one of the most successful material in
the world where around 1 m? per person is produced yearly worldwide
[1]. The production of such material is on the rise due to an expected
increase in urbanization levels following the global population growth
[2]. It is forecasted that the global annual cement use by 2050 will
increase from currently around 4.13 Gt/year to 4.68 Gt/year [3]. Cement
has been widely used in multiple industries from construction to zonal
isolation applications in petroleum and geothermal wells, due to its
sustained properties, abundance of raw material, and relatively low cost
of process and production [4]. However, the consequences of producing
such material, specifically in the form of concrete and Ordinary Portland
Cement (OPC), carry a huge burden on the global climate. The latest data
sets on carbon dioxide (CO2) emissions until 2018 estimated that
between +6% and +£8% of global CO2 emissions account for cement
production [5].

Environmental challenges with CO, emissions, connected mainly to raw
materials’ mining and processing, have encouraged researchers and the
scientific society to investigate the potential of utilizing alternative
material, with significantly lower carbon footprint, as a partial or full
replacement to currently used OPC [6-8]. One of many materials under
study has been Geopolymers, an aluminosilicate material exhibiting
quite feasible performance specifically under aggressive conditions [9,
10]. However, to make this material applicable in the field, specifically
oil and gas, many alternations and tuning must be done through the
addition of chemical admixtures, to get the material up to adequate
performance standards. Chemical admixtures divide into multiple
categories and roles such as retarders, accelerators, strength developing
agents, superplasticizers, anti-foam...etc. The scope of this work is to
explore potential chemical admixtures, such as retarders and
accelerators, and investigate their effect on the material’s performance,
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considering different parameters such as temperature and pressure, all
tested under operational conditions.

1.1 The Nature of Geopolymers

Geopolymer material is a subclass of alkali activated material, which
composes of a low calcium (Ca) and aluminosilicate-rich cementitious
systems synthesized by the utilization of natural or processed raw
material such as granite & kaolin, or industrial waste such blast furnace
slag and fly ash [11-14]. Geopolymers were introduced in 1975 by
Joseph Davidovits; these materials have long repeating chains of
tetrahedral Al>SiOs minerals which form polymer-like structure [15].
Multiple types of alkali-activators are used to activate the raw material
such as potassium hydroxide (KOH), sodium hydroxide (NaOH),
potassium silicate ((K20)x-SiO2), and sodium silicate ((Na20)x-SiO>).
These alkali solutions initiate dissolution of complex minerals leading to
the formation of 3-D aluminosilicate structures through transportation,
nucleation, and polycondensation of aluminum (Al) and silicon (Si)
containing molecules [16].

Geopolymers are considered as a prospective alternative for OPC
especially in the oil and gas industry, due to various reasons regarding
several current shortcomings associated with OPC and the high CO:
footprint involved in OPC production [15, 17-19]. According to the work
of Khalifeh et al. [17] and Duxon et al.[12], geopolymers poses
properties that make it superior to OPC such as low chemical shrinkage,
low permeability, high durability in corrosive mediums, and the ability
of not being affected significantly by oil-based drilling fluids
contaminants [20]. Geopolymers’ formation mainly consists of Si and Al
reacting with an alkali silicate activator such as potassium silicate
(K2Si0O3), sodium hydroxide (NaOH), potassium hydroxide
(KOH)...etc. Polymerization occurs when aluminosilicate react and
dissolve in a highly alkaline medium, where free tetrahedral SiO’ and
AlO; are released in the slurry; afterwards these tetrahedral units bond

2
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through oxygen atoms (O.) to form a repetitive chain structure of -Si-O-
Al-O- [21]. The polymeric structure is also very dependent on the Si:Al
ratio as shown in Figure 1 [22]. In addition, the reactions occurring

during polymerization were described by Komnitsas [23] as the
following:

(Si205.Al202)n + H20 + OH” — Si(OH)4 + AI(OH)* (1)
| |
Si(OH)s + AI(OH)* — _s|1 —0- All —0- |n+4H0 )
0 0
v ()
0 poly(sialate) (—53—0—61—0—) Ps
s A
poly(sialate-siloxo) ~ (-Si-0-Al-0-§i-0-) eSS
¢ 9 9
Si04 AI04 poly(sialate-disiloxo) (—S(;)-O(—A())Il-O'%l-O“Igi"o“) PSDs
~ 1 T Y
A X

(Calcium,Potassium)-Poly(sialate-siloxo)
Analcime framework
(Ca,K)-PSS

Sodium-Poly(sialate)
Sodalite framework

(Sodium,Potassium)-Poly(sialate-siloxo)
Phillipsite framework

(Na,K)-PSS
Potassium-Poly(sialate) Potassium-Poly(sialate-siloxo)
Kalsilite framework Leucite framework
K-PS K-PSS

Figure 1. Structure of sialates with different Si:Al ratios. Retrieved
from [22].
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1.1.1 Mechanism of Reactions

Geopolymeric structure develops over polycondensation reaction of the
alumino-silicate oxides with the alkali-polysilicates, which in turn results
in a Si-O-Al bond with a tetrahedral structure forming the main
geopolymeric structure [24, 25]. Polycondensation reaction’s degree and
alkaline element form can be described by Mn[— (Si—02),—Al-O]n.wH20
where M is the alkaline element, z is either 1, 2, or 3, and n is the degree
of polycondensation [26]. The reaction mechanism involved in the
dissolution of Al and Si rich material in the alkali activator phase can
generally be described by the three stages as proposed by Glukhvosky
(Figure 2) [27].

(1) Destruction-Coagulation (2) Coagulation-Condensation (3) Condensation-Crystallisation

Figure 2. General mechanism stages of geopolymer, as described by
Glukhvosky [27]

The first stage of mechanism of reactions can be initiated with hydroxide
ions (OH"), from high pH mediums, which will break the Si-O-Si and
Al-O-Si bonds by disrupting and restructuring their ionic structure. The
products from this electronic distribution will yield -Si-OH (silanol), -
Si-O (sialate), and complex Al species mainly AI(OH)*. Negative
charged molecules will be neutralized by the presence of alkaline cations
such as sodium (Na*) or potassium (K*) ions, depending on the type of
alkali activator used, which will slow down any reverse reaction leading
to the reformation of Si-O-Si or AI-O-Si. During the second stage,
coagulated structures initiate in the presence of accrued ionic species
which pushes the system to begin with polycondensation. Si monomers
initiate reaction series, fastened by the presence of OH" ions, with other
monomers to start building polymeric structures. In the third stage,
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precipitation starts to form due to the presence of solid particles in the
initial stage which moves on along with the reaction order.

Mechanism of reactions can vary significantly depending on the initial
composition of the solid precursors and the nature of the alkali activator,
in addition to the mixing/curing conditions. Other mechanistic models
have risen to tackle the variation in initial solid phase composition and
provide a more extensive description of reaction stages and products.
Palomo et al. [28] suggested a mechanism based on the formation of
zeolites during alkali activated fly ash reactions. The mechanism
involved two main phases; (1) initial nucleation alongside to the
dissolution of Al particles followed by polymerization reactions which
forms complex ionic species, (2) growth of species and crystallization. It
was concluded that the final products will be an aluminosilicate gel also
labeled as N-A-S-H (Figure 3), which is considered as a pre-zeolite
precursor. This model was later modified to give a clearer description of
the synthesis of N-A-S-H gel where the formation starts by the
dissolution of Al and Si sourced material to form monomers; interactions
between monomers will occur to form dimer, trimers, tetramers, and so
on. N-A-S-H gel starts to form (via precipitation) after the reaction
reaches saturation [28, 29].
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Figure 3. Proposed structure N-A-S-H gel. Retrieved from [30]

Main reaction products of the Si and Al alkali activation is an amorphous
aluminosilicate hydrate phase, which is an inorganic polymer known as
N-A-S-H gel. It is composed of Si and Al in a tetrahedral structure
forming a 3-D structure as presented in Figure 3. In addition, secondary
products are of a zeolite nature such as zeolite Y, zeolite P, and
hydroxysodalite [31, 32].

In addition, the dissolution of Si-O-Al bonds and incorporation of
soluble species in the system is highly dependent on pH of the system
[33]. A study by Hajimohammadi et al. [34], concluded that the increase
of pH using OH solutions can increase the rate of dissolution of Si in the
system. This availability of Si monomers will aid in the hydrolysis
reactions, thus having a more complete reaction. The understanding of
the system at hand, from pH to the type of precursor used, could aid in
the tuning of geopolymer precursor selection and create a medium with
the most efficient kinetic behavior.
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1.2 Geopolymers Vs. Ordinary Portland Cement

These two binding materials are different on all levels: composition,
mechanism, reaction phases, early properties, etc. However, it is
worthwhile to mention some aspects of differentiation for the sake of
comparison and critical analysis. As mentioned in section 1.1.1, the
mechanism of geopolymer materials divides into 3 main phases of which
dissolution of minerals is a must to start coagulating molecules in the
effort to form repeatable chains of Si-O-Al. Similarly in OPC, the first
stage of mechanism is the dissolution where molecular units get in
contact with water on the molecule’s surface [35]. Yet, since OPC is
rich in Ca, because of having clinkers (CasSi and Ca,Si), quite different
reactions paths should occur [36]. According to a recent observation of
reaction mechanics by Bullard et al. [37], the reaction phases can be
divided into 4 stages; (i) initial reaction, (ii) period of slow reaction, (iii)
acceleration period, and finally (iv) deceleration period. This was
presented by measuring the rate of reaction of alite (CsSiOs = C3S), a
component that measures about 50%-70% of OPC by mass, as presented
below in Figure 4.

4 4

Tnitial reaction

Acceleration period
Deceleration peried

Period of slow reaction

Heat Flow (mW/g)

0 3 6 g 12 15 18 21 24
Age of Specimen (Hours)

Figure 4. Reaction rate of alite as a function of time measured by
isothermal calorimetry. Retrieved from [37].
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The following overview can show how these phases behave:

(i) Initial reaction involves the wetting of CsS surface, where an
exothermic reaction occurs involving the rapid dissolution of
these species [38]. The following reaction takes place:

C3S + 3H,0 — 3Ca?" + H2SiO4* + 40H" (1)

(i)  Slow dissolution, another term for deceleration of the
reaction, can be attributed to the formation of metastable
layers of calcium silicate hydrates (C-S-H) [39]. These layers
prevent the C3S molecule access to water and hence diffusion.

(i) Acceleration through colliding silica (Si) phases with existing
C-S-H nucleating on C3Ss’ surface [40].

(iv) Deceleration of reaction due to depletion of small particles,
lack of space to grow, or shortage of water [37].

The purpose of presenting this overview is to highlight the immense
differences in composition, particle nature, and eventually reaction
phases. This not only controls the properties, but also controls the
behavior of chemical of admixtures which in turn must adapt to the
system’s mechanism.

1.3 Role of Chemical Admixtures

Every well cement job has a set of objectives and milestones to achieve
under harsh conditions of elevated pressure and temperature, usually in
a short time window. To be able to engineer a compatible cementitious
material, various factors must be considered such as well depth, wellbore
environment, and pressure & temperature regimes [41]. For geopolymers
to be applicable in a wide range of underground temperatures and
pressures, chemical admixtures are a must to tune the slurry’s behaviour
to match with wellbore conditions. Admixtures can highly alter the
slurry’s properties allowing to displace smoothly between casing and
formation, accelerate strength development, and maintain sustainable
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long-term properties serving as a zonal isolation or P&A material [41].
Although multiple admixtures have been developed for OPC, with
different disciplinary functions, their chemistry is not of a match to
efficiently function in geopolymer material due to the different
mechanisms governing the reactions as mentioned in section 1.2.
Furthermore, chemical admixtures work mainly on different properties
of the slurry such as particle size, reactivity of different phases, chemical
nature, etc. Thus, it is worth to mention that many chemical admixtures
are available for different geopolymer systems, however, there is lack of
data regarding their behaviour and effects on geopolymerization
reactions has been a hurdle in their applicability in the field and thus the
applicability of geopolymers in general.

Various types of chemical admixtures can be utilized considering the
main mechanism of geopolymer material into account. Chemical
admixtures such as accelerators and retarders. In the next section we will
discuss these two admixtures.

1.3.1 Accelerators

Accelerators are mainly added to cementitious material to decrease
setting time and accelerate the hardening process. In principle, these can
be used as an antidote for other chemical admixtures which delay the
setting time [42]. Accelerators such as chloride (CI) containing species,
Ca species, and Na species have been under study previously.
Rattanasak et al.[43] examined CaCl; as an accelerator on fly ash based
geopolymer of which it significantly accelerated initial and final setting
time, up to a 100 Bearden units of consistency (BC). Moreover, nano-
SiO2 has been used by Ngernkham et al. [44] of which showed a decrease
in setting time of fly ash based geopolymer. To its advantage, higher
early strength development can be a side effect of using accelerators in
the field as perceived by Bhavsar et al. [45] when coarse aggregates and
Si fumes were used in efforts to upgrade fly ash based geopolymers.
Moreover, sodium carbonate (Na.CO3) was also utilized as a strength
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development agent by Jeon et al. [46] in fly ash-based geopolymers. The
results highlighted a noticeable improvement in matrix strength and
reduced setting time of slurry. A summary of the most common
accelerators is mentioned in Table 1, considering the geopolymer system
examined in each study.

Table 1. List of some accelerators described in literature

Accelerator Year Geopolymer System Reference
CaClz 2011 Fly Ash [43]
Nano SiO2 2014 Fly Ash [44]
NaOH 2021 Metakaolin [47]
Al203 2007 Metakaolin [16]
Na2COs 2015 Fly Ash [46]

1.3.2 Retarders

In OPC, retarders’ main role is to delay the setting time of cementitious
material by delaying the mechanism of setting by complicating its
formation mechanism through different approaches of adsorption,
precipitation, nucleation, and complexation [41]. However, geopolymers
are under the impression that they behave differently from OPC where a
poisoning effect can take place on the Si-O-Al matrix causing an
elongation in oligomerization period or delay in polycondensation phase,
or both.

Retarders can behave in different manners with one affecting the
pumping time while the other can impact the hardening time. The first
compensates the effect of temperature on slurries and increases the time
allocated for the displacement phase [48]. While the later, targets early
strength development and reduces the heat evolution rate of the mix
design [49]. In previous studies, two types of retarders were mainly
presented: inorganic and organic retarders. Starting with inorganic, their
main function works by coating the binder particles and hinder the
dissolution phase by hydroxides within the slurry. They are of many
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forms such as phosphates, oxides (ZnO and PdO), and borax. However,
organic retarders are mainly formed of lignosulphonates, carbohydrates
of hydroxyl nature (sugars), and hydroxycarboxylic acids and salts. In
addition, magnesium chloride (MgCl2) was examined on phosphate
cement-based materials by Du et al. [50] where MgCl, acted as a
retarder. Furthermore, tartaric acid (C4HsOs) has also been pointed to as
a retarder specifically for one-part geopolymers as described Van
Deventer et al. [51]. Another retarder used is ethylene glycol (C2HeO>)
where it was studied by Coppola et al. [52] on slag-based system where
it demonstrated a significant effect of slowing setting time. Most used
retarders of both natures are summarized in Table 2 below.

Table 2. List of some retarders described in literature

Retarder Year Geopolymer System Reference

Na2SO4 2011 Fly Ash [43]
Sucrose 2011 Fly Ash [43]
P"”‘St?g;f]tfheRtE Plus 2017 Fly Ash [53]
Lignosulfonate 2022 Fly Ash [54]
ZnO 2020 Metakaolin [55]

Red Mud 2020 Manganese Phosphate [56]

MgCl: 2022 Phosphate [50]
C4Hs0s 2010 Glassy aluminosilicate [51]
C2H6O2 2020 Slag [52]

1.4 Combination Between Chemical Admixtures

The tuning of chemical admixtures has always been a challenge for
geopolymer material due to the intermolecular relations governing the
reaction mechanism of different chemicals in a complex system. The
incorporation of different chemical admixtures at once, serves the aim to
accommodate different properties of the slurry such as retardation, early
strength development, lower density, etc. of which all must be balanced
to deliver the perceived outcome (Paper V). The incorporation of
different chemical admixtures must be able to address the contradicting
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properties of the elements such as having retarders for retarding setting
time and accelerators/strength development agents for rapid strength
development, after gelation, in the same mix design. These admixtures
might overtake each other and result in opposite outcomes. Thus, the
correlation between chemical admixtures must consider the active
element in every admixture, the concentrations introduced to each mix
design, and most importantly the targeted slurry behaviour at every stage
of the reaction.

In the following, different chemical admixtures were examined for the
granite-based geopolymer. Many analytical and characterization
techniques, from slurry to mechanical properties and chemical reaction
analysis techniques, were implemented to observe the effect of chemical
admixtures on the properties before and after setting. The study was done
at a range of operational temperatures from 5 to 60°C of BHCT. The
approach was highly dependent on analysing the effect of chemical
admixtures and in-depth examination of the reaction mechanism of
successful candidates. The study carried on examining strength
development agents and develop geopolymers not by only using
chemical admixtures but by also altering the neat recipe to fit to a range
of temperatures with the efforts to reduce the dependency on chemical
admixtures.

12
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2. Scope and Objectives

The main objective of this Ph.D dissertation is to present retarders and
accelerators to control the pumpability of geopolymers for downhole
applications in petroleum and geothermal wells, while trying to maintain
the early strength development in an acceptable range. Moreover, the
purpose evolves around observing the effect of chemical admixtures on
other prior/post setting properties of geopolymer materials. The sub-
objectives are listed as following:

* Present the mechanisms of geopolymerization and retardation.

« Describe accelerators and retarders to expedite the pumping time for
downhole conditions and at a range of BHCT (5-60°C).

« Examine the effect of chemical admixtures on the inner structure and
morphology of geopolymers.

» Present the effects of the additives on early and final strength
development.

Throughout the project four steps were adapted to develop the outcome
presented in this thesis, the steps can be identified as the following:

Step I: Different accelerators and retarders were tested to find their
potential in a granite-based geopolymer system. The identification of
potential candidates was done briefly using short term rheological and
mechanical properties analysis.

Step 1I: After unravelling potential chemical admixtures, the focus was
set on Zn?* species and K* species as strong candidates for developing
granite-based geopolymers for downhole conditions. Thorough analysis
was conducted to examine the effect of temperature on retarder systems
of similar nature and their effect on crystallography and morphology in
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geopolymer systems was examined for short- and long-term curing
periods under downhole conditions.

Step Ill: The behaviour of Zn?* species in granite-based geopolymer
systems could not be easily identified on a mechanism level in the
previous step, thus further investigation into the chemical mechanism of
Zn?* species was conducted. Analytical equipment and computational
modelling were used to identify probable step by step mechanism of Zn?*
species into geopolymer systems.

Step IV: After identifying the mechanism of Zn?* species, efforts were
conducted to integrate strength development agents into high
temperature applications in combination with Zn species as a retarder.
However, due to system’s complexity and requirement of fine tuning of
the chemical admixture system a new path was decided on to be
discovered. The new path aimed to develop different classes of granite-
based geopolymer system, depending on the operating temperature, to
minimize the usage of chemical admixtures into the system and reduced
complexity factors in the system at hand.

Identify potential retarders and accelerators for granite-based geopolymer system
I Paper I & Paper Il

|

* Examine effect of chemical admixtures on strength development and post setting properties
I * Examine effect of chemical admixtures on crystallography and morphology of geopolymers

Paper I & Paper 11

l

Identify mechanism of geopolymerization and retardation

N
Describe accelerators and retarders to expedite the pumping time for downhole conditions and at
v a range of BHCT (5-60°C)
Paper V & Paper VI

Figure 5. Steps of the research plan
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3. Materials

3.1 Rock-Based Mineral: Granite

Granite is a natural existing rock mainly composed of various groups of
quartz, feldspar, mica or hornblende, which forms a large part of the
bedrock of Finland and Scandinavia [57]. Granite is used as the base for
producing the described geopolymer material.

Multiple techniques were used to analyse the chemical composition of
mineral material. Inductively Coupled Plasma Mass Spectrometry (ICP-
MS) and X-ray fluorescence (XRF) can be potential techniques to
explore the composition of granite and other solid precursor material
under use. The ICP-MS and XRF analysis of granite samples is
presented in Table 3 and Table 4, respectively. It is noticed that both
techniques highly present differences in chemical composition, however
it must be noted that each technique is of a uniqueness of its own. The
first is based on dissolving the mineral in a highly acidic solution, then
running the solution in an ICP-MS. One of the main differences is that
ICP-MS analysis considers elements in the form of oxides, which
according to Richter et al. [58] and Croudace et al. [59] has more
advantages then considering single elements since these readings will not
be highly affected by variations in concentrations, giving a much clearer
image of the chemical composition. The process of comparison is linked
to ‘‘Log-Ratio Calibrations’’, in XRF, which on its own is a comparison
of calibration models for elements and involves an intense differentiation
between calibration models that can present different readings depending
on the correlation at hand [60]. In this study, ICP-MS of geochemistry
data has been utilized as a benchmark for chemical analysis and
comparison due to the clearer readability of results, ease in analysis, and
composition calculations for mix designs. It must be noted that all
chemical composition calculations for mix designs presented in this
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study were based on ICP-MS analysis of different solid precursors
according to their weight percentage introduced to the dry blend.

