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Abstract

This bachelor thesis provides an introduction to multivariate statistics, which is
the analysis of data with multiple variables using statistical methods. The thesis
focuses on the generalization of the normal distribution to random vectors, proper-
ties of the multivariate normal distribution, and non-parametric kernel estimation
methods for estimating densities. Additionally, the thesis presents methods for
separating populations and classifying new observations within these populations
using multivariate statistics. The applications of these methods is demonstrated
using a real data set, and the accuracy of the classification is evaluated.
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Chapter 1

Introduction

In the field of statistical analysis, measuring multiple variables is a common setting,
and multivariate methods are the primary tools used for analysis. These methods
enable the examination of relationships between different variables, allowing for
a more comprehensive understanding of the data. The purpose of this bachelor
thesis is to provide an introduction to the subject of multivariate statistics.

Specifically, we will explore the generalization of the normal distribution to
random vectors and analyze some of the properties of the multivariate normal dis-
tribution. Additionally, we will discuss non-parametric kernel estimation methods
for estimating densities. Using multivariate statistics, we will construct meth-
ods for separating populations and defining rules for classifying new observations
within these populations. To demonstrate the effectiveness of these methods, we
will apply them to a real data set and evaluate the accuracy of the classification.
By delving into multivariate statistics and exploring these various techniques, this
thesis aims to provide readers with an introductory understanding of this impor-
tant field of statistical analysis. In chapter 2 we will build the theory we need to
handle multivariate observations, in chapter 3 we will be concerned with applying
the methods constructed in the previous chapter on a real data set, and finally a
brief summary in chapter 4.
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Chapter 2

Theory

Notation

First, we will have to familiarize ourselves with the notation. We will use capital
letters, say X, for random variables. When we make an observation, we will use
lowercase, for example x, to denote them. When making n observations of p
different variables we will use the first index for the observation number and the
second for the variable, so for the ith observation of the kth variable we will write
xik, where i = 1, 2, . . . , n and k = 1, 2, . . . , p. Bold will be used for vectors and
matrices, like the mean vector µ and variance-covariance matrix Σ, which we will
use throughout this text. And finally, for vectors and matrices, we will denote the
transposed as X′.

2.1 Univariate statistics

2.1.1 Random variables

During this text, we will be working with random variables. So it will be purposeful
to familiarize ourselves with some basic concepts related to random variables. For
a discrete random variable X with corresponding probability mass function f(x)
we have the following criteria for all possible outcomes x:

1. f(x) ≥ 0.

2.
∑
x

f(x) = 1.

3. P (X = x) = f(x).

For a continuous random variable where possible outcomes are among the real
numbers, the probability density function f(x) must satisfy:

2



2.1. UNIVARIATE STATISTICS 3

1. f(x) ≥ 0 ∀ x ∈ R.

2.
∫∞
−∞ f(x) dx = 1.

3. P (a < X < b) =
∫ b

a
f(x) dx.

The expected value

The expected value, or mean value, is the ”center of mass” of the distribution and
for random variables of countably many outcomes can be thought of as the average
of a long-run experiment. The expected value is defined as the first uncentered
moment of f ,

µ = E (X) =


∑
x

xf(x) If X is discrete∫∞
−∞ xf(x) dx If X is continuous

Variance and covariance

The variance of a variable is the expected squared error from the mean, which is
the second centered moment of f .

Var (X) = E((x − µ)2) =


∑
x

(x − µ)2f(x) If X is discrete∫∞
−∞(x − µ)2f(x) dx If X is continuous

For this text’s purposes, we will use the notation σkk for the variance of variable
k. This notation choice simplifies an object we will define in due time. Then with
our notation Var (Xk) = σkk

For two random variables X and Y with joint probability distribution f(x, y),
the covariance is a measure of the linear association between them. Statistically
independent variables will have zero covariance.

Cov (X, Y ) = σXY =


∑
x

∑
y

(x − µX)(y − µY )f(x, y)∫∫
R2

(x − µX)(y − µY )f(x, y) dA

Correlation

We will now define Pearson’s product-moment correlation coefficient. This coef-
ficient is a measure of the linear association between two variables and does not
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depend on the units of measurement. The correlation coefficient for the ith and
kth variables is defined as

ρik =
σik√

σii
√
σkk

This coefficient lies on the closed interval [−1, 1] where a larger absolute value
corresponds to a stronger positive or negative linear association, with zero implying
a lack of correlation.

2.1.2 Descriptive statistics

For large datasets it is impractical to try to assess the underlying information from
each individual data point, thus some descriptive statistics are used to summarise
the information that we’re interested in.

The arithmetic average

A commonly used statistic is the arithmetic average, or the sample mean, which
is often used as an estimator for the expected value of the underlying distribution.
The arithmetic average is the sum of all measurements of a variable divided by
the number of measurements. So the arithmetic average of the kth variable is

x̄k =
1

n

n∑
j=1

xjk

The sample variance and covariance

Another descriptive statistic central to our understanding of multivariate statistics
is the sample variance and covariance. For the kth variable the sample variance is

s2k =
1

n− 1

n∑
i=1

(xik − x̄k)
2

Covariance is used as a measure for the linear association between the mea-
surements of two variables. For the ith and kth variables the sample covariance
is

sik =
1

n− 1

n∑
j=1

(xji − x̄i)(xjk − x̄k)
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Sample correlation coefficient

Similarly to the correlation between two random variables, we can define the sam-
ple correlation between two variables from a set of pairwise measurements by using
the sample variances and covariance. So, for the sample correlation between the
ith and kth variables we define

rik =
sik√

sii
√
skk

=

∑n
j=1(xji − x̄i)(xjk − x̄k)√∑n

j=1(xji − x̄i)2
√∑n

j=1(xjk − x̄k)2

2.2 Multivariate statistics

One might wonder why you would need multivariate statistics and when you would
need it. And the simple answer is that multivariate statistics comes up whenever
we measure multiple variables for the same unit. So when a doctor not only
measures your blood pressure, but also your height, weight, blood protein levels,
blood sugar and so on, you better hope that the people analyzing your test know
some multivariate statistics so that they can detect outliers, or find out whether
the measures would classify you as in risk of some disease or not.

2.2.1 Multivariate objects of random variables

In the following sections, we will familiarise ourselves with some objects central to
our study of multivariate statistics.

Random vectors

A multivariate random variable or random vector is a vector of random variables,
so X′ = [X1, X2, . . . , Xp] is a p× 1 random vector where each of the elements in
X is its own random variable.

Mean vector

Following from the random vector X we define the mean vector µ, which is the
vector of expected values for the elements in X. So

E (X) =


E(X1)
E(X2)

...
E(Xp)

 =


µ1

µ2
...
µp

 = µ
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For a random vector that can be expressed as a linear combination of X such as
Y = CX+ b, where C is matrix and b is a vector, the mean vector µY becomes

E (Y) = E (CX+ b)

= C E (X) + b

= CµX + b

Variance-Covariance matrix

The variance-covariance matrix, or simply the covariance matrix, is a symmetric
positive-definite p × p matrix composed of variances and covariances for a random
vector.

Σ = Cov (X) = E ((X− µ)(X− µ)′)

= E



X1 − µ1

X2 − µ2
...

Xp − µp

 [X1 − µ1, X2 − µ2, . . . , Xp − µp

]


Σ =


σ11 σ12 σ13 · · · σ1p

σ12 σ22 σ23 · · · σ2p

σ13 σ23 σ33 · · · σ3p
...

...
...

. . .
...

σ1p σ2p σ3p · · · σpp


The inverse of the covariance matrix Σ−1 is often called the precision matrix.

The covariance for the linear combination Y = CX+ b, which might be denoted
as ΣY, can be expressed as

Cov (Y) = Cov (CX+ b)

= C Cov (X)C′

= CΣXC
′

2.2.2 Sampling statistics

Random samples

When making a random sample, which corresponds to making n independent
identically distributed multivariate observations, we will construct the data matrix
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X. Then X is a n × p matrix, meaning each of our p variables is a column in
a matrix with rows corresponding to one of the n observations for each of the
variables. Such that

X
(n×p)

=


x11 x12 x13 · · · x1p

x21 x22 x23 · · · x2p

x31 x32 x33 · · · x3p
...

...
...

. . .
...

xn1 xn2 xn3 · · · xnp


Unfortunately, this gives the notationX two different meanings, either as a random
vector or as a random sample, usually this won’t be a problem and the usage will
be clear from the context. Through the random sample we will estimate the mean
vector and covariance matrix.

Sample mean vector

The sample mean vector x̄ is the generalization of the arithmetic average and
using a bit of matrix multiplication we can calculate this directly from the random
sample

x̄ =
1

n
X′1 =


x̄1

x̄2
...
x̄n


Where 1 is a n× 1 vector of ones.

Sample variance-covariance matrix

For the sample variance-covariance matrix the procedure is similar. We will make
use of the n× p matrix of deviations X− 1

n
11′X, so

S =
1

n− 1

(
X− 1

n
11′X

)′(
X− 1

n
11′X

)
=

1

n− 1
X′
(
I− 1

n
11′
)
X

=


s11 s12 s13 · · · s1p
s12 s22 s23 · · · s2p
s13 s23 s33 · · · s3p
...

...
...

. . .
...

s1p s2p s3p · · · spp


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2.3 Multivariate normal distribution

The (univariate) normal distribution is possibly the most famous probability dis-
tribution. It applies to a wide range of situations, both as a population model
and as an approximation to the sampling distributions of many different statistics
through the central limit theorem. Thus it should not be surprising that there
exists a multivariate normal distribution. Many methods in multivariate statistics
are based on the assumption that the data is generated from a multivariate normal
distribution.

One advantage of the normal distribution is that it’s a mathematically man-
ageable function that behaves ”nicely”, this leads to many properties and results
that follow directly from algebraic manipulations, some of which are included here.
First, we will have a look at the probability density function for the multivariate
normal distribution. For the familiar univariate normal density with mean µ and
variance σ2 we have

f(x) =
1√
2πσ

e−
1
2
(x−µ

σ
)2

and is often denoted as N(µ, σ2), an extension of this notation will also be used
for the multivariate case. Notice that in the exponent of the univariate normal
density function, we have the term(

x − µ

σ

)2

= (x − µ)(σ2)−1(x − µ)

which measures the distance from the mean in standard deviation units. This can
be generalized to a p× 1 vector x of observations on several variables as

(x − µ)′Σ−1(x − µ) (2.1)

and this shall substitute the univariate distance in the exponential. The next step
to generalize the univariate density function is to normalize the function, for a
univariate normal distribution the normalization constant is (2π)−1/2(σ2)−1/2, and
in the multivariate case, we have

f(x) = Ce−
1
2
(x− µ)′Σ−1(x− µ)

Then we need to determine the constant C such that the integral over the p-
dimensional space is unity