Table 3. Chemical composition of the granite rock analyzed with ICP-
MS Analysis

Element SiO2 AlOs Fe:O3 CaO MgO NaxO KO TiO2 MnO P0s LOI

Result

7344 1333 2.06 1.12 0.44 3.12 511  0.23 0.04 0.06 0.9
(Wt%o)

Table 4. Chemical composition of the granite rock using XRF

Elements in Solid Result (wt%b)
Aluminum, Al 7.3
Barium, Ba 0.1
Calcium, Ca 1.4
Chromium, Cr <0.1
Copper, Cu <0.1
Iron, Fe 2.5
Potassium, K 5.1
Magnesium, Mg 0.6
Manganese, Mn <0.1
Sodium, Na 2.2
Nickel, Ni <0.1
Phosphorus, P 0.1
Lead, Pb <0.1
Silicon, Si 32
Strontium, Sr <0.1
Titanium, Ti 0.3
zZinc, Zn <0.1
Sulphur, S <0.1
Chlorine, ClI <0.1
Zirconium, Zr <0.1

From the results presented above, it can be observed that granite is highly
rich in Si and Al based on the oxide readings presented in Table 3. While
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rich in the latter elements but the granite utilized in this work has poor
Ca and Mg content which raised some challenges in the development of
geopolymer material if this material is to be used alone without any
modification to the chemical composition using other solid precursors or
chemical admixtures.

Examining the X-ray diffraction (XRD) measurements of the granite and
the different peak fitting analysis (Figure 6), it can be observed that
different phases of quartz, albite, and microcline are available and easily
detected. However, biotite, muscovite, clinochlore, and chamosite were
concluded from different resources such as the Norges Geologiske
Undersgkelse (NGU) [61]. Further in-depth refinements helped in
identifying each element into their mineral group. The refinement has
all mineral phases mentioned in the Feldspar diagram (Figure 7), from K
rich to Na rich and Ca rich. The final representation and qualitative
representation of phases is presented in Table 5 after excluding mineral
groups with less than 2% concentration. In Figure 6, main phases of
quartz, albite, microcline, biotite, and chamosite are presented at their
major peaks. Minor phases such clinochlore and oligoclase phases are
minorly distributed throughout the spectrum that it is not easily detected
visually.
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Figure 6. Crystallography of granite; Qz=Quartz, Alb=Albite,
Mic=Microcline, Cham=Chamotite, Bio=Biotite, Mus=Muscovite
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Figure 7. Feldspar classification diagram. Retrieved from [62]
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Table 5. Quantitative representation of phases using XRD refinements

Phase W1t% Group
Quartz 30.383 Quartz
Microcline 26.961 Feldspar
Albite 17.284 Feldspar
Clinochlore 7.737 Chlorite
Oligoclase 5.125 Plagioclase
Muscovite 4.899 Muscovite
Chamosite 4.072 Chlorite
Biotite 3.539 Biotite

The microstructure of granite was examined using scanning electron
microscopy (SEM) and is presented in Figure 8. A heterogeneous
structure can be observed with many cavities. Inside these cavities, a
series of hexagonal-like shaped crystals which in turn come in a variety
of dimensions are present.

Figure 8. SEM imaging of granite; (A) at magnitude 500X, (B) at
magnitude 25,000 X

3.2 Blast Furnace Slag

Blast Furnace Slag (BFS) is widely available as an industrial by-product
from pig-iron production, heavily rich with silicates, alumina, alumina
silicates, Mg, and Ca which develops simultaneously with Fe in molten
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conditions in a blast furnace [63]. BFS was introduced in different weight
percentages to support the strength development of granite-based
geopolymers. Due to its amorphous nature and Ca containing elements,
BFS can act as a strength development agent and create interconnected
phases of hydrates which support the geopolymer matrix [64].

The chemical composition of the utilized BFS in this study is presented
in Table 6. The results are presented using ICP-MPS readings which in
turn are present in oxide form. High concentrations of Ca and Mg are
present in the composition which motivate the inclusion of BFS in solid
dry blends for geopolymer material. Previous studies indicated the
benefit of utilizing BFS in achieving superior mechanical properties in
geopolymer blends [65-68]. In summary, these benefits are in the form
of a faster early reaction phase due to presence of Ca and Mg which
enhances hydration and promotes the production of C-S-H and
hydrotalcite like phases. However, it must be noted that usually C-S-H
phases do not highly show in XRD reflections of the end-product,
although BFS has relatively high Ca concentrations.

Table 6. Chemical composition of BFS using geochemistry indicates.

Element Si02;  AlOs Fe0s CaO MgO Na.O KO0 TiO2 MnO Cr:03 LOI

Result

3578 12.72 018 3374 1277 055 082 223 058 0.06 0.3
(Wt%)

In addition, since the utilized BFS is highly amorphous no clear
composition readings can be concluded from XRD patterns. Moreover,
elemental analysis and the morphology nature of BFS samples are
presented in Figure 9.
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Element Wit%

OK 49.22

MgK 5.82

AIK 179 382

SiK 13.98 10.72

KK 0.15 0.08

Cak 26.03 13.98

Figure 9. SEM and EDS analysis of presented area of BFS

It must be noted that the BFS used in Paper Il was not from the same
batch used in the other Papers (I, 111, IV, V, VI).

3.3  Microsilica

Highly reactive microsilica, 95.5 wt% purity, was used to balance Si/Al
content in geopolymer mix design development. The excess free silica
can enhance geopolymer matrices and support strength development and
decrease permeability in the matrix. The chemical composition using,
XRF technique, is presented in Table 7.
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Table 7. XRF elemental analysis of microsilica

Elements in Solid Result (wt%b)

Aluminum, Al <0.1
Barium, Ba <0.1
Calcium, Ca 0.1
Chromium, Cr <0.1
Copper, Cu <0.1
Iron, Fe 2.5
Potassium, K 0.5
Magnesium, Mg 0.1
Manganese, Mn <0.1
Sodium, Na <0.1
Nickel, Ni <0.1
Phosphorus, P <0.1
Lead, Pb <0.1
Silicon, Si 46
Strontium, Sr <0.1
Titanium, Ti <0.1
zZinc, Zn <0.1
Sulphur, S 0.1
Chlorine, ClI <0.1

3.4  Mix Design Nature and Reference Samples

The mix designs utilized in this study were a combination of granite,
BFS, and microsilica. The solid precursors were introduced together
under different wt% which in turn resulted in different chemical
compositions presented forward ahead. The nature of mix designs was
developed to be a suitable starting point for the addition of chemical
admixtures. One thing to note that the BFS used in Paper Il was different
from the ones used in the other papers and that was due to a new batch
from the source provider. However, the mix designs were engineered to
have relatively consistent results. In addition, in some studies, neat class
G cement was used as a benchmark sample to compare with the
geopolymer samples at the conditions understudy.
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3.5 Activator/Hardener Phase

A mixture of Potassium silicate solution (K->SiO3) with a molar ratio
between 2.3 to 2.5 was used as the main hardener phase to produce
geopolymer slurries.

Potassium hydroxide (KOH) pellets were used in preparing alkali
solutions of mainly a molarity of 4 M. The pellets were with a purity of
99%.

3.6 Chemical Admixtures

A variety of chemical admixtures was used with each having its own role
and effects on the geopolymer slurries under study. A summary of the
chemical admixtures is provided in Table 8 below. These admixtures are
soluble in water and were introduced via water to the hardener phase
prior mixing with the solid phase or directly to the dry blend.

Table 8. List of chemical admixtures used in this study

Material Chemical Formula  Purity Function
Zinc Nitrate Hexahydrate Zn(NOs)2 - 6H20 >99 Retarder
Potassium Nitrate KNO3z >99 Accelerator
Sodium Hydroxide NaOH >99 Accelerator
Aluminum Oxide Al20Os >99 Accelerator
Sucrose C12H22011 >99 Retarder
Calcium Carbonate CaCOs3 >90 Accelerator
Calcium Oxide CaO >90 Accelerator

23



Slurry Preparation

4. Slurry Preparation

Geopolymer slurries were prepared by using granite, BFS, and
microsilica as the main solid precursor with chemical admixtures
introduced to the slurry mixture via excess water. The slurries were
mixed following APl 10B-2 recommendations using a high shear
commercial lab blender [69]. After preparing the alkali solution, it was
mixed in the blender for 10 seconds at 4000 RPM, afterwards chemical
admixtures, pre-mixed with distilled water, were added to the alkali
solution and mixed again for 10 seconds at 4000 RPM. Next the solid
precursor was added at 400 RPM for 15 seconds, then was mixed for 35
seconds at 12000 RPM following API 10-B2 recommendations.
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5. Methods

The testing methodology followed throughout this project is presented in
Figure 10. The approach considers that first a neat recipe must be
prepared, afterwards chemical admixture(s) was introduced to the neat
mix design. Then a series of properties were tested as described below
where finally the hydraulic sealability of the mix design was tested under
elevated pressure and temperature conditions to verify the usage of such
mix design as a zonal isolation material. If the mix design fails in
achieving any hydraulic sealability the process was ran again with tuned
and engineered chemical admixtures to qualify the material as a barrier
material with isolation capabilities. It is worthwhile that sealability of the
neat mix design has been measured; the sealability test was utilized as a
quality assurance on the impact of the chemical admixture on the sealing
capability of the geopolymer.

Rheological Properties:

¢+ Workability and setting time
*  Viscosity profile

+ Static fluid loss

* Rotational flow meter

Mechanical Properties:

+ Uniaxial compressive strength

e * Non-destructive sonic strength development

A‘:‘d't'?“ :"f +  Tensile strength Hydraulic
chemica *  Young’s Modulus Sealability

admixtures

Preparation of
Neat recipe

Structural Analysis:
+ X-ray diffraction
+ Scanning image microscopy

Reaction Analysis:
* Raman spectroscopy
* Density Functional Theory Calculations

Figure 10. Testing strategy for slurry design

The standards and recommendations used as a guideline for experimental
setup and handling were imported from the standard testing procedures
of cement. Mainly two standards were utilized in this project; APl 10-
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B2 recommendations [69] and APl 10TR-7 [70]. The use of cement
standards set a benchmark for experimental procedure which acted as a
guideline to insure credibility and realistic comparison in cases between
geopolymer and OPC products. In addition, these recommendations are
well known by the oil & gas industry which minimizes the knowledge
gap to other readers from petroleum background. However, for analytical
testing methods, the procedures were inspired and developed from pre-
existing research done on material of similar nature.

It must be noted that conditioning of samples was done following
recommended practices prior to some experiments. Samples were
conditioned using an atmospheric consistometer with a temperature ramp
up rate as 1°C/min. Many properties were examined and are divided
categorically according to the following:

5.1 Slurry Properties

Slurry properties were examined for every slurry to ensure the proper
qualification of mix designs for downhole conditions. It was to make sure
that the mix design will have sufficient time to reach the desired depth,
with the right rheology and fluid properties to ensure a successful
operation. The following slurry properties were examined as part of the
qualification of mix designs:

Workability and setting time - Atmospheric and pressurized
consistometer were used following APl RP 10-B2 recommendations
[69]. The standard for workability was set from the starting point until
40 Bearden unites of consistency (Bc), while setting time was set from
40 Bc to 100 Bc. This standard was followed upon to ensure equipment
safety and create a higher benchmark for the slurry.

Viscosity - Mix designed were tested using a rotational viscometer,
known as V-G meter viscometer. Measurements were done at rotational
speeds of 3, 6, 30, 60, 100, 200, and 300 RPM both in ascending and
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descending order, where the average was then calculated and plotted
versus shear rate. Slurries were conditioned prior to testing.

Density — Density was measured using a pressurized mud balance
following APl RP 10B-2 recommendations [69]. Slurries were
conditioned prior to testing.

Static fluid-loss — APl HPHT test cell was used to measure the fluid loss
at 1000 psi at room temperature. The slurries were conditioned prior to
testing. A sieve of 250 um having a hardened filter paper of 45 pm was
used with a pressure applied by a CO> flow line. The measurement was
done for 30 minutes (mins). Slurries were conditioned prior to testing.

Rotational Flow Meter — Rotational tests were performed using a
scientific rheometer to evaluate the rheological behaviour of mix
designs. Shear rates were measured through different intervals where
pre-shear, ramp up, and ramp down tests were performed. The test starts
with the pre-shearing at 100 1/s for 60 seconds afterwards ramp up (0.01-
511 1/s) and ramp down (511-0.01 1/s). Slurries were conditioned prior
to testing.

Zeta Potential - The electrical potential of chemical admixtures was
measured using dynamic light scattering with a laser source of
wavelength 633 nm at a scattered angel of 13°. The samples were diluted
in distilled water to reach 0.1 wt.% at room temperature (25°C). Sample
holders DTS 1070 were used as the experimental apparatus. Following
the start of the experiment 300 seconds were allowed for equilibration.
An average of three measurements was considered to ensure the right
qualification of results. These measurements have been conducted to
observe the effect of electrokinetic potential of the admixtures on
viscosity.

27



Results and Discussion

5.2 Mechanical Properties and Microstructure

Uniaxial Compressive Strength (UCS) — Measurements were performed
using a mechanical tester having a variety of loading rates ranging from
30 kKN/min to 7 kN/min depending on the sensitivity of slurries prepared.
The recommended practises following these measurement was API
10TR-7 [70]. Slurries were conditioned prior to curing and were poured
into plastic molds of diameter of 5 cm and height 10 cm. Mix designs
were cured for 1,3,7,14, and 28 days. The uniaxial stress was calculated
using the equation (1) where o is the force in (MPa), F is the max force
prior to cracking in Newton (N), and A is the contact area between the
sample and the loading frame in mm?

c== )

Young’s Modulus — The modulus of elasticity is concluded by the
following equation (2):

yM = /A
AL/L

()

where YM is the elasticity modul in GPa, F is the max force prior to
cracking in N, and A is the area of contact between the sample and the
loading frame in mm?, L refers to the highest sample and changes
occurring on it in mm.

Non-destructive Sonic Strength Development - An ultrasonic cement
analyser was used to measure sonic strength development at confined
downhole conditions. The equipment operates by constantly measuring
the sonic strength emitted throughout the sample where a transducer was
positioned at both ends of the cell. Afterwards, compressive strength was
calculated by implementing transit time values into a default algorithm
(mainly algorithms related to OPC). However, since in most cases
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geopolymer samples were measured, these samples have unique
algorithms dependent on the chemistry of the mix design, new
algorithms were developed using compressive strength data at different
time intervals in correlation to the testing time on the sonic strength
development equipment. This resulted with a polynomial equation
developed from plotting the compressive strength results vs. transit time.
These correlations can be found in Appendix 2.

Tensile Strength — Samples were cured similarly to the compressive
strength tests, however, they were shaped to have a disk shape having a
ratio of thickness to diameter of 0.6 following ASTM D3967-16
recommendations [71]. The disk-shaped samples were tested using a
curved jaw setup with a load of 50 N/s applied over the sample where
the force was calculated using equation (3) where o is tensile strength
in MPa, F is the maximum force prior to cracking of disk in N, T is
thickness of the specimen in mm, and D is the diameter of the specimen
in mm. The setup used is presented in Figure 11.

Figure 11. Tensile test setup with a schematic of sample shape and
testing jaws used.

F
Oy = 1.2 E (3)
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Hydraulic Sealability Measurements — To measure hydraulic sealability
of mix designs after setting at downhole conditions, slurries were cured
in a cylindrical steel tube (KF HUP S355J2H) having a diameter of 82
mm, thickness of 3 mm, and height of 150 mm with a roughness of 1 um
of Ra. The cylinder was constructed with a two-sided caps to be tightened
using metal bolts. The setup is presented in Figure 12.

Figure 12. Hydraulic Sealability Setup (Paper I11)

X-Ray Diffraction (XRD) — This method was used to give insights
regarding the crystallography of the material and the manner of change
in solid composition post-curing. The process was performed by
directing X-ray to atoms at the surface of the sample which then a
reflection of different waves was collected. Bragg’s law (equation (4))
was used to interpret the relation between the wavelength A, the angle of
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reflection 6, and spacing between lattice planes of crystal atoms d [72].
The Scherrer equation (5) can be used to calculate d [73].

A=2xdxsinf 4
kA
" Bcos6 (5)

In this study, a Bruker-AXS Micro-diffractometer D8 Advance was used
having a 26 range of 5-92° with a 1°/min step and 0.010° increment. The
tested samples were manually grinded into fine powder and dried
overnight at 40°C prior to analysis.

Scanning Electron Microscopy (SEM) — Morphology of cured solidified
samples was examined using an SEM machine. The samples were cut
into small pieces of ~2 mm thickness and dried in a vacuum oven
overnight. Afterwards the samples were coated with Pd plasma layer of
10 nm to inhibit electron charging. Element mapping was carried
alongside morphology analysis using an energy dispersive X-ray
spectroscopy (EDS).

5.3 Chemical Reaction Analysis

Raman Spectroscopy — Slurry paste was analysed using a 532 nm diode
laser operating at 25 mW. The spectra were measured from 400 to 4000
cmt offering a wide overview of composition analysis and a tool to track
reaction evolution, specifically Si-Q" sites. In principle, spectra were
collected with a 30 mins time interval.

5.4 Computational Modelling

Calculations of density functional theory (DFT) were executed to
investigate reaction development while having a retarder in the mix
design, refer to Paper IV. The computational modeling work was
conducted as a part of bi-lateral collaboration between the University of
Stavanger (UiS) and the Federal University of Rio Grande do Norte (UFRN)
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where the researcher from UiS conducted the experimental part (e.g.,
Raman Spectroscopy) and researchers from UFRN performed the DFT
calculations and modeling. Dehydration reactions where considered
between Si(OH)s and [AI(OH)4] ™ in addition to the retarder (Zn?* species)
considered for the study. These reactions were used to model the formation
of Al-O-Si and X-O-Si bonds, where X represents a retarder molecule. The
Gaussian 16 software was used for modeling molecular structures through
the utilization of different laws of quantum chemistry and mechanics to
model structures and energies [74]. The Gaussian 16 software used utilizes
different laws of quantum chemistry and mechanics to model structures and
energies.
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6. Results and Discussions

6.1 Performance of Chemical Admixtures — Focus on
Retardation (Paper I)

Identification of chemical admixtures with a retarding role is a starting
point for the development of geopolymer material for any field
application. The applicability of geopolymer in field applications is
dependent on whether adequate pumping time can be achieved [75].
However, the effect of chemical admixtures was not exclusive to
pumping time, there were also significant effects on rheological and
mechanical properties that must be considered (Paper ). Various
admixtures were tested as a starting point while looking into their direct
short-term effect on mechanical properties. The strategy was to consider
previous literature findings and find a chemical admixture of interest for
further investigation.

A variety of chemical admixtures were tested starting with sucrose which
had demonstrated retarding effects both on OPC and geopolymer
material [76, 77]. Moreover, it was noticed that the use of Al.O3 was
implemented with efforts to manipulate the silica to alumina ratio (Si/Al)
which in turn creates a retardation effect through decreasing the Si/Al
ratio as described by De Silva et al. [16]. However, the use of Al.Oswas
highly dependent on the mix design’s composition, mainly the Ca
content since the focus was mainly on high Ca systems. Thus, the effect
of this admixture on a low Ca system would be presented in this section.
In addition to the previously mentioned admixtures, zinc (Zn®*) species
were an element of focus due to its ability in creating a retardation
phenomenon in geopolymer systems [78]. Nevertheless, the use of Zn?*
species, in the form of Zn(NO3)2-6H20 (alternatively named Zn(NOz)>),
can delay the final setting time, which justified the use of K* species in
the form of KNOs to assist in early strength development and gel
hardening as recognized from previous studies [79]. However, it must be
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noted that nitrate ions (NOsz") can influence the system’s kinetics through
increasing the ionic strength in the systems and changing the cations’
structure size as elaborated by Desbats et al. [80] and Kinrade et al. [81].

The strategy here was to examine the effect of chemical admixtures, at
variant wt% of the total weight (solid & liquid phase combined), in a
granite-based mix design, using K>SiOz as a hardening phase. Chemical
composition of mix design is highlighted in Appendix 1. The mix designs
of studied samples are presented in Table 9*.

Table 9. Mix designs under study with different chemical admixtures
(Paper I)

Mix Design (wt. %)

Mix

Design Solid Liquid K(NO3) Zn(NO3)2 Sucrose Al203
Geo-Neat 66.23 33.77
Geo-Sp-1 66.23 33.77 - - 1
Geo-Sp-2 66.23 33.77 - - 2
Geo-Sp-3 66.23 33.77 - - 3
Geo-AP-1 66.23 33.77 - - - 1
Geo-AP-3 66.23 33.77 - - - 3
Geo-ZK 66.23 33.77 0.14 0.57
Geo-ZKS 66.23 33.77 0.14 0.57 3

6.1.1 Pumpability and Setting Time

Workability experiments were conducted at a BHCT of 50°C and
atmospheric pressure using an atmospheric consistometer. Starting with
sucrose, different concentrations have demonstrated a varying effect on
geopolymer mix design as presented in Figure 13. The slurry’s
workability progressed with the increase in wt% of sucrose in
comparison to the neat recipe. The best was attributed to Geo-SP-3 of 3
wit% of sucrose.

34
* A typo mistake exists in the mix design table in Paper (I,I1,111,1V,& V). The
correct liquid wt% is 33.77 %. A correction has been made throughout the
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The retardation effect of sucrose has been previously examined by Assi
et al. [76] where they concluded that sucrose can significantly affect the
incorporation between hardener and precursor by affecting the slurry’s
viscosity which enhances contact time between components and delays
setting time.
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Figure 13. Effect of sucrose on workability of mix designs (Paper 1)

Moving on to the effect of Al.O3 two concentrations were examined
1wt% and 3wt%, respectively. The effect of Al>Osz on workability is
presented in Figure 14. It can be observed that Al>Os acted as an
accelerator due to a decrease in Si/Al ratio, which demonstrated an
accelerating phase leading to almost no significant difference between
1wt% and 3wt%.

Furthermore, it was noticed that Zn(NOs). and K(NOz) mixture gave the
highest retardation effect in comparison to the neat mix design and to
other tested chemical admixtures as presented in Figure 15. However,
the addition of sucrose was conducted to study its synergistic effect to
reach even higher workability and to have an overview of how such
admixtures will behave together. Geo-ZK had around 170 mins of
workability while Geo-ZKS, the combination with sucrose, had around
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220 mins. Nevertheless, this combination may interrupt the formation of
gels to harden properly seeing the deviation in the setting time curve
towards the end of the test.
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Figure 15. Effect of Zn(NOs)2, K(NOs3), and sucrose combination on

workability of mix designs (Paper I)
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6.1.2 Fluid Loss and Viscosity

Fluid loss tests were conducted to all mix designs with the various
chemical admixtures; however, it was observed that for all samples they
had less than 1 ml of fluid loss in 30 mins, which indicated no significant
compromise by chemical admixtures to fluid-loss properties.

On the other hand, viscosity measurements had some variations in
measurements based on the data acquired in Figure 16. Geopolymer
slurries demonstrated a Bingham plastic behavior [82], where no clear
observation of changes with behavior was noticed as a result of adding
chemical admixtures. It was noticed that a reduction in viscosity was
observed in samples containing sucrose at higher shear rates between 200
and 500 1/s. Although ramp-up and ramp-down readings were recorded,
only the average values are presented in Figure 16 due to data abundancy.
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Figure 16. Effect of chemical admixtures on viscosity profiles (Paper )

6.1.3 Short-Term Mechanical Properties

Samples achieving the highest workability in every admixture category
were cured and their compressive strengths were measured after 1 and 7
days as presented in Figure 17. It can be observed that samples with
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Al;O3 (Geo-AP-3) achieved the highest compressive strength in
comparison to other mix designs. In connection to previous studies [16,
83], the reduction in Si/Al ratio and availability of a K* source in the
alkali solution developed the Young’s moduli of the matrix, hence
achieving better compressive strength measurements in comparison to
the neat sample (geo-Neat). On the other hand, the samples’ compressive
strength was reduced having sucrose (Geo-SP-3) and the combination of
sucrose, Zn(NOz3)2, and K(NO3) (Geo-ZKS) in comparison to the neat
sample (Geo-Neat). The reduction in compressive strength can be
associated to a poisoning mechanism triggered by the presence of
Zn(NOs)2 species [77, 78].
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Figure 17. Compressive strength measurements after 1 and 7 days of
curing (Paper 1)
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Since the focus was on finding retarders with the adequate workability
time, the combination between sucrose, Zn(NQOs)2, and K(NO3) (Geo-
ZKS) requires more investigation specifically the effect of temperature
and some tuning into concentrations introduced into the geopolymer mix
design. However, since low compressive strength was measured, it
seems that sucrose, although assisting in extending workability, induces
high poisoning mechanisms into the geopolymer system. Thus, effect of
temperature and concentration tuning would be investigated without the
addition of sucrose into the Zn(NOz)2 and K(NO3) mixture.

6.2 Performance of Zn(NO3), and K(NOs) — Focus on
Temperature Effect and Admixture Concentrations
(Paper I1)

After having examined the combination of sucrose, Zn(NOz)., and
K(NO3) (Paper 1) and concluding that sucrose can have a detrimental
effect by adding to the already existing poisoning phenomenon exerted
by Zn?* species, it was decided to proceed with Zn(NOs), and K(NO3)
alone to examine their effects separately on the mix design system. Some
adjustments have been made to the dry solid precursor blend to follow
up on the poisoning phenomenon noticed previously. The chemical
composition of the dry solid precursor blend is presented in Appendix 1.
Adjustments in the concentration of chemical admixtures where two
K/Zn ratios were tested and the effect of temperature was observed on
pumping time/workability, viscosity measurements, sonic strength
development, and compressive strength. Two temperatures were decided
upon to be the basis of comparison 50°C and 60°C BHCT. Samples were
cured for 1,3, and 7 days at BHST of 70°C and 80°C at a pressure of 14
MPa. Mix designs under study are presented below in Table 10. It must
be noted that Neat Class G cement was used as a benchmark reference,
only to observe the differences between geopolymer and already existing
OPC class. It must be noted that a different type of BFS was used in this
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study, due to challenges to acquire an identical batch of BFS from the
provider.

Table 10. Mix designs implemented in studying concentration and
temperature effect (Paper 1)

Sample Composition (wt. %)

Mix design Solid Liqguid K(NOs)  Zn(NOs)  K/ZnRatio

Neat Class-G 66 44

GEO-Neat 66.23 33.77 -

GEO-K 66.23 33.77 0.3 -

GEO-Zn 66.23 33.77 - 0.3 -
GEO-K/zZn -1 66.23 33.77 0.045 0.3 0.15
GEO-K/Zn -2 66.23 33.77 0.075 0.3 0.25
GEO-K/Zn -3 66.23 33.77 0.143 0.571 0.25

6.2.1 Slurry Properties: Workability and Viscosity
Measurements

The workability of different geopolymer mix designs can be observed in
Figure 18. The chemical admixture Zn(NOs). acted as retarders at both
operating BHCTs in comparison to the neat geopolymer slurry (Geo-
Neat) as what can be concluded from Table 11 where workability and
setting time measurements were recorded in mins for each mix design at
both operating BHCTs. Geo-Zn had a good performance in terms of
workability, but still setting time was a challenge. Thus, the
implementation of both Zn(NOz)2 and K(NOgz) was done in the efforts to
achieve longest workability with a relatively shorter setting time. The
start was with a K/Zn ratio of 0.15 and 0.25 (Geo-K/Zn-1 & Geo-K/Zn-
2) based on concentrations introduced to the mix design. Geo-K/Zn-1
had a higher workability in comparison to Geo-K/Zn-2, however a longer
setting time as well which can be attributed to the effect of Zn(NO3)2 in
poisoning the polycondensation phase. Thus, in efforts to increase
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workability to match with Geo-Zn, the concentrations of Zn(NO3). and
K(NOs3) was doubled while maintaining a K/Zn ratio of 0.25 which in
principle created a balance between Zn(NOs). effect and K(NO3). It can
be argued that the addition of K™ species created the effect of shortening
setting time due to the availability of access K* ions which in turn
assisted in the polycondensation phase of reaction where hardening and
gelation of slurry initiates [79, 84]. In addition the presence of NO3™ ions
can affect the polycondensation step of the Geopolymeric gel formation
through affecting reaction Kkinetics and cation size formed [80].
Noticeably the Geo-Zn and Geo-K/zZn-3 had similar workability
measurements at BHCT of 50°C, however Geo-K/Zn-3 had a much
better setting time of 13 mins.

Increasing the temperature have demonstrated an acceleration effect on
all mix designs. Siyal et al. [85] examined the effect of temperature on
setting time of fly ash based geopolymer using the Taguchi method. They
concluded that the solubility of solid precursor decreases at low
temperatures which in turn decelerates the dissolution and
polycondensation phases of the reaction. However, higher temperatures
ranging between 60-80°C lower workability since higher amount of Si
and Al molecules are released into the reaction which explains the short
setting time detected in mix designs at BHCT of 60°C.
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Figure 18. Consistency profiles of mix designs measured at BHCT of
50 and 60°C and ambient pressure (Paper I1).

Table 11. Workability and setting time measurements at 50 and 60°C
(in mins) (Paper I1)

BHCT 50°C BHCT 60°C

Mix Design Workability Set_ting Workability SeFﬁng
Time Time

Neat Class-G 175 33 112 31
GEO-Neat 70 1 53 2
GEO-K 70 2 60 2
GEO-Zn 277 52 113 8
GEO-K/Zn -1 210 18 65 2
GEO-K/Zn -2 103 3 57 1
GEO-K/Zn -3 277 13 147 4

The best performing mix design, in terms of workability and setting time,
in this case Geo-K/Zn-3, was picked for further analysis in comparison
with Neat Class-G OPC and neat geopolymer slurries (Geo-Neat).

42



Results and Discussion

Viscosity measurements presented in Figure 19 show a non-Newtonian
fluid behavior exhibiting a Bingham plastic fluid behavior while Neat
Class-G presented a Herschel-Bulkley type shear thinning behavior [82].
However, noticeably no significant changes were observed on
geopolymer sample Geo-K/Zn-3 although changes in temperature and
addition of admixtures were implemented in comparison to its
counterpart (Geo-Neat).

Viscosity Profile
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Figure 19. Viscosity measurements of Neat Class-G, Geo-Neat, & Geo-
K/Zn-3 (1) at 50°C BHCT;(2) at 60°C BHCT (Paper II)

To more elaborate on the viscosity measurements, zeta potential for
chemical admixtures was conducted and presented in Table 12. The
measurements were performed and evaluated in accordance to a pervious
study conducted by Varenne et al. [86]. It has been observed that both
Zn(NOs)2 and K(NOs) zeta potential measurements were below +25 mV
which indicated no significant dispersion effect of the chemical systems
while these particles were in suspension.

43



Results and Discussion

Table 12. Zeta Potential measurements for chemical admixtures

Zn (NOs)2 (0.1 wt%o) K(NO3) (0.1 wt%)
Sample no.
ZP (mV) ZP (mV)
1 -5,45 -19,87
2 -1,59 -21,3
3 -2,76 -19,4
Average -3.27 -20.19

6.2.2 Mechanical Properties and Strength Development

Compressive strength of selected mix designs is presented below in
Figure 20. As observed, the strength development of geopolymer slurry
at 80°C had a significant increase after 1 day, however the progress slows
down after 3 days. According to Villarreal et al. [87] temperatures higher
than 60°C can affect the formation of a complete oligomerization and
polycondensation phases, which in turn affects the completion of the
geopolymer matrix. Thus, this can be one reasoning to explain why at
80°C the compressive strength of geopolymer samples (Geo-Neat &
Geo-K/zZn-3) were close to their counterparts cured at 70°C with a
difference in compressive strength of around 5 MPa to each sample.
These results were also supported by findings by Bakri et al. [88] where
they cured fly ash-based geopolymer at temperatures ranging from 50°C
to 80°C and the highest compressive strength was obtained with samples
cured at 60°C. Alternatively, in the mix designs at hand, it was not
noticeable the effect of poisoning influenced by the addition of Zn(NOz3)
which in turn raised the request for deeper understanding of the role of
K™ or (NO3) which acted as a counter for the poisoning by fastening the
reaction rate in the polycondensation phase of the reaction as described
in previous studies [89].
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Figure 20. Compressive strength measurements after 1, 3, and 7 days of
curing (Paper 1)

Further analysis was conducted on mechanical properties to observe the
effects of Zn(NOz3). and K(NOg), in addition to the increase in curing
temperature, on geopolymer slurry. Nondestructive strength
development was measured to determine the starting time of strength
development. Since sonic strength development equipment are designed
for cement slurries, a correlation was developed from compressive
strength results (Figure 20) which can be found in Appendix 2 (Figure
46). The sonic strength results are presented below in Figure 21. It can
be observed that temperature had a significant effect to have a faster
strength development since at 80°C geopolymer samples started
developing strength at around 1 hr while at 70°C strength development
time was between 2 to 4 hr. On the other hand, the effect of K(NOs) in
fastening polycondensation phase was also recognized in strength
development where Geo-K/Zn-3 samples, cured at both temperatures,
were able to develop strength faster than Geo-Neat.
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Figure 21. Sonic strength development measurements of (A) Neat
Class-G; (B) Geo-Neat; (C) Geo-K/Zn-3 (Paper II)

To conclude, Zn(NO3). and K(NOz) as chemical admixture exhibited
superior properties for geopolymer systems which in turn triggers an
interest in conducting more in-depth analysis of mechanical strength,
hydraulic sealability, microstructure, and crystallography which leads
eventually to the analysis of reaction mechanism and behavior.

6.3 In-Depth Analysis of Zn(NOs3). in Geopolymer
Slurries — Effect on Slurry properties, Mechanical
Properties, and Microstructure (111)

To elaborate in-depth on the impact of utilizing Zn(NO3), and K(NO3)

as chemical admixtures in geopolymer systems, it was of great

importance to examine the manner these admixtures affect other
properties from sealability and mechanical properties to microstructure
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and crystallography. Extensive tests were performed in multiple curing
periods of 1, 3, 7, 14, and 28 days to monitor the behavioral changes in
the bulk matrix. This highlighted behavioral changes in intermediate
stages of strength development and in turn exposed the material for
relatively longer curing times in comparison to the work done in previous
sections. In this section, the chemical composition was slightly differed
from the previous section 6.2 due to uncontrollable changes in the BFS
source from the supplier at the time Paper Il was produced. The
composition can be examined in Appendix 1. The mix designs’
nomenclature and composition is presented in Table 13. The mix designs
were tested and conditioned at a BHCT of 50°C, and were cured at BHST
of 70°C for 1, 3, 7, 14, and 28 days at a curing pressure of 14 MPa. The
slurry properties of the tested mix designs quite similar to the ones
mentioned in section 6.1 and 6.2, thus to avoid repeatability of
information this section will focus on tests linked to operation and
repeatability, in addition to mechanical and microstructural analysis.

Table 13. Mix designs under study (Paper 1)

Sample Composition (wt. %)

Mix . - K*/zn?
design Solid Liquid Total water K(NOsz) Zn(NOsa): Ratio

Geo-Neat 66.23 33.77 22.13 - - -
Geo-Zn/K  66.23 33.77 22.13 0.075 0.3 0.25

6.3.1 Slurry Properties: Repeatability and On-Off Test

To guarantee that the mix designs with Zn(NOs)2 and K(NOs) have
reproducible results several tests have been conducted in addition to the
original tests. The results are presented below in Figure 22. The
measurements were carried in an HPHT consistometer under the same
conditions using the same source of raw material. The results highlight
minor overall differences in consistency and setting time. The relative
standard deviation was calculated based on differences in the time when
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the slurry reaches 40 Bc where it was concluded that the deviation was
around 5.13%. It was noted that although results were reproducible,
however special care must be considered to the setting time profile
(slurry going from 40 to 70 Bc) where some higher deviations can take
place.
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Figure 22. Repeatability tests for retarded mix design at BHCT of 50°C
and 14 MPa (Paper 111)

In addition to repeatability tests, on-off tests have been conducted as well
to mimic pause of circulation in field operations where two stops were
made by shutting down the HPHT consistometer’s motor, thus halting
the shearing of the sample. Two stops were made, the first for 60 mins
while the second was for 30 mins with a 20 mins difference in between.
The results are presented in Figure 23. It was observed that the slurry
quickly regained its natural consistency at the allocated testing time and
quite close to the consistency measurement to the original test. This
forwards a good figure of geopolymer applicability in the field where, in
this case, the chemical admixtures maintained their role although
interruptions were introduced to the system.
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Figure 23. On-Off test of mix design at BHCT of 50°C and 14 MPa
(Paper I11)

6.3.2 Effect of Zn(NO3), and K(NOs) on Mechanical
Properties and Hydraulic Sealability

The compressive strength was measured up to 28 days and is presented
in Figure 24. It can be observed that generally geopolymer samples
increase in compressive strength over curing periods under confined
temperature and pressure. However, it was evident that up to 14 days the
poisoning effect of Zn(NOs)2 was obviously dominating Geo-Zn/K, but
a slight increase has been recorded after 28 days in comparison to Geo-
Neat. This indicates that the poisoning effect of chemical admixtures has
a specific time window which afterwards becomes depleted, and the
admixture completely incorporated into the geopolymer matrix.
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Figure 24. Compressive strength of mix designs cured at 70°C and 14
MPa up to 28 days (Paper I11)

The tensile strength on the other hand, presented in Figure 25, had no
clear indication of the manner Zn(NO3). and K(NOs) affected the tensile
strength development up to the 28 days curing period. As a general
observation, the tensile strength in both samples had close results
indicating that the bulk matrix required modifications in chemical
composition, either in terms of solid precursors or chemical admixtures,
to uplift its performance. However, examining the Young’s modulus in
Figure 26, it was observed that tested mix designs had a low Young’s
modulus up to 28 days, which indicates increase of elasticity. Hence, this
increase in elasticity contributes to the decrease in compressive and
tensile strength properties in cementitious material [90].
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Figure 25. Tensile strength measurements of mix designs cured up to
28 days (Paper I11)
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Figure 26. Young’s modulus developed from compressive strength data
for mix designs up to 28 days

Furthermore, hydraulic sealability was examined to test the material’s
ability to maintain sealability and zonal isolation properties. The test was
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performed after curing for a period of 7 days under BHST of 70°C and
pressure of 14 MPa. The results are presented in Figure 27. Fluctuations
in flow rate can be observed in the early stages of testing due to
differential pressure already existing between the pressure inside the test
apparatus and the water pump. Flow was detected at a pressure of 1.5
MPa, however it is observed that a rapid increase was detected with Geo-
Neat sample in comparison to a slow build up flow in Geo-Zn/K. This
highlights a resistance by the bulk matrix to leakage occurring within.
Carter et al. [91] highlighted the role of Zn(NOs)2 species as an
expansive additive to cement which triggers a gas forming mechanism,
mainly hydrogen, leading to an expansion effect in the bulk matrix while
curing. The gas formation mechanism utilizing Al molecules which in
turn are heavily available in geopolymer systems. In addition, following
on Carter et al. [91] findings, the conditions of the reaction occurring
from temperature, chemical composition, and pressure seem to have
been in favor of triggering an expansion mechanism.
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Figure 27. Hydraulic sealability results after 7 days of curing (Paper I11)
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6.3.3 Effect of Zn(NO3), and K(NOs3) on Crystallography
and Microstructure

Phase changes present a valuable opportunity to examine alterations on
minerology of material and inspect formation of foreign components
which in turn can elevate or deteriorate properties of mix designs. XRD
patterns for Geo-Neat and Geo-Zn/K are presented in Figure 28.
Composition of available minerals is mentioned in Table 14. Samples
were dominated by quartz and various species of albite, microcline,
biotite, chamosite, and calcium zinc silicate available in a minor phase.
These findings align with the work of Khalifeh et al. [92] done on rock-
based geopolymers where quartz was found as a major phase and albite,
in addition to microcline, was found as minor phases and not clearly
detectable. Yet, the availability of albite and microcline benefits the
development of zeolite phases which in turn explains the highly
crystalline pattern obtained [92]. The zeolite formation have attributed
to the development of compressive strength throughout the curing period
since a relation between favorable reaction terms and composition can
be established aiding the reaction [93]. On the other hand, the detection
of calcium zincate phase at peak 27.8° leads on the probability of
Zn(NOs)2 species’ interaction with Ca molecules contributing to
poisoning phenomenon inhibiting the reaction and causing retardation
and weakening strength development. In literature, the main detected
phases of Zn was in the form of zinc oxide (ZnO), but that was highly
dependent on the nature of Zn additive utilized [55, 78]. Though a
detection of calcium zinc silicate was present, nevertheless it was quite
minor to be a conclusive finding. The weak presence of such peaks
corresponded to the already limited amount of Zn(NOs)2 species (0.3
wt%) available in the mix design but still more in-depth analysis is
required to understand the formation of these complex minerals and their
corresponding chemical reactions. Last, the present compounds linked
directly to the addition of K(NO3) species was not clearly foreseen on a
phase change level, which raises interest in adapting to a different set of
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characterization techniques or eliminating its presence and handle the
consequences on setting time by adjusting the chemical composition of
solid precursors or the addition of chemic admixtures that can act as a
delayed accelerator.