1 = C

∫ ∞

−∞
· · ·
∫ ∞

−∞
e−

1
2
(x− µ)′Σ−1(x− µ) dxp · · · dx1
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To evaluate the integral one can use the fact that Σ is positive definite to make
the change of variables x−µ = Σ1/2z, where Σ1/2Σ−1Σ1/2 = I. The Jacobian for
this change of variables is |Σ|−1/2. This gives us

1 = C|Σ|1/2
∫ ∞

−∞
· · ·
∫ ∞

−∞
e−

1
2
z′z dzp · · · dz1

= C|Σ|1/2
∫ ∞

−∞
· · ·
∫ ∞

−∞

p∏
i=1

e−
z2i
2 dzp · · · dz1

= C|Σ|1/2
(∫ ∞

−∞
e−

z2

2 dz

)p

= C|Σ|1/2(2π)p/2

=⇒ C = (2π)−p/2|Σ|−1/2

And now we have the p-dimensional normal density for the random vector X′ =
[X1, X2, · · · , Xp]

f(x) =
1

(2π)p/2|Σ|1/2
e−

1
2
(x− µ)′Σ−1(x− µ)

Where −∞ < xi < ∞ for i = 1, 2, . . . , p. Analogous to the univariate normal
density we will denote the p-dimensional normal density as Np(µ, Σ).

Plotting of the multivariate normal density is mainly limited to the cases p = 1
and p = 2, we will demonstrate two common methods for visualization. The
first method is by perspective plots, where the height of the surface above the
(X1, X2)-plane corresponds to the joint probability density, and the volume under
the surface and above a region in the plane corresponds to the probability of a
observation form this distribution to return a point in the region.

The second method is by a heat map. Unlike perspective plots where we
attempt to draw the 3-dimensional surface, we instead represent the density by
colour, where regions of higher density is usually illustrated with a increase in hue
or intensity.

The methods described in the section above are illustrated in Figure 2.1 and
2.2. For the plots, the bivariate standard normal density N2(0, I) and a bivariate

normal density with µ = 0 and Σ =

[
1 0.6
0.6 1

]
were used. We can then notice

how the density concentrates along a line, if we instead had negative correlation
we would have seen the same concentration, but along the line x1 = −x2 instead.
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Figure 2.1: Perspective plots
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(b) Bivariate normal density with ρ12 =
0.6

Figure 2.2: Heat maps

2.3.1 Properties

There are many beneficial properties of the multivariate normal distribution, we
will look at some of them in the following section.
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Statistical Independence between variables

Statistical independence is an important notion throughout probability theory.
Two random vectors are said to be independent if

f(x1, x2) = f1(x1)f2(x2) ,

where f is the joint probability distribution of the random vectors x1 and x2 and f1
and f2 are the marginal distributions of x1 and x2 respectably. From the quadratic
form in equation 2.1 we can observe that when Σ−1 is a diagonal matrix all the
cross-terms disappear and we are left with

(x − µ)′Σ−1(x − µ) =

(
x1 − µ1

σ1

)2

+ · · · +
(
xp − µp

σp

)2

.

Along with |Σ|1/2 = σ1 · · · σp. Because we now have no cross-terms in the expo-
nential, only a sum of the squared statistical distances, and all of the standard
deviations as a product in the normalization constant we can write the multivari-
ate normal density as a product of univariate normal densities, which means that
the elements of X are mutually independent. This is also true even when some
elements in X are dependent, and this can be shown by partitioning the random
vector X as X′ = [X(1)′,X(2)′] where

X(1) =

X1
...
Xq

 , X(2) =

Xq+1
...
Xp

 .

This partition also affects the mean vector and covariance matrix as follows

µ =

(
E
(
x(1)
)

E
(
x(2)
)) =

(
µ(1)

µ(2)

)

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where Σij = E
(
(x(i) − µ(i))(x(j) − µ(j))′

)
and Σij = Σ′

ji. In the case where
Σ12 = Σ′

21 = 0, a matrix of only zeroes, the quadratic form from earlier becomes

(x− µ)′Σ−1(x− µ) =
[
(x(1) − µ(1))′, (x(2) − µ(2))′

](Σ−1
11 0
0 Σ−1

22

)(
x(1) − µ(1)

x(2) − µ(2)

)

=
[
(x(1) − µ(1))′, (x(2) − µ(2))′

](Σ−1
11 (x

(1) − µ(1))
Σ−1

22 (x
(2) − µ(2))

)
=(x(1) − µ(1))′Σ−1

11 (x
(1) − µ(1)) + (x(2) − µ(2))′Σ−1

22 (x
(2) − µ(2))
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When combined with the fact |Σ| = |Σ11||Σ22| we can see that the p-dimensional
density f(x(1), x(2)) can be written as the product of two multivariate densities
f1(x

(1)) and f2(x
(2)) of dimensions q and (p− q) respectively.

Contours of constant density

Another important property of the multivariate normal density is the contours
of constant probability. From the p = 2 cases which are plotted in Figure 2.1
and 2.2 we can see that contours of constant density are ellipsoids defined by
{x : (x− µ)′Σ−1(x− µ) = c2}, where these ellipsoids are centered at µ and have
axes ±c

√
λiei with (λi, ei) as a normalized eigenvalue-eigenvector pair.