Table 14. Mineral composition available in XRD patterns of Geo-Neat
and Geo-Zn/K (111)

Mineral Chemical Composition Label
Quartz SiO2 Qz
Albite NaAlSizOs Alb
Microcline KAISizOs Mic
Chamosite (Fe?*,Mg,Al,Fe®*)s(Si,Al)4010(OH,0)s Ch
Biotite K(Mg,Fe)3(AlSiz010)(F,0H)2 Bio
Calcium Zinc Silicate CaZnSiz0s cz
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Figure 28. XRD patterns of Geo-Neat (A) and Geo-Zn/K (B) up to 28
days of curing (Paper 1)

Furthermore, SEM imaging was performed to mix designs throughout
the curing period. The images for Geo-Neat and Geo-Zn/K are presented
below in Figure 29 and Figure 30, respectively. From the images it can
be observed that unreacted particles (indicated in red arrow) became
more incorporated into the bulk matrix and continue to react where it
eventually depleted and formed a homogeneous structure as reported in
previous geopolymer studies [17, 92]. Once more, like XRD patterns, the
direct impact of Zn(NO3z)2 and K(NOsz) was not clearly detected from
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SEM imaging. Thus, mapping imagery was conducted trying to get an
overview of the overlapping spread of elements, in more particular Zn
and Ca, following the point of interest starting from calcium zinc silicate
phase detection in Geo-Zn/K. Mapping imagery at different curing
phases is presented in Figure 31. The distribution of elements was
overlapping with very low concentrations for Zn. Still the formation of
Ca-Zn phases cannot be verified 100%. However, it questions the
reaction mechanism Zn(NOz)2 species was undergoing and whether this
interaction with Ca was the main effect imposed by Zn(NOs). or whether
there was an interaction with the main reaction phases of Si and Al to be
uncovered. This would necessitate the incorporation of new chemical
reaction analysis techniques with a much-advanced approach to analyze
the mechanistic behavior of Zn?2* species, which in turn would reveal the
real nature of this poisoning phenomenon for curing.
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Figure 29. SEM results of Geo-Neat at (A) 1 day; (B) 3 days; (C) 7
days; (D) 14 days; (E) 28 days; Unreacted particles (red arrow) and
binder formation (yellow arrow) (Paper I11)
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Figure 30. SEM results with range of 1 pum of Geo-Zn/K at (A) 1 day;
(B) 3 days; (C) 7 days; (D) 14 days; (E) 28 days; Unreacted particles
(red arrow) and binder formation (yellow arrow) (Paper I11)
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Figure 31. EDS-mapping analysis of of Zn and Ca for Geo-Zn/K for
samples cured for 1,14, and 28 days (Paper I11)

6.4 Mechanism of Reaction for Zn(NOz)2 Species in
Geopolymer Systems (1V)

In the previous sections, the effect of chemical admixtures on physically
observed properties whether workability or mechanical and
microstructural properties was discussed. However, limited findings can
be concluded regarding the effect of chemical admixtures on the reaction
path. Observations from Paper 111 indicate no clear/solid reasoning could
be concluded regarding the behavior of these admixtures, specifically
Zn(NOs)2 ,on the reaction path and its working mechanism. Many
reasonings can be attributed to these challenges such as the very small
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amount of Zn(NOs). utilized, the complexity of the mix design system
under study (minerology) and the nature of characterization techniques
used for identification (such as XRD). Such challenges motivated the
search of characterization techniques and methods that can eliminate the
complexities of the system and simultaneously acquire accurate
detection of reaction path with methods confirming the prior techniques
used.

Zinc can exist in different forms and species some of which are soluble,
and some are insoluble in water. Soluble Zn species such as zinc sulfate
(ZnS04) and zinc chloride (ZnCly). The solubility of zinc depends on a
variety of factors such as the pH of the solution, temperature, and
presence of other dissolved compounds. For instance, at low pH values,
Zn tends to be more soluble, whereas at high pH values, it tends to form
insoluble hydroxide (OH") species [94]. Thus, the strategy would be to
examine the behavior of Zn?* ions, from Zn salts such as Zn(NOs)2,
under the current system’s pH so that a more inclusive conclusion can be
made of the nature of reaction. Furthermore, the behavior of Zn?* ions
must be considered in its interaction with a Si & Al rich system. In
previous studies, it was claimed that ZnO dissolves into Zn?* and
attaches itself to Ca?* ions forming calcium zincate of which it was
speculated that Zn?* influenced the polymerization phase of the reaction
[78, 95]. However, the fact that ZnO reacts with OH" in alkali medium
to form Zn(OH)2 has been well documented in the literature which
contradicts the proposes claim above [96, 97] . Nevertheless, to shed
some light on the Zn?* behavior in the system, the interaction with Q%*
sites of SiO4” must be examined as the link to these sites was previously
touched up on by Oretgo et al.[98].

In this section, retarding mechanism of Zn(NOs)> was examined using
density functional theory (DFT) calculations and confirming the reaction
path by Raman Spectroscopy. Due to the geopolymer system’s
complexity, a lab-controlled system was created to maneuver the mineral
complexity of precursors and pure lab-grade chemicals were used to
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mimic the chemical composition of the original granite-based mix
design, presented in Table 15, respectively. The details of the lab-
controlled samples, composition, and type of chemical replacements are
mentioned in Appendix 3 (Table 22, Table 23, & Table 24).

Table 15. Mix design of lab-controlled samples (Paper V)

Mix design components (Wt%6)

Mix . L Number of molecules of
Design Solid Liquid Zn(NO:s): 712+
CNT-0%Zn 66.6 33.3 - -
CNT-1%Zn 66.6 33.3 1 1.21 x 10%

6.4.1 Density Functional Theory (DFT) Calculations:
Isolation of Si, Al, & Zn molecules

The calculations of Gibbs free energy of reaction for dehydration
reaction were based on the two dehydration reactions presented in Figure
32. These reactions were considered in this study due to the highly
alkaline medium used producing the geopolymer system understudy (pH
between 13 to 13.5).

HO\

O_ o _OH

(A) hor ST Al * RO
{ “oH

& N HO HO

Si—OH + A —

g HO”S “OH 0° HO

OH HO | |
(B) SIOH + H0 + Al

HO OH HO OH

Figure 32.(A) Dehydration reaction with condensation ;(B)
Dehydration reaction without condensation of the reactant species
(Paper 1V)

Through conducting DFT calculations based on the assumed dehydration
reactions, fifteen reactions were concluded, and their Gibbs free energy

61



Results and Discussion

(ArG) was calculated. Findings are presented in Table 16. The results
suggest that the reaction driving force was associated with the formation
of Al-O-Si linkage in the oligomer species and [(OH)sAI-O-Si(OH)3] .
In addition, DFT calculations foresee the formation of Zn-O-Si linkage
(reactions 5-9) which were favorable in terms of Gibbs free energy.
However, the dehydration reactions seem to be only favorable with the
presence of [Zn(OH)4]> .

Table 16. Dehydration reactions and their associated Gibbs free energy
(in kcal mol™) based on ®B97X-D/6-311 + G(3df.2p)//6-31 + G(d.p)
level of theory (Paper 1V)

Condensation ArG
(1) [AI(OH)4]" + Si(OH)4 — [(OH)3AI-O-Si(OH)s]~ + H20 -11.0
(2) [AI(OH)4]~ + 2Si(OH)4 — [(OH)2AI-(O-Si(OH)3)2]~ + 2H20 -20.4
(3) [AI(OH)4]" + 3Si(OH)s — [(OH)AI-(O-Si(OH)3)s]~ + 3H20 -30.5
(4) [AI(OH)4]" + 4Si(OH)s — [Al-(O-Si(OH)3)4]” + 4H20 -38.7
(5) [Zn(OH)3]" + Si(OH)4 — [(OH)2Zn-0-Si(OH)s]~ + H20 -75
(6) [Zn(OH)3]~ + 2Si(OH)s — [(OH)Zn—(0-Si(OH)3)2]~ + 2H20 -18.2
(7) [Zn(OH)s]~ + 3Si(OH)4 — [Zn—(0O-Si(OH)3)s]~ + 3H20 -26.9
(8) [Zn(OH)a]> + Si(OH)a — [(OH)3Zn-0-Si(OH)3]*~ + H20 -18.9
(9) [Zn(OH)a]* + 2Si(OH)4 — [(OH)2Zn—(0-Si(OH)3)2]*>+ 2H20 -36.0
Dehydration
(10) [AI(OH)4]~ + Si(OH)4 — [Al(OH)3] + [Si(OH)30] + H20 +35.0
(11) [Zn(OH)s]~ + Si(OH)4 — [Zn(OH)2] + [Si(OH)s0] + H20 +1.5
(12) [Zn(OH)4)* + Si(OH)4 — [Zn(OH)3]~ + [Si(OH)30] + H20 -13.3
(13) [AI(OH)4]~ + [(OH)3AI-O-Si(OH)3]- — [AI(OH)3] + [(OH)3AI-O-Si(OH)20]* + A5
H20 '
(14) [Zn(OH)s] + [(OH)sA-0-Si(OH)s]” — [Zn(OH)z] + [(OH)sA-O-Si(OH):01* + 1, o
H20 '
(15) [Zn(OH)4]* + [(OH)3AI-O-Si(OH)s]~ — [Zn(OH)3]~ + [(OH)3Al-O-Si(OH)20]* + 38

H20

The optimized structures and their Gibbs free energy profiles of reactions
(1), (8), and (12) are presented in Figure 33. In this model, condensation
reactions from Al and Zn species were defined by mechanism analogous.
These reactions were interlinked through the allure of hydrogen
molecules between Si(OH)s and the available OH groups from either
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[AI(OH4)]™ or [Zn(OH3)]". Afterwards, these reactions release H.O
through the reactants’ ([AI(OH4)]” or [Zn(OHs)]") condensation into
[(OH)3AI-0O-Si(OH)s]™ and [(OH)2Zn—-0O-Si(OH)3] . From Figure 33 it
can be observed that reactions (1) and (8) progress into a TS sited at 16.4
and 2.1 kcal mol™? higher than the reactant’s energy. This revealed a
steric hindrance at the TS structures which can create different
geometrical deformation as the case between [Al (OH4)]  and
[Zn(OH3)]™ where the first had a larger deformation in comparison to the
later one. Moreover, the Int ([Zn(OH3z)(OHy)...0Si(OH)s]*") formed as
a result of reaction (12), happened with no significant registered barriers
of which Si(OH)s undertakes a hydrogen preoccupation process by the
OH group originating from [Zn(OH4)] . Later, this Int phase can either
undergo a fragmentation process which yields products of [Zn(OH)s],
[Si(OH)30]" , and H20; or it can condense to yield [(OH)3Zn—O-
Si(OH)3]> and H0. These calculations highlight that reactions
involving [Zn(OH4)]* anions were more feasible in terms of
thermodynamics and kinetics in comparison to other available anions in
the reaction.
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Figure 33. Optimized structures and their Gibbs free energy profiles.
The Gibbs energy values (in kcal mol™) for each reaction profile were
relative to the reactants (Reac). Structures of the transitions state (TS)
and intermediate (Int) calculated at the ®B97X-D/6-31 +G(d.p) level of
theory. Some relevant bond distances (in A) were included in the
structures. (Paper V)

6.4.2 Raman Spectroscopy: A Verification of Reaction
Mechanism from Density Functional Theory
Calculations

Raman spectroscopy was carried out simultaneously with DFT
calculations to comprehend the conclusions from the stated model. The
use of controlled lab-samples proved highly reliable specially in
removing the fluorescence effect of some the elements available in the
granite-based geopolymer. Raman spectroscopy results are presented in
Figure 34. The results concluded from DFT calculations (Figure 33)
suggests Zn?* species can trigger the formation of SiOs-Q? species via a
barrierless TS, which in turn will lead to higher formation of Q2 species
compared to samples without Zn?* species. Here, Raman spectroscopy
was utilized to provide evidence for this phenomenon where it can be
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noticed from Figure 34 (A) and Figure 34 (B) that the sharp peaks at
1051 cm™ and 1048 cm’, respectively, were associated to Si-O-
vibrations where O denotes a non-bridging O to the Q?sites [99]. One
important observation to note is that the Q* bands have increased as the
reaction progresses which indicates an OH" attaches on the Si network
which produces increased amounts of unbounded O molecules into the
system. To emphasis on the effect of Zn(NO3)2, it can be observed from
Figure 34 (C) that the Q3 peak have shifted to 1048 cm™ which was a
consequence of the charge transfer from Zn(OH)4? to SiO4 which in turn
weakness the Si-O bonds. The effect can be observed much clearly in
Figure 35 where higher rate of Q3 formation was detected because of
adding Zn?* species.

The unraveling of possible reaction pathway for Zn?* species in the
geopolymer system under study can help in unraveling other reaction
mechanisms occurring in the system. This understanding would take the
incorporation of chemical admixtures, with different roles, to the next
level by considering how these different admixtures would behave
together in a high pH medium. This would be discussed in the next
section.
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Figure 34. Raman spectra of tested samples (A) CNT-0%Zn; (B) CNT-
0%2Zn; (C) Overlay of Raman spectra of CNT-0%2Zn and CNT-1%Zn at
t = 10 min (Paper 1V)
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6.5 Calcium and Sodium as Potential Strength
Development Agents (V)

Geopolymers utilized in high temperature applications dictate the use of
retarders to ensure sufficient time to have the slurry pumped into the
wellbore, in addition to the required safety margins. However, since the
use of retarders will highly influence the bulk matrix, in the form of
poisoning phenomenon, and the material may have a delayed strength
development phase, which is not likeable from an operational
perspective. Therefore, the idea of using strength development agents or
delayed accelerators, in efforts to minimize the poisoning mechanism as
much as possible, was implemented using Ca?* and Na?* species in the
form of CaCOz and NaOH, respectively [65]. A combination of both
elements was used to assist the bulk matrix in early strength development
cured under a BHST of 80°C. Slurry and mechanical properties were
examined to learn the effects of strength development agents on the
geopolymer matrix. The mix design nomenclature and composition are
presented in Table 17.
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Mix Molar

Results and Discussion
Table 17. Mix Design Composition (Paper V)

Design Solid| Liquid Ratio K(NO3) Zn(NO3)2 NaOH CaCOs
Geo-Neat 66.23 33.77 2.4 - - - -
Geo-
Retarded 66.23 33.77 2.4 0.3 11 0.07 0.4
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6.5.1 Impact of Strength Development Agents on Slurry
Properties

At a BHCT of 60°C, more Zn(NOs)2 must be utilized to ensure adequate
workability and setting time because of the effect of high temperature on
setting time (Paper I1). However, with this increase, a deterioration in the
slurries ability to undergo a rather solid polycondensation phase can be
observed in Figure 36. As presented, above 40 Bc the slurry faces a
challenge in developing strength quickly, which indicates that the
Zn(NO:3). effect was overcoming the role of CaCOz and NaOH at this
phase of study.
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Figure 36. Consistency measurements of mix designs (Paper V)

6.5.2 Mechanical Properties: Efficiency of CaCO3; and
NaOH

In terms of strength of cured slurries, it was observed from Figure 37 that
the retarded sample (Geo-Retarded) was heavily affected in comparison
to the neat sample (Geo-Neat) after 1 day of curing. The situation
changed after 3 days, where the retarded sample starts to regain strength
and relatively match with neat sample while continuing with the same
trend up to 7 days. Thus, the strength development agents did not provide
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superior properties, but they managed to reduce the effect period of the
poisoning mechanism imposed by Zn(NOgz)2 species and reduced the
poisoning time from 14 days to 7 days as was previously observed in
paper I11. It was suspected that the presence Ca?* could yield some C-S-
H gel phases through integrating into the bulk matrix, while Na* presence
increased the count of Si monomers, through higher dissolution, which
in turn gave the combined effect of altering the poisoning effect and
reducing its lifespan in the bulk matrix [100-102]. However, no major
strength development can be attributed to C-S-H gel phases in this case
since, according to Puligilla et al. [103], C-S-H gels inhibit/delay the
formation of K-A-S-H gels, the building blocks of geopolymer matrix,
which can contribute highly to the strength development of the bulk
matrix.
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Figure 37. Compressive strength of mix designs of samples after 1, 3,
and 7 days of curing (Paper V)

70



Results and Discussion

Although, having strength development agents would make one expect
a sharp increase in the sonic strength development profiles (correlation
for sonic strength in Appendix 2 (Figure 47) throughout curing time,
however Figure 38 highlights a dip in strength development at the time
after 2-3 days of curing. These dips were suspected to be the influence
of molecular organization occurring in the inner structure which in turn
widens the gap between molecules and results in increase in transit time.
Still more investigation must be performed to guaranty the hypothesis’s
accuracy since the material achieved similar compressive strength after
3 days in comparison to the measurements after 1 day.
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Figure 38. Sonic strength measurements of mix designs (A) Geo-Neat;
(B) Geo-Retarded (Paper V)

The tensile strength of mix designs turned out quite different from
compressive strength measurements in terms of trend of development
throughout the curing period as presented in Figure 39. It cannot be
accurately foreseen of why such trend appeared and what parameters

71



Results and Discussion

surround its existence due to the low measured values and the high
probability in error measurement, which no solid conclusion can be
drawn.
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Figure 39. Tensile strength of tested mix designs samples after 1, 3, and
7 days of curing (Paper V)

6.6 Developing Geopolymer Mix Designs — Applicable
from Low to Elevated Temperature (VI)

One aspect of developing cementitious material was not only to

investigate the chemical admixtures that may be added to a dry blend but

examine the parameters that surround the dry blend and modify the
composition to be suitable for multiple ranges of applications. Like OPC,
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the development of different blends for geopolymer material for the oil
& gas industry can fasten the development of material and reduce
operational cost by reducing the use of external chemical admixtures in
the field.

In this section, three mix designs were developed and examined under a
range of temperature from 5°C to 60°C of BHCT. The main difference
was in the composition of mix designs where it was adjusted using CaO
added to the dry blend mixture. The focus was on developing three
classes of dry blends to meet applications of well cementing at shallow,
intermediate, and production section of wellbores. These classes were
catalogued based on their performance under the proposed conditions in
Table 18 where the pressure and temperature were linked to the True
Vertical Depth (TVD) to make the approach as close to North Sea field
conditions. The chemical composition of mix designs under study can be
found in Appendix 1 (Table 21). The mix design components and density
(SG) are presented in Table 19.
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Table 18. Mix designs and their allocated operational conditions (Paper

VI)
Mix Design TVD (m) Pressure (MPa) Temperature (°C)
350 4.5 5
530 55 10
M.D A
670 6.5 15
800 8.0 20
920 9.5 25
M.DB 1,090 115 30
1,370 14.5 40
1,655 175 50
M.DC
1,941 20.0 60

Table 19. Mix design composition under study (Paper V1)

Slurry Design (wt. %)

Mix Densit . KOH . Solid/Liquid
Design (SG)V Solid  Ca0 ' K:OSiOz Ratig
M.D A 1.88 69.5 3 305 } 2.28
M.D B 1.88 69.3 1 30.7 ; 2.26
M.DC 1.98 66.7 - ; 333 2

6.6.1 Slurry Properties — Workability and Rheology

A main determining factor for the applicability of each mix design is
workability/setting time. Measurements have been done relative to the
assigned conditions (Table 18) as presented in Figure 40. It can be
observed how temperature was a determining factor in the applicability
of each mix design considering the setting time of each mix designs. The
addition of CaO at low temperatures was highly beneficial to the
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hardening of mix designs, at low temperatures, which facilitated the
development of a hard structure [104, 105]. If the mix design can achieve
hardening state, having an extended workability is an advantage that can
reduce the use of chemical admixtures and allow fewer complex
modifications to slurry properties.
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Figure 40. Workability measurements of (A) M.D A, (B) M.D B, and
(C) M.D C (Paper VI)
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Due to the sensitivity of some mix designs, viscosity ramp-down
measurements of all mix designs are presented in Figure 41. It was
noticed that with an increase in temperature, the slurry’s viscosity was
reduced due to the higher kinetic energy undergoing the reaction as seen
with M.D A [106]. However, the other mix designs had an opposite trend
with increasing temperature which can be attributed to the acceleration
of material while the test was undergoing as in M.D B-40 and M.D C-
60. These results were interlinked with the workability measurements
where some mix designs were not pumpable more than one hour.
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Figure 41. Viscosity measurements (Ramp-Down) (A) M.D A, (B)
M.D B, and (C) M.D C (Paper V1)

Furthermore, these mix designs had a thixotropic behavior as observed
from Figure 42 where the mix designs were examined at temperatures
which separate their classification. The area between the curves present
a thixotropic behavior of slurry [107]. These effects were linked to
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chemical composition nature and the operating temperature tested upon,
where this is seen as a positive behavior in slurries which can reduce
fluid loss issues during operations [108].
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Figure 42. Ramp-up/down curves of mix designs at their intermediate
temperatures (Paper V1)

6.6.2 Mechanical Properties: Variations Depending on
Composition and Temperature

The compressive strength of mix designs is presented in Figure 43, where
samples have been tested after 1 and 7 days of curing at the allocated
operational temperatures. Noticeably, the mix design at low
temperatures, M.D A, was able to develop strength although being at
unfavorable conditions for reaction. Temperature has always been
considered an important parameter to have a complete reaction, which in
turn results in higher mechanical strength. In this case, M.D A has
benefited from the higher Ca content in its composition where it
contributes to achieving a high extent of reaction and leads to higher
strength in the bulk matrix [109]. Furthermore, it was perceived that M.D
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B-40 had the highest performance at 1 and 7 days of curing. This
indicates that not only chemical composition, but also the
thermodynamic parameters surrounding this reaction have all favored the
reaction phases and resulted eventually in the highest compressive
strength. This reasoning has been touched upon previously by Provis et
al. [110] where they highlighted how at 40°C the kinetics of geopolymer
reaction were highly favorable. Moving on to M.D C, it was noticed how
although higher temperatures were utilized in curing, however, the
compressive strength achieved was not the highest in those terms. This
indicates that temperature alone was not enough to maintain/develop
superior mechanical properties. The need for a firm balance between
composition and the effect of thermodynamic parameters can result in
achieving a reaction where its kinetics were more favorable, thus
producing a highly developed reaction.
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Figure 43. Compressive strength measurements of mix designs from 5
to 60°C (Paper VI)

6.6.3 Crystallography of Mix Designs

A comparative approach was performed to analyze the changes
occurring in the solid precursor post reaction phase. To that end, the dry
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blend of mix designs and the mix designs’ outcome was analyzed using
XRD and presented in Figure 44 & Figure 45 respectively. The mix
designs M.D A, M.D B, and M.D C were cured for 7 days at 20, 40, &
60°C, respectively. Starting with the dry blend (Figure 44), it was
observed that peaks of illite (IL) were consumed post reaction, whereas
peaks of quartz (Qz), albite (Alb) and microcline (Mic) were consistent
in their presence. However, it was noticed that no C-S-H peaks from the
Ca content in M.D A and M.D B were visible. Still interestingly, the
quartz peak of M.D B in Figure 45 shows higher consumption after 7
days in comparison to M.D A and M.D C. This runs along the
observations of M.D B performance in compressive strength where M.D
B-40 had the highest compressive strength throughout the curing periods.
This is an additional indication that the chemical composition of M.D B
and the allocated operational temperature have yielded favorable
conditions for the geopolymer formation reaction.
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Figure 44. Crystallography of solid precursors mix of of M.D A, B, &
C (Paper V1)
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Figure 45. Crystallography of M.D A, M.D B, and M.D C after 7 days
of curing at 20, 40, & 60°C respectively (Paper V1)
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7. Summary and Conclusion

7.1  Summary

Chemical admixtures for granite-based geopolymers have been
developed and studied under a variety of operational conditions. Slurry
properties from consistency to viscosity and mechanical properties from
mechanical strength to microstructure were examined. A variety of
chemical admixtures have been tested where Zn(NOz)> and K(NOz3)
achieved the best results in terms of elongating workability and ensuring
retardation. Furthermore, the effect of temperature was investigated on
geopolymer mix designs, where a direct impact can be observed on slurry
properties with the reduction in workability and fastening strength
development process.

However, the disadvantage of using these admixtures was the poisoning
phenomenon induced by Zn?" species, which is the cause of the
retardation. The phenomenon had a negative impact on mechanical
properties where mix designs have struggled to reach high early
mechanical strength. Still the poisoning effect seems to be active up to
only 14 days of curing. After investigating this phenomenon on a
microstructural level with no clear indications of the effect of Zn from a
chemical reaction perspective, other methods were implemented to study
the reaction. DFT calculations and Raman spectroscopy were used to
observe the effects of Zn?* species on a reaction level. The results
highlight the effect on Q3 species where shifts in wavelength can be
observed from Raman spectroscopy measurements. These shifts were in
parallel with the DFT calculations where it showed that SiO4 reacts more
rapidly with Zn?* than with AI**, which indicates that the oligomerization
phase requires more time to be complete, hence retardation phenomenon.
This leads to the conclusion that Zn?* ions were the responsible species
for retarding the reaction despite the knowledge observed in literature.
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The performance of Ca and Na species as strength development agents
have been tested. It seems that the concentrations introduced were not
adequate to guarantee a major strength development, however, they were
adequate to pause the poisoning of Zn?* species and help in the recovery
of the bulk matrix. Nevertheless, more investigation must be done to
recognize the synergy between chemical admixtures with different roles
where the concentrations and operational conditions must be considered
to guaranty maximum benefit of each.

To minimize the use of chemical admixtures, efforts were made to alter
the mix designs by manipulating the composition by adding CaO into the
dry solid blend. This allowed the development of three classes with
differences in composition, mainly Ca content, which in turn provided
mix designs for a temperature range of 5° to 60°C of BHCT. However,
mix designs still require the utilization of chemical admixtures to be fully
adequate for field applications.

7.2 Conclusion

The following conclusions can be drawn from this study:

e Zn?* species has the potential to become a reliable retarder for
geopolymers, however further development on strength
developments agents may be necessary to handle the poisoning
phenomenon imposed by zinc if high strength is required.

e Zn? ions react rapidly with SiOs compounds and causes a
disruption in SiOs and AIPP* reactions, elongating the
oligomerization phase in the reaction.

e The chemical admixtures understudy show reliability and
repeatability in testing.

e Ca and Na species have the potential of becoming the antidote
for using Zn, but still tuning to the concentrations must be done
considering the reaction Kinetics.
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The reliability on chemical admixtures can be reduced by
manipulating the Ca content in the dry blend. However, this does
not eliminate the need for chemical admixtures for further
development.

Temperature is a prime factor in controlling geopolymer
reactions and the chemical admixtures’ efficiency in the mix
design.

When alkali silicate solutions are used as a hardener, gelation of
slurry due to stalling pumping operations will not be a concern
for the slurry handling.
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8. Research Contributions and Future
Recommendations

The study focused on the development of granite-based geopolymers,
which is a type of geopolymer produced in-house at the University of
Stavanger. The work contributed to the development of chemical
admixtures with the aim to implement geopolymers as a zonal isolation
material in oil & gas applications under downhole conditions. The
approach was a mixture between application characterization and
analytical/scientific interpretation of the effect of chemical admixtures
on granite-based geopolymer systems. It must be noted that granite as a
main source of Si and Al rich material, has been rarely seen outside the
research group at the University of Stavanger, which made the
geopolymer system under study by itself to be viable and sustainable.
Although the work focused on granite-based geopolymer, however the
results can be beneficial and inspirational to develop chemical
admixtures for geopolymers with other raw material basis. Each paper
contributed to the work and helped in shaping the work as it is presented
today. The following contributions can be assigned to each paper:

1. Paper | was the starting point of potential chemical admixtures
with different acting roles. The results highlight Zn?* and K*
species as interesting chemical admixtures to act as retarders for
the system under study.

2. Paper Il highlighted the effect of different concentrations of Zn?*
and K™ species on geopolymer systems, in addition the effect of
temperature which indicated that higher dosages must be utilized
to extend the pumping at higher temperatures. Also, temperature
can play a major role in influencing the retarders’ effect on the
geopolymerization phase causing a variation in mechanical
properties.
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3. Paper Il exhibited further investigation into the effect of Zn?*
and K* species on mechanical and morphological properties for
a curing period up to 28 days under downhole conditions. The
purpose was to explore the causation of the poisoning
phenomenon shown using the chemical admixtures under study.
However, due to the low concentrations of admixtures in the
system, used techniques from XRD to SEM were not adequate to
clearly observe the effect of Zn species and K species on the final
bulk matrix.

4. Paper IV aimed to analyze and predict possible reaction paths of
Zn?* species, since it was the main acting agent in the retardation
phenomenon, on the geopolymer system under study.
Computational modeling and Raman Spectroscopy aided in the
analysis of reaction steps and guaranteed a proper understanding
of the system at hand. It must be noted that a new technigque was
used in geopolymer system analysis, which was to construct a
control system using pure chemical components such as SiOa,
AI(NO3)3-9H20, FeSOsa...ete. to mimic the original composition
of granite-based geopolymers. This technique aimed to avoid
structural complexities from used minerals and to avoid
fluorescence effect in Raman Spectroscopy analysis. The results
highlight the effect on Q® species where shifts in wavelength (cm
1y can be observed from Raman spectroscopy measurements in
comparison between samples with and without Zn?* species.
These shifts were in parallel with the DFT calculations where it
showed that SiO4 reacts more rapidly with Zn?* than with AIP*,
which indicated that the oligomerization phase required more
time to be complete, hence the retardation phenomenon. This led
to the conclusion that Zn?* ions were the responsible species for
retarding the reaction despite the knowledge foreseen in
literature.

5. Paper V presented a strategy for incorporating retarding agents
with strength development agents, of Ca and Na origin, to
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compensate for the poisoning effect imposed by retarders,
specifically at elevated temperatures. The results confirmed that
Ca and Na species can compensate the poisoning phenomenon in
the short-term mechanical properties. However, further
investigation is required to properly tune the concentrations of
these admixtures together to create a cohesive interaction
between all chemical admixtures in the system. In addition, it can
be concluded that higher concentrations were required to further
enhance the mechanical properties of geopolymer systems under
study.

Paper VI presented a new track of development for granite-based
geopolymers where instead of using chemical admixtures
separately, the dry solid precursors were tuned to suit different
well sections by adding CaO, thus creating different classes of
geopolymer similar to OPC. This step furthers the effort of
creating a cheap low carbon alternative material for OPC with a
similar application approach to the oil & gas applications. The
results highlight the importance of Ca content in connection to
the operational temperature the slurry was being used at. Results
concluded that it is vital to consider reaction Kkinetics in
connection to composition and accompanying downhole
conditions to develop proper classes of geopolymers for a variety
of conditions and applications.

For future work, it is recommended that researchers focus on the
optimum tuning of different chemical admixtures in a
geopolymer system. Tuning of these admixtures can facilitate the
application of geopolymer technology into the field and increase
the understanding of possible reaction mechanisms where it is
vital that admixtures do not counteract each other. In addition,
since there are different sources of raw material for geopolymer
technology, unifying the approach to develop universal chemical
admixtures moves the technology a step closer towards
commercialization and field applications.
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Appendix

Appendix 1 — Chemical Composition of Mix Designs

Table 20. Chemical composition of addressed mix designs
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Appendix

Mix Design $i0; | ALO; | Fe:0: | CaQ Na;0 | KO0 | TiO, | MnQ LOI
MDA 6201 | 9.84 042 | 1674 | 5.73 176 | 179 | 1.01 | 0.001 0.13
M.D B 6251 | 9.92 043 | 16.06 | 5.78 178 | 181 | 102 | 0.01 58 | 0.13
MDC 69.75 | 10.02 058 | 1021 | 372 | 233 | 241 | 067 | 001 37| 02

Table 21. Chemical Composition of mix designs mentioned in section
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Appendix

Appendix 2 — Sonic Strength Correlations
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Appendix

Appendix 3 —Lab Control Samples Composition (IV)

Table 22. Elemental composition considered for engineering the lab-

controlled samples (Paper 1V)

To be considered in the reactants’ composition

Not to be considered due to low
concentrations

Composition Si0; ALOs Fe:03 Ca0Q MgO NaO K:0

Woo

63 13 L.5 10 4.5 2.34

3.81

TiO,
0.8

MnQO SrQ BaQ LOI Total

0.19 0.01 001 072
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Appendix

Table 23. List of chemical replacement for each element in the original
composition (Paper 1V)

Component in Chemical Chemical Number of

compositions replacement formula molecules
Si Silica flour SiO, 4.423 x 10%%
Al Alt'J\ln;Lr:)uhn;dl:la::gate AI(NOs)s-9H:0 5.358 x 10*%
Fe Iron (11) Sulfate FeSO, 3.94 x 10%%2
Ca Calcium Hydroxide Ca(OH); 7.47 x 10*%
Mg Magnesium Oxide MgO 4,75 x 10%%
Na Sodium Hydroxide NaOH 1.59 x 10*%3
K Potassium Hydroxide KOH 1.71x 10*%
Zn ZHig)fh':'/g::ttee ZnNOwaio  TRLX A0
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Table 24. Detailed composition of lab-controlled samples (Paper V)

Mix design components (g)
Components (Purity > 90%)

CNT-0%2Zn CNT-1%2Zn

SiO, 44.13 44.13

AI(NOs)s'9H-0 18.96 18.96
FeSO4 0.99 0.99
Ca(OH); 9.19 9.19
MgO 3.18 3.18
NaOH 1.06 1.06
KOH 1.59 1.59
Zn(NOs)..6H>0 - 0.79
Total 79.1 79.89
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Properties of Rock-Based Geopolymer Designed for Zonal Isolation
and Well Abandonment

Fawzi Chamssine, Pedram Gargari, and Mahmoud Khalifeh

Paper OTC-31880-MS presented at the Offshore Technology
Conference, Texas, USA, 5" of May 2022

DOI: 10.4043/31880-MS

This paper is not available in Brage due to copyright

105


https://doi.org/10.4043/31880-MS

Appendix

Appendix 5 — Paper I

EFFECTS OF TEMPERATURE AND CHEMICAL ADMIXTURES
ON THE PROPERTIES OF ROCK-BASED GEOPOLYMERS
DESIGNED FOR ZONAL ISOLATION AND WELL
ABANDONMENT

Fawzi Chamssine, Mahmoud Khalifeh, Elsayed Eid, Mona Wetrhus
Minde, Arild Saasen

Paper OMAE2021-60808 presented at the 40" International
Conference on Ocean, Offshore and Arctic Engineering OMAE2021,
June21-30, Virtual Online.

DOI: 10.1115/0MAE2021-60808

This paper is not available in Brage due to copyright

114


https://doi.org/10.1115/OMAE2021-60808

Appendix

Appendix 6 — Paper lll

Effect of Zn?* and K* as Retarding Agents on Rock-Based
Geopolymers for Downhole Cementing Operations

Fawzi Chamssine, Mahmoud Khalifeh, Arild Saasen

Journal of Energy Resources Technology MAY 2022, Vol. 144/
053002-1

DOI: https://doi.org/10.1115/1.4053710

123


https://doi.org/10.1115/1.4053710

Appendix

M) Check for updates

Effect of Zn?* and K* as
Retarding Agents on Rock-Based
Geopolymers for Downhole
Cementing Operations

Fawzi Chamssine'
Department of Energyand Petmbeun Engneering,

Faculty of Schence & Techndogy,

Universily of Stvanger,

nanger, Norway
rmmrmgmmm Geopolymer material has a potential to function alongside Portland Cement as an efficient

cementitious material for well cementing and plug and abandonment applications. Geopo-
Iymer material requires retarding agents to be displaced into the well while considering the
properties required to maintain efficient zonal isolation through superior mechanical prop-
erties. Chemical admixtures affect the mate rial structure and can, in some cases, jeopardize
muterial integrity if not engmewed pn.per}y to suite downhole conditions. The present
article shows the effect of Zn™* and K* species have as retarding agents on shirry, mechan-
ical, and iex The app hats been carried out to abtain a prelim-
inary overview of how retarding agents can behave in mix design sturries where eventually

LT

Mahmoud Khalifeh
Department of Energyand Petmbeun Engneenng,
Faculty of Science & Technoiogy,

Univessity of Stvanger,

036 Smanger, Noway

e-mall: manmoud khaifen@ s no

Arild Saasen sealing performance was examined. Samples were cured and examined for periods of 1, 3, :
7, 14, and 25 days at downhole conditions. The results obtained confirm a retandation effect
? dmyarg an o ?'g:m by the addition of Zr** and K species and some shoricomings in early strengih develep-
o umu;; d;:g“" ment dueto a poisoning mechanism by Zn>* species. This phenomenon indicates the forma-
1035 Seromger Norwey tion of Ca-Zn phase that can hinder the nucleation of the geopolymeric gel structure. No
il significant effects were observed on the hout the

curing period. The effect of Zi™* species was alsa observed in increasing threshold for

el ity. It may be tuded J'.'ml the J'e.u'ev.‘ mam‘mg agents reqm—e ﬁmj:u-
more development to minimize sh in prop j: ally early
strength development. [DOL: 10.1115/1.4053710] -

Keywords: gﬂwfy\men zinc retarder, workability, Jrrengr.h :kw.iopwenr sealability,
wells-drilli di

1 Introduction for displacement from surfice to target downhole area. On the

Alternative materials to Ordinary Postland Cement (OPC) have
heen smdiedmm@wmepmt decades motivated by improving
pedormance pmpqtm, cost, and lower environmental
impact through the reduction in emission of greenhouse gases
{e.g., 0Oz NQy) [1]. One of the suggested materials is an altema-
tive to OPC known as geopoly [2-4]. These ials were
first introduced by Joeeph Davidovits in the 1970s as a material
with pmmm] pmpm to replace OPC [5-10]. Multiple studies

d some plausit gs of OPC, which are related
tothe short- mdlongmm efi of OPC at op 1 o
ditions [11-19]. Thus, geopolymers have attracted the petroleum
mmsu'y specifically due to the lower environmental impact
during production, outstanding short- and long-term performance,
and luwer cost by lowering taxable carbon emissions
[20,21]. To create a lateral comparison, it is important to test geo-
polymer slumies at real field conditions to observe the closest
effect of these conditions while testing on a labscale. The use of
mmimgagmtsﬁ vmlu)m]m lhn mlmn]pumpablemmmt—
m Ly
hgmr activation ma‘gy levels to geopolym material, but at lhe
same time limit material’s applications specifically in well cement-
ing operations [22], Previous studies exhibited the effect of Zn* in
netanding chemical reactions in geopolymer systems [23,24], thus
workability of material can be increased to achieve sufficient time

T Comeponding ambor

Costrbued by the Petraleun Divison of ASME for publication in the Joussae oF
Eumoy Resoumcss Termwooooy. Manmoipt received October 25, 2021; final
smamacript received Jenmry 24, 2022; published online February 21, 2022, Assoc.
Feliter: Yan Jin

Journal of Energy Resources Technology

other hand, K* was utilized as a delayed accelerator to guaranty
material setting and boost mechanical properties by allowing a con-
trolled gelation reaction [25,26].

In the present study, zine (Zn) and potassium (K) Nitrate have
heen used as chemical admixtures 1o adjust the shurry properties
1o prolong pumpability of the mock-based geopolymer for interme-
diate cementing operations. To address the objective of this study,
two mix dm:gm nnmmmmdnmﬂeﬂmwmmmu

gated under | and static i and
elevated pressuze. Mgmpolymmmﬂwasprqnmdﬁrdm
hole d with the set of tests pre-
sented in Fig I.“,‘ 1l lability was conducted at the end to

guaranty that material's integrity is not compromised due to the
influence of retarding agents.

2 Materials and Methods

2.1 Materials and Mixing Procedure. The solid precursor
used in this study was an aluminesilicate rich rock powder primarily
made of granite, nommalized with other precursors having reactive

The precursor was designed to have a lﬂw caleium
eonterit (<10 widh). The solid p 's
in Table 1. Potassium silicate solution with a modular r.nnu of 2.21
was used as the activating hardener phase. Distilled water was used
to adjust total water content, viscosity of the slurries, and as a
medium o introduce the chemical admixtures. Zine nitrate hexahy-
drate (N204Zn.6H:0) and potassium nitrate (KNOs) were used,
both with a purity of 99%. mmﬂofmdeddimnca]mm
wres was adjusted to have a KYZn* ratio of 0.25. The mix
design of the neat sample (Geo-Neat) and mtanded sample
(GeoZn/K) is presented in Table 2. The used ratio was

MAY 2022, Vol. 144 / 053002-1
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Slurry Properties:
* Workability and setting time
= Viscosity profile

" Mechanical Properties:

Preparation of A;:r!inin 7‘ * Sonic Strength Hydraulic
Meatrecipe dmim b * Uniaxial compressive strength Sealability

A = Tensile strength

Structural Analysis:

L+ *  X-ray diffraction

* Scanning image microscopy
Fig.1 Applied strategy for testing chemical in it material slurries on a laboratory scale

experimentally concluded after munning sr:veta] tests and past e xpe-
riences using the combination of both Zn™* and K* species [27].

The slurries were prepared with a solid to liquid ratio of 2.07. The
mixing was cared out using a Waring high-speed blender with an
OHTE control pad following the API RP 10B-2 recommendations
[28]

2.1.1 Conditioning. Prior to some tests, conditioning of mix
designs was conducted using an OFITE atmospheric consistometer
(Model 60) foll g APT RP 10B-2 dations [28]. Con-
ditioning was I hol Tati
CBHC"T)oij’Cde!Dmndspernmum (rpm), for a period
of 30min after reaching the desired BHCT. The purpose behind
this process is to match the cimulating shury conditions and
prepare it to match the static curing conditions to avoid any
thernmal shock to the shurry.

2.2 Shurry Properties

2.2.1 Workability and Setting Time. An OFITE HPHT consist-
ometer (Model 2040) was used to examine the workability and
setting time at a BHCT of 50 "Cand pressure of 14 MPa. The tem-
perature was ramped up ata rate of 1 °C/min and the pressure was
ramped up from atmospheric to 14 MPa in a period of 10 min. The
standard for workability was set from the starting point until 40 BC
while setting time was from 40 BC to 100 BC following API RP
10-B2 recommendations [28].