For a better understanding of the constant c2 we will look at a result concerning
the distribution of the quadratic form (x−µ)′Σ−1(x−µ). First, we will use spectral
decomposition to write Σ−1 as

∑p
i=1

1
λi
eie

′
i. Thus the quadratic form then becomes

(x− µ)′Σ−1(x− µ) =

p∑
i=1

1

λi

(x− µ)′eie
′
i(x− µ) =

p∑
i=1

1

λi

(e′i(x− µ))2

=

p∑
i=1

(
1√
λi

e′i(x− µ)

)2

=

p∑
i=1

Z2
i = Z′Z

Where it can then be shown[3] that the linear combination Z is distributed as
Np(0, I), thus Z1, Z2, . . . , Zp are independent standard normal variables and
(x− µ)′Σ−1(x− µ) has a χ2

p distribution.
Following from the previous result the multivariate normal distribution assigns

probability 1 − α to the solid ellipsoid {x : (x − µ)′Σ−1(x − µ) ≤ χ2
p(α)}, where

χ2
p(α) is the upper (100α)th percentile of the χ2

p distribution.

Other properties

Other properties of the normal distribution are, among others, that linear combi-
nations of multivariate variables are multivariate normal and that the conditional
distributions of components of a random vector are multivariate normal. We will
not go further into this. Proofs and examples can be found in [3]

2.3.2 Maximum likelihood estimation

Unfortunately, when working with a random sample we rarely have access to µ
and Σ, therefore we will have to estimate them. Before we can find the maximum
likelihood estimators for µ and Σ we will have to define the likelihood function
for our sample.
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When we have made a random sample X with observations x1, x2, . . . , xn from
a multivariate normal population

X =


x′
1

x′
2

x′
3
...
x′
n

 =


x11 x12 x13 · · · x1p

x21 x22 x23 · · · x2p

x31 x32 x33 · · · x3p
...

...
...

. . .
...

xn1 xn2 xn3 · · · xnp


We can define the likelihood function L(µ,Σ) as the product of the density for each
observation, making it a function of the unknown parameters µ and Σ. Then the
maximum likelihood estimator is the value of µ and Σ that maximizes L(µ,Σ).
For the univariate normal distribution with mean µ and variance σ2 the likelihood
function is

L(µ, σ) =
n∏

i=1

1√
2πσ

exp

(
−1

2

(
xi − µ

σ

)2
)

= (2π)−n/2σ−n exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2

)

It is common to take the logarithm of the likelihood function, due to the fact that
the log-likelihood function will have the same estimator as its maxima, and the
log is usually easier to work with.

l(µ, σ) = ln(L) = −n

2
ln(2π)− n

2
ln(σ2)− 1

2σ2

n∑
i=1

(xi − µ)2

Setting the partial derivatives equal to zero gives us the maximum likelihood esti-
mators

∂l

∂µ
=

1

σ2

n∑
i=1

(xi − µ) = 0 =⇒ µ̂ =
1

n

n∑
i=1

Xi = X̄

∂l

∂σ2
= − n

2σ2
+

1

2(σ2)2

n∑
i=1

(xi − µ)2 = 0 =⇒ σ̂2 =
1

n

n∑
i=1

(Xi − X̄)2
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For the multivariate normal distribution we obtain the likelihood function

L(µ,Σ) =
n∏

i=1

1

(2π)p/2|Σ|1/2
e−

1
2
(xi − µ)′Σ−1(xi − µ)

=
1

(2π)np/2|Σ|n/2
e−

1
2

∑n
i=1(xi − µ)′Σ−1(xi − µ) (2.2)

Further we will only present the maximum likelihood estimators for the multivari-
ate normal distribution, for a detailed look at the procedure of maximizing 2.2 one
can see [1] or [3].

For the multivariate normal distribution the maximum likelihood estimators
for µ and Σ are

µ̂ = x̄ Σ̂ =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)′ =
n− 1

n
S

One of the first things we want to check is whether our estimators are unbiased
and consistent. For µ̂ we notice that E (µ̂) = µ and Var (µ̂) = 1

n
Σ, meaning

that it is a unbiased and consistent estimator for µ. As for the covariance Σ̂ is
consistent, but unbiased.

2.3.3 Simulation

Simulation is a common method in computational statistics. It is often used when
modeling complex situations or when calculating the exact answer is too difficult
or expensive and an approximate answer is good enough.

For simulation of a general multivariate normal distribution Np(µ,Σ) it is suf-
ficient to simulate a multivariate standard normal distribution and then transform,
because if Z ∼ Np(0,1) then X = CZ+µ is multivariate normal. This is because
X is a linear combination of multivariate normal variables, and if we choose C
such that CC′ = Σ the expected value becomes

E (X) = E (CZ+ µ) = C E (Z) + µ = C0+ µ = µ

and the variance-covariance matrix becomes

Cov (X) = Cov (CZ+ µ) = C Cov (Z)C′ = CIC′ = Σ

leading to the conclusion that X ∼ Np(µ,Σ) as desired.
So for n simulations of the general multivariate normal distribution we first

simulate a n × p matrix Z of standard normal variables. Then find a matrix C
such that CC′ = Σ and apply the transformation X = ZC+ 1µ′.
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A common approach for simulating from the standard normal distribution
is the Box-Muller transformation, where we first simulate two variables U, V ∼
Unif(0, 1) and then compute

X =
√

−2 ln(U) cos(2πV )

Y =
√

−2 ln(U) sin(2πV )

It can be shown that X and Y now are two independent N(0, 1) variables[2].

2.4 Non-parametric kernel estimation

One of the most fundamental concepts in statistics is the probability density. In
some cases the functional form of the probability density is known when analysing
a random sample, but this is not always the case. One common method for
estimating the density function without making any distributional assumptions is
by non-parametric kernel estimation, which we will look at in the following section.

2.4.1 The kernel

The main idea of kernel estimation is to use a weighing function K(x), referred to
as a kernel, to weight the distance from each data point to a point of interest and
then add these kernels together to get the final estimate for the density f̂(x). To
do this there are some properties we would like our kernels to have, the first being
that it satisfies ∫ ∞

−∞
K(x) dx = 1 .

As well as K(x) ≥ 0, this makes it easy to normalize our estimate for the density
f(x) by dividing by n after adding each kernel together. These conditions on K(x)
automatically gives us a valid probability density when considering their sum, as
well as f̂(x) inheriting all continuity and differentiability properties of K. This is
one of the reasons the normal density is a standard choice of kernel function.

2.4.2 Bandwidth

Before we write down the formula for f̂(x) we would like to like how to explain
control the amount of smoothing for our estimate. This is done by scaling the
distance from the data point and the point of interest by 1

h
, where h > 0 is our

smoothing parameter, usually called bandwidth. Then our estimate for the density
f(x) from a random sample with observations x1, x2, · · · , xn is

f̂(x) =
1

nh

n∑
i=1

K

(
x− xi

h

)
.



2.4. NON-PARAMETRIC KERNEL ESTIMATION 16

We can note that when using a standard normal kernel, changing the parameter
h is equivalent to changing the standard deviation of the normal kernel. For the
following examples, we have simulated five data points from a standard normal
distribution and used normal kernels with different bandwidths h. As we can see
in Figure 2.4, where the individual kernels are drawn in red and the estimate for f̂
is drawn in black, the choice of h changes our estimate of f̂(x). For more complex
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Figure 2.3: Density estimates of fY (x) with varying bandwidth from a simulated
sample of 5 data points. Black: KDE f̂Y . Red: Individual kernels

Figure 2.4: Density estimates with varying bandwidth
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densities the bandwidth can determine if some crucial bits of information can be
detected or not. For the following example, we have simulated a mixture of three
normal distributions, making a multimodal distribution, fY (x) = 0.4fX1(x) +
0.2fX2(x) + 0.4fX3(x), where X1 ∼ N(−3, 1), X2 ∼ N(0, 1) and X3 ∼ N(3, 1).
Notice how for large h it is not possible to detect the presence of X2 and for small
h the noise of the data can make it difficult to conclude anything. This illustrates
that both smoothing too much and smoothing too little can give wrong results.

There are multiple ways to define a criterion for how optimal the choice of
bandwidth is, and many methods are used to calculate a suitable bandwidth. One
of the most popular methods is ”Silverman’s rule of thumb”[4].

For multivariate data it is still possible to perform this procedure, but the
difference is that instead of using a univariate kernel we now use a multivariate
kernel, usually a symmetric normal density. Similarly to how we generalized the
univariate normal density, the smoothing parameter h now becomes a matrix H
and for the multivariate normal kernel this matrix plays the part of the covariance.
For a more detailed look into density estimation we refer to Silverman’s book about
the subject[4].

2.5 Discriminant analysis and classification

In the following section we will look at a couple of methods for discrimination and
classification. Discrimination is the process of describing the features of observa-
tions that differentiate between populations and using these features to separate
these populations as much as possible. This makes discrimination an excellent tool
for data exploration and also for dimensionality reduction, by looking at which
features separate our populations as effectively as possible. After separating our
populations the next goal could be to sort new observations into labeled classes
corresponding to the separated populations, this is what classification procedures
try to accomplish. Thus, classification procedures are less about exploration and
rather determine rules for optimally assigning new observations.

Before we start the separation we must be aware that it is usually impossi-
ble to define a perfect classification rule and always assigns an observation to the
correct class. This is due to possible overlap between the densities for our popu-
lations. Knowing this we shall determine some features a ”optimal” classification
rule should have.
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Figure 2.5: Density estimates of fY (x) with varying bandwidth from a simulated
sample of 1000 data points. Black: True density of fY . Red: KDE f̂Y

2.5.1 Expected cost of misclassification

First some notation. For the true populations, we will use ω, so for an object com-
ing from the ith population we can write x ∈ ωi or simply ωi, with corresponding
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probability density function fi(x). We will then try to determine subsets of our
sample space Ω, where observations in the region Ri correspond to us assigning our
observation to be in population ωi. We must assign the observation x to a unique
population so the regions must be mutually exclusive and exhaustive, meaning for
g populations

g⋂
i=1

Ri = ∅
g⋃

i=1

Ri = Ω

And now we can define the probability of misclassification, which we will denote
as P (i | k), classifying the object as belonging to ωi when it is really from ωk. So
for the case when g = 2

P (2 | 1) = P (X ∈ R2 | ω1) =

∫
R2

f1(x) dx

P (1 | 2) = P (X ∈ R1 | ω2) =

∫
R1

f2(x) dx

Any classification rule we would consider using should make few misclassifi-
cations, meaning that the probability of a misclassification should be small. Our
rule should take into account the prior probability of an observation coming from
a certain population, we will denote this as pi for the prior probability of coming
from population ωi. This makes it possible to simply state the probabilities of mis-
classification as the probability of misclassifying the observation, as seen above,
times the probability of the observation coming from the true population.

P (observation is misclassified as ω1) = P (X ∈ R1 | ω2)P (ω2) = P (1 | 2) p2

P (observation is misclassified as ω2) = P (X ∈ R2 | ω1)P (ω1) = P (2 | 1) p1

We could now optimize the sum of these probabilities and find the classification
rule that minimizes the total probability of misclassification, but this is not always
the optimal solution. In cases where the direction of misclassification can be crucial
we can define a cost of misclassification, we will denote this as c(i | k) for the cost
of incorrectly classifying a object from ωk as coming from ωi.