2.2.2 Viscosity Measurements. Viscosity was measured using
an OFITE Model 900 viscometer while tested at a BHCT of
50 °C. Tdeally, these measurements should have been performed
under pressure. To fulfill standard requirements, a large amu].nr
gap was necessary. Hence, the option was 1o use an
viscometer (OFITE Maodel 900 Rotational Viscometer). Addition
of pressure would genemally increase the viscosity slightly as the

Table1 Solid phase composition

Chemical element wih
S0, 63.10
AlO; 1297
Fea 0y 1.49
[ 9,94
MgO 454
Na,O 234
K0 3181
Tios 0.80
MnO 019
Lo 0.80
Total 100

liquid phase is compressed and the efficient solid’s fraction is
slightly increased. The slurries were conditioned prior to testing

2.3 Mechanical Properties

2.3.1 Sonic Strength. An OFITE Model 4005 automated twin
cell ultrasonic cement analyzer (UCA) was used to examine the
ealy strength development of the slurries. A sonic signal is
emitted through the sample where the transit time of the signal is
recorded [16]. Upon phase changes and setting, the velocity of
tmnsit time (time for sound to travel thmough the slurry) is increased.
A comelation was used to convert the transit time recordings to
somic compressive mgth Since the default onmahﬁon is based
m OPC was or geopo-
Iymer material usng “the results from the uniaxial oormprﬁswc
strength tests. The strength development was measured continu-
ously for a pedod of 28 days at bottomhole static temperature
(BHST) of 70 °C and pressure of 14 MPa.

Table 2 Mix design of tested slurries

Sample compasition (wi%)
Mix design Solid Liquid Total water K Zn** KHZn™ matio
GEO-Neat 6623 5377 2.3 - — -
GEO-Za/K 6623 5377 713 0.075 03 035

053002-2 / Vol. 144, MAY 2022

Transactions of the ASME

125

iy oy

TZOT SQUSSS(Y | U0 SRR W) A s 590 smae g K I Z00C ST S b L bl



Appendix

= 1
m.@

Fig. 2 Indirect tensile strength setup

Fig.3 Hydraulic sealability setup

2.3.2 Uniaxial Compressive Strength. The uniaxial
sive strength (UCS) tests were conducted using a Toni Technik-H
mechanical tester in accordance with AP1 TR 10TR7:2017 [29].
Cylindrical plastic molds of 50 mm diameter and 10 mm length
were filled with slumries and positioned in cylindrical pressurized
autoclaves filled with water where later a pressure buildup was
applied using a Teledyne ISCO pump (Model 260D). Samples

were cured at BHST of 70 °C and pressure of 14 MPa. The
loading mte was selected to be 30 kKN/min set at a force-controlled
mode. Per curing period, three samples were tested, and the average

strength was The slurries were conditioned
prior to curing.

2.3.3 Indirect Tensile Test {Brazilian Test). A Zwick/Roell
Z050 material testing egquipment was used to examine the tensile
strength, Sarmples were cured at BHST of 70 °C and pressure of
14 MPa. Cured samples were cutin adisc-like shape having a thick-
ness of 30mm approximately. For each curing interval, four
samples were prepared and tested to minimize any possible mea-
surement eror where the average tensile strength was calculated.
The samples were later placed vertically in the setup described in
Fig. 2. The compression load was S0 N/sec where the results
were used to calculate the tensile strength based on Eq. (1) [30].
The average of the tested four samples was calculated and presented
in the results, The slurries were conditioned prior to curing

F
Tmﬂkmﬁ-lzﬁ ay
234 itity. To impact of the used
on (the: obj using zonal isolation mate-

rials) of the final product, hydmulic integrity test was concluded. A
cylindrical stee] tube (KF HUP S35512H) with diameter 82 mm and
height of 150 mm and roughness of 1 m of Ra was used to measure
hydraulic sealability. The tube had a 2 side caps tightened with

w7 )
= / t' j’ 3
50 ”'E
é: /J ,// ok
» / —

o

@
|

0.0 10 20 3.0

4.0 5.0 6.0 7.0

Time (h)

W

Fig.4 Workabiity and gelation time at BHCT of 50 °C and pressure of 14 MPa
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Fig.5 Viscosity profile a1 50 °C BHCT

metal bolts; the setup is presented in Fig. 3. Samples were condi-
tioned prior of placement in the setup and cured for 7 days at
BHST of 70°C and pressure of 14MPa. The test setup was
designed to purnp water from the bottom, wsing a linear gradual
increase in pressure, where any water out would be detected by a
flowmeter connected 1o the top outlet of the setup. After breaking
sealahility, the pressure and amount of water escaping the setup
was recorded.

24 Compasition and Stroctural Analysis

241 Phase Change. After curing samples, it is expected that
there are multiple crystalline phase changes affected by tempera-
tuse, pressure, and the chemical composition used. These changes
were ohserved throughout the curing periods using a Bruker-AXS
Micro-diffractometer D8 Advance, which uses a CuKa radiation
“0.0kV, 25,0 mA) with a 20 mnge from 5deg to 92 deg with
1deg/min step and 0.010 deg increment. Samples collected from
UCS tests were crushed and grounded into powder manually and
drying was conducted at 40 °C in a vacuum oven for 24h tw
avoid any solid-gas reaction and ensure the removal of water
particles.

m
o~

242 Anal electron
was conducted using a Gemini Su{ﬂ 35VP ZESS) to examine
microstructune post curing phase. Samples were retrieved from
cured samples, cut into thin sections (thickness 1-2mm), and
emenged in epoxy to avoid any phase change or solid—gas, solid—
solid reactions. The samples were smoothed and coated under
vacuum witha palladium (Pd) layer of 10 nm prior (o examination

3 Results and Discussions

3.1 Workability and Gelation Time. The consistency pio-
files of geopolymer samples, both the neat and with chemical
admixtures, are presented in Fig. 4. lt was observed that the
Geo-Neat had a y period of 12h ()
(~73 min) and a gelation time ofnmundl]lh (~6 min). On the
ather hand, the addition of Zn™* and K* species created a retanding
effect making the workability reach around 5.5 h (~330 min) and a
setting time of around 0.74 h (~44 min). It has been chserved that
the combination of Zn™ and K* has created a retarding effect in
comparison with Geo-Neat sample by extending workability from
~1.22h w0 ~5.5h. Cavallott et al. Bl]wmm"w

E

™
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Fig. 6 Uniaxial compressive strength plotied versus the transit time for (a) Geo-Neat and (b) Geo-Zn/K

053002-4 / Vol. 144, MAY 2022

Transactions of the ASME

127

LT

TZOE SQUACHE LD VO SAEELEE) W] A e 59 RaR S A I 2008 S b L bl



Appendix

13 | —— compressive Strength
— —TransitTime

1n§
s B
T = | 5
k=== c i
s 10
10 L 5 *
s ~
o o f2
650 030 030 030 040 050

0.00 200 400 600 800 1000 1200

14.00  16.00

L
1800 2000 2200 2400 2600 28.00

(B) Time (Days)

i
E = =Transit Time
g
H

o o
Transit Time (ms/in)

000 000 020 080 040 050

0.00 .00 4.00 6.00 8.00 10.00

1200 1400

o
1600 1800 2000 2200 2400 2600 28.00

Time (Days)

Fig.7 UCA measurements for (a) Geo-Meat and (b) Geo-Zn/K

has a tendency to engage in hydroxylated alumina, In addition, it
has the tendency to capture OH™ groups and produce zine hydrox-
ide (Zn0), which contributes to the poisoning effect. The current
geopolymer system contains CaO by 9.94 wi% and high concentra-
tions of OH™ which imply the possible formation of a Ca-Zn phase
(Ca (Zn(0H)1)2.2H;0). Such effects have been reported in previous

"
&

studies of Zn effects in cement systems and alkali-activated systems
[32,33]. Garg and White [34] investigated the effect of zinc oxide
(Zn0) on highflow Ca alkali-activated system. They were able to
correlate the effect of Zn™* species on prolonging setting time of
high Ca systems while not observing any significant effect on low
caleium content systems. Their conclusion mainly focused on the

"
15

™
o

n

Compressive Strength (MPa)

7 1 E-]

Curing Time (Days)

N Geo-Naeat

 Geo-In/K.

Fig. 8 Average UCS measurements of mix designs up to 28 days
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Fig. 9 Average tensile strength of mix designs

formation of Ca-Zn phases, which have the ability of poisoning
C-(N)-A-5-H gel where Zn is mooq:otmed hmogmwsly
through a “Ca depletion” 1
Ca-Zn phases infects localundm.trmd pare sohums which evi-
dently leads to the retardation effect. In addition to the Zn's effect
on Ca contained in the system, it has been found that incorporate
with alkali activators, whether sodium (Na) or K-based systems,
can also happen. A study by Wang et al. [35] indicates that Zn in
geopolymer  systems can  inhibit  alkali-activation eactions
through the formation of metastable K/MNa-Zn phases, which does
mot have any significant effect on pimary products of
N-(K)-A-S-H stucture. This was concluded by investigating
QU4AD and Q%3AT) through ®Si MAS NMR spectra, which

indicated the increase in number of Q¥4AlI) sites leading to a
decrease in the SilA]rnﬁomigomtwmﬂammamwdby
the partial replacement of Zn Na*/K*. N-KrAS-H gels
are intermediate products before the 3D network of geopolymers
are completed [36]. However, in alkali-activated based systems,
N-(K)-C-A-5-H phases are the final product. These chservations
suppert the retardation phenomena caused by Zn®* jons.

32 Viscosity Profile. Geopolymer mix designs exhibit a non-
Newtonian fluid behavior with the presence of yield stress as shown
in Fig. 5. The shear stress of Geo-Neat was larger than the shear
stress of the Geo-Zo/K sluny at the different evaluated shear

Geo-Neat
— —Geo-Zn/K

Flow Rate (mi/min)
- N w -3
. EEEEE
|
|

15 2 25 3

Pressure (MPa)

Fig. 10 Hydraulic sealability test results for clean steel casing
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Fig. 11 XRD measurements of cured (a) Geo-Neat and (b) Geo-Zn/K up to 28 days

rates. By the addition of chemical admixtures, a reduction in visc-
osity can be observed for all the applied shear rates. Thus, it
might be concluded that the chemical stability of the geopolymu‘
colloidal system was affected by the addition of chemical
admixtures.

3.3 Ultrasonic Cement Analyzer. The UCA was designed o
measure sonic strength of OPC by detecting the travel time of ultra-
sound waves through the sample and applying a predetermined
algorithm to estimate the sonic stength. Thus, a custom al gorithm
was developed by plotting the UCS data versus transit time, After-
ward, the created algorithm was introduced to the UCA to convert
the recorded transit time to sonic stength (see Fig. 6).

The sonic strength development for Geo-Neat and Geo-Zn/K
was measured for a perod of 28 days and under BHST conditions
(70 °C and 14 MPa), presented in Fig. 7. It has been observed for
Geo-Neat, the initial strength development starts after ~6h from
initial mixing (r=0), stabilizing for around 7 days at around
EMPa of compressive strength and then increase gradually to
meach around 20 MPa after 28 days. On meoﬂm'hnm, Gec»Zn-‘K
started to develop stiength after ~7.5 h, mai

where Zn/K poisoning have occurred 1o the nucleation sites of
NE)-A-S-H gel of which the merization maction was
delayed due to the formation of Ca-Zn [35]. The differences sur-
wunding the eady strength development between Geo-Neat and
Geo-Zo/K, ~1.5h, indicates a delay in setting and handening
process.

3.4 Uniaxial Compressive Strength. The avemge compres-
sive strength of mix designs for a period up to 28 days is shown
in Fig 8. It was observed that the compressive strength, elasticity,
and tensile strength are interlinked properties where the increase
elasticity of cementitious material can contribute in decreasing the

Table 3 Mineral composition extracted from XRD paterns of

m‘mgﬂiofmmdﬁbﬂ’nfmlldﬂysmdtlmmmynmw

weach a compressive sirength of around 21 MPa.

'IheelTectonn ions can be attributed to the similar poisoning
in the ility and gelation time section,

Journal of Energy Resources Technology

cured mix designs up to 28 days
Minersl Chemical composition
si0,
Albite. NaAlSiaOy
crodli KAISiOs
Chamasite (Fe™t Mg ALFe*)4(Si,A1) 0, (0HO0)
Biotite K(Mg,Fe)s( AlSis0 0){F.OH)

Calcium Zinc Silicate CaZnSiyO;
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Fig.12 SEM images (range of 20 um) of Geo-Neat at (a) 1 day, (b) 3 days, (c) 7 days, (d) 14 days, and (e) 28 days; red square
for unreacted particles

highlighting the focus area; red arrow

compressive and tensile strength properties required to maintain
zonal isolation [37]. This behavior is instinct of all cementitious
materials unless reinforcements are used in the structure of the
material. The results show that the compressive strength of
Geo-Neat gradually increased throughout the curing period while
maintaining a close compressive strength of around 8 to 9MPa
during the first 7 days reaching to ~20 MPa after 28 days. On the
other hand, the compressive strength of Geo-Zw/K was following
an increasing trend, similar to Geo-Neat’s trend, starting from
around ~6 MPa after 1d to reach around 21 MPa after 28 days. It

053002-8 / Vol. 144, MAY 2022

is evident from the results presented in Fig. 8 that the addition of
Zn®* and K* species have reduced the compressive strength devel-
opment of gupo}ymer samples in the early stages up to 14 days.
The presence of Zn™* specm hm apoisoning effecton geopolymer
systems as di In the p d chemical system,
it is believed that the Zn>" species have negatively affected the
development of 3D networks by inhibiting the formation of geopo-
Tymer gels and slo\vmg the condensation process [38]. Many

have the i of i ing the weight
of Zn®* species (10 wt%) to improve the compressive strength
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(b)

(d)

Fig.13 SEM images (range of 1 m) of Geo-Neat at (a) 1 day, (b) 3 days, (c) 7 days, (d) 14 days, and (e) 28 days; red arrow for
n

unreacted particles and yellow arrow for binder formatio!

of geopolymer systems [38,39]; while this can be an interesting
point to improve the compressive strength of the mix design dis-
cussed in the study, the effect on slumry properties, specifically
workability, should be taken into account.

3.5 Indirect Tensile Test (Brazilian Test). The tensile
strength measurements for mix designs are presented in Fig 9. It

Journal of Energy Resources Technology

has been observed that both mix designs had a relatively increasing
tensile strength starting from ~0.38 MPa reaching to around
~0.7 MPa. Although no clear indication of how the addition of
Zn®* and K* species may affect the tensile strength in long-term
periods, it may be pointed out the trend seen by Geo-Zn/K at
early stages of which shows a delay in the strength development.
The reality of downhole conditions can exert force on different
directions to the cement sheath, jeopardize the integrity of the

MAY 2022, Vol. 144 / 053002-9
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Fig. 14 SEM images (range of 20 ym) of Geo-Zn/K at (a) 1 day, (b) 3 days, (c) 7 days, (d) 14 days, and (e) 28 days; red square
highlighting the focus area; red arrow for unreacted particles

material, and the integrity of production
operations. The forces applied over the cement sheath may lead
to having low tensile strength or debonding/poor bonding of cemen-
titious material to casing [40]. The effect of Zn* and K* species on
the tensile strength throughout the curing periods can be linked as
well to the poisoning effect of Zn** species, which was highlighted
in Sec. 3.4, The effect of chemical admixtures specifically Zn>*

053002-10 / Vol. 144, MAY 2022

species seems to be highly significant when it comes to mechanical
properties development.

3.6 Hydraulic Sealability. The test was conducted to examine
the material’s ability to maintain sealability at the interface of
barrier material and casing systems to ensure that the admixtures
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Fig. 15 SEM images (range of 1 ym) of Geo-ZnK n(.)1 day, (b) 3 days, (c) 7 days, (d) 14 days, and (e) 28 days; red arrow for
unreacted particle and yellow arrow for binder format

do notimpact the main function of the barrier. The results of hydru-
lic sealability examination are presented in Fig. 10, where the water
flowrate (ml/min) is presented versus the pressure (bar). For
Geo-Neat, it has been observed that the hydmulic sealability has
been compromised auptmsum of around ~0.3 MPa. Some minor
ions have been ob d and may be d to the differ-

ential pressure between the water pump and the pressure already
existing inside the hydraulic sealability test. On the other hand,

Journal of Energy Resources Technology

Geo-Zn/K failed hydraulic integrity at ~1.5 MPa where the initial
flowrate indications were recorded. These observations indicate a
significant effect of using Zn** and K* species as chemical admix-
tures on the material’s ability to resist leakage. The higher sealability
exhibited by Geo-Zn/K mix design can be attributed to the effect of

* species on the geopolymer system under study. The use of Zn
has been recognized previously by Carteretal. [41] to be an effective
additive in the expansion of cement, due to the gas forming
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Geo-Zn/K-1D

Geo-Zn/K-14D

Geo-Zn/K-28D

Fig. 16 SEM mapping imagery of Zn and Ca for Geo-Zn/K 1, 14, and 28 days

mechanism, which Zn eases in cementitious systems. Gas forming
expansion happens due to the interaction between additive species,
in this study Zn"" species, and the alkali molecules in the cementi-
tious medium where relatively small hydrogen gas bubbles are
formed. The reaction occurs in the presence of Al particles, which
are available in abundance in the system under study. Correlating
to Carter et al. [41] conclusions, it seems that the conditions of this
chemical reaction whether they are temperature, pressure, or chemi-
cal system were in favor for an expansion mechanism to be triggered
by the presence of Zn>* species. &t should be noted that further con-

id of this ion ph should be d consid-
ering the kinetics of the reaction and identifying the role of K*
species, which was not highlighted during this study due to the
very little amount used in the chemical system presented.

3.7 Phase Change. X-Ray diffraction (XRD) patterns of the
cured samples of Geo-Neat and Geo-Zn/K are presented in Figs.
11(a) and 11(b). The main phase recorded in both patterns was
Quartz (Qz) withthe presence of minor phases of albite (Alb), micro-
cline (Mic), chamosite (Ch), bictite (Bio) and minor presence of
calcium zine silicate (CZ) peak in Geo-Zn/K samples. The composi-
tion of the mentioned minerals is presented in Table 3. Similar trends
have been observed throughout the XRD patterns of both cured mix
designs, where Qz was constantly decreasing in peak intensity indi-
cating th ption of Si by the geopol: binder. The presence
of Alb and Mic peaks in K-activated system favors the formation of

053002-12 / Vol. 144, MAY 2022

zeolite phases which can explain the crystalline pattern obtained
from the XRD results [17]. Thus, the increase in mechanical proper-
ties (e.g., compressive and tensile strengths) can be attributed to the
formation of these zeolite phases. A study by Prud’homme etal. [42]
investigated the effect of raw material and Si properties on the forma-
tion of zeolite phases in geopol ymer material. It was determined that
the properties of raw material and type of activator play a major role
in the formation of zeolite phase. It can be concluded that in this geo-
polymer system properties of raw material may have favored the for-
mation of a crystalline phase, mainly composed of zeolite,
considering the enhancement of mechanical properties observed
throughout the curing period. The effect of Zn®* species was
observed by detecting calcium zinc silicate (CZ) phase at peak
27.8 deg where the peak was minor in comparison to other existing
peaks such as microcline and albite. The minor presence of such
peaks can be attributed to the limited amount of Zn>* species
(0.3 wt%) used in the mix design (Table 2). In previous studies, Zn
was detected mainly in the form of zinc oxide (ZnO), but that was
highly dependent on the type of Zn used [34,35]. Although a CZ
peakispresent, itis still nota definite indication of the form/structure
of the mineral formed and would require much thorough characteri-
zation to clearly identify the type of Ca-Zn phases formed with in
Geo-Zn/K mix designs.

3.8 Microstructure Analysis. The scanning electronic micro-
scopic (SEM) images of samples cured for a period up to 28 days
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are presented in Figs. 12 and 13 for Geo-Neatand in Figs. 14 and 15
for Geo-Zn/E. It must be noted that the samples were collected
through cutting from cured mold samples prepared for UCS tests
o minimize any cracks caused by mechanical forces. The images
present areas in the mnge of 20 mm presented for each curing
period of every sample. The areas of focus and interest were
marked with the red box (Figs. 12 and 14). The SEM images
show significant change in microstructure between early curing
periods (up to 7 days) and long curing periods (up 28 days). The
ion of particles aligns with pre-
vious studies, where the presence of these unreacted patticles was
confirmed by having a plate-shaped structure around empty aneas
[43-45]. Throughout the SEM images, it can be noticed that a
mare homogeneous structure was formed as the curing time pro-
gresses which explains the increase in mechmncnl properies of
the samples. The effect of Zni'* species and K™ species was not
detected in the SEM images where this may be attributed to the
Jow amount of chemical admixtures used in Geo-Zn/K. The identi-
fication of these phenomena will require more advanced techniques
to compensate the current angular resolution from the XRD
Mapping imagery in Fig. 16 shows a homogeneous distribution
of Zn and Ca throughout Geo-Zn/K samples. The distribution of
these elemnents was overlapping, though with much less cmomnm-
tion of Zn, which gives the p s of che i
ocourting between these two elements. The formation of Ca-Fn
phases cannot be verified from these imageries but raiges the ques-
tion of how these elements are interacting, what type of chemical
structures are present, and what retardation mechanism is truly
occurring  throughout the chemical system and its poisoning
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Retarding mechanism of Zn?*
species in geopolymer material
using Raman spectroscopy and DFT
calculations

Fawzi Chamssine'", Luiz H. S. Gasparotto?, Miguel Angelo Fonsecade Souza?,
Mahmoud Khalifeh* & Julio Cezar de Oliveira Freitas?

poly are the most p to Ordinary Portland Cement for oil-well cementing
and well abandonment. To that end, the slurry needs a required pumping time ensured by the addition
of retarders. Although zinc has been widely known to prolong the setting time of geopolymers, its
mechanism of action has yet to be fully elucidated. It is herein hypothesized that zincions impede the
first stages of silicate oli ization (Si-O-Al), inating in longer setting times. Pumping time
measurements showed that Zn(NO,), delayed the setting time by 5 h in comparison to the zinc-less
sample. DFT calculations revealed Si(OH), to react with [Zn(OH),J*" via a barrierless transition state,
evidencing a kinetic ground for the retardation effect. Additionally, Raman spectroscopy corroborated
the DFT results by showing that Q* species in the proposed mechanism are formed more rapidly in the
presence of zinc ions than in its absence.