From this we define the expected cost of misclassification for a observation from
ωk

ECM(k) =

g∑
i=1
i ̸=k

c(i | k) P (i | k) .
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And now we have a good measure to optimize for, the total expected cost of
misclassification (TECM) which is the sum of the expected cost of misclassification
times the corresponding prior probability for each population

TECM = p1ECM(1) + p2ECM(2) + · · ·+ pgECM(g)

=

g∑
k=1

pk

 g∑
i=1
i ̸=k

c(i | k) P (i | k)


And the regions that minimize the ECM are defined by allocating x to the

population ωk for which

g∑
i=1
i ̸=k

c(i | k) fk(x) pk

is the smallest. Further we will only look at the case of g = 2 for simplicity. Then
the TECM is

TECM = c(2 | 1)p1
∫
R2

f1(x) dx+ c(1 | 2)p2
∫
R1

f2(x) dx

when writing P (1 |2) and P (2 |1) as integrals. Because Ω = R1∪R2 we can rewrite
one of the integrals as ∫

R2

f1(x) dx = 1−
∫
R1

f1(x) dx .

This allows us to write

TECM = c(2 | 1)p1
[
1−

∫
R1

f1(x) dx

]
+ c(1 | 2)p2

∫
R1

f2(x) dx

=

∫
R1

[
c(1 | 2)p2f2(x)− c(2 | 1)p1f1(x)

]
dx+ c(2 | 1)p1,

and because all of these variables are non-negative for all x, the TECM is mini-
mized if R1 includes those values x for which

c(1 | 2)p2f2(x)− c(2 | 1)p1f1(x) ≤ 0

and excludes those x for which this quantity is positive. This can also be written
with the ratio of densities as follows

f1(x)

f2(x)
≥ c(1 | 2)

c(2 | 1)
p2
p1

.
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2.5.2 Linear discriminant analysis

Next we assume that f1(x) and f2(x) are multivariate normal densities, with mean
vectors µ1 and µ2 respectively, we shall first consider the case of equal covariance
Σ. Then the normalization factors cancel and the regions R1 and R2 the minimize
the TECM are

R1 : exp

[
−1

2
(x− µ1)

′Σ−1(x− µ1) +
1

2
(x− µ2)

′Σ−1(x− µ2)

]
≥ c(1 | 2)

c(2 | 1)
p2
p1

R2 : exp

[
−1

2
(x− µ1)

′Σ−1(x− µ1) +
1

2
(x− µ2)

′Σ−1(x− µ2)

]
<

c(1 | 2)
c(2 | 1)

p2
p1

.

Now that we have determined the regions R1 and R2 we can define our classi-
fication rule, where we have a new observation x0 and wish to allocate it to either
ω1 or ω2. The following formulation is simplified from the above expressions by
taking the logarithm, which we can do because all the terms are non-negative.
When we expand the products in the exponential all the quadratic terms x′Σ−1x
cancel and we receive a linear function in x. We allocate x0 to ω1 if

(µ1 − µ2)
′Σ−1x0 −

1

2
(µ1 − µ2)Σ

−1(µ1 + µ2) ≥ ln

(
c(1 | 2)
c(2 | 1)

p2
p1

)
, (2.3)

and we allocate x0 to ω2 otherwise. This rule can also be interpreted as

y ≥ ln

(
c(1 | 2)
c(2 | 1)

p2
p1

)
+m , (2.4)

where y = (µ1 − µ2)
′Σ−1x = a′x and m = 1

2
(a′µ1 + a′µ2).

When the expression in the logarithm is unitary we are left with comparing
the scalar variable y against m, this is known as ”Fisher’s linear discriminant”.
This is equivalent to projecting the points onto a line and checking if it falls to the
right or left of the midpoint m.

2.5.3 Quadratic discriminant analysis

As seen above, when our populations are normally distributed and have equal
covariance we get a nice linear function separating our populations, this is not
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the case when considering unequal covariance. Following the same procedure as
before, assuming the populations are normally distributed with different covariance
matrices, by finding the ratio of densities and simplifying we find the classification
regions

R1 : − 1

2
x′(Σ−1

1 −Σ−1
2 )x+ (µ′

1Σ
−1
1 − µ′

2Σ
−1
2 )x− k

≥ ln

(
c(1 | 2)
c(2 | 1)

p2
p1

)

R2 : − 1

2
x′(Σ−1

1 −Σ−1
2 )x+ (µ′

1Σ
−1
1 − µ′

2Σ
−1
2 )x− k

< ln

(
c(1 | 2)
c(2 | 1)

p2
p1

)
where

k =
1

2
ln

(
|Σ1|
|Σ2|

)
+

1

2
(µ′

1Σ
−1
1 µ1 − µ2Σ

−1
2 µ2).

Notice how the first term is a quadratic form, thus the regions are defined by
quadratic functions of x. This term disappears when Σ1 = Σ2 and the rest of the
equation reduces to 2.3.

In practice, the covariances and mean vectors are usually unknown, so for all of
the discussed classification rules the estimated minimum TECM rule can be found
by substituting the unknown statistics with their sample variants.



Chapter 3

Analysis

Now we shall demonstrate some of the methods we have looked at and see how
effective even the linear classification rule can be in practice.

3.1 Data

The data used in this analysis is from a voluntary online questionnaire in the Fac-
ulty of Science and Technology course STA100 at the University of Stavanger. The
questionnaire included questions about the participants height, shoe size, gender
and more, but these are the variables we will be interested inn for demonstration.
The height is measured in centimeters, shoe size in the EU continental system
and the gender as one of the character strings ”Male” or ”Female”. The results
from the questionnaire for the years 2019 to 2023 have been included totaling in
1541 data points where 406 of which had the gender set as ”Female” and 1135 as
”Male”.

3.1.1 Some changes to suspect data points

There were some data points in the original data set which has been either removed
or changed, including a female with a shoe size of 385 which has been changed to
38.5. Two males with shoe size 4, both of these have been removed. And lastly
a female with a height of 195cm and 48 in EU shoe size, this is such a extreme
outlier that it is assumed that it is a male that has either set the wrong gender
by accident or done so as a joke, therefore the gender was changed to ”Male”.
A scatter plot of the data is illustrated in Figure 3.1 with some noise added to
counteract the discretization.

23
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Figure 3.1: Scatter plot of the data with some noise added to the position

3.1.2 Assessing normality

It is generally that height and shoe size are approximately normally distributed,
but we will still make a short attempt to justify this assumption. For a more
detailed discussion about assessing the assumption of normality see [3]. We will
first start with histograms for the shoe sizes and heights, separated by gender as
we will assume that each gender is its own population.

Along with these histograms we can also make Q-Q plots for each variable,
here we will see the discretization that happens from most of the inputs being
rounded to the nearest integer or half integer, which is completely reasonable as it
is understandable that the participants don’t specify their height or shoe size with
multiple decimals of precision.

There seems to be deviation from normality in the female shoe sizes, and it looks
like this is due to having heavier tails than a normal distribution, fortunately this
does not really pose a large problem for our purposes. From this we will conclude
that the shoe size and height for the males are multivariate normal and for the
females we will approximate it as such, knowing it deviates slightly from normality
for the shoe sizes.
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Figure 3.3: Quantile plots

3.2 Estimation

Next we will assume that the shoe size and height for females are distributed as
N2(µF ,ΣF ) and the males as N2(µM ,ΣM) and estimate the various parameters.
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This is is done by using the formulas presented in section 2.2.2.

µ̂F = x̄F =

[
38.44
167.9

]
Σ̂F = SF =

[
2.153 6.740
6.740 47.86

]

µ̂M = x̄M =

[
43.47
182.1

]
Σ̂M = SM =

[
2.525 6.819
6.819 44.28

]
This gives us the two densities, illustrated with perspective plots and heat maps

in Figure 3.4.



3.2. ESTIMATION 27

S
hoe size

34

36

38

40

42
Height

150

160

170

180

0.000

0.005

0.010

0.015

0.020

(a) Perspective plot of N2(x̄F ,SF )

34 36 38 40 42

15
0

16
0

17
0

18
0

Shoe size

H
ei

gh
t

 0.002 

 0.004 

 0.006 

 0.008 

 0.01 

 0.012 

 0.014 

 0.016 

 0.018 

 0.02 

(b) Heat map of N2(x̄F ,SF )

S
hoe size

38

40

42

44

46

48
Height

160

170

180

190

200

0.000

0.005

0.010

0.015

(c) Perspective plot of N2(x̄M ,SM )

38 40 42 44 46 48

16
0

17
0

18
0

19
0

20
0

Shoe size

H
ei

gh
t

 0.002 

 0.004 

 0.006 

 0.008 

 0.01 

 0.012 

 0.014 

 0.016 

 0.018 

(d) Heat map of N2(x̄M ,SM )

Figure 3.4: Various plots of the estimated normal densities

This is of course not the only way to estimate the densities, we can compare
this result to the one we get from non-parametric kernel estimation. For the plots
in Figure 3.5 we will only use the male data to demonstrate. If the discretization
is a key feature that we wish to include in our estimate then we must choose a
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bandwidth that manages to detect this, one example is the bandwidth

H =

[
1.55 0
0 6.2

]
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(b) Heat map of f̂M (x)

Figure 3.5: KDE f̂M(x) for male data with H =

[
1.55 0
0 6.2

]

But now we want to compare with our normal estimate N2(x̄M ,SM) in Figure

3.4c and 3.4d, so we choose the matrix H =

[
1.8 0
0 7

]
as our smoothing parameter

and see in Figure 3.6 that the density we get from kernel estimation is similar to
the one we get from assuming normality and estimating the parameters µM and
ΣM .

Another point of interest would be test how the rounding to integers effects the
normal distribution, so here we have simulated 1135 data points from N2(x̄M ,SM)
and then rounded the values to the closest integer before kernel estimation with

H =

[
1.55 0
0 6.2

]
.

When comparing Figure 3.7 with Figure 3.5 we can see how similar these two
plots are, this gives us more confidence in the assumption that the shoe size and
height of males are multivariate normal. The true distribution of shoe sizes is
probably normal, and due to the discretization and the small range of values it
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(b) Heat map of f̂M (x)

Figure 3.6: KDE f̂M(x) for male data with H =

[
1.8 0
0 7

]
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(b) Heat map of the simulated density

Figure 3.7: KDE of simulated N2(x̄M ,SM) with rounding and H =

[
1.55 0
0 6.2

]

can make it difficult to confirm this, but as we saw in Figure 3.7 we were able to
recreate the result by simulating values from a normal distribution.
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3.3 Classification

Now we want to find a classification rule where we can specify the shoe size and
height of a individual and determine their gender. This will be done with the
linear classification rule as outlined in section 2.5.