Geopolymers are an alternative cementitious material with the potential of replacing Ordinary Portland Cement
(OPC) in both construction and oil & gas applications. The applicability of this material into oil and gas has
been under research in the past period since its pruduuion has a lower carbon footprint and maintains superior
properlle\ over OPC speuﬁgally in long term periods'~*. However, to apply such material in cementing and well

chemical i such as retarders must be used to delay setting and guaranty a
safe period for dltplncmenl into wellbores', Geopolymer formation from solid materials is a complex, multi-
step process roughly comprising i) alkaline depol) 'merization of the poly(siloxo) framework and dissolution of
aluminum ii) formation of and oli from ortho-sialate (OH);” Si-O-Al-(OH),, and iii) poly-
condensation into higher ohgnmcrs .1nd polymeric 3D networks™* Ad\anlagcuuslv, it has been dcmonslratcd
that the degree of po P canbed ined via Raman
spectroscopy’. In essence, 510 speue\ in a silica network differ from each other spectroscopically according to
the number of sharing oxygen atoms. An isolated SiO,, for instance, is referred to as Q" due to its lack of sharing
oxygen. A Q' entity denotes, in turn, a SiO, with one sharing oxygen in the network. The reasoning extends then
to Q*, Q*, and Q' meaning two, three, and four sharing oxygen atoms, respectively. Upon contacting glass or a
silica-rich mineral with an alkaline environment it is expected that the amount of Q"-Q” species increase with
time due to silica depolymerization, a phenomenon that can be tracked since each Q" species appear at distinct
frequencies in the Raman spectrum™”.

Zinc (Zn™") species, as a retarder, have been under study where its mechanistic and kinetic aspects have been
taken into consideration'"". Zinc oxide (Zn0Q), for instance, is thought to dissolve into Zn** which prolongs
the setting time by sequestering calcium ions (Ca*') and forming calcium zincate [Ca(Zn(OH),),.2H,0)"". This
is also the conclusion reached by C ong 1.1, who only speculated that Zn** could have had an effect on the
condensation polymerization. The possibility of Zn** playing a role in the early stages of the geopolymerization
should not be overlooked. Zeng et al. d the synthesis of a coagulant based on poly-zinc-silicate
to yield a complex compound with mainly zinc-silicon polymeric species rather than a simple mixture of raw
materials. Upon studying the impact of Zn** and lead (Pb*?) ions on OPC, Oretgo et al. ' discovered Zn** ions to
retard the silicate polymerization. The authors demonstrated, via NMR, a high proportion of Q” and Q' species
after curing OCP with Zn*" ions, implying a low degree of polymerization of $iO, units.

Department of Energy and Petroleum Engineering, Faculty of Science and Technology, University of Stavanger,
4036 Stavanger, Norway. “Universidade Federal do Rio Grande do Norte, UFRN, Natal 59078-970, Brazil. ““email:
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Figure 1. Effect of Zn** species on pumping time of granite-based geopol ligomerization and
ion phases highlighted for Geo-1%Zn.

The present study intends to shed light on the mechanism via which Zn** retards the geopolymerization reac-
tion, The insight of this work resides in r:gardmg the Zn*, in the form of [Zn(OH),J*" due to the high pH, asa
reactant that is inserted into i to hamper ily the progression of the reaction.
Density Functional Theory (DFT) caluulalmns revealed that SiO; reacts more qulckly with [Zn(OH),J* viaa
step with a barrierless transition state, meaning that the reaction between Si(OH), and [Zn(OH),]*" is kineti-
cally more feasible in comparison to that between Si(OH), and Al[(OH),]". Raman results revealed that the
presence of Zn®* led to a higher rate of initial depolymerization of the poly(siloxo) framework, which supports
the DFT proposition.

Results and discussion

Retardation phenomenon: granite-based geopolymer slurry. The impact of retardation phenom-
ena in geopolymer material can be initially observed through pumping time measurements as described in
previous studies by Chamssine et al.'*"". The retardation phenomenon can be observed through consistency
measurements of slurries that show the behavior of material under different conditions. In this case, pumpabili
into an oil & gas well. The pumping time of the granite-based geopolymer slurries Geo-0%Zn and Geo-1%Zn
is presented in Fig. 1. It can be observed that the addition of Zn** species (Geo-1%Zn) delays the pumping time
by around 5 h in comparison to the neat sample (Geo-0%Zn), which reached its maximum after around 1 h.
It can be perceived that the oligomerization phase was highly extended due to the presence of Zn®' species. A
poisoning phenomenon of the reaction can be concluded from Fig. 1, where the oligomerization and polycon-
densation phase was also affected. Previously, different reasonings have been given to explain behavior of Zn** in
silica-rich geopolymer systems. Wang et al."” analyzed the role of ZnO on metakaolin based geopolymer mate-
rial. They concluded that the presence of ZnO have created metastable “Na/K-Zn" phase materials (Na’ and K*
sourced from the alkali activator), which have a prolonging effect on setting time. Their study also included the
investigation of Q*(3Al) and Q*(4Al) sites using NMR spectra. A decrease in the Si/Al ratio was observed due to
the increase in number of Q*(4Al) sites. It has been foreseen that not only Q sites to be affected, but rather also
the possibility of having a devi in Q’ sites’ develop which can as well be sites to investigate while the
reaction is developing'®.

C I model. The calculated Gibbs free energy of reaction (A,G) for fifteen dehydration reac-
tions mvolvmg the Si(OH),, [AI(OH,)]", [Zn(OH,)]", and [Zn(OH,)]*" monomers (and also some oligomers)
are presented in Table 1. The condensation reaction (reaction 1) between Si(OH), and [A{OH,)]” monomers
is exergonic by 11.0 kcal mol ™', Besides, condensation reactions to yield the (OH),Al-(O-Si(OH),),, (OH)Al-
(O-Si(OH)s);, and Al-(O-Si(OH)s), oligomers are exergonic by 20.4, 30.5, and 38.7 keal mol ™, respectively
(reactions 2-4 in Table 1). These results suggest that the formation of the Al-O-Si linkage at the [(OH);Al-O-
Si(OH),]" (ortho-sialate) and oligomers species, which is the driving force of the reaction, is in line with the
explanation previously given that the geopolymerization mechanism must occur through the condensation of
oligomers'”.

The calculations also predict the formation of the Zn-0-Si linkage which is favorable in terms of the Gibbs
energy. Condensation reactions from the [Zn(OH,)]” and [Zn(OH,)]*" species are all exergonic (reactions
5-9), suggesting that Zn-O-Si units can be incorporated into the polymeric framework. However, the dehydra-
tion ions without the of the reactant species are only favorable for reactions involving the
[Zn(OH)}* specie (reactions 10-15). Indeed, the reactions 12 and 15 are computed to be exergonic by 13.3
and 3.8 kcal mol . Figure 2 depicts the Gibbs energy profiles and the relevant optimized structures calculated
for the [AI(OH,)] = +Si(OH),, [Zn(OH,)] - +Si(OH),, and [Zn(OH,)*~ + Si(OH), reactions. In our model,
the condensation reactions from the [AI(OH,)]” and [Zn(OH,)]" anionic species are described by mechanism
analogous. The reactants are linked to each other by the attraction between hydrogens from the Si{(OH), specie
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| Condensation
(1) | [ANOH)]™ +Si(OH),— [(OH),Al-O-Si(OH),| - + H,0
20| [AKOH)I" + 25i(OH), — [(OH),AI(O-SI(OH) )] +2H,0
(3) | [AOH)J™ +3SH{OH), — [{OH)AI-(O-S{OH)),]” +3H,0
() | [AKOH)] +4S{OH), —[Al-(O-Si(OH),),] +4H,0
(5) | [Zn(OH)] +Si(OH),— [(OH),Zn-O-Si(OH) |- +H,0
(6) | [Zn(OH)J™ +2Si(OH), — [(OH)Zn-{O-SilOH),),]" +2H,0
(7| [Zn(OH),)" +3Si{OH),— [Zn-(O-Si{OH), )]~ +3H,0
(8) | [Z0(OH),J"" +SI(OH),— [(OH),Zn-O-SOH)," +H,0

9) | [Z0(OH)J +28i(OH)— [(OH)Za~(O-Si(OH)), | +2H,0 360
* Dehydration

{10) | [AKOH),] + SI(OH), — [AIKOH},] + [SI{OH),0] + H,O 4350

(11) | [Z0(OH),) +SI(OH),— (Zn(OH).] + [SHOH),0] +H.0 [e1s

(12) | [Zo(OH)J +Si(OH),—[Zo(OH),] +[S{OH),0] +H.0 133

{13) | [AKOH)J" +[(OH),Al-O-Si(OH),]” —[AHOH),] + [(OH),AI-O-Si(OH),0l +H,0 | +445
{14) | [Zn(OH)\]” + [(OH)AI-O-SHOH)I™ —{Zn(OH),| + [(OH),AI-O-Si(OH),.0)” +H,0 | +110
{15) | [Zn(OH)}" +[(OH),Al-O-SHOH),]” —[Zn(OH),|” +[(OH),AI-O-SIOH).0)*” +H.0 | -38

Table 1. Gibbs free energy of reaction (AG. in keal mol™') computed at the
wB97X-D/6-311+G(3df.2p)//6-31 + G(d.p) level of theory. For the oligomers is being considered the
condensation from 1 to 4 Si(OH), species.

s
’ 0\\ - =({AI(OH)]

(M0}, Zn-O-SKOH) + KO o
\,[(»co),Aw—s-comJ +HO 107
[20(OH) ) +[SIO(OH)} + HO

%y [(HO),Z0-0-SHOH) J* + HO nt
Reaction Coordinate

Figure 2. Left: Gibbs energy profiles calculated at the wB97X-D/6-311 + G(3df.2p)//6-31 + G(d.p) methed for
the [AI(OH),]" +Si(OH),. [Zn(OH),]" +Si(OH),. and [Zn(OH),}*~ +Si(OH), reactions. The Gibbs energy
values (in kcal mol") for each reaction profile are relative to the reactants (Reac). Structures of the transition
states (TS) and intermediate (Int) calculated at the wB97X-D/6-31+ G(d.p) level of theory. Some relevant bond
distances (in A) are included in the structures,

and OH groups from the ionic specie, [A(OH,)]” or [Zn(OH,)] . Then, the two reactants condense to form the
[(OH),Al-O-Si(OH),]~ and [(OH),Zn-O-Si(OH),| " species, respectively, with concomitant to release the H,0
molecule. Based on Fig. 2, it should be pointed out that the [AI(OH,)]~ + Si(OH), and [Zn(OH;)]" +Si(OH),
reactions proceed through a transition state (TS) located at 16.4 and 2.1 kcal mol! above the reactants’ energy,
respectively. The origin of the difference between these reaction barriers can be attributed to steric hindrance at
the TS structures. As shown in Fig. 2, the TS of the reaction with the [AI(OH,)}~ specie involves a greater geo-
metrical deformation when compared to the TS of the reaction with [Zn(OH,)] .

On the contrary to what is computed for the Si(OH), + [AI(OH,)] /[Zn(OH,)| " reactions, the mechanism
of the reaction between [Zn(OH,)]* and Si(OH), species is predicted to proceed by the initial formation of the
[Zn(OH,)(OH,)...0Si(OH),]*" intermediate (Int). The formation of the Int occurs virtually barrierless, where
the Si(OH), specie undergoes a hydrogen abstraction process by the OH group from the [Zn(OH,)]* (Fig. 2).
‘Then, the Int can either condense to form the [(OH),Zn-0-S$i(OH),]*~ + H,0 products or fragment to yield
the [Zn(OH);]" + [SiO(OH);]~ +H,0 products. According to our calculations, the reactions involving the
[Zn(OH,))*" anions are kinetically and thermodynamically more feasible than that reaction with other anions.

Raman spectroscopy. Raman spectroscopy has proven to be a valuable tool in the study of geopolymers™*.
An advantageous feature is that their Raman spectra can be compared with those of SiO, glasses’. Si0, glass
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creation relies on the condensation of isolated SiO, tetrahedra (referred to as Q°) by linking to each other via
sharing one to four oxygen atoms (Q'-Q‘) Since differently bonded tetrahedra have distinct Raman signatures
in the range of 1000 cm™'-1100 cm f vanauons m !hal region may be used to track the SiO, depolymerization

required for geop p 1 chemistry results in Fig. 2 hints to the for-
mation of Q‘ species viaa bamerless TS that appears only in the presence of Zn**. Itis then conceivable that Zn**
would lead to a higher rate of Q" formation i in geop ly when compared to their no Zn ts (CNT-

0%Zn), which would support the ¥ | chemistry. This hyputhcsls has been
verified by means of Raman spectroscopy with results shown in Flg 3. Typical bands of quartz (silica flour) are
probed at initial stages of geopolymerization (without Zn?* at this point): 207 cm™' (Si-O-Si bond twisting),
355 em™! (Si0, bending), and 456 cm™' (bending of O-Si-0)*, which tend to vanish due to quartz consump-
tion. Vibrations at 712 em™, 1345 cm™', and 1361 cm™' refer to CO,™* in calcite as a consequence of natural
carbonation®, which is known to take place in cementitious materials such as OPC*. Regarding geopolymers,
the reaction between CO, from the air and OH" produces Ca and sodium (Na) carbonates™. It is important to
notice that the bands assigned to carbonate display no clear (endency over time, which is expected given that the
variable amount of CO, in the h Ieads to an 1l bonation process. The most important
feature of Fig. 3A is the sharp peak at 1051 cm ™ related to a Si-O- vibration with O” denoting a non-bridging
oxygen within a Q' species"*", Another important characteristic is that the Q” band initially i increases wuh time
(up to 150 min), m:aninglhal OH" attacks the Si network to produce i ing amounts of

It is important to emphasize that the increase in intensity of the peak at 1051 em™" is not a result of any arufacl
i) the time of laser illumination and laser potency were the same for all samples (ruling out intensity vari-
ation due to heaung effecls). ii) the illuminated spot of the sample was always the same (same area probed), and
iii) there is no of carb ion in the region of interest’””. Upon addition of 1% of Zn
to the mixture (Fig. 3B), the respective overlaying Raman spectrum in Fig. 3C reveals a clear shift towards lower
frequencies (now centered at 1048 cm™') as a consequence of weakened Si-O force due to charge transfer from
Zn(OH),* to SiO,. The negative chargc transfﬂrcd to tetrahedra aocumulales preferentially on Si atoms lead-
ing to a decrease in the Si-O When g Q peaks, Fig. 4 clearly attests that the
addition of 1% of Zn culminates in a higher rate of Q’ formation. The slnp:c of the straight lines from t=0to
t=150 min are 23.75 and 37.97 for mixtures without and with Zn*", rtspecli\ely Both curves reach lhe steady
state at 150 min, a situation in which the rate of Q® fc ion is d by the g

and subsequently geopolymer.

Materials and methods
Material and mixing process. A granite-based aluminosilicate-rich solid p has been used to
exemplify the retardation effect of Zn?'. The precursor was designed with a low Ca content composition (<10
wL%) as presented in Table 2. A potassium silicate solution with molar ratio of 2.21 was used as an activating
hardener. Zinc nitrate hexahydrate (Zn(NO,),0.6H,0) was used as the source of Zn** species. The mix design of
slurries is presented in Table 3.

Control system (CNT): lab scale chemical components. In this study, a controlled system has been
constructed using pure components that can replace certain compositions from the original granite-based pre-
cursor (presented in Table 2). The components have a purity of over 90%. The composition of the solid phase
of the controlled system (CNT) is presented in Table 4, and list of chemical replacements used is presented in
Table 5. The purpose behmd using such a syslem is to isolate complex minerals and create a controlled system
where the reaction prog can be moni hroughout time. Zn** species, in the form of Zn(NO;),0.6H,0,
were also used to mimic retardation with a similar 1 wt% as in the original mix design. In order to accurately
mimic the designated components' behavior, the number of molecules of Si, Al, Fe, Ca, Mg, Na, and K was cal-
culated and implemented with the proposed chemical replacements® (Table 5).

Two samples were developed, CNT-0%Zn & CNT-1%Zn, where the former contains no Zn®' species while
the latter contains 1wt% of Zn. The composition of CNT-0%Zn & CNT-1%Zn salid phases are mentioned in
Table 6, while the total mix designs are presented in Table 7. The alkaline hardener phase, a 4 M potassium
hydroxide (KOH) sululion‘ was produced with KOH laboratory grade pellets and distilled water. The use of KOH
in this system was imp d to avoid polycond ion and lants where it can start to form instantly
after introduction of potassium silicate solution to the solid phase with free Ca?* species. This phenomenon was
reported in a study by Nachbaur et al.” where authors examined the electrokinetic properties which interfere
with the suspension of silicates in early age hydration. They concluded that the presence of high Ca content in
the composition can cause coagulation of Ca,SiO; particles due to the low zeta potential under these conditions.

Samples were prepared by dry mixing of the solid companents first followed by the addition of alkaline solu-
tion (4 M KOH). The solid-to-liquid ratio was around 2.0 (Table 7). Initially, hand mixing was applied for 2 min
(mins), then the apparatus was moved to a Hamilton Beach mixer with a single spindle for 60 5. The material
had a honey-like consistency at the end of mixing.

Testing and characterization methods. Consi . An OFITE HPHT consistometer
(Model 2040) was used to examine the pumping and setting time at a BHCT of 50 °C and pressure of 2000 psi.
The standard for pumping time was set fmm thc starting point until 40 BC while setting time was from 40 to

100 Be following API RP 10-B2  This test was performed only on granite-based geopolymer
slurry.
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Figure 3. (A) Raman spectra of CNT-0%Zn; (B) Raman spectra of CNT-0%Zn; (C) Overlay of Raman spectra

from geopolymer

Raman Spectroscopy.  Geopolymer paste, of the controlled system samples (CNT), was analyzed using Raman
Spectroscopy. Spectra from 400 to 4000 cm™' were examined using a LabRAM HR Evolution using a 532 nm
diode laser operating at 25 mW. Spectra were collected at 30 min time interval. Freshly mixed geopolymer paste
was analyzed at time (t) 0 and transported to a nearby oven operating at 50 °C. Thus, maintaining the reaction

pastes having CNT-0%Zn and CNT-1%Zn (t=10 min).

temperature like the one in the consistometer.
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Figure 4. Q'band intensity as a function of time for geopolymer pastes CNT-0%Zn & CNT-1%Zn.

Si0, 6310
ALO, 1297

Fe,0, 149

a0 994

MgO 454

Na,0 234

K0 381

THO, 080

MnO 0.19

LOI 0.80

Total 100

Table 2. C of the granite-based geopoly

Geo-0%Zn | 6623 |53.77 |-
[Georniza 663 [5377 |1 [ 121x108

Table 3. Granite-based mix designs examined for pumping time.

Computational chemistry model description.  Density functional theory (DFT) calculations were per-
formed to support the experimental evidence of the retardation effect of Zn®* in the geopolymerization reac-
tion following the method presented by Yang et al.”. For such, dehydration reactions between the Si(OH),
and [Al(OH),] . [Zn(OH),] and [Zn(OH),}* species were used to model the formation of the Al-O-Si and

Zn-0-Si bonds™. In our model, Si, Al, and Zn are dinated by hydroxides, which is i with the high
alkaline condition (pH around 13.0 to 13.5) used in the experimental setup®. In this range of pH, there is an
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Si Silica flour Si); 4423x 10
Al Aluminum Nitrate Nanohydrate | AI{NO, ), 9H,0 53582107
Fe | Toon (11 Sulfae FeSO, 394 1002
Ca | Calclum Hydroxide CalOH), 747 10°
My | Magnesium Oxide gy 475x 10
Na Sadium Hydroxide NaOH 158 % 10
K Potassium Hydrozide KOH 171% 10
Zn | Zinc Nitrate Hexhydrate Zn(NO)L6HO | 120% 1077

Table 5. List of composition, chemical replacement, and number of molecules for each replaced element.

Sid), 4413 44.13
ANNO,),SH,0 [1ss 1896
Fes0), i 0,99
CalOH], JEET o
MO |38 318
NaOH 106 1.06
KOH 159 159
Zn(NO,).6H,0 - 079
Taeal 791 7989

Table 6. Solid phase composition of controlled samples (CNT).

CNT-P%Zn | 666 | 333 |-

[121x10%

R EEE
Table 7. Mix design of control samples.
HO\
(a)
HO™"
HO H?
+ 2
ow oM * oo o° HO
OH HO

Figure 5. Dehydration reactions (A) with and (B) without condensation of the reactant species,

equilibrium between [Zn(OH),]” and [Zn(OH),]*" anionic species. Figure 5 presents two types of dehydration
reactions considered in this study:

First, structure predictions of the reactants and products were performed with the conformer- rotamer ensem-
ble sampling tool of the xtb software™*. To globally explore conformers, the GFN2-xTB method was used in the
framework of meta-dynamics*>*. Secondly, the minimum-energy conformers were chosen as guess structures
for calculations of geometry optimizations with the wB97X-D/6-311 + G(3df.2p)/f6-31+ G(d.p) level of theory.
The structures were optimized at the wB97X-D/6-31 + G(d.p) level of theory, and single-point calculations were
performed at the wBY7X-1/6-311 + G(3dF.2p) on these structures. All caleulations were performed with an
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lmphcn solvenl (water) using the polarizable continuum model. Thc wB97X D funcuonal has presented a good

the d of I kinetics and th p ies'’**. The Gaussian 16 soft-
ware package was used for all DFT calculations®.
Data availability

‘The datasets generated during the current study are available from the corresponding author upon request.
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Abstract

Alternative materials such as geopolymer appear to have potential advantages compared to Portland cement. However, the application
of geopolymers for all sections of the well is still a major challenge due to the difference in temperature ranges. To that end, the
classification of the granite-based geopolymer mix designs requires a thorough investigation of various properties at a range of different
operational temperatures. In this study, three mix designs are presented for different well sections from temperatures ranging from 5°C
to 60°C, Three mix designs introduced were developed with each mix design possessing its own unique composition, Workability,
theology, compressive strength, and XRD analysis were conducted to conclude the performance of the mix designs under study. Results
highlight the presence of Ca content {wt.%) in mix designs and its role in enhancing material performance at low operational
temperatures. The study reveals a promising future application of the granite-based geopolymer for well construction and abandonment
at varying depths with recommendations of further improving the performance by the addition of chemical admixtures. In addition, the
relation between temperature and Ca content was highlighted, and more investigations into the Kinetics governing these two paramelters

were recommended.
Keywords: Well Cementing: Abandonment: Cement; Geopolymer.

Introduction

Ordinary Portland cement (OPC) has been widely used as a zonal isolation material in the petroleum industry for establishing annular
barriers and cement plugs. As a hydraulic binding material, OPC has undergone extensive research on its chemical admixtwres and
madifications to its chemistry, making it has a practical choice for well cementing operations. The industry is well aware of the existing
limitations of Portland-based cement, including concerns related to its long-term durability, low flexibility, leaching when exposed to
downhole chemicals, which can result in well integrity issues [1-3]. Moreover, with the global movement toward sustainability, OPC
is not quite ideal to be continuously used due to its high environmental cost of CO; emission during its manufacture [4]. Alternative
zonal isolation materials with similar or even better performance are indeed required to replace the dependency on Portland cement,
especially for well construction and well abandonment.

Geopolymers, inorganic aluminosilicate polymers, are one of the potemtial green alternatives for OPC considering their
production life eyele involving the utilization of solid-waste material [5, 6]. The implementation of geopolymers in the oil & gas sector
as an isolation material have been under many challenges surrounding its applicability and efficiency in the field compared to the already
established knowledge of OPC [7-9]. Solid precursors, of different origins, undergo a dissolution phase where components of highly
complex minerals are disintegrated into smaller molecules, which form the basis of polymeric matrices composed of mainly Si-0-Al
bonds [10]. Geopolymers require an activator (hardener), which acts as the dissolution medium of minerals where these hardeners can
have a hydroxide nature such as potassium hydroxide (KOH) and sodium hydroxide (NaOH) or they can be of a silicate nature
potassium/sodium silicate (Ko Si0«/Na,§5i03) [11-14]. According to the work of different researchers Khalifeh ez al. [15, 16] and Duxson
et al. [17], geopolymers poses properties that make them superior to OPC such as low chemical shrinkage, low permeability, high
durability in corrosive mediums, and the ability of not bemng affected significantly by oil-based mud contammants. The challenges

evolve around admixtures 1o be utilized, temperature range efficiency, and hurdles in acquiring adeguate properties. Although with
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these challenges, many efforts are being made by rescarchers to improve and formulate geopolymer mix designs into adequately
applicable material in the field [18, 19]. To make the geopolymers viable and sustainable for the industry. researchers should narrow
the number of mix designs and diversity of geopolymer types based on the precursors used. This can facilitate mass production and
reproducibility of the technology.

It 1s well known that temperature affects the development of cementitions material significantly from workability to mechanical
properties [20-22]. The development of geopolymer to have a working range of various temperatures can be of some challenge
especially considering its ability to harden and form a solid material. In other words, one of the main remaining technical gaps for
commercialization of geopolymers is the development of few consistent mix designs that can be used in different temperature ranges.
However, the proper utilization of the Ca** content in solid precursors can be a tuming point 1o ensure strength development at low
temperatures [23].

In this study, three different mix designs, i.e., three classes of a granite-based geopolymer, are proposed considering the
applicability of the geopolymer in well cementing and well abandonment operations using granite as a main solid precursor source,
Calcium oxide {CaQ) was introduced to mix designs to compensate for low reaction rates at low temperatures. Different classes have
heen assigned to different eirculation temperatures ranging from 5°C to 60°C. The roles of operating temperature and granite-based
composition are highlighted by studying geochemistry, workability and setting time, rheology, uniaxial compressive strength, and X-

ray diffraction measurements,

Materials and Methods

Mix Designs. A granite-based geopolymer solid precursor mainly composed of granite was used as the main solid phase in this study.
One of the most influential factors is the i and Al content considering the influence of Ca content, which plays an important role
specifically at lower temperatures, thus Ca0 (purity =90%) was introduced to the mix designs at l[ow temperature up to 40°C [24]. Three
mix designs were developed to tackle preliminary challenges of neat slurry where a range ol lemperature was considered for mix designs.
Mix designs were labeled as M.D A, M.D B, & M.D C where the first and second have quite close composition, except Ca content

which goes higher as the working temperature decrea:

and the third is studied for elevated temperatures. Different components have
been introduced to tune the chemical composition 1o suite specified ranges of temperature and pressure.  The composition maintained a
mixture of granite, blast furnace slag, and microsilica throughout the three mix designs. Each of these components was proportionally
mixed to give specific compositions suitable for the allocated temperature ranges. The chemical composition of each mix design (M.IY)
is presented in Table 1.

Table 1 - Solid precursor composition of mix designs (wt. %)
Mix

" Design S0 A0z Fexs Ca0 MgO  Na:0  K:0 TiO: MnO  Sr Ba0 5+ LOI Total
MDA 6201 9.84 042 1674  5.73 1.76 1.79 Lot 0.001 0.001 o 0.52 0.13 100
MDB 6251 9.92 043 1606 5.78 1.78 1.81 102 0.01 0.01 0 0.58 0.13 100
MDC 6975 1002 058 1021 372 233 241 0.67 0.01 0.01 0.01 0.37 02 100

The mix designs presented have been inspired from previous work conducted on granite-based geopolymers. Mix designs with the
purpose of operating at low temperature applications where inspired from the work of Agista et al. [25] where it was foreseen the
efficiency of potassium hydroxide (KOH) solutions in geopolymer slurry, especially at low temperature. CaQ, added to the dry blend,
was used with the efforts to accomplish early mechanical properties and ensuring setting of the slurry at the recommended operational
window [26, 27]. In addition, the use of CaO was combined with KOH solutions rather than potassium silicate (K208i0;) solutions to

avoid the formation of coagulants that may occur while using silicate solutions [28]. On the other hand, M.D C has been inspired from
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the work of Chamssine et al. [18] where no CaO have been added to the system since it is well known that at elevated temperatures neat
slurries achieve setting and mechanical properties can be measured casily. In addition, temperature highly influences geopolymer
chemistry which assists in the formation of a firm, dense. and bulk structure [29-31]. Utilization of K:SiOs instead of Na2SiOs is due to
lower viscosity and prolonged pumpability of the potassium silicate system. Slurry preparation was conducted using API 10B-2

recommended practices [32]. Mix design components are presented in Table 2.

Table 2 - Mix design composition (wt.%).
Slurry Design (wt. %)

Mix Design Density (SG) Solid Ca0 KOH (4M) K:08i0: Solid/Liquid Ratio
M.DA 1.88 69.5 3 305 - 2.28
M.D B 1.88 69.3 1 30.7 3 2.26
M.DC 1.98 66.7 8 - 333 2

Test Conditions. The temperature range used to test different mix designs was from 5 to 60°C of BHCT. Temperatures were divided
among the three mix designs as follows: M.D A was tested from 5 to 20°C with a 5°C increment between each test: M.D B was tested
from 25 to 40°C: M.D C was tested at 50 and 60°C. Conditions of curing and testing are mentioned in Table 3. It must be noted that
curing was done at the same mentioned temperatures since from field experience there is a risk of over cooling and uncertainty in reading

downhole temperature, as the worst-case scenarios, which indicates BHCT and BHST are similar. This decision is justified when

knowing the strength devel of geopolymers is a strong function of temp and wrong temperature selection can either result

in flash setting or delayed setting. Such approach has been utilized in a study by Pernites er al. [33] on cement.

Table 3 - Operational conditions under study

Mix Design | Pressure (Bar) | Temperature (°C)
45 5
55 10
M.D A
65 15
80 20
95 25
MDB 115 30
145 40
175 50
M.D C
200 60

‘Workability. Atmospheric consistometer was used to evaluate workability of mix designs at different working temperatures. All
operations were handled following API 10B-2 recommendations [32]. The selected ramp up rate for temperatures above 25°C selected

to be 1°C per minute.

Conditioni The pheric i was used to condition samples for rheology and compressive strength samples
prep following API 10B-2 dati
Rheology. To evaluate the rheological characteristics of the geopolymer mix design at a specified temp a scientific rh

was used. This instrument was chosen due to its ability to perform tests at low temperatures, down to 5°C, which is not achievable with

a dard API ional vi Rotational testing was conducted on each slurry, under a controlled shear rate, where the shear
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stress was measured. Prior o testing, the samples were mixed and pre-conditi heric consi for 30 minutes

d using an
at specified temperatures. The rheology test involved three different intervals, namely pre-shear, ramp-up, and ramp-down. The test

began with pre-shearing at 100 1/s for 60 seconds, followed by ramp-up (0.01-511 1/s) and ramp-down (511-0.01 1/s) stages.

Compressive Strength. Destructive method was used to measure uniaxial compressive strength (UCS) of the samples. a loading rate
of 7 kN/min was applied which is in accordance with API 10TR-7 [34]. To conduct the test, each slurry was prepared using the same
procedures as mentioned earlier, and pre-conditioned at a specified temperature before being poured into cylindrical plastic molds (5
cm in diameter and 10 ¢cm in height). The molds were then placed inside pressurized autoclave cells and cured under controlled pressure
and temperature for 1 and 7 days.

X-Ray Diffraction. The Bruker-AXS Micro-diffractometer D8 Advance was utilized to study crystallography of the precursors and
observe phase changes, using CuKa radiation (40.0 kV, 25.0 mA) with a 26 range from 5° to 92°, with a 1°/min step and a 0.010°
increment. The samples were cured for 7 days at the maximum temperature limit of their respective mix designs. M.D A, M.D B, and
M.D C were cured at 20°C, 40°C, and 60°C, respectively. Prior to testing, the cured samples were manually ground and dried in a

vacuum oven at room temperature for 24 hours.

Results and Discussion

X-Ray Diffraction. XRD patterns of the solid precursor and cured samples of M.D A, B, & C are presented below in Figure | and
Figure 2, respectively. The main phases recorded in both, the solid precursor, and cured samples, are quartz (Qz), albite (Alb), microcline
(Mic), and exclusively a phase belonging to illite (IL) in the solid precursor part. The main change observed was the consumption of the
IL after reacting and curing the solid precursor. This consumption can be due to the IL’s tendency to dissolve in high alkaline
environments [35].The high concentration of Qz can be attributed to the presence of granite as the main precursor, a material rich of Si

and Al species. It can be observed that the Qz concentration has decreased in M.D B i higher ¢ ion of Si througt

the reaction in the allocated curing period. Seeing that the presence of Alb and Mic was detected, this can be an indicator of zeolite
formation specifically since the material is in a K-activated system which favors the formation of zeolite phases [36]. This as well can

be an explanation of why highly crystalline patterns were obtained where crystallinity was higher than 60% in all samples. High

crystallinity can lead to an inc in strength dq however under thermal curing this can inhibit the formation of crystalline

zeolites which strength d

by applying inner stress or local destruction to the geopolymer’s matrix[37]. These
results clearly indicate the effect of temperature on reaction rates and the need to consider the balance between temperature and
composition, since neither elevated temperature nor higher Ca content can aid unless it is formulated in a balanced manner to serve the

type of application and ensure favorable kinetics of reaction.
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Figure 2. XRD patterns for M.D A, B, & C cured for 7 days at 20, 40, & 60°C, respectively

Workability. The first field parameter to discuss is workability of the different mix designs under different temperatures. Workability
measurements of different mix designs at different temperatures are presented in Figure 3. Each mix designs has been tested at the
specific assigned range since it is foreseen from previous studies that the use of more Ca species at lower temperatures can be highly

beneficial for the workability of the slurry and the

pp at higher temp [18, 23, 25]. It can be observed how temperature
increase has an accelerating effect on the initial and final setting time of geopolymer mix designs, especially between M.D A-20 and
M.D A-5. Temperature can facilitate the setting of geopolymer material which in turn can accelerate the development of hard structure

[38, 39]. In addition, to properly understand how different material behave at the intermediate temperature zones, different mix designs
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were tested at their temperature limitations. Focusing on M.D B, the temperature limitation can be observed at 45°C, an intermediate
point between M.D B and M.D C. It must be noted that due to the rapid setting observed by M.D B-45, it was decided to switch to
Kz0Si0: solution as it has proven its efficiency under el d temp conditions [18]. This shift to K20SiO; solution and a

significant decrease in Ca content in M.D C created a synergy in the slurry allowing the prolongation and safe handling of slurry at
ding the 45°C temp limit to go up to 60°C.

oS8Ess23ss

—— M.D A-§ == M.D A-10 ——DM.D A-15——M.D A-20 (A

Consistency (Be)

o
»
-
@
@
-
s
&
B
=
-
£

Time (h)

=sBss223Ess

——M.D B-25—— M.D B-30 ——M.D B-40 —— M.D B-45  (B)]

Consistency (Bc)

e
°
®
n
s
n
-
s
"
n
-
°

Time (h)

Consistency (Bc)
=s8ss232Ess

M.D C45

M.D C-50

M.D C-60 ©)

e
°
e
in
>
in

20 25 30 3s 4.0
Time (h)

Figure 3. Workability measurement of mix designs at different temperatures. (A) M.D A, (B) M.D B, (C) M.D C — Each curve tested
at the specific temperature indicated

Throughout this study, the criteria of assigning working for

p mix designs depended on mainly Ca content
in mix designs. Duxson et al. (Duxson et al. 2007) [40]highlighted the properties of low Ca geopolymer at low temperatures where
hardening time is quite slow compared to samples cured at elevated temperature. Nath and Sarker [41]examined the efficiency of OPC

for fly ash class F geopolymers cured at ambient liti They concluded that the p of OPC not only accelerated the reaction

of geopolymerization but also infl d the pressive strength of the material; they attributed this increase to OPC addition as a Ca

source for the reaction which in turn yielded C-S-H phases that was able to 1 the polyconds ion phase of the reaction. -The

proper utilization of the Ca** content in solid precursors can be a turning point to ensure strength devel at low [23].

Thus, the tuning of Ca content can have a major effect on slurry properties at low temperatures as demonstrated in M.D A-5, which was

handled at relatively low operational but still ged to harden due to the higher Ca content in the dry blend.
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Rheology. The rheological properties of each geopolymer mix design were assessed using rotational flow tests at their designated

temperatures, as outlined in Table 3. As a time-dependent fluid, the viscosity of the slurry changes over time, necessitating cos

timing during the test to ensure reliable results. The samples were mixed and preconditioned for 30 minutes at the specified temperature

before being placed in the rheometer cup, which was conditioned at the test temperature. The test began with an initial pre-shear to break

down any formed gel and was followed by the p-up and ramp-down tests. In some cases, the inability to test certain samples was

due to high viscosity resulting from hardening caused by the rapid geopolymerization reaction at high temperatures. The ramp-down

test result is evaluated and presented in Figure 4. Ramp-down test is selected due to its repr ion of dynamic condition of the slurry.
The effect of the temperature is noticeable in the different mix designs. Higher temperature will induce higher kinetic energy, increasing
the molecule vibration of the carrier fluid hence reducing the slurry's viscosity [25]. This behavior can be seen in the mix design A
which tested at 5°C to 20°C. On the other hand, the viscosity result for mix design B shows the opposite trend with the increasing
temperature. Increasing temperature will result in increased viscosity of both mix designs. At this stage, the slurry is in the acceleration
phase in which increasing temperature will fasten the geopolymerization reaction leading to the hardening. Moreover, the viscosity of

M.D B-40 and M.D C-60 were not able to be measured due to fast hardening at that specific temperature. This finding is consistent with

the i y test results p d in Figure 3, indicating that both slurries were pumpable for less than an hour. The outcome of the

study revealed that mix designs A and B are itable for use at elevated I as they are significantly affected by gelation

and hardening due to the presence of Ca. Similarly, mix design C also experienced fast setting at temperatures above 60°C and could

not perform well for low temperature as shown in Figure 3.
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Figure 4. Rotational Flow (Ramp-Down) measurement of mix designs (A) M.D A, (B) M.D B, (C) M.D C

Compressive Strength. The performance of different mix designs at their desi d ranges is | d in Figure 5. The

curing conditions under different operational temperatures have caused a significant change in the materials ability to withstand
mechanical load. Temperature has a direct impact on the strength development of material, and it can be correlated to OPC at elevated
temperatures [42] . However, the material’s composition, specifically Ca content, contributes hugely to the reaction rate of the mix
design and eventually its strength [27]. The increase in Ca content can promote the formation of minor C-S-H phases aiding the matrix’s
strength development phase [43]. It can be observed that M.D A at 5°C yielded the lowest compressive strength after 1-day of curing

compared to samples cured at higher temperatures despite having a high Ca content. These results are expected due to the increase in

pera However, i ingly observing M.D B-25 it starts to show that although with a lower Ca content in comparison to M.D

A samples, compressive strength keeps on i ing with i i erd which highlights the significant effect temperature

can make to the slurry reaction, hence the effect on compressive strength. In addition, M.D B-40 had the highest strength in comparison
to all other samples which scems that the reaction at 40°C is more favorable Kinetically where more intermolecular matrices are

developing [44]. However, more investigation is required to observe kinetic behavior within every mix design individually at allocated
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1 M.

perati P . it was observed that mix designs M.D C-50 and M.D C-60 have measured quite close to cach

other. Although being cured at el d p the p effect could not compensate for the missing Ca content in
comparison to M.D B’s composition. This leads up to a point of interest addressing the firm balance to be made between temperature

effect and Ca content in every mix design, which asks for deeper und ding and devel of a lation between both

parameters at a Kinetic level.

Compressive Strength (MPa)

Curing Period (Days)

Figure 5. Compressive strength of mix designs cured at allocated temperatures.

Conclusion

Three geopolymer mixed designs were devised to handle different sections of well cementing, each having a unique composition.
Different tests were performed at a range from 5 to 60°C considering applicability of each mix design at a specific temperature range.
The results for each mix design have been treated individually where their behavior in different conditions, with different Ca content,
was the focus point in this study. Based on XRD readings, the mix designs had consistent and similar mineral detection which indicates
that Ca content, due to its minor presence in comparison to other elements such as Si and Al, was not highly visible. However, M.D B

had an interesting Qz phase post curing which indicates favored reaction kinetics for the reaction at 40°C. Workability indicated the

benefit of Ca content at lower and how temr was one of the most sensitive parameters determining the performance
of geopolymer material and affecting the selection of composition for each mix design. Furthermore, compressive strength increased
with increasing curing temperature where MD. B achieved the had the highest performance at 40°C. This high performance can be
attributed to favorable reaction conditions which was supported by XRD patterns of cured sample where high consumption of quartz
can be observed in M.D B. The mean of developing geopolymer material for oil & gas application should consider a wide range of
parameters that can be suitable for producing a successful material where composition and temperature range can highly impact the rate

of reaction and thus the efficiency in developing strong matrices that can withstand external s. Further rec fations will

Lamaiaal ad;

be to aim for devel

ping in different capacities, that would lift the material’s properties and engincer compositions

capable of successful implementation into field usage. Plus, the Ca content in geopolymer material must be tuned and considered for

1 ion in field applications due to its beneficial effect on the bulk matrix specifically in ensuring setting of slurry and achieving

p pressive strength post setting.
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