For the linear rule we assume equal covariance for each of our multivariate
normal populations. As we saw in the previous section, the assumption of nor-
mality seems reasonable, and the difference between our estimates for ΣF and ΣM

is small, so its also reasonable to assume equal covariance. Thus we will find the
pooled variance Spooled

Spooled =
(nF − 1)SF + (nM − 1)SM

nF + nM − 2
=

[
2.427 6.798
6.798 45.23

]

=⇒ S−1
pooled =

[
0.7118 −0.1070
−0.1070 0.03819

]
and use this as our estimate for the covariance.

The costs of misclassification will be assumed to be equal. The prior probabil-
ities are unknown for our populations, which means that these must be estimated.
We will the take proportion of females in the data sett as our estimate for the prior
probability for the female population pF , and equivalently for the prior probability
for the male population pM .

p̂F =
406

1541
≈ 0.263 p̂M =

1135

1541
≈ 0.737

Using the formulation in equation 2.4, we find a vector â1

â′
1 = (x̄F − x̄M)S−1

pooled =
[
−2.07 −0.00224

]
which is unique up to a multiplicative constant, so we will normalize and change
the sign

â =
−1

|â1|
â1 =

[
1.00

0.00108

]
.

Next is determining m̂, this is calculated directly now that we have found â.

m̂ =
1

2
(â′x̄F + â′x̄M) = 41.1



3.3. CLASSIFICATION 31

150

160

170

180

190

200

35 40 45 50
Shoe size

H
ei

gh
t

Female

Male

(a) Line parallel with â, through the mid-
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Figure 3.8: Plots of the line parallel to â and the line separating our regions

Thus we have found the line to where we project the data points and classify the
points falling to the left of the midpoint m̂ as female and the points to the right as
male, this line is illustrated in Figure 3.8a and when considering this line as one
of axes we will maximize the separation between the populations. This can also
be illustrated with a line separating our two regions as in Figure 3.8b where the
formula for our line will be â′x = m̂− 1

|â1| ln
(
0.737
0.263

)
in this case our separation line

becomes x1 + 0.00108x2 = 40.6.

We might notice that for the discrimination the shoe size is the better variable
to use, so for a practical setting it would not be a problem to only measure the
shoe size to classify the individual, we can also see this in the vector â.

The final classification rule is expressed in terms of the scalar ŷ0 = â′x0 as
follows. Allocate the observation x0 to the female population if

ŷ0 ≤ m̂− 1

|â1|
ln

(
0.737

0.263

)
= 40.6 ,

or equivalently

â′x = x1 + 0.00108x2 ≤ 40.6 ,

otherwise allocate x0 to the male population.
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3.3.1 Evaluating the classification rule

One common method used to evaluate the classification rule is to split the data
set into two parts, one that is used for making the model and one that is used to
test it. We have done so, splitting 70% into a training set and 30% for testing,
and repeating this 10 000 times to make a 95% confidence interval for the accu-
racy of the classification rule. Through this procedure the point estimate for the
accuracy is 0.962 with a 95% confidence interval of [0.947, 0.977], illustrated in the
histogram below.

There are more methods to evaluate the accuracy of classification rules, as well
as other measures to evaluate on, such as the apparent error rate.

Other methods could be used to classify our two populations, such as Fishers
linear discriminant or the quadratic classification rule. For Fishers method the
only change is that the prior probabilities are assumed to be equal, for our case,
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this will shift our separation line further to the right, this could be used if our
populations were not the female and male students at this specific faculty where
the ratio of female to male is skewed, but rather some equivalent population with
a ratio of female and male students that is closer to one. As for the quadratic rule,
the result does not drastically change from the linear rule and this is due to the
small difference in our covariance matrices and having well-separated populations.



Chapter 4

Summary

Throughout this work, we have seen how univariate statistics generalizes to vectors
of random variables with a focus on the multivariate normal distribution. For the
multivariate normal distribution, we have looked in section 2.3 at some proper-
ties, maximum likelihood estimation, and lastly simulation of multivariate normal
variables in section. Further, we introduced, in section 2.4, non-parametric kernel
estimation and demonstrated the effect of different values of the smoothing param-
eter. In section 2.5 we built methods for discrimination and then the classification
of new observations by defining rules such as the quadratic classification rule. In
the final chapter, we demonstrated many of these methods on a real data set and
discussed various challenges and the validity of our assumptions.

34



Bibliography

[1] Anderson, T. W. (2003). An introduction to multivariate statistical analysis
(3rd ed.). Wiley series in probability and statistics. Hoboken, N.J: Wiley.

[2] Box, G. E. P. and M. E. Muller (1958, June). A note on the generation of
random normal deviates. The Annals of Mathematical Statistics 29 (2).

[3] Johnson, R. A. and D. W. Wichern (2014). Applied multivariate statistical
analysis (6th ed.). Harlow: Pearson.

[4] Silverman, B. W. (1986). Density estimation for statistics and data analysis.
Monographs on statistics and applied probability. London: Chapman and Hall.

35


	Introduction
	Theory
	Univariate statistics
	Random variables
	Descriptive statistics

	Multivariate statistics
	Multivariate objects of random variables
	Sampling statistics

	Multivariate normal distribution
	Properties
	Maximum likelihood estimation
	Simulation

	Non-parametric kernel estimation
	The kernel
	Bandwidth

	Discriminant analysis and classification
	Expected cost of misclassification
	Linear discriminant analysis
	Quadratic discriminant analysis


	Analysis
	Data
	Some changes to suspect data points
	Assessing normality

	Estimation
	Classification
	Evaluating the classification rule


	Summary

